WorldWideScience

Sample records for montane subtropical grassland

  1. Ecological transition in Arizona's subalpine and montane grasslands

    Science.gov (United States)

    Michael R. White

    2000-01-01

    Important components of Southwest forest ecosystem are subalpine and montane grassland communities, Grassland communities provide habitat diversity for wildlife, forage for domestic livestock and wildlife, and contribute to the visual quality of an area. The objectives of this research were to determine if: 1) vegetation attributes and soil-surface cover variables of...

  2. Grasslands feeling the heat: The effects of elevated temperatures on a subtropical grassland

    Directory of Open Access Journals (Sweden)

    Rowan D. Buhrmann

    2016-12-01

    Conclusions: OTCs can simulate realistic increases of air temperature in subtropical grasslands. Graminoids and shrubs appear to benefit from elevated temperatures whilst forbs decrease in abundance, possibly through competition and/or direct physiological effects.

  3. Constraints on tree seedling establishment in montane grasslands of the Valles Caldera, New Mexico

    Science.gov (United States)

    Jonathan D. Coop; Thomas J. Givnish

    2008-01-01

    Montane and subalpine grasslands are prominent, but poorly understood, features of the Rocky Mountains. These communities frequently occur below reversed tree lines on valley floors, where nightly cold air accumulation is spatially coupled with fine soil texture. We used field experiments to assess the roles of minimum temperature, soil texture, grass competition, and...

  4. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    M. CUTINI

    2010-01-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  5. FLORISTIC CHANGES ALONG THE TOPOGRAPHICAL GRADIENT IN MONTANE GRASSLANDS IN MONTI PICENTINI (CAMPANIA, SW ITALY

    Directory of Open Access Journals (Sweden)

    F. SPADA

    2010-04-01

    Full Text Available Populations of xerotolerant species (Achnatherum calamagrostis, Stipa crassiculmis subsp. picentina, are scattered along a wide altitudinal gradient on slopes at mid- and high elevation in Monti Picentini, a subcoastal mesozoic limestone ridge in Tyrrhenian Southern Italy. Their stands are widespread in grasslands of mostly secondary origin. At lower altitudes these grasslands replace former deciduous forest communities dominated by oaks or beech, while at higher altitudes they reach the summits, where they apparently merge into the remnants of the still partially grazed, zonal climatogenic, grasslands ranging above the local tree-line. Nevertheless primary stands of these grasslands are to be found around the many clusters of highly dynamic sites of the montane and sub-alpine levels, scattered around screes and rocky outcrops of the prevalently dolomitic morphology of the slopes. This virtual continuity of non arboreal communities across more than 1000 metres of the local topographical gradient, where azonal, relic stands of Pinus nigra s.l. are transitional between the grasslands and the surrounding zonal broadleaved forest vegetation, stresses patterns of the coenological changes between Festuco-Brometea and Elyno-Seslerietea along the catena, which suggest fragmentary persistence of a paleozonation.

  6. Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental

    Science.gov (United States)

    Jorge E. Morfin-Rios; Ernesto Alvarado-Celestino; Enrique J. Jardel-Pelaez; Robert E. Vihnanek; David K. Wright; Jose M. Michel-Fuentes; Clinton S. Wright; Roger D. Ottmar; David V. Sandberg; Andres Najera-Diaz

    2008-01-01

    Single wide-angle and stereo photographs display a range of forest ecosystems conditions and fuel loadings in montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental of Mexico. Each group of photographs includes inventory information summarizing overstory vegetation composition and...

  7. Transfer of 137Cs from soil to plants in a wet montane forest in subtropical Taiwan

    International Nuclear Information System (INIS)

    Chih-Yu Chiu

    1999-01-01

    The distribution of 137 Cs in an undisturbed, multistoried, subtropical wet montane forest ecosystem surrounding Yuanyang Lake (lake surface level ca. 1670 m, in northeastern Taiwan), was investigated. The mossy forest here represents a currently-rare perhumid temperate environment in subtropical region. The radioactivity concentration of 137 Cs was determined by γ-spectroscopy with a Ge(Li) detector. Although the soil is extremely acidic (pH 3.3 to 3.6) and the rainfall is high, 137 Cs is evidently retained in the organic layer. The radioactivity concentration of 137 Cs in surface soil ranges from 28 to 71 Bq x kg -1 . The concentrations of 137 Cs in the ground moss layer and litter were much lower than that in the soil organic layer; this suggests that 137 Cs detected is not from the newly deposited radioactive fallout. The radioactivity concentration and transfer factor (TF) of 137 Cs varied with plant species. Shrubs and ferns have higher values than a coniferous tree (Taiwan cedar). The TF in this ecosystem is as high as 0.21 to 1.88. The high values of TF is attributed to the abundance of the organic matter in the forest soils. The rapid recycling of 137 Cs through the soil-plant system of this undisturbed multistoried ecosystem suggests the existence of an internal cycling that help the accumulation of 137 Cs in this ecosystem. (author)

  8. Prescribed-fire effects on an aquatic community of a southwest montane grassland system

    Science.gov (United States)

    Caldwell, Colleen A.; Jacobi, Gerald Z.; Anderson, Michael C.; Parmenter, Robert R.; McGann, Jeanine; Gould, William R.; DuBey, Robert; Jacobi, M. Donna

    2013-01-01

    The use of prescription fire has long been recognized as a reliable management tool to suppress vegetative succession processes and to reduce fuel loading to prevent catastrophic wildfires, but very little attention has been paid to the effects on aquatic systems. A late-fall prescribed burn was implemented to characterize effects on an aquatic community within a montane grassland system in north-central New Mexico. The fire treatment was consistent with protocols of a managed burn except that the fire was allowed to burn through the riparian area to the treatment stream to replicate natural fire behavior. In addition to summer and fall preburn assessment of the treatment and reference stream, we characterized immediate postfire effects (within a week for macroinvertebrates and within 6 months for fish) and seasonal effects over a 2-year period. Responses within the treatment stream were compared with an unburned reference stream adjacent to the prescription burn. During the burn, the diel range in air temperature increased by 5°C while diel range in water temperature did not change. Carbon–nitrogen ratios did not differ between treatment and reference streams, indicating the contribution of ash from the surrounding grassland was negligible. Although total taxa and species richness of aquatic macroinvertebrates were not altered, qualitative indices revealed departure from preburn condition due to loss of sensitive taxa (mayflies [order Ephemeroptera] and stoneflies [order Plecoptera]) and an increase in tolerant taxa (midges [order Chironomidae]) following the burn. Within 1 year of the burn, these attributes returned to preburn conditions. The density and recruitment of adult Brown Trout Salmo trutta did not differ between pre- and postburn collections, nor did fish condition differ. Fire is rarely truly replicated within a given study. Although our study represents one replication, the results will inform managers about the importance in timing (seasonality

  9. Commonness and Rarity: Theory and Application of a New Model to Mediterranean Montane Grasslands

    Directory of Open Access Journals (Sweden)

    José M. Rey Benayas

    1999-06-01

    Full Text Available We examined patterns of commonness and rarity among plant species in montane wet grasslands of Iberia. This examination is set within two contexts. First, we expanded on an earlier scheme for classifying species as common or rare by adding a fourth criterion, the ability of that species to occupy a larger or smaller fraction of its potential suitable habitats, i.e., habitat occupancy. Second, we explicated two theories, the superior organism theory and the generalist/specialist trade-off theory. The data consisted of 232 species distributed among 92 plots. The species were measured for mean local abundance, size of environmental volume occupied, percentage of volume occupied, range within Iberia, and range in Europe and the Mediterranean basin. In general, all measures were positively correlated, in agreement with the superior organism theory. However, specialist species were also found. Thus, patterns of commonness and rarity may be due to a combination of mechanisms. Analyses such as ours can also be used as a first step in identifying habitats and species that may be endangered.

  10. Dinitrogen emissions as an overlooked component of the N balance of montane grasslands

    Science.gov (United States)

    Zistl-Schlingmann, M.; Feng, J.; Ralf, K.; Stephan, R.; Dannenmann, M.

    2017-12-01

    component in the N balance of montane grassland ecosystems and thus unalienable for the calculation of N balances in comparable ecosystems.

  11. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-04-01

    The impacts of climate and management on the water balance and nutrient leaching of montane grasslands have rarely been investigated, though such ecosystems may represent a major source for ground and surface water nitrates. In this study nitrogen (nitrate, ammonium, dissolved organic nitrogen) and dissolved organic carbon leaching as well as water balance components (precipitation, evapotranspiration, and groundwater recharge) were quantified (2012-2014) by means of replicated (N=3 per site/ treatment) measurements of weighable grassland lysimeters (1 m2 area, 1.2 m soil depth) at three sites (E860: 860 m a.s.l., E770: 770 m a.s.l. and E600: 600 m a.s.l.) in the pre-alpine region of S-Germany. Two grassland management strategies were investigated: a) intensive management with 5 cuts per year and cattle slurry application rates of 280 kg N ha-1 yr-1, and b) extensive management with 3 cuts per year and cattle slurry application rates of 56 kg N ha-1 yr-1. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the E860 site, i.e. the site with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). On the other hand groundwater recharge was substantial lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of grassland management on water balance components were negligible. However, intensive management significantly increased mean total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7 %) and equally less by ammonium (14.6 %) and DON (20.7 %). The rather low rates of N leaching (0.8 - 6.9 % of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest

  12. The effects of burning and grazing on soil carbon dynamics in managed Peruvian tropical montane grasslands

    Science.gov (United States)

    Oliver, Viktoria; Oliveras, Imma; Kala, Jose; Lever, Rebecca; Arn Teh, Yit

    2017-12-01

    Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long-term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands, an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A density fractionation method was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free light fraction (LF), especially at the lower depths (10-20 and 20-30 cm). In the control soils, 20 % of the material recovered was in the free LF, which contained 30 % of the soil C content. In comparison, the burnt-grazed soil had the smallest recovery of the free LF (10 %) and a significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the not-burnt soils (7 %) and there was no significant difference among the treatments in the heavy fraction (F) ( ˜ 70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant

  13. The effects of burning and grazing on soil carbon dynamics in managed Peruvian tropical montane grasslands

    Directory of Open Access Journals (Sweden)

    V. Oliver

    2017-12-01

    Full Text Available Montane tropical soils are a large carbon (C reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long-term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands, an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A density fractionation method was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free light fraction (LF, especially at the lower depths (10–20 and 20–30 cm. In the control soils, 20 % of the material recovered was in the free LF, which contained 30 % of the soil C content. In comparison, the burnt–grazed soil had the smallest recovery of the free LF (10 % and a significantly lower C content (14 %. The burnt soils had a much higher proportion of C in the occluded LF (12 % compared to the not-burnt soils (7 % and there was no significant difference among the treatments in the heavy fraction (F ( ∼  70 %. The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2

  14. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China.

    Science.gov (United States)

    Song, Liang; Liu, Wen-Yao; Ma, Wen-Zhang; Qi, Jin-Hua

    2012-11-01

    A field manipulation experiment was conducted in a subtropical montane cloud forest in southwestern China to determine the possible responses of epiphytic bryophytes to increasing nitrogen (N) deposition from community to physiology level, and to find sensitive epiphytic bryophytes that may be used as indicators for assessing the degree of N pollution. N addition had significantly negative effects on species richness and cover of the epiphytic bryophyte community. Harmful effects of high N loads were recorded for chlorophyll, growth, and vitality of the species tested. The decline of some epiphytic bryophytes may result from detrimental effects on degradation to photosynthetic pigments. Bazzania himalayana (Mitt.) Schiffn., Bazzania ovistipula (Steph.) Mizut., and Homaliodendron flabellatum (Sm.) Fleisch. are candidates in atmospheric nitrogen monitoring. Epiphytic bryophytes in the montane cloud forest are very sensitive to increasing N deposition and often difficult to recover once they have been destroyed, providing early detection of enhanced N pollution for trees or even the whole forest ecosystem. The inference that increasing N pollution may lead to loss of biodiversity is a concern to the developing economy in western China, and should alert the government to the adverse impacts caused by increased industrial pollution during the process of China's West Development.

  15. Flea abundance, diversity, and plague in Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in northern New Mexico

    Science.gov (United States)

    Megan M. Friggens; Robert R. Parmenter; Michael Boyden; Paulette L. Ford; Kenneth Gage; Paul Keim

    2010-01-01

    Plague, a flea-transmitted infectious disease caused by the bacterium Yersinia pestis, is a primary threat to the persistence of prairie dog populations (Cynomys spp.). We conducted a 3-yr survey (2004-2006) of fleas from Gunnison's prairie dogs (Cynomys gunnisoni) and their burrows in montane grasslands in Valles Caldera National Preserve in New Mexico. Our...

  16. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Directory of Open Access Journals (Sweden)

    Arundhati Das

    Full Text Available The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic

  17. Topographic and Bioclimatic Determinants of the Occurrence of Forest and Grassland in Tropical Montane Forest-Grassland Mosaics of the Western Ghats, India.

    Science.gov (United States)

    Das, Arundhati; Nagendra, Harini; Anand, Madhur; Bunyan, Milind

    2015-01-01

    The objective of this analysis was to identify topographic and bioclimatic factors that predict occurrence of forest and grassland patches within tropical montane forest-grassland mosaics. We further investigated whether interactions between topography and bioclimate are important in determining vegetation pattern, and assessed the role of spatial scale in determining the relative importance of specific topographic features. Finally, we assessed the role of elevation in determining the relative importance of diverse explanatory factors. The study area consists of the central and southern regions of the Western Ghats of Southern India, a global biodiversity hotspot. Random forests were used to assess prediction accuracy and predictor importance. Conditional inference classification trees were used to interpret predictor effects and examine potential interactions between predictors. GLMs were used to confirm predictor importance and assess the strength of interaction terms. Overall, topographic and bioclimatic predictors classified vegetation pattern with approximately 70% accuracy. Prediction accuracy was higher for grassland than forest, and for mosaics at higher elevations. Elevation was the most important predictor, with mosaics above 2000 m dominated largely by grassland. Relative topographic position measured at a local scale (within a 300 m neighbourhood) was another important predictor of vegetation pattern. In high elevation mosaics, northness and concave land surface curvature were important predictors of forest occurrence. Important bioclimatic predictors were: dry quarter precipitation, annual temperature range and the interaction between the two. The results indicate complex interactions between topography and bioclimate and among topographic variables. Elevation and topography have a strong influence on vegetation pattern in these mosaics. There were marked regional differences in the roles of various topographic and bioclimatic predictors across the

  18. Breeding biology of passerines in a subtropical montane forest in northwestern Argentina

    Science.gov (United States)

    Auer, S.K.; Bassar, R.D.; Fontaine, J.J.; Martin, T.E.

    2007-01-01

    The breeding ecology of south temperate bird species is less widely known than that of north temperate species, yet because they comprise a large portion of the world's avian diversity, knowledge of their breeding ecology can contribute to a more comprehensive understanding of the geographic diversity of avian reproductive traits and life history strategies. We provide the first detailed examination of the reproductive strategies of 18 forest passerines of subtropical, northwestern Argentina. Mean clutch sizes were smaller and egg mass was greater than for north temperate birds, but differed among species and nest types, with cavity-nesters having larger clutches than species with open-cup and enclosed nests. Across all species, the average breeding season duration was 50 days; thus, the common perception that southern species have smaller clutch sizes because of longer breeding seasons is not supported in this community. Daily nest predation rates were influenced by nest type, cavity nests suffering the least from predation, as found in north temperate systems. Only females incubated eggs in all but one species, whereas both parents fed and cared for nestlings in all species. Mean nest attentiveness was low compared to north temperate passerines. Mean hourly nestling feeding rates differed among species and were negatively related to nest predation risk. In short, coexisting species in this subtropical forest varied in their life history strategies, in part correlated with variation in nest predation risk, but also differing from north temperate species. ?? The Cooper Ornithological Society 2007.

  19. Microbial transformation of organic matter in soils of montane grasslands under different management

    Czech Academy of Sciences Publication Activity Database

    Uhlířová, Eva; Šimek, Miloslav; Šantrůčková, Hana

    2005-01-01

    Roč. 28, č. 3 (2005), s. 225-235 ISSN 0929-1393 R&D Projects: GA ČR(CZ) GA206/99/1410 Institutional research plan: CEZ:AV0Z6066911 Keywords : grassland * mowing * mulching Subject RIV: EH - Ecology, Behaviour Impact factor: 1.755, year: 2005

  20. Water relations and gas exchange of fan bryophytes and their adaptations to microhabitats in an Asian subtropical montane cloud forest.

    Science.gov (United States)

    Song, Liang; Zhang, Yong-Jiang; Chen, Xi; Li, Su; Lu, Hua-Zheng; Wu, Chuan-Sheng; Tan, Zheng-Hong; Liu, Wen-Yao; Shi, Xian-Meng

    2015-07-01

    Fan life forms are bryophytes with shoots rising from vertical substratum that branch repeatedly in the horizontal plane to form flattened photosynthetic surfaces, which are well suited for intercepting water from moving air. However, detailed water relations, gas exchange characteristics of fan bryophytes and their adaptations to particular microhabitats remain poorly understood. In this study, we measured and analyzed microclimatic data, as well as water release curves, pressure-volume relationships and photosynthetic water and light response curves for three common fan bryophytes in an Asian subtropical montane cloud forest (SMCF). Results demonstrate high relative humidity but low light levels and temperatures in the understory, and a strong effect of fog on water availability for bryophytes in the SMCF. The facts that fan bryophytes in dry air lose most of their free water within 1 h, and a strong dependence of net photosynthesis rates on water content, imply that the transition from a hydrated, photosynthetically active state to a dry, inactive state is rapid. In addition, fan bryophytes developed relatively high cell wall elasticity and the osmoregulatory capacity to tolerate desiccation. These fan bryophytes had low light saturation and compensation point of photosynthesis, indicating shade tolerance. It is likely that fan bryophytes can flourish on tree trunks in the SMCF because of substantial annual precipitation, average relative humidity, and frequent and persistent fog, which can provide continual water sources for them to intercept. Nevertheless, the low water retention capacity and strong dependence of net photosynthesis on water content of fan bryophytes indicate a high risk of unbalanced carbon budget if the frequency and severity of drought increase in the future as predicted.

  1. Trap-Nesting Bees in Montane Grassland (Campo Rupestre) and Cerrado in Brazil: Collecting Generalist or Specialist Nesters.

    Science.gov (United States)

    Araújo, P C S; Lourenço, A P; Raw, A

    2016-10-01

    Species richness and seasonal abundance of solitary bees were investigated in rocky, montane grassland (campo rupestre) (1180 m asl) and cerrado sensu stricto (680 m asl) in the Biribiri State Park, Diamantina, state of Minas Gerais, Brazil. Three hundred nineteen nest traps of bamboo canes and black cardboard tubes were monthly inspected at each site during 15 months. A total of eight species of bees built 97 nests. Four species were common to both sites. Tetrapedia aff. curvitarsis Friese and Tetrapedia aff. peckoltii Friese were the most abundant at campo rupestre and cerrado s.s., respectively, followed by Centris analis (Fabricius) in campo rupestre and Centris tarsata Smith in cerrado s.s. The nesting peaks occurred in May in campo rupestre and in February in cerrado s.s. Three cuckoo bees and one bee-fly were collected as natural enemies. The findings suggest that differences between the sites were related more to ecological factors (floral resources, natural nest sites) than to the altitudinal difference. The species richness was similar to that in other habitats with open vegetation. We demonstrate the need to use several types of trap-nest to increase the range of species sampled; some species used only one of the two types traps provided. We also comment on the limitations of trap-nests in cerrado vegetation. Most cerrado species of bees are very selective in their choice for a nesting site, but bees that use trap-nests are more generalists.

  2. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island.

    Science.gov (United States)

    Arasumani, M; Khan, Danish; Das, Arundhati; Lockwood, Ian; Stewart, Robert; Kiran, Ravi A; Muthukumar, M; Bunyan, Milind; Robin, V V

    2018-01-01

    Tropical montane habitats, grasslands, in particular, merit urgent conservation attention owing to the disproportionate levels of endemic biodiversity they harbour, the ecosystem services they provide, and the fact that they are among the most threatened habitats globally. The Shola Sky Islands in the Western Ghats host a matrix of native forest-grassland matrix that has been planted over the last century, with exotic timber plantations. The popular discourse on the landscape change is that mainly forests have been lost to the timber plantations and recent court directives are to restore Shola forest trees. In this study, we examine spatiotemporal patterns of landscape change over the last 40 years in the Palani Hills, a significant part of the montane habitat in the Western Ghats. Using satellite imagery and field surveys, we find that 66% of native grasslands and 31% of native forests have been lost over the last 40 years. Grasslands have gone from being the dominant, most contiguous land cover to one of the rarest and most fragmented. They have been replaced by timber plantations and, to a lesser extent, expanding agriculture. We find that the spatial pattern of grassland loss to plantations differs from the loss to agriculture, likely driven by the invasion of plantation species into grasslands. We identify remnant grasslands that should be prioritised for conservation and make specific recommendations for conservation and restoration of grasslands in light of current management policy in the Palani Hills, which favours large-scale removal of plantations and emphasises the restoration of native forests.

  3. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    Science.gov (United States)

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  4. Soil organic carbon stock and distribution in cultivated land converted to grassland in a subtropical region of China.

    Science.gov (United States)

    Zhang, J H; Li, F C; Wang, Y; Xiong, D H

    2014-02-01

    Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P\\0.001) for converted soils than those for cultivated soils but lower (P\\0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m-2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m-2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P\\0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).

  5. Plant effects on soil carbon storage and turnover in montane beech (Nothofagus) forest and adjacent tussock grassland in New Zealand

    International Nuclear Information System (INIS)

    Tate, K.R.; Scott, N.A.; Ross, D.J.; Parshotam, A.; Claydon, J.J.

    2000-01-01

    Land cover is a critical factor that influences, and is influenced by, atmospheric chemistry and potential climate changes. As considerable uncertainty exists about the effects of differences in land cover on below-ground carbon (C) storage, we have compared soil C contents and turnover at adjacent, unmanaged, indigenous forest (Nothofagus solandri var. cliffortiodes) and grassland (Chionochloa pallens) sites near the timberline in the same climo-edaphic environment in Craigieburn Forest Park, Canterbury, New Zealand. Total soil profile C was 13% higher in the grassland than in the forest ( 19.9 v. 16.7 kg/m 2 ), and based on bomb 14 C measurements, the differences mainly resulted from more recalcitrant soil C in the grassland (5.3 v. 3.0 kg/m 2 ). Estimated annual net primary production was about 0.4 kg C/m 2 for the forest and 0.5 kg C/m 2 for the grassland; estimated annual root production was about 0.2 and 0.4 kg C/m 2 , respectively. In situ soil surface CO 2 -C production was similar in the grassland and the forest. The accumulation of recalcitrant soil C was unrelated to differences in mineral weathering or soil texture, but was apparently enhanced by greater soil water retention in the grassland ecosystem. Thus, contrary to model (ROTHC) predictions, this soil C fraction could be expected to respond to the effects of climate change on precipitation patterns. Overall, our results suggest that the different patterns of soil C accumulation in these ecosystems have resulted from differences in plant C inputs, soil aluminium, and soil physical characteristics, rather than from differences in soil mineral weathering or texture. Copyright (2000) CSIRO Australia

  6. Availability and immobilization of 137Cs in subtropical high mountain forest and grassland soils

    International Nuclear Information System (INIS)

    Chiu, C.-Y.; Wang, C.-J.; Huang, C.-C.

    2008-01-01

    To understand the behavior of 137 Cs in undisturbed soils after nuclear fallout deposition between the 1940s and 1980s, we investigated the speciation of 137 Cs in soils in forest and its adjacent grassland from a volcano and subalpine area in Taiwan. We performed sequential extraction of 137 Cs (i.e., fractions readily exchangeable, bound to microbial biomass, bound to Fe-Mn oxides, bound to organic matter, persistently bound and residual). For both the forest and grassland soils, 137 Cs was mainly present in the persistently bound (31-41%) and residual (22-62%) fractions. The proportions of 137 Cs labile fractions - bound to exchangeable sites, microbial biomass, Mn-Fe oxides, and organic matter - were lower than those of the recalcitrant fractions. The labile fractions in the forest soils were also higher than those in the grassland soils, especially in the volcanic soil. The results suggest that the labile form of 137 Cs was mostly transferred to the persistently bound and resistant fractions after long-term deposition of fallout. The readily exchangeable 137 Cs fraction was higher in soils with higher organic matter content or minor amounts of 2:1 silicate clay minerals

  7. A new species of Phrynopus (Amphibia, Anura, Craugastoridae) from upper montane forests and high Andean grasslands of the Pui Pui Protected Forest in central Peru.

    Science.gov (United States)

    Lehr, Edgar; von May, Rudolf; Moravec, Jiří; Cusi, Juan Carlos

    2017-01-01

    We describe a new species of Phrynopus from the upper montane forests and high Andean grasslands (puna) of the Pui Pui Protected Forest and its close surroundings (Región Junín, central Peru) and compare it morphologically and genetically with other species of Phrynopus . Phrynopus inti sp. n. is known from four localities outside and two localities inside the Pui Pui Protected Forest between 3350 and 3890 m a.s.l. Studied specimens of the new species are characterized by a snout-vent length of 27.2-35.2 mm in males (n = 6), and 40.4 mm in a single female, by having the skin on dorsum and flanks smooth with scattered tubercles, venter smooth, by lacking a tympanum, and males without vocal slits and nuptial pads. In life, the dorsum is pale grayish brown with or without dark brown blotches, or dorsum blackish brown with small yellow flecks, throat, chest and venter are pale grayish brown with salmon mottling, groin is pale grayish brown with salmon colored flecks, and the iris is golden orange with fine dark brown reticulations. The new species is morphologically most similar to Phrynopus kauneorum and P. juninensis . For the latter we describe the coloration in life for a specimen obtained at the type locality. A molecular phylogenetic analysis based on mitochondrial and nuclear DNA sequences inferred that the new species is most closely related to Phrynopus kauneorum , P. miroslawae , P. tautzorum , and an undescribed species distributed at high elevation in Región Pasco, central Peru.

  8. A new species of Phrynopus (Amphibia, Anura, Craugastoridae from upper montane forests and high Andean grasslands of the Pui Pui Protected Forest in central Peru

    Directory of Open Access Journals (Sweden)

    Edgar Lehr

    2017-11-01

    Full Text Available We describe a new species of Phrynopus from the upper montane forests and high Andean grasslands (puna of the Pui Pui Protected Forest and its close surroundings (Región Junín, central Peru and compare it morphologically and genetically with other species of Phrynopus. Phrynopus inti sp. n. is known from four localities outside and two localities inside the Pui Pui Protected Forest between 3350 and 3890 m a.s.l. Studied specimens of the new species are characterized by a snout-vent length of 27.2–35.2 mm in males (n = 6, and 40.4 mm in a single female, by having the skin on dorsum and flanks smooth with scattered tubercles, venter smooth, by lacking a tympanum, and males without vocal slits and nuptial pads. In life, the dorsum is pale grayish brown with or without dark brown blotches, or dorsum blackish brown with small yellow flecks, throat, chest and venter are pale grayish brown with salmon mottling, groin is pale grayish brown with salmon colored flecks, and the iris is golden orange with fine dark brown reticulations. The new species is morphologically most similar to Phrynopus kauneorum and P. juninensis. For the latter we describe the coloration in life for a specimen obtained at the type locality. A molecular phylogenetic analysis based on mitochondrial and nuclear DNA sequences inferred that the new species is most closely related to Phrynopus kauneorum, P. miroslawae, P. tautzorum, and an undescribed species distributed at high elevation in Región Pasco, central Peru.

  9. The Late Holocene upper montane cloud forest and high altitude grassland mosaic in the Serra da Igreja, Southern Brazil

    Directory of Open Access Journals (Sweden)

    MAURÍCIO B. SCHEER

    2013-06-01

    Full Text Available Many soils of the highlands of Serra do Mar, as in other mountain ranges, have thick histic horizons that preserve high amounts of carbon. However, the age and constitution of the organic matter of these soils remain doubtful, with possible late Pleistocene or Holocene ages. This study was conducted in three profiles (two in grassland and one in forest in Serra da Igreja highlands in the state of Paraná. We performed δ13C isotope analysis of organic matter in soil horizons to detect whether C3 or C4 plants dominated the past communities and 14C dating of the humin fraction to obtain the age of the studied horizons. C3 plants seem to have dominated the mountain ridges of Serra da Igreja since at least 3,000 years BP. Even though the Serra da Igreja may represents a landscape of high altitude grasslands in soils containing organic matter from the late Pleistocene, as reported elsewhere in Southern and Southeastern Brazil, our results indicate that the sites studied are at least from the beginning of the Late Holocene, when conditions of high moisture enabled the colonization/recolonization of the Serra da Igreja ridges by C3 plants. This is the period, often reported in the literature, when forests advanced onto grasslands and savannas.Muitos solos dos picos da Serra do Mar, como em muitas outras serras, apresentam horizontes hísticos espessos com elevados estoques de carbono. No entanto, a idade e constituição da matéria orgânica destes solos ainda é pouco conhecida e não se sabe se é predominantemente proveniente de comunidades de plantas do final do Pleistoceno ou do Holoceno. Este estudo foi realizado em três perfis, dois em campos altomontanos sobre Organossolos (1.335 m s.n.m e um em um colo (ponto de sela, onde a floresta altomontana sobre Gleissolos alcança seu patamar mais alto (1.325 m s.n.m. Foram realizadas análises isotópicas (δ13C da matéria orgânica de horizontes do solo para saber se plantas C3 ou C4 dominaram

  10. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany.

    Science.gov (United States)

    Fu, Jin; Gasche, Rainer; Wang, Na; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2017-10-01

    In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha -1 year -1 (range: 0.5-6.0 kg N ha -1 year -1 ) to 4.8 kg N ha -1 year -1 (range: 0.9-12.9 kg N ha -1 year -1 ). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive. Copyright © 2017. Published by Elsevier Ltd.

  11. Potencialidad de Prosopis ferox Griseb (Leguminosae, subfamilia: Mimosoideae para estudios dendrocronológicos en desiertos subtropicales de alta montaña Potential of Prosopis ferox Griseb (Leguminosae, subfamily: Mimosoideae for dendrochronological studies in high-montane subtropical deserts

    Directory of Open Access Journals (Sweden)

    MARIANO S. MORALES

    2001-12-01

    Full Text Available Debido a la escasez de especies con anillos anuales de crecimiento, la dendrocronología de regiones áridas de montañas tropicales y subtropicales está muy poco desarrollada. En este trabajo evaluamos el potencial de la especie arbórea Prosopis ferox,"churqui", para estudios dendrocronológicos analizando las características anatómicas del leño y las relaciones entre registros climáticos y cronologías de ancho de anillos de una colección realizada a 3.500 m, en la quebrada de Humahuaca (23°13' S, 65°20' O, Provincia de Jujuy, Argentina. Las observaciones microscópicas de cortes histológicos muestran que los anillos están claramente demarcados por una banda parenquimática terminal clara. Comparando la cronología estandarizada de ancho de anillos con los registros instrumentales de La Quiaca (22º06'S, 65º36'O, se observan correlaciones significativas con precipitaciones por encima de la media y temperaturas por debajo de la media durante los meses de verano (diciembre_marzo. Esto se interpreta como una relación positiva con la disponibilidad de agua en el suelo durante el período de crecimiento. Esta cronología representa no solamente el primer registro dendrocronológico desarrollado a partir de P. ferox, sino también la primera cronología de anillos de árboles en la provincia biogeográfica Prepuneña. La buena discriminación de los anillos anuales de crecimiento, la fuerte relación con variables climáticas, el amplio rango de distribución de la especie en el noroeste de Argentina y sur de Bolivia (20° a 25° S y la longevidad observada en individuos aislados (c. 500 años, hacen de P. ferox una especie muy promisoria para estudios dendroclimatológicos y dendroecológicos en desiertos subtropicales de alta montañaDue to the scarcity of species with annual tree rings, the use of dendrochronological techniques has received little attention in tropical and subtropical montane dry areas. In this study, we assess the

  12. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  13. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model

    Directory of Open Access Journals (Sweden)

    F. Zhang

    2010-06-01

    Full Text Available As one of the largest land cover types, grassland can potentially play an important role in the ecosystem services of natural resources in China. Nitrous oxide (N2O is a major greenhouse gas emitted from grasslands. Current N2O inventory at a regional or national level in China relies on the emission factor method, which is based on limited measurements. To improve the accuracy of the inventory by capturing the spatial variability of N2O emissions under the diverse climate, soil and management conditions across China, we adopted an approach by utilizing a process-based biogeochemical model, DeNitrification-DeComposition (DNDC, to quantify N2O emissions from Chinese grasslands. In the present study, DNDC was tested against datasets of N2O fluxes measured at eight grassland sites in China with encouraging results. The validated DNDC was then linked to a GIS database holding spatially differentiated information of climate, soil, vegetation and management at county-level for all the grasslands in the country. Daily weather data for 2000–2007 from 670 meteorological stations across the entire domain were employed to serve the simulations. The modelled results on a national scale showed a clear geographic pattern of N2O emissions. A high-emission strip showed up stretching from northeast to central China, which is consistent with the eastern boundary between the temperate grassland region and the major agricultural regions of China. The grasslands in the western mountain regions, however, emitted much less N2O. The regionally averaged rates of N2O emissions were 0.26, 0.14 and 0.38 kg nitrogen (N ha−1 y−1 for the temperate, montane and tropical/subtropical grasslands, respectively. The annual mean N2O emission from the total 337 million ha of grasslands in China was 76.5 ± 12.8 Gg N for the simulated years.

