WorldWideScience

Sample records for monte carlo mc

  1. The MC21 Monte Carlo Transport Code

    International Nuclear Information System (INIS)

    Sutton TM; Donovan TJ; Trumbull TH; Dobreff PS; Caro E; Griesheimer DP; Tyburski LJ; Carpenter DC; Joo H

    2007-01-01

    MC21 is a new Monte Carlo neutron and photon transport code currently under joint development at the Knolls Atomic Power Laboratory and the Bettis Atomic Power Laboratory. MC21 is the Monte Carlo transport kernel of the broader Common Monte Carlo Design Tool (CMCDT), which is also currently under development. The vision for CMCDT is to provide an automated, computer-aided modeling and post-processing environment integrated with a Monte Carlo solver that is optimized for reactor analysis. CMCDT represents a strategy to push the Monte Carlo method beyond its traditional role as a benchmarking tool or ''tool of last resort'' and into a dominant design role. This paper describes various aspects of the code, including the neutron physics and nuclear data treatments, the geometry representation, and the tally and depletion capabilities

  2. ATLAS Monte Carlo tunes for MC09

    CERN Document Server

    The ATLAS collaboration

    2010-01-01

    This note describes the ATLAS tunes of underlying event and minimum bias description for the main Monte Carlo generators used in the MC09 production. For the main shower generators, pythia and herwig (with jimmy), the MRST LO* parton distribution functions (PDFs) were used for the first time in ATLAS. Special studies on the performance of these, conceptually new, PDFs for high pt physics processes at LHC energies are presented. In addition, a tune of jimmy for CTEQ6.6 is presented, for use with MC@NLO.

  3. The OpenMC Monte Carlo particle transport code

    International Nuclear Information System (INIS)

    Romano, Paul K.; Forget, Benoit

    2013-01-01

    Highlights: ► An open source Monte Carlo particle transport code, OpenMC, has been developed. ► Solid geometry and continuous-energy physics allow high-fidelity simulations. ► Development has focused on high performance and modern I/O techniques. ► OpenMC is capable of scaling up to hundreds of thousands of processors. ► Results on a variety of benchmark problems agree with MCNP5. -- Abstract: A new Monte Carlo code called OpenMC is currently under development at the Massachusetts Institute of Technology as a tool for simulation on high-performance computing platforms. Given that many legacy codes do not scale well on existing and future parallel computer architectures, OpenMC has been developed from scratch with a focus on high performance scalable algorithms as well as modern software design practices. The present work describes the methods used in the OpenMC code and demonstrates the performance and accuracy of the code on a variety of problems.

  4. ERSN-OpenMC, a Java-based GUI for OpenMC Monte Carlo code

    Directory of Open Access Journals (Sweden)

    Jaafar EL Bakkali

    2016-07-01

    Full Text Available OpenMC is a new Monte Carlo transport particle simulation code focused on solving two types of neutronic problems mainly the k-eigenvalue criticality fission source problems and external fixed fission source problems. OpenMC does not have any Graphical User Interface and the creation of one is provided by our java-based application named ERSN-OpenMC. The main feature of this application is to provide to the users an easy-to-use and flexible graphical interface to build better and faster simulations, with less effort and great reliability. Additionally, this graphical tool was developed with several features, as the ability to automate the building process of OpenMC code and related libraries as well as the users are given the freedom to customize their installation of this Monte Carlo code. A full description of the ERSN-OpenMC application is presented in this paper.

  5. McStas 1.1: A tool for building neutron Monte Carlo simulations

    DEFF Research Database (Denmark)

    Lefmann, K.; Nielsen, K.; Tennant, D.A.

    2000-01-01

    McStas is a project to develop general tools for the creation of simulations of neutron scattering experiments. In this paper, we briefly introduce McStas and describe a particular application of the program: the Monte Carlo calculation of the resolution function of a standard triple-axis neutron...

  6. Monte Carlo simulations of neutron-scattering instruments using McStas

    DEFF Research Database (Denmark)

    Nielsen, K.; Lefmann, K.

    2000-01-01

    Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Rise National Laboratory, includes...

  7. CloudMC: a cloud computing application for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-01-01

    This work presents CloudMC, a cloud computing application—developed in Windows Azure®, the platform of the Microsoft® cloud—for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based—the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice. (note)

  8. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  9. Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code

    International Nuclear Information System (INIS)

    Gill, D. F.; Nease, B. R.; Griesheimer, D. P.

    2013-01-01

    A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)

  10. Movable geometry and eigenvalue search capability in the MC21 Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D. F.; Nease, B. R.; Griesheimer, D. P. [Bettis Atomic Power Laboratory, PO Box 79, West Mifflin, PA 15122 (United States)

    2013-07-01

    A description of a robust and flexible movable geometry implementation in the Monte Carlo code MC21 is described along with a search algorithm that can be used in conjunction with the movable geometry capability to perform eigenvalue searches based on the position of some geometric component. The natural use of the combined movement and search capability is searching to critical through variation of control rod (or control drum) position. The movable geometry discussion provides the mathematical framework for moving surfaces in the MC21 combinatorial solid geometry description. A discussion of the interface between the movable geometry system and the user is also described, particularly the ability to create a hierarchy of movable groups. Combined with the hierarchical geometry description in MC21 the movable group framework provides a very powerful system for inline geometry modification. The eigenvalue search algorithm implemented in MC21 is also described. The foundations of this algorithm are a regula falsi search though several considerations are made in an effort to increase the efficiency of the algorithm for use with Monte Carlo. Specifically, criteria are developed to determine after each batch whether the Monte Carlo calculation should be continued, the search iteration can be rejected, or the search iteration has converged. These criteria seek to minimize the amount of time spent per iteration. Results for the regula falsi method are shown, illustrating that the method as implemented is indeed convergent and that the optimizations made ultimately reduce the total computational expense. (authors)

  11. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Y.; Song, J.; Zheng, H.; Sun, G.; Hao, L.; Long, P.; Hu, L.

    2013-01-01

    SuperMC is a (Computer-Aided-Design) CAD-based Monte Carlo (MC) program for integrated simulation of nuclear systems developed by FDS Team (China), making use of hybrid MC-deterministic method and advanced computer technologies. The design aim, architecture and main methodology of SuperMC are presented in this paper. The taking into account of multi-physics processes and the use of advanced computer technologies such as automatic geometry modeling, intelligent data analysis and visualization, high performance parallel computing and cloud computing, contribute to the efficiency of the code. SuperMC2.1, the latest version of the code for neutron, photon and coupled neutron and photon transport calculation, has been developed and validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model

  12. OpenMC: A state-of-the-art Monte Carlo code for research and development

    International Nuclear Information System (INIS)

    Romano, Paul K.; Horelik, Nicholas E.; Herman, Bryan R.; Nelson, Adam G.; Forget, Benoit; Smith, Kord

    2015-01-01

    Highlights: • OpenMC is an open source Monte Carlo particle transport code. • Solid geometry and continuous-energy physics allow high-fidelity simulations. • Development has focused on high performance and modern I/O techniques. • OpenMC is capable of scaling up to hundreds of thousands of processors. • Other features include plotting, CMFD acceleration, and variance reduction. - Abstract: This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes

  13. MC++: A parallel, portable, Monte Carlo neutron transport code in C++

    International Nuclear Information System (INIS)

    Lee, S.R.; Cummings, J.C.; Nolen, S.D.

    1997-01-01

    MC++ is an implicit multi-group Monte Carlo neutron transport code written in C++ and based on the Parallel Object-Oriented Methods and Applications (POOMA) class library. MC++ runs in parallel on and is portable to a wide variety of platforms, including MPPs, SMPs, and clusters of UNIX workstations. MC++ is being developed to provide transport capabilities to the Accelerated Strategic Computing Initiative (ASCI). It is also intended to form the basis of the first transport physics framework (TPF), which is a C++ class library containing appropriate abstractions, objects, and methods for the particle transport problem. The transport problem is briefly described, as well as the current status and algorithms in MC++ for solving the transport equation. The alpha version of the POOMA class library is also discussed, along with the implementation of the transport solution algorithms using POOMA. Finally, a simple test problem is defined and performance and physics results from this problem are discussed on a variety of platforms

  14. OpenMC: a state-of-the-Art Monte Carlo code for research and development

    International Nuclear Information System (INIS)

    Romano, P.K.; Horelik, N.E.; Herman, B.R.; Forget, B.; Smith, K.; Nelson, A.G.

    2013-01-01

    This paper gives an overview of OpenMC, an open source Monte Carlo particle transport code recently developed at the Massachusetts Institute of Technology. OpenMC uses continuous-energy cross sections and a constructive solid geometry representation, enabling high-fidelity modeling of nuclear reactors and other systems. Modern, portable input/output file formats are used in OpenMC: XML for input, and HDF5 for output. High performance parallel algorithms in OpenMC have demonstrated near-linear scaling to over 100,000 processors on modern supercomputers. Other topics discussed in this paper include plotting, CMFD acceleration, variance reduction, eigenvalue calculations, and software development processes. (authors)

  15. CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC

    International Nuclear Information System (INIS)

    Wu, Yican; Song, Jing; Zheng, Huaqing; Sun, Guangyao; Hao, Lijuan; Long, Pengcheng; Hu, Liqin

    2015-01-01

    Highlights: • The new developed CAD-based Monte Carlo program named SuperMC for integrated simulation of nuclear system makes use of hybrid MC-deterministic method and advanced computer technologies. SuperMC is designed to perform transport calculation of various types of particles, depletion and activation calculation including isotope burn-up, material activation and shutdown dose, and multi-physics coupling calculation including thermo-hydraulics, fuel performance and structural mechanics. The bi-directional automatic conversion between general CAD models and physical settings and calculation models can be well performed. Results and process of simulation can be visualized with dynamical 3D dataset and geometry model. Continuous-energy cross section, burnup, activation, irradiation damage and material data etc. are used to support the multi-process simulation. Advanced cloud computing framework makes the computation and storage extremely intensive simulation more attractive just as a network service to support design optimization and assessment. The modular design and generic interface promotes its flexible manipulation and coupling of external solvers. • The new developed and incorporated advanced methods in SuperMC was introduced including hybrid MC-deterministic transport method, particle physical interaction treatment method, multi-physics coupling calculation method, geometry automatic modeling and processing method, intelligent data analysis and visualization method, elastic cloud computing technology and parallel calculation method. • The functions of SuperMC2.1 integrating automatic modeling, neutron and photon transport calculation, results and process visualization was introduced. It has been validated by using a series of benchmarking cases such as the fusion reactor ITER model and the fast reactor BN-600 model. - Abstract: Monte Carlo (MC) method has distinct advantages to simulate complicated nuclear systems and is envisioned as a routine

  16. Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation

    KAUST Repository

    Haji-Ali, Abdul-Lateef

    2017-09-12

    We address the approximation of functionals depending on a system of particles, described by stochastic differential equations (SDEs), in the mean-field limit when the number of particles approaches infinity. This problem is equivalent to estimating the weak solution of the limiting McKean–Vlasov SDE. To that end, our approach uses systems with finite numbers of particles and a time-stepping scheme. In this case, there are two discretization parameters: the number of time steps and the number of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting with an error tolerance of $$\\\\mathrm {TOL}$$TOL, is when using the partitioning estimator and the Milstein time-stepping scheme. We also consider a method that uses the recent Multi-index Monte Carlo method and show an improved work complexity in the same typical setting of . Our numerical experiments are carried out on the so-called Kuramoto model, a system of coupled oscillators.

  17. The HepMC C++ Monte Carlo Event Record for High Energy Physics

    CERN Document Server

    Dobbs, M

    2000-01-01

    HepMC is an Object Oriented event record written in C++ for High Energy Physics Monte Carlo Event Generators. Many extensions from HEPEVT, the Fortran HEP standard, are supported: the number of entries is unlimited, spin density matrices can be stored with each vertex, flow patterns (such as colour) can be stored and traced, random number generator states can be stored, and an arbitrary number of event weights can be included. Particles and vertices are stored separately in a graph structure, reflecting the evolution of a physics event. The added information supports the modularisation of event generators. The event record has been kept as simple as possible with minimal internal/external dependencies. Event information is accessed by means of iterators supplied with HepMC.

  18. Monte Carlo dose calculation improvements for low energy electron beams using eMC

    International Nuclear Information System (INIS)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Born, Ernst J; Manser, Peter; Neuenschwander, Hans

    2010-01-01

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm 2 of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d max and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm 2 at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose calculation

  19. Monte Carlo dose calculation improvements for low energy electron beams using eMC.

    Science.gov (United States)

    Fix, Michael K; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2010-08-21

    The electron Monte Carlo (eMC) dose calculation algorithm in Eclipse (Varian Medical Systems) is based on the macro MC method and is able to predict dose distributions for high energy electron beams with high accuracy. However, there are limitations for low energy electron beams. This work aims to improve the accuracy of the dose calculation using eMC for 4 and 6 MeV electron beams of Varian linear accelerators. Improvements implemented into the eMC include (1) improved determination of the initial electron energy spectrum by increased resolution of mono-energetic depth dose curves used during beam configuration; (2) inclusion of all the scrapers of the applicator in the beam model; (3) reduction of the maximum size of the sphere to be selected within the macro MC transport when the energy of the incident electron is below certain thresholds. The impact of these changes in eMC is investigated by comparing calculated dose distributions for 4 and 6 MeV electron beams at source to surface distance (SSD) of 100 and 110 cm with applicators ranging from 6 x 6 to 25 x 25 cm(2) of a Varian Clinac 2300C/D with the corresponding measurements. Dose differences between calculated and measured absolute depth dose curves are reduced from 6% to less than 1.5% for both energies and all applicators considered at SSD of 100 cm. Using the original eMC implementation, absolute dose profiles at depths of 1 cm, d(max) and R50 in water lead to dose differences of up to 8% for applicators larger than 15 x 15 cm(2) at SSD 100 cm. Those differences are now reduced to less than 2% for all dose profiles investigated when the improved version of eMC is used. At SSD of 110 cm the dose difference for the original eMC version is even more pronounced and can be larger than 10%. Those differences are reduced to within 2% or 2 mm with the improved version of eMC. In this work several enhancements were made in the eMC algorithm leading to significant improvements in the accuracy of the dose

  20. Multilevel and Multi-index Monte Carlo methods for the McKean–Vlasov equation

    KAUST Repository

    Haji Ali, Abdul Lateef; Tempone, Raul

    2017-01-01

    of particles. Based on these two parameters, we consider different variants of the Monte Carlo and Multilevel Monte Carlo (MLMC) methods and show that, in the best case, the optimal work complexity of MLMC, to estimate the functional in one typical setting

  1. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ying, C. K. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu (Malaysia); Kamil, W. A. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang, Malaysia and Radiology Department, Hospital USM, Kota Bharu (Malaysia); Shuaib, I. L. [Advanced Medical and Dental Institute, AMDI, Universiti Sains Malaysia, Penang (Malaysia); Matsufuji, Naruhiro [Research Centre of Charged Particle Therapy, National Institute of Radiological Sciences, NIRS, Chiba (Japan)

    2014-02-12

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations.

  2. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C. K.; Kamil, W. A.; Shuaib, I. L.; Matsufuji, Naruhiro

    2014-01-01

    Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy-ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations

  3. An improved Monte Carlo (MC) dose simulation for charged particle cancer therapy

    International Nuclear Information System (INIS)

    Ying, C.K.; Kamil, W.A.; Shuaib, I.L.; Ying, C.K.; Kamil, W.A.

    2013-01-01

    Full-text: Heavy-particle therapy such as carbon ion therapy are more popular nowadays because of the nature characteristics of charged particle and almost no side effect to patients. An effective treatment is achieved with high precision of dose calculation, in this research work, Geant4 based Monte Carlo simulation method has been used to calculate the radiation transport and dose distribution. The simulation have the same setting with the treatment room in Heavy Ion Medical Accelerator, HIMAC. The carbon ion beam at the isocentric gantry nozzle for the therapeutic energy of 290 MeV/u was simulated, experimental work was carried out in National Institute of Radiological Sciences, NIRS, Chiba, Japan by using the HIMAC to confirm the accuracy and qualities dose distribution by MC methods. The Geant4 based simulated dose distribution were verified with measurements for Bragg peak and spread out Bragg peak (SOBP) respectively. The verification of results shows that the Bragg peak depth-dose and SOBP distributions in simulation has good agreement with measurements. In overall, the study showed that Geant4 based can be fully applied in the heavy ion therapy field for simulation, further works need to be carry on to refine and improve the Geant4 MC simulations. (author)

  4. Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach

    Directory of Open Access Journals (Sweden)

    Georg Drache

    2012-07-01

    Full Text Available Utilizing model calculations may lead to a better understanding of the complex kinetics of the controlled radical polymerization. We developed a universal simulation tool (mcPolymer, which is based on the widely used Monte Carlo simulation technique. This article focuses on the software architecture of the program, including its data management and optimization approaches. We were able to simulate polymer chains as individual objects, allowing us to gain more detailed microstructural information of the polymeric products. For all given examples of controlled radical polymerization (nitroxide mediated radical polymerization (NMRP homo- and copolymerization, atom transfer radical polymerization (ATRP, reversible addition fragmentation chain transfer polymerization (RAFT, we present detailed performance analyses demonstrating the influence of the system size, concentrations of reactants, and the peculiarities of data. Different possibilities were exemplarily illustrated for finding an adequate balance between precision, memory consumption, and computation time of the simulation. Due to its flexible software architecture, the application of mcPolymer is not limited to the controlled radical polymerization, but can be adjusted in a straightforward manner to further polymerization models.

  5. Target dose conversion modeling from pencil beam (PB) to Monte Carlo (MC) for lung SBRT

    International Nuclear Information System (INIS)

    Zheng, Dandan; Zhu, Xiaofeng; Zhang, Qinghui; Liang, Xiaoying; Zhen, Weining; Lin, Chi; Verma, Vivek; Wang, Shuo; Wahl, Andrew; Lei, Yu; Zhou, Sumin; Zhang, Chi

    2016-01-01

    A challenge preventing routine clinical implementation of Monte Carlo (MC)-based lung SBRT is the difficulty of reinterpreting historical outcome data calculated with inaccurate dose algorithms, because the target dose was found to decrease to varying degrees when recalculated with MC. The large variability was previously found to be affected by factors such as tumour size, location, and lung density, usually through sub-group comparisons. We hereby conducted a pilot study to systematically and quantitatively analyze these patient factors and explore accurate target dose conversion models, so that large-scale historical outcome data can be correlated with more accurate MC dose without recalculation. Twenty-one patients that underwent SBRT for early-stage lung cancer were replanned with 6MV 360° dynamic conformal arcs using pencil-beam (PB) and recalculated with MC. The percent D95 difference (PB-MC) was calculated for the PTV and GTV. Using single linear regression, this difference was correlated with the following quantitative patient indices: maximum tumour diameter (MaxD); PTV and GTV volumes; minimum distance from tumour to soft tissue (dmin); and mean density and standard deviation of the PTV, GTV, PTV margin, lung, and 2 mm, 15 mm, 50 mm shells outside the PTV. Multiple linear regression and artificial neural network (ANN) were employed to model multiple factors and improve dose conversion accuracy. Single linear regression with PTV D95 deficiency identified the strongest correlation on mean-density (location) indices, weaker on lung density, and the weakest on size indices, with the following R 2 values in decreasing orders: shell2mm (0.71), PTV (0.68), PTV margin (0.65), shell15mm (0.62), shell50mm (0.49), lung (0.40), dmin (0.22), GTV (0.19), MaxD (0.17), PTV volume (0.15), and GTV volume (0.08). A multiple linear regression model yielded the significance factor of 3.0E-7 using two independent features: mean density of shell2mm (P = 1.6E-7) and PTV volume

  6. MC 93 - Proceedings of the International Conference on Monte Carlo Simulation in High Energy and Nuclear Physics

    Science.gov (United States)

    Dragovitsch, Peter; Linn, Stephan L.; Burbank, Mimi

    1994-01-01

    Calorimeter Geometry * Simulations with EGS4/PRESTA for Thin Si Sampling Calorimeter * SIBERIA -- Monte Carlo Code for Simulation of Hadron-Nuclei Interactions * CALOR89 Predictions for the Hanging File Test Configurations * Estimation of the Multiple Coulomb Scattering Error for Various Numbers of Radiation Lengths * Monte Carlo Generator for Nuclear Fragmentation Induced by Pion Capture * Calculation and Randomization of Hadron-Nucleus Reaction Cross Section * Developments in GEANT Physics * Status of the MC++ Event Generator Toolkit * Theoretical Overview of QCD Event Generators * Random Numbers? * Simulation of the GEM LKr Barrel Calorimeter Using CALOR89 * Recent Improvement of the EGS4 Code, Implementation of Linearly Polarized Photon Scattering * Interior-Flux Simulation in Enclosures with Electron-Emitting Walls * Some Recent Developments in Global Determinations of Parton Distributions * Summary of the Workshop on Simulating Accelerator Radiation Environments * Simulating the SDC Radiation Background and Activation * Applications of Cluster Monte Carlo Method to Lattice Spin Models * PDFLIB: A Library of All Available Parton Density Functions of the Nucleon, the Pion and the Photon and the Corresponding αs Calculations * DTUJET92: Sampling Hadron Production at Supercolliders * A New Model for Hadronic Interactions at Intermediate Energies for the FLUKA Code * Matrix Generator of Pseudo-Random Numbers * The OPAL Monte Carlo Production System * Monte Carlo Simulation of the Microstrip Gas Counter * Inner Detector Simulations in ATLAS * Simulation and Reconstruction in H1 Liquid Argon Calorimetry * Polarization Decomposition of Fluxes and Kinematics in ep Reactions * Towards Object-Oriented GEANT -- ProdiG Project * Parallel Processing of AMY Detector Simulation on Fujitsu AP1000 * Enigma: An Event Generator for Electron-Photon- or Pion-Induced Events in the ~1 GeV Region * SSCSIM: Development and Use by the Fermilab SDC Group * The GEANT-CALOR Interface

  7. MC21 Monte Carlo analysis of the Hoogenboom-Martin full-core PWR benchmark problem - 301

    International Nuclear Information System (INIS)

    Kelly, D.J.; Sutton, Th.M.; Trumbull, T.H.; Dobreff, P.S.

    2010-01-01

    At the 2009 American Nuclear Society Mathematics and Computation conference, Hoogenboom and Martin proposed a full-core PWR model to monitor the improvement of Monte Carlo codes to compute detailed power density distributions. This paper describes the application of the MC21 Monte Carlo code to the analysis of this benchmark model. With the MC21 code, we obtained detailed power distributions over the entire core. The model consisted of 214 assemblies, each made up of a 17x17 array of pins. Each pin was subdivided into 100 axial nodes, thus resulting in over seven million tally regions. Various cases were run to assess the statistical convergence of the model. This included runs of 10 billion and 40 billion neutron histories, as well as ten independent runs of 4 billion neutron histories each. The 40 billion neutron-history calculation resulted in 43% of all regions having a 95% confidence level of 2% or less implying a relative standard deviation of 1%. Furthermore, 99.7% of regions having a relative power density of 1.0 or greater have a similar confidence level. We present timing results that assess the MC21 performance relative to the number of tallies requested. Source convergence was monitored by analyzing plots of the Shannon entropy and eigenvalue versus active cycle. We also obtained an estimate of the dominance ratio. Additionally, we performed an analysis of the error in an attempt to ascertain the validity of the confidence intervals predicted by MC21. Finally, we look forward to the prospect of full core 3-D Monte Carlo depletion by scoping out the required problem size. This study provides an initial data point for the Hoogenboom-Martin benchmark model using a state-of-the-art Monte Carlo code. (authors)

  8. Bayesian Monte Carlo method

    International Nuclear Information System (INIS)

    Rajabalinejad, M.

    2010-01-01

    To reduce cost of Monte Carlo (MC) simulations for time-consuming processes, Bayesian Monte Carlo (BMC) is introduced in this paper. The BMC method reduces number of realizations in MC according to the desired accuracy level. BMC also provides a possibility of considering more priors. In other words, different priors can be integrated into one model by using BMC to further reduce cost of simulations. This study suggests speeding up the simulation process by considering the logical dependence of neighboring points as prior information. This information is used in the BMC method to produce a predictive tool through the simulation process. The general methodology and algorithm of BMC method are presented in this paper. The BMC method is applied to the simplified break water model as well as the finite element model of 17th Street Canal in New Orleans, and the results are compared with the MC and Dynamic Bounds methods.

  9. Studies on top-quark Monte Carlo modelling with Sherpa and MG5_aMC@NLO

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    This note presents the status of recent studies of modern Monte Carlo generator setups for the pair production of top quarks at the LHC. Samples at a center of mass energy of 13 TeV have been generated using MG5_aMC@NLO+Pythia8 at at next-to-leading order and Sherpa 2.2 at next-to-leading order precision in QCD. Results are compared to unfolded ATLAS data. The effects of varying relevant parameters are also presented for Sherpa 2.2.

  10. Generalized eMC implementation for Monte Carlo dose calculation of electron beams from different machine types.

    Science.gov (United States)

    Fix, Michael K; Cygler, Joanna; Frei, Daniel; Volken, Werner; Neuenschwander, Hans; Born, Ernst J; Manser, Peter

    2013-05-07

    The electron Monte Carlo (eMC) dose calculation algorithm available in the Eclipse treatment planning system (Varian Medical Systems) is based on the macro MC method and uses a beam model applicable to Varian linear accelerators. This leads to limitations in accuracy if eMC is applied to non-Varian machines. In this work eMC is generalized to also allow accurate dose calculations for electron beams from Elekta and Siemens accelerators. First, changes made in the previous study to use eMC for low electron beam energies of Varian accelerators are applied. Then, a generalized beam model is developed using a main electron source and a main photon source representing electrons and photons from the scattering foil, respectively, an edge source of electrons, a transmission source of photons and a line source of electrons and photons representing the particles from the scrapers or inserts and head scatter radiation. Regarding the macro MC dose calculation algorithm, the transport code of the secondary particles is improved. The macro MC dose calculations are validated with corresponding dose calculations using EGSnrc in homogeneous and inhomogeneous phantoms. The validation of the generalized eMC is carried out by comparing calculated and measured dose distributions in water for Varian, Elekta and Siemens machines for a variety of beam energies, applicator sizes and SSDs. The comparisons are performed in units of cGy per MU. Overall, a general agreement between calculated and measured dose distributions for all machine types and all combinations of parameters investigated is found to be within 2% or 2 mm. The results of the dose comparisons suggest that the generalized eMC is now suitable to calculate dose distributions for Varian, Elekta and Siemens linear accelerators with sufficient accuracy in the range of the investigated combinations of beam energies, applicator sizes and SSDs.

  11. McSUB V2.0, an upgraded version of the Monte Carlo library McSUB with inclusion of weight factors

    International Nuclear Information System (INIS)

    Hoek, M.

    1991-02-01

    The Monte Carlo library McSUB, which was described in an earlier report, has been upgraded to McSUB V2.0. McSUB V2.0 can be used to simulate the neutron transport in a medium which is a mixture of hydrogen and carbon or a mixture of deuterium and carbon. The implemented neutron energy interval is 0.1 - 20 MeV and the library can be used to simulate elastic and inelastic scattering. The inelastic scattering with carbon takes into account the four lowest excited states of the carbon nucleus. McSUB V2.0 is downward compatible with McSUB expect for the layout of the parameter file which now contains more variables. The major upgrade has been the inclusion of routines using weight factors which has speeded up the old version considerably. McSUB V2.0 also makes a biasing technique possible. It is now possible to e.g. let a neutron scatter with a selected nucleus followed by a biased scattering direction. (au)

  12. Application of Higher Order Fission Matrix for Real Variance Estimation in McCARD Monte Carlo Eigenvalue Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    In a Monte Carlo (MC) eigenvalue calculation, it is well known that the apparent variance of a local tally such as pin power differs from the real variance considerably. The MC method in eigenvalue calculations uses a power iteration method. In the power iteration method, the fission matrix (FM) and fission source density (FSD) are used as the operator and the solution. The FM is useful to estimate a variance and covariance because the FM can be calculated by a few cycle calculations even at inactive cycle. Recently, S. Carney have implemented the higher order fission matrix (HOFM) capabilities into the MCNP6 MC code in order to apply to extend the perturbation theory to second order. In this study, the HOFM capability by the Hotelling deflation method was implemented into McCARD and used to predict the behavior of a real and apparent SD ratio. In the simple 1D slab problems, the Endo's theoretical model predicts well the real to apparent SD ratio. It was noted that the Endo's theoretical model with the McCARD higher mode FS solutions by the HOFM yields much better the real to apparent SD ratio than that with the analytic solutions. In the near future, the application for a high dominance ratio problem such as BEAVRS benchmark will be conducted.

  13. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B.; Jia, Xun

    2015-09-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  14. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC).

    Science.gov (United States)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-10-07

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia's CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon-electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783-97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE's random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48-0.53% for the electron beam cases and 0.15-0.17% for the photon beam cases. In terms of efficiency, goMC was ~4-16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was validated by

  15. A GPU OpenCL based cross-platform Monte Carlo dose calculation engine (goMC)

    International Nuclear Information System (INIS)

    Tian, Zhen; Shi, Feng; Folkerts, Michael; Qin, Nan; Jiang, Steve B; Jia, Xun

    2015-01-01

    Monte Carlo (MC) simulation has been recognized as the most accurate dose calculation method for radiotherapy. However, the extremely long computation time impedes its clinical application. Recently, a lot of effort has been made to realize fast MC dose calculation on graphic processing units (GPUs). However, most of the GPU-based MC dose engines have been developed under NVidia’s CUDA environment. This limits the code portability to other platforms, hindering the introduction of GPU-based MC simulations to clinical practice. The objective of this paper is to develop a GPU OpenCL based cross-platform MC dose engine named goMC with coupled photon–electron simulation for external photon and electron radiotherapy in the MeV energy range. Compared to our previously developed GPU-based MC code named gDPM (Jia et al 2012 Phys. Med. Biol. 57 7783–97), goMC has two major differences. First, it was developed under the OpenCL environment for high code portability and hence could be run not only on different GPU cards but also on CPU platforms. Second, we adopted the electron transport model used in EGSnrc MC package and PENELOPE’s random hinge method in our new dose engine, instead of the dose planning method employed in gDPM. Dose distributions were calculated for a 15 MeV electron beam and a 6 MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. Satisfactory agreement between the two MC dose engines goMC and gDPM was observed in all cases. The average dose differences in the regions that received a dose higher than 10% of the maximum dose were 0.48–0.53% for the electron beam cases and 0.15–0.17% for the photon beam cases. In terms of efficiency, goMC was ∼4–16% slower than gDPM when running on the same NVidia TITAN card for all the cases we tested, due to both the different electron transport models and the different development environments. The code portability of our new dose engine goMC was

  16. Application of Monte Carlo perturbation methods to a neutron porosity logging tool, using DUCKPOND/McBEND

    International Nuclear Information System (INIS)

    Kemshell, P.B.; Wright, W.V.; Sanders, L.G.

    1984-01-01

    DUCKPOND, the sensitivity option of the Monte Carlo code McBEND, is being used to study the effect of environmental perturbations on the response of a dual detector neutron porosity logging tool. Using a detailed model of an actual tool, calculations have been performed for a 19% porosity limestone rock sample in the API Test Pit. Within a single computer run, the tool response, or near-to-far detector count ratio, and the sensitivity of this response to the concentration of each isotope present in the formation have been estimated. The calculated tool response underestimates the measured value by about 10%, which is equal to 1.5 ''standard errors'', but this apparent discrepancy is shown to be within the spread of calculated values arising from uncertainties on the rock composition

  17. MC21 v.6.0 - A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities

    International Nuclear Information System (INIS)

    Grieshemer, D.P.; Gill, D.F.; Nease, B.R.; Carpenter, D.C.; Joo, H.; Millman, D.L.; Sutton, T.M.; Stedry, M.H.; Dobreff, P.S.; Trumbull, T.H.; Caro, E.

    2013-01-01

    MC21 is a continuous-energy Monte Carlo radiation transport code for the calculation of the steady-state spatial distributions of reaction rates in three-dimensional models. The code supports neutron and photon transport in fixed source problems, as well as iterated-fission-source (eigenvalue) neutron transport problems. MC21 has been designed and optimized to support large-scale problems in reactor physics, shielding, and criticality analysis applications. The code also supports many in-line reactor feedback effects, including depletion, thermal feedback, xenon feedback, eigenvalue search, and neutron and photon heating. MC21 uses continuous-energy neutron/nucleus interaction physics over the range from 10 -5 eV to 20 MeV. The code treats all common neutron scattering mechanisms, including fast-range elastic and non-elastic scattering, and thermal- and epithermal-range scattering from molecules and crystalline materials. For photon transport, MC21 uses continuous-energy interaction physics over the energy range from 1 keV to 100 GeV. The code treats all common photon interaction mechanisms, including Compton scattering, pair production, and photoelectric interactions. All of the nuclear data required by MC21 is provided by the NDEX system of codes, which extracts and processes data from EPDL-, ENDF-, and ACE-formatted source files. For geometry representation, MC21 employs a flexible constructive solid geometry system that allows users to create spatial cells from first- and second-order surfaces. The system also allows models to be built up as hierarchical collections of previously defined spatial cells, with interior detail provided by grids and template overlays. Results are collected by a generalized tally capability which allows users to edit integral flux and reaction rate information. Results can be collected over the entire problem or within specific regions of interest through the use of phase filters that control which particles are allowed to score each

  18. Exploring Monte Carlo methods

    CERN Document Server

    Dunn, William L

    2012-01-01

    Exploring Monte Carlo Methods is a basic text that describes the numerical methods that have come to be known as "Monte Carlo." The book treats the subject generically through the first eight chapters and, thus, should be of use to anyone who wants to learn to use Monte Carlo. The next two chapters focus on applications in nuclear engineering, which are illustrative of uses in other fields. Five appendices are included, which provide useful information on probability distributions, general-purpose Monte Carlo codes for radiation transport, and other matters. The famous "Buffon's needle proble

  19. Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Bardenet Rémi

    2013-07-01

    Full Text Available Bayesian inference often requires integrating some function with respect to a posterior distribution. Monte Carlo methods are sampling algorithms that allow to compute these integrals numerically when they are not analytically tractable. We review here the basic principles and the most common Monte Carlo algorithms, among which rejection sampling, importance sampling and Monte Carlo Markov chain (MCMC methods. We give intuition on the theoretical justification of the algorithms as well as practical advice, trying to relate both. We discuss the application of Monte Carlo in experimental physics, and point to landmarks in the literature for the curious reader.

  20. Monte Carlo simulations of neutron scattering instruments

    International Nuclear Information System (INIS)

    Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.

    2001-01-01

    A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)

  1. Monte Carlo: Basics

    OpenAIRE

    Murthy, K. P. N.

    2001-01-01

    An introduction to the basics of Monte Carlo is given. The topics covered include, sample space, events, probabilities, random variables, mean, variance, covariance, characteristic function, chebyshev inequality, law of large numbers, central limit theorem (stable distribution, Levy distribution), random numbers (generation and testing), random sampling techniques (inversion, rejection, sampling from a Gaussian, Metropolis sampling), analogue Monte Carlo and Importance sampling (exponential b...

  2. Monte Carlo; based validation of the ENDF/MC2-II/SDX cell homogenization path

    International Nuclear Information System (INIS)

    Wade, D.C.

    1978-11-01

    The results are summarized of a program of validation of the unit cell homogenization prescriptions and codes used for the analysis of Zero Power Reactor (ZPR) fast breeder reactor critical experiments. The ZPR drawer loading patterns comprise both plate type and pin-calandria type unit cells. A prescription is used to convert the three dimensional physical geometry of the drawer loadings into one dimensional calculational models. The ETOE-II/MC 2 -II/SDX code sequence is used to transform ENDF/B basic nuclear data into unit cell average broad group cross sections based on the 1D models. Cell average, broad group anisotropic diffusion coefficients are generated using the methods of Benoist or of Gelbard. The resulting broad (approx. 10 to 30) group parameters are used in multigroup diffusion and S/sub n/ transport calculations of full core XY or RZ models which employ smeared atom densities to represent the contents of the unit cells

  3. MORSE Monte Carlo code

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described

  4. Variational Monte Carlo Technique

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 8. Variational Monte Carlo Technique: Ground State Energies of Quantum Mechanical Systems. Sukanta Deb. General Article Volume 19 Issue 8 August 2014 pp 713-739 ...

  5. Monte Carlo codes and Monte Carlo simulator program

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Asai, Kiyoshi; Suganuma, Masayuki.

    1990-03-01

    Four typical Monte Carlo codes KENO-IV, MORSE, MCNP and VIM have been vectorized on VP-100 at Computing Center, JAERI. The problems in vector processing of Monte Carlo codes on vector processors have become clear through the work. As the result, it is recognized that these are difficulties to obtain good performance in vector processing of Monte Carlo codes. A Monte Carlo computing machine, which processes the Monte Carlo codes with high performances is being developed at our Computing Center since 1987. The concept of Monte Carlo computing machine and its performance have been investigated and estimated by using a software simulator. In this report the problems in vectorization of Monte Carlo codes, Monte Carlo pipelines proposed to mitigate these difficulties and the results of the performance estimation of the Monte Carlo computing machine by the simulator are described. (author)

  6. Monte Carlo Particle Lists: MCPL

    DEFF Research Database (Denmark)

    Kittelmann, Thomas; Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik

    2017-01-01

    A binary format with lists of particle state information, for interchanging particles between various Monte Carlo simulation applications, is presented. Portable C code for file manipulation is made available to the scientific community, along with converters and plugins for several popular...... simulation packages. Program summary: Program Title: MCPL. Program Files doi: http://dx.doi.org/10.17632/cby92vsv5g.1 Licensing provisions: CC0 for core MCPL, see LICENSE file for details. Programming language: C and C++ External routines/libraries: Geant4, MCNP, McStas, McXtrace Nature of problem: Saving...

  7. Vectorized Monte Carlo

    International Nuclear Information System (INIS)

    Brown, F.B.

    1981-01-01

    Examination of the global algorithms and local kernels of conventional general-purpose Monte Carlo codes shows that multigroup Monte Carlo methods have sufficient structure to permit efficient vectorization. A structured multigroup Monte Carlo algorithm for vector computers is developed in which many particle events are treated at once on a cell-by-cell basis. Vectorization of kernels for tracking and variance reduction is described, and a new method for discrete sampling is developed to facilitate the vectorization of collision analysis. To demonstrate the potential of the new method, a vectorized Monte Carlo code for multigroup radiation transport analysis was developed. This code incorporates many features of conventional general-purpose production codes, including general geometry, splitting and Russian roulette, survival biasing, variance estimation via batching, a number of cutoffs, and generalized tallies of collision, tracklength, and surface crossing estimators with response functions. Predictions of vectorized performance characteristics for the CYBER-205 were made using emulated coding and a dynamic model of vector instruction timing. Computation rates were examined for a variety of test problems to determine sensitivities to batch size and vector lengths. Significant speedups are predicted for even a few hundred particles per batch, and asymptotic speedups by about 40 over equivalent Amdahl 470V/8 scalar codes arepredicted for a few thousand particles per batch. The principal conclusion is that vectorization of a general-purpose multigroup Monte Carlo code is well worth the significant effort required for stylized coding and major algorithmic changes

  8. McSnow: A Monte-Carlo Particle Model for Riming and Aggregation of Ice Particles in a Multidimensional Microphysical Phase Space

    Science.gov (United States)

    Brdar, S.; Seifert, A.

    2018-01-01

    We present a novel Monte-Carlo ice microphysics model, McSnow, to simulate the evolution of ice particles due to deposition, aggregation, riming, and sedimentation. The model is an application and extension of the super-droplet method of Shima et al. (2009) to the more complex problem of rimed ice particles and aggregates. For each individual super-particle, the ice mass, rime mass, rime volume, and the number of monomers are predicted establishing a four-dimensional particle-size distribution. The sensitivity of the model to various assumptions is discussed based on box model and one-dimensional simulations. We show that the Monte-Carlo method provides a feasible approach to tackle this high-dimensional problem. The largest uncertainty seems to be related to the treatment of the riming processes. This calls for additional field and laboratory measurements of partially rimed snowflakes.