  14. Grassland Sustainability

    Science.gov (United States)

    Deborah U. Potter; Paulette L. Ford

    2004-01-01

    In this chapter we discuss grassland sustainability in the Southwest, grassland management for sustainability, national and local criteria and indicators of sustainable grassland ecosystems, and monitoring for sustainability at various scales. Ecological sustainability is defined as: [T]he maintenance or restoration of the composition, structure, and processes of...

  15. Spatio-temporal patterns of tree establishment are indicative of biotic interactions during early invasion of a montane meadow

    Science.gov (United States)

    J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones

    2012-01-01

    Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...

  16. Pollination biology in a tropical high-altitude grassland in Brazil: Interactions at the community level

    OpenAIRE

    Freitas, L; Sazima, M

    2006-01-01

    Surveys of local assemblages of plants and their pollinators are among the most useful ways to evaluate specialization in pollination and to discuss the patterns of plant-pollinator interactions among ecosystems. The high-altitude grasslands from southeastern Brazil constitute diminutive island-like formations surrounded by montane rainforests. We registered the floral traits of 124 species from the Serra da Bricaina grasslands (about 60% of the animal-pollinated species of this flora), and d...

  17. Influence of hiking trails on montane birds

    Science.gov (United States)

    William V. Deluca; David I. King

    2014-01-01

    Montane forests contribute significantly to regional biodiversity. Long-term monitoring data, often located along hiking trails, suggests that several indicator species of this ecosystem have declined in recent decades. Declining montane bird populations have been attributed to anthropogenic stressors such as climate change and atmospheric deposition. Several studies...

  18. Rainfall, fog and throughfall dynamics in a sub-tropical ridge-top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain)

    NARCIS (Netherlands)

    García-Santos, G.; Bruijnzeel, L.A.

    2011-01-01

    Mixed tree-heath/beech forest is a type of subtropical montane cloud forest found on wind- and fog-exposed ridges in the Canary Islands. With a dry season of 5 months and an annual precipitation of 600-700 mm, the extra water inputs through fog interception assume particular importance in this

  19. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  20. Atmospheric mercury inputs in montane soils increase with elevation: evidence from mercury isotope signatures.

    Science.gov (United States)

    Zhang, Hua; Yin, Run-sheng; Feng, Xin-bin; Sommar, Jonas; Anderson, Christopher W N; Sapkota, Atindra; Fu, Xue-wu; Larssen, Thorjørn

    2013-11-25

    The influence of topography on the biogeochemical cycle of mercury (Hg) has received relatively little attention. Here, we report the measurement of Hg species and their corresponding isotope composition in soil sampled along an elevational gradient transect on Mt. Leigong in subtropical southwestern China. The data are used to explain orography-related effects on the fate and behaviour of Hg species in montane environments. The total- and methyl-Hg concentrations in topsoil samples show a positive correlation with elevation. However, a negative elevation dependence was observed in the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) signatures of Hg isotopes. Both a MIF (Δ(199)Hg) binary mixing approach and the traditional inert element method indicate that the content of Hg derived from the atmosphere distinctly increases with altitude.

  1. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  2. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  3. Radiation mutagenesis of subtropic plants

    International Nuclear Information System (INIS)

    Kerkadze, I.G.

    1987-01-01

    Possibilities of expansion of subtropic plant changeability and development of new gene bank for future selection-genetic studies are detected. New trends of radiation mutagenesis of subtropic plants are formulated as results of studies during many years. A lot of mutants is subjected to sufficient tests, and concrete results are obtained with the help of these tests for definite species. Summing genetic and selection estimations of the results, it is possible to make the conclusion that mutant selection represents one of the powerful methods of preparation of productive and qualitative species of subtropic plants, which are successfully introduced into practice

  4. Estimation of canopy water interception of a near-tropical montane cloud forest in Taiwan

    Science.gov (United States)

    Apurva, B.; Huang, C. Y.; Zhang, J.

    2017-12-01

    Tropical and subtropical montane cloud forests are some of the rarest and least studied ecosystems. Due to the frequent immersion of fog water with high humidity, these zones are major water sources for lowland environments and habitats for many fauna and flora. Their dependence on cloud water leaves them highly susceptible to the effects of climate change. Studies have been conducted to quantify the characteristics of the low altitude clouds such as spatial dynamics, cloud top and base heights, occurrence frequency or immersion duration. In this study, we carried out a field measurement to estimate canopy water interception (CWI), which is directly utilized by the ecosystems. The study site was a 61 ha near-tropical hinoki cypress montane cloud forest plantation in northern Taiwan at 1705 m asl. Leaves of CHOB were clipped, air-dried and attached to trees at three different canopy depths from the top to the base of canopies along a high tower. The samples were weighed before and after the occurrence of a fog event. In addition, a cylinder shaped fog gauge was installed at the ground level next to the tower to assess amount of fog water penetrating the canopy layer. After afternoon fog events with the duration of 60 minutes, we found that there was an apparent trend of decline of CWI from top (mean ± standard deviation = 0.023 g ± 0.0015 g), middle (0.021 g ± 0.0015 g) to the bottom (0.013 g ± 0.0015 g) of the canopies. Since the study site is a coniferous evergreen forest plantation with a relatively homogenous surface through seasons, with the background knowledge of the average leaf area index of 4.4, we estimated that this 61 ha site harvested 28.2 Mg of CWI for a daily fog event. We also found that no clear evidence of CWI was observed below the canopies by referring to bi-weekly records from the cylinder shaded fog gauge. Therefore, we can assume that the majority fog water was intercepted by the hinoki cypress canopy layer. This study demonstrates that a

  5. Grassland Growth in Response to Climate Variability in the Upper Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Sawaid Abbas

    2015-08-01

    Full Text Available Grasslands in the upper Indus basin provide a resource base for nomadic livestock grazing which is one of the major traditional livelihood practices in the area. The study presents climate patterns, grassland phenology, productivity and spatio-temporal climate controls on grassland growth using satellite data over the upper Indus basin of the Himalayan region, Pakistan. Phenology and productivity metrics of the grasses were estimated using a combination of derivative and threshold methods applied on fitted seasonal vegetation indices data over the period of 2001–2011. Satellite based rainfall and land surface temperature data are considered as representative explanatory variables to climate variability. The results showed distinct phenology and productivity patterns across four bioclimatic regions: (i humid subtropical region (HSR—late start and early end of season with short length of season and low productivity (ii temperate region (TR—early start and late end of season with higher length of season and moderate productivity (iii sub alpine region (SAR—late start and late end of season with very high length of season and the most productive grasses, and (iv alpine region (AR—late start and early end of season with small length of season and least productive grasses. Grassland productivity is constrained by temperature in the alpine region and by rainfall in the humid sub-tropical region. Spring temperature, winter and summer rainfall has shown significant and varied impact on phenology across different altitudes. The productivity is being influenced by summer and annual rainfall in humid subtropical regions, spring temperature in alpine and sub-alpine regions and both temperature and rainfall are contributing in temperate regions. The results revealing a strong relationship between grassland dynamics and climate variability put forth strong signals for drawing more scientific management of rangelands in the area.

  6. Grassland biodiversity can pay.

    Science.gov (United States)

    Binder, Seth; Isbell, Forest; Polasky, Stephen; Catford, Jane A; Tilman, David

    2018-04-10

    The biodiversity-ecosystem functioning (BEF) literature provides strong evidence of the biophysical basis for the potential profitability of greater diversity but does not address questions of optimal management. BEF studies typically focus on the ecosystem outputs produced by randomly assembled communities that only differ in their biodiversity levels, measured by indices such as species richness. Landholders, however, do not randomly select species to plant; they choose particular species that collectively maximize profits. As such, their interest is not in comparing the average performance of randomly assembled communities at each level of biodiversity but rather comparing the best-performing communities at each diversity level. Assessing the best-performing mixture requires detailed accounting of species' identities and relative abundances. It also requires accounting for the financial cost of individual species' seeds, and the economic value of changes in the quality, quantity, and variability of the species' collective output-something that existing multifunctionality indices fail to do. This study presents an assessment approach that integrates the relevant factors into a single, coherent framework. It uses ecological production functions to inform an economic model consistent with the utility-maximizing decisions of a potentially risk-averse private landowner. We demonstrate the salience and applicability of the framework using data from an experimental grassland to estimate production relationships for hay and carbon storage. For that case, our results suggest that even a risk-neutral, profit-maximizing landowner would favor a highly diverse mix of species, with optimal species richness falling between the low levels currently found in commercial grasslands and the high levels found in natural grasslands.

  7. Transpiration of shrub species, Alnus firma under changing atmospheric environments in montane area, Japan

    Science.gov (United States)

    Miyazawa, Y.; Maruyama, A.; Inoue, A.

    2014-12-01

    In the large caldera of Mt. Aso in Japan, grasslands have been traditionally managed by the farmers. Due to changes in the social structure of the region, a large area of the grassland has been abandoned and was invaded by the shrubs with different hydrological and ecophysiological traits. Ecophysiological traits and their responses to seasonally changing environments are fundamental to project the transpiration rates under changing air and soil water environments, but less is understood. We measured the tree- and leaf-level ecophysiological traits of a shrub, Alnus firma in montane region where both rainfall and soil water content drastically changes seasonally. Sap flux reached the annual peak in evaporative summer (July-August) both in 2013 and 2014, although the duration was limited within a short period due to the prolonged rainy season before summer (2014) and rapid decrease in the air vapor pressure deficit (D) in late summer. Leaf ecophysiological traits in close relationship with gas exchange showed modest seasonal changes and the values were kept at relatively high levels typical in plants with nitrogen fixation under nutrient-poor environments. Stomatal conductance, which was measured at leaf-level measurements and sap flux measurements, showed responses to D, which coincided with the theoretical response for isohydric leaves. A multilayer model, which estimates stand-level transpiration by scaling up the leaf-level data, successfully captured the temporal trends in sap flux, suggesting that major processes were incorporated. Thus, ecophysiological traits of A. firma were characterized by the absence of responses to seasonally changing environments and the transpiration rate was the function of the interannually variable environmental conditions.

  8. Forest health in Canada, Montane cordillera ecozone 2003

    Energy Technology Data Exchange (ETDEWEB)

    Allen, E.; Garbutt, R.; Hirvonen, H.; Pinnell, H.

    2004-07-01

    This paper describes the key forest health issues affecting the 6 main forest types in Canada's Montane Cordillera ecozone in the central interior of British Columbia and the Alberta Foothills. In order to protect and conserve biological diversity, the Canadian Council of Forest Ministers adopted national criteria to measure sustainable forest management. This report describes the Montane Cordillera landscape conditions, pre-industrial ecological influences, current ecological influences, and the impact of invasive alien insects and diseases on the diversity of tree species. Pine forests in the Montane Cordillera ecozone are threatened by the mountain pine beetle. Fire suppression has also resulted in ecological changes to forests in the Montane Cordillera, including an increase in Douglas-firs, gradual replacement of Lodgepole pine forests, and reduced health of Ponderosa pine ecosystems. Alien insects are being monitored by provincial forestry agencies through annual surveys. They are also being controlled through localized treatment programs. The impact of land use practices such as forest harvesting on forest structure and composition was also addressed. It was noted that the unrestricted movement of wood and forestry products also increases the threat of invasive alien diseases and insects. The trees in this ecozone have not been damaged by air pollution. refs., tabs., figs.

  9. Structure and Regeneration Status of Gedo Dry Evergreen Montane ...

    African Journals Online (AJOL)

    This study was conducted on Gedo Dry Evergreen Montane Forest in West Shewa Zone of Oromia National Regional State, 182-196 km west of Addis Ababa (Finfinne). The objective of the study was to determine structure and regeneration status of Gedo Forest. All trees and shrubs with Diameter at Breast Height (DBH) ...

  10. The montane forest associated amphibian species of the Taita Hills ...

    African Journals Online (AJOL)

    The montane forest associated amphibian species of the Taita Hills, Kenya. ... They are surrounded by the dry Tsavo plains. ... The biodiversity importance of the Taita Hills lies with the number of endemics per unit of area of remaining forest, ...

  11. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    Science.gov (United States)

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  12. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Science.gov (United States)

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  13. Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region.

    Science.gov (United States)

    Hofmann, Katrin; Praeg, Nadine; Mutschlechner, Mira; Wagner, Andreas O; Illmer, Paul

    2016-02-01

    Although methanogens were recently discovered to occur in aerated soils, alpine regions have not been extensively studied for their presence so far. Here, the abundance of archaea and the methanogenic guilds Methanosarcinales, Methanococcales, Methanobacteriales, Methanomicrobiales and Methanocella spp. was studied at 16 coniferous forest and 14 grassland sites located at the montane and subalpine belts of the Northern Limestone Alps (calcareous) and the Austrian Central Alps (siliceous) using quantitative real-time PCR. Abundance of archaea, methanogens and the methanogenic potentials were significantly higher in grasslands than in forests. Furthermore, methanogenic potentials of calcareous soils were higher due to pH. Methanococcales, Methanomicrobiales and Methanocella spp. were detected in all collected samples, which indicates that they are autochthonous, while Methanobacteriales were absent from 4 out of 16 forest soils. Methanosarcinales were absent from 10 out of 16 forest soils and 2 out of 14 grassland soils. Nevertheless, together with Methanococcales they represented the majority of the 16S rRNA gene copies quantified from the grassland soils. Contrarily, forest soils were clearly dominated by Methanococcales. Our results indicate a higher diversity of methanogens in well-aerated soils than previously believed and that pH mainly influences their abundances and activities. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. BIOGEOGRAPHICAL IMPLICATIONS OF SOME PLANT SPECIES FROM A TROPICAL MONTANE RAIN FOREST IN SOUTHERN YUNNAN

    Institute of Scientific and Technical Information of China (English)

    ZHU Hua

    2004-01-01

    A pristine montane rain forest was recently discovered from Mengsong of Xishuangbanna in the southern Yunnan.It attracts botanists that many primitive plant taxa across various life forms were co-existed in the montane rain forest.In order to know the biogeography of the montane rain forest,distribution patterns of some species of biogeographical importance from the montane forest were enumerated and their biogeographical implications were discussed with geological explanation.It was concluded that the montane rain forest in the southern Yunnan has strong affinity to montane rain forests in Sumatra or Southeast Asia in broad sense.It was tentatively suggested that Sumatra could be once connected to Myanmar and drifted away due to northward movement of continental Asia by bumping of India plate.

  15. Protecting Mongolia's grassland steppes | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... windy grassland region is severely damaged, desertification can quickly set in. ... to marketing to the sound use of (grassland) resources," explains Ykhanbai, who ... is going to require improvement in the skills of researchers, adds Ykhanbai.

  16. Appreciation of grassland functions by European stakeholders

    NARCIS (Netherlands)

    Pol, van den A.; Golinski, P.; Hennessy, D.; Huyghe, C.; Parente, G.; Peyraud, J.L.

    2014-01-01

    In order to promote sustainable and competitive ruminant production systems, the European Multisward project was aimed at improving farmer trust in grassland and grassland mixtures. A questionnaire on grassland functions was submitted in eight languages, in order to better understand the importance

  17. Birds, Montane forest, State of Rio de Janeiro, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Foster, A.

    2009-01-01

    Full Text Available Field surveys in montane Atlantic forest of Rio de Janeiro state, Brazil, provided a list of 82 bird species in four sitesvisited. Our protocol relied on standardized use of mist nets and observations. The birds recorded include 40 Atlanticforest endemics, three globally and two nationally Vulnerable species, and two regionally Endangered species. Data onspecies elevation are included and discussed. This work enhances baseline knowledge of these species to assist futurestudies in these poorly understood, but biologically important areas.

  18. Predictors of breeding site occupancy by amphibians in montane landscapes

    Science.gov (United States)

    Groff, Luke A.; Loftin, Cynthia S.; Calhoun, Aram J.K.

    2017-01-01

    Ecological relationships and processes vary across species’ geographic distributions, life stages and spatial, and temporal scales. Montane landscapes are characterized by low wetland densities, rugged topographies, and cold climates. Consequently, aquatic-dependent and low-vagility ectothermic species (e.g., pool-breeding amphibians) may exhibit unique ecological associations in montane landscapes. We evaluated the relative importance of breeding- and landscape-scale features associated with spotted salamander (Ambystoma maculatum) and wood frog (Lithobates sylvaticus) wetland occupancy in Maine's Upper Montane-Alpine Zone ecoregion, and we determined whether models performed better when the inclusive landscape-scale covariates were estimated with topography-weighted or circular buffers. We surveyed 135 potential breeding sites during May 2013–June 2014 and evaluated environmental relationships with multi-season implicit dynamics occupancy models. Breeding site occupancy by both species was influenced solely by breeding-scale habitat features. Spotted salamander occupancy probabilities increased with previous or current beaver (Castor canadensis) presence, and models generally were better supported when the inclusive landscape-scale covariates were estimated with topography-weighted rather than circular buffers. Wood frog occupancy probabilities increased with site area and percent shallows, but neither buffer type was better supported than the other. Model rank order and support varied between buffer types, but model inferences did not. Our results suggest pool-breeding amphibian conservation in montane Maine include measures to maintain beaver populations and large wetlands with proportionally large areas of shallows ≤1-m deep. Inconsistencies between our study and previous studies substantiate the value of region-specific research for augmenting species’ conservation management plans and suggest the application of out-of-region inferences may promote

  19. Long-term effects of elevated atmospheric CO2 on species composition and productivity of a southern African C4 dominated grassland in the vicinity of a CO2 exhalation.

    NARCIS (Netherlands)

    Stock, W.D.; Ludwig, F.; Morrow, C.; Midgley, G.F.; Wand, S.J.E.; Allsopp, N.; Bell, T.L.

    2005-01-01

    We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4

  20. Monitoring in South African grasslands

    CSIR Research Space (South Africa)

    Mentis, MT

    1984-12-01

    Full Text Available The main purpose of this document is to propose how ecological monitoring might be developed in the Grassland Biome of South Africa. Monitoring is defined as the maintenance of regular surveillance to test the null hypothesis of no change...

  1. Research on the Mechanism of Cross Regional Grassland Ecological Compensation

    Science.gov (United States)

    Yang, Ran; Ma, Jun

    2018-01-01

    In recent years, grassland environmental damage has become serious, and grassland resources protection task has become heavy, grassland ecological compensation has become an effective way to solve this problem; but the current grassland ecological compensation standards were low, the effect is poor. The fundamental reason is the model of administrative division destroys the integrity of grassland. Based on the analysis of the status quo of grassland compensation, this paper tries to protect the grassland integrity, breaks the administrative division restriction, implements the space regulation, constructs the framework of cross-regional grassland ecological compensation mechanism, describes its operation process. It provides new way to realize the sustainable development of the grassland environment.

  2. Human used upper montane ecosystem in the Horton Plains, central Sri Lanka - a link to Lateglacial and early Holocene climate and environmental changes

    Science.gov (United States)

    Premathilake, Rathnasiri

    2012-09-01

    This study utilizes radiocarbon-dated pollen, spores, Sphagnum spp. macrofossils and total organic carbon proxies to examine variability of past climate, environment and human activity in montane rainforest, grassland and wetland of the Horton Plains (HP), central Sri Lanka since the Last Glacial Maximum (LGM). The LGM is largely characterized by grasslands and xerophytic herbs dominated open habitats. Arid-LGM punctuated climatic ameliorations, which took place in short episodes. Humans appear to have reached the HP ecosystem after 18,000 cal yrs BP occasionally. The first Intertropical Convergence Zone (ITCZ) induced changes in South West Monsoon (SWM) rains occurred at low latitudes between 16,200 and 15,900 cal yrs BP suggesting an onset of monsoon rains. After this event, monsoon rains weakened for several millennia except the period 13,700-13,000 cal yrs BP, but human activity seems to have continued with biomass burning and clearances by slash and burn. Very large size grass pollen grains, which are morphologically similar to pollen from closer forms of Oryza nivara, were found after 13,800 cal yrs BP. Early Holocene extreme and abrupt climate changes seem to have promoted the forms of O. nivara populations in association with humans. New data from the HP would therefore be most interesting to investigate the dispersal and use of domesticated rice in South Asia.

  3. Regional Variation in the Temperature Sensitivity of Soil Organic Matter Decomposition in China's Forests and Grasslands

    Science.gov (United States)

    Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.

    2017-12-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  4. Structure and floristic similarities of upper montane forests in Serra Fina mountain range, southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Leonardo Dias Meireles

    2015-03-01

    Full Text Available The upper montane forests in the southern and southeastern regions of Brazil have an unusual and discontinuous geographic distribution at the top of the Atlantic coastal mountain ranges. To describe the floristic composition and structure of the Atlantic Forest near its upper altitudinal limit in southeastern Brazil, 30 plots with 10 × 10 m were installed in three forest sites between 2,200 and 2,300 m.a.s.l. at Serra Fina. The floristic composition and phytosociological structure of this forest were compared with other montane and upper montane forests. In total, 704 individuals were included, belonging to 24 species, 15 families, and 19 genera. Myrsinaceae, Myrtaceae, Symplocaceae, and Cunoniaceae were the most important families, and Myrsine gardneriana, Myrceugenia alpigena, Weinmannia humilis, and Symplocos corymboclados were the most important species. The three forest sites revealed differences in the abundance of species, density, canopy height, and number of stems per individual. The upper montane forests showed structural similarities, such as lower richness, diversity, and effective number of species, and they tended to have higher total densities and total dominance per hectare to montane forests. The most important species in these upper montane forests belong to Austral-Antartic genera or neotropical and pantropical genera that are typical of montane areas. The high number of species shared by these forests suggests past connections between the vegetation in southern Brazilian high-altitude areas.

  5. Unveiling the Hidden Bat Diversity of a Neotropical Montane Forest.

    Directory of Open Access Journals (Sweden)

    Gloriana Chaverri

    Full Text Available Mountain environments, characterized by high levels of endemism, are at risk of experiencing significant biodiversity loss due to current trends in global warming. While many acknowledge their importance and vulnerability, these ecosystems still remain poorly studied, particularly for taxa that are difficult to sample such as bats. Aiming to estimate the amount of cryptic diversity among bats of a Neotropical montane cloud forest in Talamanca Range-south-east Central America-, we performed a 15-night sampling campaign, which resulted in 90 captured bats belonging to 8 species. We sequenced their mitochondrial cytochrome c oxidase subunit I (COI and screened their inter- and intraspecific genetic variation. Phylogenetic relations with conspecifics and closely related species from other geographic regions were established using Maximum Likelihood and Bayesian inference methods, as well as median-joining haplotype networks. Mitochondrial lineages highly divergent from hitherto characterized populations (> 9% COI dissimilarity were found in Myotis oxyotus and Hylonycteris underwoodi. Sturnira burtonlimi and M. keaysi also showed distinct mitochondrial structure with sibling species and/or populations. These results suggest that mountains in the region hold a high degree of endemicity potential that has previously been ignored in bats. They also warn of the high extinction risk montane bats may be facing due to climatic change, particularly in isolated mountain systems like Talamanca Range.

  6. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    NARCIS (Netherlands)

    Du, Bingzhen; Zhen, Lin; Yan, Huimin; Groot, de Dolf

    2016-01-01

    Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998) a series of grassland conservation and management policies that restrict the use of

  7. Long-term time series of legume cycles in a seminatural montane grassland: evidence for nitrogen-driven grass dynamics?

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Mayerová, Hana; Skálová, Hana; Hadincová, Věroslava; Pecháčková, Sylvie; Krahulec, František

    2017-01-01

    Roč. 31, č. 7 (2017), s. 1430-1440 ISSN 0269-8463 R&D Projects: GA ČR(CZ) GA17-05506S; GA ČR GA13-17118S Institutional support: RVO:67985939 Keywords : C : N ratio * legume selfinhibition * dynamic linear model Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.630, year: 2016

  8. NDVI and meteorological data as indicators of the Pampa biome natural grasslands growth

    Directory of Open Access Journals (Sweden)

    Denise Cybis Fontana

    2018-04-01

    Full Text Available ABSTRACT The present study aimed to characterize the dynamics of NDVI and meteorological conditions, relating both to the annual dynamics of biomass accumulation in natural pastures of the Pampa biome as a way of subsidizing growth modeling. Forage accumulation rate data from a long-term experiment, NDVI data from the MODIS images, and meteorological data measured at the surface were used. We verify that the agrometeorological element associated to the accumulation of forage in the natural grasslands is different according to the season, which is typical of the subtropical climate. Winter is the critical season for livestock production due to the lower forage accumulation rate and lower values of NDVI, conditioned by the decrease of solar radiation and air temperature. In the summer, the limiting factor to forage accumulation is the hydric condition. It was also verified that the variability in the growth of grasslands can be associated with the ENSO phenomenon, being the El Niño favorable and the La Niña unfavorable, especially in the spring-summer period. Considering the verified associations, spectral indices combined with agrometeorological elements are recommended to the adjustment of models of forage accumulation in the Pampa biome natural grasslands.

  9. Changes in productivity of grassland with ageing

    NARCIS (Netherlands)

    Hoogerkamp, M.

    1984-01-01

    The productivity of grassland may change greatly with ageing. Frequently, a productive ley period, occurring in the first time after (re)seeding, is followed by a period in which productivity decreases. Under conditions favourable to grassland this may be temporary. A production level

  10. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  11. Effects of forest expansion on mountain grassland

    DEFF Research Database (Denmark)

    Guidi, Claudia; Magid, Jakob; Rodeghiero, Mirco

    2014-01-01

    Background and aims. Grassland abandonment followed by forest succession is the dominant land-use change in the European Alps. We studied the impact of current forest expansion on mountain grassland on changes in physical soil organic carbon (SOC) fractions along a land-use and management gradient......, focusing on changes in aggregate stability and particulate organic matter (POM). Methods. Four successional stages were investigated: managed grassland, two transitional phases in which grassland abandonment led to colonization by Picea abies (L.) Karst., and old mixed forest dominated by Fagus sylvatica L....... Results. The dimension of aggregates assessed by aggregate size fractionation tended to increase, whereas SOC allocation to stable aggregates assessed by sizedensity fractionation decreased following conversion of grassland to forest (e.g. from 81 to 59 % in the 0–5 cm layer). The amount of SOC stored...

  12. Runoff and soil erosion of field plots in a subtropical mountainous region of China

    Science.gov (United States)

    Fang, N. F.; Wang, L.; Shi, Z. H.

    2017-09-01

    Anthropogenic pressure coupled with strong precipitation events and a mountainous landscape have led to serious soil erosion and associated problems in the subtropical climate zone of China. This study analyzes 1576 rainfall-runoff-soil loss events at 36 experimental plots (a total of 148 plot-years of data) under a wide range of conditions in subtropical mountainous areas of China where slope farming is commonly practiced. The plots, which have standardized dimensions, represent five common types of land use and have four different slopes. Event-based analyses show that almost half of the total rainfall caused soil erosion in the study area. The dominant factor controlling the runoff coefficient is the slope gradient rather than the land use type. The maximum soil lossfor crop plots under steep tillage (35°) is 5004 t km-2 for a single event. Among the common local crops, the average soil loss values increase in the following order: buckwheat soil loss increase in the following order: red clover soil loss is caused by a small number of extreme events. The annual average soil loss of the 44 plots ranges from 19 to 4090 t km-2 year-1. The annual soil loss of plots of different land use types decrease in the following order: bare land (1533 t km-2 year-1) > cropland (1179 t km-2 year-1) > terraced cropland (1083 t km-2 year-1) > orchard land (1020 t km-2 year-1) > grassland (762 t km-2 year-1) > terraced orchard land (297 t km-2 year-1) > forest and grassland (281 t km-2 year-1).

  13. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  14. Effects of tropical montane forest disturbance on epiphytic macrolichens

    International Nuclear Information System (INIS)

    Benítez, Ángel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-01-01

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for “shade-adapted lichens”, while the richness of “heliophytic lichens” increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: ► Tropical montane forest disturbance drastically reduced macrolichen diversity. ► Species loss was most severe for the “shade-adapted lichens” because high radiation is harmful to them. ► In secondary forests lichen diversity of native forests was not regenerated. ► The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  15. Variability of annual CO2 exchange from Dutch grasslands

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Jacobs, A.F.G.; Bosveld, F.C.; Hendriks, D.M.D.; Hensen, A.; Kroon, P.; Moors, E.J.; Nol, L.; Schrier-Uijl, A.P.; Veenendaal, E.M.

    2007-01-01

    An intercomparison is made of the Net Ecosystem Exchange of CO2, NEE, for eight Dutch grassland sites: four natural grasslands, two production grasslands and two meteorological stations within a rotational grassland region. At all sites the NEE was determined during at least 10 months per site,

  16. Satellite-based assessment of grassland yields

    Science.gov (United States)

    Grant, K.; Siegmund, R.; Wagner, M.; Hartmann, S.

    2015-04-01

    Cutting date and frequency are important parameters determining grassland yields in addition to the effects of weather, soil conditions, plant composition and fertilisation. Because accurate and area-wide data of grassland yields are currently not available, cutting frequency can be used to estimate yields. In this project, a method to detect cutting dates via surface changes in radar images is developed. The combination of this method with a grassland yield model will result in more reliable and regional-wide numbers of grassland yields. For the test-phase of the monitoring project, a study area situated southeast of Munich, Germany, was chosen due to its high density of managed grassland. For determining grassland cutting robust amplitude change detection techniques are used evaluating radar amplitude or backscatter statistics before and after the cutting event. CosmoSkyMed and Sentinel-1A data were analysed. All detected cuts were verified according to in-situ measurements recorded in a GIS database. Although the SAR systems had various acquisition geometries, the amount of detected grassland cut was quite similar. Of 154 tested grassland plots, covering in total 436 ha, 116 and 111 cuts were detected using CosmoSkyMed and Sentinel-1A radar data, respectively. Further improvement of radar data processes as well as additional analyses with higher sample number and wider land surface coverage will follow for optimisation of the method and for validation and generalisation of the results of this feasibility study. The automation of this method will than allow for an area-wide and cost efficient cutting date detection service improving grassland yield models.

  17. [Nutrition value of tropical and subtropical fruits].

    Science.gov (United States)

    Dubtsov, G G; Bessonov, V V; Baĭkov, V G; Makhova, N N; Sheviakova, L V; Bogachuk, M N; Baĭgarin, E K; Iao Bru, Lazar

    2013-01-01

    The article is devoted to the study of the chemical composition of tropical and subtropical fruit (avocado, papaya and mango), which are now in great numbers are on the appeared on the Russian market. Due to use technology tropical and subtropical fruits can be implemented in almost all areas and regions of the country. Relatively low cost makes these products quite popular among the people. In domestic scientific literature there are no systematic data describing the chemical composition of these tropical and subtropical fruits sold in the domestic market, while the information needed to calculate food and energy value of diets and culinary products derived from tropical and subtropical fruit. Avocado fruits are sources of insoluble dietary fiber content of which was equal to 12.2%, as well as minerals. The study of the fatty acid composition of lipids avocados showed high content of oleic acid fruit, which accounts for 53.2% of total fatty acids in these fruits. Which makes them a valuable source of unsaturated fatty acids.

  18. [Climatic suitability of citrus in subtropical China].

    Science.gov (United States)

    Duan, Hai-Lai; Qian, Huai-Sui; Li, Ming-Xia; Du, Yao-Dong

    2010-08-01

    By applying the theories of ecological suitability and the methods of fuzzy mathematics, this paper established a climatic suitability model for citrus, calculated and evaluated the climatic suitability and its spatiotemporal differences for citrus production in subtropical China, and analyzed the climatic suitability of citrus at its different growth stages and the mean climatic suitability of citrus in different regions of subtropical China. The results showed that the citrus in subtropical China had a lower climatic suitability and a higher risk at its flower bud differentiation stage, budding stage, and fruit maturity stage, but a higher climatic suitability and a lower risk at other growth stages. Cold damage and summer drought were the key issues affecting the citrus production in subtropical China. The citrus temperature suitability represented a latitudinal zonal pattern, i. e., decreased with increasing latitude; its precipitation suitability was high in the line of "Sheyang-Napo", medium in the southeast of the line, low in the northwest of the line, and non in high mountainous area; while the sunlight suitability was in line with the actual duration of sunshine, namely, higher in high-latitude areas than in low-latitude areas, and higher in high-altitude areas than in plain areas. Limited by temperature factor, the climatic suitability was in accordance with temperature suitability, i. e., south parts had a higher suitability than north parts, basically representing latitudinal zonal pattern. From the analysis of the inter-annual changes of citrus climatic suitability, it could be seen that the citrus climatic suitability in subtropical China was decreasing, and had obvious regional differences, suggesting that climate change could bring about the changes in the regions suitable for citrus production and in the key stages of citrus growth.

  19. Description of the Grassland Biome Project

    CSIR Research Space (South Africa)

    Mentis, MT

    1982-10-01

    Full Text Available The objectives, organization and research programme of the Grassland Biome Project are described against a background of the biome's ecological characteristics and environmental problems. Four principal research topics wil 1 be focused upon: (i...

  20. Soil disturbance as a grassland restoration measure

    DEFF Research Database (Denmark)

    Schnoor, Tim; Bruun, Hans Henrik; Olsson, Pål Axel

    2015-01-01

    Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success...... to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration...

  1. Population expanding with the phalanx model and lineages split by environmental heterogeneity: a case study of Primula obconica in subtropical China.

    Directory of Open Access Journals (Sweden)

    Hai-Fei Yan

    Full Text Available Current and historical events have both affected the current distribution patterns and intraspecific divergence of plants. While numerous studies have focused on the Qinghai-Tibetan Plateau (QTP, the impacts of such events on the flora of subtropical China remain poorly understood. Subtropical China is famous for its highly complex topography and the limited impact from glaciation during the Pleistocene; this may have resulted in a different genetic legacy for species in this region compared to fully glaciated areas.We used plastid and nuclear DNA sequence data and distribution modeling to analyze the divergence patterns and demographic history of Primula obconica Hance, a widespread herbaceous montane species in subtropical China. The phylogenetic analysis revealed two major lineages (lineage A and lineage B, representing a west-east split into the Yunnan and Eastern groups, and the Sichuan and Central groups, respectively. The Eastern and Central groups comprised relatively new derived haplotypes. Nested Clade Analysis and Bayesian Skyline Plot analyses both indicated that P. obconica mainly experienced a gradual expansion of populations. In addition, the simulated distribution of P. obconica during the Last Glacial Maximum was slightly larger than its present-day distribution.Our results are the first to identify a west-east migration of P. obconica. The gradual expansion pattern and a larger potential distribution range in cold periods detected for P. obconica indicate that the population expansion of this species is consistent with the phalanx model. In addition, the current patterns of genetic differentiation have persisted as a result of the extensive environmental heterogeneity that exists in subtropical China.

  2. Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    NARCIS (Netherlands)

    Loughlin, N.J.D.; Gosling, W.D.; Coe, A.L.; Gulliver, P.; Mothes, P.; Montoya, E.

    2018-01-01

    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accurately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides

  3. Circumscribing campo rupestre – megadiverse Brazilian rocky montane savanas

    Directory of Open Access Journals (Sweden)

    RJV. Alves

    Full Text Available Currently campo rupestre (CR is a name accepted and used internationally by botanists, zoologists, and other naturalists, usually applied to a very specific ecosystem, despite the lack of a consensual published circumscription. We present a tentative geographic circumscription of the term, combining data on climate, geology, geomorphology, soil, flora, fauna and vegetation. The circumscription of campo rupestre proposed herein is based on the following premises: (1 the classification of vegetation is not an exact science, and it is difficult to attain a high degree of consensus to the circumscription of vegetation names; (2 despite this, vegetation classification is useful for conservation and management. It is thus desirable to circumscribe vegetation types with the greatest attainable precision; (3 there is a need to preserve all montane and rocky vegetation types, regardless of classification, biome, etc; (4 the CRs are formed by a complex mosaic of vegetation types including rock-dwelling, psammophilous, aquatic, epiphytic, and penumbral plant communities. Campos rupestres stricto sensu are a Neotropical, azonal vegetation complex endemic to Brazil, forming a mosaic of rocky mountaintop “archipelagos” inserted within a matrix of zonal vegetation, mainly in the Cerrado and Caatinga provinces of the Brazilian Shield (southeastern, northeastern and central-western regions, occurring mainly above 900 m asl. up to altitudes exceeding 2000 m, having measured annual precipitation between 800 and 1500 mm, and an arid season of two to five months.

  4. Circumscribing campo rupestre - megadiverse Brazilian rocky montane savanas.

    Science.gov (United States)

    Alves, R J V; Silva, N G; Oliveira, J A; Medeiros, D

    2014-05-01

    Currently campo rupestre (CR) is a name accepted and used internationally by botanists, zoologists, and other naturalists, usually applied to a very specific ecosystem, despite the lack of a consensual published circumscription. We present a tentative geographic circumscription of the term, combining data on climate, geology, geomorphology, soil, flora, fauna and vegetation. The circumscription of campo rupestre proposed herein is based on the following premises: (1) the classification of vegetation is not an exact science, and it is difficult to attain a high degree of consensus to the circumscription of vegetation names; (2) despite this, vegetation classification is useful for conservation and management. It is thus desirable to circumscribe vegetation types with the greatest attainable precision; (3) there is a need to preserve all montane and rocky vegetation types, regardless of classification, biome, etc; (4) the CRs are formed by a complex mosaic of vegetation types including rock-dwelling, psammophilous, aquatic, epiphytic, and penumbral plant communities. Campos rupestres stricto sensu are a Neotropical, azonal vegetation complex endemic to Brazil, forming a mosaic of rocky mountaintop "archipelagos" inserted within a matrix of zonal vegetation, mainly in the Cerrado and Caatinga provinces of the Brazilian Shield (southeastern, northeastern and central-western regions), occurring mainly above 900 m asl. up to altitudes exceeding 2000 m, having measured annual precipitation between 800 and 1500 mm, and an arid season of two to five months.

  5. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Van Dasselaar, A. [Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands); Oenema, O. [NMI, Wageningen (Netherlands)

    1995-11-01

    Net methane (CH{sub 4}) emissions from managed grassland on peat soils in the Netherlands have been monitored with vented closed flux chambers in the period January - June 1994. Net CH{sub 4} emissions from two intensively managed grasslands were low, in general less than 0.1 mg CH{sub 4} m{sup -2} d{sup -l}. On these sites, the effect of management was negligibly small. CH{sub 4} emission from three extensively managed grasslands in a nature preserve ranged from 0 to 185 mg CH{sub 4} m{sup -2} d{sup -l}. The results presented here indicate that CH{sub 4} emissions are 2-3 orders of magnitude higher on extensively managed grasslands than on intensively managed grasslands. 2 figs., 6 refs.

  6. Plutonium in a grassland ecosystem

    International Nuclear Information System (INIS)

    Little, C.A.

    1976-08-01

    A study was made of plutonium contamination of grassland at the Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geographical areas; whether or not the predominant isotopes, 238 Pu and 239 Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for Pu analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99 percent of the total plutonium was contained in the soil and the concentrations were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes

  7. Preliminary Research on Grassland Fine-classification Based on MODIS

    International Nuclear Information System (INIS)

    Hu, Z W; Zhang, S; Yu, X Y; Wang, X S

    2014-01-01

    Grassland ecosystem is important for climatic regulation, maintaining the soil and water. Research on the grassland monitoring method could provide effective reference for grassland resource investigation. In this study, we used the vegetation index method for grassland classification. There are several types of climate in China. Therefore, we need to use China's Main Climate Zone Maps and divide the study region into four climate zones. Based on grassland classification system of the first nation-wide grass resource survey in China, we established a new grassland classification system which is only suitable for this research. We used MODIS images as the basic data resources, and use the expert classifier method to perform grassland classification. Based on the 1:1,000,000 Grassland Resource Map of China, we obtained the basic distribution of all the grassland types and selected 20 samples evenly distributed in each type, then used NDVI/EVI product to summarize different spectral features of different grassland types. Finally, we introduced other classification auxiliary data, such as elevation, accumulate temperature (AT), humidity index (HI) and rainfall. China's nation-wide grassland classification map is resulted by merging the grassland in different climate zone. The overall classification accuracy is 60.4%. The result indicated that expert classifier is proper for national wide grassland classification, but the classification accuracy need to be improved

  8. Some Insights on Grassland Health Assessment Based on Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dandan Xu

    2015-01-01

    Full Text Available Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  9. Some insights on grassland health assessment based on remote sensing.

    Science.gov (United States)

    Xu, Dandan; Guo, Xulin

    2015-01-29

    Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.

  10. Assessing the links among environmental contaminants, endocrinology, and parasites to understand amphibian declines in montane regions of Costa Rica.

    Science.gov (United States)

    Leary, Christopher J; Ralicki, Hannah F; Laurencio, David; Crocker-Buta, Sarah; Malone, John H

    2018-01-01

    Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides) than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.

  11. Assessing the links among environmental contaminants, endocrinology, and parasites to understand amphibian declines in montane regions of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Christopher J Leary

    Full Text Available Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.

  12. Importance and functions of European grasslands.

    Science.gov (United States)

    Carlier, L; De Vliegher, A; Van Cleemput, O; Boeckx, P

    2005-01-01

    The European agricultural policy is not simple and needs to accommodate also social and environmental requirements. Grassland will continue to be an important form of land use in Europe, but with increased diversity in management objectives and systems used. Besides its role as basic nutrient for herbivores and ruminants grasslands have opportunities for adding value by exploiting positive health characteristics in animal products from grassland and through the delivery of environmental benefits. In fact grasslands contribute to a high degree to the struggle against erosion and to the regularizing of water regimes, to the purification of fertilizers and pesticides and to biodiversity. Finally they have aesthetic role and recreational function as far as they provide public access that other agricultural uses do not allow. But even for grassland it is very difficult to create a good frame for its different tasks (1) the provision of forage for livestock, (2) protection and conservation of soil and water resources, (3) furnishing a habitat for wildlife, both flora and fauna and (4) contribution to the attractiveness of the landscape. Nevertheless it is the only crop, able to fulfil so many tasks and to fit so many requirements.

  13. [Research progress and trend on grassland agroecology].

    Science.gov (United States)

    Ren, Jizhou; Li, Xianglin; Hou, Fujiang

    2002-08-01

    The connotation, progress, research frontiers and developmental trend of grassland agroecology are discussed in this paper. The interface theory, structure and function, coupling and discordance, and health assessment of grassland agroecosystems were recognized as the four research frontiers of the discipline. There exist three primary interfaces in a grassland agroecosystem, i.e., vegetation-site, grassland-animal and production-management. Research into a series of the ecological processes that occurred at these interfaces is the key to revealing the features of the system behavior. There are four sections in a grassland agroecosystem, i.e., pre-plant, plant, animal and post-biotic sections. System coupling and discordance are the two important concepts to describe interactions among the production sections. System coupling among the sections can lead to system improvement by exerting the potential of system capacity. Health of an ecosystem is a reflection of its structure and function, and health assessment is a measurement of its orderliness and service value.

  14. Drivers of methane uptake by montane forest soils in the Peruvian Andes

    Science.gov (United States)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit

    2016-04-01

    The exchange of methane between the soils of humid tropical forests and the atmosphere is relatively poorly documented. This is particularly true of montane settings where variations between uptake and emission of atmospheric methane have been observed. Whilst most of these ecosystems appear to function as net sinks for atmospheric methane, some act as considerable sources. In regions like the Andes, humid montane forests are extensive and a better understanding of the magnitude and controls on soil-atmosphere methane exchange is required. We report methane fluxes from upper montane cloud forest (2811 - 2962 m asl), lower montane cloud forest (1532 - 1786 m asl), and premontane forest (1070 - 1088 m asl) soils in south-eastern Peru. Between 1000 and 3000 m asl, mean annual air temperature and total annual precipitation decrease from 24 ° C and 5000 mm to 12 ° C and 1700 mm. The study region experiences a pronounced wet season between October and April. Monthly measurements of soil-atmosphere gas exchange, soil moisture, soil temperature, soil oxygen concentration, available ammonium and available nitrate were made from February 2011 in the upper and lower montane cloud forests and July 2011 in the premontane forest to June 2013. These soils acted as sinks for atmospheric methane with mean net fluxes for wet and dry season, respectively, of -2.1 (0.2) and -1.5 (0.1) mg CH4 m-2 d-1 in the upper montane forest; -1.5 (0.2) and -1.4 (0.1) mg CH4 m-2 d-1in the lower montane forest; and -0.3 (0.2) and -0.2 (0.2) mg CH4 m-2 d-1 in the premontane forest. Spatial variations among forest types were related to available nitrate and water-filled pore space suggesting that nitrate inhibition of oxidation or constraints on the diffusional supply of methane to methanotrophic communities may be important controls on methane cycling in these soils. Seasonality in methane exchange, with weaker uptake related to increased water-filled pore space and soil temperature during the wet

  15. Plutonium in a grassland ecosystem

    International Nuclear Information System (INIS)

    Little, C.A.

    1976-01-01

    This study was concerned with plutonium contamination of grassland at the U.S. Energy Research and Development Administration Rocky Flats plant northwest of Denver, Colorado. Of interest were: the definition of major plutonium-containing ecosystem compartments; the relative amounts in those compartments; how those values related to studies done in other geogrphical areas; whether or not the predominant isotopes, 238 Pu and 239 Pu, behaved differently; and what mechanisms might have allowed for the observed patterns of contamination. Samples of soil, litter, vegetation, arthropods, and small mammals were collected for plutonium analysis and mass determination from each of two macroplots. Small aliquots (5 g or less) were analyzed by a rapid liquid scintillation technique and by alpha spectrometry. Of the compartments sampled, greater than 99% of the total plutonium was contained in the soil. The concentrations of plutonium in soil were significantly inversely correlated with distance from the contamination source, depth of the sample, and particle size of the sieved soil samples. The soil data suggested that the distribution of contamination largely resulted from physical transport processes. A mechanism of agglomerated submicron plutonium oxide particles and larger (1-500 μm) host soil particles was proposed. Concentrations of Pu in litter and vegetation were inversely correlated to distance from the source and directly correlated to soil concentrations at the same location. Comparatively high concentration ratios of vegetation to soil suggested wind resuspension of contamination as an important transport mechanism. Arthropod and small mammal samples were highly skewed, kurtotic, and quite variable, having coefficients of variation (standard deviation/mean) as high as 600%. Bone Pu concentrations were lower than other tissues. Hide, GI, and lung were generally not higher in Pu than kidney, liver and muscle

  16. The roles of precipitation regimes on juniper forest encroachment on grasslands in Oklahoma

    Science.gov (United States)

    Wang, J.; Xiao, X.; Qin, Y.

    2017-12-01

    Woody plant encroachment into grasslands has been dominantly explained by fire suppression, grazing and CO2 concentrations in the atmosphere. As different root depths of grasses and trees in soils, increased precipitation intensity was expected to facilitate the woody plant abundance, which was demonstrated by the field precipitation test in a sub-tropical savanna ecosystem. However, it is lacking to compressively examine the roles of precipitation regimes on woody plant encroachment at regional scales based on long-term observation data. This study examined the relationships between changes of precipitation regimes (amounts, frequency and intensity) and dynamics of juniper forest coverage using site-based rainfall data and remote sensing-based juniper forest maps in 1994-2010 over Oklahoma State. Our results showed that precipitation amount and intensity played larger roles than frequency on the juniper forest encroachment into the grassland in Oklahoma, and increased precipitation amount and intensity could facilitate the juniper woody encroachment. This practice based on observation data at the regional scale could be used to support precipitation experiments and model simulations and predicting the juniper forest encroachment.

  17. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    OpenAIRE

    Jens L. Hollberg; Jürgen Schellberg

    2017-01-01

    Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs) has the potential to contribute to solving these ...

  18. Bird communities and biomass yields in potential bioenergy grasslands.

    Directory of Open Access Journals (Sweden)

    Peter J Blank

    Full Text Available Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields, and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.

  19. Using digital photography to examine grazing in montane meadows

    Science.gov (United States)

    McIlroy, Susan K.; Allen-Diaz, Barbara H.; Berg, Alexander C.

    2011-01-01

    Cattle (Bos taurus) numbers on national forests are allocated based on allotment grazing capacity, but spatial patterns of timing and density at smaller scales are difficult to assess. However, it is often in meadows or riparian areas that grazing may affect hydrology, biodiversity, and other important ecosystem characteristics. To explore real-time animal presence in montane meadows we distributed 18 digital cameras across nine sites in the Sierra National Forest, California. Our objectives were to document seasonal and diurnal presence of both cattle and mule deer (Odocoileus hemionus), identify the effects of three fencing treatments on animal distribution, and test digital photography as a tool for documenting cattle presence. We recorded 409 399 images during daylight hours for two grazing seasons, and we identified 5 084 and 24 482 cattle "marks" (instances of animal occurrence) in 2006 and 2007, respectively. Deer presence was much lower, with 331 marks in 2006 and 598 in 2007. Morning cattle presence was highest before 0800 hours both years (13.7% and 15.4% of total marks for 2006 and 2007, respectively). Marks decreased until 1100 hours and then increased around 1400 hours and remained relatively stable until 1900 hours. Marks then rose precipitously, with >20% of total marks recorded after 1900 hours both years. Deer presence was less than 10% per hour until 1800 hours, when >20% of total marks were recorded after this time both years. Among treatments, cattle marks were highest outside fences at partially fenced meadows, and deer were highest within completely fenced meadows. Our experience suggests that cameras are not viable tools for meadow monitoring due to variation captured within meadows and the time and effort involved in image processing and review.

  20. Soil acidification and liming in grassland production and grassland soil fertility in Slovenia

    Directory of Open Access Journals (Sweden)

    Jure ČOP

    2015-12-01

    Full Text Available This paper reviews the evidences on grassland soil acidity and liming in relation to soil processes and herbage production. There is also an outline of the present state of soil acidity and acidity-related traits – contents of organic matter (OM, phosphorus (P and potassium (K in Slovene grassland. In grassland, soil acidification is an ongoing process under humid climate conditions. It is mainly driven by leaching of nutrients, net loss of cations due to retention in livestock products, use of physiologically acid fertilizers, acid rain and N2 fixation. This process is reduced by strong pH buffering capacity of the soil and by physiologically basic fertilizers. Acid grassland soils in Slovenia are widely distributed in spite of the fact that 44% of the total land has developed from a carbonate parent material. Of the 1713 grassland soil samples analysed during 2005-2007 45% were regarded as acid ones (pH < 5.5; in KCl, 57% as soils with very low P status (˂ 6 mg P2O5/100 g soil and 22% as soils with very low K status (˂ 10 mg K2O/100 soil. Increased content of soil organic matter was identified for alpine pastures (˃ 10 % OM in 44% of samples, mainly as a result of low decomposition rate. Liming of acid grassland soils did not always reflect in a higher herbage yield. The cause for this inefficiency is plant composition of grassland. Thus, many grassland plants with relatively high production potential have adapted to acid soil conditions. To illustrate the inconsistent liming effect three researches are reviewed. In the first two researches liming along with fertilizer application did not increase the yield comparing to the fertilized control while in the third research the increase amounted 26 %. Liming improves considerably botanical composition of the acid grassland (e.g. sward where Common Bent – Agrostis tenuis Sibth. – prevails and thus indirectly affects palatability and nutritive value of herbage. Grassland liming has a weak

  1. Grassland ecology and diversity (Ecologia y diversidad de pastizales)

    Science.gov (United States)

    Laurie B. Abbott

    2006-01-01

    Grasslands of the Chihuahuan Desert region are ecologically and economically important. These grasslands are valued for their rangeland, wildlife, watershed, and recreation resources. Biological diversity also raises the value of grassland communities. The potential for multiple uses within the region increases as the diversity of the resource base increases. In order...

  2. Appreciation of the functions of grasslands by Irish stakeholders

    NARCIS (Netherlands)

    Hennessy, D.; Pol-van Dasselaar, van den A.

    2014-01-01

    The European project MultiSward studied the appreciation of different functions of grasslands by European stakeholders. This paper describes the importance of grasslands for stakeholders in Ireland. Ireland currently has approximately 4.6 million ha of grassland, which is 90% of the total utilized

  3. Predation drives nesting success in moist highland grasslands: the ...

    African Journals Online (AJOL)

    By focusing on process-oriented data rather than inventory-type data, this study provides a robust understanding of the effects of agricultural management on grassland bird reproductive output in the moist highland grasslands (MHGs) of South Africa. Four-hundred and four nests of 12 grassland-breeding bird species were ...

  4. COENOLOGICAL SHIFT FOLLOWING FERTILIZATION IN MEDITERRANEAN GRASSLAND

    Directory of Open Access Journals (Sweden)

    ALESSANDRO SERAFINI SAULI

    2006-05-01

    Full Text Available In Rome both meadows of CentraI-European affinity and Mediterranean dry grasslands are presento We studied a site (Parco Regionale Urbano de] Pineto in Rome with very diverse vegetation, where species belonging to both coenologica] groups oceur. Wc fertilized a grassland with a combination of phosphorus (P and nitrogen (N. After fertilization diagDostie species of Helianthemetea guttati (Thcrophytes dccrease while species of MolinioArrhenatheretea (Hemicriptophytes increase. In a climate as that of Rome, transition between Mediterranean (with summer drought and Central European (without summer drought, nutrients availability modulates the distribution of vegetation Classes with respectively Mediterranean or Central-Europe affinities.

  5. Radioecological sensitivity of permanent grasslands

    International Nuclear Information System (INIS)

    Besson, Benoit

    2009-01-01

    The project 'SENSIB' of the Institute for Radiological Protection and Nuclear Safety (IRSN) aims at characterizing and classifying parameters with significant impact on the transfer of radioactive contaminants in the environment. This thesis is focused on permanent grassland areas. Its objectives are the analysis of the activity variations of two artificial radionuclides ( 137 Cs and 90 Sr) in the chain from soil to dairy products as well as the categorization of ecological and anthropogenic parameters, which determine the sensitivity of the studied area. For this study, in situ sampling is carried out in 15 farms in 3 different French regions (Charente, Puy-de-Dome and Jura). The sampling sites are chosen according to their natural variations (geology, altitude and climate) and the soil types. Additionally to the radiologic measurements, geographic, soil and vegetation data as well as data concerning cattle-rearing and cheese manufacturing processes are gathered. From the soil to the grass vegetation, 137 Cs transfer factors vary between 3 x 10-3 and 148 x 10-3 Bq kg-1 (dry weight) per Bq kg-1 (dry weight) (N = 73). Theses transfer factors are significantly higher in the Puy-de-Dome region than in the Jura region. The 137 Cs transfer factor from cattle feed to milk varies from 5.9 x 10-3 to 258 x 10-3 Bq kg-1 (fresh weight) per Bq kg-1 (dry weight) (N = 28). Statistically, it is higher in the Charente region. Finally, the 90 Sr transfer factor from milk to cheese ranges from 3.9 to 12.1. The studied site with the highest factor is the Jura (N = 25). The link between milk and dairy products is the stage with the most 137 Cs and 90 Sr transfers. A nonlinear approach based on a discretization method of the transfer factor with multiple comparison tests admits a classification of the sensitivity factors from soil to grass vegetation. We can determine 20 factors interfering in the 137 Cs transfer into the vegetation, for instance, the clay rate of the soils or a marker

  6. Sustaining the grassland sea: Regional perspectives on identifying, protecting and restoring the Sky Island region's most intact grassland valley landscapes

    Science.gov (United States)

    Gitanjali S. Bodner; Peter Warren; David Gori; Karla Sartor; Steven Bassett

    2013-01-01

    Grasslands of the Sky Islands region once covered over 13 million acres in southeastern Arizona and adjacent portions of New Mexico, Sonora, and Chihuahua. Attempts to evaluate current ecological conditions suggest that approximately two thirds of these remain as intact or restorable grassland habitat. These grasslands provide watershed services such as flood control...

  7. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Science.gov (United States)

    Malizia, Agustina; Easdale, Tomás A; Grau, H Ricardo

    2013-01-01

    Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1) y(-1)) and basal area by 6% (0.13 m(2) ha(-1) y(-1)). Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis) into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species), rainfall or temperature increase (no increase in evergreen or deciduous species, respectively). However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  8. Influences of climate on fire regimes in montane forests of north-western Mexico

    Science.gov (United States)

    Carl N. Skinner; Jack H. Burk; Michael G. Barbour; Ernesto Franco-Vizcaino; Scott L. Stephens

    2008-01-01

    Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north-western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)- dominated mixed-conifer...

  9. Fagus dominance in Chinese montane forests : natural regeneration of Fagus lucida and Fagus hayatae var. pashanica

    NARCIS (Netherlands)

    Cao, K.F.

    1995-01-01


    Fagus species are important components of certain mesic temperate forests in the Northern Hemisphere. Of eleven Fagus species distinguished, five are found in China. Chinese beeches are restricted to the mountains of southern China. In the montane

  10. Impact of fire in two old-growth montane longleaf pine stands

    Science.gov (United States)

    John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow

    2013-01-01

    The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleaf’s range are considered...

  11. Cold tolerance and photosystem function in a montane red spruce population: physiological relationships with foliar carbohydrates

    Science.gov (United States)

    P.G. Shaberg; G.R. Strimbeck; G.J. Hawley; D.H. DeHayes; J.B. Shane; P.F. Murakami; T.D. Perkins; J.R. Donnelly; B.L. Wong

    2000-01-01

    Red spruce (Picea rubens Sarg.) growing in northern montane forests of eastern North America appears to be distinctive with respect to at least two aspects of winter physiology. First, red spruce attains only a modest level of midwinter cold tolerance compared to other north temperate conifers and appears barely capable of avoiding freezing injury at...

  12. Selective extraction methods for aluminium, iron and organic carbon from montane volcanic ash soils

    NARCIS (Netherlands)

    Jansen, B.; Tonneijck, F.H.; Verstraten, J.M.

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle. Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils, we assessed various extraction methods of Al, Fe, and

  13. Morphology and sedimentation in Caribbean montane streams" examples from Jamaica and Puerto Rico

    Science.gov (United States)

    R. Ahmad; F.N. Scatena; A Gupta

    1993-01-01

    This paper presents a summary description of the morphology, sedimentation, and behaviour of the montane streams of eastern Jamaica and eastern Puerto Rico. The area is located within a 200 km wide seismically active zone of Neogene left-lateral strike-slip deformation which defines the plate boundary between the Caribbean and North American Plates. Tropical storms,...

  14. Elevational Distribution of Adult Trees and Seedlings in a Tropical Montane Transect, Southwest China

    Directory of Open Access Journals (Sweden)

    Xiaoyang Song

    2016-08-01

    Full Text Available Montane habitats are characterized by high variation of environmental factors within small geographic ranges, which offers opportunities to explore how forest assemblages respond to changes in environmental conditions. Understanding the distributional transition of adult trees and seedlings will provide insight into the fate of forest biodiversity in response to future climate change. We investigated the elevational distribution of 156 species of adult trees and 152 species of seedlings in a tropical montane forest in Xishuangbanna, southwest China. Adult trees and seedlings were surveyed within 5 replicate plots established at each of 4 elevational bands (800, 1000, 1200, and 1400 m above sea level. We found that species richness of both adult trees and seedlings changed with elevation, showing a notable decline in diversity values from 1000 to 1200 m. Tree species composition also demonstrated distinct differences between 1000 and 1200 m, marking the division between tropical seasonal rain forest (800 and 1000 m and tropical montane evergreen broad-leaved forest (1200 and 1400 m. The results suggested that soil moisture and temperature regimes were associated with elevational distribution of tree species in this region. We also observed that seedlings from certain species found at high elevations were also distributed in low-elevation zones, but no seedlings of species from low elevations were distributed in high-elevation zones. The increase in temperature and droughts predicted for this region may result in the contraction of tropical seasonal rain forest at lower elevations and a downhill shift of higher tropical montane tree species.

  15. Lithological and fluvial controls on the geomorphology of tropical montane stream channels in Puerto Rico

    Science.gov (United States)

    Andrew S. Pike; F.N. Scatena; Ellen E. Wohl

    2010-01-01

    An extensive survey and topographic analysis of fi ve watersheds draining the Luquillo Mountains in north-eastern Puerto Rico was conducted to decouple the relative infl uences of lithologic and hydraulic forces in shaping the morphology of tropical montane stream channels. The Luquillo Mountains are a steep landscape composed of volcaniclastic and igneous rocks that...

  16. Recovery of goat·damaged vegetation in an insular tropical montane forest

    Science.gov (United States)

    Paul G. Scowcroft; Robert. Hobdy

    1987-01-01

    The feral goat (Capra hircus) is an alien herbivore that has wreaked havoc in island ecosystems, including the dry, rugged, and relatively inaccessible montane koa parkland on the islands of Maui and Hawai'i. The objective of the present work was to evaluate the ability of koa parkland on Maui to recover naturally from browsing damage if...

  17. Habitat preferences of birds in a montane forest mosaic in the ...

    African Journals Online (AJOL)

    Endemic species are most closely dependent on continuous forest cover. However, some montane species did not show any clear habitat associations and thus can be viewed as local habitat generalists. This study shows that many restricted-range species (including endangered endemics) are able to live in fragmented ...

  18. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

    Science.gov (United States)

    James W. Dalling; Katherine Heineman; Grizelle Gonzalez; Rebecca Ostertag

    2016-01-01

    Tropicalmontane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry.With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests....

  19. Influences of previous wildfires on change, resistance, and resilience to reburning in a montane southwestern landscape

    Science.gov (United States)

    Jonathan D. Coop; Lisa Holsinger; Sarah McClernan; Sean A. Parks

    2015-01-01

    Land use legacies and climate have altered fire regimes across montane forests of much of the southwestern US (Allen and others 2002), and several recent wildfires have been extremely large and severe (Dennison and others 2014). Large openings resulting from high-severity fire in former ponderosa pine (Pinus ponderosa) and mixed conifer forests may be persistent given...