  9. Study of cold neutron sources: Implementation and validation of a complete computation scheme for research reactor using Monte Carlo codes TRIPOLI-4.4 and McStas

    International Nuclear Information System (INIS)

    Campioni, Guillaume; Mounier, Claude

    2006-01-01

    The main goal of the thesis about studies of cold neutrons sources (CNS) in research reactors was to create a complete set of tools to design efficiently CNS. The work raises the problem to run accurate simulations of experimental devices inside reactor reflector valid for parametric studies. On one hand, deterministic codes have reasonable computation times but introduce problems for geometrical description. On the other hand, Monte Carlo codes give the possibility to compute on precise geometry, but need computation times so important that parametric studies are impossible. To decrease this computation time, several developments were made in the Monte Carlo code TRIPOLI-4.4. An uncoupling technique is used to isolate a study zone in the complete reactor geometry. By recording boundary conditions (incoming flux), further simulations can be launched for parametric studies with a computation time reduced by a factor 60 (case of the cold neutron source of the Orphee reactor). The short response time allows to lead parametric studies using Monte Carlo code. Moreover, using biasing methods, the flux can be recorded on the surface of neutrons guides entries (low solid angle) with a further gain of running time. Finally, the implementation of a coupling module between TRIPOLI- 4.4 and the Monte Carlo code McStas for research in condensed matter field gives the possibility to obtain fluxes after transmission through neutrons guides, thus to have the neutron flux received by samples studied by scientists of condensed matter. This set of developments, involving TRIPOLI-4.4 and McStas, represent a complete computation scheme for research reactors: from nuclear core, where neutrons are created, to the exit of neutrons guides, on samples of matter. This complete calculation scheme is tested against ILL4 measurements of flux in cold neutron guides. (authors)

  10. Monte Carlo simulation of the Tomotherapy treatment unit in the static mode using MC HAMMER, a Monte Carlo tool dedicated to Tomotherapy

    International Nuclear Information System (INIS)

    Sterpin, E; Tomsej, M; Cravens, B; Salvat, F; Ruchala, K; Olivera, G H; Vynckier, S

    2007-01-01

    Helical tomotherapy (HT) is designed to deliver highly modulated IMRT treatments. The concept of HT provides new challenges in MC simulation, because simultaneous movement of the gantry, the couch and the multi-leaf collimator (MLC) must be simulated accurately. However, before accounting for gantry, couch movement and multileaf collimator configurations, high accuracy must be achieved while simulating open static fields (1 x 40, 2.5 x 40 and 5 x 40 cm 2 ). This is performed using MC HAMMER, which is a graphical user interface allowing MC simulation using PENELOPE for various configurations of HT. Since the geometry of the different elements and materials involved in the beam generation are precisely known and defined, the only parameters that need to be tuned on are therefore electron source spot size and electron energy. Beyond the build up region, good agreement (2%/1mm) is achieved for all the field sizes between measurements (ion chamber) and simulations with an electron source energy set to 5.5 MeV. The electron source spot size is modelled as a gaussian distribution with full width half maximum equal to 1.4 mm. This value was chosen to match measured and calculated penumbras in the longitudinal direction

  11. Markov Chain Monte Carlo

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 3. Markov Chain Monte Carlo - Examples. Arnab Chakraborty. General Article Volume 7 Issue 3 March 2002 pp 25-34. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/03/0025-0034. Keywords.

  12. Monte Carlo and Quasi-Monte Carlo Sampling

    CERN Document Server

    Lemieux, Christiane

    2009-01-01

    Presents essential tools for using quasi-Monte Carlo sampling in practice. This book focuses on issues related to Monte Carlo methods - uniform and non-uniform random number generation, variance reduction techniques. It covers several aspects of quasi-Monte Carlo methods.

  13. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  14. Dynamic bounds coupled with Monte Carlo simulations

    NARCIS (Netherlands)

    Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.

    2011-01-01

    For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper

  15. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    International Nuclear Information System (INIS)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X

    2015-01-01

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  16. SU-E-T-112: An OpenCL-Based Cross-Platform Monte Carlo Dose Engine (oclMC) for Coupled Photon-Electron Transport

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Shi, F; Folkerts, M; Qin, N; Jiang, S; Jia, X [The University of Texas Southwestern Medical Ctr, Dallas, TX (United States)

    2015-06-15

    Purpose: Low computational efficiency of Monte Carlo (MC) dose calculation impedes its clinical applications. Although a number of MC dose packages have been developed over the past few years, enabling fast MC dose calculations, most of these packages were developed under NVidia’s CUDA environment. This limited their code portability to other platforms, hindering the introduction of GPU-based MC dose engines to clinical practice. To solve this problem, we developed a cross-platform fast MC dose engine named oclMC under OpenCL environment for external photon and electron radiotherapy. Methods: Coupled photon-electron simulation was implemented with standard analogue simulation scheme for photon transport and Class II condensed history scheme for electron transport. We tested the accuracy and efficiency of oclMC by comparing the doses calculated using oclMC and gDPM, a previously developed GPU-based MC code on NVidia GPU platform, for a 15MeV electron beam and a 6MV photon beam in a homogenous water phantom, a water-bone-lung-water slab phantom and a half-slab phantom. We also tested code portability of oclMC on different devices, including an NVidia GPU, two AMD GPUs and an Intel CPU. Results: Satisfactory agreements were observed in all photon and electron cases, with ∼0.48%–0.53% average dose differences at regions within 10% isodose line for electron beam cases and ∼0.15%–0.17% for photon beam cases. It took oclMC 3–4 sec to perform transport simulation for electron beam on NVidia Titan GPU and 35–51 sec for photon beam, both with ∼0.5% statistical uncertainty. The computation was 6%–17% slower than gDPM due to the differences in both physics model and development environment, which is considered not significant for clinical applications. In terms of code portability, gDPM only runs on NVidia GPUs, while oclMC successfully runs on all the tested devices. Conclusion: oclMC is an accurate and fast MC dose engine. Its high cross

  17. Monte Carlo principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Raeside, D E [Oklahoma Univ., Oklahoma City (USA). Health Sciences Center

    1976-03-01

    The principles underlying the use of Monte Carlo methods are explained, for readers who may not be familiar with the approach. The generation of random numbers is discussed, and the connection between Monte Carlo methods and random numbers is indicated. Outlines of two well established Monte Carlo sampling techniques are given, together with examples illustrating their use. The general techniques for improving the efficiency of Monte Carlo calculations are considered. The literature relevant to the applications of Monte Carlo calculations in medical physics is reviewed.

  18. Contributon Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Gerstl, S.A.W.

    1979-05-01

    The contributon Monte Carlo method is based on a new recipe to calculate target responses by means of volume integral of the contributon current in a region between the source and the detector. A comprehensive description of the method, its implementation in the general-purpose MCNP code, and results of the method for realistic nonhomogeneous, energy-dependent problems are presented. 23 figures, 10 tables

  19. Fundamentals of Monte Carlo

    International Nuclear Information System (INIS)

    Wollaber, Allan Benton

    2016-01-01

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating @@), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  20. Microcanonical Monte Carlo

    International Nuclear Information System (INIS)

    Creutz, M.

    1986-01-01

    The author discusses a recently developed algorithm for simulating statistical systems. The procedure interpolates between molecular dynamics methods and canonical Monte Carlo. The primary advantages are extremely fast simulations of discrete systems such as the Ising model and a relative insensitivity to random number quality. A variation of the algorithm gives rise to a deterministic dynamics for Ising spins. This model may be useful for high speed simulation of non-equilibrium phenomena

  1. Fundamentals of Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation which serves as lecture material for the Parallel Computing summer school. It goes over the fundamentals of the Monte Carlo calculation method. The material is presented according to the following outline: Introduction (background, a simple example: estimating π), Why does this even work? (The Law of Large Numbers, The Central Limit Theorem), How to sample (inverse transform sampling, rejection), and An example from particle transport.

  2. Monte Carlo alpha calculation

    Energy Technology Data Exchange (ETDEWEB)

    Brockway, D.; Soran, P.; Whalen, P.

    1985-01-01

    A Monte Carlo algorithm to efficiently calculate static alpha eigenvalues, N = ne/sup ..cap alpha..t/, for supercritical systems has been developed and tested. A direct Monte Carlo approach to calculating a static alpha is to simply follow the buildup in time of neutrons in a supercritical system and evaluate the logarithmic derivative of the neutron population with respect to time. This procedure is expensive, and the solution is very noisy and almost useless for a system near critical. The modified approach is to convert the time-dependent problem to a static ..cap alpha../sup -/eigenvalue problem and regress ..cap alpha.. on solutions of a/sup -/ k/sup -/eigenvalue problem. In practice, this procedure is much more efficient than the direct calculation, and produces much more accurate results. Because the Monte Carlo codes are intrinsically three-dimensional and use elaborate continuous-energy cross sections, this technique is now used as a standard for evaluating other calculational techniques in odd geometries or with group cross sections.

  3. MC-TESTER v. 1.23: A universal tool for comparisons of Monte Carlo predictions for particle decays in high energy physics

    Science.gov (United States)

    Davidson, N.; Golonka, P.; Przedziński, T.; Waş, Z.

    2011-03-01

    Theoretical predictions in high energy physics are routinely provided in the form of Monte Carlo generators. Comparisons of predictions from different programs and/or different initialization set-ups are often necessary. MC-TESTER can be used for such tests of decays of intermediate states (particles or resonances) in a semi-automated way. Since 2002 new functionalities were introduced into the package. In particular, it now works with the HepMC event record, the standard for C++ programs. The complete set-up for benchmarking the interfaces, such as interface between τ-lepton production and decay, including QED bremsstrahlung effects is shown. The example is chosen to illustrate the new options introduced into the program. From the technical perspective, our paper documents software updates and supplements previous documentation. As in the past, our test consists of two steps. Distinct Monte Carlo programs are run separately; events with decays of a chosen particle are searched, and information is stored by MC-TESTER. Then, at the analysis step, information from a pair of runs may be compared and represented in the form of tables and plots. Updates introduced in the program up to version 1.24.4 are also documented. In particular, new configuration scripts or script to combine results from multitude of runs into single information file to be used in analysis step are explained. Program summaryProgram title: MC-TESTER, version 1.23 and version 1.24.4 Catalog identifier: ADSM_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSM_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 250 548 No. of bytes in distributed program, including test data, etc.: 4 290 610 Distribution format: tar.gz Programming language: C++, FORTRAN77 Tested and compiled with: gcc 3.4.6, 4

  4. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) to the steel process chain: Case study

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Bogusław

    2014-05-01

    The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. - Highlights: • The benefits of Monte Carlo simulation are examined. • The normal probability distribution is studied. • LCI data on Mittal Steel Poland (MSP) complex in Kraków, Poland dates back to 2005. • This is the first assessment of the LCI uncertainties in the Polish steel industry.

  5. Burnup calculations using Monte Carlo method

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Degweker, S.B.

    2009-01-01

    In the recent years, interest in burnup calculations using Monte Carlo methods has gained momentum. Previous burn up codes have used multigroup transport theory based calculations followed by diffusion theory based core calculations for the neutronic portion of codes. The transport theory methods invariably make approximations with regard to treatment of the energy and angle variables involved in scattering, besides approximations related to geometry simplification. Cell homogenisation to produce diffusion, theory parameters adds to these approximations. Moreover, while diffusion theory works for most reactors, it does not produce accurate results in systems that have strong gradients, strong absorbers or large voids. Also, diffusion theory codes are geometry limited (rectangular, hexagonal, cylindrical, and spherical coordinates). Monte Carlo methods are ideal to solve very heterogeneous reactors and/or lattices/assemblies in which considerable burnable poisons are used. The key feature of this approach is that Monte Carlo methods permit essentially 'exact' modeling of all geometrical detail, without resort to ene and spatial homogenization of neutron cross sections. Monte Carlo method would also be better for in Accelerator Driven Systems (ADS) which could have strong gradients due to the external source and a sub-critical assembly. To meet the demand for an accurate burnup code, we have developed a Monte Carlo burnup calculation code system in which Monte Carlo neutron transport code is coupled with a versatile code (McBurn) for calculating the buildup and decay of nuclides in nuclear materials. McBurn is developed from scratch by the authors. In this article we will discuss our effort in developing the continuous energy Monte Carlo burn-up code, McBurn. McBurn is intended for entire reactor core as well as for unit cells and assemblies. Generally, McBurn can do burnup of any geometrical system which can be handled by the underlying Monte Carlo transport code

  6. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) to the steel process chain: case study.

    Science.gov (United States)

    Bieda, Bogusław

    2014-05-15

    The purpose of the paper is to present the results of application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) data of Mittal Steel Poland (MSP) complex in Kraków, Poland. In order to assess the uncertainty, the software CrystalBall® (CB), which is associated with Microsoft® Excel spreadsheet model, is used. The framework of the study was originally carried out for 2005. The total production of steel, coke, pig iron, sinter, slabs from continuous steel casting (CSC), sheets from hot rolling mill (HRM) and blast furnace gas, collected in 2005 from MSP was analyzed and used for MC simulation of the LCI model. In order to describe random nature of all main products used in this study, normal distribution has been applied. The results of the simulation (10,000 trials) performed with the use of CB consist of frequency charts and statistical reports. The results of this study can be used as the first step in performing a full LCA analysis in the steel industry. Further, it is concluded that the stochastic approach is a powerful method for quantifying parameter uncertainty in LCA/LCI studies and it can be applied to any steel industry. The results obtained from this study can help practitioners and decision-makers in the steel production management. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Monte Carlo Methods in Physics

    International Nuclear Information System (INIS)

    Santoso, B.

    1997-01-01

    Method of Monte Carlo integration is reviewed briefly and some of its applications in physics are explained. A numerical experiment on random generators used in the monte Carlo techniques is carried out to show the behavior of the randomness of various methods in generating them. To account for the weight function involved in the Monte Carlo, the metropolis method is used. From the results of the experiment, one can see that there is no regular patterns of the numbers generated, showing that the program generators are reasonably good, while the experimental results, shows a statistical distribution obeying statistical distribution law. Further some applications of the Monte Carlo methods in physics are given. The choice of physical problems are such that the models have available solutions either in exact or approximate values, in which comparisons can be mode, with the calculations using the Monte Carlo method. Comparison show that for the models to be considered, good agreement have been obtained

  8. McStas 1.1. A freeware package for neutron Monte Carlo ray-tracing simulations

    International Nuclear Information System (INIS)

    Lefmann, K.; Nielsen, K.

    1999-01-01

    Neutron simulation is becoming an indispensable tool for neutron instrument design. At Risoe National Laboratory, a user-friendly, versatile, and fast simulation package, McStas has been developed, which may be freely downloaded from our website. An instrument is described in the McStas meta-language and is composed of elements from the McStas component library, which is under constant development and debugging by both the users and us. The McStas front- and back-ends take care of performing the simulations and displaying their results, respectively. McStas 1.1 facilities detailed simulations of complicated triple-axis instruments like the Riso RITA spectrometer, and it is equally well equipped for time-of flight spectrometers. At ECNS'99, a brief tutorial of McStas including a few on-line demonstrations is presented. Further, results from the latest simulation work in the growing McStas user group are presented and the future of this project is discussed. (author)

  9. Improvements for Monte Carlo burnup calculation

    Energy Technology Data Exchange (ETDEWEB)

    Shenglong, Q.; Dong, Y.; Danrong, S.; Wei, L., E-mail: qiangshenglong@tsinghua.org.cn, E-mail: d.yao@npic.ac.cn, E-mail: songdr@npic.ac.cn, E-mail: luwei@npic.ac.cn [Nuclear Power Inst. of China, Cheng Du, Si Chuan (China)

    2015-07-01

    Monte Carlo burnup calculation is development trend of reactor physics, there would be a lot of work to be done for engineering applications. Based on Monte Carlo burnup code MOI, non-fuel burnup calculation methods and critical search suggestions will be mentioned in this paper. For non-fuel burnup, mixed burnup mode will improve the accuracy of burnup calculation and efficiency. For critical search of control rod position, a new method called ABN based on ABA which used by MC21 will be proposed for the first time in this paper. (author)

  10. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...

  11. Monte Carlo simulation for the transport beamline

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Attili, A.; Marchetto, F.; Russo, G. [INFN, Sezione di Torino, Via P.Giuria, 1 10125 Torino (Italy); Cirrone, G. A. P.; Schillaci, F.; Scuderi, V. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics Czech Academy of Science, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Tramontana, A. [INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Università di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy)

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  12. Monte Carlo simulation for the transport beamline

    International Nuclear Information System (INIS)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.; Tramontana, A.

    2013-01-01

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery

  13. Lectures on Monte Carlo methods

    CERN Document Server

    Madras, Neal

    2001-01-01

    Monte Carlo methods form an experimental branch of mathematics that employs simulations driven by random number generators. These methods are often used when others fail, since they are much less sensitive to the "curse of dimensionality", which plagues deterministic methods in problems with a large number of variables. Monte Carlo methods are used in many fields: mathematics, statistics, physics, chemistry, finance, computer science, and biology, for instance. This book is an introduction to Monte Carlo methods for anyone who would like to use these methods to study various kinds of mathemati

  14. Neutron point-flux calculation by Monte Carlo

    International Nuclear Information System (INIS)

    Eichhorn, M.

    1986-04-01

    A survey of the usual methods for estimating flux at a point is given. The associated variance-reducing techniques in direct Monte Carlo games are explained. The multigroup Monte Carlo codes MC for critical systems and PUNKT for point source-point detector-systems are represented, and problems in applying the codes to practical tasks are discussed. (author)

  15. Correlated sampling added to the specific purpose Monte Carlo code McPNL for neutron lifetime log responses

    International Nuclear Information System (INIS)

    Mickael, M.; Verghese, K.; Gardner, R.P.

    1989-01-01

    The specific purpose neutron lifetime oil well logging simulation code, McPNL, has been rewritten for greater user-friendliness and faster execution. Correlated sampling has been added to the code to enable studies of relative changes in the tool response caused by environmental changes. The absolute responses calculated by the code have been benchmarked against laboratory test pit data. The relative responses from correlated sampling are not directly benchmarked, but they are validated using experimental and theoretical results

  16. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay; Law, Kody; Suciu, Carina

    2017-01-01

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  17. Advanced Multilevel Monte Carlo Methods

    KAUST Repository

    Jasra, Ajay

    2017-04-24

    This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.

  18. Monte Carlo simulation for IRRMA

    International Nuclear Information System (INIS)

    Gardner, R.P.; Liu Lianyan

    2000-01-01

    Monte Carlo simulation is fast becoming a standard approach for many radiation applications that were previously treated almost entirely by experimental techniques. This is certainly true for Industrial Radiation and Radioisotope Measurement Applications - IRRMA. The reasons for this include: (1) the increased cost and inadequacy of experimentation for design and interpretation purposes; (2) the availability of low cost, large memory, and fast personal computers; and (3) the general availability of general purpose Monte Carlo codes that are increasingly user-friendly, efficient, and accurate. This paper discusses the history and present status of Monte Carlo simulation for IRRMA including the general purpose (GP) and specific purpose (SP) Monte Carlo codes and future needs - primarily from the experience of the authors

  19. Dynamic bounds coupled with Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)

    2011-02-15

    For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.

  20. Adjoint electron Monte Carlo calculations

    International Nuclear Information System (INIS)

    Jordan, T.M.

    1986-01-01

    Adjoint Monte Carlo is the most efficient method for accurate analysis of space systems exposed to natural and artificially enhanced electron environments. Recent adjoint calculations for isotropic electron environments include: comparative data for experimental measurements on electronics boxes; benchmark problem solutions for comparing total dose prediction methodologies; preliminary assessment of sectoring methods used during space system design; and total dose predictions on an electronics package. Adjoint Monte Carlo, forward Monte Carlo, and experiment are in excellent agreement for electron sources that simulate space environments. For electron space environments, adjoint Monte Carlo is clearly superior to forward Monte Carlo, requiring one to two orders of magnitude less computer time for relatively simple geometries. The solid-angle sectoring approximations used for routine design calculations can err by more than a factor of 2 on dose in simple shield geometries. For critical space systems exposed to severe electron environments, these potential sectoring errors demand the establishment of large design margins and/or verification of shield design by adjoint Monte Carlo/experiment

  1. Monte Carlo theory and practice

    International Nuclear Information System (INIS)

    James, F.

    1987-01-01

    Historically, the first large-scale calculations to make use of the Monte Carlo method were studies of neutron scattering and absorption, random processes for which it is quite natural to employ random numbers. Such calculations, a subset of Monte Carlo calculations, are known as direct simulation, since the 'hypothetical population' of the narrower definition above corresponds directly to the real population being studied. The Monte Carlo method may be applied wherever it is possible to establish equivalence between the desired result and the expected behaviour of a stochastic system. The problem to be solved may already be of a probabilistic or statistical nature, in which case its Monte Carlo formulation will usually be a straightforward simulation, or it may be of a deterministic or analytic nature, in which case an appropriate Monte Carlo formulation may require some imagination and may appear contrived or artificial. In any case, the suitability of the method chosen will depend on its mathematical properties and not on its superficial resemblance to the problem to be solved. The authors show how Monte Carlo techniques may be compared with other methods of solution of the same physical problem

  2. Monte Carlo-based validation of the ENDF/MC2-II/SDX cell homogenization path

    International Nuclear Information System (INIS)

    Wade, D.C.

    1979-04-01

    The results are presented of a program of validation of the unit cell homogenization prescriptions and codes used for the analysis of Zero Power Reactor (ZPR) fast breeder reactor critical experiments. The ZPR drawer loading patterns comprise both plate type and pin-calandria type unit cells. A prescription is used to convert the three dimensional physical geometry of the drawer loadings into one dimensional calculational models. The ETOE-II/MC 2 -II/SDX code sequence is used to transform ENDF/B basic nuclear data into unit cell average broad group cross sections based on the 1D models. Cell average, broad group anisotropic diffusion coefficients are generated using the methods of Benoist or of Gelbard. The resulting broad (approx. 10 to 30) group parameters are used in multigroup diffusion and S/sub n/ transport calculations of full core XY or RZ models which employ smeared atom densities to represent the contents of the unit cells

  3. Methods for Monte Carlo simulations of biomacromolecules.

    Science.gov (United States)

    Vitalis, Andreas; Pappu, Rohit V

    2009-01-01

    The state-of-the-art for Monte Carlo (MC) simulations of biomacromolecules is reviewed. Available methodologies for sampling conformational equilibria and associations of biomacromolecules in the canonical ensemble, given a continuum description of the solvent environment, are reviewed. Detailed sections are provided dealing with the choice of degrees of freedom, the efficiencies of MC algorithms and algorithmic peculiarities, as well as the optimization of simple movesets. The issue of introducing correlations into elementary MC moves, and the applicability of such methods to simulations of biomacromolecules is discussed. A brief discussion of multicanonical methods and an overview of recent simulation work highlighting the potential of MC methods are also provided. It is argued that MC simulations, while underutilized biomacromolecular simulation community, hold promise for simulations of complex systems and phenomena that span multiple length scales, especially when used in conjunction with implicit solvation models or other coarse graining strategies.

  4. Monte Carlo Codes Invited Session

    International Nuclear Information System (INIS)

    Trama, J.C.; Malvagi, F.; Brown, F.

    2013-01-01

    This document lists 22 Monte Carlo codes used in radiation transport applications throughout the world. For each code the names of the organization and country and/or place are given. We have the following computer codes. 1) ARCHER, USA, RPI; 2) COG11, USA, LLNL; 3) DIANE, France, CEA/DAM Bruyeres; 4) FLUKA, Italy and CERN, INFN and CERN; 5) GEANT4, International GEANT4 collaboration; 6) KENO and MONACO (SCALE), USA, ORNL; 7) MC21, USA, KAPL and Bettis; 8) MCATK, USA, LANL; 9) MCCARD, South Korea, Seoul National University; 10) MCNP6, USA, LANL; 11) MCU, Russia, Kurchatov Institute; 12) MONK and MCBEND, United Kingdom, AMEC; 13) MORET5, France, IRSN Fontenay-aux-Roses; 14) MVP2, Japan, JAEA; 15) OPENMC, USA, MIT; 16) PENELOPE, Spain, Barcelona University; 17) PHITS, Japan, JAEA; 18) PRIZMA, Russia, VNIITF; 19) RMC, China, Tsinghua University; 20) SERPENT, Finland, VTT; 21) SUPERMONTECARLO, China, CAS INEST FDS Team Hefei; and 22) TRIPOLI-4, France, CEA Saclay

  5. Multilevel sequential Monte Carlo samplers

    KAUST Repository

    Beskos, Alexandros; Jasra, Ajay; Law, Kody; Tempone, Raul; Zhou, Yan

    2016-01-01

    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.

  6. Multilevel sequential Monte Carlo samplers

    KAUST Repository

    Beskos, Alexandros

    2016-08-29

    In this article we consider the approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs); this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods which depend on the step-size level . hL. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multilevel Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretization levels . ∞>h0>h1⋯>hL. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence and a sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained within the SMC context. That is, relative to exact sampling and Monte Carlo for the distribution at the finest level . hL. The approach is numerically illustrated on a Bayesian inverse problem. © 2016 Elsevier B.V.

  7. Self-test Monte Carlo method

    International Nuclear Information System (INIS)

    Ohta, Shigemi

    1996-01-01

    The Self-Test Monte Carlo (STMC) method resolves the main problems in using algebraic pseudo-random numbers for Monte Carlo (MC) calculations: that they can interfere with MC algorithms and lead to erroneous results, and that such an error often cannot be detected without known exact solution. STMC is based on good randomness of about 10 10 bits available from physical noise or transcendental numbers like π = 3.14---. Various bit modifiers are available to get more bits for applications that demands more than 10 10 random bits such as lattice quantum chromodynamics (QCD). These modifiers are designed so that a) each of them gives a bit sequence comparable in randomness as the original if used separately from each other, and b) their mutual interference when used jointly in a single MC calculation is adjustable. Intermediate data of the MC calculation itself are used to quantitatively test and adjust the mutual interference of the modifiers in respect of the MC algorithm. STMC is free of systematic error and gives reliable statistical error. Also it can be easily implemented on vector and parallel supercomputers. (author)

  8. Monte Carlo applications to radiation shielding problems

    International Nuclear Information System (INIS)

    Subbaiah, K.V.

    2009-01-01

    Monte Carlo methods are a class of computational algorithms that rely on repeated random sampling of physical and mathematical systems to compute their results. However, basic concepts of MC are both simple and straightforward and can be learned by using a personal computer. Uses of Monte Carlo methods require large amounts of random numbers, and it was their use that spurred the development of pseudorandom number generators, which were far quicker to use than the tables of random numbers which had been previously used for statistical sampling. In Monte Carlo simulation of radiation transport, the history (track) of a particle is viewed as a random sequence of free flights that end with an interaction event where the particle changes its direction of movement, loses energy and, occasionally, produces secondary particles. The Monte Carlo simulation of a given experimental arrangement (e.g., an electron beam, coming from an accelerator and impinging on a water phantom) consists of the numerical generation of random histories. To simulate these histories we need an interaction model, i.e., a set of differential cross sections (DCS) for the relevant interaction mechanisms. The DCSs determine the probability distribution functions (pdf) of the random variables that characterize a track; 1) free path between successive interaction events, 2) type of interaction taking place and 3) energy loss and angular deflection in a particular event (and initial state of emitted secondary particles, if any). Once these pdfs are known, random histories can be generated by using appropriate sampling methods. If the number of generated histories is large enough, quantitative information on the transport process may be obtained by simply averaging over the simulated histories. The Monte Carlo method yields the same information as the solution of the Boltzmann transport equation, with the same interaction model, but is easier to implement. In particular, the simulation of radiation

  9. Strategije drevesnega preiskovanja Monte Carlo

    OpenAIRE

    VODOPIVEC, TOM

    2018-01-01

    Po preboju pri igri go so metode drevesnega preiskovanja Monte Carlo (ang. Monte Carlo tree search – MCTS) sprožile bliskovit napredek agentov za igranje iger: raziskovalna skupnost je od takrat razvila veliko variant in izboljšav algoritma MCTS ter s tem zagotovila napredek umetne inteligence ne samo pri igrah, ampak tudi v številnih drugih domenah. Čeprav metode MCTS združujejo splošnost naključnega vzorčenja z natančnostjo drevesnega preiskovanja, imajo lahko v praksi težave s počasno konv...

  10. Variational Monte Carlo Technique

    Indian Academy of Sciences (India)

    ias

    on the development of nuclear weapons in Los Alamos ..... cantly improved the paper. ... Carlo simulations of solids, Reviews of Modern Physics, Vol.73, pp.33– ... The computer algorithms are usually based on a random seed that starts the ...

  11. Is Monte Carlo embarrassingly parallel?

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Delft Nuclear Consultancy, IJsselzoom 2, 2902 LB Capelle aan den IJssel (Netherlands)

    2012-07-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  12. Is Monte Carlo embarrassingly parallel?

    International Nuclear Information System (INIS)

    Hoogenboom, J. E.

    2012-01-01

    Monte Carlo is often stated as being embarrassingly parallel. However, running a Monte Carlo calculation, especially a reactor criticality calculation, in parallel using tens of processors shows a serious limitation in speedup and the execution time may even increase beyond a certain number of processors. In this paper the main causes of the loss of efficiency when using many processors are analyzed using a simple Monte Carlo program for criticality. The basic mechanism for parallel execution is MPI. One of the bottlenecks turn out to be the rendez-vous points in the parallel calculation used for synchronization and exchange of data between processors. This happens at least at the end of each cycle for fission source generation in order to collect the full fission source distribution for the next cycle and to estimate the effective multiplication factor, which is not only part of the requested results, but also input to the next cycle for population control. Basic improvements to overcome this limitation are suggested and tested. Also other time losses in the parallel calculation are identified. Moreover, the threading mechanism, which allows the parallel execution of tasks based on shared memory using OpenMP, is analyzed in detail. Recommendations are given to get the maximum efficiency out of a parallel Monte Carlo calculation. (authors)

  13. Exact Monte Carlo for molecules

    International Nuclear Information System (INIS)

    Lester, W.A. Jr.; Reynolds, P.J.

    1985-03-01

    A brief summary of the fixed-node quantum Monte Carlo method is presented. Results obtained for binding energies, the classical barrier height for H + H 2 , and the singlet-triplet splitting in methylene are presented and discussed. 17 refs

  14. Monte Carlo - Advances and Challenges

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Mosteller, Russell D.; Martin, William R.

    2008-01-01

    Abstract only, full text follows: With ever-faster computers and mature Monte Carlo production codes, there has been tremendous growth in the application of Monte Carlo methods to the analysis of reactor physics and reactor systems. In the past, Monte Carlo methods were used primarily for calculating k eff of a critical system. More recently, Monte Carlo methods have been increasingly used for determining reactor power distributions and many design parameters, such as β eff , l eff , τ, reactivity coefficients, Doppler defect, dominance ratio, etc. These advanced applications of Monte Carlo methods are now becoming common, not just feasible, but bring new challenges to both developers and users: Convergence of 3D power distributions must be assured; confidence interval bias must be eliminated; iterated fission probabilities are required, rather than single-generation probabilities; temperature effects including Doppler and feedback must be represented; isotopic depletion and fission product buildup must be modeled. This workshop focuses on recent advances in Monte Carlo methods and their application to reactor physics problems, and on the resulting challenges faced by code developers and users. The workshop is partly tutorial, partly a review of the current state-of-the-art, and partly a discussion of future work that is needed. It should benefit both novice and expert Monte Carlo developers and users. In each of the topic areas, we provide an overview of needs, perspective on past and current methods, a review of recent work, and discussion of further research and capabilities that are required. Electronic copies of all workshop presentations and material will be available. The workshop is structured as 2 morning and 2 afternoon segments: - Criticality Calculations I - convergence diagnostics, acceleration methods, confidence intervals, and the iterated fission probability, - Criticality Calculations II - reactor kinetics parameters, dominance ratio, temperature

  15. KMCThinFilm: A C++ Framework for the Rapid Development of Lattice Kinetic Monte Carlo (kMC) Simulations of Thin Film Growth

    Science.gov (United States)

    2015-09-01

    direction, so if the simulation domain is set to be a certain size, then that presents a hard ceiling on the thickness of a film that may be grown in...FFA, Los J, Cuppen HM, Bennema P, Meekes H. MONTY:  Monte Carlo crystal growth on any crystal structure in any crystallographic orientation...mhoffman.github.io/kmos/. 23. Kiravittaya S, Schmidt OG. Quantum-dot crystal defects. Applied Physics Letters. 2008;93:173109. 24. Leetmaa M

  16. Fitting experimental data by using weighted Monte Carlo events

    International Nuclear Information System (INIS)

    Stojnev, S.

    2003-01-01

    A method for fitting experimental data using modified Monte Carlo (MC) sample is developed. It is intended to help when a single finite MC source has to fit experimental data looking for parameters in a certain underlying theory. The extraction of the searched parameters, the errors estimation and the goodness-of-fit testing is based on the binned maximum likelihood method

  17. Reservoir Modeling Combining Geostatistics with Markov Chain Monte Carlo Inversion

    DEFF Research Database (Denmark)

    Zunino, Andrea; Lange, Katrine; Melnikova, Yulia

    2014-01-01

    We present a study on the inversion of seismic reflection data generated from a synthetic reservoir model. Our aim is to invert directly for rock facies and porosity of the target reservoir zone. We solve this inverse problem using a Markov chain Monte Carlo (McMC) method to handle the nonlinear...

  18. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.

    1998-01-01

    A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown

  19. Time step length versus efficiency of Monte Carlo burnup calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Valtavirta, Ville

    2014-01-01

    Highlights: • Time step length largely affects efficiency of MC burnup calculations. • Efficiency of MC burnup calculations improves with decreasing time step length. • Results were obtained from SIE-based Monte Carlo burnup calculations. - Abstract: We demonstrate that efficiency of Monte Carlo burnup calculations can be largely affected by the selected time step length. This study employs the stochastic implicit Euler based coupling scheme for Monte Carlo burnup calculations that performs a number of inner iteration steps within each time step. In a series of calculations, we vary the time step length and the number of inner iteration steps; the results suggest that Monte Carlo burnup calculations get more efficient as the time step length is reduced. More time steps must be simulated as they get shorter; however, this is more than compensated by the decrease in computing cost per time step needed for achieving a certain accuracy

  20. (U) Introduction to Monte Carlo Methods

    Energy Technology Data Exchange (ETDEWEB)

    Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-20

    Monte Carlo methods are very valuable for representing solutions to particle transport problems. Here we describe a “cook book” approach to handling the terms in a transport equation using Monte Carlo methods. Focus is on the mechanics of a numerical Monte Carlo code, rather than the mathematical foundations of the method.

  1. Modern analysis of ion channeling data by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nowicki, Lech [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland)]. E-mail: lech.nowicki@fuw.edu.pl; Turos, Andrzej [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Ratajczak, Renata [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Stonert, Anna [Andrzej SoItan Institute for Nuclear Studies, ul. Hoza 69, 00-681 Warsaw (Poland); Garrido, Frederico [Centre de Spectrometrie Nucleaire et Spectrometrie de Masse, CNRS-IN2P3-Universite Paris-Sud, 91405 Orsay (France)

    2005-10-15

    Basic scheme of ion channeling spectra Monte Carlo simulation is reformulated in terms of statistical sampling. The McChasy simulation code is described and two examples of the code applications are presented. These are: calculation of projectile flux in uranium dioxide crystal and defect analysis for ion implanted InGaAsP/InP superlattice. Virtues and pitfalls of defect analysis using Monte Carlo simulations are discussed.

  2. Isotopic depletion with Monte Carlo

    International Nuclear Information System (INIS)

    Martin, W.R.; Rathkopf, J.A.

    1996-06-01

    This work considers a method to deplete isotopes during a time- dependent Monte Carlo simulation of an evolving system. The method is based on explicitly combining a conventional estimator for the scalar flux with the analytical solutions to the isotopic depletion equations. There are no auxiliary calculations; the method is an integral part of the Monte Carlo calculation. The method eliminates negative densities and reduces the variance in the estimates for the isotope densities, compared to existing methods. Moreover, existing methods are shown to be special cases of the general method described in this work, as they can be derived by combining a high variance estimator for the scalar flux with a low-order approximation to the analytical solution to the depletion equation

  3. Monte Carlo Methods in ICF

    Science.gov (United States)

    Zimmerman, George B.

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials.

  4. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials. copyright 1997 American Institute of Physics

  5. Monte Carlo methods in ICF

    International Nuclear Information System (INIS)

    Zimmerman, George B.

    1997-01-01

    Monte Carlo methods appropriate to simulate the transport of x-rays, neutrons, ions and electrons in Inertial Confinement Fusion targets are described and analyzed. The Implicit Monte Carlo method of x-ray transport handles symmetry within indirect drive ICF hohlraums well, but can be improved 50X in efficiency by angular biasing the x-rays towards the fuel capsule. Accurate simulation of thermonuclear burn and burn diagnostics involves detailed particle source spectra, charged particle ranges, inflight reaction kinematics, corrections for bulk and thermal Doppler effects and variance reduction to obtain adequate statistics for rare events. It is found that the effects of angular Coulomb scattering must be included in models of charged particle transport through heterogeneous materials

  6. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.; Dean, D.J.; Langanke, K.

    1997-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, the thermal and rotational behavior of rare-earth and γ-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. (orig.)

  7. A contribution Monte Carlo method

    International Nuclear Information System (INIS)

    Aboughantous, C.H.

    1994-01-01

    A Contribution Monte Carlo method is developed and successfully applied to a sample deep-penetration shielding problem. The random walk is simulated in most of its parts as in conventional Monte Carlo methods. The probability density functions (pdf's) are expressed in terms of spherical harmonics and are continuous functions in direction cosine and azimuthal angle variables as well as in position coordinates; the energy is discretized in the multigroup approximation. The transport pdf is an unusual exponential kernel strongly dependent on the incident and emergent directions and energies and on the position of the collision site. The method produces the same results obtained with the deterministic method with a very small standard deviation, with as little as 1,000 Contribution particles in both analog and nonabsorption biasing modes and with only a few minutes CPU time

  8. Shell model Monte Carlo methods

    International Nuclear Information System (INIS)

    Koonin, S.E.

    1996-01-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of γ-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs

  9. Uncertainty Propagation in Monte Carlo Depletion Analysis

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Kim, Yeong-il; Park, Ho Jin; Joo, Han Gyu; Kim, Chang Hyo

    2008-01-01

    A new formulation aimed at quantifying uncertainties of Monte Carlo (MC) tallies such as k eff and the microscopic reaction rates of nuclides and nuclide number densities in MC depletion analysis and examining their propagation behaviour as a function of depletion time step (DTS) is presented. It is shown that the variance of a given MC tally used as a measure of its uncertainty in this formulation arises from four sources; the statistical uncertainty of the MC tally, uncertainties of microscopic cross sections and nuclide number densities, and the cross correlations between them and the contribution of the latter three sources can be determined by computing the correlation coefficients between the uncertain variables. It is also shown that the variance of any given nuclide number density at the end of each DTS stems from uncertainties of the nuclide number densities (NND) and microscopic reaction rates (MRR) of nuclides at the beginning of each DTS and they are determined by computing correlation coefficients between these two uncertain variables. To test the viability of the formulation, we conducted MC depletion analysis for two sample depletion problems involving a simplified 7x7 fuel assembly (FA) and a 17x17 PWR FA, determined number densities of uranium and plutonium isotopes and their variances as well as k ∞ and its variance as a function of DTS, and demonstrated the applicability of the new formulation for uncertainty propagation analysis that need be followed in MC depletion computations. (authors)

  10. Parallel Monte Carlo reactor neutronics

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Brown, F.B.

    1994-01-01

    The issues affecting implementation of parallel algorithms for large-scale engineering Monte Carlo neutron transport simulations are discussed. For nuclear reactor calculations, these include load balancing, recoding effort, reproducibility, domain decomposition techniques, I/O minimization, and strategies for different parallel architectures. Two codes were parallelized and tested for performance. The architectures employed include SIMD, MIMD-distributed memory, and workstation network with uneven interactive load. Speedups linear with the number of nodes were achieved

  11. Elements of Monte Carlo techniques

    International Nuclear Information System (INIS)

    Nagarajan, P.S.

    2000-01-01

    The Monte Carlo method is essentially mimicking the real world physical processes at the microscopic level. With the incredible increase in computing speeds and ever decreasing computing costs, there is widespread use of the method for practical problems. The method is used in calculating algorithm-generated sequences known as pseudo random sequence (prs)., probability density function (pdf), test for randomness, extension to multidimensional integration etc

  12. Adaptive Multilevel Monte Carlo Simulation

    KAUST Repository

    Hoel, H

    2011-08-23

    This work generalizes a multilevel forward Euler Monte Carlo method introduced in Michael B. Giles. (Michael Giles. Oper. Res. 56(3):607–617, 2008.) for the approximation of expected values depending on the solution to an Itô stochastic differential equation. The work (Michael Giles. Oper. Res. 56(3):607– 617, 2008.) proposed and analyzed a forward Euler multilevelMonte Carlo method based on a hierarchy of uniform time discretizations and control variates to reduce the computational effort required by a standard, single level, Forward Euler Monte Carlo method. This work introduces an adaptive hierarchy of non uniform time discretizations, generated by an adaptive algorithmintroduced in (AnnaDzougoutov et al. Raùl Tempone. Adaptive Monte Carlo algorithms for stopped diffusion. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 59–88. Springer, Berlin, 2005; Kyoung-Sook Moon et al. Stoch. Anal. Appl. 23(3):511–558, 2005; Kyoung-Sook Moon et al. An adaptive algorithm for ordinary, stochastic and partial differential equations. In Recent advances in adaptive computation, volume 383 of Contemp. Math., pages 325–343. Amer. Math. Soc., Providence, RI, 2005.). This form of the adaptive algorithm generates stochastic, path dependent, time steps and is based on a posteriori error expansions first developed in (Anders Szepessy et al. Comm. Pure Appl. Math. 54(10):1169– 1214, 2001). Our numerical results for a stopped diffusion problem, exhibit savings in the computational cost to achieve an accuracy of ϑ(TOL),from(TOL−3), from using a single level version of the adaptive algorithm to ϑ(((TOL−1)log(TOL))2).

  13. Geometrical splitting in Monte Carlo

    International Nuclear Information System (INIS)

    Dubi, A.; Elperin, T.; Dudziak, D.J.

    1982-01-01

    A statistical model is presented by which a direct statistical approach yielded an analytic expression for the second moment, the variance ratio, and the benefit function in a model of an n surface-splitting Monte Carlo game. In addition to the insight into the dependence of the second moment on the splitting parameters the main importance of the expressions developed lies in their potential to become a basis for in-code optimization of splitting through a general algorithm. Refs

  14. Extending canonical Monte Carlo methods

    International Nuclear Information System (INIS)

    Velazquez, L; Curilef, S

    2010-01-01

    In this paper, we discuss the implications of a recently obtained equilibrium fluctuation-dissipation relation for the extension of the available Monte Carlo methods on the basis of the consideration of the Gibbs canonical ensemble to account for the existence of an anomalous regime with negative heat capacities C α with α≈0.2 for the particular case of the 2D ten-state Potts model

  15. Non statistical Monte-Carlo

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-04-01

    We have shown that the transport equation can be solved with particles, like the Monte-Carlo method, but without random numbers. In the Monte-Carlo method, particles are created from the source, and are followed from collision to collision until either they are absorbed or they leave the spatial domain. In our method, particles are created from the original source, with a variable weight taking into account both collision and absorption. These particles are followed until they leave the spatial domain, and we use them to determine a first collision source. Another set of particles is then created from this first collision source, and tracked to determine a second collision source, and so on. This process introduces an approximation which does not exist in the Monte-Carlo method. However, we have analyzed the effect of this approximation, and shown that it can be limited. Our method is deterministic, gives reproducible results. Furthermore, when extra accuracy is needed in some region, it is easier to get more particles to go there. It has the same kind of applications: rather problems where streaming is dominant than collision dominated problems

  16. BREM5 electroweak Monte Carlo

    International Nuclear Information System (INIS)

    Kennedy, D.C. II.

    1987-01-01

    This is an update on the progress of the BREMMUS Monte Carlo simulator, particularly in its current incarnation, BREM5. The present report is intended only as a follow-up to the Mark II/Granlibakken proceedings, and those proceedings should be consulted for a complete description of the capabilities and goals of the BREMMUS program. The new BREM5 program improves on the previous version of BREMMUS, BREM2, in a number of important ways. In BREM2, the internal loop (oblique) corrections were not treated in consistent fashion, a deficiency that led to renormalization scheme-dependence; i.e., physical results, such as cross sections, were dependent on the method used to eliminate infinities from the theory. Of course, this problem cannot be tolerated in a Monte Carlo designed for experimental use. BREM5 incorporates a new way of treating the oblique corrections, as explained in the Granlibakken proceedings, that guarantees renormalization scheme-independence and dramatically simplifies the organization and calculation of radiative corrections. This technique is to be presented in full detail in a forthcoming paper. BREM5 is, at this point, the only Monte Carlo to contain the entire set of one-loop corrections to electroweak four-fermion processes and renormalization scheme-independence. 3 figures

  17. Statistical implications in Monte Carlo depletions - 051

    International Nuclear Information System (INIS)

    Zhiwen, Xu; Rhodes, J.; Smith, K.

    2010-01-01

    As a result of steady advances of computer power, continuous-energy Monte Carlo depletion analysis is attracting considerable attention for reactor burnup calculations. The typical Monte Carlo analysis is set up as a combination of a Monte Carlo neutron transport solver and a fuel burnup solver. Note that the burnup solver is a deterministic module. The statistical errors in Monte Carlo solutions are introduced into nuclide number densities and propagated along fuel burnup. This paper is towards the understanding of the statistical implications in Monte Carlo depletions, including both statistical bias and statistical variations in depleted fuel number densities. The deterministic Studsvik lattice physics code, CASMO-5, is modified to model the Monte Carlo depletion. The statistical bias in depleted number densities is found to be negligible compared to its statistical variations, which, in turn, demonstrates the correctness of the Monte Carlo depletion method. Meanwhile, the statistical variation in number densities generally increases with burnup. Several possible ways of reducing the statistical errors are discussed: 1) to increase the number of individual Monte Carlo histories; 2) to increase the number of time steps; 3) to run additional independent Monte Carlo depletion cases. Finally, a new Monte Carlo depletion methodology, called the batch depletion method, is proposed, which consists of performing a set of independent Monte Carlo depletions and is thus capable of estimating the overall statistical errors including both the local statistical error and the propagated statistical error. (authors)

  18. Monte Carlo simulation of experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1977-07-01

    An outline of the technique of computer simulation of particle physics experiments by the Monte Carlo method is presented. Useful special purpose subprograms are listed and described. At each stage the discussion is made concrete by direct reference to the programs SIMUL8 and its variant MONTE-PION, written to assist in the analysis of the radiative decay experiments μ + → e + ν sub(e) antiνγ and π + → e + ν sub(e)γ, respectively. These experiments were based on the use of two large sodium iodide crystals, TINA and MINA, as e and γ detectors. Instructions for the use of SIMUL8 and MONTE-PION are given. (author)

  19. Atomistic Monte Carlo Simulation of Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  20. Usefulness of the Monte Carlo method in reliability calculations

    International Nuclear Information System (INIS)

    Lanore, J.M.; Kalli, H.

    1977-01-01

    Three examples of reliability Monte Carlo programs developed in the LEP (Laboratory for Radiation Shielding Studies in the Nuclear Research Center at Saclay) are presented. First, an uncertainty analysis is given for a simplified spray system; a Monte Carlo program PATREC-MC has been written to solve the problem with the system components given in the fault tree representation. The second program MONARC 2 has been written to solve the problem of complex systems reliability by the Monte Carlo simulation, here again the system (a residual heat removal system) is in the fault tree representation. Third, the Monte Carlo program MONARC was used instead of the Markov diagram to solve the simulation problem of an electric power supply including two nets and two stand-by diesels

  1. Monte Carlo techniques in radiation therapy

    CERN Document Server

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  2. Mean field simulation for Monte Carlo integration

    CERN Document Server

    Del Moral, Pierre

    2013-01-01

    In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Marko

  3. Parallel Monte Carlo simulation of aerosol dynamics

    KAUST Repository

    Zhou, K.

    2014-01-01

    A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.

  4. Automatic fission source convergence criteria for Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Shim, Hyung Jin; Kim, Chang Hyo

    2005-01-01

    The Monte Carlo criticality calculations for the multiplication factor and the power distribution in a nuclear system require knowledge of stationary or fundamental-mode fission source distribution (FSD) in the system. Because it is a priori unknown, so-called inactive cycle Monte Carlo (MC) runs are performed to determine it. The inactive cycle MC runs should be continued until the FSD converges to the stationary FSD. Obviously, if one stops them prematurely, the MC calculation results may have biases because the followup active cycles may be run with the non-stationary FSD. Conversely, if one performs the inactive cycle MC runs more than necessary, one is apt to waste computing time because inactive cycle MC runs are used to elicit the fundamental-mode FSD only. In the absence of suitable criteria for terminating the inactive cycle MC runs, one cannot but rely on empiricism in deciding how many inactive cycles one should conduct for a given problem. Depending on the problem, this may introduce biases into Monte Carlo estimates of the parameters one tries to calculate. The purpose of this paper is to present new fission source convergence criteria designed for the automatic termination of inactive cycle MC runs

  5. Monte Carlo surface flux tallies

    International Nuclear Information System (INIS)

    Favorite, Jeffrey A.

    2010-01-01

    Particle fluxes on surfaces are difficult to calculate with Monte Carlo codes because the score requires a division by the surface-crossing angle cosine, and grazing angles lead to inaccuracies. We revisit the standard practice of dividing by half of a cosine 'cutoff' for particles whose surface-crossing cosines are below the cutoff. The theory behind this approximation is sound, but the application of the theory to all possible situations does not account for two implicit assumptions: (1) the grazing band must be symmetric about 0, and (2) a single linear expansion for the angular flux must be applied in the entire grazing band. These assumptions are violated in common circumstances; for example, for separate in-going and out-going flux tallies on internal surfaces, and for out-going flux tallies on external surfaces. In some situations, dividing by two-thirds of the cosine cutoff is more appropriate. If users were able to control both the cosine cutoff and the substitute value, they could use these parameters to make accurate surface flux tallies. The procedure is demonstrated in a test problem in which Monte Carlo surface fluxes in cosine bins are converted to angular fluxes and compared with the results of a discrete ordinates calculation.

  6. On the use of stochastic approximation Monte Carlo for Monte Carlo integration

    KAUST Repository

    Liang, Faming

    2009-01-01

    The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration

  7. Research on Monte Carlo improved quasi-static method for reactor space-time dynamics

    International Nuclear Information System (INIS)

    Xu Qi; Wang Kan; Li Shirui; Yu Ganglin

    2013-01-01

    With large time steps, improved quasi-static (IQS) method can improve the calculation speed for reactor dynamic simulations. The Monte Carlo IQS method was proposed in this paper, combining the advantages of both the IQS method and MC method. Thus, the Monte Carlo IQS method is beneficial for solving space-time dynamics problems of new concept reactors. Based on the theory of IQS, Monte Carlo algorithms for calculating adjoint neutron flux, reactor kinetic parameters and shape function were designed and realized. A simple Monte Carlo IQS code and a corresponding diffusion IQS code were developed, which were used for verification of the Monte Carlo IQS method. (authors)

  8. A New Monte Carlo Neutron Transport Code at UNIST

    International Nuclear Information System (INIS)

    Lee, Hyunsuk; Kong, Chidong; Lee, Deokjung

    2014-01-01

    Monte Carlo neutron transport code named MCS is under development at UNIST for the advanced reactor design and research purpose. This MC code can be used for fixed source calculation and criticality calculation. Continuous energy neutron cross section data and multi-group cross section data can be used for the MC calculation. This paper presents the overview of developed MC code and its calculation results. The real time fixed source calculation ability is also tested in this paper. The calculation results show good agreement with commercial code and experiment. A new Monte Carlo neutron transport code is being developed at UNIST. The MC codes are tested with several benchmark problems: ICSBEP, VENUS-2, and Hoogenboom-Martin benchmark. These benchmarks covers pin geometry to 3-dimensional whole core, and results shows good agreement with reference results

  9. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) of the rare earth elements (REEs) in beneficiation rare earth waste from the gold processing: case study

    Science.gov (United States)

    Bieda, Bogusław; Grzesik, Katarzyna

    2017-11-01

    The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.

  10. A multi-microcomputer system for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hertzberger, L.O.; Berg, B.; Krasemann, H.

    1981-01-01

    We propose a microcomputer system which allows parallel processing for Monte Carlo calculations in lattice gauge theories, simulations of high energy physics experiments and presumably many other fields of current interest. The master-n-slave multiprocessor system is based on the Motorola MC 68000 microprocessor. One attraction if this processor is that it allows up to 16 M Byte random access memory. (orig.)

  11. VIM: a continuous energy Monte Carlo code at ANL

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Lell, R.M.; Gelbard, E.M.

    1980-01-01

    The continuous-energy Monte Carlo neutron transport code VIM and its auxiliaries are briefly described. The ENDF/B cross section data processing procedure is summarized and its benchmarking against MC 2 -2 is reviewed. Several representative applications at ANL are described, including fast critical assembly benchmark calculations and STF and TREAT Upgrade benchmark calculations. 2 figures

  12. GPU based Monte Carlo for PET image reconstruction: detector modeling

    International Nuclear Information System (INIS)

    Légrády; Cserkaszky, Á; Lantos, J.; Patay, G.; Bükki, T.

    2011-01-01

    Monte Carlo (MC) calculations and Graphical Processing Units (GPUs) are almost like the dedicated hardware designed for the specific task given the similarities between visible light transport and neutral particle trajectories. A GPU based MC gamma transport code has been developed for Positron Emission Tomography iterative image reconstruction calculating the projection from unknowns to data at each iteration step taking into account the full physics of the system. This paper describes the simplified scintillation detector modeling and its effect on convergence. (author)

  13. General Monte Carlo code MONK

    International Nuclear Information System (INIS)

    Moore, J.G.

    1974-01-01

    The Monte Carlo code MONK is a general program written to provide a high degree of flexibility to the user. MONK is distinguished by its detailed representation of nuclear data in point form i.e., the cross-section is tabulated at specific energies instead of the more usual group representation. The nuclear data are unadjusted in the point form but recently the code has been modified to accept adjusted group data as used in fast and thermal reactor applications. The various geometrical handling capabilities and importance sampling techniques are described. In addition to the nuclear data aspects, the following features are also described; geometrical handling routines, tracking cycles, neutron source and output facilities. 12 references. (U.S.)

  14. Monte Carlo lattice program KIM

    International Nuclear Information System (INIS)

    Cupini, E.; De Matteis, A.; Simonini, R.

    1980-01-01

    The Monte Carlo program KIM solves the steady-state linear neutron transport equation for a fixed-source problem or, by successive fixed-source runs, for the eigenvalue problem, in a two-dimensional thermal reactor lattice. Fluxes and reaction rates are the main quantities computed by the program, from which power distribution and few-group averaged cross sections are derived. The simulation ranges from 10 MeV to zero and includes anisotropic and inelastic scattering in the fast energy region, the epithermal Doppler broadening of the resonances of some nuclides, and the thermalization phenomenon by taking into account the thermal velocity distribution of some molecules. Besides the well known combinatorial geometry, the program allows complex configurations to be represented by a discrete set of points, an approach greatly improving calculation speed

  15. Advanced Computational Methods for Monte Carlo Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-12

    This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.

  16. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  17. Monte Carlo Treatment Planning for Advanced Radiotherapy

    DEFF Research Database (Denmark)

    Cronholm, Rickard

    This Ph.d. project describes the development of a workflow for Monte Carlo Treatment Planning for clinical radiotherapy plans. The workflow may be utilized to perform an independent dose verification of treatment plans. Modern radiotherapy treatment delivery is often conducted by dynamically...... modulating the intensity of the field during the irradiation. The workflow described has the potential to fully model the dynamic delivery, including gantry rotation during irradiation, of modern radiotherapy. Three corner stones of Monte Carlo Treatment Planning are identified: Building, commissioning...... and validation of a Monte Carlo model of a medical linear accelerator (i), converting a CT scan of a patient to a Monte Carlo compliant phantom (ii) and translating the treatment plan parameters (including beam energy, angles of incidence, collimator settings etc) to a Monte Carlo input file (iii). A protocol...

  18. Monte Carlo simulation in nuclear medicine

    International Nuclear Information System (INIS)

    Morel, Ch.

    2007-01-01

    The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications. (author)

  19. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    International Nuclear Information System (INIS)

    Brown, Forrest B.; Univ. of New Mexico, Albuquerque, NM

    2016-01-01

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  20. Monte Carlo Techniques for Nuclear Systems - Theory Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications Group; Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Engineering Dept.

    2016-11-29

    These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. These lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations

  1. A Monte Carlo simulation study of associated liquid crystals

    Science.gov (United States)

    Berardi, R.; Fehervari, M.; Zannoni, C.

    We have performed a Monte Carlo simulation study of a system of ellipsoidal particles with donor-acceptor sites modelling complementary hydrogen-bonding groups in real molecules. We have considered elongated Gay-Berne particles with terminal interaction sites allowing particles to associate and form dimers. The changes in the phase transitions and in the molecular organization and the interplay between orientational ordering and dimer formation are discussed. Particle flip and dimer moves have been used to increase the convergency rate of the Monte Carlo (MC) Markov chain.

  2. Research on GPU acceleration for Monte Carlo criticality calculation

    International Nuclear Information System (INIS)

    Xu, Q.; Yu, G.; Wang, K.

    2013-01-01

    The Monte Carlo (MC) neutron transport method can be naturally parallelized by multi-core architectures due to the dependency between particles during the simulation. The GPU+CPU heterogeneous parallel mode has become an increasingly popular way of parallelism in the field of scientific supercomputing. Thus, this work focuses on the GPU acceleration method for the Monte Carlo criticality simulation, as well as the computational efficiency that GPUs can bring. The 'neutron transport step' is introduced to increase the GPU thread occupancy. In order to test the sensitivity of the MC code's complexity, a 1D one-group code and a 3D multi-group general purpose code are respectively transplanted to GPUs, and the acceleration effects are compared. The result of numerical experiments shows considerable acceleration effect of the 'neutron transport step' strategy. However, the performance comparison between the 1D code and the 3D code indicates the poor scalability of MC codes on GPUs. (authors)

  3. Dosimetry applications in GATE Monte Carlo toolkit.

    Science.gov (United States)

    Papadimitroulas, Panagiotis

    2017-09-01

    Monte Carlo (MC) simulations are a well-established method for studying physical processes in medical physics. The purpose of this review is to present GATE dosimetry applications on diagnostic and therapeutic simulated protocols. There is a significant need for accurate quantification of the absorbed dose in several specific applications such as preclinical and pediatric studies. GATE is an open-source MC toolkit for simulating imaging, radiotherapy (RT) and dosimetry applications in a user-friendly environment, which is well validated and widely accepted by the scientific community. In RT applications, during treatment planning, it is essential to accurately assess the deposited energy and the absorbed dose per tissue/organ of interest, as well as the local statistical uncertainty. Several types of realistic dosimetric applications are described including: molecular imaging, radio-immunotherapy, radiotherapy and brachytherapy. GATE has been efficiently used in several applications, such as Dose Point Kernels, S-values, Brachytherapy parameters, and has been compared against various MC codes which are considered as standard tools for decades. Furthermore, the presented studies show reliable modeling of particle beams when comparing experimental with simulated data. Examples of different dosimetric protocols are reported for individualized dosimetry and simulations combining imaging and therapy dose monitoring, with the use of modern computational phantoms. Personalization of medical protocols can be achieved by combining GATE MC simulations with anthropomorphic computational models and clinical anatomical data. This is a review study, covering several dosimetric applications of GATE, and the different tools used for modeling realistic clinical acquisitions with accurate dose assessment. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Monte Carlo methods for medical physics a practical introduction

    CERN Document Server

    Schuemann, Jan; Paganetti, Harald

    2018-01-01

    The Monte Carlo (MC) method, established as the gold standard to predict results of physical processes, is now fast becoming a routine clinical tool for applications that range from quality control to treatment verification. This book provides a basic understanding of the fundamental principles and limitations of the MC method in the interpretation and validation of results for various scenarios. It shows how user-friendly and speed optimized MC codes can achieve online image processing or dose calculations in a clinical setting. It introduces this essential method with emphasis on applications in hardware design and testing, radiological imaging, radiation therapy, and radiobiology.

  5. Foam: A general purpose Monte Carlo cellular algorithm

    International Nuclear Information System (INIS)

    Jadach, S.

    2003-01-01

    A general-purpose, self-adapting Monte Carlo (MC) algorithm implemented in the program Foam is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be n-dimensional simplices, hyperrectangles cells. The next cell to be divided and the position/direction of the division hyperplane is chosen by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution

  6. LCG MCDB - a Knowledgebase of Monte Carlo Simulated Events

    CERN Document Server

    Belov, S; Galkin, E; Gusev, A; Pokorski, Witold; Sherstnev, A V

    2008-01-01

    In this paper we report on LCG Monte Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC collaborations by experts. In many cases, the modern Monte Carlo simulation of physical processes requires expert knowledge in Monte Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project.

  7. Importance iteration in MORSE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Hoogenboom, J.E.

    1994-01-01

    An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example that shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation

  8. Monte Carlo approaches to light nuclei

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of 16 O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs

  9. Monte Carlo approaches to light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Significant progress has been made recently in the application of Monte Carlo methods to the study of light nuclei. We review new Green's function Monte Carlo results for the alpha particle, Variational Monte Carlo studies of {sup 16}O, and methods for low-energy scattering and transitions. Through these calculations, a coherent picture of the structure and electromagnetic properties of light nuclei has arisen. In particular, we examine the effect of the three-nucleon interaction and the importance of exchange currents in a variety of experimentally measured properties, including form factors and capture cross sections. 29 refs., 7 figs.

  10. Importance iteration in MORSE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Kloosterman, J.L.; Hoogenboom, J.E.

    1994-02-01

    An expression to calculate point values (the expected detector response of a particle emerging from a collision or the source) is derived and implemented in the MORSE-SGC/S Monte Carlo code. It is outlined how these point values can be smoothed as a function of energy and as a function of the optical thickness between the detector and the source. The smoothed point values are subsequently used to calculate the biasing parameters of the Monte Carlo runs to follow. The method is illustrated by an example, which shows that the obtained biasing parameters lead to a more efficient Monte Carlo calculation. (orig.)

  11. Monte carlo simulation for soot dynamics

    KAUST Repository

    Zhou, Kun

    2012-01-01

    A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.

  12. Advanced computers and Monte Carlo

    International Nuclear Information System (INIS)

    Jordan, T.L.

    1979-01-01

    High-performance parallelism that is currently available is synchronous in nature. It is manifested in such architectures as Burroughs ILLIAC-IV, CDC STAR-100, TI ASC, CRI CRAY-1, ICL DAP, and many special-purpose array processors designed for signal processing. This form of parallelism has apparently not been of significant value to many important Monte Carlo calculations. Nevertheless, there is much asynchronous parallelism in many of these calculations. A model of a production code that requires up to 20 hours per problem on a CDC 7600 is studied for suitability on some asynchronous architectures that are on the drawing board. The code is described and some of its properties and resource requirements ae identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resource requirements are identified to compare with corresponding properties and resources of some asynchronous multiprocessor architectures. Arguments are made for programer aids and special syntax to identify and support important asynchronous parallelism. 2 figures, 5 tables

  13. Adaptive Markov Chain Monte Carlo

    KAUST Repository

    Jadoon, Khan

    2016-08-08

    A substantial interpretation of electromagnetic induction (EMI) measurements requires quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The electromagnetic forward model based on the full solution of Maxwell\\'s equations was used to simulate the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investigated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thickness are not well estimated as compared to layers electrical conductivity because layer thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip irrigation system demonstrate that the parameters of the model can be well estimated for the saline soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for the assessment of the model outputs.

  14. Monte Carlo Production Management at CMS

    CERN Document Server

    Boudoul, G.; Pol, A; Srimanobhas, P; Vlimant, J R; Franzoni, Giovanni

    2015-01-01

    The analysis of the LHC data at the Compact Muon Solenoid (CMS) experiment requires the production of a large number of simulated events.During the runI of LHC (2010-2012), CMS has produced over 12 Billion simulated events,organized in approximately sixty different campaigns each emulating specific detector conditions and LHC running conditions (pile up).In order toaggregate the information needed for the configuration and prioritization of the events production,assure the book-keeping and of all the processing requests placed by the physics analysis groups,and to interface with the CMS production infrastructure,the web-based service Monte Carlo Management (McM) has been developed and put in production in 2012.McM is based on recent server infrastructure technology (CherryPy + java) and relies on a CouchDB database back-end.This contribution will coverthe one and half year of operational experience managing samples of simulated events for CMS,the evolution of its functionalitiesand the extension of its capabi...

  15. 11th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing

    CERN Document Server

    Nuyens, Dirk

    2016-01-01

    This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.

  16. Quantum Monte Carlo approaches for correlated systems

    CERN Document Server

    Becca, Federico

    2017-01-01

    Over the past several decades, computational approaches to studying strongly-interacting systems have become increasingly varied and sophisticated. This book provides a comprehensive introduction to state-of-the-art quantum Monte Carlo techniques relevant for applications in correlated systems. Providing a clear overview of variational wave functions, and featuring a detailed presentation of stochastic samplings including Markov chains and Langevin dynamics, which are developed into a discussion of Monte Carlo methods. The variational technique is described, from foundations to a detailed description of its algorithms. Further topics discussed include optimisation techniques, real-time dynamics and projection methods, including Green's function, reptation and auxiliary-field Monte Carlo, from basic definitions to advanced algorithms for efficient codes, and the book concludes with recent developments on the continuum space. Quantum Monte Carlo Approaches for Correlated Systems provides an extensive reference ...

  17. Monte Carlo simulations for plasma physics

    International Nuclear Information System (INIS)

    Okamoto, M.; Murakami, S.; Nakajima, N.; Wang, W.X.

    2000-07-01

    Plasma behaviours are very complicated and the analyses are generally difficult. However, when the collisional processes play an important role in the plasma behaviour, the Monte Carlo method is often employed as a useful tool. For examples, in neutral particle injection heating (NBI heating), electron or ion cyclotron heating, and alpha heating, Coulomb collisions slow down high energetic particles and pitch angle scatter them. These processes are often studied by the Monte Carlo technique and good agreements can be obtained with the experimental results. Recently, Monte Carlo Method has been developed to study fast particle transports associated with heating and generating the radial electric field. Further it is applied to investigating the neoclassical transport in the plasma with steep gradients of density and temperatures which is beyong the conventional neoclassical theory. In this report, we briefly summarize the researches done by the present authors utilizing the Monte Carlo method. (author)

  18. Frontiers of quantum Monte Carlo workshop: preface

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1985-01-01

    The introductory remarks, table of contents, and list of attendees are presented from the proceedings of the conference, Frontiers of Quantum Monte Carlo, which appeared in the Journal of Statistical Physics

  19. Monte Carlo code development in Los Alamos

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.; Everett, C.J.; Forest, C.A.; Schrandt, R.G.; Taylor, W.M.; Thompson, W.L.; Turner, G.D.

    1974-01-01

    The present status of Monte Carlo code development at Los Alamos Scientific Laboratory is discussed. A brief summary is given of several of the most important neutron, photon, and electron transport codes. 17 references. (U.S.)

  20. Experience with the Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, E M.A. [Department of Mechanical Engineering University of New Brunswick, Fredericton, N.B., (Canada)

    2007-06-15

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed.

  1. Experience with the Monte Carlo Method

    International Nuclear Information System (INIS)

    Hussein, E.M.A.

    2007-01-01

    Monte Carlo simulation of radiation transport provides a powerful research and design tool that resembles in many aspects laboratory experiments. Moreover, Monte Carlo simulations can provide an insight not attainable in the laboratory. However, the Monte Carlo method has its limitations, which if not taken into account can result in misleading conclusions. This paper will present the experience of this author, over almost three decades, in the use of the Monte Carlo method for a variety of applications. Examples will be shown on how the method was used to explore new ideas, as a parametric study and design optimization tool, and to analyze experimental data. The consequences of not accounting in detail for detector response and the scattering of radiation by surrounding structures are two of the examples that will be presented to demonstrate the pitfall of condensed

  2. Monte Carlo Transport for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2015-11-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup electron thermal transport method of Cao et al. is adapted into a Monte Carlo transport method in order to better model the effects of non-local behavior. The end goal is a hybrid transport-diffusion method that combines Monte Carlo Transport with a discrete diffusion Monte Carlo (DDMC). The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the method will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  3. A continuation multilevel Monte Carlo algorithm

    KAUST Repository

    Collier, Nathan; Haji Ali, Abdul Lateef; Nobile, Fabio; von Schwerin, Erik; Tempone, Raul

    2014-01-01

    We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error

  4. Simulation and the Monte Carlo method

    CERN Document Server

    Rubinstein, Reuven Y

    2016-01-01

    Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the major topics that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as the transform likelihood ratio...

  5. Hybrid Monte Carlo methods in computational finance

    NARCIS (Netherlands)

    Leitao Rodriguez, A.

    2017-01-01

    Monte Carlo methods are highly appreciated and intensively employed in computational finance in the context of financial derivatives valuation or risk management. The method offers valuable advantages like flexibility, easy interpretation and straightforward implementation. Furthermore, the

  6. LCG Monte-Carlo Data Base

    CERN Document Server

    Bartalini, P.; Kryukov, A.; Selyuzhenkov, Ilya V.; Sherstnev, A.; Vologdin, A.

    2004-01-01

    We present the Monte-Carlo events Data Base (MCDB) project and its development plans. MCDB facilitates communication between authors of Monte-Carlo generators and experimental users. It also provides a convenient book-keeping and an easy access to generator level samples. The first release of MCDB is now operational for the CMS collaboration. In this paper we review the main ideas behind MCDB and discuss future plans to develop this Data Base further within the CERN LCG framework.

  7. Multilevel Monte Carlo in Approximate Bayesian Computation

    KAUST Repository

    Jasra, Ajay

    2017-02-13

    In the following article we consider approximate Bayesian computation (ABC) inference. We introduce a method for numerically approximating ABC posteriors using the multilevel Monte Carlo (MLMC). A sequential Monte Carlo version of the approach is developed and it is shown under some assumptions that for a given level of mean square error, this method for ABC has a lower cost than i.i.d. sampling from the most accurate ABC approximation. Several numerical examples are given.

  8. Monte Carlo method applied to medical physics

    International Nuclear Information System (INIS)

    Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.

    2000-01-01

    The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)

  9. Monte Carlo and detector simulation in OOP [Object-Oriented Programming

    International Nuclear Information System (INIS)

    Atwood, W.B.; Blankenbecler, R.; Kunz, P.; Burnett, T.; Storr, K.M.

    1990-10-01

    Object-Oriented Programming techniques are explored with an eye toward applications in High Energy Physics codes. Two prototype examples are given: McOOP (a particle Monte Carlo generator) and GISMO (a detector simulation/analysis package)

  10. Single-site Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molecular simulation

    KAUST Repository

    Kadoura, Ahmad Salim; Siripatana, Adil; Sun, Shuyu; Knio, Omar; Hoteit, Ibrahim

    2016-01-01

    In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard

  11. Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme

    KAUST Repository

    Kadoura, Ahmad Salim; Salama, Amgad; Sun, Shuyu

    2015-01-01

    Monte Carlo (MC) molecular simulation describes fluid systems with rich information, and it is capable of predicting many fluid properties of engineering interest. In general, it is more accurate and representative than equations of state

  12. Vega library for processing DICOM data required in Monte Carlo verification of radiotherapy treatment plans

    International Nuclear Information System (INIS)

    Locke, C.; Zavgorodni, S.; British Columbia Cancer Agency, Vancouver Island Center, Victoria BC

    2008-01-01

    Monte Carlo (MC) methods provide the most accurate to-date dose calculations in heterogeneous media and complex geometries, and this spawns increasing interest in incorporating MC calculations into treatment planning quality assurance process. This involves MC dose calculations for clinically produced treatment plans. To perform these calculations, a number of treatment plan parameters specifying radiation beam

  13. Monte Carlo reactor calculation with substantially reduced number of cycles

    International Nuclear Information System (INIS)

    Lee, M. J.; Joo, H. G.; Lee, D.; Smith, K.

    2012-01-01

    A new Monte Carlo (MC) eigenvalue calculation scheme that substantially reduces the number of cycles is introduced with the aid of coarse mesh finite difference (CMFD) formulation. First, it is confirmed in terms of pin power errors that using extremely many particles resulting in short active cycles is beneficial even in the conventional MC scheme although wasted operations in inactive cycles cannot be reduced with more particles. A CMFD-assisted MC scheme is introduced as an effort to reduce the number of inactive cycles and the fast convergence behavior and reduced inter-cycle effect of the CMFD assisted MC calculation is investigated in detail. As a practical means of providing a good initial fission source distribution, an assembly based few-group condensation and homogenization scheme is introduced and it is shown that efficient MC eigenvalue calculations with fewer than 20 total cycles (including inactive cycles) are possible for large power reactor problems. (authors)

  14. Monte Carlo evaluation of derivative-based global sensitivity measures

    Energy Technology Data Exchange (ETDEWEB)

    Kucherenko, S. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)], E-mail: s.kucherenko@ic.ac.uk; Rodriguez-Fernandez, M. [Process Engineering Group, Instituto de Investigaciones Marinas, Spanish Council for Scientific Research (C.S.I.C.), C/ Eduardo Cabello, 6, 36208 Vigo (Spain); Pantelides, C.; Shah, N. [Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

    2009-07-15

    A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.

  15. Monte Carlo evaluation of derivative-based global sensitivity measures

    International Nuclear Information System (INIS)

    Kucherenko, S.; Rodriguez-Fernandez, M.; Pantelides, C.; Shah, N.

    2009-01-01

    A novel approach for evaluation of derivative-based global sensitivity measures (DGSM) is presented. It is compared with the Morris and the Sobol' sensitivity indices methods. It is shown that there is a link between DGSM and Sobol' sensitivity indices. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is many orders of magnitude lower than that for estimation of the Sobol' sensitivity indices. It is also lower than that for the Morris method. Efficiencies of Monte Carlo (MC) and quasi-Monte Carlo (QMC) sampling methods for calculation of DGSM are compared. It is shown that the superiority of QMC over MC depends on the problem's effective dimension, which can also be estimated using DGSM.

  16. Monte Carlo physical dosimetry for small photon beams

    International Nuclear Information System (INIS)

    Perucha, M.; Rincon, M.; Leal, A.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Nunez, L.; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.

    2001-01-01

    Small field dosimetry is complicated due to the lack of electronic equilibrium and to the high steep dose gradients. This works compares PDD curves, profiles and output factors measured with conventional detectors (film, diode, TLD and ionisation chamber) and calculated with Monte Carlo. The 6 MV nominal energy from a Philips SL-18 linac has been simulated by using the OMEGA code. MC calculation reveals itself as a convenient method to validate OF and profiles in special conditions, such as small fields. (orig.)

  17. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.

  18. Direct aperture optimization for IMRT using Monte Carlo generated beamlets

    International Nuclear Information System (INIS)

    Bergman, Alanah M.; Bush, Karl; Milette, Marie-Pierre; Popescu, I. Antoniu; Otto, Karl; Duzenli, Cheryl

    2006-01-01

    This work introduces an EGSnrc-based Monte Carlo (MC) beamlet does distribution matrix into a direct aperture optimization (DAO) algorithm for IMRT inverse planning. The technique is referred to as Monte Carlo-direct aperture optimization (MC-DAO). The goal is to assess if the combination of accurate Monte Carlo tissue inhomogeneity modeling and DAO inverse planning will improve the dose accuracy and treatment efficiency for treatment planning. Several authors have shown that the presence of small fields and/or inhomogeneous materials in IMRT treatment fields can cause dose calculation errors for algorithms that are unable to accurately model electronic disequilibrium. This issue may also affect the IMRT optimization process because the dose calculation algorithm may not properly model difficult geometries such as targets close to low-density regions (lung, air etc.). A clinical linear accelerator head is simulated using BEAMnrc (NRC, Canada). A novel in-house algorithm subdivides the resulting phase space into 2.5x5.0 mm 2 beamlets. Each beamlet is projected onto a patient-specific phantom. The beamlet dose contribution to each voxel in a structure-of-interest is calculated using DOSXYZnrc. The multileaf collimator (MLC) leaf positions are linked to the location of the beamlet does distributions. The MLC shapes are optimized using direct aperture optimization (DAO). A final Monte Carlo calculation with MLC modeling is used to compute the final dose distribution. Monte Carlo simulation can generate accurate beamlet dose distributions for traditionally difficult-to-calculate geometries, particularly for small fields crossing regions of tissue inhomogeneity. The introduction of DAO results in an additional improvement by increasing the treatment delivery efficiency. For the examples presented in this paper the reduction in the total number of monitor units to deliver is ∼33% compared to fluence-based optimization methods

  19. Monte carlo depletion analysis of SMART core by MCNAP code

    International Nuclear Information System (INIS)

    Jung, Jong Sung; Sim, Hyung Jin; Kim, Chang Hyo; Lee, Jung Chan; Ji, Sung Kyun

    2001-01-01

    Depletion an analysis of SMART, a small-sized advanced integral PWR under development by KAERI, is conducted using the Monte Carlo (MC) depletion analysis program, MCNAP. The results are compared with those of the CASMO-3/ MASTER nuclear analysis. The difference between MASTER and MCNAP on k eff prediction is observed about 600pcm at BOC, and becomes smaller as the core burnup increases. The maximum difference bet ween two predict ions on fuel assembly (FA) normalized power distribution is about 6.6% radially , and 14.5% axially but the differences are observed to lie within standard deviation of MC estimations

  20. Monte Carlo conformal treatment planning as an independent assessment

    International Nuclear Information System (INIS)

    Rincon, M.; Leal, A.; Perucha, M.; Carrasco, E.; Sanchez-Doblado, F.; Hospital Univ. Virgen Macarena, Sevilla; Arrans, R.; Sanchez-Calzado, J.A.; Errazquin, L.; Medrano, J.C.

    2001-01-01

    The wide range of possibilities available in Radiotherapy with conformal fields cannot be covered experimentally. For this reason, dosimetrical and planning procedures are based on approximate algorithms or systematic measurements. Dose distribution calculations based on Monte Carlo (MC) simulations can be used to check results. In this work, two examples of conformal field treatments are shown: A prostate carcinoma and an ocular lymphoma. The dose distributions obtained with a conventional Planning System and with MC have been compared. Some significant differences have been found. (orig.)

  1. Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation

    International Nuclear Information System (INIS)

    Bieda, Bogusław

    2013-01-01

    The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball® (CB), simulation program that helps analyze the uncertainties associated with Microsoft® Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection–dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Kraków, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. -- Highlights: ► Numerical simulation of waste in porous media is proposed. ► Statistic outputs based on correct assumptions about probability distribution are presented. ► The benefits of a MC simulation are examined. ► The uniform probability distribution is studied. ► I report a useful tool applied to determine the life of a modern MSW landfill.

  2. Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Boguslaw, E-mail: bbieda@zarz.agh.edu.pl

    2013-01-01

    The paper is concerned with application and benefits of MC simulation proposed for estimating the life of a modern municipal solid waste (MSW) landfill. The software Crystal Ball Registered-Sign (CB), simulation program that helps analyze the uncertainties associated with Microsoft Registered-Sign Excel models by MC simulation, was proposed to calculate the transit time contaminants in porous media. The transport of contaminants in soil is represented by the one-dimensional (1D) form of the advection-dispersion equation (ADE). The computer program CONTRANS written in MATLAB language is foundation to simulate and estimate the thickness of landfill compacted clay liner. In order to simplify the task of determining the uncertainty of parameters by the MC simulation, the parameters corresponding to the expression Z2 taken from this program were used for the study. The tested parameters are: hydraulic gradient (HG), hydraulic conductivity (HC), porosity (POROS), linear thickness (TH) and diffusion coefficient (EDC). The principal output report provided by CB and presented in the study consists of the frequency chart, percentiles summary and statistics summary. Additional CB options provide a sensitivity analysis with tornado diagrams. The data that was used include available published figures as well as data concerning the Mittal Steel Poland (MSP) S.A. in Krakow, Poland. This paper discusses the results and show that the presented approach is applicable for any MSW landfill compacted clay liner thickness design. -- Highlights: Black-Right-Pointing-Pointer Numerical simulation of waste in porous media is proposed. Black-Right-Pointing-Pointer Statistic outputs based on correct assumptions about probability distribution are presented. Black-Right-Pointing-Pointer The benefits of a MC simulation are examined. Black-Right-Pointing-Pointer The uniform probability distribution is studied. Black-Right-Pointing-Pointer I report a useful tool applied to determine the life of a

  3. TU-AB-BRC-11: Moving a GPU-OpenCL-Based Monte Carlo (MC) Dose Engine Towards Routine Clinical Use: Automatic Beam Commissioning and Efficient Source Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z; Folkerts, M; Jiang, S; Jia, X [UT Southwestern Medical Ctr, Dallas, TX (United States); Li, Y [Beihang University, Beijing (China)

    2016-06-15

    Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculations for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of

  4. Successful vectorization - reactor physics Monte Carlo code

    International Nuclear Information System (INIS)

    Martin, W.R.

    1989-01-01

    Most particle transport Monte Carlo codes in use today are based on the ''history-based'' algorithm, wherein one particle history at a time is simulated. Unfortunately, the ''history-based'' approach (present in all Monte Carlo codes until recent years) is inherently scalar and cannot be vectorized. In particular, the history-based algorithm cannot take advantage of vector architectures, which characterize the largest and fastest computers at the current time, vector supercomputers such as the Cray X/MP or IBM 3090/600. However, substantial progress has been made in recent years in developing and implementing a vectorized Monte Carlo algorithm. This algorithm follows portions of many particle histories at the same time and forms the basis for all successful vectorized Monte Carlo codes that are in use today. This paper describes the basic vectorized algorithm along with descriptions of several variations that have been developed by different researchers for specific applications. These applications have been mainly in the areas of neutron transport in nuclear reactor and shielding analysis and photon transport in fusion plasmas. The relative merits of the various approach schemes will be discussed and the present status of known vectorization efforts will be summarized along with available timing results, including results from the successful vectorization of 3-D general geometry, continuous energy Monte Carlo. (orig.)

  5. Calibration of the top-quark Monte-Carlo mass

    International Nuclear Information System (INIS)

    Kieseler, Jan; Lipka, Katerina; Moch, Sven-Olaf

    2015-11-01

    We present a method to establish experimentally the relation between the top-quark mass m MC t as implemented in Monte-Carlo generators and the Lagrangian mass parameter m t in a theoretically well-defined renormalization scheme. We propose a simultaneous fit of m MC t and an observable sensitive to m t , which does not rely on any prior assumptions about the relation between m t and m MC t . The measured observable is independent of m MC t and can be used subsequently for a determination of m t . The analysis strategy is illustrated with examples for the extraction of m t from inclusive and differential cross sections for hadro-production of top-quarks.

  6. Monte Carlo strategies in scientific computing

    CERN Document Server

    Liu, Jun S

    2008-01-01

    This paperback edition is a reprint of the 2001 Springer edition This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians It can also be used as the textbook for a graduate-level course on Monte Carlo methods Many problems discussed in the alter chapters can be potential thesis topics for masters’ or PhD students in statistics or computer science departments Jun Liu is Professor of Statistics at Harvard University, with a courtesy Professor appointment at Harvard Biostatistics Department Professor Liu was the recipient of the 2002 COPSS Presidents' Award, the most prestigious one for sta...

  7. Random Numbers and Monte Carlo Methods

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.

  8. Off-diagonal expansion quantum Monte Carlo.

    Science.gov (United States)

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  9. Reflections on early Monte Carlo calculations

    International Nuclear Information System (INIS)

    Spanier, J.