  20. water quality of the high-montane Juan Cojo and El Salado's basins (Glrardota - Antioqula, Colombia)

    International Nuclear Information System (INIS)

    Gomez Marin, Ana Maria; Naranjo Fernandez, Dario; Martinez, Andres Alfonso; Gallego Suarez, Dario de Jesus

    2007-01-01

    This work is a preliminary diagnosis of the actual state of the high-montane water sources located in the Juan Cojo's and El Salado's basins of the NE side of the Aburra valley' both belong to the Girardota municipality (6 degrades 20.951' N, 75 celsius 27.199' W between 1900 and 2500 meter above sea level in the central montane chain. in order to achieve this work several samples were taken in august 10, 11, 17 and 19 of 2004. this preliminary study includes the physicochemical and microbiological evaluation of 30 sampling points. just one of the 30 sampling points exhibited absence of microbiological pollution due to fecal and total coliforms. this fact suggests bad practices in the final disposal of domestic and farming water residuals. in the other hand, the physicochemical and the ICA (water quality index) evaluation reveal that the sampled water sources exhibit typical characteristics of common low-montane ,non-polluted water sources. in other words, although pollution levels found in those water sources are not alarming, they do not exhibit the typical pollution levels found in natural high-montane waters, as they should, even we could find some sampling points with meso-eutrophic conditions

  1. Kinyongia asheorum sp n., a new montane chameleon from the Nyiro Range, northern Kenya (Squamata: Chamaeleonidae)

    Czech Academy of Sciences Publication Activity Database

    Nečas, P.; Sindaco, R.; Kořený, L.; Kopečná, J.; Malonza, P. K.; Modrý, David

    -, č. 2028 (2009), s. 41-50 ISSN 1175-5326 R&D Projects: GA ČR GA524/03/1548; GA ČR GA206/03/1544 Institutional research plan: CEZ:AV0Z60220518 Keywords : Kinyongia asheorum sp n, * new montane chameleon * Kenya Subject RIV: EG - Zoology Impact factor: 0.891, year: 2009

  2. Successional dynamics and restoration implications of a montane coniferous forest in the central Appalachians, USA

    Science.gov (United States)

    Thomas M. Schuler; Rachel J. Collins

    2002-01-01

    Central Appalachian montane red spruce (Picea rubens Sarg.) communities have been greatly reduced in extent and functional quality over the past century. This community decline has put several plant and animal species, such as the endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus Shaw), at risk from habitat...

  3. Mercury in tropical and subtropical coastal environments

    Science.gov (United States)

    Costa, Monica F.; Landing, William M.; Kehrig, Helena A.; Barletta, Mário; Holmes, Christopher D.; Barrocas, Paulo R. G.; Evers, David C.; Buck, David G.; Vasconcellos, Ana Claudia; Hacon, Sandra S.; Moreira, Josino C.; Malm, Olaf

    2012-01-01

    Anthropogenic activities influence the biogeochemical cycles of mercury, both qualitatively and quantitatively, on a global scale from sources to sinks. Anthropogenic processes that alter the temporal and spatial patterns of sources and cycling processes are changing the impacts of mercury contamination on aquatic biota and humans. Human exposure to mercury is dominated by the consumption of fish and products from aquaculture operations. The risk to society and to ecosystems from mercury contamination is growing, and it is important to monitor these expanding risks. However, the extent and manner to which anthropogenic activities will alter mercury sources and biogeochemical cycling in tropical and sub-tropical coastal environments is poorly understood. Factors as (1) lack of reliable local/regional data; (2) rapidly changing environmental conditions; (3) governmental priorities and; (4) technical actions from supra-national institutions, are some of the obstacles to overcome in mercury cycling research and policy formulation. In the tropics and sub-tropics, research on mercury in the environment is moving from an exploratory “inventory” phase towards more process-oriented studies. Addressing biodiversity conservation and human health issues related to mercury contamination of river basins and tropical coastal environments are an integral part of paragraph 221 paragraph of the United Nations document “The Future We Want” issued in Rio de Janeiro in June 2012. PMID:22901765

  4. On the stability of mixed grasslands

    NARCIS (Netherlands)

    Schulte, R.P.O.

    2001-01-01

    Recent years have seen a renewed interest in the use of white clover (Trifolium repens) in grasslands, as a more sustainable alternative to fertiliser nitrogen inputs. However, mixtures of grasses and white clover have frequently been associated with unstable and hence unreliable herbage

  5. Purpose and Need for a Grassland Assessment

    Science.gov (United States)

    Deborah M. Finch; Cathy W. Dahms

    2004-01-01

    This report is volume 1 of an ecological assessment of grassland ecosystems in the Southwestern United States, and it is one of a series of planned publications addressing major ecosystems of the Southwest. The first assessment, General Technical Report RM-GTR- 295, An Assessment of Forest Ecosystem Health in the Southwest (by Dahms and Geils, technical editors,...

  6. [Spatiotemporal characteristics of MODIS NDVI in Hulunber Grassland].

    Science.gov (United States)

    Zhang, Hong-Bin; Yang, Gui-Xia; Wu, Wen-Bin; Li, Gang; Chen, Bao-Rui; Xin, Xiao-Ping

    2009-11-01

    Time-series MODIS NDVI datasets from 2000 to 2008 were used to study the spatial change trend, fluctuation degree, and occurrence time of the annual NDVImax of four typical grassland types, i.e., lowland meadow, temperate steppe, temperate meadow steppe, and upland meadow, in Hulunber Grassland. In 2000-2008, the vegetation in Hulunber Grassland presented an obvious deterioration trend. The mean annual NDVImax of the four grassland types had a great fluctuation, especially in temperate steppe where the maximum change in the mean value of annual NDVImax approximated to 50%. As for the area change of different grade grasslands, the areas with NDVImax between 0.4 and 1 accounted for about 91% of the total grassland area, which suggested the good vegetation coverage in the Grassland. However, though the areas with NDVImax values in (0.4, 0.8) showed an increasing trend, the areas with NDVImax values in (0.2, 0.4) and (0.8, 1) decreased greatly in the study period. Overall, the deteriorating grassland took up about 66.25% of the total area, and the restoring grassland took the rest. There was about 62.85% of the grassland whose NDVImax occurred between the 193rd day and the 225th day in each year, indicating that this period was the most important vegetation growth season in Hulunber Grassland.

  7. Green economy: un'occasione per le aree montane

    Directory of Open Access Journals (Sweden)

    Maria Sapone

    2013-06-01

    di rivitalizzare le aree montane. Il presente contributo rappresenta un avanzamento di studio sui temi che hanno interessato la costruzione di una rete di ecovillaggi approfondendo problematiche relative all'economia locale, al paesaggio e, più in generale, alla sostenibilità ambientale. Normal 0 14 false false false IT ZH-TW X-NONE

  8. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    Science.gov (United States)

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in

  9. Neither Biased Sex Ratio nor Spatial Segregation of the Sexes in the Subtropical Dioecious Tree Eurycorymbus cavaleriei (Sapindaceae)

    Institute of Scientific and Technical Information of China (English)

    Pu-xin Gao; Ming Kang; Jing Wang; Qi-gang Ye; Hong-wen Huang

    2009-01-01

    Knowledge of sex ratio and spatial distribution of males and females of dioecious species is both of evolutionary interest and of crucial importance for biological conservation. Eurycorymbus cavaleriei, the only species in the genus Eurycorymbus (Saplndaceae), is a dioecious tree endemic to subtropical montane forest in South China. Sex ratios were investigated in 15 natural populations for the two defined ages (young and old). Spatial distribution of males and females was further studied in six large populations occurring in different habitats (fragmented and continuous). The study revealed a slight trend of malebiased sex ratio in both ages of E. cavaleriei, but sex ratio of most populations (13 out of 15) did not display statistically significant deviation from equality. All of the four significantly male-biased populations in the young class shifted to equality or even female-biased. The Ripley's K analysis of the distribution of males with respect to females suggested that individuals of the opposite sexes were more randomly distributed rather than spatially structured. These results suggest that the male-biased sex ratio in E. cavaleriei may result from the precocity of males and habitat heterogeneity. The sex ratio and the sex spatial distribution pattern are unlikely to constitute a serious threat to the survival of the species.

  10. Extreme weather: Subtropical floods and tropical cyclones

    Science.gov (United States)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  11. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  12. Rooting strategies in a subtropical savanna: a landscape-scale three-dimensional assessment.

    Science.gov (United States)

    Zhou, Yong; Boutton, Thomas W; Wu, X Ben; Wright, Cynthia L; Dion, Anais L

    2018-04-01

    In resource-limited savannas, the distribution and abundance of fine roots play an important role in acquiring essential resources and structuring vegetation patterns and dynamics. However, little is known regarding the three-dimensional distribution of fine roots in savanna ecosystems at the landscape scale. We quantified spatial patterns of fine root density to a depth of 1.2 m in a subtropical savanna landscape using spatially specific sampling. Kriged maps revealed that fine root density was highest at the centers of woody patches, decreased towards the canopy edges, and reached lowest values within the grassland matrix throughout the entire soil profile. Lacunarity analyses indicated that spatial heterogeneities of fine root density decreased continuously to a depth of 50 cm and then increased in deeper portions of the soil profile across this landscape. This vertical pattern might be related to inherent differences in root distribution between trees/shrubs and herbaceous species, and the presence/absence of an argillic horizon across this landscape. The greater density of fine roots beneath woody patches in both upper and lower portions of the soil profile suggests an ability to acquire disproportionately more resources than herbaceous species, which may facilitate the development and persistence of woody patches across this landscape.

  13. Energy analysis of various grassland utilisation systems

    Directory of Open Access Journals (Sweden)

    Jozef Ržonca

    2005-01-01

    Full Text Available In 2003 and 2004 was carried out the energy analysis of the different types of permanent grassland utilization on the Hrubý Jeseník locality. There were estimated values of the particular entrances of additional energy. Energy entrances moved according to the pratotechnologies from 2.17 GJ. ha–1 to 22.70 GJ.ha–1. The biggest share on energy entrances had fertilizers. It was 84.93% by the nitrogen fertilisation. The most energy benefit of brutto and nettoenergy was marked by the low intensive utilisation (33.40 GJ.ha–1 NEL and 32.40 GJ.ha–1 NEV on average. The highest value of energy efficiency (13.23% was marked by the low intensive utilization of permanent grassland. By using of higher doses of industrial fertilizers has energy efficiency decreased. From view of energy benefit and intensiveness on energy entrances it appears the most available utilisation of permanent grassland with three cuts per year (first cut on May 31st at the latest, every next after 60 days or two cuts per year (first cut on July 15th, next cuts after 90 days.

  14. SOWING GRASSLANDS – EFFICIENT SOLUTION FOR ZOOTEHNICAL PRODUCTION

    Directory of Open Access Journals (Sweden)

    VALENTINA OFELIA ROBESCU

    2008-05-01

    Full Text Available Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as sub alpine grasslands. For this reasons it is very important to improve the grassland. In this paper we study the interaction among milk production, fertilizations and flower composition in sub alpine grasslands. The agrochemical indicators are important because they influence the pasture value and at the final the milk production.

  15. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Harlev, D.; Sørensen, M.M.

    2009-01-01

    The northern Andes harbour a flora that is as species-rich or even richer than the 18-times larger lowland Amazon basin. Gaining an understanding of how the high species richness of the Andean region is generated and maintained is therefore of particular interest. Environmental sorting due......). Mantel tests and indicator species analysis showed that both topography and spatial location imposed strong controls on palm species distributions at the study site. Our results suggest that species distributions in the studied montane forest landscape were partly determined by the species' habitat...... distributions at the study site. Other factors must also be involved, notably wind-exposure and hydrology, as discussed for lowland palm communities. Our results show that to understand plant community assembly in the tropical montane forests of the Andes it is too simple to focus just on environmental sorting...

  16. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  17. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    Science.gov (United States)

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  18. Environmental predictors for annual fish assemblages in subtropical grasslands of South America: the role of landscape and habitat characteristics

    Czech Academy of Sciences Publication Activity Database

    Lanés, L. E. K.; Reichard, Martin; De Moura, R. G.; Godoy, R. S.; Maltchik, L.

    2018-01-01

    Roč. 101, č. 6 (2018), s. 963-977 ISSN 0378-1909 Institutional support: RVO:68081766 Keywords : Austrolebias * Cynopoecilus * killifish * temporary water s * pampas Subject RIV: EH - Ecology, Behaviour Impact factor: 1.255, year: 2016

  19. Tidal influence on subtropical estuarine methane emissions

    Science.gov (United States)

    Sturm, Katrin; Grinham, Alistair; Werner, Ursula; Yuan, Zhiguo

    2014-05-01

    The relatively unstudied subtropical estuaries, particularly in the Southern Hemisphere, represent an important gap in our understanding of global greenhouse gas (GHG) emissions. These systems are likely to form an important component of GHG budgets as they occupy a relatively large surface area, over 38 000 km2 in Australia. Here, we present studies conducted in the Brisbane River estuary, a representative system within the subtropical region of Queensland, Australia. This is a highly modified system typical of 80% of Australia's estuaries. Generally, these systems have undergone channel deepening and straightening for safer shipping access and these modifications have resulted in large increases in tidal reach. The Brisbane River estuary's natural tidal reach was 16 km and this is now 85 km and tidal currents influence double the surface area (9 km2 to 18 km2) in this system. Field studies were undertaken to improve understanding of the driving factors behind methane water-air fluxes. Water-air fluxes in estuaries are usually calculated with the gas exchange coefficient (k) for currents and wind as well as the concentration difference across the water-air interface. Tidal studies in the lower and middle reaches of the estuary were performed to monitor the influence of the tidal stage (a proxy for kcurrent) on methane fluxes. Results for both investigated reaches showed significantly higher methane fluxes during the transition time of tides, the time of greatest tidal currents, than during slack tide periods. At these tidal transition times with highest methane chamber fluxes, lowest methane surface water concentrations were monitored. Modelled fluxes using only wind speed (kwind) were at least one order of magnitude lower than observed from floating chambers, demonstrating that current speed was likely the driving factor of water-air fluxes. An additional study was then conducted sampling the lower, middle and upper reaches during a tidal transition period

  20. On the Origin of Pantepui montane biotas: A Perspective Based on the Phylogeny of Aulacorhynchus toucanets.

    Directory of Open Access Journals (Sweden)

    Elisa Bonaccorso

    Full Text Available To understand the origin of Pantepui montane biotas, we studied the biogeography of toucanets in the genus Aulacorhynchus. These birds are ideal for analyzing historical relationships among Neotropical montane regions, given their geographic distribution from Mexico south to Bolivia, including northern Venezuela (Cordillera de la Costa, and the Pantepui. Analyses were based on molecular phylogenies using mitochondrial and nuclear DNA sequences. Topology tests were applied to compare alternative hypotheses that may explain the current distribution of Aulacorhynchus toucanets, in the context of previous hypotheses of the origin of Pantepui montane biotas. Biogeographic reconstructions in RASP and Lagrange were used to estimate the ancestral area of the genus, and an analysis in BEAST was used to estimate a time framework for its diversification. A sister relationship between the Pantepui and Andes+Cordillera de la Costa was significantly more likely than topologies indicating other hypothesis for the origin of Pantepui populations. The Andes was inferred as the ancestral area for Aulacorhynchus, and the group has diversified since the late Miocene. The biogeographic patterns found herein, in which the Andes are the source for biotas of other regions, are consistent with those found for flowerpiercers and tanagers, and do not support the hypothesis of the geologically old Pantepui as a source of Neotropical montain diversity. Based on the high potential for cryptic speciation and isolation of Pantepui populations, we consider that phylogenetic studies of additional taxa are important from a conservation perspective.

  1. A MCDM Analysis of the Roşia Montană Gold Mining Project

    Directory of Open Access Journals (Sweden)

    Adriana Mihai

    2015-06-01

    Full Text Available The need and estimated utility for a structured analysis of the Roşia Montană gold exploitation project have been palpable in the Romanian public sphere during the last 15 years and there is a vast amount of conflicting information and opinions on the benefits and risks involved. This article provides a comprehensive decision analysis of the Roşia Montană project. Over 100 documents from the past years have been gathered regarding the Roşia Montană mining project, which cover the main official, formal and less formal documents covering the case and produced by a wide range of stakeholders. These were then analyzed while designing a multi-criteria tree including the relevant perspectives under which the most commonly discussed four alternatives were analyzed. The result of this can be translated into a valuable recommendation for the mining company and for the political decision-makers. If these stakeholders want the continuation of the project and its acceptance by civil society, the key challenge is to increase the transparency of the process and improve the credibility and legal aspects; if these aspects cannot be met, the decision-makers need to pay attention to the alternatives available for a sustainable development in the area.

  2. Influence of Microclimate on Semi-Arid Montane Conifer Forest Sapflux Velocity in Complex Terrain

    Science.gov (United States)

    Thirouin, K. R.; Barnard, D. M.; Barnard, H. R.

    2016-12-01

    Microclimate variation in complex terrain is key to our understanding of large-scale climate change effects on montane ecosystems. Modern climate models forecast that semi-arid montane ecosystems in the western United States are to experience increases in temperature, number of extreme drought events, and decreases in annual snowpack, all of which will potentially influence ecosystem water, carbon, and energy balances. In this study, we developed response curves that describe the relationships between stem sapflux velocity, air temperature (Tair), incoming solar radiation (SWin), soil temperature (Tsoil), and soil moisture content (VWC) in sites of Pinus contorta and Pinus ponderosa distributed along an elevation and aspect gradient in the montane zone of the Central Rocky Mountains, Colorado, USA. Among sites we found sapflux velocity to be significantly correlated with all four environmental factors (p physiological differences, the highest elevation south-facing P. contorta site behaved similarly to the south-facing P. ponderosa, suggesting that environmental drivers may dominate the response. In response to Tair, peak sapflux velocity occurred at 12-13 degrees C at all sites except the mid-slope north-facing P. contorta site, which also had the lowest Tsoil. The responses of stem sapflux velocity to climate drivers indicate that forest transpiration is regulated by microclimate gradients across small spatial scales in complex terrain, which need to be characterized in order to understand broader ecosystem dynamics and the role that large-scale climate change will play in these systems.

  3. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  4. Species turnover in tropical montane forest avifauna links to climatic correlates

    Directory of Open Access Journals (Sweden)

    Chi-Feng Tsai

    2015-01-01

    Full Text Available We examined avifauna richness and composition in Taiwan’s tropical montane forests, and compared to historical records dated 22 years ago. A richness attrition of 44 species caused a discrepancy of 30.2%, and an estimated yearly turnover of 2.2%. More resident species that were narrower or lower in elevation distribution, insectivores/omnivores, small to medium-sized, forest/open-field dwelling, and canopy/ground foragers, vanished; whereas piscivores, carnivores, riparian- and shrub-dwellers, ground and mid-layer foragers, and migrants suffered by higher proportions. Occurrence frequencies of persistent species remained constant but varied among ecological groups, indicating an increased homogeneity for smaller-sized insectivores/omnivores dwelling in the forest canopy, shrub, or understory. While the overall annual temperature slightly increased, a relatively stable mean temperature was replaced by an ascending trend from the mid-1990s until 2002, followed by a cooling down. Mean maximum temperatures increased but minimums decreased gradually over years, resulting in increasing temperature differences up to over 16 °C. This accompanied an increase of extreme typhoons affecting Taiwan or directly striking these montane forests during the last decade. These results, given no direct human disturbances were noted, suggest a link between the species turnover and recent climate change, and convey warning signs of conservation concerns for tropical montane assemblages.

  5. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    Directory of Open Access Journals (Sweden)

    Huang Jen-Pan

    2011-04-01

    Full Text Available Abstract Background Pleistocene glacial oscillations have significantly affected the historical population dynamics of temperate taxa. However, the general effects of recent climatic changes on the evolutionary history and genetic structure of extant subtropical species remain poorly understood. In the present study, phylogeographic and historical demographic analyses based on mitochondrial and nuclear DNA sequences were used. The aim was to investigate whether Pleistocene climatic cycles, paleo-drainages or mountain vicariance of Taiwan shaped the evolutionary diversification of a subtropical gossamer-wing damselfly, Euphaea formosa. Results E. formosa populations originated in the middle Pleistocene period (0.3 Mya and consisted of two evolutionarily independent lineages. It is likely that they derived from the Pleistocene paleo-drainages of northern and southern Minjiang, or alternatively by divergence within Taiwan. The ancestral North-central lineage colonized northwestern Taiwan first and maintained a slowly growing population throughout much of the early to middle Pleistocene period. The ancestral widespread lineage reached central-southern Taiwan and experienced a spatial and demographic expansion into eastern Taiwan. This expansion began approximately 30,000 years ago in the Holocene interglacial period. The ancestral southern expansion into eastern Taiwan indicates that the central mountain range (CMR formed a barrier to east-west expansion. However, E. formosa populations in the three major biogeographic regions (East, South, and North-Central exhibit no significant genetic partitions, suggesting that river drainages and mountains did not form strong geographical barriers against gene flow among extant populations. Conclusions The present study implies that the antiquity of E. formosa's colonization is associated with its high dispersal ability and larval tolerance to the late Pleistocene dry grasslands. The effect of late Pleistocene

  6. Thematic trip: "Save Roşia MontanÄă"

    Science.gov (United States)

    Eugenia, Marcu

    2015-04-01

    The name Roşia Montană, situated in Transylvania, became well known after a Romanian-Canadian company, Roşia Montană Gold Company (RMGC), obtained the concession license on exploitation for gold and silver minerals in the Roşia Montană area. The project consists of opening the largest surface gold mines in Europe using cyanide, which will include four open pits and a processing plant for gold and silver in The Roşia Valley and a tailings facility with an area of 367 hectares in the Corna Valley. One of the main fears is related to a possible ecological accident like the one in Baia Mare in 2000, when a tailing facility dam break led to cyanide pollution of Tisa and Danube rivers that resulted in the death of 1,200 tons of fish and contamination of water resources for 2 million people. This thematic trip is important for the scientific preparation of students and an opportunity to educate them in the spirit of environmental protection. The training and education of students will require assimilation and understanding, actively and consciously, using the knowledge acquired during the compulsory curriculum and training skills. REASON: The continuous degradation of the environment is a major crisis due to human intervention in nature, and the proposed Roşia Montană mining project will continue this trend. The company proposes to extract gold from mines by using the gold separation technique using cyanide, a process that involves destroying a total area of 16 km² which includes 5 mountains, 7 churches, 11 cemeteries and the ruins of Alburnus Maior Citadel, as well as creating pollution that would last for hundreds of years. The extraction of gold from low-grade ores using cyanide processes was estimated to result in a worldwide emission of 45,300 tons of hydrogen cyanide. Environmental education for a healthy life has children as target group, because they are the trustees and beneficiaries of tomorrow's natural resources and can influence the attitudes of

  7. Distinguishing Intensity Levels of Grassland Fertilization Using Vegetation Indices

    Directory of Open Access Journals (Sweden)

    Jens L. Hollberg

    2017-01-01

    Full Text Available Monitoring the reaction of grassland canopies on fertilizer application is of major importance to enable a well-adjusted management supporting a sustainable production of the grass crop. Up to date, grassland managers estimate the nutrient status and growth dynamics of grasslands by costly and time-consuming field surveys, which only provide low temporal and spatial data density. Grassland mapping using remotely-sensed Vegetation Indices (VIs has the potential to contribute to solving these problems. In this study, we explored the potential of VIs for distinguishing five differently-fertilized grassland communities. Therefore, we collected spectral signatures of these communities in a long-term fertilization experiment (since 1941 in Germany throughout the growing seasons 2012–2014. Fifteen VIs were calculated and their seasonal developments investigated. Welch tests revealed that the accuracy of VIs for distinguishing these grassland communities varies throughout the growing season. Thus, the selection of the most promising single VI for grassland mapping was dependent on the date of the spectra acquisition. A random forests classification using all calculated VIs reduced variations in classification accuracy within the growing season and provided a higher overall precision of classification. Thus, we recommend a careful selection of VIs for grassland mapping or the utilization of temporally-stable methods, i.e., including a set of VIs in the random forests algorithm.

  8. Cattle slurry on grassland - application methods and nitrogen use efficiency

    NARCIS (Netherlands)

    Lalor, S.T.J.

    2014-01-01

    Cattle slurry represents a significant resource on grassland-based farming systems. The objective of this thesis was to investigate and devise cattle slurry application methods and strategies that can be implemented on grassland farms to improve the efficiency with which nitrogen (N) in

  9. Influence of density on the seasonal utilization of broad grassland ...

    African Journals Online (AJOL)

    We monitored seasonal use of grassland types by white rhinos at two sites within the Hluhluwe iMfolozi Park (HiP). Thirty-two rhinos were removed from one site to reduce rhino density. Seasonal use of grassland types was similar at both sites, but differed to what a previous study reported. This was likely due to higher food ...

  10. Effects of Government Grassland Conservation Policy on Household Livelihoods and Dependence on Local Grasslands: Evidence from Inner Mongolia, China

    Directory of Open Access Journals (Sweden)

    Bingzhen Du

    2016-12-01

    Full Text Available Grassland degradation intensifies human-environment conflicts and adversely affects local residents’ livelihoods. To reduce grassland degradation in Inner Mongolia, China, the government has enforced (since 1998 a series of grassland conservation and management policies that restrict the use of grasslands. To ease the impact on the residents’ livelihoods, the national and regional governments have offered a series of top-down arrangements to stimulate sustainable use of the grasslands. Simultaneously, local households spontaneously developed bottom-up countermeasures. To determine the effects of these processes, we interviewed members of 135 households using a mix of qualitative and quantitative methods. We analyzed the effects on household dependence on local grasslands and on perceptions of the future of grassland use. Our findings show that the implementation of the grassland conservation policies significantly affected household livelihoods, which in turn affected household use of natural assets (primarily the land, their agricultural assets (farming and grazing activities and their financial assets (income and consumption, resulting in fundamental transformation of their lifestyles. The households developed adaptation measures to account for the dependence of their livelihood on local ecosystems by initializing strategies, such as seeking off-farm work, leasing pasture land, increasing purchases of fodder for stall-fed animals and altering their diet and fuel consumption to compensate for their changing livelihoods.

  11. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Science.gov (United States)

    Hodd, Rory L; Bourke, David; Skeffington, Micheline Sheehy

    2014-01-01

    Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly

  12. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.

    Directory of Open Access Journals (Sweden)

    Rory L Hodd

    Full Text Available Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1 oceanic montane bryophytes and vascular plants; 2 species belonging to different montane plant communities; 3 species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need

  13. Floral diversity, composition and distribution in a montane wetland in hogsback, the eastern cape province, south africa

    International Nuclear Information System (INIS)

    Omar, M.Y.; Tol, J.J.V.; Maroyi, A.

    2016-01-01

    The objective of this study was to evaluate plant species diversity, composition and distribution in a montane wetland in Hogsback, Eastern Cape province, South Africa. Twenty four circular plots with radius of 2m were established between March and August 2013 within Hogsback montane wetland. Within each sample plot, the habitat information and species present were recorded including Braun-Blanquet cover-abundance values for all species present in the plot. A total of 41 species belonging to 19 families and 36 genera were recorded. Of the documented species, 7.3% were exotic and endemic to South Africa, indicating diversity and dynamic nature of Hogsback montane wetland flora. Plant families with the highest number of species were: Poaceae (11 species), Asteraceae (six species), Onagraceae and Cyperaceae (three species each) and Lamiaceae with two species. The low number of exotic plant species recorded in Hogsback wetland (three species in total) indicates limited anthropogenic influences. Unique species recorded in Hogsback montane wetland were three species that are endemic to South Africa, namely, Alchemilla capensis Thunb., Helichrysum rosum (P.J. Bergius) Lees and Lysimachia nutans Nees. Five main floristic associations were identified from the Hierarchical Cluster Analysis. The Canonical Correspondence Analysis (CCA) indicated that edaphic factors, particularly area covered with water, erosion category, organic matter content and water table depth were the most important environmental variables measured accounting for the vegetation pattern present in the Hogsback montane wetland. Montane wetlands have a relatively low species richness characterised by unique species compositions which are distinctive and habitat specific. (author)

  14. Effects of different N sources on riverine DIN export and retention in subtropical high-standing island, Taiwan

    Science.gov (United States)

    Huang, J.-C.; Lee, T.-Y.; Lin, T.-C.; Hein, T.; Lee, L.-C.; Shih, Y.-T.; Kao, S.-J.; Shiah, F.-K.; Lin, N.-H.

    2015-10-01

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities has substantially altered N cycle both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind to the most rapidly industrializing east coast of China can be a demonstration site for extreme high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds classified into low-, moderate-, and highly-disturbed categories based on population density to illustrate their differences in nitrogen inputs through atmospheric N deposition, synthetic fertilizers and human emission and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ~ 3800 kg N km-2 yr-1, approximately 18-fold higher than the global average mostly due to the large input of synthetic fertilizers. The average riverine DIN export ratio is 0.30-0.51, which is much higher than the average of 0.20-0.25 of large rivers around the world indicating excessive N input relative to ecosystem demand or retention capacity. The low-disturbed watersheds, despite of high N input, only export 0.06-0.18 of the input so were well buffered to changes in input quantity suggesting high efficiency of nitrogen usage or high N retention capacity of the less disturbed watersheds. The high retention capacity probably is due to the effective uptake by secondary forests in the watersheds. The moderate-disturbed watersheds show a linear increase of output with increases in total N inputs and a mean DIN export ratio of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watershed is the relative proportions of agricultural land and forests, not the built-up lands. Thus, their greater DIN export quantity could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have lower proportional N retention capacity and that reforestation could be

  15. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan

    Science.gov (United States)

    Huang-Chuan, Jr.; Lee, Tsung-Yu; Lin, Teng-Chiu; Hein, Thomas; Lee, Li-Chin; Shih, Yu-Ting; Kao, Shuh-Ji; Shiah, Fuh-Kwo; Lin, Neng-Huei

    2016-03-01

    Increases in nitrogen (N) availability and mobility resulting from anthropogenic activities have substantially altered the N cycle, both locally and globally. Taiwan characterized by the subtropical montane landscape with abundant rainfall, downwind of the most rapidly industrializing eastern coast of China, can be a demonstration site for extremely high N input and riverine DIN (dissolved inorganic N) export. We used 49 watersheds with similar climatic and landscape settings but classified into low, moderate, and highly disturbed categories based on population density to illustrate their differences in nitrogen inputs (through atmospheric N deposition, synthetic fertilizers, and human emission) and DIN export ratios. Our results showed that the island-wide average riverine DIN export is ˜ 3800 kg N km-2 yr-1, approximately 18 times the global average. The average riverine DIN export ratios are 0.30-0.51, which are much higher than the averages of 0.20-0.25 of large rivers around the world, indicating excessive N input relative to ecosystem demand or retention capacity. The low disturbed watersheds have a high N retention capacity and DIN export ratios of 0.06-0.18 in spite of the high N input (˜ 4900 kg N km-2 yr-1). The high retention capacity is likely due to effective uptake by secondary forests in the watersheds. The moderately disturbed watersheds show a linear increase in DIN export with increases in total N inputs and mean DIN export ratios of 0.20 to 0.31. The main difference in land use between low and moderately disturbed watersheds is the greater proportion of agricultural land cover in the moderately disturbed watersheds. Thus, their greater DIN export could be attributed to N fertilizers used in the agricultural lands. The greater export ratios also imply that agricultural lands have a lower proportional N retention capacity and that reforestation could be an effective land management practice to reduce riverine DIN export. The export ratios of the

  16. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  17. Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes

    Science.gov (United States)

    Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne

    2017-09-01

    The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.

  18. ¿Quién fue Lluís Montané i Mollfulleda?

    OpenAIRE

    Balius i Juli, Ramon

    2006-01-01

    Lluís Montané i Mollfulleda, nacido en Sant Celoni en 1905, era un artista integral, enmarcado en las corrientes novecentistas y mediterranistas que se sustentan en la tradición clásica del mundo griego. Estudió en la Escuela de Bellas Artes de Barcelona (Llotja) entre 1921 y 1927, aunque antes, muy joven, trabajó durante tres años en el taller del escultor Eusebi Arnau (1864-1933). En la Llotja su segundo maestro, después del profesor de primer curso, Parera, fue Antoni Alsina i Amils (1864-...