    1992-01-01

    Monte Carlo methods for solving various particle transport problems developed in parallel with the evolution of increasingly sophisticated computer programs implementing diffusion theory and low-order moments calculations. In these early years, Monte Carlo calculations and high-order approximations to the transport equation were seen as too expensive to use routinely for nuclear design but served as invaluable aids and supplements to design with less expensive tools. The earliest Monte Carlo programs were quite literal; i.e., neutron and other particle random walk histories were simulated by sampling from the probability laws inherent in the physical system without distoration. Use of such analogue sampling schemes resulted in a good deal of time being spent in examining the possibility of lowering the statistical uncertainties in the sample estimates by replacing simple, and intuitively obvious, random variables by those with identical means but lower variances

  10. Monte Carlo simulation of Markov unreliability models

    International Nuclear Information System (INIS)

    Lewis, E.E.; Boehm, F.

    1984-01-01

    A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)

  11. Shell model the Monte Carlo way

    International Nuclear Information System (INIS)

    Ormand, W.E.

    1995-01-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined

  12. Shell model the Monte Carlo way

    Energy Technology Data Exchange (ETDEWEB)

    Ormand, W.E.

    1995-03-01

    The formalism for the auxiliary-field Monte Carlo approach to the nuclear shell model is presented. The method is based on a linearization of the two-body part of the Hamiltonian in an imaginary-time propagator using the Hubbard-Stratonovich transformation. The foundation of the method, as applied to the nuclear many-body problem, is discussed. Topics presented in detail include: (1) the density-density formulation of the method, (2) computation of the overlaps, (3) the sign of the Monte Carlo weight function, (4) techniques for performing Monte Carlo sampling, and (5) the reconstruction of response functions from an imaginary-time auto-correlation function using MaxEnt techniques. Results obtained using schematic interactions, which have no sign problem, are presented to demonstrate the feasibility of the method, while an extrapolation method for realistic Hamiltonians is presented. In addition, applications at finite temperature are outlined.

  13. SPQR: a Monte Carlo reactor kinetics code

    International Nuclear Information System (INIS)

    Cramer, S.N.; Dodds, H.L.

    1980-02-01

    The SPQR Monte Carlo code has been developed to analyze fast reactor core accident problems where conventional methods are considered inadequate. The code is based on the adiabatic approximation of the quasi-static method. This initial version contains no automatic material motion or feedback. An existing Monte Carlo code is used to calculate the shape functions and the integral quantities needed in the kinetics module. Several sample problems have been devised and analyzed. Due to the large statistical uncertainty associated with the calculation of reactivity in accident simulations, the results, especially at later times, differ greatly from deterministic methods. It was also found that in large uncoupled systems, the Monte Carlo method has difficulty in handling asymmetric perturbations

  14. Current and future applications of Monte Carlo

    International Nuclear Information System (INIS)

    Zaidi, H.

    2003-01-01

    Full text: The use of radionuclides in medicine has a long history and encompasses a large area of applications including diagnosis and radiation treatment of cancer patients using either external or radionuclide radiotherapy. The 'Monte Carlo method'describes a very broad area of science, in which many processes, physical systems, and phenomena are simulated by statistical methods employing random numbers. The general idea of Monte Carlo analysis is to create a model, which is as similar as possible to the real physical system of interest, and to create interactions within that system based on known probabilities of occurrence, with random sampling of the probability density functions (pdfs). As the number of individual events (called 'histories') is increased, the quality of the reported average behavior of the system improves, meaning that the statistical uncertainty decreases. The use of the Monte Carlo method to simulate radiation transport has become the most accurate means of predicting absorbed dose distributions and other quantities of interest in the radiation treatment of cancer patients using either external or radionuclide radiotherapy. The same trend has occurred for the estimation of the absorbed dose in diagnostic procedures using radionuclides as well as the assessment of image quality and quantitative accuracy of radionuclide imaging. As a consequence of this generalized use, many questions are being raised primarily about the need and potential of Monte Carlo techniques, but also about how accurate it really is, what would it take to apply it clinically and make it available widely to the nuclear medicine community at large. Many of these questions will be answered when Monte Carlo techniques are implemented and used for more routine calculations and for in-depth investigations. In this paper, the conceptual role of the Monte Carlo method is briefly introduced and followed by a survey of its different applications in diagnostic and therapeutic

  15. Monte Carlo method for array criticality calculations

    International Nuclear Information System (INIS)

    Dickinson, D.; Whitesides, G.E.

    1976-01-01

    The Monte Carlo method for solving neutron transport problems consists of mathematically tracing paths of individual neutrons collision by collision until they are lost by absorption or leakage. The fate of the neutron after each collision is determined by the probability distribution functions that are formed from the neutron cross-section data. These distributions are sampled statistically to establish the successive steps in the neutron's path. The resulting data, accumulated from following a large number of batches, are analyzed to give estimates of k/sub eff/ and other collision-related quantities. The use of electronic computers to produce the simulated neutron histories, initiated at Los Alamos Scientific Laboratory, made the use of the Monte Carlo method practical for many applications. In analog Monte Carlo simulation, the calculation follows the physical events of neutron scattering, absorption, and leakage. To increase calculational efficiency, modifications such as the use of statistical weights are introduced. The Monte Carlo method permits the use of a three-dimensional geometry description and a detailed cross-section representation. Some of the problems in using the method are the selection of the spatial distribution for the initial batch, the preparation of the geometry description for complex units, and the calculation of error estimates for region-dependent quantities such as fluxes. The Monte Carlo method is especially appropriate for criticality safety calculations since it permits an accurate representation of interacting units of fissile material. Dissimilar units, units of complex shape, moderators between units, and reflected arrays may be calculated. Monte Carlo results must be correlated with relevant experimental data, and caution must be used to ensure that a representative set of neutron histories is produced

  16. SU-E-J-55: Dosimetric Evaluation of Centrally Located Lung Tumors: A Monte Carlo (MC) Study of Lung SBRT Planning

    Energy Technology Data Exchange (ETDEWEB)

    Pokhrel, D; Badkul, R; Jiang, H; Saleh, H; Estes, C; Park, J; Kumar, P; Wang, F [University Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beam configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with

  17. Monte Carlo simulation applied to alpha spectrometry

    International Nuclear Information System (INIS)

    Baccouche, S.; Gharbi, F.; Trabelsi, A.

    2007-01-01

    Alpha particle spectrometry is a widely-used analytical method, in particular when we deal with pure alpha emitting radionuclides. Monte Carlo simulation is an adequate tool to investigate the influence of various phenomena on this analytical method. We performed an investigation of those phenomena using the simulation code GEANT of CERN. The results concerning the geometrical detection efficiency in different measurement geometries agree with analytical calculations. This work confirms that Monte Carlo simulation of solid angle of detection is a very useful tool to determine with very good accuracy the detection efficiency.

  18. Simplified monte carlo simulation for Beijing spectrometer

    International Nuclear Information System (INIS)

    Wang Taijie; Wang Shuqin; Yan Wuguang; Huang Yinzhi; Huang Deqiang; Lang Pengfei

    1986-01-01

    The Monte Carlo method based on the functionization of the performance of detectors and the transformation of values of kinematical variables into ''measured'' ones by means of smearing has been used to program the Monte Carlo simulation of the performance of the Beijing Spectrometer (BES) in FORTRAN language named BESMC. It can be used to investigate the multiplicity, the particle type, and the distribution of four-momentum of the final states of electron-positron collision, and also the response of the BES to these final states. Thus, it provides a measure to examine whether the overall design of the BES is reasonable and to decide the physical topics of the BES

  19. Self-learning Monte Carlo (dynamical biasing)

    International Nuclear Information System (INIS)

    Matthes, W.

    1981-01-01

    In many applications the histories of a normal Monte Carlo game rarely reach the target region. An approximate knowledge of the importance (with respect to the target) may be used to guide the particles more frequently into the target region. A Monte Carlo method is presented in which each history contributes to update the importance field such that eventually most target histories are sampled. It is a self-learning method in the sense that the procedure itself: (a) learns which histories are important (reach the target) and increases their probability; (b) reduces the probabilities of unimportant histories; (c) concentrates gradually on the more important target histories. (U.K.)

  20. A keff calculation method by Monte Carlo

    International Nuclear Information System (INIS)

    Shen, H; Wang, K.

    2008-01-01

    The effective multiplication factor (k eff ) is defined as the ratio between the number of neutrons in successive generations, which definition is adopted by most Monte Carlo codes (e.g. MCNP). Also, it can be thought of as the ratio of the generation rate of neutrons by the sum of the leakage rate and the absorption rate, which should exclude the effect of the neutron reaction such as (n, 2n) and (n, 3n). This article discusses the Monte Carlo method for k eff calculation based on the second definition. A new code has been developed and the results are presented. (author)

  1. Monte Carlo electron/photon transport

    International Nuclear Information System (INIS)

    Mack, J.M.; Morel, J.E.; Hughes, H.G.

    1985-01-01

    A review of nonplasma coupled electron/photon transport using Monte Carlo method is presented. Remarks are mainly restricted to linerarized formalisms at electron energies from 1 keV to 1000 MeV. Applications involving pulse-height estimation, transport in external magnetic fields, and optical Cerenkov production are discussed to underscore the importance of this branch of computational physics. Advances in electron multigroup cross-section generation is reported, and its impact on future code development assessed. Progress toward the transformation of MCNP into a generalized neutral/charged-particle Monte Carlo code is described. 48 refs

  2. Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width

  3. Simulation of transport equations with Monte Carlo

    International Nuclear Information System (INIS)

    Matthes, W.

    1975-09-01

    The main purpose of the report is to explain the relation between the transport equation and the Monte Carlo game used for its solution. The introduction of artificial particles carrying a weight provides one with high flexibility in constructing many different games for the solution of the same equation. This flexibility opens a way to construct a Monte Carlo game for the solution of the adjoint transport equation. Emphasis is laid mostly on giving a clear understanding of what to do and not on the details of how to do a specific game

  4. Monte Carlo dose distributions for radiosurgery

    International Nuclear Information System (INIS)

    Perucha, M.; Leal, A.; Rincon, M.; Carrasco, E.

    2001-01-01

    The precision of Radiosurgery Treatment planning systems is limited by the approximations of their algorithms and by their dosimetrical input data. This fact is especially important in small fields. However, the Monte Carlo methods is an accurate alternative as it considers every aspect of particle transport. In this work an acoustic neurinoma is studied by comparing the dose distribution of both a planning system and Monte Carlo. Relative shifts have been measured and furthermore, Dose-Volume Histograms have been calculated for target and adjacent organs at risk. (orig.)

  5. Nonlinear Spatial Inversion Without Monte Carlo Sampling

    Science.gov (United States)

    Curtis, A.; Nawaz, A.

    2017-12-01

    High-dimensional, nonlinear inverse or inference problems usually have non-unique solutions. The distribution of solutions are described by probability distributions, and these are usually found using Monte Carlo (MC) sampling methods. These take pseudo-random samples of models in parameter space, calculate the probability of each sample given available data and other information, and thus map out high or low probability values of model parameters. However, such methods would converge to the solution only as the number of samples tends to infinity; in practice, MC is found to be slow to converge, convergence is not guaranteed to be achieved in finite time, and detection of convergence requires the use of subjective criteria. We propose a method for Bayesian inversion of categorical variables such as geological facies or rock types in spatial problems, which requires no sampling at all. The method uses a 2-D Hidden Markov Model over a grid of cells, where observations represent localized data constraining the model in each cell. The data in our example application are seismic properties such as P- and S-wave impedances or rock density; our model parameters are the hidden states and represent the geological rock types in each cell. The observations at each location are assumed to depend on the facies at that location only - an assumption referred to as `localized likelihoods'. However, the facies at a location cannot be determined solely by the observation at that location as it also depends on prior information concerning its correlation with the spatial distribution of facies elsewhere. Such prior information is included in the inversion in the form of a training image which represents a conceptual depiction of the distribution of local geologies that might be expected, but other forms of prior information can be used in the method as desired. The method provides direct (pseudo-analytic) estimates of posterior marginal probability distributions over each variable

  6. Fast sequential Monte Carlo methods for counting and optimization

    CERN Document Server

    Rubinstein, Reuven Y; Vaisman, Radislav

    2013-01-01

    A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the

  7. Specialized Monte Carlo codes versus general-purpose Monte Carlo codes

    International Nuclear Information System (INIS)

    Moskvin, Vadim; DesRosiers, Colleen; Papiez, Lech; Lu, Xiaoyi

    2002-01-01

    The possibilities of Monte Carlo modeling for dose calculations and optimization treatment are quite limited in radiation oncology applications. The main reason is that the Monte Carlo technique for dose calculations is time consuming while treatment planning may require hundreds of possible cases of dose simulations to be evaluated for dose optimization. The second reason is that general-purpose codes widely used in practice, require an experienced user to customize them for calculations. This paper discusses the concept of Monte Carlo code design that can avoid the main problems that are preventing wide spread use of this simulation technique in medical physics. (authors)

  8. On the use of stochastic approximation Monte Carlo for Monte Carlo integration

    KAUST Repository

    Liang, Faming

    2009-03-01

    The stochastic approximation Monte Carlo (SAMC) algorithm has recently been proposed as a dynamic optimization algorithm in the literature. In this paper, we show in theory that the samples generated by SAMC can be used for Monte Carlo integration via a dynamically weighted estimator by calling some results from the literature of nonhomogeneous Markov chains. Our numerical results indicate that SAMC can yield significant savings over conventional Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, for the problems for which the energy landscape is rugged. © 2008 Elsevier B.V. All rights reserved.

  9. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials.

    Science.gov (United States)

    Kim, Jihan; Smit, Berend

    2012-07-10

    Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2 gas molecules inside host zeolite structures used as a test system. The reciprocal space contribution of the gas-gas Ewald summation and both the direct and the reciprocal gas-host potential energy interactions are stored inside energy grids to reduce the wall time in the MC simulations. Additional speedup can be obtained by selectively calling the routine that computes the gas-gas Ewald summation, which does not impact the accuracy of the zeolite's adsorption characteristics. We utilize two-level density-biased sampling technique in the grand canonical Monte Carlo (GCMC) algorithm to restrict CO2 insertion moves into low-energy regions within the zeolite materials to accelerate convergence. Finally, we make use of the graphics processing units (GPUs) hardware to conduct multiple MC simulations in parallel via judiciously mapping the GPU threads to available workload. As a result, we can obtain a CO2 adsorption isotherm curve with 14 pressure values (up to 10 atm) for a zeolite structure within a minute of total compute wall time.

  10. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, P.A.

    1995-09-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC{_}RUN) which use the library are shown as an example.

  11. Testing results of Monte Carlo sampling processes in MCSAD

    International Nuclear Information System (INIS)

    Pinnera, I.; Cruz, C.; Abreu, Y.; Leyva, A.; Correa, C.; Demydenko, C.

    2009-01-01

    The Monte Carlo Simulation of Atom Displacements (MCSAD) is a code implemented by the authors to simulate the complete process of atom displacement (AD) formation. This code makes use of the Monte Carlo (MC) method to sample all the processes involved in the gamma and electronic radiation transport through matter. The kernel of the calculations applied to this code relies on a model based on an algorithm developed by the authors, which firstly splits out multiple electron elastic scattering events from those single ones at higher scattering angles and then, from the last one, sampling those leading to AD at high transferred atomic recoil energies. Some tests have been developed to check the sampling algorithms with the help of the corresponding theoretical distribution functions. Satisfactory results have been obtained, which indicate the strength of the methods and subroutines used in the code. (Author)

  12. The MCLIB library: Monte Carlo simulation of neutron scattering instruments

    International Nuclear Information System (INIS)

    Seeger, P.A.

    1995-01-01

    Monte Carlo is a method to integrate over a large number of variables. Random numbers are used to select a value for each variable, and the integrand is evaluated. The process is repeated a large number of times and the resulting values are averaged. For a neutron transport problem, first select a neutron from the source distribution, and project it through the instrument using either deterministic or probabilistic algorithms to describe its interaction whenever it hits something, and then (if it hits the detector) tally it in a histogram representing where and when it was detected. This is intended to simulate the process of running an actual experiment (but it is much slower). This report describes the philosophy and structure of MCLIB, a Fortran library of Monte Carlo subroutines which has been developed for design of neutron scattering instruments. A pair of programs (LQDGEOM and MC RUN) which use the library are shown as an example

  13. Subtle Monte Carlo Updates in Dense Molecular Systems

    DEFF Research Database (Denmark)

    Bottaro, Sandro; Boomsma, Wouter; Johansson, Kristoffer E.

    2012-01-01

    Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce...... as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results...... suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions....

  14. Parallel processing Monte Carlo radiation transport codes

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1994-01-01

    Issues related to distributed-memory multiprocessing as applied to Monte Carlo radiation transport are discussed. Measurements of communication overhead are presented for the radiation transport code MCNP which employs the communication software package PVM, and average efficiency curves are provided for a homogeneous virtual machine

  15. Monte Carlo determination of heteroepitaxial misfit structures

    DEFF Research Database (Denmark)

    Baker, J.; Lindgård, Per-Anker

    1996-01-01

    We use Monte Carlo simulations to determine the structure of KBr overlayers on a NaCl(001) substrate, a system with large (17%) heteroepitaxial misfit. The equilibrium relaxation structure is determined for films of 2-6 ML, for which extensive helium-atom scattering data exist for comparison...

  16. The Monte Carlo applied for calculation dose

    International Nuclear Information System (INIS)

    Peixoto, J.E.

    1988-01-01

    The Monte Carlo method is showed for the calculation of absorbed dose. The trajectory of the photon is traced simulating sucessive interaction between the photon and the substance that consist the human body simulator. The energy deposition in each interaction of the simulator organ or tissue per photon is also calculated. (C.G.C.) [pt

  17. Monte Carlo code for neutron radiography

    International Nuclear Information System (INIS)

    Milczarek, Jacek J.; Trzcinski, Andrzej; El-Ghany El Abd, Abd; Czachor, Andrzej

    2005-01-01

    The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms

  18. Monte Carlo code for neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Milczarek, Jacek J. [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)]. E-mail: jjmilcz@cyf.gov.pl; Trzcinski, Andrzej [Institute for Nuclear Studies, Swierk, 05-400 Otwock (Poland); El-Ghany El Abd, Abd [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland); Nuclear Research Center, PC 13759, Cairo (Egypt); Czachor, Andrzej [Institute of Atomic Energy, Swierk, 05-400 Otwock (Poland)

    2005-04-21

    The concise Monte Carlo code, MSX, for simulation of neutron radiography images of non-uniform objects is presented. The possibility of modeling the images of objects with continuous spatial distribution of specific isotopes is included. The code can be used for assessment of the scattered neutron component in neutron radiograms.

  19. Monte Carlo method in neutron activation analysis

    International Nuclear Information System (INIS)

    Majerle, M.; Krasa, A.; Svoboda, O.; Wagner, V.; Adam, J.; Peetermans, S.; Slama, O.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.

    2009-01-01

    Neutron activation detectors are a useful technique for the neutron flux measurements in spallation experiments. The study of the usefulness and the accuracy of this method at similar experiments was performed with the help of Monte Carlo codes MCNPX and FLUKA

  20. Computer system for Monte Carlo experimentation

    International Nuclear Information System (INIS)

    Grier, D.A.

    1986-01-01

    A new computer system for Monte Carlo Experimentation is presented. The new system speeds and simplifies the process of coding and preparing a Monte Carlo Experiment; it also encourages the proper design of Monte Carlo Experiments, and the careful analysis of the experimental results. A new functional language is the core of this system. Monte Carlo Experiments, and their experimental designs, are programmed in this new language; those programs are compiled into Fortran output. The Fortran output is then compiled and executed. The experimental results are analyzed with a standard statistics package such as Si, Isp, or Minitab or with a user-supplied program. Both the experimental results and the experimental design may be directly loaded into the workspace of those packages. The new functional language frees programmers from many of the details of programming an experiment. Experimental designs such as factorial, fractional factorial, or latin square are easily described by the control structures and expressions of the language. Specific mathematical modes are generated by the routines of the language

  1. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  2. Monte Carlo methods beyond detailed balance

    NARCIS (Netherlands)

    Schram, Raoul D.; Barkema, Gerard T.|info:eu-repo/dai/nl/101275080

    2015-01-01

    Monte Carlo algorithms are nearly always based on the concept of detailed balance and ergodicity. In this paper we focus on algorithms that do not satisfy detailed balance. We introduce a general method for designing non-detailed balance algorithms, starting from a conventional algorithm satisfying

  3. Monte Carlo studies of ZEPLIN III

    CERN Document Server

    Dawson, J; Davidge, D C R; Gillespie, J R; Howard, A S; Jones, W G; Joshi, M; Lebedenko, V N; Sumner, T J; Quenby, J J

    2002-01-01

    A Monte Carlo simulation of a two-phase xenon dark matter detector, ZEPLIN III, has been achieved. Results from the analysis of a simulated data set are presented, showing primary and secondary signal distributions from low energy gamma ray events.

  4. Biases in Monte Carlo eigenvalue calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gelbard, E.M.

    1992-12-01

    The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ``fixed-source`` case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (``replicated``) over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.

  5. Biases in Monte Carlo eigenvalue calculations

    Energy Technology Data Exchange (ETDEWEB)

    Gelbard, E.M.

    1992-01-01

    The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated ( replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here.

  6. Design and analysis of Monte Carlo experiments

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; Gentle, J.E.; Haerdle, W.; Mori, Y.

    2012-01-01

    By definition, computer simulation or Monte Carlo models are not solved by mathematical analysis (such as differential calculus), but are used for numerical experimentation. The goal of these experiments is to answer questions about the real world; i.e., the experimenters may use their models to

  7. Some problems on Monte Carlo method development

    International Nuclear Information System (INIS)

    Pei Lucheng

    1992-01-01

    This is a short paper on some problems of Monte Carlo method development. The content consists of deep-penetration problems, unbounded estimate problems, limitation of Mdtropolis' method, dependency problem in Metropolis' method, random error interference problems and random equations, intellectualisation and vectorization problems of general software

  8. Monte Carlo simulations in theoretical physic

    International Nuclear Information System (INIS)

    Billoire, A.

    1991-01-01

    After a presentation of the MONTE CARLO method principle, the method is applied, first to the critical exponents calculations in the three dimensions ISING model, and secondly to the discrete quantum chromodynamic with calculation times in function of computer power. 28 refs., 4 tabs

  9. Monte Carlo method for random surfaces

    International Nuclear Information System (INIS)

    Berg, B.

    1985-01-01

    Previously two of the authors proposed a Monte Carlo method for sampling statistical ensembles of random walks and surfaces with a Boltzmann probabilistic weight. In the present paper we work out the details for several models of random surfaces, defined on d-dimensional hypercubic lattices. (orig.)

  10. Monte Carlo simulation of the microcanonical ensemble

    International Nuclear Information System (INIS)

    Creutz, M.

    1984-01-01

    We consider simulating statistical systems with a random walk on a constant energy surface. This combines features of deterministic molecular dynamics techniques and conventional Monte Carlo simulations. For discrete systems the method can be programmed to run an order of magnitude faster than other approaches. It does not require high quality random numbers and may also be useful for nonequilibrium studies. 10 references

  11. Variance Reduction Techniques in Monte Carlo Methods

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.

    2010-01-01

    Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the

  12. Coded aperture optimization using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Martineau, A.; Rocchisani, J.M.; Moretti, J.L.

    2010-01-01

    Coded apertures using Uniformly Redundant Arrays (URA) have been unsuccessfully evaluated for two-dimensional and three-dimensional imaging in Nuclear Medicine. The images reconstructed from coded projections contain artifacts and suffer from poor spatial resolution in the longitudinal direction. We introduce a Maximum-Likelihood Expectation-Maximization (MLEM) algorithm for three-dimensional coded aperture imaging which uses a projection matrix calculated by Monte Carlo simulations. The aim of the algorithm is to reduce artifacts and improve the three-dimensional spatial resolution in the reconstructed images. Firstly, we present the validation of GATE (Geant4 Application for Emission Tomography) for Monte Carlo simulations of a coded mask installed on a clinical gamma camera. The coded mask modelling was validated by comparison between experimental and simulated data in terms of energy spectra, sensitivity and spatial resolution. In the second part of the study, we use the validated model to calculate the projection matrix with Monte Carlo simulations. A three-dimensional thyroid phantom study was performed to compare the performance of the three-dimensional MLEM reconstruction with conventional correlation method. The results indicate that the artifacts are reduced and three-dimensional spatial resolution is improved with the Monte Carlo-based MLEM reconstruction.

  13. Biases in Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Gelbard, E.M.

    1992-01-01

    The Monte Carlo method has been used for many years to analyze the neutronics of nuclear reactors. In fact, as the power of computers has increased the importance of Monte Carlo in neutronics has also increased, until today this method plays a central role in reactor analysis and design. Monte Carlo is used in neutronics for two somewhat different purposes, i.e., (a) to compute the distribution of neutrons in a given medium when the neutron source-density is specified, and (b) to compute the neutron distribution in a self-sustaining chain reaction, in which case the source is determined as the eigenvector of a certain linear operator. In (b), then, the source is not given, but must be computed. In the first case (the ''fixed-source'' case) the Monte Carlo calculation is unbiased. That is to say that, if the calculation is repeated (''replicated'') over and over, with independent random number sequences for each replica, then averages over all replicas will approach the correct neutron distribution as the number of replicas goes to infinity. Unfortunately, the computation is not unbiased in the second case, which we discuss here

  14. Monte Carlo studies of uranium calorimetry

    International Nuclear Information System (INIS)

    Brau, J.; Hargis, H.J.; Gabriel, T.A.; Bishop, B.L.

    1985-01-01

    Detailed Monte Carlo calculations of uranium calorimetry are presented which reveal a significant difference in the responses of liquid argon and plastic scintillator in uranium calorimeters. Due to saturation effects, neutrons from the uranium are found to contribute only weakly to the liquid argon signal. Electromagnetic sampling inefficiencies are significant and contribute substantially to compensation in both systems. 17 references

  15. Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems

    DEFF Research Database (Denmark)

    Tycho, Andreas; Jørgensen, Thomas Martini; Andersen, Peter E.

    2002-01-01

    A Monte Carlo (MC) method for modeling optical coherence tomography (OCT) measurements of a diffusely reflecting discontinuity emb edded in a scattering medium is presented. For the first time to the authors' knowledge it is shown analytically that the applicability of an MC approach to this opti...

  16. Uncertainty analysis in Monte Carlo criticality computations

    International Nuclear Information System (INIS)

    Qi Ao

    2011-01-01

    Highlights: ► Two types of uncertainty methods for k eff Monte Carlo computations are examined. ► Sampling method has the least restrictions on perturbation but computing resources. ► Analytical method is limited to small perturbation on material properties. ► Practicality relies on efficiency, multiparameter applicability and data availability. - Abstract: Uncertainty analysis is imperative for nuclear criticality risk assessments when using Monte Carlo neutron transport methods to predict the effective neutron multiplication factor (k eff ) for fissionable material systems. For the validation of Monte Carlo codes for criticality computations against benchmark experiments, code accuracy and precision are measured by both the computational bias and uncertainty in the bias. The uncertainty in the bias accounts for known or quantified experimental, computational and model uncertainties. For the application of Monte Carlo codes for criticality analysis of fissionable material systems, an administrative margin of subcriticality must be imposed to provide additional assurance of subcriticality for any unknown or unquantified uncertainties. Because of a substantial impact of the administrative margin of subcriticality on economics and safety of nuclear fuel cycle operations, recently increasing interests in reducing the administrative margin of subcriticality make the uncertainty analysis in criticality safety computations more risk-significant. This paper provides an overview of two most popular k eff uncertainty analysis methods for Monte Carlo criticality computations: (1) sampling-based methods, and (2) analytical methods. Examples are given to demonstrate their usage in the k eff uncertainty analysis due to uncertainties in both neutronic and non-neutronic parameters of fissionable material systems.

  17. Pore-scale uncertainty quantification with multilevel Monte Carlo

    KAUST Repository

    Icardi, Matteo; Hoel, Haakon; Long, Quan; Tempone, Raul

    2014-01-01

    . Since there are no generic ways to parametrize the randomness in the porescale structures, Monte Carlo techniques are the most accessible to compute statistics. We propose a multilevel Monte Carlo (MLMC) technique to reduce the computational cost

  18. Prospect on general software of Monte Carlo method

    International Nuclear Information System (INIS)

    Pei Lucheng

    1992-01-01

    This is a short paper on the prospect of Monte Carlo general software. The content consists of cluster sampling method, zero variance technique, self-improved method, and vectorized Monte Carlo method

  19. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung; Liang, Faming

    2009-01-01

    in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method

  20. Research on Monte Carlo simulation method of industry CT system

    International Nuclear Information System (INIS)

    Li Junli; Zeng Zhi; Qui Rui; Wu Zhen; Li Chunyan

    2010-01-01

    There are a series of radiation physical problems in the design and production of industry CT system (ICTS), including limit quality index analysis; the effect of scattering, efficiency of detectors and crosstalk to the system. Usually the Monte Carlo (MC) Method is applied to resolve these problems. Most of them are of little probability, so direct simulation is very difficult, and existing MC methods and programs can't meet the needs. To resolve these difficulties, particle flux point auto-important sampling (PFPAIS) is given on the basis of auto-important sampling. Then, on the basis of PFPAIS, a particular ICTS simulation method: MCCT is realized. Compared with existing MC methods, MCCT is proved to be able to simulate the ICTS more exactly and effectively. Furthermore, the effects of all kinds of disturbances of ICTS are simulated and analyzed by MCCT. To some extent, MCCT can guide the research of the radiation physical problems in ICTS. (author)

  1. Foam: A general purpose Monte Carlo cellular algorithm

    International Nuclear Information System (INIS)

    Jadach, S.

    2002-01-01

    A general-purpose, self-adapting Monte Carlo (MC) algorithm implemented in the program Foam is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be n-dimensional simplices, hyperrectangles or a Cartesian product of them. The grid of cells, called 'foam', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyperplane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. (author)

  2. Foam A General purpose Monte Carlo Cellular Algorithm

    CERN Document Server

    Jadach, Stanislaw

    2002-01-01

    A general-purpose, self-adapting Monte Carlo (MC) algorithm implemented in the program {\\tt Foam} is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or a Cartesian product of them. The grid of cells, ``foam'', is produced in the process of the binary split of the cells. The next cell to be divided and the position/direction of the division hyperplane is chosen by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution.

  3. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    Science.gov (United States)

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  4. Applications of Monte Carlo method in Medical Physics

    International Nuclear Information System (INIS)

    Diez Rios, A.; Labajos, M.

    1989-01-01

    The basic ideas of Monte Carlo techniques are presented. Random numbers and their generation by congruential methods, which underlie Monte Carlo calculations are shown. Monte Carlo techniques to solve integrals are discussed. The evaluation of a simple monodimensional integral with a known answer, by means of two different Monte Carlo approaches are discussed. The basic principles to simualate on a computer photon histories reduce variance and the current applications in Medical Physics are commented. (Author)

  5. Monte Carlo computation in the applied research of nuclear technology

    International Nuclear Information System (INIS)

    Xu Shuyan; Liu Baojie; Li Qin

    2007-01-01

    This article briefly introduces Monte Carlo Methods and their properties. It narrates the Monte Carlo methods with emphasis in their applications to several domains of nuclear technology. Monte Carlo simulation methods and several commonly used computer software to implement them are also introduced. The proposed methods are demonstrated by a real example. (authors)

  6. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  7. Monte Carlo simulations of multiple scattering effects in ERD measurements

    International Nuclear Information System (INIS)

    Doyle, Barney Lee; Arstila, Kai.; Nordlumd, K.; Knapp, James Arthur

    2003-01-01

    Multiple scattering effects in ERD measurements are studied by comparing two Monte Carlo simulation codes, representing different approaches to obtain acceptable statistics, to experimental spectra measured from a HfO 2 sample with a time-of-flight-ERD setup. The results show that both codes can reproduce the absolute detection yields and the energy distributions in an adequate way. The effect of the choice of the interatomic potential in multiple scattering effects is also studied. Finally the capabilities of the MC simulations in the design of new measurement setups are demonstrated by simulating the recoil energy spectra from a WC x N y sample with a low energy heavy ion beam.

  8. Self-learning Monte Carlo with deep neural networks

    Science.gov (United States)

    Shen, Huitao; Liu, Junwei; Fu, Liang

    2018-05-01

    The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.

  9. Monte Carlo simulation of particle-induced bit upsets

    Science.gov (United States)

    Wrobel, Frédéric; Touboul, Antoine; Vaillé, Jean-Roch; Boch, Jérôme; Saigné, Frédéric

    2017-09-01

    We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER) for a given device in a given environment.

  10. Monte Carlo simulation of particle-induced bit upsets

    Directory of Open Access Journals (Sweden)

    Wrobel Frédéric

    2017-01-01

    Full Text Available We investigate the issue of radiation-induced failures in electronic devices by developing a Monte Carlo tool called MC-Oracle. It is able to transport the particles in device, to calculate the energy deposited in the sensitive region of the device and to calculate the transient current induced by the primary particle and the secondary particles produced during nuclear reactions. We compare our simulation results with SRAM experiments irradiated with neutrons, protons and ions. The agreement is very good and shows that it is possible to predict the soft error rate (SER for a given device in a given environment.

  11. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y., E-mail: yican.wu@fds.org.cn [Inst. of Nuclear Energy Safety Technology, Hefei, Anhui (China)

    2015-07-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  12. Development and applications of Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Wu, Y.

    2015-01-01

    'Full text:' Super Monte Carlo Simulation Program for Advanced Nuclear Energy Systems (SuperMC) is a CAD-based Monte Carlo (MC) program for integrated simulation of nuclear system by making use of hybrid MC-deterministic method and advanced computer technologies. The main usability features are automatic modeling of geometry and physics, visualization and virtual simulation and cloud computing service. SuperMC 2.3, the latest version, can perform coupled neutron and photon transport calculation. SuperMC has been verified by more than 2000 benchmark models and experiments, and has been applied in tens of major nuclear projects, such as the nuclear design and analysis of International Thermonuclear Experimental Reactor (ITER) and China Lead-based reactor (CLEAR). Development and applications of SuperMC are introduced in this presentation. (author)

  13. Monte Carlo-based tail exponent estimator

    Science.gov (United States)

    Barunik, Jozef; Vacha, Lukas

    2010-11-01

    In this paper we propose a new approach to estimation of the tail exponent in financial stock markets. We begin the study with the finite sample behavior of the Hill estimator under α-stable distributions. Using large Monte Carlo simulations, we show that the Hill estimator overestimates the true tail exponent and can hardly be used on samples with small length. Utilizing our results, we introduce a Monte Carlo-based method of estimation for the tail exponent. Our proposed method is not sensitive to the choice of tail size and works well also on small data samples. The new estimator also gives unbiased results with symmetrical confidence intervals. Finally, we demonstrate the power of our estimator on the international world stock market indices. On the two separate periods of 2002-2005 and 2006-2009, we estimate the tail exponent.

  14. No-compromise reptation quantum Monte Carlo

    International Nuclear Information System (INIS)

    Yuen, W K; Farrar, Thomas J; Rothstein, Stuart M

    2007-01-01

    Since its publication, the reptation quantum Monte Carlo algorithm of Baroni and Moroni (1999 Phys. Rev. Lett. 82 4745) has been applied to several important problems in physics, but its mathematical foundations are not well understood. We show that their algorithm is not of typical Metropolis-Hastings type, and we specify conditions required for the generated Markov chain to be stationary and to converge to the intended distribution. The time-step bias may add up, and in many applications it is only the middle of a reptile that is the most important. Therefore, we propose an alternative, 'no-compromise reptation quantum Monte Carlo' to stabilize the middle of the reptile. (fast track communication)

  15. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  16. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.

    1980-01-01

    At Los Alamos the early work of Fermi, von Neumann, and Ulam has been developed and supplemented by many followers, notably Cashwell and Everett, and the main product today is the continuous-energy, general-purpose, generalized-geometry, time-dependent, coupled neutron-photon transport code called MCNP. The Los Alamos Monte Carlo research and development effort is concentrated in Group X-6. MCNP treats an arbitrary three-dimensional configuration of arbitrary materials in geometric cells bounded by first- and second-degree surfaces and some fourth-degree surfaces (elliptical tori). Monte Carlo has evolved into perhaps the main method for radiation transport calculations at Los Alamos. MCNP is used in every technical division at the Laboratory by over 130 users about 600 times a month accounting for nearly 200 hours of CDC-7600 time

  17. Monte Carlo simulations in skin radiotherapy

    International Nuclear Information System (INIS)

    Sarvari, A.; Jeraj, R.; Kron, T.

    2000-01-01

    The primary goal of this work was to develop a procedure for calculation the appropriate filter shape for a brachytherapy applicator used for skin radiotherapy. In the applicator a radioactive source is positioned close to the skin. Without a filter, the resultant dose distribution would be highly nonuniform.High uniformity is usually required however. This can be achieved using an appropriately shaped filter, which flattens the dose profile. Because of the complexity of the transport and geometry, Monte Carlo simulations had to be used. An 192 Ir high dose rate photon source was used. All necessary transport parameters were simulated with the MCNP4B Monte Carlo code. A highly efficient iterative procedure was developed, which enabled calculation of the optimal filter shape in only few iterations. The initially non-uniform dose distributions became uniform within a percent when applying the filter calculated by this procedure. (author)

  18. Coevolution Based Adaptive Monte Carlo Localization (CEAMCL

    Directory of Open Access Journals (Sweden)

    Luo Ronghua

    2008-11-01

    Full Text Available An adaptive Monte Carlo localization algorithm based on coevolution mechanism of ecological species is proposed. Samples are clustered into species, each of which represents a hypothesis of the robot's pose. Since the coevolution between the species ensures that the multiple distinct hypotheses can be tracked stably, the problem of premature convergence when using MCL in highly symmetric environments can be solved. And the sample size can be adjusted adaptively over time according to the uncertainty of the robot's pose by using the population growth model. In addition, by using the crossover and mutation operators in evolutionary computation, intra-species evolution can drive the samples move towards the regions where the desired posterior density is large. So a small size of samples can represent the desired density well enough to make precise localization. The new algorithm is termed coevolution based adaptive Monte Carlo localization (CEAMCL. Experiments have been carried out to prove the efficiency of the new localization algorithm.

  19. Multilevel sequential Monte-Carlo samplers

    KAUST Repository

    Jasra, Ajay

    2016-01-01

    Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.

  20. Monte Carlo simulation of gas Cerenkov detectors

    International Nuclear Information System (INIS)

    Mack, J.M.; Jain, M.; Jordan, T.M.

    1984-01-01

    Theoretical study of selected gamma-ray and electron diagnostic necessitates coupling Cerenkov radiation to electron/photon cascades. A Cerenkov production model and its incorporation into a general geometry Monte Carlo coupled electron/photon transport code is discussed. A special optical photon ray-trace is implemented using bulk optical properties assigned to each Monte Carlo zone. Good agreement exists between experimental and calculated Cerenkov data in the case of a carbon-dioxide gas Cerenkov detector experiment. Cerenkov production and threshold data are presented for a typical carbon-dioxide gas detector that converts a 16.7 MeV photon source to Cerenkov light, which is collected by optics and detected by a photomultiplier

  1. Hypothesis testing of scientific Monte Carlo calculations

    Science.gov (United States)

    Wallerberger, Markus; Gull, Emanuel

    2017-11-01

    The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.

  2. Multilevel sequential Monte-Carlo samplers

    KAUST Repository

    Jasra, Ajay

    2016-01-05

    Multilevel Monte-Carlo methods provide a powerful computational technique for reducing the computational cost of estimating expectations for a given computational effort. They are particularly relevant for computational problems when approximate distributions are determined via a resolution parameter h, with h=0 giving the theoretical exact distribution (e.g. SDEs or inverse problems with PDEs). The method provides a benefit by coupling samples from successive resolutions, and estimating differences of successive expectations. We develop a methodology that brings Sequential Monte-Carlo (SMC) algorithms within the framework of the Multilevel idea, as SMC provides a natural set-up for coupling samples over different resolutions. We prove that the new algorithm indeed preserves the benefits of the multilevel principle, even if samples at all resolutions are now correlated.

  3. Monte Carlo Simulation for Particle Detectors

    CERN Document Server

    Pia, Maria Grazia

    2012-01-01

    Monte Carlo simulation is an essential component of experimental particle physics in all the phases of its life-cycle: the investigation of the physics reach of detector concepts, the design of facilities and detectors, the development and optimization of data reconstruction software, the data analysis for the production of physics results. This note briefly outlines some research topics related to Monte Carlo simulation, that are relevant to future experimental perspectives in particle physics. The focus is on physics aspects: conceptual progress beyond current particle transport schemes, the incorporation of materials science knowledge relevant to novel detection technologies, functionality to model radiation damage, the capability for multi-scale simulation, quantitative validation and uncertainty quantification to determine the predictive power of simulation. The R&D on simulation for future detectors would profit from cooperation within various components of the particle physics community, and synerg...

  4. Status of Monte Carlo at Los Alamos

    International Nuclear Information System (INIS)

    Thompson, W.L.; Cashwell, E.D.; Godfrey, T.N.K.; Schrandt, R.G.; Deutsch, O.L.; Booth, T.E.

    1980-05-01

    Four papers were presented by Group X-6 on April 22, 1980, at the Oak Ridge Radiation Shielding Information Center (RSIC) Seminar-Workshop on Theory and Applications of Monte Carlo Methods. These papers are combined into one report for convenience and because they are related to each other. The first paper (by Thompson and Cashwell) is a general survey about X-6 and MCNP and is an introduction to the other three papers. It can also serve as a resume of X-6. The second paper (by Godfrey) explains some of the details of geometry specification in MCNP. The third paper (by Cashwell and Schrandt) illustrates calculating flux at a point with MCNP; in particular, the once-more-collided flux estimator is demonstrated. Finally, the fourth paper (by Thompson, Deutsch, and Booth) is a tutorial on some variance-reduction techniques. It should be required for a fledging Monte Carlo practitioner

  5. Alternative Implementations of the Monte Carlo Power Method

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Gelbard, E.M.

    2002-01-01

    We compare nominal efficiencies, i.e., variances in power shapes for equal running time, of different versions of the Monte Carlo (MC) eigenvalue computation. The two main methods considered here are 'conventional' MC and the superhistory method. Within each of these major methods, different variants are available for the main steps of the basic MC algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or they may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional MC, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional MC and, second, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on MC computational efficiency

  6. Improved diffusion coefficients generated from Monte Carlo codes

    International Nuclear Information System (INIS)

    Herman, B. R.; Forget, B.; Smith, K.; Aviles, B. N.

    2013-01-01

    Monte Carlo codes are becoming more widely used for reactor analysis. Some of these applications involve the generation of diffusion theory parameters including macroscopic cross sections and diffusion coefficients. Two approximations used to generate diffusion coefficients are assessed using the Monte Carlo code MC21. The first is the method of homogenization; whether to weight either fine-group transport cross sections or fine-group diffusion coefficients when collapsing to few-group diffusion coefficients. The second is a fundamental approximation made to the energy-dependent P1 equations to derive the energy-dependent diffusion equations. Standard Monte Carlo codes usually generate a flux-weighted transport cross section with no correction to the diffusion approximation. Results indicate that this causes noticeable tilting in reconstructed pin powers in simple test lattices with L2 norm error of 3.6%. This error is reduced significantly to 0.27% when weighting fine-group diffusion coefficients by the flux and applying a correction to the diffusion approximation. Noticeable tilting in reconstructed fluxes and pin powers was reduced when applying these corrections. (authors)

  7. Topological zero modes in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Dilger, H.

    1994-08-01

    We present an improvement of global Metropolis updating steps, the instanton hits, used in a hybrid Monte Carlo simulation of the two-flavor Schwinger model with staggered fermions. These hits are designed to change the topological sector of the gauge field. In order to match these hits to an unquenched simulation with pseudofermions, the approximate zero mode structure of the lattice Dirac operator has to be considered explicitly. (orig.)

  8. Handbook of Markov chain Monte Carlo

    CERN Document Server

    Brooks, Steve

    2011-01-01

    ""Handbook of Markov Chain Monte Carlo"" brings together the major advances that have occurred in recent years while incorporating enough introductory material for new users of MCMC. Along with thorough coverage of the theoretical foundations and algorithmic and computational methodology, this comprehensive handbook includes substantial realistic case studies from a variety of disciplines. These case studies demonstrate the application of MCMC methods and serve as a series of templates for the construction, implementation, and choice of MCMC methodology.

  9. The lund Monte Carlo for jet fragmentation

    International Nuclear Information System (INIS)

    Sjoestrand, T.

    1982-03-01

    We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)

  10. Monte Carlo methods for preference learning

    DEFF Research Database (Denmark)

    Viappiani, P.

    2012-01-01

    Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....

  11. Monte Carlo methods for shield design calculations

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1974-01-01

    A suite of Monte Carlo codes is being developed for use on a routine basis in commercial reactor shield design. The methods adopted for this purpose include the modular construction of codes, simplified geometries, automatic variance reduction techniques, continuous energy treatment of cross section data, and albedo methods for streaming. Descriptions are given of the implementation of these methods and of their use in practical calculations. 26 references. (U.S.)

  12. General purpose code for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Wilcke, W.W.

    1983-01-01

    A general-purpose computer called MONTHY has been written to perform Monte Carlo simulations of physical systems. To achieve a high degree of flexibility the code is organized like a general purpose computer, operating on a vector describing the time dependent state of the system under simulation. The instruction set of the computer is defined by the user and is therefore adaptable to the particular problem studied. The organization of MONTHY allows iterative and conditional execution of operations

  13. Autocorrelations in hybrid Monte Carlo simulations

    International Nuclear Information System (INIS)

    Schaefer, Stefan; Virotta, Francesco

    2010-11-01

    Simulations of QCD suffer from severe critical slowing down towards the continuum limit. This problem is known to be prominent in the topological charge, however, all observables are affected to various degree by these slow modes in the Monte Carlo evolution. We investigate the slowing down in high statistics simulations and propose a new error analysis method, which gives a realistic estimate of the contribution of the slow modes to the errors. (orig.)

  14. Introduction to the Monte Carlo methods

    International Nuclear Information System (INIS)

    Uzhinskij, V.V.

    1993-01-01

    Codes illustrating the use of Monte Carlo methods in high energy physics such as the inverse transformation method, the ejection method, the particle propagation through the nucleus, the particle interaction with the nucleus, etc. are presented. A set of useful algorithms of random number generators is given (the binomial distribution, the Poisson distribution, β-distribution, γ-distribution and normal distribution). 5 figs., 1 tab

  15. Sequential Monte Carlo with Highly Informative Observations

    OpenAIRE

    Del Moral, Pierre; Murray, Lawrence M.

    2014-01-01

    We propose sequential Monte Carlo (SMC) methods for sampling the posterior distribution of state-space models under highly informative observation regimes, a situation in which standard SMC methods can perform poorly. A special case is simulating bridges between given initial and final values. The basic idea is to introduce a schedule of intermediate weighting and resampling times between observation times, which guide particles towards the final state. This can always be done for continuous-...

  16. Monte Carlo codes use in neutron therapy

    International Nuclear Information System (INIS)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D.; Pignol, J.P.; Cuendet, P.; Iborra, N.

    1998-01-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  17. Quantum Monte Carlo calculations of light nuclei

    International Nuclear Information System (INIS)

    Pandharipande, V. R.

    1999-01-01

    Quantum Monte Carlo methods provide an essentially exact way to calculate various properties of nuclear bound, and low energy continuum states, from realistic models of nuclear interactions and currents. After a brief description of the methods and modern models of nuclear forces, we review the results obtained for all the bound, and some continuum states of up to eight nucleons. Various other applications of the methods are reviewed along with future prospects

  18. Monte-Carlo simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.

    1984-01-01

    The universal ELSS-1 program for Monte Carlo simulation of high energy electromagnetic showers in homogeneous absorbers of arbitrary geometry is written. The major processes and effects of electron and photon interaction with matter, particularly the Landau-Pomeranchuk-Migdal effect, are taken into account in the simulation procedures. The simulation results are compared with experimental data. Some characteristics of shower detectors and electromagnetic showers for energies up 1 TeV are calculated

  19. Cost of splitting in Monte Carlo transport

    International Nuclear Information System (INIS)

    Everett, C.J.; Cashwell, E.D.

    1978-03-01

    In a simple transport problem designed to estimate transmission through a plane slab of x free paths by Monte Carlo methods, it is shown that m-splitting (m > or = 2) does not pay unless exp(x) > m(m + 3)/(m - 1). In such a case, the minimum total cost in terms of machine time is obtained as a function of m, and the optimal value of m is determined

  20. Monte Carlo simulation of Touschek effect

    Directory of Open Access Journals (Sweden)

    Aimin Xiao

    2010-07-01

    Full Text Available We present a Monte Carlo method implementation in the code elegant for simulating Touschek scattering effects in a linac beam. The local scattering rate and the distribution of scattered electrons can be obtained from the code either for a Gaussian-distributed beam or for a general beam whose distribution function is given. In addition, scattered electrons can be tracked through the beam line and the local beam-loss rate and beam halo information recorded.

  1. Monte Carlo method for neutron transport problems

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1977-01-01

    Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)

  2. Biased Monte Carlo optimization: the basic approach

    International Nuclear Information System (INIS)

    Campioni, Luca; Scardovelli, Ruben; Vestrucci, Paolo

    2005-01-01

    It is well-known that the Monte Carlo method is very successful in tackling several kinds of system simulations. It often happens that one has to deal with rare events, and the use of a variance reduction technique is almost mandatory, in order to have Monte Carlo efficient applications. The main issue associated with variance reduction techniques is related to the choice of the value of the biasing parameter. Actually, this task is typically left to the experience of the Monte Carlo user, who has to make many attempts before achieving an advantageous biasing. A valuable result is provided: a methodology and a practical rule addressed to establish an a priori guidance for the choice of the optimal value of the biasing parameter. This result, which has been obtained for a single component system, has the notable property of being valid for any multicomponent system. In particular, in this paper, the exponential and the uniform biases of exponentially distributed phenomena are investigated thoroughly

  3. Quantum Monte Carlo for vibrating molecules

    International Nuclear Information System (INIS)

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  4. Lattice gauge theories and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Rebbi, C.

    1981-11-01

    After some preliminary considerations, the discussion of quantum gauge theories on a Euclidean lattice takes up the definition of Euclidean quantum theory and treatment of the continuum limit; analogy is made with statistical mechanics. Perturbative methods can produce useful results for strong or weak coupling. In the attempts to investigate the properties of the systems for intermediate coupling, numerical methods known as Monte Carlo simulations have proved valuable. The bulk of this paper illustrates the basic ideas underlying the Monte Carlo numerical techniques and the major results achieved with them according to the following program: Monte Carlo simulations (general theory, practical considerations), phase structure of Abelian and non-Abelian models, the observables (coefficient of the linear term in the potential between two static sources at large separation, mass of the lowest excited state with the quantum numbers of the vacuum (the so-called glueball), the potential between two static sources at very small distance, the critical temperature at which sources become deconfined), gauge fields coupled to basonic matter (Higgs) fields, and systems with fermions

  5. Generalized hybrid Monte Carlo - CMFD methods for fission source convergence

    International Nuclear Information System (INIS)

    Wolters, Emily R.; Larsen, Edward W.; Martin, William R.

    2011-01-01

    In this paper, we generalize the recently published 'CMFD-Accelerated Monte Carlo' method and present two new methods that reduce the statistical error in CMFD-Accelerated Monte Carlo. The CMFD-Accelerated Monte Carlo method uses Monte Carlo to estimate nonlinear functionals used in low-order CMFD equations for the eigenfunction and eigenvalue. The Monte Carlo fission source is then modified to match the resulting CMFD fission source in a 'feedback' procedure. The two proposed methods differ from CMFD-Accelerated Monte Carlo in the definition of the required nonlinear functionals, but they have identical CMFD equations. The proposed methods are compared with CMFD-Accelerated Monte Carlo on a high dominance ratio test problem. All hybrid methods converge the Monte Carlo fission source almost immediately, leading to a large reduction in the number of inactive cycles required. The proposed methods stabilize the fission source more efficiently than CMFD-Accelerated Monte Carlo, leading to a reduction in the number of active cycles required. Finally, as in CMFD-Accelerated Monte Carlo, the apparent variance of the eigenfunction is approximately equal to the real variance, so the real error is well-estimated from a single calculation. This is an advantage over standard Monte Carlo, in which the real error can be underestimated due to inter-cycle correlation. (author)

  6. PRELIMINARY COUPLING OF THE MONTE CARLO CODE OPENMC AND THE MULTIPHYSICS OBJECT-ORIENTED SIMULATION ENVIRONMENT (MOOSE) FOR ANALYZING DOPPLER FEEDBACK IN MONTE CARLO SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Ellis; Derek Gaston; Benoit Forget; Kord Smith

    2011-07-01

    In recent years the use of Monte Carlo methods for modeling reactors has become feasible due to the increasing availability of massively parallel computer systems. One of the primary challenges yet to be fully resolved, however, is the efficient and accurate inclusion of multiphysics feedback in Monte Carlo simulations. The research in this paper presents a preliminary coupling of the open source Monte Carlo code OpenMC with the open source Multiphysics Object-Oriented Simulation Environment (MOOSE). The coupling of OpenMC and MOOSE will be used to investigate efficient and accurate numerical methods needed to include multiphysics feedback in Monte Carlo codes. An investigation into the sensitivity of Doppler feedback to fuel temperature approximations using a two dimensional 17x17 PWR fuel assembly is presented in this paper. The results show a functioning multiphysics coupling between OpenMC and MOOSE. The coupling utilizes Functional Expansion Tallies to accurately and efficiently transfer pin power distributions tallied in OpenMC to unstructured finite element meshes used in MOOSE. The two dimensional PWR fuel assembly case also demonstrates that for a simplified model the pin-by-pin doppler feedback can be adequately replicated by scaling a representative pin based on pin relative powers.

  7. Monte Carlo methods and models in finance and insurance

    CERN Document Server

    Korn, Ralf; Kroisandt, Gerald

    2010-01-01

    Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Romberg method, and the Heath-Platen estimator, as well as recent financial and actuarial models, such as the Cheyette and dynamic mortality models. The authors separately discuss Monte Carlo techniques, stochastic process basics, and the theoretical background and intuition behind financial and actuarial mathematics, before bringing the topics together to apply the Monte Carlo methods to areas of finance and insurance. This allows for the easy identification of standard Monte Carlo tools and for a detailed focus on the main principles of financial and insurance mathematics. The book describes high-level Monte Carlo methods for standard simulation and the simulation of...

  8. Multi-Scale Coupling Between Monte Carlo Molecular Simulation and Darcy-Scale Flow in Porous Media

    KAUST Repository

    Saad, Ahmed Mohamed; Kadoura, Ahmad Salim; Sun, Shuyu

    2016-01-01

    In this work, an efficient coupling between Monte Carlo (MC) molecular simulation and Darcy-scale flow in porous media is presented. The cell centered finite difference method with non-uniform rectangular mesh were used to discretize the simulation

  9. A Monte Carlo Simulation approach for the modeling of free-molecule squeeze-film damping of flexible microresonators

    KAUST Repository

    Leung, Roger; Cheung, Howard; Gang, Hong; Ye, Wenjing

    2010-01-01

    Squeeze-film damping on microresonators is a significant damping source even when the surrounding gas is highly rarefied. This article presents a general modeling approach based on Monte Carlo (MC) simulations for the prediction of squeeze

  10. Hybrid method coupling molecular dynamics and Monte Carlo simulations to study the properties of gases in microchannels and nanochannels

    NARCIS (Netherlands)

    Nedea, S.V.; Frijns, A.J.H.; Steenhoven, van A.A.; Markvoort, Albert. J.; Hilbers, P.A.J.

    2005-01-01

    We combine molecular dynamics (MD) and Monte Carlo (MC) simulations to study the properties of gas molecules confined between two hard walls of a microchannel or nanochannel. The coupling between MD and MC simulations is introduced by performing MD near the boundaries for accuracy and MC in the bulk

  11. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine

    CERN Document Server

    Sgouros, George

    2003-01-01

    This book examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. It is written for nuclear medicine physicists and physicians as well as radiation oncologists, and can serve as a supplementary text for medical imaging, radiation dosimetry and nuclear engineering graduate courses in science, medical and engineering faculties. With chapters is written by recognised authorities in that particular field, the book covers the entire range of MC applications in therapeutic medical and health physics, from its use in imaging prior to therapy to dose distribution modelling targeted radiotherapy. The contributions discuss the fundamental concepts of radiation dosimetry, radiobiological aspects of targeted radionuclide therapy and the various components and steps required for implementing a dose calculation and treatment planning methodology in ...

  12. The neutron instrument Monte Carlo library MCLIB: Recent developments

    International Nuclear Information System (INIS)

    Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.; Thelliez, T.G.

    1998-01-01

    A brief review is given of the developments since the ICANS-XIII meeting made in the neutron instrument design codes using the Monte Carlo library MCLIB. Much of the effort has been to assure that the library and the executing code MC RUN connect efficiently with the World Wide Web application MC-WEB as part of the Los Alamos Neutron Instrument Simulation Package (NISP). Since one of the most important features of MCLIB is its open structure and capability to incorporate any possible neutron transport or scattering algorithm, this document describes the current procedure that would be used by an outside user to add a feature to MCLIB. Details of the calling sequence of the core subroutine OPERATE are discussed, and questions of style are considered and additional guidelines given. Suggestions for standardization are solicited, as well as code for new algorithms

  13. Guideline of Monte Carlo calculation. Neutron/gamma ray transport simulation by Monte Carlo method

    CERN Document Server

    2002-01-01

    This report condenses basic theories and advanced applications of neutron/gamma ray transport calculations in many fields of nuclear energy research. Chapters 1 through 5 treat historical progress of Monte Carlo methods, general issues of variance reduction technique, cross section libraries used in continuous energy Monte Carlo codes. In chapter 6, the following issues are discussed: fusion benchmark experiments, design of ITER, experiment analyses of fast critical assembly, core analyses of JMTR, simulation of pulsed neutron experiment, core analyses of HTTR, duct streaming calculations, bulk shielding calculations, neutron/gamma ray transport calculations of the Hiroshima atomic bomb. Chapters 8 and 9 treat function enhancements of MCNP and MVP codes, and a parallel processing of Monte Carlo calculation, respectively. An important references are attached at the end of this report.

  14. Application of inactive cycle stopping criteria for Monte Carlo Wielandt calculations

    International Nuclear Information System (INIS)

    Shim, H. J.; Kim, C. H.

    2009-01-01

    The Wielandt method is incorporated into Monte Carlo (MC) eigenvalue calculation as a way to speed up fission source convergence. To make the most of the MC Wielandt method, however, it is highly desirable to halt inactive cycle runs in a timely manner because it requires a much longer computational time to execute a single cycle MC run than the conventional MC eigenvalue calculations. This paper presents an algorithm to detect the onset of the active cycles and thereby to stop automatically the inactive cycle MC runs based on two anterior stopping criteria. The effectiveness of the algorithm is demonstrated by applying it to a slow convergence problem. (authors)

  15. Application of MCAM in generating Monte Carlo model for ITER port limiter

    International Nuclear Information System (INIS)

    Lu Lei; Li Ying; Ding Aiping; Zeng Qin; Huang Chenyu; Wu Yican

    2007-01-01

    On the basis of the pre-processing and conversion functions supplied by MCAM (Monte-Carlo Particle Transport Calculated Automatic Modeling System), this paper performed the generation of ITER Port Limiter MC (Monte-Carlo) calculation model from the CAD engineering model. The result was validated by using reverse function of MCAM and MCNP PLOT 2D cross-section drawing program. the successful application of MCAM to ITER Port Limiter demonstrates that MCAM is capable of dramatically increasing the efficiency and accuracy to generate MC calculation models from CAD engineering models with complex geometry comparing with the traditional manual modeling method. (authors)

  16. Foam A General Purpose Cellular Monte Carlo Event Generator

    CERN Document Server

    Jadach, Stanislaw

    2003-01-01

    A general purpose, self-adapting, Monte Carlo (MC) event generator (simulator) is described. The high efficiency of the MC, that is small maximum weight or variance of the MC weight is achieved by means of dividing the integration domain into small cells. The cells can be $n$-dimensional simplices, hyperrectangles or Cartesian product of them. The grid of cells, called ``foam'', is produced in the process of the binary split of the cells. The choice of the next cell to be divided and the position/direction of the division hyper-plane is driven by the algorithm which optimizes the ratio of the maximum weight to the average weight or (optionally) the total variance. The algorithm is able to deal, in principle, with an arbitrary pattern of the singularities in the distribution. As any MC generator, it can also be used for the MC integration. With the typical personal computer CPU, the program is able to perform adaptive integration/simulation at relatively small number of dimensions ($\\leq 16$). With the continu...

  17. Statistical estimation Monte Carlo for unreliability evaluation of highly reliable system

    International Nuclear Information System (INIS)

    Xiao Gang; Su Guanghui; Jia Dounan; Li Tianduo

    2000-01-01

    Based on analog Monte Carlo simulation, statistical Monte Carlo methods for unreliable evaluation of highly reliable system are constructed, including direct statistical estimation Monte Carlo method and weighted statistical estimation Monte Carlo method. The basal element is given, and the statistical estimation Monte Carlo estimators are derived. Direct Monte Carlo simulation method, bounding-sampling method, forced transitions Monte Carlo method, direct statistical estimation Monte Carlo and weighted statistical estimation Monte Carlo are used to evaluate unreliability of a same system. By comparing, weighted statistical estimation Monte Carlo estimator has smallest variance, and has highest calculating efficiency

  18. Domain Decomposition strategy for pin-wise full-core Monte Carlo depletion calculation with the reactor Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jingang; Wang, Kan; Qiu, Yishu [Dept. of Engineering Physics, LiuQing Building, Tsinghua University, Beijing (China); Chai, Xiao Ming; Qiang, Sheng Long [Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu (China)

    2016-06-15

    Because of prohibitive data storage requirements in large-scale simulations, the memory problem is an obstacle for Monte Carlo (MC) codes in accomplishing pin-wise three-dimensional (3D) full-core calculations, particularly for whole-core depletion analyses. Various kinds of data are evaluated and quantificational total memory requirements are analyzed based on the Reactor Monte Carlo (RMC) code, showing that tally data, material data, and isotope densities in depletion are three major parts of memory storage. The domain decomposition method is investigated as a means of saving memory, by dividing spatial geometry into domains that are simulated separately by parallel processors. For the validity of particle tracking during transport simulations, particles need to be communicated between domains. In consideration of efficiency, an asynchronous particle communication algorithm is designed and implemented. Furthermore, we couple the domain decomposition method with MC burnup process, under a strategy of utilizing consistent domain partition in both transport and depletion modules. A numerical test of 3D full-core burnup calculations is carried out, indicating that the RMC code, with the domain decomposition method, is capable of pin-wise full-core burnup calculations with millions of depletion regions.

  19. Investigating the impossible: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Kramer, Gary H.; Crowley, Paul; Burns, Linda C.

    2000-01-01

    Designing and testing new equipment can be an expensive and time consuming process or the desired performance characteristics may preclude its construction due to technological shortcomings. Cost may also prevent equipment being purchased for other scenarios to be tested. An alternative is to use Monte Carlo simulations to make the investigations. This presentation exemplifies how Monte Carlo code calculations can be used to fill the gap. An example is given for the investigation of two sizes of germanium detector (70 mm and 80 mm diameter) at four different crystal thicknesses (15, 20, 25, and 30 mm) and makes predictions on how the size affects the counting efficiency and the Minimum Detectable Activity (MDA). The Monte Carlo simulations have shown that detector efficiencies can be adequately modelled using photon transport if the data is used to investigate trends. The investigation of the effect of detector thickness on the counting efficiency has shown that thickness for a fixed diameter detector of either 70 mm or 80 mm is unimportant up to 60 keV. At higher photon energies, the counting efficiency begins to decrease as the thickness decreases as expected. The simulations predict that the MDA of either the 70 mm or 80 mm diameter detectors does not differ by more than a factor of 1.15 at 17 keV or 1.2 at 60 keV when comparing detectors of equivalent thicknesses. The MDA is slightly increased at 17 keV, and rises by about 52% at 660 keV, when the thickness is decreased from 30 mm to 15 mm. One could conclude from this information that the extra cost associated with the larger area Ge detectors may not be justified for the slight improvement predicted in the MDA. (author)

  20. Monte Carlo simulations on SIMD computer architectures

    International Nuclear Information System (INIS)

    Burmester, C.P.; Gronsky, R.; Wille, L.T.

    1992-01-01

    In this paper algorithmic considerations regarding the implementation of various materials science applications of the Monte Carlo technique to single instruction multiple data (SIMD) computer architectures are presented. In particular, implementation of the Ising model with nearest, next nearest, and long range screened Coulomb interactions on the SIMD architecture MasPar MP-1 (DEC mpp-12000) series of massively parallel computers is demonstrated. Methods of code development which optimize processor array use and minimize inter-processor communication are presented including lattice partitioning and the use of processor array spanning tree structures for data reduction. Both geometric and algorithmic parallel approaches are utilized. Benchmarks in terms of Monte Carl updates per second for the MasPar architecture are presented and compared to values reported in the literature from comparable studies on other architectures

  1. An efficient framework for photon Monte Carlo treatment planning

    International Nuclear Information System (INIS)

    Fix, Michael K; Manser, Peter; Frei, Daniel; Volken, Werner; Mini, Roberto; Born, Ernst J

    2007-01-01

    Currently photon Monte Carlo treatment planning (MCTP) for a patient stored in the patient database of a treatment planning system (TPS) can usually only be performed using a cumbersome multi-step procedure where many user interactions are needed. This means automation is needed for usage in clinical routine. In addition, because of the long computing time in MCTP, optimization of the MC calculations is essential. For these purposes a new graphical user interface (GUI)-based photon MC environment has been developed resulting in a very flexible framework. By this means appropriate MC transport methods are assigned to different geometric regions by still benefiting from the features included in the TPS. In order to provide a flexible MC environment, the MC particle transport has been divided into different parts: the source, beam modifiers and the patient. The source part includes the phase-space source, source models and full MC transport through the treatment head. The beam modifier part consists of one module for each beam modifier. To simulate the radiation transport through each individual beam modifier, one out of three full MC transport codes can be selected independently. Additionally, for each beam modifier a simple or an exact geometry can be chosen. Thereby, different complexity levels of radiation transport are applied during the simulation. For the patient dose calculation, two different MC codes are available. A special plug-in in Eclipse providing all necessary information by means of Dicom streams was used to start the developed MC GUI. The implementation of this framework separates the MC transport from the geometry and the modules pass the particles in memory; hence, no files are used as the interface. The implementation is realized for 6 and 15 MV beams of a Varian Clinac 2300 C/D. Several applications demonstrate the usefulness of the framework. Apart from applications dealing with the beam modifiers, two patient cases are shown. Thereby

  2. Monte Carlo Simulation of an American Option

    Directory of Open Access Journals (Sweden)

    Gikiri Thuo

    2007-04-01

    Full Text Available We implement gradient estimation techniques for sensitivity analysis of option pricing which can be efficiently employed in Monte Carlo simulation. Using these techniques we can simultaneously obtain an estimate of the option value together with the estimates of sensitivities of the option value to various parameters of the model. After deriving the gradient estimates we incorporate them in an iterative stochastic approximation algorithm for pricing an option with early exercise features. We illustrate the procedure using an example of an American call option with a single dividend that is analytically tractable. In particular we incorporate estimates for the gradient with respect to the early exercise threshold level.

  3. Monte Carlo study of the multiquark systems

    International Nuclear Information System (INIS)

    Kerbikov, B.O.; Polikarpov, M.I.; Zamolodchikov, A.B.

    1986-01-01

    Random walks have been used to calculate the energies of the ground states in systems of N=3, 6, 9, 12 quarks. Multiquark states with N>3 are unstable with respect to the spontaneous dissociation into color singlet hadrons. The modified Green's function Monte Carlo algorithm which proved to be more simple and much accurate than the conventional few body methods have been employed. In contrast to other techniques, the same equations are used for any number of particles, while the computer time increases only linearly V, S the number of particles

  4. Monte Carlo eigenfunction strategies and uncertainties

    International Nuclear Information System (INIS)

    Gast, R.C.; Candelore, N.R.

    1974-01-01

    Comparisons of convergence rates for several possible eigenfunction source strategies led to the selection of the ''straight'' analog of the analytic power method as the source strategy for Monte Carlo eigenfunction calculations. To insure a fair game strategy, the number of histories per iteration increases with increasing iteration number. The estimate of eigenfunction uncertainty is obtained from a modification of a proposal by D. B. MacMillan and involves only estimates of the usual purely statistical component of uncertainty and a serial correlation coefficient of lag one. 14 references. (U.S.)

  5. Markov chains analytic and Monte Carlo computations

    CERN Document Server

    Graham, Carl

    2014-01-01

    Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies.A detailed and rigorous presentation of Markov chains with discrete time and state space.An appendix presenting probabilistic notions that are nec

  6. Monte Carlo method in radiation transport problems

    International Nuclear Information System (INIS)

    Dejonghe, G.; Nimal, J.C.; Vergnaud, T.

    1986-11-01

    In neutral radiation transport problems (neutrons, photons), two values are important: the flux in the phase space and the density of particles. To solve the problem with Monte Carlo method leads to, among other things, build a statistical process (called the play) and to provide a numerical value to a variable x (this attribution is called score). Sampling techniques are presented. Play biasing necessity is proved. A biased simulation is made. At last, the current developments (rewriting of programs for instance) are presented due to several reasons: two of them are the vectorial calculation apparition and the photon and neutron transport in vacancy media [fr

  7. Mosaic crystal algorithm for Monte Carlo simulations

    CERN Document Server

    Seeger, P A

    2002-01-01

    An algorithm is presented for calculating reflectivity, absorption, and scattering of mosaic crystals in Monte Carlo simulations of neutron instruments. The algorithm uses multi-step transport through the crystal with an exact solution of the Darwin equations at each step. It relies on the kinematical model for Bragg reflection (with parameters adjusted to reproduce experimental data). For computation of thermal effects (the Debye-Waller factor and coherent inelastic scattering), an expansion of the Debye integral as a rapidly converging series of exponential terms is also presented. Any crystal geometry and plane orientation may be treated. The algorithm has been incorporated into the neutron instrument simulation package NISP. (orig.)

  8. A note on simultaneous Monte Carlo tests

    DEFF Research Database (Denmark)

    Hahn, Ute

    In this short note, Monte Carlo tests of goodness of fit for data of the form X(t), t ∈ I are considered, that reject the null hypothesis if X(t) leaves an acceptance region bounded by an upper and lower curve for some t in I. A construction of the acceptance region is proposed that complies to a...... to a given target level of rejection, and yields exact p-values. The construction is based on pointwise quantiles, estimated from simulated realizations of X(t) under the null hypothesis....

  9. Monte Carlo methods to calculate impact probabilities

    Science.gov (United States)

    Rickman, H.; Wiśniowski, T.; Wajer, P.; Gabryszewski, R.; Valsecchi, G. B.

    2014-09-01

    Context. Unraveling the events that took place in the solar system during the period known as the late heavy bombardment requires the interpretation of the cratered surfaces of the Moon and terrestrial planets. This, in turn, requires good estimates of the statistical impact probabilities for different source populations of projectiles, a subject that has received relatively little attention, since the works of Öpik (1951, Proc. R. Irish Acad. Sect. A, 54, 165) and Wetherill (1967, J. Geophys. Res., 72, 2429). Aims: We aim to work around the limitations of the Öpik and Wetherill formulae, which are caused by singularities due to zero denominators under special circumstances. Using modern computers, it is possible to make good estimates of impact probabilities by means of Monte Carlo simulations, and in this work, we explore the available options. Methods: We describe three basic methods to derive the average impact probability for a projectile with a given semi-major axis, eccentricity, and inclination with respect to a target planet on an elliptic orbit. One is a numerical averaging of the Wetherill formula; the next is a Monte Carlo super-sizing method using the target's Hill sphere. The third uses extensive minimum orbit intersection distance (MOID) calculations for a Monte Carlo sampling of potentially impacting orbits, along with calculations of the relevant interval for the timing of the encounter allowing collision. Numerical experiments are carried out for an intercomparison of the methods and to scrutinize their behavior near the singularities (zero relative inclination and equal perihelion distances). Results: We find an excellent agreement between all methods in the general case, while there appear large differences in the immediate vicinity of the singularities. With respect to the MOID method, which is the only one that does not involve simplifying assumptions and approximations, the Wetherill averaging impact probability departs by diverging toward

  10. MBR Monte Carlo Simulation in PYTHIA8

    Science.gov (United States)

    Ciesielski, R.

    We present the MBR (Minimum Bias Rockefeller) Monte Carlo simulation of (anti)proton-proton interactions and its implementation in the PYTHIA8 event generator. We discuss the total, elastic, and total-inelastic cross sections, and three contributions from diffraction dissociation processes that contribute to the latter: single diffraction, double diffraction, and central diffraction or double-Pomeron exchange. The event generation follows a renormalized-Regge-theory model, successfully tested using CDF data. Based on the MBR-enhanced PYTHIA8 simulation, we present cross-section predictions for the LHC and beyond, up to collision energies of 50 TeV.

  11. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  12. An analysis of Monte Carlo tree search

    CSIR Research Space (South Africa)

    James, S

    2017-02-01

    Full Text Available Tree Search Steven James∗, George Konidaris† & Benjamin Rosman∗‡ ∗University of the Witwatersrand, Johannesburg, South Africa †Brown University, Providence RI 02912, USA ‡Council for Scientific and Industrial Research, Pretoria, South Africa steven....james@students.wits.ac.za, gdk@cs.brown.edu, brosman@csir.co.za Abstract Monte Carlo Tree Search (MCTS) is a family of directed search algorithms that has gained widespread attention in re- cent years. Despite the vast amount of research into MCTS, the effect of modifications...

  13. Diffusion quantum Monte Carlo for molecules

    International Nuclear Information System (INIS)

    Lester, W.A. Jr.

    1986-07-01

    A quantum mechanical Monte Carlo method has been used for the treatment of molecular problems. The imaginary-time Schroedinger equation written with a shift in zero energy [E/sub T/ - V(R)] can be interpreted as a generalized diffusion equation with a position-dependent rate or branching term. Since diffusion is the continuum limit of a random walk, one may simulate the Schroedinger equation with a function psi (note, not psi 2 ) as a density of ''walks.'' The walks undergo an exponential birth and death as given by the rate term. 16 refs., 2 tabs

  14. Monte Carlo modelling for neutron guide losses

    International Nuclear Information System (INIS)

    Cser, L.; Rosta, L.; Toeroek, Gy.

    1989-09-01

    In modern research reactors, neutron guides are commonly used for beam conducting. The neutron guide is a well polished or equivalently smooth glass tube covered inside by sputtered or evaporated film of natural Ni or 58 Ni isotope where the neutrons are totally reflected. A Monte Carlo calculation was carried out to establish the real efficiency and the spectral as well as spatial distribution of the neutron beam at the end of a glass mirror guide. The losses caused by mechanical inaccuracy and mirror quality were considered and the effects due to the geometrical arrangement were analyzed. (author) 2 refs.; 2 figs

  15. Monte Carlo MP2 on Many Graphical Processing Units.

    Science.gov (United States)

    Doran, Alexander E; Hirata, So

    2016-10-11

    In the Monte Carlo second-order many-body perturbation (MC-MP2) method, the long sum-of-product matrix expression of the MP2 energy, whose literal evaluation may be poorly scalable, is recast into a single high-dimensional integral of functions of electron pair coordinates, which is evaluated by the scalable method of Monte Carlo integration. The sampling efficiency is further accelerated by the redundant-walker algorithm, which allows a maximal reuse of electron pairs. Here, a multitude of graphical processing units (GPUs) offers a uniquely ideal platform to expose multilevel parallelism: fine-grain data-parallelism for the redundant-walker algorithm in which millions of threads compute and share orbital amplitudes on each GPU; coarse-grain instruction-parallelism for near-independent Monte Carlo integrations on many GPUs with few and infrequent interprocessor communications. While the efficiency boost by the redundant-walker algorithm on central processing units (CPUs) grows linearly with the number of electron pairs and tends to saturate when the latter exceeds the number of orbitals, on a GPU it grows quadratically before it increases linearly and then eventually saturates at a much larger number of pairs. This is because the orbital constructions are nearly perfectly parallelized on a GPU and thus completed in a near-constant time regardless of the number of pairs. In consequence, an MC-MP2/cc-pVDZ calculation of a benzene dimer is 2700 times faster on 256 GPUs (using 2048 electron pairs) than on two CPUs, each with 8 cores (which can use only up to 256 pairs effectively). We also numerically determine that the cost to achieve a given relative statistical uncertainty in an MC-MP2 energy increases as O(n 3 ) or better with system size n, which may be compared with the O(n 5 ) scaling of the conventional implementation of deterministic MP2. We thus establish the scalability of MC-MP2 with both system and computer sizes.

  16. Monte Carlo simulations to replace film dosimetry in IMRT verification

    International Nuclear Information System (INIS)

    Goetzfried, Thomas; Trautwein, Marius; Koelbi, Oliver; Bogner, Ludwig; Rickhey, Mark

    2011-01-01

    Patient-specific verification of intensity-modulated radiation therapy (IMRT) plans can be done by dosimetric measurements or by independent dose or monitor unit calculations. The aim of this study was the clinical evaluation of IMRT verification based on a fast Monte Carlo (MC) program with regard to possible benefits compared to commonly used film dosimetry. 25 head-and-neck IMRT plans were recalculated by a pencil beam based treatment planning system (TPS) using an appropriate quality assurance (QA) phantom. All plans were verified both by film and diode dosimetry and compared to MC simulations. The irradiated films, the results of diode measurements and the computed dose distributions were evaluated, and the data were compared on the basis of gamma maps and dose-difference histograms. Average deviations in the high-dose region between diode measurements and point dose calculations performed with the TPS and MC program were 0.7 ± 2.7% and 1.2 ± 3.1%, respectively. For film measurements, the mean gamma values with 3% dose difference and 3 mm distance-to-agreement were 0.74 ± 0.28 (TPS as reference) with dose deviations up to 10%. Corresponding values were significantly reduced to 0.34 ± 0.09 for MC dose calculation. The total time needed for both verification procedures is comparable, however, by far less labor intensive in the case of MC simulations. The presented study showed that independent dose calculation verification of IMRT plans with a fast MC program has the potential to eclipse film dosimetry more and more in the near future. Thus, the linac-specific QA part will necessarily become more important. In combination with MC simulations and due to the simple set-up, point-dose measurements for dosimetric plausibility checks are recommended at least in the IMRT introduction phase. (orig.)

  17. Diffusion Monte Carlo approach versus adiabatic computation for local Hamiltonians

    Science.gov (United States)

    Bringewatt, Jacob; Dorland, William; Jordan, Stephen P.; Mink, Alan

    2018-02-01

    Most research regarding quantum adiabatic optimization has focused on stoquastic Hamiltonians, whose ground states can be expressed with only real non-negative amplitudes and thus for whom destructive interference is not manifest. This raises the question of whether classical Monte Carlo algorithms can efficiently simulate quantum adiabatic optimization with stoquastic Hamiltonians. Recent results have given counterexamples in which path-integral and diffusion Monte Carlo fail to do so. However, most adiabatic optimization algorithms, such as for solving MAX-k -SAT problems, use k -local Hamiltonians, whereas our previous counterexample for diffusion Monte Carlo involved n -body interactions. Here we present a 6-local counterexample which demonstrates that even for these local Hamiltonians there are cases where diffusion Monte Carlo cannot efficiently simulate quantum adiabatic optimization. Furthermore, we perform empirical testing of diffusion Monte Carlo on a standard well-studied class of permutation-symmetric tunneling problems and similarly find large advantages for quantum optimization over diffusion Monte Carlo.

  18. Monte Carlo learning/biasing experiment with intelligent random numbers

    International Nuclear Information System (INIS)

    Booth, T.E.

    1985-01-01

    A Monte Carlo learning and biasing technique is described that does its learning and biasing in the random number space rather than the physical phase-space. The technique is probably applicable to all linear Monte Carlo problems, but no proof is provided here. Instead, the technique is illustrated with a simple Monte Carlo transport problem. Problems encountered, problems solved, and speculations about future progress are discussed. 12 refs

  19. Discrete diffusion Monte Carlo for frequency-dependent radiative transfer

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.

    2011-01-01

    Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique. (author)

  20. Monte Carlo criticality analysis for dissolvers with neutron poison

    International Nuclear Information System (INIS)

    Yu, Deshun; Dong, Xiufang; Pu, Fuxiang.

    1987-01-01

    Criticality analysis for dissolvers with neutron poison is given on the basis of Monte Carlo method. In Monte Carlo calculations of thermal neutron group parameters for fuel pieces, neutron transport length is determined in terms of maximum cross section approach. A set of related effective multiplication factors (K eff ) are calculated by Monte Carlo method for the three cases. Related numerical results are quite useful for the design and operation of this kind of dissolver in the criticality safety analysis. (author)

  1. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    Giorla, J.

    1985-10-01

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr

  2. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1

    Science.gov (United States)

    Kersevan, Borut Paul; Richter-Waş, Elzbieta

    2013-03-01

    The AcerMC Monte Carlo generator is dedicated to the generation of Standard Model background processes which were recognised as critical for the searches at LHC, and generation of which was either unavailable or not straightforward so far. The program itself provides a library of the massive matrix elements (coded by MADGRAPH) and native phase space modules for generation of a set of selected processes. The hard process event can be completed by the initial and the final state radiation, hadronisation and decays through the existing interface with either PYTHIA, HERWIG or ARIADNE event generators and (optionally) TAUOLA and PHOTOS. Interfaces to all these packages are provided in the distribution version. The phase-space generation is based on the multi-channel self-optimising approach using the modified Kajantie-Byckling formalism for phase space construction and further smoothing of the phase space was obtained by using a modified ac-VEGAS algorithm. An additional improvement in the recent versions is the inclusion of the consistent prescription for matching the matrix element calculations with parton showering for a select list of processes. Catalogue identifier: ADQQ_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADQQ_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3853309 No. of bytes in distributed program, including test data, etc.: 68045728 Distribution format: tar.gz Programming language: FORTRAN 77 with popular extensions (g77, gfortran). Computer: All running Linux. Operating system: Linux. Classification: 11.2, 11.6. External routines: CERNLIB (http://cernlib.web.cern.ch/cernlib/), LHAPDF (http://lhapdf.hepforge.org/) Catalogue identifier of previous version: ADQQ_v1_0 Journal reference of previous version: Comput. Phys. Comm. 149(2003)142 Does

  3. Monte Carlo in radiotherapy: experience in a distributed computational environment

    Science.gov (United States)

    Caccia, B.; Mattia, M.; Amati, G.; Andenna, C.; Benassi, M.; D'Angelo, A.; Frustagli, G.; Iaccarino, G.; Occhigrossi, A.; Valentini, S.