  19. A new montane species of Philautus (Amphibia: Anura: Rhacophoridae) from western Sarawak, Malaysia, Borneo.

    Science.gov (United States)

    Dehling, J Maximilian; Dehling, Matthias

    2013-01-01

    A new species of Philautus is described from western Sarawak. The new species was collected in lower montane forest in two national parks in Sarawak and recorded from another park. It differs from its congeners by a unique combination of morphological characters, including a long, acuminate snout, long legs, and comparatively extensive toe webbing. The advertisement call of the new species differs from all calls of other species that have been analyzed so far. Comparison of the mitochondrial 16S rRNA gene sequence corroborates its distinct specific status.

  20. The Ocean deserts:salt budgets of northern subtropical oceans and their

    KAUST Repository

    Carton, Jim

    2011-04-09

    The Ocean deserts: salt budgets of northern subtropical oceans and their relationship to climate variability The high salinity near surface pools of the subtropical oceans are the oceanic deserts, with high levels of evaporation and low levels of precip

  1. Subduction in the Subtropical Gyre: Seasoar Cruises Data Report

    Science.gov (United States)

    1995-09-01

    Julie Pallant , Frank Bahr, Terrence Joyce, Jerome Dean, James R. Luyten & Performing Organization Rept No. WHOI-95- 13 IL Performing Organization Name...AD-A28 6 861 WHOI-95-13 Woods Hole x Oceanc grapbic Ifliotitutionf de Subduction in the Subtropical Gyre: Seasoar Cruises Data Report by Julie S. •P...unlimiled. =Tfl QUALuTr =S) ij Ai Si 4 ;•IIII.. " - II •r * 9 9 * 11S 0 WIHOI-95-13 Subduction in the Subtropical Gyre: Seasoar Cruises Data Report by 0 Julie

  2. Indirect Effects of Energy Development in Grasslands

    Science.gov (United States)

    Duquette, Cameron Albert

    Grassland landscapes in North America are undergoing rapid industrialization due to energy development facilitated by the growing popularity of fracking and horizontal drilling technology. Each year over 3 million hectares are lost from grassland and shrubland habitats to well infrastructure. Direct footprints from energy infrastructure cause impacts to vegetation cover, available cattle forage, carbon sequestration potential, and usable space for wildlife. However, legacy effects from well construction and noise pollution, light pollution, and altered viewsheds have the potential to impact areas beyond this direct footprint, causing additive and persistent changes to nearby grassland function. While these additional areas may be small on a well pad basis, they may have substantial cumulative impacts over time. To investigate these effects via a diversity of mechanisms, we studied the seasonal habitat selection of northern bobwhite (Colinus virginianus, hereafter bobwhite) in an energy-producing landscape to evaluate space use patterns relative to energy infrastructure. Habitat selection was modeled in the breeding and nonbreeding season using resource Utilization functions (RUFs). We then investigated patterns of vegetation, arthropod, and soil characteristics surrounding well pads to assess small scale environmental gradients extending away from drilling pads via a combination of multivariate and univariate techniques (i.e., Nonmetric dimensional scaling and ANOVA). We found minimal avoidance of energy structures by quail, suggesting a tolerance of moderate development levels. All small-scale effects studied except for soil moisture were impacted at the pad itself (P < 0.01). Off-pad impacts to arthropod abundance and biomass were spatially limited to areas close to pads, while vegetation cover was typically lower than the surrounding habitat beyond 10 m of pads. Soil surface temperature was higher at distances close to well pads, and soil moisture was not

  3. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions

    Directory of Open Access Journals (Sweden)

    Tang, C. Q.

    2015-12-01

    Full Text Available This paper analyzes the geographic distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, and compares with other subtropical regions in the east of China in terms of forest types, pertinent species, and spatial distribution along latitudinal, longitudinal and altitudinal gradients. In general, for both the western and the eastern subtropical regions, the evergreen broad-leaved forests are dominated by species of Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia, and Michelia, (Magnoliaceae, while in southwestern China there are more diverse forest types including semi-humid, monsoon, mid-montane moist and humid evergreen broad-leaved forests, but only monsoon and humid forests in the east. The Yunnan area has more varied species of Lithocarpus or Cyclobalanopsis or Castanopsis as dominants than does eastern China, where the chief dominant genus is Castanopsis. The upper limits of the evergreen broad-leaved forests are mainly 2400–2800 m in western Yunnan and western Sichuan, much higher than in eastern China (600–1500, but 2500 m in Taiwan. Also discussed are the environmental effects on plant diversity of the evergreen broad-leaved forest ecosystems exemplified by Yunnan and Taiwan.En este trabajo se analiza los patrones de distribución geográfica de los bosques subtropicales perennifolios de hoja ancha del suroeste de china, y se comparan con los de otras regiones subtropicales del este de China en términos de tipología de bosque, especies relevantes, y distribución espacial a lo largo de un gradiente latitudinal, longitudinal y altitudinal. De manera general, los bosques perennifolios de hoja ancha de la regiones subtropicales tanto orientales como occidentales presentan dominancia de especies de Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae, Machilus, Cinnamomum (Lauraceae, Schima (Theaceae, Manglietia y Michelia

  4. The role of grasslands in food security and climate change.

    Science.gov (United States)

    O'Mara, F P

    2012-11-01

    Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and

  5. Subtropical urban turfs: Carbon and nitrogen pools and the role of enzyme activity.

    Science.gov (United States)

    Kong, Ling; Chu, L M

    2018-03-01

    Urban grasslands not only provide a recreational venue for urban residents, but also sequester organic carbon in vegetation and soils through photosynthesis, and release carbon dioxide through respiration, which largely contribute to carbon storage and fluxes at regional and global scales. We investigated organic carbon and nitrogen pools in subtropical turfs and found that dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) were regulated by several factors including microbial activity which is indicated by soil enzymatic activity. We observed a vertical variation and different temporal patterns in both soil DOC, DON and enzyme activities, which decreased significantly with increasing soil depths. We further found that concentration of soil DON was linked with turf age. There were correlations between grass biomass and soil properties, and soil enzyme activities. In particular, soil bulk density was significantly correlated with soil moisture and soil organic carbon (SOC). In addition, DOC correlated significantly with DON. Significant negative correlations were also observed between soil total dissolved nitrogen (TDN) and grass biomass of Axonopus compressus and Zoysia matrella. Specifically, grass biomass was significantly correlated with the soil activity of urease and β-glucosidase. Soil NO 3 -N concentration also showed negative correlations with the activity of both β-glucosidase and protease but there were no significant correlations between cellulase and soil properties or grass biomass. Our study demonstrated a relationship between soil C and N dynamics and soil enzymes that could be modulated to enhance SOC pools through management and maintenance practices. Copyright © 2017. Published by Elsevier B.V.

  6. Desertification of subtropical thicket in the Eastern Cape, South Africa: Are there alternatives?

    Science.gov (United States)

    Kerley, G I; Knight, M H; de Kock, M

    1995-01-01

    The Eastern Cape Subtropical Thicket (ECST) froms the transition between forest, semiarid karroid shrublands, and grassland in the Eastern Cape, South Africa. Undegraded ECST forms an impenetrable, spiny thicket up to 3 m high consisting of a wealth of growth forms, including evergreen plants, succulent and deciduous shrubs, lianas, grasses, and geophytes. The thicket dynamics are not well understood, but elephants may have been important browsers and patch disturbance agents. These semiarid thickets have been subjected to intensive grazing by domestic ungulates, which have largely replaced indigenous herbivores over the last 2 centuries. Overgrazing has extensively degraded vegetation, resulting in the loss of phytomass and plant species and the replacement of perennials by annuals. Coupled with these changes are alterations of soil structure and secondary productivity. This rangeland degradation has largely been attributed to pastoralism with domestic herbivores. The impact of indigenous herbivores differs in scale, intensity, and nature from that of domestic ungulates. Further degradation of the ECST may be limited by alternative management strategies, including the use of wildlife for meat production and ecotourism. Producing meat from wildlife earns less income than from domestic herbivores but is ecologically sustainable. The financial benefits of game use can be improved by developing expertise, technology, and marketing. Ecotourism is not well developed in the Eastern Cape although the Addo Elephant National Park is a financial success and provides considerable employment benefits within an ecologically sustainable system. The density of black rhinoceros and elephant in these thickets is among the highest in Africa, with high population growth and the lowest poaching risk. The financial and ecological viability of ecotourism and the conservation status of these two species warrant expanding ecotourism in the Eastern Cape, thereby reducing the probability of

  7. Montane and coastal species diversification in the economically important Mexican grasshopper genus Sphenarium (Orthoptera: Pyrgomorphidae).

    Science.gov (United States)

    Pedraza-Lara, Carlos; Barrientos-Lozano, Ludivina; Rocha-Sánchez, Aurora Y; Zaldívar-Riverón, Alejandro

    2015-03-01

    The genus Sphenarium (Pyrgomorphidae) is a small group of grasshoppers endemic to México and Guatemala that are economically and culturally important both as a food source and as agricultural pests. However, its taxonomy has been largely neglected mainly due to its conserved interspecific external morphology and the considerable intraspecific variation in colour pattern of some taxa. Here we examined morphological as well as mitochondrial and nuclear DNA sequence data to assess the species boundaries and evolutionary history in Sphenarium. Our morphological identification and DNA sequence-based species delimitation, carried out with three different approaches (DNA barcoding, general mixed Yule-coalescent model, Bayesian species delimitation), all recovered a higher number of putative species of Sphenarium than previously recognised. We unambiguously delimit seven species, and between five and ten additional species depending on the data/method analysed. Phylogenetic relationships within the genus strongly support two main clades, one exclusively montane, the other coastal. Divergence time estimates suggest late Miocene to Pliocene ages for the origin and most of the early diversification events in the genus, which were probably influenced by the formation of the Trans-Mexican Volcanic Belt. A series of Pleistocene events could have led to the current species diversification in both montane and coastal regions. This study not only reveals an overlooked species richness for the most popular edible insect in Mexico, but also highlights the influence of the dynamic geological and climatic history of the region in shaping its current diversity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. [Distribution characteristics of heavy metals along an elevation gradient of montane forest].

    Science.gov (United States)

    Wan, Jia-rong; Nie, Ming; Zou, Qin; Hu, Shao-chang; Chen, Jia-kuan

    2011-12-01

    In the present paper, the concentrations of fourteen heavy metals (Fe, Al, Ti, Cu, Cr, Mn, V, Zn, Ni, Co, Pb, Se, Cd and As) were determined by ICP-AES and atomic absorption spectroscopy along an elevation gradient of montane forest. The results show that the elevation gradient had significant effects on the concentrations of Fe, Al, Ti, V, Pb and As. And the concentrations of Cu, Cr, Mn, Zn, Ni, Co, Se and Cd were not significantly affected by the elevation gradient. Because the studying area is red soil, the elevation gradient had significant effects on the concentrations of Fe, Al and Ti which are characteristic heavy metals of red soil, suggesting that the red soil at different elevations has different intensities of weathering desilication and bioaccumulation. Other heavy metals have different relationships with the elevation gradient, such as the concentrations of Cr, Zn and Cd were high at relatively high elevation and Pb and As were high at relatively low elevation. These results suggest that the different elevations of montane forest soils were polluted by differently types of heavy metals.

  9. Watershed-scale modeling of streamflow change in incised montane meadows

    Science.gov (United States)

    Essaid, Hedeff I.; Hill, Barry R.

    2014-01-01

    Land use practices have caused stream channel incision and water table decline in many montane meadows of the Western United States. Incision changes the magnitude and timing of streamflow in water supply source watersheds, a concern to resource managers and downstream water users. The hydrology of montane meadows under natural and incised conditions was investigated using watershed simulation for a range of hydrologic conditions. The results illustrate the interdependence between: watershed and meadow hydrology; bedrock and meadow aquifers; and surface and groundwater flow through the meadow for the modeled scenarios. During the wet season, stream incision resulted in less overland flow and interflow and more meadow recharge causing a net decrease in streamflow and increase in groundwater storage relative to natural meadow conditions. During the dry season, incision resulted in less meadow evapotranspiration and more groundwater discharge to the stream causing a net increase in streamflow and a decrease in groundwater storage relative to natural meadow conditions. In general, for a given meadow setting, the magnitude of change in summer streamflow and long-term change in watershed groundwater storage due to incision will depend on the combined effect of: reduced evapotranspiration in the eroded meadow; induced groundwater recharge; replenishment of dry season groundwater storage depletion in meadow and bedrock aquifers by precipitation during wet years; and groundwater storage depletion that is not replenished by precipitation during wet years.

  10. Phytossociology of wood community in Seasonal Dry Montane Forest in Paraiba, Brazil

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Learth Cunha

    2013-06-01

    Full Text Available The Pico do Jabre Seasonally Dry Montane Forest in Paraiba state, Brazil, the highest regional elevation, 1197 m, distant 360 km the sea was assessed aiming to survey its phytosociology and woody structure. In 36 systematic sampling plots, 10x50m, individuals, Dbh > 4.8cm, had their diameters and height measured. Botanical samples were collected during five years and vouchers were deposited at the Paraiba Federal University Herbaria (JPB. It was found 2050 trees distributed in 64 species of 51 genera of 31 families, which accounted for 1138 ind.ha-1 and 22.45 m2.ha -1. Diversity and equability were assessed as H' = 3.17 nats.ind-1 and J' = 0.76 similar to some others regional seasonally dry montane forest communities. Malpighiaceae, Myrtaceae, Erythroxylaceae, Vochysiaceae, Celastraceae, Rutaceae, Sapindaceae e Fabaceae-Faboideae stood out and summed 66.72% of the total VI. Byrsonima nitidifolia, Eugenia ligustrina, Calisthene microphylla, Maytenus distichophylla and Erythroxylum mucronatum species accounted for 120.79 (40.3% of the total VI. B. nitidifolia ecological dominance is firstly reported in the Brazilian northeast region.

  11. Impact of erosion in the taluses of subtropical orchard terraces

    NARCIS (Netherlands)

    Duran Zuazo, V.H.; Ruiz, J.A.; Raya, A.M.; Tarifa, D.F.

    2005-01-01

    The coast of the provinces of Granada and Malaga (SE Spain) are economically important areas for the subtropical fruit cultivation. The climate is characterized by heavy periodic rainfall, which is one of the main factors responsible for soil erosion in this agroecosystem. However, the erosion

  12. Diameter growth of subtropical trees in Puerto Rico

    Science.gov (United States)

    Thomas J. Brandeis

    2009-01-01

    Puerto Rico’s forests consist of young, secondary stands still recovering from a long history of island-wide deforestation that largely abated in the mid-20th century. Limited knowledge about growth rates of subtropical tree species in these forests makes it difficult to accurately predict forest yield, biomass accumulation, and carbon...

  13. Greenhouse design for vegetable production in subtropical climate in Taiwan

    NARCIS (Netherlands)

    Hemming, S.; Speetjens, S.L.; Wang, D.; Tsay, J.R.

    2014-01-01

    In Taiwan open field vegetable production is threatened by subtropical climatic disasters, such as high wind speeds and heavy rainfall, which can cause the destruction of whole crops. Next to that vegetable production is threatened by pests and diseases resulting a high need for pesticides.

  14. Utilization and preference rating of various subtropical pasture ...

    African Journals Online (AJOL)

    The percentage utilization and preference demonstrated by Bonsmara beef cows was measrued twice (December 1976 and March 1977) on 18 subtropical grasses, legumes and grass-legume mixtures under supplemental spray irrigation. Clipping before and after grazing, with a two to three day period of stay, was carried ...

  15. Influence of transient flooding on methane fluxes from subtropical pastures

    Science.gov (United States)

    Seasonally flooded subtropical pastures are major methane (CH4) sources, where transient flooding drives episodic and high-magnitude emissions from the underlying landscape. Understanding the mechanisms that drive these patterns is needed to better understand pasture CH4 emissions and their response...

  16. Active biomonitoring of a subtropical river using glutathione-S ...

    African Journals Online (AJOL)

    Active biomonitoring of a subtropical river using glutathione-S-transferase (GST) and heat shock proteins (HSP 70) in. Oreochromis niloticusas surrogate biomarkers of metal contamination. Victor Kurauone Muposhi1, Beaven Utete1*, Idah Sithole-Niang2 and Stanley Mukangenyama2. 1Wildlife Ecology and Conservation, ...

  17. Measurement of grassland evaporation using a surface-layer ...

    African Journals Online (AJOL)

    Measurement of grassland evaporation using a surface-layer scintillometer. ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... of soil heat flux and net irradiance, evaporation rates were calculated as a residual of the ...

  18. Ecological mechanisms underlying arthropod species diversity in grasslands.

    Science.gov (United States)

    Joern, Anthony; Laws, Angela N

    2013-01-01

    Arthropods are an important component of grassland systems, contributing significantly to biodiversity and ecosystem structure and function. Climate, fire, and grazing by large herbivores are important drivers in grasslands worldwide. Arthropod responses to these drivers are highly variable and clear patterns are difficult to find, but responses are largely indirect with respect to changes in resources, species interactions, habitat structure, and habitat heterogeneity resulting from interactions among fire, grazing, and climate. Here, we review these ecological mechanisms influencing grassland arthropod diversity. We summarize hypotheses describing species diversity at local and regional scales and then discuss specific factors that may affect arthropod diversity in grassland systems. These factors include direct and indirect effects of grazing, fire, and climate, species interactions, above- and belowground interactions, and landscape-level effects.

  19. Soil Organic Carbon Responses to Forest Expansion on Mountain Grasslands

    DEFF Research Database (Denmark)

    Guidi, Claudia

    . Changes in labile soil C were assessed by carbohydrate and thermal analyses of soil samples and fractions. Forest expansion on mountain grasslands caused a decrease in SOC stocks within the mineral soil. The SOC accumulation within the organic layers following forest establishment could not fully...... and thermally labile to resistant components decreased from grassland to forest successional stages, and corresponded to decreased SOC protection within stable aggregates. This PhD thesis showed that mineral SOC stocks and physically protected SOC fractions decreased following forest expansion on mountain......Grassland abandonment followed by progressive forest expansion is the dominant land-use change in the European Alps. Contrasting trends in soil organic carbon (SOC) stocks have been reported for mountainous regions following forest expansion on grasslands. Moreover, its effects on SOC properties...

  20. Impact intensities of climatic changes on grassland ecosystems in ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... Construction of the impact intensity model of climatic changes on grassland ecosystem ... the temperature and rainfall (Sun and Mu, 2011). Thus, the study ... of the equation, the study transformed the measurement unit Mu of.

  1. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  2. Long-term changes in structure and composition following hurricanes in a primary lower montane rain forest in Puerto Rico

    Science.gov (United States)

    P.L. Weaver

    2013-01-01

    Ridges within the lower montane rain forests (sensu Beard) of the Caribbean Basin are dominated by Dacryodes excelsa, a tree species known as tabonuco in Puerto Rico and gommier in the Lesser Antilles. Periodially, hurricanes traverse the islands causing changes in structure, species composition, and dynamics of forests. The chronology of post-hurricane vegetation...

  3. Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica

    NARCIS (Netherlands)

    Koehler, L.; Tobon, C.; Frumau, K.F.A.; Bruijnzeel, L.A.

    2007-01-01

    Epiphytic biomass, canopy humus and associated canopy water storage capacity are known to vary greatly between old-growth tropical montane cloud forests but for regenerating forests such data are virtually absent. The present study was conducted in an old-growth cloud forest and in a 30-year-old

  4. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  5. Long-term fragmentation effects on the distribution and dynamics of canopy gaps in a tropical montane forest

    Science.gov (United States)

    Nicholas R. Vaughn; Gregory P. Asner; Christian P. Giardina

    2015-01-01

    Fragmentation alters forest canopy structure through various mechanisms, which in turn drive subsequent changes to biogeochemical processes and biological diversity. Using repeated airborne LiDAR (Light Detection and Ranging) mappings, we investigated the size distribution and dynamics of forest canopy gaps across a topical montane forest landscape in Hawaii naturally...

  6. Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests

    Science.gov (United States)

    Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz

    2016-01-01

    Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...

  7. Mammalia, Rodentia, Cricetidae, Neusticomys monticolus (Anthony, 1921): noteworthy records of the Montane Fish- Eating Rat in Colombia

    OpenAIRE

    Velandia-Perilla, Jorge; Saavedra-Rodríguez, Carlos

    2013-01-01

    We document the presence of the Montane Fish-eating Rat, Neusticomys monticolus, in two páramo ecosystems of the Colombian Andes, in the departments of Valle del Cauca and Cauca at 3558 and 3300 m respectively. For small mammals, páramo ecosystems are underexplored zones in a biogeographic context.

  8. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    Science.gov (United States)

    Ashley E. Van Beusekom; Grizelle Gonzalez; Martha A. Scholl

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline...

  9. Culvert flow in small drainages in montane tropical forests: observations from the Luquillo Experimental Forest of Puerto Rico.

    Science.gov (United States)

    F. N. Scatena

    1990-01-01

    This paper describe the hydraulics of unsubmerged flow for 5 culverts in the Luiquillo Esperimental Forest of Puerto Rico. A General equation based on empirical data is presented to estimate culvert discharge during unsubmerged conditions. Large culverts are needed in humid tropical montane areas than in humid temperatute watersheds and are usually appropriate only...

  10. Dawn chorus variation in East-Asian tropical montane forest birds and its ecological and morphological correlates

    NARCIS (Netherlands)

    Chen, W.-M.; Lee, Y.-F.; Tsai, C.-F.; Yao, C.-T.; Chen, Y.-H.; Li, S.-H.; Kuo, Y.-M.

    2015-01-01

    Many birds in breeding seasons engage in vigorous dawn singing that often turns to a prominent chorus. We examined dawn chorus variation of avian assemblages in a tropical montane forest in Taiwan and tested the hypothesis that onset sequence is affected by eye sizes, foraging heights, and diet of

  11. Vegetation changes along gradients of long-term soil development in the Hawaiian montane rainforest zone11-219.

    Science.gov (United States)

    Kanehiro Kitayama; Dieter Mueller-Dombois

    1995-01-01

    The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (> 4000 mm)age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on...

  12. Biodiversity in temperate European grasslands: origin and conservation.

    OpenAIRE

    Pärtel, Meelis; Bruun, Hans Henrik; Sammul, Marek

    2005-01-01

    Northern Europe is in the forest zone, but wild megaherbivores have maintained grass-dominated vegetation here for the last 1.8 million years. Continuity of the grassland biome through glacialinterglacial cycles and connection to steppe vegetation has resulted in the evolution, immigration, and survival of a large number of grassland species. During the last millennia the effect of wild ungulates has been replaced by domestic grazers and hay making, and the persistence of grasslan...

  13. Methods for evaluation of the invasibility of grasslands

    DEFF Research Database (Denmark)

    Strandberg, M. T.; Strandberg, B.; Erneberg, M.

    The number of non-native plant species in Danish dry acidic grasslands was positively correlated with the cover of disturbance in the form of molehills, anthills, mouseholes and erosion due trampling or digging by large herbivores/livestock. Natural disturbance in acidic grassland ecosystems...... not grazed by livestock therefore is important for the occurrence of non-native species, and probably also for the occurrence of a high native floristic diversity....

  14. PV water pumping systems for grassland and farmland conservation

    OpenAIRE

    Campana, Pietro Elia

    2013-01-01

    Grassland degradation is considered as one of the worst environmental and economic problems in China because of the negative impacts on water and food security. The application of the photovoltaic water pumping (PVWP) technology for irrigation is an innovative and sustainable solution to curb the progress of grassland desertification and to promote the conservation of farmland in remote areas. The combination of PVWP with water saving irrigation techniques and the sustainable management of th...

  15. The Eurasian Dry Grassland Group (EDGG in 2016–2017

    Directory of Open Access Journals (Sweden)

    Venn Stephen

    2018-06-01

    Full Text Available This report summarizes the activities and achievements of the Eurasian Dry Grassland Group (EDGG from mid-2016 through to the end of 2017. During this period, the 13th Eurasian Grassland Conference took place in Sighişoara, Romania, and the 14th conference was held in Riga, Latvia. The 10th EDGG Field Workshop on Biodiversity patterns across a precipitation gradient in the Central Apennine mountains was conducted in the Central Apennines, Italy, this time in addition to multi-scale sampling of vascular plants, bryophytes and lichens, also including one animal group (leaf hoppers. Apart from the quarterly issues of its own electronic journal (Bulletin of the Eurasian Dry Grassland Group, EDGG also finalised five grassland-related Special Features/Issues during the past 1.5 years in the following international journals: Applied Vegetation Science, Biodiversity and Conservation, Phytocoenologia, Tuexenia and Hacquetia. Beyond that, EDGG facilitated various national and supra-national vegetationplot databases of grasslands and established its own specialised database for standardised multi-scale plot data of Palaearctic grasslands (GrassPlot.

  16. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  17. Habitat associations of migrating and overwintering grassland birds in Southern Texas

    Science.gov (United States)

    Igl, Lawrence D.; Ballard, Bart M.

    1999-01-01

    We report on the habitat associations of 21 species of grassland birds overwintering in or migrating through southern Texas, during 1991-1992 and 1992-1993. Ninety percent of our grassland bird observations were made during winter and spring, and only 10% occurred during fall. Grassland species made up a high proportion of the total bird densities in grassland and shrub-grassland habitats, but much lower proportions in the habitats with more woody vegetation. Fewer grassland species were observed in grassland and woodland than in brushland, parkland, and shrub-grassland habitats. Grassland birds generally were found in higher densities in habitats that had woody canopy coverage of < 30%; densities of grassland birds were highest in shrub-grassland habitat and lowest in woodland habitat. Species that are grassland specialists on their breeding grounds tended to be more habitat specific during the nonbreeding season compared to shrub-grassland specialists, which were more general in their nonbreeding-habitat usage. Nonetheless, our data demonstrate that grassland birds occur in a variety of habitats during the nonbreeding season and seem to occupy a broader range of habitats than previously described.

  18. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    Science.gov (United States)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  19. Carbon budget of Nyungwe Tropical Montane Rain Forest in Central Africa

    Science.gov (United States)

    Nyirambangutse, B.; Zibera, E.; Uwizeye, F. K.; Hansson, L.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2015-12-01

    African tropical rainforests host rich biodiversity and play many roles at different scales such as local, regional and global, in the functioning of the earth system. Despite that the African tropical forests are the world's second largest, it has been neglected in terms of understanding the storage and fluxes of carbon and other nutrients. The question of whether this biome is a net sink or source of atmospheric CO2 is still not answered, and little is known concerning the climate change response. Tropical montane forests are even more poorly sampled compared with their importance. Deeper understanding of these ecosystems is required to provide insights on how they might react under global change. To answer questions related to these issues for African tropical montane forests, 15 permanent 0.5 ha plots were established in 2011 in Nyungwe tropical montane rainforest gazetted as a National Park to protect its extensive floral and faunal diversity. The plots are arranged along an east-westerly transect and includes both primary and secondary forest communities. The study is connected to the global ecosystem monitoring network (GEM, http://gem.tropicalforests.ox.ac.uk/). The aim is to characterize spatial and temporal heterogeneity of carbon and nutrient dynamics processes. The role of microclimate, topography, human disturbances, and plant species to the variability of these pools and processes will be explored. We compare stocks and fluxes of carbon and nutrients of the secondary and primary forest communities. The carbon stock are determined by an inventory of height and diameter at breast height (dbh) of all trees with a dbh above 5 cm, wood density, biomass of understory vegetation, leaf area index, standing and fallen dead wood, fine root biomass and organic content of various soil layers (litter, organic and mineral soil down to 45 cm depth). The carbon fluxes are determined by measurements of photosynthesis and respiration of leaves, above and below ground

  20. Application of Multi-Source Remote Sensing Image in Yunnan Province Grassland Resources Investigation

    Science.gov (United States)

    Li, J.; Wen, G.; Li, D.

    2018-04-01

    Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.

  1. Metal contamination of vineyard soils in wet subtropics (southern Brazil)

    International Nuclear Information System (INIS)

    Mirlean, Nicolai; Roisenberg, Ari; Chies, Jaqueline O.

    2007-01-01

    The vine-growing areas in Brazil are the dampest in the world. Copper maximum value registered in this study was as much as 3200 mg kg -1 , which is several times higher than reported for vineyard soils in temperate climates. Other pesticide-derived metals accumulate in the topsoil layer, surpassing in the old vineyards the background value several times for Zn, Pb, Cr and Cd. Copper is transported to deeper soils' horizons and can potentially contaminate groundwater. The soils from basaltic volcanic rocks reveal the highest values of Cu extracted with CaCl 2 , demonstrating a high capacity of copper transference into plants. When evaluating the risks of copper's toxic effects in subtropics, the soils from rhyolitic volcanic rocks are more worrisome, as the Cu extracted with ammonium acetate 1 M surpasses the toxic threshold as much as 4-6 times. - Copper-based pesticide use in wet subtropics is environmentally more risky

  2. Agaricomycetes in low land and montane Atlantic Rain Forest in Northeast Brazil

    Directory of Open Access Journals (Sweden)

    Tatiana Gibertoni

    2014-10-01

    Full Text Available The Atlantic Rain Forest represents a group of extra-amazonic forests, among which the coastal and montane (“brejos de altitude” are the most common in Northeast Brazil. Between 2011 and 2013, 110 field trips were performed in nine reserves in the domain of the Atlantic Rain Forest. Two thousand two hundred sixty three Agaricomycetes were collected and represented 271 species, among which several new species to science, new occurrences to the continent, country, region, biome and States were found. Besides recently collected material, 309 exsiccates of Agaricomycetes deposited in the Herbarium URM were revised and represented 38 species, among which several new occurrences to the region and States. The results indicate the importance of the constant inventories and also of revisions of material deposited in herbaria as tools to improve the knowledge about the Brazilian micota.

  3. Species composition of the vegetation along the Sherichhu River, lower montane area of Eastern Bhutan

    Directory of Open Access Journals (Sweden)

    Tenzin Jamtsho

    2017-06-01

    Full Text Available An investigation of the riparian vegetation along the Sherichhu River, lower montane area of Eastern Bhutan was conducted from April to December 2015 to explore the plant communities in terms of species composition. A total number of 18 plots were placed within the remnant patches of the vegetation on either side of the river. In total, 172 species of vascular plant has been recorded. The cluster analysis suggested four types of plant communities in the study area viz., the MallotusDesmodium-Rhus shrubland and the Syzygium venosum woodland communities, which are located in V-shaped valleys and the Albizia-Flueggea woodland and Quercus glauca woodland communities located in U-shaped valleys. In broad-spectrum, the topographic features and environmental variables i.e. litter accumulation and flooding condition might also have some impact on the species composition of the plant communities of this vegetation.

  4. Evidence of a high density population of harvested leopards in a montane environment.

    Science.gov (United States)

    Chase Grey, Julia N; Kent, Vivien T; Hill, Russell A

    2013-01-01

    Populations of large carnivores can persist in mountainous environments following extensive land use change and the conversion of suitable habitat for agriculture and human habitation in lower lying areas of their range. The significance of these populations is poorly understood, however, and little attention has focussed on why certain mountainous areas can hold high densities of large carnivores and what the conservation implications of such populations might be. Here we use the leopard (Panthera pardus) population in the western Soutpansberg Mountains, South Africa, as a model system and show that montane habitats can support high numbers of leopards. Spatially explicit capture-recapture (SECR) analysis recorded the highest density of leopards reported outside of state-protected areas in sub-Saharan Africa. This density represents a temporally high local abundance of leopards and we explore the explanations for this alongside some of the potential conservation implications.

  5. Evidence of a high density population of harvested leopards in a montane environment.

    Directory of Open Access Journals (Sweden)

    Julia N Chase Grey

    Full Text Available Populations of large carnivores can persist in mountainous environments following extensive land use change and the conversion of suitable habitat for agriculture and human habitation in lower lying areas of their range. The significance of these populations is poorly understood, however, and little attention has focussed on why certain mountainous areas can hold high densities of large carnivores and what the conservation implications of such populations might be. Here we use the leopard (Panthera pardus population in the western Soutpansberg Mountains, South Africa, as a model system and show that montane habitats can support high numbers of leopards. Spatially explicit capture-recapture (SECR analysis recorded the highest density of leopards reported outside of state-protected areas in sub-Saharan Africa. This density represents a temporally high local abundance of leopards and we explore the explanations for this alongside some of the potential conservation implications.

  6. Surface runoff fluxes of nutrients in montane forests in Piedras Blancas region, Antioquia (Colombia)

    International Nuclear Information System (INIS)

    Ruiz Suescun, Oscar Andres; Acosta Jaramillo, Juan Jose; Leon Pelaez, Juan Diego

    2005-01-01

    In natural montane oak forests (Quercus humboldtii Bonpl.), pine (Pinus patula Schltdl and cham.) and cypress (Cupressus lusitanica Mill.) plantations in the region of Piedras Blancas, Antioquia, surface runoff flows (SRF) were measured over 16 months. Runoff was measured using 2 m wide x 10 m long runoff bounded plots, collector tanks and a volumetric counter system. Nutrient flows for the oak forest, pine and cypress plantations were, respectively: P total (0,51, 0,08 and 0,42 kg ha-y), Ca (0,13, 0,21 and 1,27 kg ha- y); Mg (0,07, 0,07 and 0,34 kg ha-y); K (0,89, 0,71 and 2,60 kg ha-y); Fe (0,04, 0,04 and 0,47 kg ha-y) and Mn (0,01, 0,01 and 0,08 kg ha-y)

  7. Balligratus, new genus of wingless ground beetles from equatorial Andean montane forest (Coleoptera: Carabidae: Lachnophorini).

    Science.gov (United States)

    Moret, Pierre; Ortuño, Vicente M

    2017-04-27

    A new carabid beetle genus, Balligratus gen. nov., belonging to the tribe Lachnophorini, is described. It is geographically restricted to the equatorial Andes, and ecologically linked to the montane pluvial forest ecosystem, at elevations ranging from 1,200 to 3,600 m. As other carabid lineages that have radiated in such environments, Balligratus gen. nov. is a wingless clade, characterized by the loss of flight wings associated with metathoracic reduction, constriction of the elytral base, and reduced eye size. This evolution is unique among Lachnophorini. Four new species are described, all of them from Ecuador: Balligratus brevis sp. nov., Balligratus globosus sp. nov., Balligratus gracilis sp. nov. and Balligratus humerangulus sp. nov.

  8. CSFRI symposium: research into citrus and subtropical crops

    International Nuclear Information System (INIS)

    1986-10-01

    This publication only contains the abstracts of papers delivered on the Citrus and Subtropical Fruit Research Institute symposium which was held at Nelspruit on 21-23 October 1986. The abstracts primarily discuss the problems in and around the South African fruit industry such as pest control, etiology, plant diseases, problems with greening, flowering, and plant growth. One abstract specifically discusses the effect of gamma radiation on the reproductive potential of false cadling moth

  9. Water use in the tropics and subtropics and human health

    OpenAIRE

    Rodrigues, Manoel Gonçalves; Universidade Federal do Rio de Janeiro; Centro Universitário da Cidade; Almeida, Josimar Ribeiro de; Universidade Federal do Rio de Janeiro; Bahé, Jackeline Maria Cardoso de França; Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro

    2011-01-01

    The main purpose of this paper is to analyze the environmental degradation and its effects in the human health particularly related to the use of water of the tropics and subtropics areas on Earth. In this conception towards a healthy society a continuous investing in basic and environmental sanitation is very important and simultaneously less expensive than dealing with illnesses. In order to improve a better and friendly society linked to Sustainable Development with a good population life ...

  10. Nutrient leaching under zero tension in a subtropical clonal eucalypt ...

    African Journals Online (AJOL)

    Little is known about the effects of residue burning or retention on nutrient leaching during the inter-rotation of clonal Eucalyptus grown on the sandy soils of subtropical Zululand, South Africa. A study compared zero-tension nutrient leaching through the top metre of soil at depths of 0.15, 0.5 and 1.0 m in an undisturbed crop ...

  11. Incorporating grassland management in a global vegetation model

    Science.gov (United States)

    Chang, Jinfeng; Viovy, Nicolas; Vuichard, Nicolas; Ciais, Philippe; Wang, Tao; Cozic, Anne; Lardy, Romain; Graux, Anne-Isabelle; Klumpp, Katja; Martin, Raphael; Soussana, Jean-François

    2013-04-01

    Grassland is a widespread vegetation type, covering nearly one-fifth of the world's land surface (24 million km2), and playing a significant role in the global carbon (C) cycle. Most of grasslands in Europe are cultivated to feed animals, either directly by grazing or indirectly by grass harvest (cutting). A better understanding of the C fluxes from grassland ecosystems in response to climate and management requires not only field experiments but also the aid of simulation models. ORCHIDEE process-based ecosystem model designed for large-scale applications treats grasslands as being unmanaged, where C / water fluxes are only subject to atmospheric CO2 and climate changes. Our study describes how management of grasslands is included in the ORCHIDEE, and how management affects modeled grassland-atmosphere CO2 fluxes. The new model, ORCHIDEE-GM (Grassland Management) is capable with a management module inspired from a grassland model (PaSim, version 5.0), of accounting for two grassland management practices (cutting and grazing). The evaluation of the results of ORCHIDEE-GM compared with those of ORCHIDEE at 11 European sites equipped with eddy covariance and biometric measurements, show that ORCHIDEE-GM can capture realistically the cut-induced seasonal variation in biometric variables (LAI: Leaf Area Index; AGB: Aboveground Biomass) and in CO2 fluxes (GPP: Gross Primary Productivity; TER: Total Ecosystem Respiration; and NEE: Net Ecosystem Exchange). But improvements at grazing sites are only marginal in ORCHIDEE-GM, which relates to the difficulty in accounting for continuous grazing disturbance and its induced complex animal-vegetation interactions. Both NEE and GPP on monthly to annual timescales can be better simulated in ORCHIDEE-GM than in ORCHIDEE without management. At some sites, the model-observation misfit in ORCHIDEE-GM is found to be more related to ill-constrained parameter values than to model structure. Additionally, ORCHIDEE-GM is able to simulate

  12. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    Science.gov (United States)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle

  13. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.

    Directory of Open Access Journals (Sweden)

    Natalia Ocampo-Peñuela

    Full Text Available Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

  14. Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia.

    Science.gov (United States)

    Ocampo-Peñuela, Natalia; Pimm, Stuart L

    2015-01-01

    Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species' ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800 m. Three transects were forested from 2200 to 2800 m, and three were partially deforested with forest cover only above 2400 m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species' elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species' elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.

  15. Inventory of montane-nesting birds in Katmai and Lake Clark national parks and preserves

    Science.gov (United States)

    Ruthrauff, Daniel R.; Tibbitts, Lee; Gill, Robert E.; Handel, Colleen M.

    2007-01-01

    As part of the National Park Service’s Inventory and Monitoring Program, biologists from the U. S. Geological Survey’s Alaska Science Center conducted an inventory of birds in montane regions of Katmai and Lake Clark National Parks and Preserves during 2004–2006. We used a stratified random survey design to allocate samples by ecological subsection. To survey for birds, we conducted counts at 468 points across 29, 10-km x 10-km (6.2-mi x 6.2-mi) sample plots in Katmai and 417 points across 25, 10-km x 10-km sample plots in Lake Clark. We detected 92 and 104 species in Katmai and Lake Clark, respectively, including 40 species of conservation concern. We detected three species not previously recorded in Katmai (Ring-necked Duck [Aythya collaris], Lesser Scaup [Aythya affinis], and White-tailed Ptarmigan [Lagopus leucurus]) and two species not previously recorded in Lake Clark (Northern Flicker [Colaptes auratus ] and Olive-sided Flycatcher [Contopus cooperi]). The most commonly detected species in both parks was Golden-crowned Sparrow (Zonotrichia atricapilla); Fox Sparrow (Passerella iliaca) and American Pipit (Anthus rubescens) were abundant and widely-distributed as well. We defined sites as low (100–350 m), middle (351–600 m), or high (601–1,620 m) elevation based on the distribution of vegetation cover, and similarly categorized the 34 most-commonly detected species based on the mean elevation of sample points at which they were detected. High elevation (i.e., alpine) sites were characterized by high percent cover of dwarf shrub and bare ground habitat and supported species like Rock Ptarmigan (L. mutus), American Golden-Plover (Pluvialis dominica), Wandering Tattler (Tringa incana), Surfbird (Aphriza virgata), and Snow Bunting (Plectrophenax nivalis), all species of conservation concern. This inventory represents the first systematic survey of birds nesting in montane regions of both parks. Results from this inventory can form the foundation of

  16. Strong hydrological control on nutrient cycling of subtropical rainforests

    Science.gov (United States)

    Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.

    2016-12-01

    Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.

  17. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  18. Radiation preservation of subtropical fruits in South Africa

    International Nuclear Information System (INIS)

    Brodrick, H.T.; Thomas, A.C.

    1978-01-01

    Investigations on the radiation treatment of subtropical fruits were conducted over several seasons at the Atomic Energy Board in conjunction with the Citrus and Subtropical Fruit Research Institute, Nelspruit. In the case of mangoes irradiation, in combination with hot-water or heated-fungicide treatment, by controlling fungal and insect attack, makes possible the transport of fruits to Europe by sea and, with the additional advantage od delayed ripening, a marked improvement in national distribution is also achieved. A commercial feasibility study for mango processing is summarized and a pilot-plant operation for mangoes is also described. Promising results have also been obtained with respect to disease control and delayed senescence in papayas, and similar benefits to those described for mangoes can be achieved under local-market and export conditions. In the case of litchis, although work is in an early stage, effective disease control has been obtained with irradiation treatment. With regard to avocados, a greatly reduced dose with a mild heat treatment produced delayed ripening without significant adverse effects, and resulted in a shelf-life extension of several days. The results given in the report show that the irradiation of subtropical fruits holds considerable promise in terms of reduced losses, improved fruit quality, better distribution and large-scale exports. With the possibility of international clearances within the foreseeable future, commercialization of the process should follow in due course. (author)

  19. Ecology and Conservation of Steppes and Semi-Natural Grasslands

    Directory of Open Access Journals (Sweden)

    Valkó Orsolya

    2016-12-01

    Full Text Available Palaearctic grasslands encompass a diverse variety of habitats, many of high nature value and vulnerability. The main challenges are climate-change, land-use change, agricultural intensification and abandonment. Many measures are in place to address these challenges, through restoration and appropriate management, though more work is necessary. We present eight studies from China/Germany, Greece, Kazakhstan, Russia and Ukraine. The papers cover a wide range of grassland and steppe habitats and cover vegetation ecology, syntaxonomy and zoology. We also conducted a systematic search on steppe and grassland diversity. The greatest number of studies was from China, followed by Germany and England. We conclude that the amount of research being carried out on Eurasian grasslands is inadequate considering their high levels of biodiversity and vulnerability. We hope to encourage readers to address current major challenges, such as how to manage grasslands for the benefit of diverse taxa, to ensure that conservation initiatives concentrate on sites where there is good potential for success and for the generation of realistic and viable conservation strategies.

  20. Classification of Grassland Successional Stages Using Airborne Hyperspectral Imagery

    Directory of Open Access Journals (Sweden)

    Thomas Möckel

    2014-08-01

    Full Text Available Plant communities differ in their species composition, and, thus, also in their functional trait composition, at different stages in the succession from arable fields to grazed grassland. We examine whether aerial hyperspectral (414–2501 nm remote sensing can be used to discriminate between grazed vegetation belonging to different grassland successional stages. Vascular plant species were recorded in 104.1 m2 plots on the island of Öland (Sweden and the functional properties of the plant species recorded in the plots were characterized in terms of the ground-cover of grasses, specific leaf area and Ellenberg indicator values. Plots were assigned to three different grassland age-classes, representing 5–15, 16–50 and >50 years of grazing management. Partial least squares discriminant analysis models were used to compare classifications based on aerial hyperspectral data with the age-class classification. The remote sensing data successfully classified the plots into age-classes: the overall classification accuracy was higher for a model based on a pre-selected set of wavebands (85%, Kappa statistic value = 0.77 than one using the full set of wavebands (77%, Kappa statistic value = 0.65. Our results show that nutrient availability and grass cover differences between grassland age-classes are detectable by spectral imaging. These techniques may potentially be used for mapping the spatial distribution of grassland habitats at different successional stages.

  1. Grassland ecology and population growth: striking a balance.

    Science.gov (United States)

    Hou, D; Duan, C; Zhang, D

    2000-06-01

    Degradation of forest and grasslands in western China attributes to the soil erosion and desertification in the country. Researchers have established that the primary reason for the degradation of grasslands is overgrazing, which in turn is caused by a number of factors, including over-population and over-reliance on animal husbandry. In addition, the existing administrative system has also proved ineffective in ensuring sustainable development. On contrary, many local governments even encourage exploitative development of grassland; thus, localities opened up grassland for growing crops in an effort to increase income. According to estimates, degraded grassland accounts for more than one-third of utilizable acreage and another one-third suffers from a profusion of rats and pests. To redress the situation, central government should implement strategies in achieving sustainable development, such as providing banking and tax incentives for the development of the secondary and tertiary industries, and supporting education and training of youths from herding areas. Moreover, government should increase spending on infrastructural construction and ecological preservation. Finally, the family planning program needs to be enforced to control population growth and improve the quality of peoples¿ lives.

  2. Prescribed burning to affect a state transition in a shrub-encroached desert grassland

    Science.gov (United States)

    Prescribed burning is a commonly advocated and historical practice for control of woody species encroachment into grasslands on all continents. However, desert grasslands of the southwestern United States often lack needed herbaceous fuel loads for effective prescriptions, dominant perennial gramin...

  3. Carbon fluxes from an urban tropical grassland

    International Nuclear Information System (INIS)

    Ng, B.J.L.; Hutyra, L.R.; Nguyen, H.; Cobb, A.R.; Kai, F.M.; Harvey, C.; Gandois, L.

    2015-01-01

    Turfgrass covers a large fraction of the urbanized landscape, but the carbon exchange of urban lawns is poorly understood. We used eddy covariance and flux chambers in a grassland field manipulative experiment to quantify the carbon mass balance in a Singapore tropical turfgrass. We also assessed how management and variations in environmental factors influenced CO 2 respiration. Standing aboveground turfgrass biomass was 80 gC m −2 , with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1 . The contribution of autotrophic respiration was 49–76% of total ecosystem respiration. Both chamber and eddy covariance measurements suggest the system was in approximate carbon balance. While we did not observe a significant relationship between the respiration rates and soil temperature or moisture, daytime fluxes increased during the rainy interval, indicating strong overall moisture sensitivity. Turfgrass biomass is small, but given its abundance across the urban landscape, it significantly influences diurnal CO 2 concentrations. - Highlights: • We measured urban turfgrass CO 2 respiration rates and soil characteristics. • Mean observed ecosystem respiration was 7.9 ± 1.1 μmol m −2  s −1 . • Soil temperature and moisture were largely insignificant drivers of observed flux. - We found a Singapore urban turfgrass to be approximately carbon neutral, with a mean ecosystem respiration of 7.9 ± 1.1 μmol m −2  s −1

  4. Assessing the Effects of Grassland Management on Forage Production and Environmental Quality to Identify Paths to Ecological Intensification in Mountain Grasslands.

    Science.gov (United States)

    Loucougaray, Grégory; Dobremez, Laurent; Gos, Pierre; Pauthenet, Yves; Nettier, Baptiste; Lavorel, Sandra

    2015-11-01

    Ecological intensification in grasslands can be regarded as a process for increasing forage production while maintaining high levels of ecosystem functions and biodiversity. In the mountain Vercors massif, where dairy cattle farming is the main component of agriculture, how to achieve forage autonomy at farm level while sustaining environmental quality for tourism and local dairy products has recently stimulated local debate. As specific management is one of the main drivers of ecosystem functioning, we assessed the response of forage production and environmental quality at grassland scale across a wide range of management practices. We aimed to determine which components of management can be harnessed to better match forage production and environmental quality. We sampled the vegetation of 51 grasslands stratified across 13 grassland types. We assessed each grassland for agronomic and environmental properties, measuring forage production, forage quality, and indices based on the abundance of particular plant species such as timing flexibility, apiarian potential, and aromatic plants. Our results revealed an expected trade-off between forage production and environmental quality, notably by stressing the contrasts between sown and permanent grasslands. However, strong within-type variability in both production and environmental quality as well as in flexibility of timing of use suggests possible ways to improve this trade-off at grassland and farm scales. As achieving forage autonomy relies on increasing both forage production and grassland resilience, our results highlight the critical role of the ratio between sown and permanent grasslands as a major path for ecological intensification in mountain grasslands.

  5. Modeling effects of conservation grassland losses on amphibian habitat

    Science.gov (United States)

    Mushet, David M.; Neau, Jordan L.; Euliss, Ned H.

    2014-01-01

    Amphibians provide many ecosystem services valued by society. However, populations have declined globally with most declines linked to habitat change. Wetlands and surrounding terrestrial grasslands form habitat for amphibians in the North American Prairie Pothole Region (PPR). Wetland drainage and grassland conversion have destroyed or degraded much amphibian habitat in the PPR. However, conservation grasslands can provide alternate habitat. In the United States, the Conservation Reserve Program (CRP) is the largest program maintaining grasslands on agricultural lands. We used an ecosystem services model (InVEST) parameterized for the PPR to quantify amphibian habitat over a six-year period (2007–2012). We then quantified changes in availability of amphibian habitat under various land-cover scenarios representing incremental losses (10%, 25%, 50%, 75%, and 100%) of CRP grasslands from 2012 levels. The area of optimal amphibian habitat in the four PPR ecoregions modeled (i.e., Northern Glaciated Plains, Northwestern Glaciated Plains, Lake Agassiz Plain, Des Moines Lobe) declined by approximately 22%, from 3.8 million ha in 2007 to 2.9 million ha in 2012. These losses were driven by the conversion of CRP grasslands to croplands, primarily for corn and soybean production. Our modeling identified an additional 0.8 million ha (26%) of optimal amphibian habitat that would be lost if remaining CRP lands are returned to crop production. An economic climate favoring commodity production over conservation has resulted in substantial losses of amphibian habitat across the PPR that will likely continue into the future. Other regions of the world face similar challenges to maintaining amphibian habitats.

  6. Three new species of Pristimantis (Lissamphibia, Anura from montane forests of the Cordillera Yanachaga in Central Peru

    Directory of Open Access Journals (Sweden)

    William E. Duellman

    2007-12-01

    Full Text Available We describe three additional new species of Pristimantis from the Cordillera Yanachaga, a part of the Andes in central Peru. Analyses of DNA sequences of the mitochondrial rRNA genes show that onespecies is a close relative of P. bipunctatus (P. conspicillatus Group, another is a close relative of P. stictogaster (P. peruvianus Group, and the third is related to several species in the P. unistrigatus Group. The first two species are morphologically similar to their closest relatives but occur at lower elevations. Twenty-nine species of Pristimantis and Phrynopus are known from the vicinity of the Cordillera Yanachaga. The number of species, especially of Pristimantis, is high in the humid montane forestin comparison with other sites in humid montane forests in Peru, but the number is lower than on the western slopes of the Andes in Ecuador.

  7. Tools for Management for Grassland Ecosystem Sustainability: Thinking "Outside the Box"

    Science.gov (United States)

    Gerald J. Gottfried

    2004-01-01

    Grassland ecosystem management is dynamic and has adapted to the development of new tools and ideas. Our ancestors were indirectly managing grasslands when they learned to move livestock to take advantage of better water and greener forage. One could argue that even their hunting of grassland wildlife, especially the use of fire to drive animals to waiting hunters, had...

  8. Resilience and stability of the grasslands of the Transkei | B | African ...

    African Journals Online (AJOL)

    In spite of very high stocking rates the grasslands of Transkei still have in many areas a high cover and many climax species. The concepts of resilience and stability are used in an attempt to explain dynamics of the grasslands. Keywords: resiliences|stabilities|grasslands|Transkei|stocking rates|basal covers|grass ...

  9. Evapotranspiration and soil moisture dynamics in a temperate grassland ecosystem in Inner Mongolia China

    Science.gov (United States)

    L. Hao; Ge Sun; Yongqiang Liu; G. S. Zhou; J. H.   Wan;  L. B. Zhang; J. L. Niu; Y. H. Sang;  J. J He

    2015-01-01

    Precipitation, evapotranspiration (ET), and soil moisture are the key controls for the productivity and functioning of temperate grassland ecosystems in Inner Mongolia, northern China. Quantifying the soil moisture dynamics and water balances in the grasslands is essential to sustainable grassland management under global climate change. We...

  10. Voluntary intake and in vivo digestibility of forages from semi-natural grasslands in dairy cows

    NARCIS (Netherlands)

    Bruinenberg, M.H.; Valk, H.; Struik, P.C.

    2003-01-01

    To study in vivo digestibility of forages from semi-natural grasslands two experiments were carried out. In the first experiment lactating dairy cows were offered three different silage-based diets. Silage originated from intensively managed grassland (IM), extensively managed species-poor grassland

  11. Forest and grassland carbon in North America: A short course for land managers

    Science.gov (United States)

    Chris Swanston; Michael J. Furniss; Kristen Schmitt; Jeffrey Guntle; Maria Janowiak; Sarah Hines

    2012-01-01

    This multimedia short-course presents a range of information on the science, management and policy of forest and grassland carbon. Forests and grasslands worldwide play a critical role in storing carbon and sequestering greenhouse gases from the atmosphere. The U.S. Forest Service, which manages 193 million acres of forests and grasslands, emphasizes the need for...

  12. Effects of haying on breeding birds in CRP grasslands

    Science.gov (United States)

    Igl, Lawrence D.; Johnson, Douglas H.

    2016-01-01

    The Conservation Reserve Program (CRP) is a voluntary program that is available to agricultural producers to help protect environmentally sensitive or highly erodible land. Management disturbances of CRP grasslands generally are not allowed unless authorized to provide relief to livestock producers during severe drought or a similar natural disaster (i.e., emergency haying and grazing) or to improve the quality and performance of the CRP cover (i.e., managed haying and grazing). Although CRP grasslands may not be hayed or grazed during the primary bird-nesting season, these disturbances may have short-term (1 yr after disturbance) and long-term (≥2 yr after disturbance) effects on grassland bird populations. We assessed the effects of haying on 20 grassland bird species in 483 CRP grasslands in 9 counties of 4 states in the northern Great Plains, USA between 1993 and 2008. We compared breeding bird densities (as determined by total-area counts) in idle and hayed fields to evaluate changes 1, 2, 3, and 4 years after haying. Haying of CRP grasslands had either positive or negative effects on grassland birds, depending on the species, the county, and the number of years after the initial disturbance. Some species (e.g., horned lark [Eremophila alpestris], bobolink [Dolichonyx oryzivorus]) responded positively after haying, and others (e.g., song sparrow [Melospiza melodia]) responded negatively. The responses of some species changed direction as the fields recovered from haying. For example, densities for common yellowthroat (Geothlypis trichas), sedge wren (Cistothorus platensis), and clay-colored sparrow (Spizella pallida) declined the first year after haying but increased in the subsequent 3 years. Ten species showed treatment × county interactions, indicating that the effects of haying varied geographically. This long-term evaluation on the effects of haying on breeding birds provides important information on the strength and direction of changes in

  13. Temporal Activity Patterns of the Spider Wasp Pepsis montezuma Smith (Hymenoptera: Pompilidae) in a Disturbed Lower Montane Rainforest (Manizales, Colombia)

    OpenAIRE

    Restrepo-Giraldo, Carlos; Rodriguez, Juanita; Pitts, James P.

    2012-01-01

    We studied the temporal activity pattern of the spider wasp Pepsis montezuma Smith (Hymenoptera: Pompilidae) in a disturbed lower montane rainforest, which is located in the city of Manizales, Colombia, at an altitude of 2,150 m. Females of this species are diurnal with two peaks of activity: one in the morning and the other in the afternoon. During the morning, nectar foraging occurred at Baccharis latifolia. During the afternoon, females hunted for tarantulas of the genus Pamphobeteus (Aran...

  14. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern Ecuador

    OpenAIRE

    Mandl, N A; Lehnert, M; Kessler, M; Gradstein, S R

    2010-01-01

    We present a first comparison of patterns of alpha and beta diversity of ferns, mosses, liverworts and macrolichens in neotropical montane rainforests, and explore the question whether specific taxa may be used as surrogates for others. In three localities in southern Ecuador, we surveyed terrestrial and epiphytic species assemblages in ridge and slope forests in 28 plots of 400 m² each. The epiphytic habitat was significantly richer in ferns, liverworts, and macrolichens than the terrestrial...

  15. Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae)

    Science.gov (United States)

    Ming-Li Zhang; Stewart C. Sanderson; Yan-Xia Sun; Byalt V. Vyacheslav; Xiao-Li Hao

    2014-01-01

    Atraphaxis has approximately 25 species and a distribution center in Central Asia. It has been previously used to hypothesize an origin from montane forest. We sampled 18 species covering three sections within the genus and sequenced five cpDNA spacers, atpB-rbcL, psbK-psbI, psbAtrnH, rbcL, and trnL-trnF. BEAST was used to reconstruct phylogenetic relationship and time...

  16. Efforts to improve and sustain the productive utilization of dry grasslands in Armenia

    Science.gov (United States)

    Mezhunts, Bagrat; Navasardyan, Marine

    2014-05-01

    Armenia is a small mountainous country (29,743 km2) located in the South Caucasus. It lies in the sub-tropical zone and has a continental climate with hot summers (av. +250C) and cold winters (av. -60C). The average precipitation is 550 mm; in the dry-steppe zone it amounts to only 250 mm and with a rainy season in spring-early summer. Altitudinal variation (390-4,095 m) gives rise to a range of climatic zones (from semi-desert to alpine), soil types and plant communities. Besides, Armenia is situated on the crossroads of Caucasian - mesophyllous (humid) and Armeno-Iranian - xerophyllous (arid) floristic provinces, which has made it to a "biodiversity hotspot". Agriculture is important as a source of employment and for domestic food supply. The rural population (ca. 1.2 million) is largely dependent on livestock for their livelihood. The principal feed resource is extensive grasslands (60% of total agricultural lands), but past practices of uncontrolled grazing management has led to low grassland productivity and low proportion of valuable legume forages. Improvement of natural grasslands, enhancement of feed quality, prevention of soil erosion and re-establishment of vegetation cover are key socio-economic challenges and are needed to raise the livelihood of rural population in Armenia. This presentation focuses on present status and trends of dry pastureland degradation, exposed to intensive grazing, and on results from case studies to increase productivity and restore valuable forage species for sustainable use in agriculture. Three different conventional approaches have been applied in these studies including: fertilization with moderate doses of ammonium and potassium nitrate and superphosphate, over-sowing by local legume seeds and implementation of a 2-year rest period in overgrazed areas. From 1986 to 2007, the total yield (TY) in studied dry-steppe pastures decreased by 40%, while at the same time, the proportion of grasses in total yield decreased by 50

  17. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  18. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.

    Directory of Open Access Journals (Sweden)

    Jiří Flousek

    Full Text Available Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše, where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta. It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.

  19. Assessment of the impact of anthropic activities on carbon storage in soils of high montane ecosystems in Colombia

    Directory of Open Access Journals (Sweden)

    Orlando Zúñiga-Escobar

    2013-04-01

    Full Text Available The organic carbon in the soil was quantified to assess the impact of anthropic activities on montane ecosystems in Colombia in Chingaza Parque Nacional Natural (PNN and Los Nevados Parque Nacional Natural (PNN . For the development of the soil samples, a detailed in situ description of the edaphological profile of four ecosystems of paramo and high Andean forest areas, of both disturbed and undisturbed zones, was taken as the base. The calculation of the amount of total carbon stored by the soil profile shows that, in Colombia, undisturbed high montane ecosystems (520.9 t ha-1 in paramos and 323.6 t ha-1 in high Andean forests of Chingaza PNN , and 373.0 t ha-1 in paramos and 254.6 t ha-1 in high Andean forests of Los Nevados PNN currently have more carbon than disturbed ecosystems (135.1 t ha-1 in paramos and 141.5 t ha-1 in high Andean forests of Chingaza PNN , and 356.3 t ha-1 in paramos and 217.1 t ha-1 in high Andean forests of Los Nevados PNN . It is clear that the disturbance of high montane ecosystems decreases the amount of carbon in the soil, a situation that is more concerning in Chingaza PNN where the difference between the disturbed and undisturbed ecosystems is much more marked than in Los Nevados PNN

  20. Perfluoroalkylated substances in the global tropical and subtropical surface oceans.

    Science.gov (United States)

    González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña

    2014-11-18

    In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability

  1. The carbon fluxes in different successional stages: modelling the dynamics of tropical montane forests in South Ecuador

    Directory of Open Access Journals (Sweden)

    Sebastian Paulick

    2017-05-01

    Full Text Available Background Tropical forests play an important role in the global carbon (C cycle. However, tropical montane forests have been studied less than tropical lowland forests, and their role in carbon storage is not well understood. Montane forests are highly endangered due to logging, land-use and climate change. Our objective was to analyse how the carbon balance changes during forest succession. Methods In this study, we used a method to estimate local carbon balances that combined forest inventory data with process-based forest models. We utilised such a forest model to study the carbon balance of a tropical montane forest in South Ecuador, comparing two topographical slope positions (ravines and lower slopes vs upper slopes and ridges. Results The simulation results showed that the forest acts as a carbon sink with a maximum net ecosystem exchange (NEE of 9.3 Mg C∙(ha∙yr−1 during its early successional stage (0–100 years. In the late successional stage, the simulated NEE fluctuated around zero and had a variation of 0.77 Mg C∙(ha∙yr –1. The simulated variability of the NEE was within the range of the field data. We discovered several forest attributes (e.g., basal area or the relative amount of pioneer trees that can serve as predictors for NEE for young forest stands (0–100 years but not for those in the late successional stage (500–1,000 years. In case of young forest stands these correlations are high, especially between stand basal area and NEE. Conclusion In this study, we used an Ecuadorian study site as an example of how to successfully link a forest model with forest inventory data, for estimating stem-diameter distributions, biomass and aboveground net primary productivity. To conclude, this study shows that process-based forest models can be used to investigate the carbon balance of tropical montane forests. With this model it is possible to find hidden relationships between forest attributes and forest carbon fluxes

  2. Iodine monoxide in the north subtropical free troposphere [Discussion paper

    OpenAIRE

    Puentedura, Olga; Gil-Ojeda, Manuel; Saiz-Lopez, Alfonso; Hay, Tim; Navarro Comas, Mónica; Gómez Peláez, Ángel Jesús; Cuevas Agulló, Emilio; Iglesias, J.

    2011-01-01

    Iodine monoxide (IO) was retrieved using a new multi-axis DOAS instrument deployed at the Izaña subtropical observatory as part of the Network for the Detection of Atmospheric Composition Change (NDACC) programme. The station is located at 2370 m a.s.l., well above the trade wind inversion that limits the top of the marine boundary layer, and is hence representative of the free troposphere. We report daily observations from May to August 2010 at different viewing angles. During this period, t...

  3. Iodine monoxide in the north subtropical free troposphere

    OpenAIRE

    O. Puentedura; M. Gil; A. Saiz-Lopez; T. Hay; M. Navarro-Comas; A. Gómez-Pelaez; E. Cuevas; J. Iglesias; L. Gomez

    2012-01-01

    Iodine monoxide (IO) differential slant column densities (DSCD) have been retrieved from a new multi-axis differential optical absorption spectroscopy (MAX-DOAS) instrument deployed at the Izaña subtropical observatory as part of the Network for the Detection of Atmospheric Composition Change (NDACC) programme. The station is located at 2370 m a.s.l., well above the trade wind inversion that limits the top of the marine boundary layer, and hence is representative of the free troposphere. We r...