    2007-06-01

    New technologies in cancer radiotherapy need a more accurate computation of the dose delivered in the radiotherapeutical treatment plan, and it is important to integrate sophisticated mathematical models and advanced computing knowledge into the treatment planning (TP) process. We present some results about using Monte Carlo (MC) codes in dose calculation for treatment planning. A distributed computing resource located in the Technologies and Health Department of the Italian National Institute of Health (ISS) along with other computer facilities (CASPUR - Inter-University Consortium for the Application of Super-Computing for Universities and Research) has been used to perform a fully complete MC simulation to compute dose distribution on phantoms irradiated with a radiotherapy accelerator. Using BEAMnrc and GEANT4 MC based codes we calculated dose distributions on a plain water phantom and air/water phantom. Experimental and calculated dose values below ±2% (for depth between 5 mm and 130 mm) were in agreement both in PDD (Percentage Depth Dose) and transversal sections of the phantom. We consider these results a first step towards a system suitable for medical physics departments to simulate a complete treatment plan using remote computing facilities for MC simulations.

  4. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef

    2016-01-06

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).

  5. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul

    2016-01-01

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence, O(TOL-2).

  6. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef; Nobile, Fabio; Tempone, Raul

    2015-01-01

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.

  7. Algorithms for Monte Carlo calculations with fermions

    International Nuclear Information System (INIS)

    Weingarten, D.

    1985-01-01

    We describe a fermion Monte Carlo algorithm due to Petcher and the present author and another due to Fucito, Marinari, Parisi and Rebbi. For the first algorithm we estimate the number of arithmetic operations required to evaluate a vacuum expectation value grows as N 11 /msub(q) on an N 4 lattice with fixed periodicity in physical units and renormalized quark mass msub(q). For the second algorithm the rate of growth is estimated to be N 8 /msub(q) 2 . Numerical experiments are presented comparing the two algorithms on a lattice of size 2 4 . With a hopping constant K of 0.15 and β of 4.0 we find the number of operations for the second algorithm is about 2.7 times larger than for the first and about 13 000 times larger than for corresponding Monte Carlo calculations with a pure gauge theory. An estimate is given for the number of operations required for more realistic calculations by each algorithm on a larger lattice. (orig.)

  8. Quantum Monte Carlo for atoms and molecules

    International Nuclear Information System (INIS)

    Barnett, R.N.

    1989-11-01

    The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H 2 , LiH, Li 2 , and H 2 O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li 2 , and H 2 O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions

  9. Monte Carlo simulation of grain growth

    Directory of Open Access Journals (Sweden)

    Paulo Blikstein

    1999-07-01

    Full Text Available Understanding and predicting grain growth in Metallurgy is meaningful. Monte Carlo methods have been used in computer simulations in many different fields of knowledge. Grain growth simulation using this method is especially attractive as the statistical behavior of the atoms is properly reproduced; microstructural evolution depends only on the real topology of the grains and not on any kind of geometric simplification. Computer simulation has the advantage of allowing the user to visualize graphically the procedures, even dynamically and in three dimensions. Single-phase alloy grain growth simulation was carried out by calculating the free energy of each atom in the lattice (with its present crystallographic orientation and comparing this value to another one calculated with a different random orientation. When the resulting free energy is lower or equal to the initial value, the new orientation replaces the former. The measure of time is the Monte Carlo Step (MCS, which involves a series of trials throughout the lattice. A very close relationship between experimental and theoretical values for the grain growth exponent (n was observed.

  10. Multi-Index Monte Carlo (MIMC)

    KAUST Repository

    Haji Ali, Abdul Lateef

    2015-01-07

    We propose and analyze a novel Multi-Index Monte Carlo (MIMC) method for weak approximation of stochastic models that are described in terms of differential equations either driven by random measures or with random coefficients. The MIMC method is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Inspired by Giles’s seminal work, instead of using first-order differences as in MLMC, we use in MIMC high-order mixed differences to reduce the variance of the hierarchical differences dramatically. Under standard assumptions on the convergence rates of the weak error, variance and work per sample, the optimal index set turns out to be of Total Degree (TD) type. When using such sets, MIMC yields new and improved complexity results, which are natural generalizations of Giles’s MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence.

  11. Parallel Monte Carlo Search for Hough Transform

    Science.gov (United States)

    Lopes, Raul H. C.; Franqueira, Virginia N. L.; Reid, Ivan D.; Hobson, Peter R.

    2017-10-01

    We investigate the problem of line detection in digital image processing and in special how state of the art algorithms behave in the presence of noise and whether CPU efficiency can be improved by the combination of a Monte Carlo Tree Search, hierarchical space decomposition, and parallel computing. The starting point of the investigation is the method introduced in 1962 by Paul Hough for detecting lines in binary images. Extended in the 1970s to the detection of space forms, what came to be known as Hough Transform (HT) has been proposed, for example, in the context of track fitting in the LHC ATLAS and CMS projects. The Hough Transform transfers the problem of line detection, for example, into one of optimization of the peak in a vote counting process for cells which contain the possible points of candidate lines. The detection algorithm can be computationally expensive both in the demands made upon the processor and on memory. Additionally, it can have a reduced effectiveness in detection in the presence of noise. Our first contribution consists in an evaluation of the use of a variation of the Radon Transform as a form of improving theeffectiveness of line detection in the presence of noise. Then, parallel algorithms for variations of the Hough Transform and the Radon Transform for line detection are introduced. An algorithm for Parallel Monte Carlo Search applied to line detection is also introduced. Their algorithmic complexities are discussed. Finally, implementations on multi-GPU and multicore architectures are discussed.

  12. Monte Carlo simulation for radiographic applications

    International Nuclear Information System (INIS)

    Tillack, G.R.; Bellon, C.

    2003-01-01

    Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de

  13. Reactor perturbation calculations by Monte Carlo methods

    International Nuclear Information System (INIS)

    Gubbins, M.E.

    1965-09-01

    Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)

  14. Odd-flavor Simulations by the Hybrid Monte Carlo

    CERN Document Server

    Takaishi, Tetsuya; Takaishi, Tetsuya; De Forcrand, Philippe

    2001-01-01

    The standard hybrid Monte Carlo algorithm is known to simulate even flavors QCD only. Simulations of odd flavors QCD, however, can be also performed in the framework of the hybrid Monte Carlo algorithm where the inverse of the fermion matrix is approximated by a polynomial. In this exploratory study we perform three flavors QCD simulations. We make a comparison of the hybrid Monte Carlo algorithm and the R-algorithm which also simulates odd flavors systems but has step-size errors. We find that results from our hybrid Monte Carlo algorithm are in agreement with those from the R-algorithm obtained at very small step-size.

  15. Wielandt acceleration for MCNP5 Monte Carlo eigenvalue calculations

    International Nuclear Information System (INIS)

    Brown, F.

    2007-01-01

    Monte Carlo criticality calculations use the power iteration method to determine the eigenvalue (k eff ) and eigenfunction (fission source distribution) of the fundamental mode. A recently proposed method for accelerating convergence of the Monte Carlo power iteration using Wielandt's method has been implemented in a test version of MCNP5. The method is shown to provide dramatic improvements in convergence rates and to greatly reduce the possibility of false convergence assessment. The method is effective and efficient, improving the Monte Carlo figure-of-merit for many problems. In addition, the method should eliminate most of the underprediction bias in confidence intervals for Monte Carlo criticality calculations. (authors)

  16. Monte Carlo shielding analyses using an automated biasing procedure

    International Nuclear Information System (INIS)

    Tang, J.S.; Hoffman, T.J.

    1988-01-01

    A systematic and automated approach for biasing Monte Carlo shielding calculations is described. In particular, adjoint fluxes from a one-dimensional discrete ordinates calculation are used to generate biasing parameters for a Monte Carlo calculation. The entire procedure of adjoint calculation, biasing parameters generation, and Monte Carlo calculation has been automated. The automated biasing procedure has been applied to several realistic deep-penetration shipping cask problems. The results obtained for neutron and gamma-ray transport indicate that with the automated biasing procedure Monte Carlo shielding calculations of spent-fuel casks can be easily performed with minimum effort and that accurate results can be obtained at reasonable computing cost

  17. Monte Carlo techniques for analyzing deep-penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1986-01-01

    Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications

  18. Igo - A Monte Carlo Code For Radiotherapy Planning

    International Nuclear Information System (INIS)

    Goldstein, M.; Regev, D.

    1999-01-01

    The goal of radiation therapy is to deliver a lethal dose to the tumor, while minimizing the dose to normal tissues and vital organs. To carry out this task, it is critical to calculate correctly the 3-D dose delivered. Monte Carlo transport methods (especially the Adjoint Monte Carlo have the potential to provide more accurate predictions of the 3-D dose the currently used methods. IG0 is a Monte Carlo code derived from the general Monte Carlo Program - MCNP, tailored specifically for calculating the effects of radiation therapy. This paper describes the IG0 transport code, the PIG0 interface and some preliminary results

  19. Quantum statistical Monte Carlo methods and applications to spin systems

    International Nuclear Information System (INIS)

    Suzuki, M.

    1986-01-01

    A short review is given concerning the quantum statistical Monte Carlo method based on the equivalence theorem that d-dimensional quantum systems are mapped onto (d+1)-dimensional classical systems. The convergence property of this approximate tansformation is discussed in detail. Some applications of this general appoach to quantum spin systems are reviewed. A new Monte Carlo method, ''thermo field Monte Carlo method,'' is presented, which is an extension of the projection Monte Carlo method at zero temperature to that at finite temperatures

  20. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions

  1. Applications of the Monte Carlo method in radiation protection

    International Nuclear Information System (INIS)

    Kulkarni, R.N.; Prasad, M.A.

    1999-01-01

    This paper gives a brief introduction to the application of the Monte Carlo method in radiation protection. It may be noted that an exhaustive review has not been attempted. The special advantage of the Monte Carlo method has been first brought out. The fundamentals of the Monte Carlo method have next been explained in brief, with special reference to two applications in radiation protection. Some sample current applications have been reported in the end in brief as examples. They are, medical radiation physics, microdosimetry, calculations of thermoluminescence intensity and probabilistic safety analysis. The limitations of the Monte Carlo method have also been mentioned in passing. (author)

  2. Data decomposition of Monte Carlo particle transport simulations via tally servers

    International Nuclear Information System (INIS)

    Romano, Paul K.; Siegel, Andrew R.; Forget, Benoit; Smith, Kord

    2013-01-01

    An algorithm for decomposing large tally data in Monte Carlo particle transport simulations is developed, analyzed, and implemented in a continuous-energy Monte Carlo code, OpenMC. The algorithm is based on a non-overlapping decomposition of compute nodes into tracking processors and tally servers. The former are used to simulate the movement of particles through the domain while the latter continuously receive and update tally data. A performance model for this approach is developed, suggesting that, for a range of parameters relevant to LWR analysis, the tally server algorithm should perform with minimal overhead on contemporary supercomputers. An implementation of the algorithm in OpenMC is then tested on the Intrepid and Titan supercomputers, supporting the key predictions of the model over a wide range of parameters. We thus conclude that the tally server algorithm is a successful approach to circumventing classical on-node memory constraints en route to unprecedentedly detailed Monte Carlo reactor simulations

  3. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    CERN Document Server

    Golec-Biernat, K; Placzek, W; Skrzypek, M

    2009-01-01

    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

  4. GPU-Monte Carlo based fast IMRT plan optimization

    Directory of Open Access Journals (Sweden)

    Yongbao Li

    2014-03-01

    Full Text Available Purpose: Intensity-modulated radiation treatment (IMRT plan optimization needs pre-calculated beamlet dose distribution. Pencil-beam or superposition/convolution type algorithms are typically used because of high computation speed. However, inaccurate beamlet dose distributions, particularly in cases with high levels of inhomogeneity, may mislead optimization, hindering the resulting plan quality. It is desire to use Monte Carlo (MC methods for beamlet dose calculations. Yet, the long computational time from repeated dose calculations for a number of beamlets prevents this application. It is our objective to integrate a GPU-based MC dose engine in lung IMRT optimization using a novel two-steps workflow.Methods: A GPU-based MC code gDPM is used. Each particle is tagged with an index of a beamlet where the source particle is from. Deposit dose are stored separately for beamlets based on the index. Due to limited GPU memory size, a pyramid space is allocated for each beamlet, and dose outside the space is neglected. A two-steps optimization workflow is proposed for fast MC-based optimization. At first step, a rough dose calculation is conducted with only a few number of particle per beamlet. Plan optimization is followed to get an approximated fluence map. In the second step, more accurate beamlet doses are calculated, where sampled number of particles for a beamlet is proportional to the intensity determined previously. A second-round optimization is conducted, yielding the final result.Results: For a lung case with 5317 beamlets, 105 particles per beamlet in the first round, and 108 particles per beam in the second round are enough to get a good plan quality. The total simulation time is 96.4 sec.Conclusion: A fast GPU-based MC dose calculation method along with a novel two-step optimization workflow are developed. The high efficiency allows the use of MC for IMRT optimizations.--------------------------------Cite this article as: Li Y, Tian Z

  5. Monte Carlo calculations supporting patient plan verification in proton therapy

    Directory of Open Access Journals (Sweden)

    Thiago Viana Miranda Lima

    2016-03-01

    Full Text Available Patient’s treatment plan verification covers substantial amount of the quality assurance (QA resources, this is especially true for Intensity Modulated Proton Therapy (IMPT. The use of Monte Carlo (MC simulations in supporting QA has been widely discussed and several methods have been proposed. In this paper we studied an alternative approach from the one being currently applied clinically at Centro Nazionale di Adroterapia Oncologica (CNAO. We reanalysed the previously published data (Molinelli et al. 2013, where 9 patient plans were investigated in which the warning QA threshold of 3% mean dose deviation was crossed. The possibility that these differences between measurement and calculated dose were related to dose modelling (Treatment Planning Systems (TPS vs MC, limitations on dose delivery system or detectors mispositioning was originally explored but other factors such as the geometric description of the detectors were not ruled out. For the purpose of this work we compared ionisation-chambers measurements with different MC simulations results. It was also studied some physical effects introduced by this new approach for example inter detector interference and the delta ray thresholds. The simulations accounting for a detailed geometry typically are superior (statistical difference - p-value around 0.01 to most of the MC simulations used at CNAO (only inferior to the shift approach used. No real improvement were observed in reducing the current delta-ray threshold used (100 keV and no significant interference between ion chambers in the phantom were detected (p-value 0.81. In conclusion, it was observed that the detailed geometrical description improves the agreement between measurement and MC calculations in some cases. But in other cases position uncertainty represents the dominant uncertainty. The inter chamber disturbance was not detected for the therapeutic protons energies and the results from the current delta threshold are

  6. Applying graphics processor units to Monte Carlo dose calculation in radiation therapy

    Directory of Open Access Journals (Sweden)

    Bakhtiari M

    2010-01-01

    Full Text Available We investigate the potential in using of using a graphics processor unit (GPU for Monte-Carlo (MC-based radiation dose calculations. The percent depth dose (PDD of photons in a medium with known absorption and scattering coefficients is computed using a MC simulation running on both a standard CPU and a GPU. We demonstrate that the GPU′s capability for massive parallel processing provides a significant acceleration in the MC calculation, and offers a significant advantage for distributed stochastic simulations on a single computer. Harnessing this potential of GPUs will help in the early adoption of MC for routine planning in a clinical environment.

  7. Prediction of beam hardening artefacts in computed tomography using Monte Carlo simulations

    DEFF Research Database (Denmark)

    Thomsen, M.; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2015-01-01

    We show how radiological images of both single and multi material samples can be simulated using the Monte Carlo simulation tool McXtrace and how these images can be used to make a three dimensional reconstruction. Good numerical agreement between the X-ray attenuation coefficient in experimental...

  8. RapidArc treatment verification in 3D using polymer gel dosimetry and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Ceberg, Sofie; Gagne, Isabel; Gustafsson, Helen

    2010-01-01

    The aim of this study was to verify the advanced inhomogeneous dose distribution produced by a volumetric arc therapy technique (RapidArc™) using 3D gel measurements and Monte Carlo (MC) simulations. The TPS (treatment planning system)-calculated dose distribution was compared with gel measurements...

  9. A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments

    Science.gov (United States)

    S. Healey; P. Patterson; S. Urbanski

    2014-01-01

    Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...

  10. BALTORO a general purpose code for coupling discrete ordinates and Monte-Carlo radiation transport calculations

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1983-01-01

    The general purpose code BALTORO was written for coupling the three-dimensional Monte-Carlo /MC/ with the one-dimensional Discrete Ordinates /DO/ radiation transport calculations. The quantity of a radiation-induced /neutrons or gamma-rays/ nuclear effect or the score from a radiation-yielding nuclear effect can be analysed in this way. (author)

  11. LPM-Effect in Monte Carlo Models of Radiative Energy Loss

    CERN Document Server

    Zapp, Korinna C; Wiedemann, Urs Achim

    2009-01-01

    Extending the use of Monte Carlo (MC) event generators to jets in nuclear collisions requires a probabilistic implementation of the non-abelian LPM effect. We demonstrate that a local, probabilistic MC implementation based on the concept of formation times can account fully for the LPM-effect. The main features of the analytically known eikonal and collinear approximation can be reproduced, but we show how going beyond this approximation can lead to qualitatively different results.

  12. On NonAsymptotic Optimal Stopping Criteria in Monte Carlo Simulations

    KAUST Repository

    Bayer, Christian; Hoel, Hakon; von Schwerin, Erik; Tempone, Raul

    2014-01-01

    We consider the setting of estimating the mean of a random variable by a sequential stopping rule Monte Carlo (MC) method. The performance of a typical second moment based sequential stopping rule MC method is shown to be unreliable in such settings both by numerical examples and through analysis. By analysis and approximations, we construct a higher moment based stopping rule which is shown in numerical examples to perform more reliably and only slightly less efficiently than the second moment based stopping rule.

  13. Selection of important Monte Carlo histories

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    1987-01-01

    The 1986 Dosimetry System (DS86) for Japanese A-bomb survivors uses information describing the behavior of individual radiation particles, simulated by Monte Carlo methods, to calculate the transmission of radiation into structures and, thence, into humans. However, there are practical constraints on the number of such particle 'histories' that may be used. First, the number must be sufficiently high to provide adequate statistical precision fir any calculated quantity of interest. For integral quantities, such as dose or kerma, statistical precision of approximately 5% (standard deviation) is required to ensure that statistical uncertainties are not a major contributor to the overall uncertainty of the transmitted value. For differential quantities, such as scalar fluence spectra, 10 to 15% standard deviation on individual energy groups is adequate. Second, the number of histories cannot be so large as to require an unacceptably large amount of computer time to process the entire survivor data base. Given that there are approx. 30,000 survivors, each having 13 or 14 organs of interest, the number of histories per organ must be constrained to less than several ten's of thousands at the very most. Selection and use of the most important Monte Carlo leakage histories from among all those calculated allows the creation of an efficient house and organ radiation transmission system for use at RERF. While attempts have been made during the adjoint Monte Carlo calculation to bias the histories toward an efficient dose estimate, this effort has been far from satisfactory. Many of the adjoint histories on a typical leakage tape are either starting in an energy group in which there is very little kerma or dose or leaking into an energy group with very little free-field couple with. By knowing the typical free-field fluence and the fluence-to-dose factors with which the leaking histories will be used, one can select histories rom a leakage tape that will contribute to dose

  14. Response decomposition with Monte Carlo correlated coupling

    International Nuclear Information System (INIS)

    Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L.

    2001-01-01

    Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)

  15. Response decomposition with Monte Carlo correlated coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, T.; Hoogenboom, J.E.; Kloosterman, J.L. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    2001-07-01

    Particle histories that contribute to a detector response are categorized according to whether they are fully confined inside a source-detector enclosure or cross and recross the same enclosure. The contribution from the confined histories is expressed using a forward problem with the external boundary condition on the source-detector enclosure. The contribution from the crossing and recrossing histories is expressed as the surface integral at the same enclosure of the product of the directional cosine and the fluxes in the foregoing forward problem and the adjoint problem for the whole spatial domain. The former contribution can be calculated by a standard forward Monte Carlo. The latter contribution can be calculated by correlated coupling of forward and adjoint histories independently of the former contribution. We briefly describe the computational method and discuss its application to perturbation analysis for localized material changes. (orig.)

  16. Monte Carlo simulations of low background detectors

    International Nuclear Information System (INIS)

    Miley, H.S.; Brodzinski, R.L.; Hensley, W.K.; Reeves, J.H.

    1995-01-01

    An implementation of the Electron Gamma Shower 4 code (EGS4) has been developed to allow convenient simulation of typical gamma ray measurement systems. Coincidence gamma rays, beta spectra, and angular correlations have been added to adequately simulate a complete nuclear decay and provide corrections to experimentally determined detector efficiencies. This code has been used to strip certain low-background spectra for the purpose of extremely low-level assay. Monte Carlo calculations of this sort can be extremely successful since low background detectors are usually free of significant contributions from poorly localized radiation sources, such as cosmic muons, secondary cosmic neutrons, and radioactive construction or shielding materials. Previously, validation of this code has been obtained from a series of comparisons between measurements and blind calculations. An example of the application of this code to an exceedingly low background spectrum stripping will be presented. (author) 5 refs.; 3 figs.; 1 tab

  17. Homogenized group cross sections by Monte Carlo

    International Nuclear Information System (INIS)

    Van Der Marck, S. C.; Kuijper, J. C.; Oppe, J.

    2006-01-01

    Homogenized group cross sections play a large role in making reactor calculations efficient. Because of this significance, many codes exist that can calculate these cross sections based on certain assumptions. However, the application to the High Flux Reactor (HFR) in Petten, the Netherlands, the limitations of such codes imply that the core calculations would become less accurate when using homogenized group cross sections (HGCS). Therefore we developed a method to calculate HGCS based on a Monte Carlo program, for which we chose MCNP. The implementation involves an addition to MCNP, and a set of small executables to perform suitable averaging after the MCNP run(s) have completed. Here we briefly describe the details of the method, and we report on two tests we performed to show the accuracy of the method and its implementation. By now, this method is routinely used in preparation of the cycle to cycle core calculations for HFR. (authors)

  18. Nuclear reactions in Monte Carlo codes

    CERN Document Server

    Ferrari, Alfredo

    2002-01-01

    The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references. (43 refs) .

  19. Angular biasing in implicit Monte-Carlo

    International Nuclear Information System (INIS)

    Zimmerman, G.B.

    1994-01-01

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise

  20. An accurate nonlinear Monte Carlo collision operator

    International Nuclear Information System (INIS)

    Wang, W.X.; Okamoto, M.; Nakajima, N.; Murakami, S.

    1995-03-01

    A three dimensional nonlinear Monte Carlo collision model is developed based on Coulomb binary collisions with the emphasis both on the accuracy and implementation efficiency. The operator of simple form fulfills particle number, momentum and energy conservation laws, and is equivalent to exact Fokker-Planck operator by correctly reproducing the friction coefficient and diffusion tensor, in addition, can effectively assure small-angle collisions with a binary scattering angle distributed in a limited range near zero. Two highly vectorizable algorithms are designed for its fast implementation. Various test simulations regarding relaxation processes, electrical conductivity, etc. are carried out in velocity space. The test results, which is in good agreement with theory, and timing results on vector computers show that it is practically applicable. The operator may be used for accurately simulating collisional transport problems in magnetized and unmagnetized plasmas. (author)

  1. Computation cluster for Monte Carlo calculations

    International Nuclear Information System (INIS)

    Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S.

    2010-01-01

    Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)

  2. Monte Carlo stratified source-sampling

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Gelbard, E.M.

    1997-01-01

    In 1995, at a conference on criticality safety, a special session was devoted to the Monte Carlo open-quotes eigenvalue of the worldclose quotes problem. Argonne presented a paper, at that session, in which the anomalies originally observed in that problem were reproduced in a much simplified model-problem configuration, and removed by a version of stratified source-sampling. The original test-problem was treated by a special code designed specifically for that purpose. Recently ANL started work on a method for dealing with more realistic eigenvalue of the world configurations, and has been incorporating this method into VIM. The original method has been modified to take into account real-world statistical noise sources not included in the model problem. This paper constitutes a status report on work still in progress

  3. Monte Carlo simulation of a CZT detector

    International Nuclear Information System (INIS)

    Chun, Sung Dae; Park, Se Hwan; Ha, Jang Ho; Kim, Han Soo; Cho, Yoon Ho; Kang, Sang Mook; Kim, Yong Kyun; Hong, Duk Geun

    2008-01-01

    CZT detector is one of the most promising radiation detectors for hard X-ray and γ-ray measurement. The energy spectrum of CZT detector has to be simulated to optimize the detector design. A CZT detector was fabricated with dimensions of 5x5x2 mm 3 . A Peltier cooler with a size of 40x40 mm 2 was installed below the fabricated CZT detector to reduce the operation temperature of the detector. Energy spectra of were measured with 59.5 keV γ-ray from 241 Am. A Monte Carlo code was developed to simulate the CZT energy spectrum, which was measured with a planar-type CZT detector, and the result was compared with the measured one. The simulation was extended to the CZT detector with strip electrodes. (author)

  4. Vectorization of Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Burns, P.J.; Christon, M.; Schweitzer, R.; Lubeck, O.M.; Wasserman, H.J.; Simmons, M.L.; Pryor, D.V.

    1989-01-01

    This paper reports that fully vectorized versions of the Los Alamos National Laboratory benchmark code Gamteb, a Monte Carlo photon transport algorithm, were developed for the Cyber 205/ETA-10 and Cray X-MP/Y-MP architectures. Single-processor performance measurements of the vector and scalar implementations were modeled in a modified Amdahl's Law that accounts for additional data motion in the vector code. The performance and implementation strategy of the vector codes are related to architectural features of each machine. Speedups between fifteen and eighteen for Cyber 205/ETA-10 architectures, and about nine for CRAY X-MP/Y-MP architectures are observed. The best single processor execution time for the problem was 0.33 seconds on the ETA-10G, and 0.42 seconds on the CRAY Y-MP

  5. Computation cluster for Monte Carlo calculations

    Energy Technology Data Exchange (ETDEWEB)

    Petriska, M.; Vitazek, K.; Farkas, G.; Stacho, M.; Michalek, S. [Dep. Of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information, Technology, Slovak Technical University, Ilkovicova 3, 81219 Bratislava (Slovakia)

    2010-07-01

    Two computation clusters based on Rocks Clusters 5.1 Linux distribution with Intel Core Duo and Intel Core Quad based computers were made at the Department of the Nuclear Physics and Technology. Clusters were used for Monte Carlo calculations, specifically for MCNP calculations applied in Nuclear reactor core simulations. Optimization for computation speed was made on hardware and software basis. Hardware cluster parameters, such as size of the memory, network speed, CPU speed, number of processors per computation, number of processors in one computer were tested for shortening the calculation time. For software optimization, different Fortran compilers, MPI implementations and CPU multi-core libraries were tested. Finally computer cluster was used in finding the weighting functions of neutron ex-core detectors of VVER-440. (authors)

  6. Monte Carlo calculations of channeling radiation

    International Nuclear Information System (INIS)

    Bloom, S.D.; Berman, B.L.; Hamilton, D.C.; Alguard, M.J.; Barrett, J.H.; Datz, S.; Pantell, R.H.; Swent, R.H.

    1981-01-01

    Results of classical Monte Carlo calculations are presented for the radiation produced by ultra-relativistic positrons incident in a direction parallel to the (110) plane of Si in the energy range 30 to 100 MeV. The results all show the characteristic CR(channeling radiation) peak in the energy range 20 keV to 100 keV. Plots of the centroid energies, widths, and total yields of the CR peaks as a function of energy show the power law dependences of γ 1 5 , γ 1 7 , and γ 2 5 respectively. Except for the centroid energies and power-law dependence is only approximate. Agreement with experimental data is good for the centroid energies and only rough for the widths. Adequate experimental data for verifying the yield dependence on γ does not yet exist

  7. Monte Carlo simulation of the ARGO

    International Nuclear Information System (INIS)

    Depaola, G.O.

    1997-01-01

    We use GEANT Monte Carlo code to design an outline of the geometry and simulate the performance of the Argentine gamma-ray observer (ARGO), a telescope based on silicon strip detector technlogy. The γ-ray direction is determined by geometrical means and the angular resolution is calculated for small variations of the basic design. The results show that the angular resolutions vary from a few degrees at low energies (∝50 MeV) to 0.2 , approximately, at high energies (>500 MeV). We also made simulations using as incoming γ-ray the energy spectrum of PKS0208-512 and PKS0528+134 quasars. Moreover, a method based on multiple scattering theory is also used to determine the incoming energy. We show that this method is applicable to energy spectrum. (orig.)

  8. Variational Monte Carlo study of pentaquark states

    Energy Technology Data Exchange (ETDEWEB)

    Mark W. Paris

    2005-07-01

    Accurate numerical solution of the five-body Schrodinger equation is effected via variational Monte Carlo. The spectrum is assumed to exhibit a narrow resonance with strangeness S=+1. A fully antisymmetrized and pair-correlated five-quark wave function is obtained for the assumed non-relativistic Hamiltonian which has spin, isospin, and color dependent pair interactions and many-body confining terms which are fixed by the non-exotic spectra. Gauge field dynamics are modeled via flux tube exchange factors. The energy determined for the ground states with J=1/2 and negative (positive) parity is 2.22 GeV (2.50 GeV). A lower energy negative parity state is consistent with recent lattice results. The short-range structure of the state is analyzed via its diquark content.

  9. Geometric Monte Carlo and black Janus geometries

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Dongsu, E-mail: dsbak@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); B.W. Lee Center for Fields, Gravity & Strings, Institute for Basic Sciences, Daejeon 34047 (Korea, Republic of); Kim, Chanju, E-mail: cjkim@ewha.ac.kr [Department of Physics, Ewha Womans University, Seoul 03760 (Korea, Republic of); Kim, Kyung Kiu, E-mail: kimkyungkiu@gmail.com [Department of Physics, Sejong University, Seoul 05006 (Korea, Republic of); Department of Physics, College of Science, Yonsei University, Seoul 03722 (Korea, Republic of); Min, Hyunsoo, E-mail: hsmin@uos.ac.kr [Physics Department, University of Seoul, Seoul 02504 (Korea, Republic of); Song, Jeong-Pil, E-mail: jeong_pil_song@brown.edu [Department of Chemistry, Brown University, Providence, RI 02912 (United States)

    2017-04-10

    We describe an application of the Monte Carlo method to the Janus deformation of the black brane background. We present numerical results for three and five dimensional black Janus geometries with planar and spherical interfaces. In particular, we argue that the 5D geometry with a spherical interface has an application in understanding the finite temperature bag-like QCD model via the AdS/CFT correspondence. The accuracy and convergence of the algorithm are evaluated with respect to the grid spacing. The systematic errors of the method are determined using an exact solution of 3D black Janus. This numerical approach for solving linear problems is unaffected initial guess of a trial solution and can handle an arbitrary geometry under various boundary conditions in the presence of source fields.

  10. Radiation Modeling with Direct Simulation Monte Carlo

    Science.gov (United States)

    Carlson, Ann B.; Hassan, H. A.

    1991-01-01

    Improvements in the modeling of radiation in low density shock waves with direct simulation Monte Carlo (DSMC) are the subject of this study. A new scheme to determine the relaxation collision numbers for excitation of electronic states is proposed. This scheme attempts to move the DSMC programs toward a more detailed modeling of the physics and more reliance on available rate data. The new method is compared with the current modeling technique and both techniques are compared with available experimental data. The differences in the results are evaluated. The test case is based on experimental measurements from the AVCO-Everett Research Laboratory electric arc-driven shock tube of a normal shock wave in air at 10 km/s and .1 Torr. The new method agrees with the available data as well as the results from the earlier scheme and is more easily extrapolated to di erent ow conditions.

  11. Monte Carlo work at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Gelbard, E.M.; Prael, R.E.

    1974-01-01

    A simple model of the Monte Carlo process is described and a (nonlinear) recursion relation between fission sources in successive generations is developed. From the linearized form of these recursion relations, it is possible to derive expressions for the mean square coefficients of error modes in the iterates and for correlation coefficients between fluctuations in successive generations. First-order nonlinear terms in the recursion relation are analyzed. From these nonlinear terms an expression for the bias in the eigenvalue estimator is derived, and prescriptions for measuring the bias are formulated. Plans for the development of the VIM code are reviewed, and the proposed treatment of small sample perturbations in VIM is described. 6 references. (U.S.)

  12. Markov Chain Monte Carlo from Lagrangian Dynamics.

    Science.gov (United States)

    Lan, Shiwei; Stathopoulos, Vasileios; Shahbaba, Babak; Girolami, Mark

    2015-04-01

    Hamiltonian Monte Carlo (HMC) improves the computational e ciency of the Metropolis-Hastings algorithm by reducing its random walk behavior. Riemannian HMC (RHMC) further improves the performance of HMC by exploiting the geometric properties of the parameter space. However, the geometric integrator used for RHMC involves implicit equations that require fixed-point iterations. In some cases, the computational overhead for solving implicit equations undermines RHMC's benefits. In an attempt to circumvent this problem, we propose an explicit integrator that replaces the momentum variable in RHMC by velocity. We show that the resulting transformation is equivalent to transforming Riemannian Hamiltonian dynamics to Lagrangian dynamics. Experimental results suggests that our method improves RHMC's overall computational e ciency in the cases considered. All computer programs and data sets are available online (http://www.ics.uci.edu/~babaks/Site/Codes.html) in order to allow replication of the results reported in this paper.

  13. Monte Carlo modelling of TRIGA research reactor

    Science.gov (United States)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  14. PEPSI: a Monte Carlo generator for polarized leptoproduction

    International Nuclear Information System (INIS)

    Mankiewicz, L.

    1992-01-01

    We describe PEPSI (Polarized Electron Proton Scattering Interactions) a Monte Carlo program for the polarized deep inelastic leptoproduction mediated by electromagnetic interaction. The code is a modification of the LEPTO 4.3 Lund Monte Carlo for unpolarized scattering and requires the standard polarization-independent JETSET routines to perform fragmentation into final hadrons. (orig.)

  15. Closed-shell variational quantum Monte Carlo simulation for the ...

    African Journals Online (AJOL)

    Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using casino-code. ... Nigeria Journal of Pure and Applied Physics ... The variational quantum Monte Carlo (VQMC) technique used in this work employed the restricted Hartree-Fock (RHF) scheme.

  16. Efficiency and accuracy of Monte Carlo (importance) sampling

    NARCIS (Netherlands)

    Waarts, P.H.

    2003-01-01

    Monte Carlo Analysis is often regarded as the most simple and accurate reliability method. Be-sides it is the most transparent method. The only problem is the accuracy in correlation with the efficiency. Monte Carlo gets less efficient or less accurate when very low probabilities are to be computed

  17. Exponential convergence on a continuous Monte Carlo transport problem

    International Nuclear Information System (INIS)

    Booth, T.E.

    1997-01-01

    For more than a decade, it has been known that exponential convergence on discrete transport problems was possible using adaptive Monte Carlo techniques. An adaptive Monte Carlo method that empirically produces exponential convergence on a simple continuous transport problem is described

  18. Multiple histogram method and static Monte Carlo sampling

    NARCIS (Netherlands)

    Inda, M.A.; Frenkel, D.

    2004-01-01

    We describe an approach to use multiple-histogram methods in combination with static, biased Monte Carlo simulations. To illustrate this, we computed the force-extension curve of an athermal polymer from multiple histograms constructed in a series of static Rosenbluth Monte Carlo simulations. From

  19. A Monte Carlo approach to combating delayed completion of ...

    African Journals Online (AJOL)

    The objective of this paper is to unveil the relevance of Monte Carlo critical path analysis in resolving problem of delays in scheduled completion of development projects. Commencing with deterministic network scheduling, Monte Carlo critical path analysis was advanced by assigning probability distributions to task times.

  20. Forest canopy BRDF simulation using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Zeng, Y.; Tian, Y.

    2006-01-01

    Monte Carlo method is a random statistic method, which has been widely used to simulate the Bidirectional Reflectance Distribution Function (BRDF) of vegetation canopy in the field of visible remote sensing. The random process between photons and forest canopy was designed using Monte Carlo method.

  1. New Approaches and Applications for Monte Carlo Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Aufiero, Manuele; Bidaud, Adrien; Kotlyar, Dan; Leppänen, Jaakko; Palmiotti, Giuseppe; Salvatores, Massimo; Sen, Sonat; Shwageraus, Eugene; Fratoni, Massimiliano

    2017-02-01

    This paper presents some of the recent and new advancements in the extension of Monte Carlo Perturbation Theory methodologies and application. In particular, the discussed problems involve Brunup calculation, perturbation calculation based on continuous energy functions, and Monte Carlo Perturbation Theory in loosely coupled systems.

  2. A Monte Carlo algorithm for the Vavilov distribution

    International Nuclear Information System (INIS)

    Yi, Chul-Young; Han, Hyon-Soo

    1999-01-01

    Using the convolution property of the inverse Laplace transform, an improved Monte Carlo algorithm for the Vavilov energy-loss straggling distribution of the charged particle is developed, which is relatively simple and gives enough accuracy to be used for most Monte Carlo applications

  3. Crop canopy BRDF simulation and analysis using Monte Carlo method

    NARCIS (Netherlands)

    Huang, J.; Wu, B.; Tian, Y.; Zeng, Y.

    2006-01-01

    This author designs the random process between photons and crop canopy. A Monte Carlo model has been developed to simulate the Bi-directional Reflectance Distribution Function (BRDF) of crop canopy. Comparing Monte Carlo model to MCRM model, this paper analyzes the variations of different LAD and

  4. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  5. The ATLAS Fast Monte Carlo Production Chain Project

    CERN Document Server

    Jansky, Roland Wolfgang; The ATLAS collaboration

    2015-01-01

    During the last years ATLAS has successfully deployed a new integrated simulation framework (ISF) which allows a flexible mixture of full and fast detector simulation techniques within the processing of one event. The thereby achieved possible speed-up in detector simulation of up to a factor 100 makes subsequent digitization and reconstruction the dominant contributions to the Monte Carlo (MC) production CPU cost. The slowest components of both digitization and reconstruction are inside the Inner Detector due to the complex signal modeling needed in the emulation of the detector readout and in reconstruction due to the combinatorial nature of the problem to solve, respectively. Alternative fast approaches have been developed for these components: for the silicon based detectors a simpler geometrical clustering approach has been deployed replacing the charge drift emulation in the standard digitization modules, which achieves a very high accuracy in describing the standard output. For the Inner Detector track...

  6. Parallelization of a Monte Carlo particle transport simulation code

    Science.gov (United States)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  7. GPU based Monte Carlo for PET image reconstruction: parameter optimization

    International Nuclear Information System (INIS)

    Cserkaszky, Á; Légrády, D.; Wirth, A.; Bükki, T.; Patay, G.

    2011-01-01

    This paper presents the optimization of a fully Monte Carlo (MC) based iterative image reconstruction of Positron Emission Tomography (PET) measurements. With our MC re- construction method all the physical effects in a PET system are taken into account thus superior image quality is achieved in exchange for increased computational effort. The method is feasible because we utilize the enormous processing power of Graphical Processing Units (GPUs) to solve the inherently parallel problem of photon transport. The MC approach regards the simulated positron decays as samples in mathematical sums required in the iterative reconstruction algorithm, so to complement the fast architecture, our work of optimization focuses on the number of simulated positron decays required to obtain sufficient image quality. We have achieved significant results in determining the optimal number of samples for arbitrary measurement data, this allows to achieve the best image quality with the least possible computational effort. Based on this research recommendations can be given for effective partitioning of computational effort into the iterations in limited time reconstructions. (author)

  8. Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains

    Energy Technology Data Exchange (ETDEWEB)

    Bouland, Adam; Easther, Richard; Rosenfeld, Katherine, E-mail: adam.bouland@aya.yale.edu, E-mail: richard.easther@yale.edu, E-mail: krosenfeld@cfa.harvard.edu [Department of Physics, Yale University, New Haven CT 06520 (United States)

    2011-05-01

    We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.

  9. Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains

    International Nuclear Information System (INIS)

    Bouland, Adam; Easther, Richard; Rosenfeld, Katherine

    2011-01-01

    We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user

  10. Monte Carlo study of MLC fields for cobalt therapy machine

    Directory of Open Access Journals (Sweden)

    Komanduri M Ayyangar

    2014-01-01

    Full Text Available An automated Multi-Leaf Collimator (MLC system has been developed as add-on for the cobalt-60 teletherapy machines available in India. The goal of the present computational study is to validate the MLC design using Monte Carlo (MC modeling. The study was based on the Kirloskar-supplied Phoenix model machines that closely match the Atomic Energy of Canada Limited (AECL theratron-80 machine. The MLC is a retrofit attachment to the collimator assembly, with 14 non-divergent leaf pairs of 40 mm thick, 7 mm wide, and 150 mm long tungsten alloy plates with rounded edges and 20 mm tongue and 2 mm groove in each leaf. In the present work, the source and collimator geometry has been investigated in detail to arrive at a model that best represents the measured dosimetric data. The authors have studied in detail the proto-I MLC built for cobalt-60. The MLC field sizes were MC simulated for 2 × 2 cm 2 to 14 × 14 cm 2 square fields as well as irregular fields, and the percent depth dose (PDD and profile data were compared with ROPS† treatment planning system (TPS. In addition, measured profiles using the IMATRIXX system‡ were also compared with the MC simulations. The proto-I MLC can define radiation fields up to 14 × 14 cm΂ within 3 mm accuracy. The maximum measured leakage through the leaf ends in closed condition was 3.4% and interleaf leakage observed was 7.3%. Good agreement between MC results, ROPS and IMATRIXX results has been observed. The investigation also supports the hypothesis that optical and radiation field coincidence exists for the square fields studied with the MLC. Plots of the percent depth dose (PDD data and profile data for clinically significant irregular fields have also been presented. The MC model was also investigated to speed up the calculations to allow calculations of clinically relevant conformal beams.