  4. DYNAMICS OF CARBON SEQUESTRATION IN ABANDONED GRASSLANDS OF NORTHEASTERN MEXICO

    Directory of Open Access Journals (Sweden)

    José Israel Yerena Yamallel

    2014-04-01

    Full Text Available Livestock activities due to the improper handling of the load capacity, suffer from low productivity in their grasslands, which are abandoned giving rise to the appearance of species considered invasive and undesirable for producers, without knowing the qualities of these as mitigating of climate change. The objective of the present study was to estimate the carbon content in tamaulipan thornscrub and three abandoned grasslands with a time of abandonment of 10, 20 and 30 years. For the estimation of the carbon content was used a systematic sampling design, in each area were established four sampling sites of 1,600 m2. The primary scrub is the system that resulted in the largest value of carbon content of 14.25 Mg ha-1, followed by the grasslands of 30, 20 and 10 years with 8.03, 7.33 and 4.13 Mg ha-1 respectively. It was concluded that recovering the initial state of the primary scrub take many years, as can be seen in the grasslands system 30 years reaching only 56% of what it had in reserves of primary scrub.

  5. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  6. Crude protein changes on grassland along a degradation gradient ...

    African Journals Online (AJOL)

    Evapotranspiration was determined by quantifying the soil-water balance equation with the aid of runoff plots and soil-water content measurements. Crude protein ... The study shows that it is important to keep grassland in optimal condition to utilize limited soil water for sustainable plant and therefore animal production.

  7. Intensification of grassland and forage use: driving forces and constraints

    NARCIS (Netherlands)

    Oenema, O.; Klein, de C.; Alfaro, M.

    2014-01-01

    The increasing demand for safe and nutritional dairy and beef products in a globalising world, together with the needs to increase resource use efficiency and to protect biodiversity, provide strong incentives for intensification of grassland and forage use. This paper addresses the question: 'Does

  8. Achieving grassland production and quality that matches animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different
    constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of
    Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the

  9. Achieving grassland production and quality that matching animal needs

    NARCIS (Netherlands)

    Pol, van den A.; Busqué, Juan; Golinski, P.; Noorkõiv, Katrin; O'Donovan, Michael; Peratoner, Giovanni; Reheul, D.

    2016-01-01

    Permanent grasslands are exploited by grazing animals or as meadows depending on different constraints. Grazing is the most common use in large parts of Europe, especially in the northwest of Europe. However, certain areas are less suitable for grazing. In the Alps e.g. meadows are the most relevant

  10. Avian diversity in the Naliya Grassland, Abdasa Taluka, Kachchh, India

    Directory of Open Access Journals (Sweden)

    Sandeep B Munjpara

    2012-03-01

    Full Text Available Naliya Grassland is one of the significant grasslands of Gujarat. In this study the importance of the Naliya Grassland has been explored with special reference to avian diversity. Field work for the study was carried out throughout the year of 2007 on a monthly basis covering three distinct seasons to explore avian diversity. A total of 177 species belonging to 54 families were recorded wherein most species belonged to the family Accipitridae (20 species followed by Alaudidae (11 species. Of the total families, five were represented by more than seven species, 18 families by 3-7 species and 31 families by one or two species respectively. Among the species observed, 16 species ware globally threatened (three Critically Endangered, four Endangered and nine Near Threatened. Most of the species were chiefly terrestrial (68.2%, about 23.9% species were freshwater dependant and 7.9% utilized mixed habitats. Maximum species richness was recorded in the monsoons and minimum in summer. Constant turnover and fluctuation in species richness occurred because of seasonal immigration and emigration. Maximum emigration took place during February and March and maximum immigration occurred during June and July. Many water dependant birds attracted to the flooded grassland during the monsoons explained the high species richness during this season. In winter, the area was inhabited by resident species as well as many migratory species.

  11. Evaluation of SPOT imagery for the estimation of grassland biomass

    Science.gov (United States)

    Dusseux, P.; Hubert-Moy, L.; Corpetti, T.; Vertès, F.

    2015-06-01

    In many regions, a decrease in grasslands and change in their management, which are associated with agricultural intensification, have been observed in the last half-century. Such changes in agricultural practices have caused negative environmental effects that include water pollution, soil degradation and biodiversity loss. Moreover, climate-driven changes in grassland productivity could have serious consequences for the profitability of agriculture. The aim of this study was to assess the ability of remotely sensed data with high spatial resolution to estimate grassland biomass in agricultural areas. A vegetation index, namely the Normalized Difference Vegetation Index (NDVI), and two biophysical variables, the Leaf Area Index (LAI) and the fraction of Vegetation Cover (fCOVER) were computed using five SPOT images acquired during the growing season. In parallel, ground-based information on grassland growth was collected to calculate biomass values. The analysis of the relationship between the variables derived from the remotely sensed data and the biomass observed in the field shows that LAI outperforms NDVI and fCOVER to estimate biomass (R2 values of 0.68 against 0.30 and 0.50, respectively). The squared Pearson correlation coefficient between observed and estimated biomass using LAI derived from SPOT images reached 0.73. Biomass maps generated from remotely sensed data were then used to estimate grass reserves at the farm scale in the perspective of operational monitoring and forecasting.

  12. Homogenization of the soil surface following fire in semiarid grasslands

    Science.gov (United States)

    Carleton S. White

    2011-01-01

    Semiarid grasslands accumulate soil beneath plant "islands" that are raised above bare interspaces. This fine-scale variation in microtopographic relief is plant-induced and is increased with shrub establishment. Research found that fire-induced water repellency enhanced local-scale soil erosion that reduced variation in microtopographic relief, suggesting...

  13. Relationship between soil chemical factors and grassland diversity

    NARCIS (Netherlands)

    Janssens, F; Peeters, A; Tallowin, JRB; Bakker, JP; Bekker, RM; Fillat, F; Oomes, MJM

    Many studies carried out during these last few years have focused on the factors influencing plant diversity in species-rich grasslands. This is due to the fact that these ecosystems, among the most diversified in temperate climates, are extremely threatened; in some areas, they have almost

  14. Transformation of a savanna grassland by drought and grazing | O ...

    African Journals Online (AJOL)

    The relative effects of drought and heavy grazing on the floristic composition, population size and and structure, and basal cover of an African savanna grassland were differentiated by comparing changes over eight years over eight years, which included a severe drought year, across a gradient of grazing history. Drought ...

  15. Controlling nitrous oxide emissions from grassland livestock production systems

    NARCIS (Netherlands)

    Oenema, O.; Gebauer, G.; Rodriguez, M.; Sapek, A.; Jarvis, S.C.; Corré, W.J.; Yamulki, S.

    1998-01-01

    There is growing awareness that grassland livestock production systems are major sources of nitrous oxide (N2O). Controlling these emissions requires a thorough understanding of all sources and controlling factors at the farm level. This paper examines the various controlling factors and proposes

  16. Effects of large herbivores on grassland arthropod diversity

    NARCIS (Netherlands)

    van Klink, R.; van der Plas, F.; van Noordwijk, C. G. E. (Toos); WallisDeVries, M. F.; Olff, H.

    Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141

  17. Potassium cycling and losses in grassland systems : a review

    NARCIS (Netherlands)

    Kayser, M; Isselstein, J

    Cycling of potassium in grassland systems has received relatively little attention in research and practice in recent years. Balanced nutrient systems require consideration of nutrients other than nitrogen (N). Potassium (K) is needed in large amounts and is closely related to N nutrition. In

  18. The effect of grassland management on enchytraeids (Oligochaeta) communities

    DEFF Research Database (Denmark)

    Maraldo, Kristine; Schmelz, Rüdiger; Christensen, Bent Tolstrup

    2012-01-01

    Enchytraeids (small white earthworms between 3 to 35 mm) are important regulators of nitrogen turnover in grasslands, as their activities accelerate the decomposition and nutrient recycling processes. In this study, the effect of management on species composition, abundance and biomass of the enc...... biomass and density of the grazed plots are due to compaction by grazing animals....

  19. Effect of burn area on invertebrate recolonization in grasslands in ...

    African Journals Online (AJOL)

    Our study examined the short-term response of grassland invertebrate communities to fire in the South African Drakensberg, in relation to distance from the edge of a burn. We aimed to establish which species survive fire and the dynamics of the post-fire recolonization process, and thereby contribute to establishing the ...

  20. Organic matter dynamics and N mineralization in grassland soils

    NARCIS (Netherlands)

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly

  1. Vegetation diversity of salt-rich grasslands in Southeast Europe

    Czech Academy of Sciences Publication Activity Database

    Eliáš, P. Jr.; Sopotlieva, D.; Dítě, D.; Hájková, Petra; Apostolova, I.; Senko, D.; Melečková, Z.; Hájek, Michal

    2013-01-01

    Roč. 16, č. 3 (2013), s. 521-537 ISSN 1402-2001 R&D Projects: GA ČR GA206/09/0329 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : salt marshes * vegetation survey * grasslands Subject RIV: EF - Botanics Impact factor: 2.416, year: 2013

  2. Montane-breeding bird distribution and abundance across national parks of southwestern Alaska

    Science.gov (United States)

    Amundson, Courtney L.; Handel, Colleen M.; Ruthrauff, Daniel R.; Tibbitts, T. Lee; Gill, Robert E.

    2018-01-01

    Between 2004 and 2008, biologists conducted an inventory of breeding birds during May–June primarily in montane areas (>100 m above sea level) in Aniakchak National Monument and Preserve (Aniakchak NMP), Katmai National Park and Preserve (Katmai NPP), and Lake Clark National Park and Preserve (Lake Clark NPP) in southwestern Alaska. Observers conducted 1,021 point counts along 169 transects within 63 10-km × 10-km plots that were randomly selected and stratified by ecological subsection. We created hierarchical N-mixture models to estimate detection probability and abundance for 15 species, including 12 passerines, 2 galliforms, and 1 shorebird. We first modeled detection probability relative to observer, date within season, and proportion of dense vegetation cover around the point, then modeled abundance as a function of land cover composition (proportion of seven coarse-scale land cover types) within 300 m of the survey point. Land cover relationships varied widely among species but most showed selection for low to tall shrubs (0.2–5 m tall) and an avoidance of alpine and 2 dwarf shrub–herbaceous cover types. After adjusting for species not observed, we estimated a minimum of 107 ± 9 species bred in the areas surveyed within the three parks combined. Species richness was negatively associated with elevation and associated land cover types. At comparable levels of survey effort (n = 721 birds detected), species richness was greatest in Lake Clark NPP (75 ± 12 species), lowest in Aniakchak NMP (45 ± 6 species), and intermediate at Katmai NPP (59 ± 10 species). Species richness was similar at equivalent survey effort (n = 973 birds detected) within the Lime Hills, Alaska Range, and Alaska Peninsula ecoregions (68 ± 8; 79 ± 11; 67 ± 11, respectively). Species composition was similar across all three parks and across the three major ecoregions (Alaska Range, Alaska Peninsula, Lime Hills) that encompass them. Our results provide baseline estimates of

  3. Ecology of Mabuya agilis (Squamata: Scincidae from a montane atlantic rainforest area in Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Teixeira, Rogério L.

    2003-05-01

    Full Text Available Alguns aspectos da ecologia (principalmente reprodução e dieta do lagarto scincídeo Mabuya agilis foram estudados com base em amostras mensais realizadas de dezembro de 1997 a abril de 1999 em uma área de floresta tropical serrana no estado do Espírito Santo, sudeste do Brasil. Dos 197 espécimes coletados, 82 eram machos, 110 eram fêmeas, e o resto não pôde ser corretamente sexado. Lagartos variaram em comprimento rostro-coacal de 30 a 96 mm e foram sexualmente dimórficos em tamanho, com fêmeas atingindo maiores tamanhos que machos. A menor fêmea grávida mediu 54.0 mm. O tamanho da ninhada para 49 fêmeas grávidas variou de 2 a 9 (média = 5.7 e esteve positiva e significativamente relacionado ao tamanho dos lagartos. As presas dominantes na dieta de M. agilis foram baratas, ortópteros e aranhas. A população de M. agilis aqui estudada diferiu de outras populações conspecíficas previamente estudadas em hábitats de «restinga» nos estados do Rio de Janeiro e Espírito Santo, sendo que os indivíduos crescem a tamanhos maiores e a fecundidade é mais alta, possivelmente devido a uma maior disponibilidade de alimento no hábitat de floresta tropical serrana Some aspects of the ecology (mainly reproduction and diet of the skink Mabuya agilis were studied based on monthly samples taken from December 1997 to April 1999 at a montane rainforest area in Espírito Santo state, southeastern Brazil. Of 197 collected specimens, 82 were males, 110 were females, and the rest could not be properly sexed. Lizards varied in snout-vent length (SVL from 30 to 96 mm and were sexually dimorphic in size, with females growing larger than males. The smallest gravid female measured 54.0 mm in SVL. Litter size of 49 gravid females varied from 2 to 9 (mean= 5.7 and was positively and significantly related to lizard SVL. The dominant prey items in the diet of M. agilis were cockroaches, orthopterans and spiders. The population of M. agilis here studied

  4. ¿Quién fue Lluís Montané i Mollfulleda?

    Directory of Open Access Journals (Sweden)

    Ramon Balius i Juli

    2006-06-01

    Full Text Available Lluís Montané i Mollfulleda, nacido en Sant Celoni en 1905, era un artista integral, enmarcado en las corrientes novecentistas y mediterranistas que se sustentan en la tradición clásica del mundo griego. Estudió en la Escuela de Bellas Artes de Barcelona (Llotja entre 1921 y 1927, aunque antes, muy joven, trabajó durante tres años en el taller del escultor Eusebi Arnau (1864-1933. En la Llotja su segundo maestro, después del profesor de primer curso, Parera, fue Antoni Alsina i Amils (1864-1948, el cual, como comentaremos, fue el más apreciado. Montané quiso conocer el mundo de su arte y después de una beca, en 1926, para realizar estudios por España, ganó por concurso, en 1928, una pensión de la Diputación de Barcelona para ampliar estudios en Italia, Francia y Bélgica. En Bélgica estudió de cerca la obra de Constantin Meu­nier (1831-1905. En 1930, en París, frecuentó la Grande Chaumière donde todavía se respiraban les ideas y las directrices de Auguste Rodin (1840-1917 y de Antoine Bourdelle (1861-1929. Antes había estado en Italia, en Florencia y Roma, en la Academia de Bellas Artes de España, al lado del maestro Miquel Blay (1866-1936 en donde, mientras mejoraba su aprendizaje, pudo contemplar en los museos de Roma y Nápoles, las esculturas de los autores clásicos. En 1931 donó a la Generalitat de Catalunya su obra Joguinera (Juguetona realizada durante su estancia por Europa. Esta escultura se ubicó en el despacho del presidente Macià y actualmente se encuentra en el Centro de Cultura Contempo­ránea.

  5. Assessment of water availability and its relationship with vegetation distribution over a tropical montane system

    Science.gov (United States)

    Streher, A. S.; Sobreiro, J. F. F.; Silva, T. S. F.

    2017-12-01

    Water availability is one of the main drivers of vegetation distribution, but assessing it over mountainous regions is difficult given the effects of rugged topography on hydroclimatic dynamics (orographic rainfall, soil water, and runoff). We assessed how water availability may influence the distribution of vegetation types in the Espinhaço Range, a South American tropical mountain landscape comprised of savannas, grasslands, rock outcrops, cloud forests, and semi-deciduous/deciduous forests. For precipitation, we used CHIRPS monthly and daily products (1981- 2016) and 112 rain gauge ground stations, and assessed potential evapotranspiration (PET) using the MODIS MOD16A3 (2000-2013) product. Vegetation types were classified according to the Global Ecoregions by WWF. We show that rainfall has well-defined rainy and dry seasons with a strong latitudinal pattern, there is evidence for local orographic effects. Dry forests (907 mm/yr; 8% cv) and caatinga vegetation (795 mm/yr; 7% cv) had the lowest average annual precipitation and low variance, whilst Atlantic tropical forest in the southeast (1267 mm/yr; 15% cv), cerrado savanna vegetation in the west (1086 mm/yr; 15% cv) and rupestrian grasslands above 800m (1261 mm/yr; 20% cv) received the highest annual precipitation, with the largest observed variance due to their wide latitudinal distribution. Forests and rupestrian grasslands in the windward side of the mountain had a higher frequency of intense rainfall events (> 20mm), accounting for 6% of the CHIRPS daily time series, suggesting orographic effects on precipitation. Annual average PET was highest for dry forests (2437 mm/yr) and caatinga (2461 mm/yr), intermediate for cerrado (2264 mm/yr) and lowest for Atlantic tropical forest (2083 mm/yr) and rupestrian grasslands (2136 mm/yr). All vegetation types received less rainfall than its PET capacity based on yearly data, emphasizing the need for ecophysiological adaptations to water use. Climate change threatens

  6. Managed grassland alters soil N dynamics and N2O emissions in temperate steppe.

    Science.gov (United States)

    Xu, Lijun; Xu, Xingliang; Tang, Xuejuan; Xin, Xiaoping; Ye, Liming; Yang, Guixia; Tang, Huajun; Lv, Shijie; Xu, Dawei; Zhang, Zhao

    2018-04-01

    Reclamation of degraded grasslands as managed grasslands has been increasingly accelerated in recent years in China. Land use change affects soil nitrogen (N) dynamics and nitrous oxide (N 2 O) emissions. However, it remains unclear how large-scale grassland reclamation will impact the grassland ecosystem as a whole. Here, we investigated the effects of the conversion from native to managed grasslands on soil N dynamics and N2O emissions by field experiments in Hulunber in northern China. Soil (0-10cm), nitrate (NO 3 - ), ammonium (NH 4 + ), and microbial N were measured in plots in a temperate steppe (Leymus chinensis grassland) and two managed grasslands (Medicago sativa and Bromus inermis grasslands) in 2011 and 2012. The results showed conversion of L. chinensis grassland to M. sativa or B. inermis grasslands decreased concentrations of NO 3 - -N, but did not change NH 4 + -N. Soil microbial N was slightly decreased by the conversion of L. chinensis grassland to M. sativa, but increased by the conversion to B. inermis. The conversion of L. chinensis grassland to M. sativa (i.e., a legume grass) increased N 2 O emissions by 26.2%, while the conversion to the B. inermis (i.e., a non-legume grass) reduced N 2 O emissions by 33.1%. The conversion from native to managed grasslands caused large created variations in soil NO 3 - -N and NH 4 + -N concentrations. Net N mineralization rates did not change significantly in growing season or vegetation type, but to net nitrification rate. These results provide evidence on how reclamation may impact the grassland ecosystem in terms of N dynamics and N 2 O emissions. Copyright © 2017. Published by Elsevier B.V.

  7. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size.

    Science.gov (United States)

    Zuckerberg, Benjamin; Ribic, Christine A; McCauley, Lisa A

    2018-02-06

    Grassland birds are declining faster than any other bird guild across North America. Shrinking ranges and population declines are attributed to widespread habitat loss and increasingly fragmented landscapes of agriculture and other land uses that are misaligned with grassland bird conservation. Concurrent with habitat loss and degradation, temperate grasslands have been disproportionally affected by climate change relative to most other terrestrial biomes. Distributions of grassland birds often correlate with gradients in climate, but few researchers have explored the consequences of weather on the demography of grassland birds inhabiting a range of grassland fragments. To do so, we modeled the effects of temperature and precipitation on nesting success rates of 12 grassland bird species inhabiting a range of grassland patches across North America (21,000 nests from 81 individual studies). Higher amounts of precipitation in the preceding year were associated with higher nesting success, but wetter conditions during the active breeding season reduced nesting success. Extremely cold or hot conditions during the early breeding season were associated with lower rates of nesting success. The direct and indirect influence of temperature and precipitation on nesting success was moderated by grassland patch size. The positive effects of precipitation in the preceding year on nesting success were strongest in relatively small grassland patches and had little effect in large patches. Conversely, warm temperatures reduced nesting success in small grassland patches but increased nesting success in large patches. Mechanisms underlying these differences may be patch-size-induced variation in microclimates and predator activity. Although the exact cause is unclear, large grassland patches, the most common metric of grassland conservation, appears to moderate the effects of weather on grassland-bird demography and could be an effective component of climate-change adaptation.

  8. Okinawan Subtropical Plants as a Promising Resource for Novel Chemical Treasury.

    Science.gov (United States)

    Matsunami, Katsuyoshi; Otsuka, Hideaki

    2018-01-01

    The Okinawa Islands are a crescent-shaped archipelago and their natural forests hold a huge variety of unique subtropical plants with relatively high endemism. We have performed phytochemical study on Okinawan subtropical plants for many years. In this review, we describe our recent research progress on the isolation of new compounds and their various bioactivities.

  9. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic.

    Directory of Open Access Journals (Sweden)

    Carlos Cáceres

    Full Text Available Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E. Our design included two phytoplankton size fractions (0.2-5 µm and >5 µm and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11-1.60 d(-1, especially in the case of the large fraction. Grazing rates were also high (0.15-1.29 d(-1, suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres.

  10. Turbulent vertical diffusivity in the sub-tropical stratosphere

    Directory of Open Access Journals (Sweden)

    I. Pisso

    2008-02-01

    Full Text Available Vertical (cross-isentropic mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS. We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  11. Influence of Subtropical Jetstream on Arabian Gulf Precipitation

    Science.gov (United States)

    Sandeep, S.; Pauluis, O.; Ravindran, A. M.; TP, S.

    2017-12-01

    The Arabian Gulf and surrounding regions are predominantly arid. However, this region hosts a large population due to the intense economic activity that is centered on the exploration of natural resources in and around the Arabian Gulf. Thus, few precipitation events that occur during boreal winter are important for society and ecology of this region. The mechanisms of winter precipitation over the Gulf are not well understood, partly due to a lack of long term meteorological observation. Here we explore the dynamics of Arabian Gulf winter precipitation events using available observations and a high resolution atmospheric model simulation. Our analyses show that the northern Gulf receives about six times more precipitation than the southern Gulf. Often, the southern Gulf precipitation forms as a result of downstream development of northern Gulf disturbance. The southward movement of northern Gulf disturbances is influenced by the location of subtropical jet. The probability of a northern Gulf precipitating weather system to move south is higher when the subtropical jet is located equatorward of 30°N. The equatorward position of jet favors the penetration of mid-latitude weather systems over the Arabian Peninsula, which in turn pushes the Arabian anticyclone eastward and triggers moisture transport from the Arabian Sea that is essential for southern Gulf precipitation events.

  12. Potential role of resurfacing Subtropical Underwater in ENSO evolution

    Science.gov (United States)

    Qu, T.; Chi, J.

    2017-12-01

    Results from a model of the Estimating the Circulation and Climate of the Ocean (ECCO) have shown that the resurfacing of high salinity Subtropical Underwater contributes to the sea surface salinity variability in the equatorial Pacific. On interannual time scale, this contribution can account for as much as 25% of the surface freshwater flux anomalies and is believed to play a role in ENSO evolution. Having these results in mind, this study investigates the surface salinity budget and its primary controls in the equatorial Pacific using ECCO output for the period 1993-2016. Particular attention is paid to 2014/2015 and 2015/2016. Preliminary analyses of the model results suggest that enhanced subsurface processes and in particular enhanced entrainment of Subtropical Underwater are primarily responsible for the positive sea surface salinity anomalies in the central equatorial Pacific during 2014/2015, which represents an opposite phase of El Niño. These subsurface processes weakened during 2015/2016, diretly contributing to the development of the 2015/2016 El Niño. The mechanisms controlling these subsurface processes are discussed.

  13. Phytoplankton Growth and Microzooplankton Grazing in the Subtropical Northeast Atlantic

    Science.gov (United States)

    Cáceres, Carlos; Taboada, Fernando González; Höfer, Juan; Anadón, Ricardo

    2013-01-01

    Dilution experiments were performed to estimate phytoplankton growth and microzooplankton grazing rates during two Lagrangian surveys in inner and eastern locations of the Eastern North Atlantic Subtropical Gyre province (NAST-E). Our design included two phytoplankton size fractions (0.2–5 µm and >5 µm) and five depths, allowing us to characterize differences in growth and grazing rates between size fractions and depths, as well as to estimate vertically integrated measurements. Phytoplankton growth rates were high (0.11–1.60 d−1), especially in the case of the large fraction. Grazing rates were also high (0.15–1.29 d−1), suggesting high turnover rates within the phytoplankton community. The integrated balances between phytoplankton growth and grazing losses were close to zero, although deviations were detected at several depths. Also, O2 supersaturation was observed up to 110 m depth during both Lagrangian surveys. These results add up to increased evidence indicating an autotrophic metabolic balance in oceanic subtropical gyres. PMID:23935946

  14. Environmental radioactivity investigations in the Georgian subtropical region

    International Nuclear Information System (INIS)

    Pagava, S.; Kakashvili, P.; Avtandilashvili, M.; Kharashvili, G.; Robakidze, Z.; Rusetski, V.; Togonidze, G.; Baratashvili, D.

    2002-01-01

    Environmental changes in the contamination of the Georgian subtropical region have been investigated by analysing anthropogenic and natural radionuclides in samples of soil and tea leaves for possible chromosome mutations. As the tea industry in Georgia is an important economic activity, such investigations are of great importance. The changes in the morphology of tea leaves, their colour, blossoming, growth inhibition or stimulation, prolongation of the germination period and levels of tanin-katechin complexes have been investigated. The results of radionuclide measurements in soil and tea leaves ( 40 K, 210 Pb and 137 Cs) are presented. Elevated concentrations of 137 Cs were observed in soil samples due to fallout from Chernobyl, however, no direct relationship between the concentration of 137 Cs in soil and tea leaves has been observed. Cyto-genetic analyses of tea primary roots will be presented and compared for different time periods. Further, ichtyofauna samples taken from the Georgian subtropical areas were analysed for anthropogenic ( 137 Cs) and natural ( 40 K) radionuclides. The observed concentrations of 137 Cs were low, close to the detection limit of the order of 0.4 Bq/kg dry weight. Some of the investigations were carried out in the framework of the IAEA Technical Co-operation project 'Marine Environmental Assessment of the Black Sea Region'

  15. Classification of Snowfall Events and Their Effect on Canopy Interception Efficiency in a Temperate Montane Forest.

    Science.gov (United States)

    Roth, T. R.; Nolin, A. W.

    2015-12-01

    Forest canopies intercept as much as 60% of snowfall in maritime environments, while processes of sublimation and melt can reduce the amount of snow transferred from the canopy to the ground. This research examines canopy interception efficiency (CIE) as a function of forest and event-scale snowfall characteristics. We use a 4-year dataset of continuous meteorological measurements and monthly snow surveys from the Forest Elevation Snow Transect (ForEST) network that has forested and open sites at three elevations spanning the rain-snow transition zone to the upper seasonal snow zone. Over 150 individual storms were classified by forest and storm type characteristics (e.g. forest density, vegetation type, air temperature, snowfall amount, storm duration, wind speed, and storm direction). The between-site comparisons showed that, as expected, CIE was highest for the lower elevation (warmer) sites with higher forest density compared with the higher elevation sites where storm temperatures were colder, trees were smaller and forests were less dense. Within-site comparisons based on storm type show that this classification system can be used to predict CIE.Our results suggest that the coupling of forest type and storm type information can improve estimates of canopy interception. Understanding the effects of temperature and storm type in temperate montane forests is also valuable for future estimates of canopy interception under a warming climate.

  16. Topoclimate effects on growing season length and montane conifer growth in complex terrain

    Science.gov (United States)

    Barnard, D. M.; Barnard, H. R.; Molotch, N. P.

    2017-05-01

    Spatial variability in the topoclimate-driven linkage between forest phenology and tree growth in complex terrain is poorly understood, limiting our understanding of how ecosystems function as a whole. To characterize the influence of topoclimate on phenology and growth, we determined the start, end, and length of the growing season (GSstart, GSend, and GSL, respectively) using the correlation between transpiration and evaporative demand, measured with sapflow. We then compared these metrics with stem relative basal area increment (relative BAI) at seven sites among elevation and aspects in a Colorado montane forest. As elevation increased, we found shorter GSL (-50 d km-1) due to later GSstart (40 d km-1) and earlier GSend (-10 d km-1). North-facing sites had a 21 d shorter GSL than south-facing sites at similar elevations (i.e. equal to 200 m elevation difference on a given aspect). Growing season length was positively correlated with relative BAI, explaining 83% of the variance. This study shows that topography exerts strong environmental controls on GSL and thus forest growth. Given the climate-related dependencies of these controls, the results presented here have important implications for ecosystem responses to changes in climate and highlight the need for improved phenology representation in complex terrain.

  17. Structure of the epiphyte community in a tropical montane forest in SW China.

    Directory of Open Access Journals (Sweden)

    Mingxu Zhao

    Full Text Available Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height, while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  18. Temporal germ cell development strategy during continuous spermatogenesis within the montane lizard, Sceloporus bicanthalis (Squamata; Phrynosomatidae).

    Science.gov (United States)

    Gribbins, Kevin; Anzalone, Marla; Collier, Matthew; Granados-González, Gisela; Villagrán-Santa Cruz, Maricela; Hernández-Gallegos, Oswaldo

    2011-10-01

    Sceloporus bicanthalis is a viviparous lizard that lives at higher elevations in Mexico. Adult male S. bicanthalis were collected (n = 36) from the Nevado de Toluca, Mexico (elevation is 4200 m) during August to December, 2007 and January to July, 2008. Testes were extracted, fixed in Trumps, and dehydrated in a graded series of ethanol. Tissues were embedded, sectioned (2 μm), stained, and examined via a light microscope to determine the spermatogenic developmental strategy of S. bicanthalis. In all months examined, the testes were spermiogenically active; based on this, plus the presence of sperm in the lumina of seminiferous tubules, we inferred that S. bicanthalis had year-round or continuous spermatogenesis, unlike most reptiles that occupy a temperate or montane habitat. It was recently reported that seasonally breeding reptiles had a temporal germ cell development strategy similar to amphibians, where germ cells progress through spermatogenesis as a single population, which leads to a single spermiation event. This was much different than spatial development within the testis of other derived amniotes. We hypothesized that germ cell development was temporal in S. bicanthalis. Therefore, we wanted to determine whether reptiles that practice continuous spermatogenesis have a mammalian-like spatial germ cell development, which is different than the typical temperate reptile exhibiting a temporal development. In the present study, S. bicanthalis had a temporal development strategy, despite its continuous spermatogenic cycle, making them similar to tropical anoles. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains

    Science.gov (United States)

    Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.

    2007-01-01

    Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.

  20. Life in the clouds: are tropical montane cloud forests responding to changes in climate?

    Science.gov (United States)

    Hu, Jia; Riveros-Iregui, Diego A

    2016-04-01

    The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

  1. Structure of the epiphyte community in a tropical montane forest in SW China.

    Science.gov (United States)

    Zhao, Mingxu; Geekiyanage, Nalaka; Xu, Jianchu; Khin, Myo Myo; Nurdiana, Dian Ridwan; Paudel, Ekananda; Harrison, Rhett Daniel

    2015-01-01

    Vascular epiphytes are an understudied and particularly important component of tropical forest ecosystems. However, owing to the difficulties of access, little is known about the properties of epiphyte-host tree communities and the factors structuring them, especially in Asia. We investigated factors structuring the vascular epiphyte-host community and its network properties in a tropical montane forest in Xishuangbanna, SW China. Vascular epiphytes were surveyed in six plots located in mature forests. Six host and four micro-site environmental factors were investigated. Epiphyte diversity was strongly correlated with host size (DBH, diameter at breast height), while within hosts the highest epiphyte diversity was in the middle canopy and epiphyte diversity was significantly higher in sites with canopy soil or a moss mat than on bare bark. DBH, elevation and stem height explained 22% of the total variation in the epiphyte species assemblage among hosts, and DBH was the most important factor which alone explained 6% of the variation. Within hosts, 51% of the variation in epiphyte assemblage composition was explained by canopy position and substrate, and the most important single factor was substrate which accounted for 16% of the variation. Analysis of network properties indicated that the epiphyte host community was highly nested, with a low level of epiphyte specialization, and an almost even interaction strength between epiphytes and host trees. Together, these results indicate that large trees harbor a substantial proportion of the epiphyte community in this forest.