  11. Monte Carlo codes use in neutron therapy; Application de codes Monte Carlo en neutrontherapie

    Energy Technology Data Exchange (ETDEWEB)

    Paquis, P.; Mokhtari, F.; Karamanoukian, D. [Hopital Pasteur, 06 - Nice (France); Pignol, J.P. [Hopital du Hasenrain, 68 - Mulhouse (France); Cuendet, P. [CEA Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Reacteurs Nucleaires; Fares, G.; Hachem, A. [Faculte des Sciences, 06 - Nice (France); Iborra, N. [Centre Antoine-Lacassagne, 06 - Nice (France)

    1998-04-01

    Monte Carlo calculation codes allow to study accurately all the parameters relevant to radiation effects, like the dose deposition or the type of microscopic interactions, through one by one particle transport simulation. These features are very useful for neutron irradiations, from device development up to dosimetry. This paper illustrates some applications of these codes in Neutron Capture Therapy and Neutron Capture Enhancement of fast neutrons irradiations. (authors)

  12. Monte Carlo 2000 Conference : Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications

    CERN Document Server

    Baräo, Fernando; Nakagawa, Masayuki; Távora, Luis; Vaz, Pedro

    2001-01-01

    This book focusses on the state of the art of Monte Carlo methods in radiation physics and particle transport simulation and applications, the latter involving in particular, the use and development of electron--gamma, neutron--gamma and hadronic codes. Besides the basic theory and the methods employed, special attention is paid to algorithm development for modeling, and the analysis of experiments and measurements in a variety of fields ranging from particle to medical physics.

  13. Research on perturbation based Monte Carlo reactor criticality search

    International Nuclear Information System (INIS)

    Li Zeguang; Wang Kan; Li Yangliu; Deng Jingkang

    2013-01-01

    Criticality search is a very important aspect in reactor physics analysis. Due to the advantages of Monte Carlo method and the development of computer technologies, Monte Carlo criticality search is becoming more and more necessary and feasible. Traditional Monte Carlo criticality search method is suffered from large amount of individual criticality runs and uncertainty and fluctuation of Monte Carlo results. A new Monte Carlo criticality search method based on perturbation calculation is put forward in this paper to overcome the disadvantages of traditional method. By using only one criticality run to get initial k_e_f_f and differential coefficients of concerned parameter, the polynomial estimator of k_e_f_f changing function is solved to get the critical value of concerned parameter. The feasibility of this method was tested. The results show that the accuracy and efficiency of perturbation based criticality search method are quite inspiring and the method overcomes the disadvantages of traditional one. (authors)

  14. Statistics of Monte Carlo methods used in radiation transport calculation

    International Nuclear Information System (INIS)

    Datta, D.

    2009-01-01

    Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport

  15. Reconstruction of Monte Carlo replicas from Hessian parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Tie-Jiun [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Gao, Jun [INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology,Department of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240 (China); High Energy Physics Division, Argonne National Laboratory,Argonne, Illinois, 60439 (United States); Huston, Joey [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Nadolsky, Pavel [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Schmidt, Carl; Stump, Daniel [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); Wang, Bo-Ting; Xie, Ke Ping [Department of Physics, Southern Methodist University,Dallas, TX 75275-0181 (United States); Dulat, Sayipjamal [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States); School of Physics Science and Technology, Xinjiang University,Urumqi, Xinjiang 830046 (China); Center for Theoretical Physics, Xinjiang University,Urumqi, Xinjiang 830046 (China); Pumplin, Jon; Yuan, C.P. [Department of Physics and Astronomy, Michigan State University,East Lansing, MI 48824 (United States)

    2017-03-20

    We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are converted into Monte-Carlo replicas by a numerical method that reproduces important properties of CT14 Hessian PDFs: the asymmetry of CT14 uncertainties and positivity of individual parton distributions. The ensembles of CT14 Monte-Carlo replicas constructed this way at NNLO and NLO are suitable for various collider applications, such as cross section reweighting. Master formulas for computation of asymmetric standard deviations in the Monte-Carlo representation are derived. A correction is proposed to address a bias in asymmetric uncertainties introduced by the Taylor series approximation. A numerical program is made available for conversion of Hessian PDFs into Monte-Carlo replicas according to normal, log-normal, and Watt-Thorne sampling procedures.

  16. Monte Carlo Solutions for Blind Phase Noise Estimation

    Directory of Open Access Journals (Sweden)

    Çırpan Hakan

    2009-01-01

    Full Text Available This paper investigates the use of Monte Carlo sampling methods for phase noise estimation on additive white Gaussian noise (AWGN channels. The main contributions of the paper are (i the development of a Monte Carlo framework for phase noise estimation, with special attention to sequential importance sampling and Rao-Blackwellization, (ii the interpretation of existing Monte Carlo solutions within this generic framework, and (iii the derivation of a novel phase noise estimator. Contrary to the ad hoc phase noise estimators that have been proposed in the past, the estimators considered in this paper are derived from solid probabilistic and performance-determining arguments. Computer simulations demonstrate that, on one hand, the Monte Carlo phase noise estimators outperform the existing estimators and, on the other hand, our newly proposed solution exhibits a lower complexity than the existing Monte Carlo solutions.

  17. Sampling from a polytope and hard-disk Monte Carlo

    International Nuclear Information System (INIS)

    Kapfer, Sebastian C; Krauth, Werner

    2013-01-01

    The hard-disk problem, the statics and the dynamics of equal two-dimensional hard spheres in a periodic box, has had a profound influence on statistical and computational physics. Markov-chain Monte Carlo and molecular dynamics were first discussed for this model. Here we reformulate hard-disk Monte Carlo algorithms in terms of another classic problem, namely the sampling from a polytope. Local Markov-chain Monte Carlo, as proposed by Metropolis et al. in 1953, appears as a sequence of random walks in high-dimensional polytopes, while the moves of the more powerful event-chain algorithm correspond to molecular dynamics evolution. We determine the convergence properties of Monte Carlo methods in a special invariant polytope associated with hard-disk configurations, and the implications for convergence of hard-disk sampling. Finally, we discuss parallelization strategies for event-chain Monte Carlo and present results for a multicore implementation

  18. Linear filtering applied to Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Morrison, G.W.; Pike, D.H.; Petrie, L.M.

    1975-01-01

    A significant improvement in the acceleration of the convergence of the eigenvalue computed by Monte Carlo techniques has been developed by applying linear filtering theory to Monte Carlo calculations for multiplying systems. A Kalman filter was applied to a KENO Monte Carlo calculation of an experimental critical system consisting of eight interacting units of fissile material. A comparison of the filter estimate and the Monte Carlo realization was made. The Kalman filter converged in five iterations to 0.9977. After 95 iterations, the average k-eff from the Monte Carlo calculation was 0.9981. This demonstrates that the Kalman filter has the potential of reducing the calculational effort of multiplying systems. Other examples and results are discussed

  19. Problems in radiation shielding calculations with Monte Carlo methods

    International Nuclear Information System (INIS)

    Ueki, Kohtaro

    1985-01-01

    The Monte Carlo method is a very useful tool for solving a large class of radiation transport problem. In contrast with deterministic method, geometric complexity is a much less significant problem for Monte Carlo calculations. However, the accuracy of Monte Carlo calculations is of course, limited by statistical error of the quantities to be estimated. In this report, we point out some typical problems to solve a large shielding system including radiation streaming. The Monte Carlo coupling technique was developed to settle such a shielding problem accurately. However, the variance of the Monte Carlo results using the coupling technique of which detectors were located outside the radiation streaming, was still not enough. So as to bring on more accurate results for the detectors located outside the streaming and also for a multi-legged-duct streaming problem, a practicable way of ''Prism Scattering technique'' is proposed in the study. (author)

  20. Cluster monte carlo method for nuclear criticality safety calculation

    International Nuclear Information System (INIS)

    Pei Lucheng

    1984-01-01

    One of the most important applications of the Monte Carlo method is the calculation of the nuclear criticality safety. The fair source game problem was presented at almost the same time as the Monte Carlo method was applied to calculating the nuclear criticality safety. The source iteration cost may be reduced as much as possible or no need for any source iteration. This kind of problems all belongs to the fair source game prolems, among which, the optimal source game is without any source iteration. Although the single neutron Monte Carlo method solved the problem without the source iteration, there is still quite an apparent shortcoming in it, that is, it solves the problem without the source iteration only in the asymptotic sense. In this work, a new Monte Carlo method called the cluster Monte Carlo method is given to solve the problem further

  1. Hybrid SN/Monte Carlo research and results

    International Nuclear Information System (INIS)

    Baker, R.S.

    1993-01-01

    The neutral particle transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S N ) and stochastic (Monte Carlo) methods are applied. The Monte Carlo and S N regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid Monte Carlo/S N method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S N is well suited for by themselves. The hybrid method has been successfully applied to realistic shielding problems. The vectorized Monte Carlo algorithm in the hybrid method has been ported to the massively parallel architecture of the Connection Machine. Comparisons of performance on a vector machine (Cray Y-MP) and the Connection Machine (CM-2) show that significant speedups are obtainable for vectorized Monte Carlo algorithms on massively parallel machines, even when realistic problems requiring variance reduction are considered. However, the architecture of the Connection Machine does place some limitations on the regime in which the Monte Carlo algorithm may be expected to perform well

  2. Backscattered radiation into a transmission ionization chamber: Measurement and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yoshizumi, Maira T.; Yoriyaz, Helio; Caldas, Linda V.E.

    2010-01-01

    Backscattered radiation (BSR) from field-defining collimators can affect the response of a monitor chamber in X-radiation fields. This contribution must be considered since this kind of chamber is used to monitor the equipment response. In this work, the dependence of a transmission ionization chamber response on the aperture diameter of the collimators was studied experimentally and using a Monte Carlo (MC) technique. According to the results, the BSR increases the chamber response of over 4.0% in the case of a totally closed collimator and 50 kV energy beam, using both techniques. The results from Monte Carlo simulation confirm the validity of the simulated geometry.

  3. Development of three-dimensional program based on Monte Carlo and discrete ordinates bidirectional coupling method

    International Nuclear Information System (INIS)

    Han Jingru; Chen Yixue; Yuan Longjun

    2013-01-01

    The Monte Carlo (MC) and discrete ordinates (SN) are the commonly used methods in the design of radiation shielding. Monte Carlo method is able to treat the geometry exactly, but time-consuming in dealing with the deep penetration problem. The discrete ordinate method has great computational efficiency, but it is quite costly in computer memory and it suffers from ray effect. Single discrete ordinates method or single Monte Carlo method has limitation in shielding calculation for large complex nuclear facilities. In order to solve the problem, the Monte Carlo and discrete ordinates bidirectional coupling method is developed. The bidirectional coupling method is implemented in the interface program to transfer the particle probability distribution of MC and angular flux of discrete ordinates. The coupling method combines the advantages of MC and SN. The test problems of cartesian and cylindrical coordinate have been calculated by the coupling methods. The calculation results are performed with comparison to MCNP and TORT and satisfactory agreements are obtained. The correctness of the program is proved. (authors)

  4. Monte Carlo treatment planning with modulated electron radiotherapy: framework development and application

    Science.gov (United States)

    Alexander, Andrew William

    Within the field of medical physics, Monte Carlo radiation transport simulations are considered to be the most accurate method for the determination of dose distributions in patients. The McGill Monte Carlo treatment planning system (MMCTP), provides a flexible software environment to integrate Monte Carlo simulations with current and new treatment modalities. A developing treatment modality called energy and intensity modulated electron radiotherapy (MERT) is a promising modality, which has the fundamental capabilities to enhance the dosimetry of superficial targets. An objective of this work is to advance the research and development of MERT with the end goal of clinical use. To this end, we present the MMCTP system with an integrated toolkit for MERT planning and delivery of MERT fields. Delivery is achieved using an automated "few leaf electron collimator" (FLEC) and a controller. Aside from the MERT planning toolkit, the MMCTP system required numerous add-ons to perform the complex task of large-scale autonomous Monte Carlo simulations. The first was a DICOM import filter, followed by the implementation of DOSXYZnrc as a dose calculation engine and by logic methods for submitting and updating the status of Monte Carlo simulations. Within this work we validated the MMCTP system with a head and neck Monte Carlo recalculation study performed by a medical dosimetrist. The impact of MMCTP lies in the fact that it allows for systematic and platform independent large-scale Monte Carlo dose calculations for different treatment sites and treatment modalities. In addition to the MERT planning tools, various optimization algorithms were created external to MMCTP. The algorithms produced MERT treatment plans based on dose volume constraints that employ Monte Carlo pre-generated patient-specific kernels. The Monte Carlo kernels are generated from patient-specific Monte Carlo dose distributions within MMCTP. The structure of the MERT planning toolkit software and

  5. Probability-neighbor method of accelerating geometry treatment in reactor Monte Carlo code RMC

    International Nuclear Information System (INIS)

    She, Ding; Li, Zeguang; Xu, Qi; Wang, Kan; Yu, Ganglin

    2011-01-01

    Probability neighbor method (PNM) is proposed in this paper to accelerate geometry treatment of Monte Carlo (MC) simulation and validated in self-developed reactor Monte Carlo code RMC. During MC simulation by either ray-tracking or delta-tracking method, large amounts of time are spent in finding out which cell one particle is located in. The traditional way is to search cells one by one with certain sequence defined previously. However, this procedure becomes very time-consuming when the system contains a large number of cells. Considering that particles have different probability to enter different cells, PNM method optimizes the searching sequence, i.e., the cells with larger probability are searched preferentially. The PNM method is implemented in RMC code and the numerical results show that the considerable time of geometry treatment in MC calculation for complicated systems is saved, especially effective in delta-tracking simulation. (author)

  6. Parallel processing of Monte Carlo code MCNP for particle transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji; Kawasaki, Takuji

    1996-06-01

    It is possible to vectorize or parallelize Monte Carlo codes (MC code) for photon and neutron transport problem, making use of independency of the calculation for each particle. Applicability of existing MC code to parallel processing is mentioned. As for parallel computer, we have used both vector-parallel processor and scalar-parallel processor in performance evaluation. We have made (i) vector-parallel processing of MCNP code on Monte Carlo machine Monte-4 with four vector processors, (ii) parallel processing on Paragon XP/S with 256 processors. In this report we describe the methodology and results for parallel processing on two types of parallel or distributed memory computers. In addition, we mention the evaluation of parallel programming environments for parallel computers used in the present work as a part of the work developing STA (Seamless Thinking Aid) Basic Software. (author)

  7. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

    Energy Technology Data Exchange (ETDEWEB)

    Souris, Kevin, E-mail: kevin.souris@uclouvain.be; Lee, John Aldo [Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve 1348 (Belgium); Sterpin, Edmond [Center for Molecular Imaging and Experimental Radiotherapy, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 54, 1200 Brussels, Belgium and Department of Oncology, Katholieke Universiteit Leuven, O& N I Herestraat 49, 3000 Leuven (Belgium)

    2016-04-15

    Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10{sup 7} primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  8. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures

    International Nuclear Information System (INIS)

    Souris, Kevin; Lee, John Aldo; Sterpin, Edmond

    2016-01-01

    Purpose: Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. Methods: A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the GATE/GEANT4 Monte Carlo application for homogeneous and heterogeneous geometries. Results: Comparisons with GATE/GEANT4 for various geometries show deviations within 2%–1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10"7 primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. Conclusions: MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  9. Fast multipurpose Monte Carlo simulation for proton therapy using multi- and many-core CPU architectures.

    Science.gov (United States)

    Souris, Kevin; Lee, John Aldo; Sterpin, Edmond

    2016-04-01

    Accuracy in proton therapy treatment planning can be improved using Monte Carlo (MC) simulations. However the long computation time of such methods hinders their use in clinical routine. This work aims to develop a fast multipurpose Monte Carlo simulation tool for proton therapy using massively parallel central processing unit (CPU) architectures. A new Monte Carlo, called MCsquare (many-core Monte Carlo), has been designed and optimized for the last generation of Intel Xeon processors and Intel Xeon Phi coprocessors. These massively parallel architectures offer the flexibility and the computational power suitable to MC methods. The class-II condensed history algorithm of MCsquare provides a fast and yet accurate method of simulating heavy charged particles such as protons, deuterons, and alphas inside voxelized geometries. Hard ionizations, with energy losses above a user-specified threshold, are simulated individually while soft events are regrouped in a multiple scattering theory. Elastic and inelastic nuclear interactions are sampled from ICRU 63 differential cross sections, thereby allowing for the computation of prompt gamma emission profiles. MCsquare has been benchmarked with the gate/geant4 Monte Carlo application for homogeneous and heterogeneous geometries. Comparisons with gate/geant4 for various geometries show deviations within 2%-1 mm. In spite of the limited memory bandwidth of the coprocessor simulation time is below 25 s for 10(7) primary 200 MeV protons in average soft tissues using all Xeon Phi and CPU resources embedded in a single desktop unit. MCsquare exploits the flexibility of CPU architectures to provide a multipurpose MC simulation tool. Optimized code enables the use of accurate MC calculation within a reasonable computation time, adequate for clinical practice. MCsquare also simulates prompt gamma emission and can thus be used also for in vivo range verification.

  10. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    International Nuclear Information System (INIS)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors

  11. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Urbatsch, T.J.

    1995-11-01

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  12. Monte Carlo based diffusion coefficients for LMFBR analysis

    International Nuclear Information System (INIS)

    Van Rooijen, Willem F.G.; Takeda, Toshikazu; Hazama, Taira

    2010-01-01

    A method based on Monte Carlo calculations is developed to estimate the diffusion coefficient of unit cells. The method uses a geometrical model similar to that used in lattice theory, but does not use the assumption of a separable fundamental mode used in lattice theory. The method uses standard Monte Carlo flux and current tallies, and the continuous energy Monte Carlo code MVP was used without modifications. Four models are presented to derive the diffusion coefficient from tally results of flux and partial currents. In this paper the method is applied to the calculation of a plate cell of the fast-spectrum critical facility ZEBRA. Conventional calculations of the diffusion coefficient diverge in the presence of planar voids in the lattice, but our Monte Carlo method can treat this situation without any problem. The Monte Carlo method was used to investigate the influence of geometrical modeling as well as the directional dependence of the diffusion coefficient. The method can be used to estimate the diffusion coefficient of complicated unit cells, the limitation being the capabilities of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained of the Monte Carlo code. The method will be used in the future to confirm results for the diffusion coefficient obtained with deterministic codes. (author)

  13. Present status and future prospects of neutronics Monte Carlo

    International Nuclear Information System (INIS)

    Gelbard, E.M.

    1990-01-01

    It is fair to say that the Monte Carlo method, over the last decade, has grown steadily more important as a neutronics computational tool. Apparently this has happened for assorted reasons. Thus, for example, as the power of computers has increased, the cost of the method has dropped, steadily becoming less and less of an obstacle to its use. In addition, more and more sophisticated input processors have now made it feasible to model extremely complicated systems routinely with really remarkable fidelity. Finally, as we demand greater and greater precision in reactor calculations, Monte Carlo is often found to be the only method accurate enough for use in benchmarking. Cross section uncertainties are now almost the only inherent limitations in our Monte Carlo capabilities. For this reason Monte Carlo has come to occupy a special position, interposed between experiment and other computational techniques. More and more often deterministic methods are tested by comparison with Monte Carlo, and cross sections are tested by comparing Monte Carlo with experiment. In this way one can distinguish very clearly between errors due to flaws in our numerical methods, and those due to deficiencies in cross section files. The special role of Monte Carlo as a benchmarking tool, often the only available benchmarking tool, makes it crucially important that this method should be polished to perfection. Problems relating to Eigenvalue calculations, variance reduction and the use of advanced computers are reviewed in this paper. (author)

  14. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  15. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  16. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  17. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    International Nuclear Information System (INIS)

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  18. A Monte Carlo implementation of the predictor-corrector Quasi-Static method

    International Nuclear Information System (INIS)

    Hackemack, M. W.; Ragusa, J. C.; Griesheimer, D. P.; Pounders, J. M.

    2013-01-01

    The Quasi-Static method (QS) is a useful tool for solving reactor transients since it allows for larger time steps when updating neutron distributions. Because of the beneficial attributes of Monte Carlo (MC) methods (exact geometries and continuous energy treatment), it is desirable to develop a MC implementation for the QS method. In this work, the latest version of the QS method known as the Predictor-Corrector Quasi-Static method is implemented. Experiments utilizing two energy-groups provide results that show good agreement with analytical and reference solutions. The method as presented can easily be implemented in any continuous energy, arbitrary geometry, MC code. (authors)

  19. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    CERN Document Server

    Chapman, J; Duehrssen, M; Elsing, M; Froidevaux, D; Harrington, R; Jansky, R; Langenberg, R; Mandrysch, R; Marshall, Z; Ritsch, E; Salzburger, A

    2014-01-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during run I relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for run II, and beyond. A number of fast detector simulation, digitization and reconstruction techniques and are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  20. Concepts and Plans towards fast large scale Monte Carlo production for the ATLAS Experiment

    Science.gov (United States)

    Ritsch, E.; Atlas Collaboration

    2014-06-01

    The huge success of the physics program of the ATLAS experiment at the Large Hadron Collider (LHC) during Run 1 relies upon a great number of simulated Monte Carlo events. This Monte Carlo production takes the biggest part of the computing resources being in use by ATLAS as of now. In this document we describe the plans to overcome the computing resource limitations for large scale Monte Carlo production in the ATLAS Experiment for Run 2, and beyond. A number of fast detector simulation, digitization and reconstruction techniques are being discussed, based upon a new flexible detector simulation framework. To optimally benefit from these developments, a redesigned ATLAS MC production chain is presented at the end of this document.

  1. A radiating shock evaluated using Implicit Monte Carlo Diffusion

    International Nuclear Information System (INIS)

    Cleveland, M.; Gentile, N.

    2013-01-01

    Implicit Monte Carlo [1] (IMC) has been shown to be very expensive when used to evaluate a radiation field in opaque media. Implicit Monte Carlo Diffusion (IMD) [2], which evaluates a spatial discretized diffusion equation using a Monte Carlo algorithm, can be used to reduce the cost of evaluating the radiation field in opaque media [2]. This work couples IMD to the hydrodynamics equations to evaluate opaque diffusive radiating shocks. The Lowrie semi-analytic diffusive radiating shock benchmark[a] is used to verify our implementation of the coupled system of equations. (authors)

  2. Recommender engine for continuous-time quantum Monte Carlo methods

    Science.gov (United States)

    Huang, Li; Yang, Yi-feng; Wang, Lei

    2017-03-01

    Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.

  3. Discrete Diffusion Monte Carlo for Electron Thermal Transport

    Science.gov (United States)

    Chenhall, Jeffrey; Cao, Duc; Wollaeger, Ryan; Moses, Gregory

    2014-10-01

    The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. is adapted to a Discrete Diffusion Monte Carlo (DDMC) solution method for eventual inclusion in a hybrid IMC-DDMC (Implicit Monte Carlo) method. The hybrid method will combine the efficiency of a diffusion method in short mean free path regions with the accuracy of a transport method in long mean free path regions. The Monte Carlo nature of the approach allows the algorithm to be massively parallelized. Work to date on the iSNB-DDMC method will be presented. This work was supported by Sandia National Laboratory - Albuquerque.

  4. The Monte Carlo method the method of statistical trials

    CERN Document Server

    Shreider, YuA

    1966-01-01

    The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio

  5. Neutron flux calculation by means of Monte Carlo methods

    International Nuclear Information System (INIS)

    Barz, H.U.; Eichhorn, M.

    1988-01-01

    In this report a survey of modern neutron flux calculation procedures by means of Monte Carlo methods is given. Due to the progress in the development of variance reduction techniques and the improvements of computational techniques this method is of increasing importance. The basic ideas in application of Monte Carlo methods are briefly outlined. In more detail various possibilities of non-analog games and estimation procedures are presented, problems in the field of optimizing the variance reduction techniques are discussed. In the last part some important international Monte Carlo codes and own codes of the authors are listed and special applications are described. (author)

  6. Pseudopotentials for quantum-Monte-Carlo-calculations

    International Nuclear Information System (INIS)

    Burkatzki, Mark Thomas

    2008-01-01

    The author presents scalar-relativistic energy-consistent Hartree-Fock pseudopotentials for the main-group and 3d-transition-metal elements. The pseudopotentials do not exhibit a singularity at the nucleus and are therefore suitable for quantum Monte Carlo (QMC) calculations. The author demonstrates their transferability through extensive benchmark calculations of atomic excitation spectra as well as molecular properties. In particular, the author computes the vibrational frequencies and binding energies of 26 first- and second-row diatomic molecules using post Hartree-Fock methods, finding excellent agreement with the corresponding all-electron values. The author shows that the presented pseudopotentials give superior accuracy than other existing pseudopotentials constructed specifically for QMC. The localization error and the efficiency in QMC are discussed. The author also presents QMC calculations for selected atomic and diatomic 3d-transitionmetal systems. Finally, valence basis sets of different sizes (VnZ with n=D,T,Q,5 for 1st and 2nd row; with n=D,T for 3rd to 5th row; with n=D,T,Q for the 3d transition metals) optimized for the pseudopotentials are presented. (orig.)

  7. SERPENT Monte Carlo reactor physics code

    International Nuclear Information System (INIS)

    Leppaenen, J.

    2010-01-01

    SERPENT is a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, developed at VTT Technical Research Centre of Finland since 2004. The code is specialized in lattice physics applications, but the universe-based geometry description allows transport simulation to be carried out in complicated three-dimensional geometries as well. The suggested applications of SERPENT include generation of homogenized multi-group constants for deterministic reactor simulator calculations, fuel cycle studies involving detailed assembly-level burnup calculations, validation of deterministic lattice transport codes, research reactor applications, educational purposes and demonstration of reactor physics phenomena. The Serpent code has been publicly distributed by the OECD/NEA Data Bank since May 2009 and RSICC in the U. S. since March 2010. The code is being used in some 35 organizations in 20 countries around the world. This paper presents an overview of the methods and capabilities of the Serpent code, with examples in the modelling of WWER-440 reactor physics. (Author)

  8. A continuation multilevel Monte Carlo algorithm

    KAUST Repository

    Collier, Nathan

    2014-09-05

    We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.

  9. Radon counting statistics - a Monte Carlo investigation

    International Nuclear Information System (INIS)

    Scott, A.G.

    1996-01-01

    Radioactive decay is a Poisson process, and so the Coefficient of Variation (COV) of open-quotes nclose quotes counts of a single nuclide is usually estimated as 1/√n. This is only true if the count duration is much shorter than the half-life of the nuclide. At longer count durations, the COV is smaller than the Poisson estimate. Most radon measurement methods count the alpha decays of 222 Rn, plus the progeny 218 Po and 214 Po, and estimate the 222 Rn activity from the sum of the counts. At long count durations, the chain decay of these nuclides means that every 222 Rn decay must be followed by two other alpha decays. The total number of decays is open-quotes 3Nclose quotes, where N is the number of radon decays, and the true COV of the radon concentration estimate is 1/√(N), √3 larger than the Poisson total count estimate of 1/√3N. Most count periods are comparable to the half lives of the progeny, so the relationship between COV and count time is complex. A Monte-Carlo estimate of the ratio of true COV to Poisson estimate was carried out for a range of count periods from 1 min to 16 h and three common radon measurement methods: liquid scintillation, scintillation cell, and electrostatic precipitation of progeny. The Poisson approximation underestimates COV by less than 20% for count durations of less than 60 min

  10. Monte Carlo simulations for heavy ion dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, O.

    2006-07-26

    Water-to-air stopping power ratio (s{sub w,air}) calculations for the ionization chamber dosimetry of clinically relevant ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used which is a substantially modified version of its predecessor SHIELD-HIT v1. The code was partially rewritten, replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe- Bloch formula, thus widening its range for medical dosimetry applications. Optional MSTAR and ICRU-73 stopping power data were included. The fragmentation model was verified using all available experimental data and some parameters were adjusted. The present code version shows excellent agreement with experimental data. Additional to the calculations of stopping power ratios, s{sub w,air}, the influence of fragments and I-values on s{sub w,air} for carbon ion beams was investigated. The value of s{sub w,air} deviates as much as 2.3% at the Bragg peak from the recommended by TRS-398 constant value of 1.130 for an energy of 50 MeV/u. (orig.)

  11. The Monte Carlo calculation of gamma family

    International Nuclear Information System (INIS)

    Shibata, Makio

    1980-01-01

    The method of the Monte Carlo calculation for gamma family was investigated. The effects of the variation of values or terms of parameters on observed quantities were studied. The terms taken for the standard calculation are the scaling law for the model, simple proton spectrum for primary cosmic ray, a constant cross section of interaction, zero probability of neutral pion production, and the bending of the curve of primary energy spectrum. This is called S model. Calculations were made by changing one of above mentioned parameters. The chamber size, the mixing of gamma and hadrons, and the family size were fitted to the practical ECC data. When the model was changed from the scaling law to the CKP model, the energy spectrum of the family was able to be expressed by the CKP model better than the scaling law. The scaling law was better in the symmetry around the family center. It was denied that primary cosmic ray mostly consists of heavy particles. The increase of the interaction cross section was necessary in view of the frequency of the families. (Kato, T.)

  12. Monte Carlo benchmarking: Validation and progress

    International Nuclear Information System (INIS)

    Sala, P.

    2010-01-01

    Document available in abstract form only. Full text of publication follows: Calculational tools for radiation shielding at accelerators are faced with new challenges from the present and next generations of particle accelerators. All the details of particle production and transport play a role when dealing with huge power facilities, therapeutic ion beams, radioactive beams and so on. Besides the traditional calculations required for shielding, activation predictions have become an increasingly critical component. Comparison and benchmarking with experimental data is obviously mandatory in order to build up confidence in the computing tools, and to assess their reliability and limitations. Thin target particle production data are often the best tools for understanding the predictive power of individual interaction models and improving their performances. Complex benchmarks (e.g. thick target data, deep penetration, etc.) are invaluable in assessing the overall performances of calculational tools when all ingredients are put at work together. A review of the validation procedures of Monte Carlo tools will be presented with practical and real life examples. The interconnections among benchmarks, model development and impact on shielding calculations will be highlighted. (authors)

  13. Rare event simulation using Monte Carlo methods

    CERN Document Server

    Rubino, Gerardo

    2009-01-01

    In a probabilistic model, a rare event is an event with a very small probability of occurrence. The forecasting of rare events is a formidable task but is important in many areas. For instance a catastrophic failure in a transport system or in a nuclear power plant, the failure of an information processing system in a bank, or in the communication network of a group of banks, leading to financial losses. Being able to evaluate the probability of rare events is therefore a critical issue. Monte Carlo Methods, the simulation of corresponding models, are used to analyze rare events. This book sets out to present the mathematical tools available for the efficient simulation of rare events. Importance sampling and splitting are presented along with an exposition of how to apply these tools to a variety of fields ranging from performance and dependability evaluation of complex systems, typically in computer science or in telecommunications, to chemical reaction analysis in biology or particle transport in physics. ...

  14. The GENIE neutrino Monte Carlo generator

    International Nuclear Information System (INIS)

    Andreopoulos, C.; Bell, A.; Bhattacharya, D.; Cavanna, F.; Dobson, J.; Dytman, S.; Gallagher, H.; Guzowski, P.; Hatcher, R.; Kehayias, P.; Meregaglia, A.; Naples, D.; Pearce, G.; Rubbia, A.; Whalley, M.; Yang, T.

    2010-01-01

    GENIE is a new neutrino event generator for the experimental neutrino physics community. The goal of the project is to develop a 'canonical' neutrino interaction physics Monte Carlo whose validity extends to all nuclear targets and neutrino flavors from MeV to PeV energy scales. Currently, emphasis is on the few-GeV energy range, the challenging boundary between the non-perturbative and perturbative regimes, which is relevant for the current and near future long-baseline precision neutrino experiments using accelerator-made beams. The design of the package addresses many challenges unique to neutrino simulations and supports the full life-cycle of simulation and generator-related analysis tasks. GENIE is a large-scale software system, consisting of ∼120000 lines of C++ code, featuring a modern object-oriented design and extensively validated physics content. The first official physics release of GENIE was made available in August 2007, and at the time of the writing of this article, the latest available version was v2.4.4.

  15. Use of the GATE Monte Carlo package for dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Visvikis, D. [INSERM U650, LaTIM, University Hospital Medical School, F 29609 Brest (France)]. E-mail: Visvikis.Dimitris@univ-brest.fr; Bardies, M. [INSERM U601, CHU Nantes, F 44093 Nantes (France); Chiavassa, S. [INSERM U601, CHU Nantes, F 44093 Nantes (France); Danford, C. [Department of Medical Physics, MSKCC, New York (United States); Kirov, A. [Department of Medical Physics, MSKCC, New York (United States); Lamare, F. [INSERM U650, LaTIM, University Hospital Medical School, F 29609 Brest (France); Maigne, L. [Departement de Curietherapie-Radiotherapie, Centre Jean Perrin, F 63000 Clemont-Ferrand (France); Staelens, S. [UGent-ELIS, St-Pietersnieuwstraat, 41, B 9000 Gent (Belgium); Taschereau, R. [CRUMP Institute for Molecular Imaging, UCLA, Los Angeles (United States)

    2006-12-20

    One of the roles for Monte Carlo (MC) simulation studies is in the area of dosimetry. A number of different codes dedicated to dosimetry applications are available and widely used today, such as MCNP, EGSnrc and PTRAN. However, such codes do not easily facilitate the description of complicated 3D sources or emission tomography systems and associated data flow, which may be useful in different dosimetry application domains. Such problems can be overcome by the use of specific MC codes such as GATE (GEANT4 Application to Tomographic Emission), which is based on Geant4 libraries, providing a scripting interface with a number of advantages for the simulation of SPECT and PET systems. Despite this potential, its major disadvantage is in terms of efficiency involving long execution times for applications such as dosimetry. The strong points and disadvantages of GATE in comparison to other dosimetry specific codes are discussed and illustrated in terms of accuracy, efficiency and flexibility. A number of features, such as the use of voxelised and moving sources, as well as developments such as advanced visualization tools and the development of dose estimation maps allowing GATE to be used for dosimetry applications are presented. In addition, different examples from dosimetry applications with GATE are given. Finally, future directions with respect to the use of GATE for dosimetry applications are outlined.

  16. Monte Carlo dose calculation algorithm on a distributed system

    International Nuclear Information System (INIS)

    Chauvie, Stephane; Dominoni, Matteo; Marini, Piergiorgio; Stasi, Michele; Pia, Maria Grazia; Scielzo, Giuseppe

    2003-01-01

    The main goal of modern radiotherapy, such as 3D conformal radiotherapy and intensity-modulated radiotherapy is to deliver a high dose to the target volume sparing the surrounding healthy tissue. The accuracy of dose calculation in a treatment planning system is therefore a critical issue. Among many algorithms developed over the last years, those based on Monte Carlo proven to be very promising in terms of accuracy. The most severe obstacle in application to clinical practice is the high time necessary for calculations. We have studied a high performance network of Personal Computer as a realistic alternative to a high-costs dedicated parallel hardware to be used routinely as instruments of evaluation of treatment plans. We set-up a Beowulf Cluster, configured with 4 nodes connected with low-cost network and installed MC code Geant4 to describe our irradiation facility. The MC, once parallelised, was run on the Beowulf Cluster. The first run of the full simulation showed that the time required for calculation decreased linearly increasing the number of distributed processes. The good scalability trend allows both statistically significant accuracy and good time performances. The scalability of the Beowulf Cluster system offers a new instrument for dose calculation that could be applied in clinical practice. These would be a good support particularly in high challenging prescription that needs good calculation accuracy in zones of high dose gradient and great dishomogeneities

  17. Developing and investigating a pure Monte-Carlo module for transient neutron transport analysis

    International Nuclear Information System (INIS)

    Mylonakis, Antonios G.; Varvayanni, M.; Grigoriadis, D.G.E.; Catsaros, N.

    2017-01-01

    Highlights: • Development and investigation of a Monte-Carlo module for transient neutronic analysis. • A transient module developed on the open-source Monte-Carlo static code OpenMC. • Treatment of delayed neutrons is inserted. • Simulation of precursors’ decay process is performed. • Transient analysis of simplified test-cases. - Abstract: In the field of computational reactor physics, Monte-Carlo methodology is extensively used in the analysis of static problems while the transient behavior of the reactor core is mostly analyzed using deterministic algorithms. However, deterministic algorithms make use of various approximations mainly in the geometric and energetic domain that may induce inaccuracy. Therefore, Monte-Carlo methodology which generally does not require significant approximations seems to be an attractive candidate tool for the analysis of transient phenomena. One of the most important constraints towards this direction is the significant computational cost; however since nowadays the available computational resources are continuously increasing, the potential use of the Monte-Carlo methodology in the field of reactor core transient analysis seems feasible. So far, very few attempts to employ Monte-Carlo methodology to transient analysis have been reported. Even more, most of those few attempts make use of several approximations, showing the existence of an “open” research field of great interest. It is obvious that comparing to static Monte-Carlo, a straight-forward physical treatment of a transient problem requires the temporal evolution of the simulated neutrons; but this is not adequate. In order to be able to properly analyze transient reactor core phenomena, the proper simulation of delayed neutrons together with other essential extensions and modifications is necessary. This work is actually the first step towards the development of a tool that could serve as a platform for research and development on this interesting but also

  18. Monte Carlo modeling of Standard Model multi-boson production processes for √s = 13 TeV ATLAS analyses

    CERN Document Server

    Li, Shu; The ATLAS collaboration

    2017-01-01

    We present the Monte Carlo(MC) setup used by ATLAS to model multi-boson processes in √s = 13 TeV proton-proton collisions. The baseline Monte Carlo generators are compared with each other in key kinematic distributions of the processes under study. Sample normalization and systematic uncertainties are discussed.

  19. Quantum Monte Carlo for electronic structure: Recent developments and applications

    International Nuclear Information System (INIS)

    Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included

  20. Monte Carlo-based simulation of dynamic jaws tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S. [Department of Molecular Imaging, Radiotherapy and Oncology, Universite Catholique de Louvain, 54 Avenue Hippocrate, 1200 Brussels, Belgium and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 (United States); 21 Century Oncology., 1240 D' onofrio, Madison, Wisconsin 53719 (United States); TomoTherapy Inc., 1240 Deming Way, Madison, Wisconsin 53717 and Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Department of Radiotherapy and Oncology, Universite Catholique de Louvain, St-Luc University Hospital, 10 Avenue Hippocrate, 1200 Brussels (Belgium)

    2011-09-15

    Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is

  1. Monte Carlo-based simulation of dynamic jaws tomotherapy

    International Nuclear Information System (INIS)

    Sterpin, E.; Chen, Y.; Chen, Q.; Lu, W.; Mackie, T. R.; Vynckier, S.

    2011-01-01

    Purpose: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. Methods: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution/superposition (C/S) of TomoTherapy in the ''cheese'' phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed (''running start stop,'' RSS) and symmetric jaws-variable couch speed (''symmetric running start stop,'' SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. Results: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C/S for both asymmetric jaw opening/constant couch speed and symmetric jaw opening/variable couch speed, with deviations well within 2%/2 mm. For RSS procedure, agreement between C/S and measurements was within 2%/2 mm for 95% of the points and 3%/3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis

  2. Initial Assessment of Parallelization of Monte Carlo Calculation using Graphics Processing Units

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Joo, Han Gyu

    2009-01-01

    Monte Carlo (MC) simulation is an effective tool for calculating neutron transports in complex geometry. However, because Monte Carlo simulates each neutron behavior one by one, it takes a very long computing time if enough neutrons are used for high precision of calculation. Accordingly, methods that reduce the computing time are required. In a Monte Carlo code, parallel calculation is well-suited since it simulates the behavior of each neutron independently and thus parallel computation is natural. The parallelization of the Monte Carlo codes, however, was done using multi CPUs. By the global demand for high quality 3D graphics, the Graphics Processing Unit (GPU) has developed into a highly parallel, multi-core processor. This parallel processing capability of GPUs can be available to engineering computing once a suitable interface is provided. Recently, NVIDIA introduced CUDATM, a general purpose parallel computing architecture. CUDA is a software environment that allows developers to manage GPU using C/C++ or other languages. In this work, a GPU-based Monte Carlo is developed and the initial assessment of it parallel performance is investigated

  3. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  4. Comparative evaluations of the Monte Carlo-based light propagation simulation packages for optical imaging

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2018-01-01

    Full Text Available Monte Carlo simulation of light propagation in turbid medium has been studied for years. A number of software packages have been developed to handle with such issue. However, it is hard to compare these simulation packages, especially for tissues with complex heterogeneous structures. Here, we first designed a group of mesh datasets generated by Iso2Mesh software, and used them to cross-validate the accuracy and to evaluate the performance of four Monte Carlo-based simulation packages, including Monte Carlo model of steady-state light transport in multi-layered tissues (MCML, tetrahedron-based inhomogeneous Monte Carlo optical simulator (TIMOS, Molecular Optical Simulation Environment (MOSE, and Mesh-based Monte Carlo (MMC. The performance of each package was evaluated based on the designed mesh datasets. The merits and demerits of each package were also discussed. Comparative results showed that the TIMOS package provided the best performance, which proved to be a reliable, efficient, and stable MC simulation package for users.

  5. Longitudinal functional principal component modelling via Stochastic Approximation Monte Carlo

    KAUST Repository

    Martinez, Josue G.; Liang, Faming; Zhou, Lan; Carroll, Raymond J.

    2010-01-01

    model averaging using a Bayesian formulation. A relatively straightforward reversible jump Markov Chain Monte Carlo formulation has poor mixing properties and in simulated data often becomes trapped at the wrong number of principal components. In order

  6. GE781: a Monte Carlo package for fixed target experiments

    Science.gov (United States)

    Davidenko, G.; Funk, M. A.; Kim, V.; Kuropatkin, N.; Kurshetsov, V.; Molchanov, V.; Rud, S.; Stutte, L.; Verebryusov, V.; Zukanovich Funchal, R.

    The Monte Carlo package for the fixed target experiment B781 at Fermilab, a third generation charmed baryon experiment, is described. This package is based on GEANT 3.21, ADAMO database and DAFT input/output routines.

  7. Bayesian phylogeny analysis via stochastic approximation Monte Carlo

    KAUST Repository

    Cheon, Sooyoung

    2009-11-01

    Monte Carlo methods have received much attention in the recent literature of phylogeny analysis. However, the conventional Markov chain Monte Carlo algorithms, such as the Metropolis-Hastings algorithm, tend to get trapped in a local mode in simulating from the posterior distribution of phylogenetic trees, rendering the inference ineffective. In this paper, we apply an advanced Monte Carlo algorithm, the stochastic approximation Monte Carlo algorithm, to Bayesian phylogeny analysis. Our method is compared with two popular Bayesian phylogeny software, BAMBE and MrBayes, on simulated and real datasets. The numerical results indicate that our method outperforms BAMBE and MrBayes. Among the three methods, SAMC produces the consensus trees which have the highest similarity to the true trees, and the model parameter estimates which have the smallest mean square errors, but costs the least CPU time. © 2009 Elsevier Inc. All rights reserved.

  8. Optix: A Monte Carlo scintillation light transport code

    Energy Technology Data Exchange (ETDEWEB)

    Safari, M.J., E-mail: mjsafari@aut.ac.ir [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Afarideh, H. [Department of Energy Engineering and Physics, Amir Kabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Ghal-Eh, N. [School of Physics, Damghan University, PO Box 36716-41167, Damghan (Iran, Islamic Republic of); Davani, F. Abbasi [Nuclear Engineering Department, Shahid Beheshti University, PO Box 1983963113, Tehran (Iran, Islamic Republic of)

    2014-02-11

    The paper reports on the capabilities of Monte Carlo scintillation light transport code Optix, which is an extended version of previously introduced code Optics. Optix provides the user a variety of both numerical and graphical outputs with a very simple and user-friendly input structure. A benchmarking strategy has been adopted based on the comparison with experimental results, semi-analytical solutions, and other Monte Carlo simulation codes to verify various aspects of the developed code. Besides, some extensive comparisons have been made against the tracking abilities of general-purpose MCNPX and FLUKA codes. The presented benchmark results for the Optix code exhibit promising agreements. -- Highlights: • Monte Carlo simulation of scintillation light transport in 3D geometry. • Evaluation of angular distribution of detected photons. • Benchmark studies to check the accuracy of Monte Carlo simulations.

  9. Dosimetric measurements and Monte Carlo simulation for achieving ...

    Indian Academy of Sciences (India)

    Research Articles Volume 74 Issue 3 March 2010 pp 457-468 ... Food irradiation; electron accelerator; Monte Carlo; dose uniformity. ... for radiation processing of food and medical products is being commissioned at our centre in Indore, India.

  10. Monte Carlo techniques for analyzing deep penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications

  11. Suppression of the initial transient in Monte Carlo criticality simulations

    International Nuclear Information System (INIS)

    Richet, Y.

    2006-12-01

    Criticality Monte Carlo calculations aim at estimating the effective multiplication factor (k-effective) for a fissile system through iterations simulating neutrons propagation (making a Markov chain). Arbitrary initialization of the neutron population can deeply bias the k-effective estimation, defined as the mean of the k-effective computed at each iteration. A simplified model of this cycle k-effective sequence is built, based on characteristics of industrial criticality Monte Carlo calculations. Statistical tests, inspired by Brownian bridge properties, are designed to discriminate stationarity of the cycle k-effective sequence. The initial detected transient is, then, suppressed in order to improve the estimation of the system k-effective. The different versions of this methodology are detailed and compared, firstly on a plan of numerical tests fitted on criticality Monte Carlo calculations, and, secondly on real criticality calculations. Eventually, the best methodologies observed in these tests are selected and allow to improve industrial Monte Carlo criticality calculations. (author)

  12. Monte Carlo calculations of electron diffusion in materials

    International Nuclear Information System (INIS)

    Schroeder, U.G.

    1976-01-01

    By means of simulated experiments, various transport problems for 10 Mev electrons are investigated. For this purpose, a special Monte-Carlo programme is developed, and with this programme calculations are made for several material arrangements. (orig./LN) [de

  13. A MONTE-CARLO METHOD FOR ESTIMATING THE CORRELATION EXPONENT

    NARCIS (Netherlands)

    MIKOSCH, T; WANG, QA

    We propose a Monte Carlo method for estimating the correlation exponent of a stationary ergodic sequence. The estimator can be considered as a bootstrap version of the classical Hill estimator. A simulation study shows that the method yields reasonable estimates.

  14. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z. [Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China)

    2013-07-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  15. Combinatorial geometry domain decomposition strategies for Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, G.; Zhang, B.; Deng, L.; Mo, Z.; Liu, Z.; Shangguan, D.; Ma, Y.; Li, S.; Hu, Z.

    2013-01-01

    Analysis and modeling of nuclear reactors can lead to memory overload for a single core processor when it comes to refined modeling. A method to solve this problem is called 'domain decomposition'. In the current work, domain decomposition algorithms for a combinatorial geometry Monte Carlo transport code are developed on the JCOGIN (J Combinatorial Geometry Monte Carlo transport INfrastructure). Tree-based decomposition and asynchronous communication of particle information between domains are described in the paper. Combination of domain decomposition and domain replication (particle parallelism) is demonstrated and compared with that of MERCURY code. A full-core reactor model is simulated to verify the domain decomposition algorithms using the Monte Carlo particle transport code JMCT (J Monte Carlo Transport Code), which has being developed on the JCOGIN infrastructure. Besides, influences of the domain decomposition algorithms to tally variances are discussed. (authors)

  16. Calculation of toroidal fusion reactor blankets by Monte Carlo

    International Nuclear Information System (INIS)

    Macdonald, J.L.; Cashwell, E.D.; Everett, C.J.

    1977-01-01

    A brief description of the calculational method is given. The code calculates energy deposition in toroidal geometry, but is a continuous energy Monte Carlo code, treating the reaction cross sections as well as the angular scattering distributions in great detail

  17. The Monte Carlo simulation of the Ladon photon beam facility

    International Nuclear Information System (INIS)

    Strangio, C.

    1976-01-01

    The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation

  18. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  19. Monte Carlo techniques for analyzing deep penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.; Gonnord, J.; Hendricks, J.S.

    1985-01-01

    A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs

  20. Combinatorial nuclear level density by a Monte Carlo method

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    We present a new combinatorial method for the calculation of the nuclear level density. It is based on a Monte Carlo technique, in order to avoid a direct counting procedure which is generally impracticable for high-A nuclei. The Monte Carlo simulation, making use of the Metropolis sampling scheme, allows a computationally fast estimate of the level density for many fermion systems in large shell model spaces. We emphasize the advantages of this Monte Carlo approach, particularly concerning the prediction of the spin and parity distributions of the excited states,and compare our results with those derived from a traditional combinatorial or a statistical method. Such a Monte Carlo technique seems very promising to determine accurate level densities in a large energy range for nuclear reaction calculations

  1. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki

    2015-01-01

    informative data about the model parameters. One of the major difficulties in evaluating the expected information gain is that it naturally involves nested integration over a possibly high dimensional domain. We use the Multilevel Monte Carlo (MLMC) method

  2. Latent uncertainties of the precalculated track Monte Carlo method

    International Nuclear Information System (INIS)

    Renaud, Marc-André; Seuntjens, Jan; Roberge, David

    2015-01-01

    Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D max . Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of the

  3. Latent uncertainties of the precalculated track Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, Marc-André; Seuntjens, Jan [Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada); Roberge, David [Département de radio-oncologie, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec H2L 4M1 (Canada)

    2015-01-15

    Purpose: While significant progress has been made in speeding up Monte Carlo (MC) dose calculation methods, they remain too time-consuming for the purpose of inverse planning. To achieve clinically usable calculation speeds, a precalculated Monte Carlo (PMC) algorithm for proton and electron transport was developed to run on graphics processing units (GPUs). The algorithm utilizes pregenerated particle track data from conventional MC codes for different materials such as water, bone, and lung to produce dose distributions in voxelized phantoms. While PMC methods have been described in the past, an explicit quantification of the latent uncertainty arising from the limited number of unique tracks in the pregenerated track bank is missing from the paper. With a proper uncertainty analysis, an optimal number of tracks in the pregenerated track bank can be selected for a desired dose calculation uncertainty. Methods: Particle tracks were pregenerated for electrons and protons using EGSnrc and GEANT4 and saved in a database. The PMC algorithm for track selection, rotation, and transport was implemented on the Compute Unified Device Architecture (CUDA) 4.0 programming framework. PMC dose distributions were calculated in a variety of media and compared to benchmark dose distributions simulated from the corresponding general-purpose MC codes in the same conditions. A latent uncertainty metric was defined and analysis was performed by varying the pregenerated track bank size and the number of simulated primary particle histories and comparing dose values to a “ground truth” benchmark dose distribution calculated to 0.04% average uncertainty in voxels with dose greater than 20% of D{sub max}. Efficiency metrics were calculated against benchmark MC codes on a single CPU core with no variance reduction. Results: Dose distributions generated using PMC and benchmark MC codes were compared and found to be within 2% of each other in voxels with dose values greater than 20% of

  4. Studies of Monte Carlo Modelling of Jets at ATLAS

    CERN Document Server

    Kar, Deepak; The ATLAS collaboration

    2017-01-01

    The predictions of different Monte Carlo generators for QCD jet production, both in multijets and for jets produced in association with other objects, are presented. Recent improvements in showering Monte Carlos provide new tools for assessing systematic uncertainties associated with these jets.  Studies of the dependence of physical observables on the choice of shower tune parameters and new prescriptions for assessing systematic uncertainties associated with the choice of shower model and tune are presented.

  5. Herwig: The Evolution of a Monte Carlo Simulation

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Monte Carlo event generation has seen significant developments in the last 10 years starting with preparation for the LHC and then during the first LHC run. I will discuss the basic ideas behind Monte Carlo event generators and then go on to discuss these developments, focussing on the developments in Herwig(++) event generator. I will conclude by presenting the current status of event generation together with some results of the forthcoming new version of Herwig, Herwig 7.

  6. Clinical considerations of Monte Carlo for electron radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Faddegon, Bruce; Balogh, Judith; Mackenzie, Robert; Scora, Daryl

    1998-01-01

    Technical requirements for Monte Carlo based electron radiotherapy treatment planning are outlined. The targeted overall accuracy for estimate of the delivered dose is the least restrictive of 5% in dose, 5 mm in isodose position. A system based on EGS4 and capable of achieving this accuracy is described. Experience gained in system design and commissioning is summarized. The key obstacle to widespread clinical use of Monte Carlo is lack of clinically acceptable measurement based methodology for accurate commissioning

  7. Monte Carlo method for solving a parabolic problem

    Directory of Open Access Journals (Sweden)

    Tian Yi

    2016-01-01

    Full Text Available In this paper, we present a numerical method based on random sampling for a parabolic problem. This method combines use of the Crank-Nicolson method and Monte Carlo method. In the numerical algorithm, we first discretize governing equations by Crank-Nicolson method, and obtain a large sparse system of linear algebraic equations, then use Monte Carlo method to solve the linear algebraic equations. To illustrate the usefulness of this technique, we apply it to some test problems.

  8. NUEN-618 Class Project: Actually Implicit Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Vega, R. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-12-14

    This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.

  9. Monte Carlo methods and applications in nuclear physics

    International Nuclear Information System (INIS)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs

  10. Monte Carlo methods and applications in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, J.

    1990-01-01

    Monte Carlo methods for studying few- and many-body quantum systems are introduced, with special emphasis given to their applications in nuclear physics. Variational and Green's function Monte Carlo methods are presented in some detail. The status of calculations of light nuclei is reviewed, including discussions of the three-nucleon-interaction, charge and magnetic form factors, the coulomb sum rule, and studies of low-energy radiative transitions. 58 refs., 12 figs.

  11. Study of the Transition Flow Regime using Monte Carlo Methods

    Science.gov (United States)

    Hassan, H. A.

    1999-01-01

    This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.

  12. Monte Carlos of the new generation: status and progress

    International Nuclear Information System (INIS)

    Frixione, Stefano

    2005-01-01

    Standard parton shower monte carlos are designed to give reliable descriptions of low-pT physics. In the very high-energy regime of modern colliders, this is may lead to largely incorrect predictions of the basic reaction processes. This motivated the recent theoretical efforts aimed at improving monte carlos through the inclusion of matrix elements computed beyond the leading order in QCD. I briefly review the progress made, and discuss bottom production at the Tevatron

  13. Monte carlo sampling of fission multiplicity.

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J. S. (John S.)

    2004-01-01

    Two new methods have been developed for fission multiplicity modeling in Monte Carlo calculations. The traditional method of sampling neutron multiplicity from fission is to sample the number of neutrons above or below the average. For example, if there are 2.7 neutrons per fission, three would be chosen 70% of the time and two would be chosen 30% of the time. For many applications, particularly {sup 3}He coincidence counting, a better estimate of the true number of neutrons per fission is required. Generally, this number is estimated by sampling a Gaussian distribution about the average. However, because the tail of the Gaussian distribution is negative and negative neutrons cannot be produced, a slight positive bias can be found in the average value. For criticality calculations, the result of rejecting the negative neutrons is an increase in k{sub eff} of 0.1% in some cases. For spontaneous fission, where the average number of neutrons emitted from fission is low, the error also can be unacceptably large. If the Gaussian width approaches the average number of fissions, 10% too many fission neutrons are produced by not treating the negative Gaussian tail adequately. The first method to treat the Gaussian tail is to determine a correction offset, which then is subtracted from all sampled values of the number of neutrons produced. This offset depends on the average value for any given fission at any energy and must be computed efficiently at each fission from the non-integrable error function. The second method is to determine a corrected zero point so that all neutrons sampled between zero and the corrected zero point are killed to compensate for the negative Gaussian tail bias. Again, the zero point must be computed efficiently at each fission. Both methods give excellent results with a negligible computing time penalty. It is now possible to include the full effects of fission multiplicity without the negative Gaussian tail bias.

  14. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  15. Construction of the quantitative analysis environment using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Shirakawa, Seiji; Ushiroda, Tomoya; Hashimoto, Hiroshi; Tadokoro, Masanori; Uno, Masaki; Tsujimoto, Masakazu; Ishiguro, Masanobu; Toyama, Hiroshi

    2013-01-01

    The thoracic phantom image was acquisitioned of the axial section to construct maps of the source and density with Monte Carlo (MC) simulation. The phantom was Heart/Liver Type HL (Kyoto Kagaku Co., Ltd.) single photon emission CT (SPECT)/CT machine was Symbia T6 (Siemence) with the collimator LMEGP (low-medium energy general purpose). Maps were constructed from CT images with an in-house software using Visual studio C Sharp (Microsoft). The code simulation of imaging nuclear detectors (SIMIND) was used for MC simulation, Prominence processor (Nihon Medi-Physics) for filter processing and image reconstruction, and the environment DELL Precision T7400 for all image processes. For the actual experiment, the phantom was given 15 MBq of 99m Tc assuming the uptake 2% at the dose of 740 MBq in its myocardial portion and SPECT image was acquisitioned and reconstructed with Butter-worth filter and filter back projection method. CT images were similarly obtained in 0.3 mm thick slices, which were filed in one formatted with digital imaging and communication in medicine (DICOM), and then processed for application to SIMIND for mapping the source and density. Physical and mensuration factors were examined in ideal images by sequential exclusion and simulation of those factors as attenuation, scattering, spatial resolution deterioration and statistical fluctuation. Gamma energy spectrum, SPECT projection and reconstructed images given by the simulation were found to well agree with the actual data, and the precision of MC simulation was confirmed. Physical and mensuration factors were found to be evaluable individually, suggesting the usefulness of the simulation for assessing the precision of their correction. (T.T.)

  16. Monte Carlo dose calculations for phantoms with hip prostheses

    International Nuclear Information System (INIS)

    Bazalova, M; Verhaegen, F; Coolens, C; Childs, P; Cury, F; Beaulieu, L

    2008-01-01

    Computed tomography (CT) images of patients with hip prostheses are severely degraded by metal streaking artefacts. The low image quality makes organ contouring more difficult and can result in large dose calculation errors when Monte Carlo (MC) techniques are used. In this work, the extent of streaking artefacts produced by three common hip prosthesis materials (Ti-alloy, stainless steel, and Co-Cr-Mo alloy) was studied. The prostheses were tested in a hypothetical prostate treatment with five 18 MV photon beams. The dose distributions for unilateral and bilateral prosthesis phantoms were calculated with the EGSnrc/DOSXYZnrc MC code. This was done in three phantom geometries: in the exact geometry, in the original CT geometry, and in an artefact-corrected geometry. The artefact-corrected geometry was created using a modified filtered back-projection correction technique. It was found that unilateral prosthesis phantoms do not show large dose calculation errors, as long as the beams miss the artefact-affected volume. This is possible to achieve in the case of unilateral prosthesis phantoms (except for the Co-Cr-Mo prosthesis which gives a 3% error) but not in the case of bilateral prosthesis phantoms. The largest dose discrepancies were obtained for the bilateral Co-Cr-Mo hip prosthesis phantom, up to 11% in some voxels within the prostate. The artefact correction algorithm worked well for all phantoms and resulted in dose calculation errors below 2%. In conclusion, a MC treatment plan should include an artefact correction algorithm when treating patients with hip prostheses

  17. An NPT Monte Carlo Molecular Simulation-Based Approach to Investigate Solid-Vapor Equilibrium: Application to Elemental Sulfur-H2S System

    KAUST Repository

    Kadoura, Ahmad Salim; Salama, Amgad; Sun, Shuyu; Sherik, Abdelmounam

    2013-01-01

    In this work, a method to estimate solid elemental sulfur solubility in pure and gas mixtures using Monte Carlo (MC) molecular simulation is proposed. This method is based on Isobaric-Isothermal (NPT) ensemble and the Widom insertion technique

  18. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki; Long, Quan; Scavino, Marco; Tempone, Raul

    2015-01-01

    Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.

  19. Bayesian Optimal Experimental Design Using Multilevel Monte Carlo

    KAUST Repository

    Ben Issaid, Chaouki

    2015-01-07

    Experimental design is very important since experiments are often resource-exhaustive and time-consuming. We carry out experimental design in the Bayesian framework. To measure the amount of information, which can be extracted from the data in an experiment, we use the expected information gain as the utility function, which specifically is the expected logarithmic ratio between the posterior and prior distributions. Optimizing this utility function enables us to design experiments that yield the most informative data for our purpose. One of the major difficulties in evaluating the expected information gain is that the integral is nested and can be high dimensional. We propose using Multilevel Monte Carlo techniques to accelerate the computation of the nested high dimensional integral. The advantages are twofold. First, the Multilevel Monte Carlo can significantly reduce the cost of the nested integral for a given tolerance, by using an optimal sample distribution among different sample averages of the inner integrals. Second, the Multilevel Monte Carlo method imposes less assumptions, such as the concentration of measures, required by Laplace method. We test our Multilevel Monte Carlo technique using a numerical example on the design of sensor deployment for a Darcy flow problem governed by one dimensional Laplace equation. We also compare the performance of the Multilevel Monte Carlo, Laplace approximation and direct double loop Monte Carlo.

  20. Implications of Monte Carlo Statistical Errors in Criticality Safety Assessments

    International Nuclear Information System (INIS)

    Pevey, Ronald E.

    2005-01-01

    Most criticality safety calculations are performed using Monte Carlo techniques because of Monte Carlo's ability to handle complex three-dimensional geometries. For Monte Carlo calculations, the more histories sampled, the lower the standard deviation of the resulting estimates. The common intuition is, therefore, that the more histories, the better; as a result, analysts tend to run Monte Carlo analyses as long as possible (or at least to a minimum acceptable uncertainty). For Monte Carlo criticality safety analyses, however, the optimization situation is complicated by the fact that procedures usually require that an extra margin of safety be added because of the statistical uncertainty of the Monte Carlo calculations. This additional safety margin affects the impact of the choice of the calculational standard deviation, both on production and on safety. This paper shows that, under the assumptions of normally distributed benchmarking calculational errors and exact compliance with the upper subcritical limit (USL), the standard deviation that optimizes production is zero, but there is a non-zero value of the calculational standard deviation that minimizes the risk of inadvertently labeling a supercritical configuration as subcritical. Furthermore, this value is shown to be a simple function of the typical benchmarking step outcomes--the bias, the standard deviation of the bias, the upper subcritical limit, and the number of standard deviations added to calculated k-effectives before comparison to the USL

  1. Alternative implementations of the Monte Carlo power method

    International Nuclear Information System (INIS)

    Blomquist, R.N.; Gelbard, E.M.

    2002-01-01

    We compare nominal efficiencies, i.e. variances in power shapes for equal running time, of different versions of the Monte Carlo eigenvalue computation, as applied to criticality safety analysis calculations. The two main methods considered here are ''conventional'' Monte Carlo and the superhistory method, and both are used in criticality safety codes. Within each of these major methods, different variants are available for the main steps of the basic Monte Carlo algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional Monte Carlo, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional Monte Carlo and, secondly, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on Monte Carlo computational efficiency

  2. Monte Carlo simulation for dual head gamma camera

    International Nuclear Information System (INIS)

    Osman, Yousif Bashir Soliman

    2015-12-01

    Monte Carlo (MC) simulation technique was used widely in medical physics applications. In nuclear medicine MC was used to design new medical imaging devices such as positron emission tomography (PET), gamma camera and single photon emission computed tomography (SPECT). Also it can be used to study the factors affecting image quality and internal dosimetry, Gate is on of monte Carlo code that has a number of advantages for simulation of SPECT and PET. There is a limit accessibilities in machines which are used in clinics because of the work load of machines. This makes it hard to evaluate some factors effecting machine performance which must be evaluated routinely. Also because of difficulties of carrying out scientific research and training of students, MC model can be optimum solution for the problem. The aim of this study was to use gate monte Carlo code to model Nucline spirit, medico dual head gamma camera hosted in radiation and isotopes center of Khartoum which is equipped with low energy general purpose LEGP collimators. This was used model to evaluate spatial resolution and sensitivity which is important factor affecting image quality and to demonstrate the validity of gate by comparing experimental results with simulation results on spatial resolution. The gate model of Nuclide spirit, medico dual head gamma camera was developed by applying manufacturer specifications. Then simulation was run. In evaluation of spatial resolution the FWHM was calculated from image profile of line source of Tc 99m gammas emitter of energy 140 KeV at different distances from modeled camera head at 5,10,15,20,22,27,32,37 cm and for these distances the spatial resolution was founded to be 5.76, 7.73, 10.7, 13.8, 14.01,16.91, 19.75 and 21.9 mm, respectively. These results showed a decrement of spatial resolution with increase of the distance between object (line source) and collimator in linear manner. FWHM calculated at 10 cm was compared with experimental results. The

  3. A Monte Carlo dosimetric quality assurance system for dynamic intensity-modulated radiotherapy

    International Nuclear Information System (INIS)

    Takegawa, Hideki; Yamamoto, Tokihiro; Miyabe, Yuki; Teshima, Teruki; Kunugi, Tomoaki; Yano, Shinsuke; Mizowaki, Takashi; Nagata, Yasushi; Hiraoka, Masahiro

    2005-01-01

    We are developing a Monte Carlo (MC) dose calculation system, which can resolve dosimetric issues derived from multileaf collimator (MLC) design for routine dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT). The treatment head of the medical linear accelerator equipped with MLC was modeled using the EGS4 MC code. A graphical user interface (GUI) application was developed to implement MC dose computation in the CT-based patient model and compare the MC calculated results with those of a commercial radiotherapy treatment planning (RTP) system, Varian Eclipse. To reduce computation time, the EGS4 MC code has been parallelized on massive parallel processing (MPP) system using the message passing interface (MPI). The MC treatment head model and MLC model were validated by the measurement data sets of percentage depth dose (PDD) and off-center ratio (OCR) in the water phantom and the film measurements for the static and dynamic test patterns, respectively. In the treatment head model, the MC calculated results agreed with those of measurements for both of PDD and OCR. The MC could reproduce all of the MLC dosimetric effects. A quantitative comparison between the results of MC and Eclipse was successfully performed with the GUI application. Parallel speed-up became almost linear. An MC dosimetric QA system for dynamic IMRT has been developed, however there were large dose discrepancies between the MC and the measurement in the MLC model simulation, which are now being investigated. (author)

  4. Present status of transport code development based on Monte Carlo method

    International Nuclear Information System (INIS)

    Nakagawa, Masayuki

    1985-01-01

    The present status of development in Monte Carlo code is briefly reviewed. The main items are the followings; Application fields, Methods used in Monte Carlo code (geometry spectification, nuclear data, estimator and variance reduction technique) and unfinished works, Typical Monte Carlo codes and Merits of continuous energy Monte Carlo code. (author)

  5. Random number generators for large-scale parallel Monte Carlo simulations on FPGA

    Science.gov (United States)

    Lin, Y.; Wang, F.; Liu, B.

    2018-05-01

    Through parallelization, field programmable gate array (FPGA) can achieve unprecedented speeds in large-scale parallel Monte Carlo (LPMC) simulations. FPGA presents both new constraints and new opportunities for the implementations of random number generators (RNGs), which are key elements of any Monte Carlo (MC) simulation system. Using empirical and application based tests, this study evaluates all of the four RNGs used in previous FPGA based MC studies and newly proposed FPGA implementations for two well-known high-quality RNGs that are suitable for LPMC studies on FPGA. One of the newly proposed FPGA implementations: a parallel version of additive lagged Fibonacci generator (Parallel ALFG) is found to be the best among the evaluated RNGs in fulfilling the needs of LPMC simulations on FPGA.

  6. Evaluation of CASMO-3 and HELIOS for Fuel Assembly Analysis from Monte Carlo Code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyung Jin; Song, Jae Seung; Lee, Chung Chan

    2007-05-15

    This report presents a study comparing deterministic lattice physics calculations with Monte Carlo calculations for LWR fuel pin and assembly problems. The study has focused on comparing results from the lattice physics code CASMO-3 and HELIOS against those from the continuous-energy Monte Carlo code McCARD. The comparisons include k{sub inf}, isotopic number densities, and pin power distributions. The CASMO-3 and HELIOS calculations for the k{sub inf}'s of the LWR fuel pin problems show good agreement with McCARD within 956pcm and 658pcm, respectively. For the assembly problems with Gadolinia burnable poison rods, the largest difference between the k{sub inf}'s is 1463pcm with CASMO-3 and 1141pcm with HELIOS. RMS errors for the pin power distributions of CASMO-3 and HELIOS are within 1.3% and 1.5%, respectively.

  7. A histogram-free multicanonical Monte Carlo algorithm for the construction of analytical density of states

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [ORNL; Li, Ying Wai [ORNL

    2017-06-01

    We report a new multicanonical Monte Carlo (MC) algorithm to obtain the density of states (DOS) for physical systems with continuous state variables in statistical mechanics. Our algorithm is able to obtain an analytical form for the DOS expressed in a chosen basis set, instead of a numerical array of finite resolution as in previous variants of this class of MC methods such as the multicanonical (MUCA) sampling and Wang-Landau (WL) sampling. This is enabled by storing the visited states directly in a data set and avoiding the explicit collection of a histogram. This practice also has the advantage of avoiding undesirable artificial errors caused by the discretization and binning of continuous state variables. Our results show that this scheme is capable of obtaining converged results with a much reduced number of Monte Carlo steps, leading to a significant speedup over existing algorithms.

  8. A Fano cavity test for Monte Carlo proton transport algorithms

    International Nuclear Information System (INIS)

    Sterpin, Edmond; Sorriaux, Jefferson; Souris, Kevin; Vynckier, Stefaan; Bouchard, Hugo

    2014-01-01

    Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE 0 and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E 0 and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluence must equal (ΣE 0 )/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm 2 parallel virtual field and a cavity (2 × 2 × 0.2 cm 3 size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not

  9. Monte Carlo Depletion with Critical Spectrum for Assembly Group Constant Generation

    International Nuclear Information System (INIS)

    Park, Ho Jin; Joo, Han Gyu; Shim, Hyung Jin; Kim, Chang Hyo

    2010-01-01

    The conventional two-step procedure has been used in practical nuclear reactor analysis. In this procedure, a deterministic assembly transport code such as HELIOS and CASMO is normally to generate multigroup flux distribution to be used in few-group cross section generation. Recently there are accuracy issues related with the resonance treatment or the double heterogeneity (DH) treatment for VHTR fuel blocks. In order to mitigate the accuracy issues, Monte Carlo (MC) methods can be used as an alternative way to generate few-group cross sections because the accuracy of the MC calculations benefits from its ability to use continuous energy nuclear data and detailed geometric information. In an earlier work, the conventional methods of obtaining multigroup cross sections and the critical spectrum are implemented into the McCARD Monte Carlo code. However, it was not complete in that the critical spectrum is not reflected in the depletion calculation. The purpose of this study is to develop a method to apply the critical spectrum to MC depletion calculations to correct for the leakage effect in the depletion calculation and then to examine the MC based group constants within the two-step procedure by comparing the two-step solution with the direct whole core MC depletion result

  10. Monte Carlo systems used for treatment planning and dose verification

    Energy Technology Data Exchange (ETDEWEB)

    Brualla, Lorenzo [Universitaetsklinikum Essen, NCTeam, Strahlenklinik, Essen (Germany); Rodriguez, Miguel [Centro Medico Paitilla, Balboa (Panama); Lallena, Antonio M. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain)

    2017-04-15

    General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations. (orig.) [German] Seit mehreren Jahrzehnten werden allgemein anwendbare Monte-Carlo-Codes zur Simulation des Strahlungstransports benutzt, um die Verteilung der absorbierten Dosis in der perkutanen Strahlentherapie mit Photonen und Elektronen zu evaluieren. Die damit erzielten Ergebnisse sind meist akkurater als solche, die mit nichtstochastischen Methoden herkoemmlicher Bestrahlungsplanungssysteme erzielt werden koennen. Wegen des damit verbundenen Arbeitsaufwands und der langen Dauer der Berechnungen wurden Monte-Carlo-Simulationen von Dosisverteilungen in der konventionellen Strahlentherapie in der Vergangenheit im Wesentlichen in der Forschung eingesetzt. Im Bemuehen, Monte-Carlo

  11. CAD-based Monte Carlo automatic modeling method based on primitive solid

    International Nuclear Information System (INIS)

    Wang, Dong; Song, Jing; Yu, Shengpeng; Long, Pengcheng; Wang, Yongliang

    2016-01-01

    Highlights: • We develop a method which bi-convert between CAD model and primitive solid. • This method was improved from convert method between CAD model and half space. • This method was test by ITER model and validated the correctness and efficiency. • This method was integrated in SuperMC which could model for SuperMC and Geant4. - Abstract: Monte Carlo method has been widely used in nuclear design and analysis, where geometries are described with primitive solids. However, it is time consuming and error prone to describe a primitive solid geometry, especially for a complicated model. To reuse the abundant existed CAD models and conveniently model with CAD modeling tools, an automatic modeling method for accurate prompt modeling between CAD model and primitive solid is needed. An automatic modeling method for Monte Carlo geometry described by primitive solid was developed which could bi-convert between CAD model and Monte Carlo geometry represented by primitive solids. While converting from CAD model to primitive solid model, the CAD model was decomposed into several convex solid sets, and then corresponding primitive solids were generated and exported. While converting from primitive solid model to the CAD model, the basic primitive solids were created and related operation was done. This method was integrated in the SuperMC and was benchmarked with ITER benchmark model. The correctness and efficiency of this method were demonstrated.

  12. A residual Monte Carlo method for discrete thermal radiative diffusion

    International Nuclear Information System (INIS)

    Evans, T.M.; Urbatsch, T.J.; Lichtenstein, H.; Morel, J.E.

    2003-01-01

    Residual Monte Carlo methods reduce statistical error at a rate of exp(-bN), where b is a positive constant and N is the number of particle histories. Contrast this convergence rate with 1/√N, which is the rate of statistical error reduction for conventional Monte Carlo methods. Thus, residual Monte Carlo methods hold great promise for increased efficiency relative to conventional Monte Carlo methods. Previous research has shown that the application of residual Monte Carlo methods to the solution of continuum equations, such as the radiation transport equation, is problematic for all but the simplest of cases. However, the residual method readily applies to discrete systems as long as those systems are monotone, i.e., they produce positive solutions given positive sources. We develop a residual Monte Carlo method for solving a discrete 1D non-linear thermal radiative equilibrium diffusion equation, and we compare its performance with that of the discrete conventional Monte Carlo method upon which it is based. We find that the residual method provides efficiency gains of many orders of magnitude. Part of the residual gain is due to the fact that we begin each timestep with an initial guess equal to the solution from the previous timestep. Moreover, fully consistent non-linear solutions can be obtained in a reasonable amount of time because of the effective lack of statistical noise. We conclude that the residual approach has great potential and that further research into such methods should be pursued for more general discrete and continuum systems

  13. Monte Carlo Finite Volume Element Methods for the Convection-Diffusion Equation with a Random Diffusion Coefficient

    Directory of Open Access Journals (Sweden)

    Qian Zhang

    2014-01-01

    Full Text Available The paper presents a framework for the construction of Monte Carlo finite volume element method (MCFVEM for the convection-diffusion equation with a random diffusion coefficient, which is described as a random field. We first approximate the continuous stochastic field by a finite number of random variables via the Karhunen-Loève expansion and transform the initial stochastic problem into a deterministic one with a parameter in high dimensions. Then we generate independent identically distributed approximations of the solution by sampling the coefficient of the equation and employing finite volume element variational formulation. Finally the Monte Carlo (MC method is used to compute corresponding sample averages. Statistic error is estimated analytically and experimentally. A quasi-Monte Carlo (QMC technique with Sobol sequences is also used to accelerate convergence, and experiments indicate that it can improve the efficiency of the Monte Carlo method.

  14. The denoising of Monte Carlo dose distributions using convolution superposition calculations

    International Nuclear Information System (INIS)

    El Naqa, I; Cui, J; Lindsay, P; Olivera, G; Deasy, J O

    2007-01-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction. (note)

  15. NOTE: The denoising of Monte Carlo dose distributions using convolution superposition calculations

    Science.gov (United States)

    El Naqa, I.; Cui, J.; Lindsay, P.; Olivera, G.; Deasy, J. O.

    2007-09-01

    Monte Carlo (MC) dose calculations can be accurate but are also computationally intensive. In contrast, convolution superposition (CS) offers faster and smoother results but by making approximations. We investigated MC denoising techniques, which use available convolution superposition results and new noise filtering methods to guide and accelerate MC calculations. Two main approaches were developed to combine CS information with MC denoising. In the first approach, the denoising result is iteratively updated by adding the denoised residual difference between the result and the MC image. Multi-scale methods were used (wavelets or contourlets) for denoising the residual. The iterations are initialized by the CS data. In the second approach, we used a frequency splitting technique by quadrature filtering to combine low frequency components derived from MC simulations with high frequency components derived from CS components. The rationale is to take the scattering tails as well as dose levels in the high-dose region from the MC calculations, which presumably more accurately incorporates scatter; high-frequency details are taken from CS calculations. 3D Butterworth filters were used to design the quadrature filters. The methods were demonstrated using anonymized clinical lung and head and neck cases. The MC dose distributions were calculated by the open-source dose planning method MC code with varying noise levels. Our results indicate that the frequency-splitting technique for incorporating CS-guided MC denoising is promising in terms of computational efficiency and noise reduction.

  16. Memory-efficient calculations of adjoint-weighted tallies by the Monte Carlo Wielandt method

    International Nuclear Information System (INIS)

    Choi, Sung Hoon; Shim, Hyung Jin

    2016-01-01

    Highlights: • The MC Wielandt method is applied to reduce memory for the adjoint estimation. • The adjoint-weighted kinetics parameters are estimated in the MC Wielandt calculations. • The MC S/U analyses are conducted in the MC Wielandt calculations. - Abstract: The current Monte Carlo (MC) adjoint-weighted tally techniques based on the iterated fission probability (IFP) concept require a memory amount which is proportional to the numbers of the adjoint-weighted tallies and histories per cycle to store history-wise tally estimates during the convergence of the adjoint flux. Especially the conventional MC adjoint-weighted perturbation (AWP) calculations for the nuclear data sensitivity and uncertainty (S/U) analysis suffer from the huge memory consumption to realize the IFP concept. In order to reduce the memory requirement drastically, we present a new adjoint estimation method in which the memory usage is irrelevant to the numbers of histories per cycle by applying the IFP concept for the MC Wielandt calculations. The new algorithms for the adjoint-weighted kinetics parameter estimation and the AWP calculations in the MC Wielandt method are implemented in a Seoul National University MC code, McCARD and its validity is demonstrated in critical facility problems. From the comparison of the nuclear data S/U analyses, it is demonstrated that the memory amounts to store the sensitivity estimates in the proposed method become negligibly small.

  17. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics

    International Nuclear Information System (INIS)

    Seker, V.; Thomas, J.W.; Downar, T.J.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k eff and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport

  18. Treatment plan evaluation for interstitial photodynamic therapy in a mouse model by Monte Carlo simulation with FullMonte

    Directory of Open Access Journals (Sweden)

    Jeffrey eCassidy

    2015-02-01

    Full Text Available Monte Carlo (MC simulation is recognized as the gold standard for biophotonic simulation, capturing all relevant physics and material properties at the perceived cost of high computing demands. Tetrahedral-mesh-based MC simulations particularly are attractive due to the ability to refine the mesh at will to conform to complicated geometries or user-defined resolution requirements. Since no approximations of material or light-source properties are required, MC methods are applicable to the broadest set of biophotonic simulation problems. MC methods also have other implementation features including inherent parallelism, and permit a continuously-variable quality-runtime tradeoff. We demonstrate here a complete MC-based prospective fluence dose evaluation system for interstitial PDT to generate dose-volume histograms on a tetrahedral mesh geometry description. To our knowledge, this is the first such system for general interstitial photodynamic therapy employing MC methods and is therefore applicable to a very broad cross-section of anatomy and material properties. We demonstrate that evaluation of dose-volume histograms is an effective variance-reduction scheme in its own right which greatly reduces the number of packets required and hence runtime required to achieve acceptable result confidence. We conclude that MC methods are feasible for general PDT treatment evaluation and planning, and considerably less costly than widely believed.

  19. Use of the Monte Carlo uncertainty combination method in nuclear reactor setpoint evaluation

    International Nuclear Information System (INIS)

    Berte, Frank J.

    2004-01-01

    This paper provides an overview of an alternate method for the performance of instrument uncertainty calculation and instrument setpoint determination, when a setpoint analysis requires application of techniques beyond that provided by the widely used 'Root Sum Squares' approach. The paper will address, when the application of the Monte Carlo (MC) method should be considered, application of the MC method when independent and/or dependent uncertainties are involved, and finally interpretation of results obtained. Both single module as well as instrument string sample applications will be presented. (author)

  20. Shielding evaluation of neutron generator hall by Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pujala, U.; Selvakumaran, T.S.; Baskaran, R.; Venkatraman, B. [Radiological Safety Division, Indira Gandhi Center for Atomic Research, Kalpakkam (India); Thilagam, L.; Mohapatra, D.K., E-mail: swathythila2@yahoo.com [Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam (India)

    2017-04-01

    A shielded hall was constructed for accommodating a D-D, D-T or D-Be based pulsed neutron generator (NG) with 4π yield of 10{sup 9} n/s. The neutron shield design of the facility was optimized using NCRP-51 methodology such that the total dose rates outside the hall areas are well below the regulatory limit for full occupancy criterion (1 μSv/h). However, the total dose rates at roof top, cooling room trench exit and labyrinth exit were found to be above this limit for the optimized design. Hence, additional neutron shielding arrangements were proposed for cooling room trench and labyrinth exits. The roof top was made inaccessible. The present study is an attempt to evaluate the neutron and associated capture gamma transport through the bulk shields for the complete geometry and materials of the NG-Hall using Monte Carlo (MC) codes MCNP and FLUKA. The neutron source terms of D-D, D-T and D-Be reactions are considered in the simulations. The effect of additional shielding proposed has been demonstrated through the simulations carried out with the consideration of the additional shielding for D-Be neutron source term. The results MC simulations using two different codes are found to be consistent with each other for neutron dose rate estimates. However, deviation up to 28% is noted between these two codes at few locations for capture gamma dose rate estimates. Overall, the dose rates estimated by MC simulations including additional shields shows that all the locations surrounding the hall satisfy the full occupancy criteria for all three types of sources. Additionally, the dose rates due to direct transmission of primary neutrons estimated by FLUKA are compared with the values calculated using the formula given in NCRP-51 which shows deviations up to 50% with each other. The details of MC simulations and NCRP-51 methodology for the estimation of primary neutron dose rate along with the results are presented in this paper. (author)