  2. Medicinal and Environmental Indicator Species of Utricularia from Montane Forest of Peninsular Malaysia

    Science.gov (United States)

    Haron, Noorma Wati; Chew, Ming Yee

    2012-01-01

    The carnivorous Utricularia (Lentibulariaceae) is a small herb of multifarious wet habitats worldwide. Eleven of the 14 Peninsular Malaysian species range into the mountains. Distribution, disturbance adaptability and collection frequency were used to formulate their commonness category. Common (U. aurea, U. bifida, and U. minutissima) and fairly common (U. gibba and U. uliginosa) species are mostly lowland plants that ascend to open montane microhabitats, while the fairly common (U. striatula), narrow-range (U. caerulea pink form and U. involvens), rare (U. furcellata and U. scandens), and endemic (U. vitellina) species are restricted to mountainous sites. Common species that colonise dystrophic to oligotrophic man-made sites in late succession could serve as predictors for general health and recovery of wet habitats. Rarer species are often locally abundant, their niches situated around pristine forest edges. When in decline, they indicate the beginning of problems affecting the forest. Utricularia is reportedly nutritious, mildly astringent, and diuretic. Preadapted to nutrient-poor, waterlogged soils, U. bifida is suitable as an alternative for small-scale herb cultivation on low pH, wet poor soils usually deemed not suitable for any crops. PMID:22619629

  3. The Interactive Effect of Multiple Stressors on Crustacean Zooplankton Communities in Montane Lakes

    Science.gov (United States)

    Brittain, Jeffrey T.; Strecker, Angela L.

    2018-02-01

    Nonnative fish introductions have altered thousands of naturally fishless montane lakes, resulting in cascading food web repercussions. Nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of freshwater ecosystems, which may affect the abundance and composition of planktonic communities. This study identified responses of zooplankton communities from two lakes (fish present versus absent) in Mount Rainier National Park to manipulations simulating an episodic disturbance of acidification and eutrophication via nitrogen addition in mesocosms. Zooplankton communities from lakes with different food web structure (i.e., fish present or absent) responded differently to the singular effects of acid and nitrogen addition. For instance, zooplankton biomass decreased in the acid treatment of the fishless lake experiment, but increased in response to acid in the fish-present experiment. In contrast, the combination of acid and nitrogen often resulted in weak responses for both lake types, resulting in nonadditive effects, i.e., the net effect of the stressors was in the opposite direction than predicted, which is known as a reversal or "ecological surprise." This experiment demonstrates the difficulty in predicting the interactive effects of multiple stressors on aquatic communities, which may pose significant challenges for habitat restoration through fish removal.

  4. Species association in tropical montane rain forest at two successional stages in Diaoluo Mountain, Hainan

    Institute of Scientific and Technical Information of China (English)

    Fude LIU; Wenjin WANG; Ming ZHANG; Jianwei ZHENG; Zhongsheng WANG; Shiting ZHANG; Wenjie YANG; Shuqing AN

    2008-01-01

    Species association is one of the basic concepts in community succession. There are different viewpoints on how species interaction changes with the progress of succession. In order to assess these relationships, we examined species associations in the tropical montane rain forest at early and late successional stages in Diaoluo Mountain, Hainan Island. Based on data from a 2 × 2 contingency table of species presence or absence, statist-ical methods including analysis of species association and χ2 tests were applied. The results show that: 1) an overall positive association was present among tree species in the communities during the two successional stages and were statistically significant at the late stage. The number of species pairs with positive and negative associations decreased throughout the process of succession, while the number with null associations was greatly increased. The same trend existed among the dominant and compan-ion species. The results indicate that the communities are developing towards a stable stage where the woody species coexist in harmony. 2) In the early-established and later invading species, all positive associations were not signifi-cant. Compared with positive and null associations, fewer negative associations were found. This implies that these species are inclined to coexist independently through por-tioning of resources. 3) Among the later invading species, positive associations were significant and no negative associations were found which suggest that these species have similar adaptive ability in the habitat and occupied overlapping niches in the community.

  5. Nutrient cycling and nutrient losses in Andean montane forests from Antioquia, Colombia

    International Nuclear Information System (INIS)

    Londono Alvarez, Adriana; Montoya Gomez, Diana Cristina; Leon Pelaez, Juan Diego; Gonzalez Hernandez, Maria Isabel

    2007-01-01

    Gravitational flow and its chemical composition were measured in montane oak forests (Quercus humboldtii), in pine (Pinus patula) and cypress (Cupressus lusitanica) plantations in Piedras Blancas, Antioquia (Colombia), over two years. Zero tension lysimeters were used at different depth soil levels, the highest gravitational flow value at highest depth (50-80 cm) was obtained in cypress plot (492-7 mm), followed by pine (14,2 mm) and oak forest (2,0 mm). A similar behavior was encountered for nutrient losses, following the same pattern as gravitational flow. thus, for oak, pine and cypress, nutrient losses were respective/y: ca: 0,004, 0,084 and 2,270 kg ha -1 Y 1 ; P 0,008, 0,052 and 1,234 kg ha -1 Y 1 , mg: 0,004, 0,022 and 0,667 kg ha -1 y 1. K losses were 0,08 and 7,092 kg ha -1 Y 1 for oak forest and cypress plantation respectively. Nutrient losses followed the next order for each type of forest: oak: K ≥ P ≥Ca≥Mg, pine: Ca≥Fe≥P>Mg≥Zn≥Mn and cypress: K≥Mn≥Ca≥P≥Fe≥Zn≥Mg

  6. Analysis of the temporal variation of the structure of a montane forest with historical of fire

    Directory of Open Access Journals (Sweden)

    Fernando Bonillo Fernandes

    2012-06-01

    Full Text Available The aim of this study was to evaluate the structural dynamic rates of an shrubs-tree component of a seasonal semideciduous upper montane forest, in Mantiqueira Mountain between 2002 and 2008. We calculated the rates of dynamic according to the number of surviving, dead individuals and recruits, as well as the rates of dynamic for gain and loss of basal area. We verified the spatial differences among the rates along the vegetation gradient parallel to ground elevation. We also studied the correlations between the rates and biotic (initial numbers of trees and initial basal area and abiotic parameters (altimetric quota. We verified that recruitment was higher than mortality, and the gain of basal area was higher than the loses. This result suggests that the forest is expanding, with gain in number of individuals and in basal area. Normally, this result characterizes forests in recuperation after some disturbance. The community sectors (basis, middle and top of hillside didn’t show any differences in terms of dynamic rates. In general, there were few significant correlations between biotic and abiotic parameters and the dynamic rates. The increase of density and basal area, the similarity of dynamic rates among the sectors and the low correlation between parameters and the dynamic of forest’s structure point out that the forest burning occurred in 90’s could be, nowadays, interfering directly in dynamic rates of forest.

  7. Stomatal structure and physiology do not explain differences in water use among montane eucalypts.

    Science.gov (United States)

    Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A

    2015-04-01

    Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.

  8. Composition of Mix Species Foraging Flocks of Birds in Riverstan of Montane Region, Sri Lanka

    Directory of Open Access Journals (Sweden)

    W.G.D.D.M. Shermila

    2013-04-01

    Full Text Available Montane zone mixed-species bird flock system is distinct from that of low-land wet zone of SriLanka, although some species are present in both systems. The present study identified the mixed speciesflocks of birds in Riverstan at Knuckles Region, Sri Lanka. Monthly transect counts and opportunisticobservations were made between January and May, 2012. A total of 78 flocks and 27 bird species wereencountered at Riverstan during the study period. The flock size varied between 2 to 13 species and 4 to58 individuals. The mean number of species per flock was 6.03 ± 2.25 and the mean number ofindividuals in a flock was 18.41±9.87. The flock size was positively correlated with the number of speciespresent (r = 0.756, P <0.05. Grey-headed Canary Flycatcher was the most abundant species (mean2.68±1.02 birds per flocks while Sri Lanka White-eye was the most frequent species (mean 5.69±3.92birds per flocks. Grey-headed Canary Flycatcher and Sri Lanka Scimitar-babbler were the nuclear speciesin Riverstan. The leading species were Sri Lanka white-eye and Sri Lanka Yellow-eared Bulbul. Differentbird species used different heights within flocks.Keywords: Mixed-species flock, Nuclear species, Abundance, Foraging flocks

  9. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  10. Grassland futures in Great Britain - Productivity assessment and scenarios for land use change opportunities.

    Science.gov (United States)

    Qi, Aiming; Holland, Robert A; Taylor, Gail; Richter, Goetz M

    2018-09-01

    To optimise trade-offs provided by future changes in grassland use intensity, spatially and temporally explicit estimates of respective grassland productivities are required at the systems level. Here, we benchmark the potential national availability of grassland biomass, identify optimal strategies for its management, and investigate the relative importance of intensification over reversion (prioritising productivity versus environmental ecosystem services). Process-conservative meta-models for different grasslands were used to calculate the baseline dry matter yields (DMY; 1961-1990) at 1km 2 resolution for the whole UK. The effects of climate change, rising atmospheric [CO 2 ] and technological progress on baseline DMYs were used to estimate future grassland productivities (up to 2050) for low and medium CO 2 emission scenarios of UKCP09. UK benchmark productivities of 12.5, 8.7 and 2.8t/ha on temporary, permanent and rough-grazing grassland, respectively, accounted for productivity gains by 2010. By 2050, productivities under medium emission scenario are predicted to increase to 15.5 and 9.8t/ha on temporary and permanent grassland, respectively, but not on rough grassland. Based on surveyed grassland distributions for Great Britain in 2010 the annual availability of grassland biomass is likely to rise from 64 to 72milliontonnes by 2050. Assuming optimal N application could close existing productivity gaps of ca. 40% a range of management options could deliver additional 21∗10 6 tonnes of biomass available for bioenergy. Scenarios of changes in grassland use intensity demonstrated considerable scope for maintaining or further increasing grassland production and sparing some grassland for the provision of environmental ecosystem services. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Species-rich semi-natural grasslands have a higher resistance but a lower resilience than intensively managed agricultural grasslands in response to climate anomalies

    NARCIS (Netherlands)

    Keersmaecker, De Wanda; Rooijen, van Nils; Lhermitte, Stef; Tits, Laurent; Schaminée, Joop; Coppin, Pol; Honnay, Olivier; Somers, Ben

    2016-01-01

    The stable delivery of ecosystem services provided by grasslands is strongly dependent on the stability of grassland ecosystem functions such as biomass production. Biomass production is in turn strongly affected by the frequency and intensity of climate extremes. The aim of this study is to

  12. Nitrate source apportionment in a subtropical watershed using Bayesian model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Shi, Jiachun, E-mail: jcshi@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Wu, Laosheng, E-mail: laowu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Jiang, Yonghai [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012 (China)

    2013-10-01

    Nitrate (NO{sub 3}{sup −}) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO{sub 3}{sup −} concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L{sup −1}) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L{sup −1}). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L{sup −1} NO{sub 3}{sup −}. Four sources of NO{sub 3}{sup −} (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl{sup −}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, SO{sub 4}{sup 2−}, Ca{sup 2+}, K{sup +}, Mg{sup 2+}, Na{sup +}, dissolved oxygen (DO)] and dual isotope approach (δ{sup 15}N–NO{sub 3}{sup −} and δ{sup 18}O–NO{sub 3}{sup −}). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO{sub 3}{sup −} to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO{sub 3}{sup −}, better

  13. Nitrate source apportionment in a subtropical watershed using Bayesian model

    International Nuclear Information System (INIS)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao; Shi, Jiachun; Wu, Laosheng; Jiang, Yonghai

    2013-01-01

    Nitrate (NO 3 − ) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO 3 − concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L −1 ) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L −1 ). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L −1 NO 3 − . Four sources of NO 3 − (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl − , NO 3 − , HCO 3 − , SO 4 2− , Ca 2+ , K + , Mg 2+ , Na + , dissolved oxygen (DO)] and dual isotope approach (δ 15 N–NO 3 − and δ 18 O–NO 3 − ). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO 3 − to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO 3 − , better agricultural management practices and sewage disposal programs can be implemented to sustain water quality in subtropical watersheds

  14. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  15. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    Science.gov (United States)

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  16. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    Science.gov (United States)

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  17. Terrestrial ecology. Comprehensive study of the grassland biome

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Terrestrial ecology and grassland biome studies are designed to characterize the biota of the Hanford Reservation, elucidate seasonal dynamics of plant productivity, decomposition and mineral behavior patterns of important plant communities, and, to study the response of these communities to important natural environmental stresses, such as weather, wildfire and man-induced alterations of communities (influenced by grazing cattle and severe mechanical disturbance of the soil, such as affected by plowing or burial of waste materials or construction activities). A detailed account of the important findings of a 5-yr study is currently being prepared by the terrestrial ecology section staff for publication as a contribution to the International Biological Program Grassland Biome project

  18. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  19. Direct effects of cattle on grassland birds in Canada.

    Science.gov (United States)

    Bleho, Barbara I; Koper, Nicola; Machtans, Craig S

    2014-06-01

    Effects of grazing on grassland birds are generally thought to be indirect, through alteration of vegetation structure; however, livestock can also affect nest survival directly through trampling and other disturbances (e.g., livestock-induced abandonment). We extracted data on nest fates from 18 grazing studies conducted in Canada. We used these data to assess rates of nest destruction by cattle among 9 ecoregions and between seasonal and rotational grazing systems. Overall, few nests were destroyed by cattle (average 1.5% of 9132 nests). Nest destruction was positively correlated with grazing pressure (i.e., stocking rate or grazing intensity), but nest survival was higher in more heavily grazed areas for some species. Because rates of destruction of grassland bird nests by cattle are low in Canada, management efforts to reduce such destruction may not be of ecological or economic value in Canada. © 2014 Society for Conservation Biology.

  20. The biological transport of radionuclides in grassland and freshwater ecosystems

    International Nuclear Information System (INIS)

    Rudge, S.A.

    1989-12-01

    This thesis examines the biological transport of radionuclides through terrestrial and aquatic ecosystems, with particular reference to radiocaesium. The semi-natural grassland habitat was located at Drigg, W. Cumbria, contaminated primarily by radioactive fallout, from several sources over the past decade. Advantage was made of the deposition of radionuclides from the Chernobyl reactor incident, which occurred during the early stages of the investigation. The study examined the distribution of radiocaesium for the major components of the grassland ecosystem, within the soil-plant-invertebrate-small mammal food chain. Data concerning temporal fluctuation of radionuclide transfer factors between food chain components are presented. The final section examines the spatial distribution of radiocaesium in sediment and the freshwater eel (Anguilla anguilla) in a small stream contaminated by radioactive effluent. The relationship between activity levels in eels and the sediments in which they rest and forage was investigated. Factors influencing uptake of radiocaesium in freshwater fish were also examined. (author)

  1. Acidification of sandy grasslands - consequences for plant diversity

    DEFF Research Database (Denmark)

    Olsson, Pål Axel; Mårtensson, Linda-Maria; Bruun, Hans Henrik

    2009-01-01

    soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability......Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits......). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline...

  2. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  3. Technological feasibility studies on combination treatments for subtropical fruits

    International Nuclear Information System (INIS)

    Brodrick, H.T.; Linde, H.J. van der

    1981-01-01

    Research with subtropical fruits such as papayas and mangoes had advanced beyond the experimental stage in South Africa. This may be attributed to the potential economic benefits likely to be obtained from the combination of heat and irradiation treatments. The outcome of recent marketing trials, however, revealed several problem areas which need further investigation. Some of these problems were studied in greater detail and are reported in this presentation. The effect of time delays between hot-water and irradiation treatments on the efficacy in disease control in the fruit, has received particular attention in the investigations. Efforts have also been made to correlate these results with those obtained in fungal studies in the laboratory. These and other factors relating to the technological feasibility in the use of combined treatments for the preservation of mangoes and papayas are discussed and recommendations or guidelines for future studies are given in this paper. (author)

  4. Composition, phenology and restoration of campo rupestre mountain grasslands - Brazil

    OpenAIRE

    Le Stradic, Soizig

    2012-01-01

    Global environmental changes, especially land-use changes, have profound effects on both ecosystem functioning and biodiversity, having already altered many ecosystem services. These losses emphasize the need to preserve what remains; however when conservation programs are not sufficient, restoring areas that have been destroyed or disturbed can improve conservation efforts and mitigate damages. This work focuses on campos rupestres, Neotropical grasslands found at altitudes, which are part o...

  5. Carbon dynamics in an Imperata grassland in Northeast India

    Directory of Open Access Journals (Sweden)

    Amrabati Thokchom

    2016-01-01

    Full Text Available Carbon stocks and soil CO2 flux were assessed in an Imperata cylindrica grassland of Manipur, Northeast India. Carbon stocks in the vegetative components were estimated to be 11.17 t C/ha and soil organic carbon stocks were 55.94 t C/ha to a depth of 30 cm. The rates of carbon accumulation in above-ground and below-ground biomass were estimated to be 11.85 t C/ha/yr and 11.71 t C/ha/yr, respectively. Annual soil CO2 flux was evaluated as 6.95 t C/ha and was highly influenced by soil moisture, soil temperature and soil organic carbon as well as by C stocks in above-ground biomass. Our study on the carbon budget of the grassland ecosystem revealed that annually 23.56 t C/ha was captured by the vegetation through photosynthesis, and 6.95 t C/ha was returned to the atmosphere through roots and microbial respiration, with a net balance of 16.61 t C/ha/yr being retained in the grassland ecosystem. Thus the present Imperata grassland exhibited a high capacity to remove atmospheric CO2 and to induce high C stocks in the soil provided it is protected from burning and overgrazing.Keywords: Above-ground biomass, below-ground biomass, carbon stocks, carbon storage, net primary productivity, soil CO2 flux.DOI: 10.17138/TGFT(419-28  

  6. Carbon balance of renovated grasslands: input- or output-driven?

    Science.gov (United States)

    Choncubhair, Órlaith Ní; Osborne, Bruce; Lanigan, Gary

    2015-04-01

    Temperate grasslands constitute over 30% of the Earth's naturally-occurring biomes and make an important contribution towards the partial mitigation of anthropogenic greenhouse gas emissions by terrestrial ecosystems. In permanent temperate grasslands, biomass production and sward quality can deteriorate over time and periodic renovation activities, involving soil tillage and reseeding, are commonly carried out to halt this decline. Long-term cultivation of agricultural land has been associated with soil aggregate degradation and reduced soil carbon storage. However, the impact of these single tillage disturbances on C cycling in grasslands is less clear. This study evaluated gaseous and dissolved organic carbon (DOC) losses following a single tillage event by subjecting grassland lysimeters with contrasting soil drainage characteristics to simulated conventional inversion or minimum tillage. Field-scale CO2 emissions after conventional tillage were also quantified and empirically modelled over short- and medium-term timeframes to delineate the ecosystem response to environmental variables. Soil moisture was the limiting determinant of ecosystem carbon release following conventional tillage. Freshly-tilled soils were associated with reduced water retention and increased sensitivity to soil moisture, which was particularly pronounced following rewetting events. Significantly elevated but ephemeral CO2 effluxes were detected in the hours following inversion ploughing, however tillage disturbance did not generate significantly enhanced C emission rates in the medium term. Equally, DOC losses were not significantly amplified by conventional tillage compared with conservative minimum tillage and were predominantly controlled by soil drainage across tillage regimes. Our results suggest that a net ecosystem source of 120 to 210 g C m-2 over an approximately two-month period was most likely a consequence of reduced productivity and C input rather than enhanced soil CO2

  7. Making Grasslands Sustainable in Mongolia: Herders' Livelihoods and Climate Change

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    The threats posed by climate change have significant impacts on Mongolia’s grassland ecosystems and herders’ livelihoods. This publication discusses the auses of climate change and its impacts on livelihoods and ecosystems for herders and the general public. It explains how good pasture management and livestock roductivity are important for increasing incomes and provides information on adaptation practices. It also identifies sustainable management practices that can increase communities’ re...

  8. Temporal Activity Patterns of the Spider Wasp Pepsis montezuma Smith (Hymenoptera: Pompilidae in a Disturbed Lower Montane Rainforest (Manizales, Colombia

    Directory of Open Access Journals (Sweden)

    Carlos Restrepo-Giraldo

    2012-01-01

    Full Text Available We studied the temporal activity pattern of the spider wasp Pepsis montezuma Smith (Hymenoptera: Pompilidae in a disturbed lower montane rainforest, which is located in the city of Manizales, Colombia, at an altitude of 2,150 m. Females of this species are diurnal with two peaks of activity: one in the morning and the other in the afternoon. During the morning, nectar foraging occurred at Baccharis latifolia. During the afternoon, females hunted for tarantulas of the genus Pamphobeteus (Araneae: Theraphosidae, which were dragged backwards to the nest by the wasp. The nest was excavated before hunting. This is the first description of the behavior of Pepsis montezuma.

  9. Biodiversity promotes tree growth during succession in subtropical forest.

    Directory of Open Access Journals (Sweden)

    Martin Barrufol

    Full Text Available Losses of plant species diversity can affect ecosystem functioning, with decreased primary productivity being the most frequently reported effect in experimental plant assemblages, including tree plantations. Less is known about the role of biodiversity in natural ecosystems, including forests, despite their importance for global biogeochemical cycling and climate. In general, experimental manipulations of tree diversity will take decades to yield final results. To date, biodiversity effects in natural forests therefore have only been reported from sample surveys or meta-analyses with plots not initially selected for diversity. We studied biomass and growth of subtropical forests stands in southeastern China. Taking advantage of variation in species recruitment during secondary succession, we adopted a comparative study design selecting forest plots to span a gradient in species richness. We repeatedly censored the stem diameter of two tree size cohorts, comprising 93 species belonging to 57 genera and 33 families. Tree size and growth were analyzed in dependence of species richness, the functional diversity of growth-related traits, and phylogenetic diversity, using both general linear and structural equation modeling. Successional age covaried with diversity, but differently so in the two size cohorts. Plot-level stem basal area and growth were positively related with species richness, while growth was negatively related to successional age. The productivity increase in species-rich, functionally and phylogenetically diverse plots was driven by both larger mean sizes and larger numbers of trees. The biodiversity effects we report exceed those from experimental studies, sample surveys and meta-analyses, suggesting that subtropical tree diversity is an important driver of forest productivity and re-growth after disturbance that supports the provision of ecological services by these ecosystems.

  10. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands

    Science.gov (United States)

    Leddy, K.L.; Higgins, K.F.; Naugle, D.E.

    1999-01-01

    Grassland passerines were surveyed during summer 1995 on the Buffalo Ridge Wind Resource Area in southwestern Minnesota to determine the relative influence of wind turbines on overall densities of upland nesting birds in Conservation Reserve Program (CRP) grasslands. Birds were surveyed along 40 m fixed width transects that were placed along wind turbine strings within three CRP fields and in three CRP fields without turbines. Conservation Reserve Program grasslands without turbines and areas located 180 m from turbines supported higher densities (261.0-312.5 males/100 ha) of grassland birds than areas within 80 m of turbines (58.2-128.0 males/100 ha). Human disturbance, turbine noise, and physical movements of turbines during operation may have disturbed nesting birds. We recommend that wind turbines be placed within cropland habitats that support lower densities of grassland passerines than those found in CRP grasslands.

  11. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  12. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2.s(-1 and clipping (2.06 μmol.m(-2.s(-1 than under grazing (1.65 μmol.m-(2.s(-1 over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP. Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content and biotic (ANPP and BNPP factors regulate soil respiration in the semiarid temperate grassland of northern China.

  13. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management.

    Science.gov (United States)

    Wang, Zhen; Ji, Lei; Hou, Xiangyang; Schellenberg, Michael P

    2016-01-01

    Soil respiration, a major component of the global carbon cycle, is significantly influenced by land management practices. Grasslands are potentially a major sink for carbon, but can also be a source. Here, we investigated the potential effect of land management (grazing, clipping, and ungrazed enclosures) on soil respiration in the semiarid grassland of northern China. Our results showed the mean soil respiration was significantly higher under enclosures (2.17 μmol.m(-2).s(-1)) and clipping (2.06 μmol.m(-2).s(-1)) than under grazing (1.65 μmol.m-(2).s(-1)) over the three growing seasons. The high rates of soil respiration under enclosure and clipping were associated with the higher belowground net primary productivity (BNPP). Our analyses indicated that soil respiration was primarily related to BNPP under grazing, to soil water content under clipping. Using structural equation models, we found that soil water content, aboveground net primary productivity (ANPP) and BNPP regulated soil respiration, with soil water content as the predominant factor. Our findings highlight that management-induced changes in abiotic (soil temperature and soil water content) and biotic (ANPP and BNPP) factors regulate soil respiration in the semiarid temperate grassland of northern China.

  14. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  15. Hydrology and human behavior: two key factors of diarrhea incidence in montane tropical humid areas

    Science.gov (United States)

    Boithias, Laurie; Choisy, Marc; Souliyaseng, Noy; Jourdren, Marine; Quet, Fabrice; Buisson, Yves; Thammahacksa, Chanthamousone; Silvera, Norbert; Latsachack, Keooudone; Sengtaheuanghoung, Oloth; Pierret, Alain; Rochelle-Newall, Emma; Becerra, Sylvia; Ribolzi, Olivier

    2017-04-01

    The global burden of diarrhea is a leading cause of morbidity and mortality worldwide. In montane areas of South-East Asia such as northern Laos, recent changes in land use have induced increased runoff, soil erosion and in-stream suspended sediment loads, and potential pathogen dissemination. In this study we hypothesized that climate factors combined with human behavior control diarrhea incidence, either because higher rainfall, leading to higher stream discharges, suspended sediment loads and Fecal Indicator Bacteria (FIB) counts, are associated with higher numbers of reported diarrhea cases during the rainy season, or because water shortage leads to the use of less safe water sources during the dry season. For this mixed methods approach, we conducted a retrospective time series analysis of meteorological variables (rainfall, air temperature), hydrological variables (discharge, suspended sediments, FIB counts, water temperature) at the outlet of 2 catchments in Northern Lao PDR, and the number of diarrheal disease cases reported in 6 health centers located in the Luang Prabang Province. We also examined the socio-behavioral factors potentially affecting vulnerability to the effect of the climate factors, such as drinking water sources and hygiene habits. We found the FIB Escherichia coli to be present all year long (100-1,000 MPN 100 mL-1) indicating that fecal contamination is ubiquitous and constant. We found that populations switch their water supply from wells to surface water during drought periods, the latter of which appear to be at higher risk of bacterial contamination than municipal water fountains. We thus found that water shortage in the Luang Prabang area triggers diarrhea peaks during the dry and hot season and that rainfall and aquifer refill ends the epidemic during the wet season. We thus found that anthropogenic drivers, such as hygiene practices, were at least as important as environmental drivers in determining the seasonal pattern of a

  16. Climate forcing of an emerging pathogenic fungus across a montane multi-host community.

    Science.gov (United States)

    Clare, Frances C; Halder, Julia B; Daniel, Olivia; Bielby, Jon; Semenov, Mikhail A; Jombart, Thibaut; Loyau, Adeline; Schmeller, Dirk S; Cunningham, Andrew A; Rowcliffe, Marcus; Garner, Trenton W J; Bosch, Jaime; Fisher, Matthew C

    2016-12-05

    Changes in the timings of seasonality as a result of anthropogenic climate change are predicted to occur over the coming decades. While this is expected to have widespread impacts on the dynamics of infectious disease through environmental forcing, empirical data are lacking. Here, we investigated whether seasonality, specifically the timing of spring ice-thaw, affected susceptibility to infection by the emerging pathogenic fungus Batrachochytrium dendrobatidis (Bd) across a montane community of amphibians that are suffering declines and extirpations as a consequence of this infection. We found a robust temporal association between the timing of the spring thaw and Bd infection in two host species, where we show that an early onset of spring forced high prevalences of infection. A third highly susceptible species (the midwife toad, Alytes obstetricans) maintained a high prevalence of infection independent of time of spring thaw. Our data show that perennially overwintering midwife toad larvae may act as a year-round reservoir of infection with variation in time of spring thaw determining the extent to which infection spills over into sympatric species. We used future temperature projections based on global climate models to demonstrate that the timing of spring thaw in this region will advance markedly by the 2050s, indicating that climate change will further force the severity of infection. Our findings on the effect of annual variability on multi-host infection dynamics show that the community-level impact of fungal infectious disease on biodiversity will need to be re-evaluated in the face of climate change.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Authors.

  17. Camera trap survey of medium and large mammals in a montane rainforest of northern Peru

    Directory of Open Access Journals (Sweden)

    Carlos F. Jiménez

    2011-05-01

    Full Text Available Camera traps are a powerful tool for inventorying elusive and rare species and very useful to obtain ecologi- cal data for plans that involve wildlife conservation. In Peru, several surveys have been carried out in lowland Amazonia especially in the southeastern part of the country, but none in montane cloud forests or Yungas. We present the first camera trap studies produced in Peruvian Yungas at the locality of Querocoto village (Chota, Cajamarca, based on 2002 (dry season and 1264 (wet season camera traps-days (CTD. Two localities were surveyed in wet and dry season: The Pagaibamba Protection Forest and the San Lorenzo Forest. The wet season study was carried out in October and November, and the dry season in July to September of 2008. Eight mammalian species were recorded in both seasons. Some 66 (91.7% independent records were obtained in the dry season, but only six (8.3% in the wet one, suggesting a seasonality effect. The Mountain Paca Cunicu- lus taczanowskii was the most commonly photographed species, with 17.0 and 1.6 capture frequencies (dry and wet season respectively, whereas the Long-tailed weasel Mustela frenata (0.5 capture frequency in the dry season was the most rare species. Activity patterns suggest that Mountain Paca C. taczanowskii and the Andean Skunk C. chinga are nocturnal, while Spectacled Bear T. ornatus and Tayra E. barbara are diurnal in the study area. Our records of the Ocelot Leopardus pardalis and the Tayra E. barbara are among the highest altitudinal records known for each species. In addition, the Anta Tapirus pinchaque was also identified by its tracks, representing one of the first record known south of the Huancabamba Depression.

  18. Integrated assessment of groundwater - surface water exchange in the hillslope - riparian interface of a montane catchment

    Science.gov (United States)

    Scheliga, Bernhard; Tetzlaff, Doerthe; Nuetzmann, Gunnar; Soulsby, Chris

    2016-04-01

    Groundwater-surface water dynamics play an important role in runoff generation and the hydrologic connectivity between hillslopes and streams. Here, we present findings from a suite of integrated, empirical approaches to increase our understanding of groundwater-surface water interlinkages in a 3.2 km ^ 2 experimental catchment in the Scottish Highlands. The montane catchment is mainly underlain by granite and has extensive (70%) cover of glacial drift deposits which are up to 40 m deep and form the main aquifer in the catchment. Flat valley bottom areas fringe the stream channel and are characterised by peaty soils (0.5-4 m deep) which cover about 10% of the catchment and receive drainage from upslope areas. The transition between the hillslopes and riparian zone forms a critical interface for groundwater-surface water interactions that controls both the dynamics of riparian saturation and stream flow generation. We nested observations using wells to assess the groundwater - surface water transition, LiDAR surveys to explore the influence of micro-topography on shallow groundwater efflux and riparian wells to examine the magnitude and flux rates of deeper groundwater sources. We also used electrical resistivity surveys to assess the architecture and storage properties of drift aquifers. Finally, we used isotopic tracers to differentiate recharge sources and associated residence times as well as quantifying how groundwater dynamics affect stream flow. These new data have provided a novel conceptual framework for local groundwater - surface water exchange that is informing the development of new deterministic models for the site.

  19. Snowpack and variation in reproductive ecology of a montane ground-nesting passerine, Junco hyemalis

    Science.gov (United States)

    Smith, Kimberly G.; Andersen, Douglas C.

    1985-01-01

    Effects of snow depth and rate of snowmelt on reproduction of a montane ground-nesting passerine were examined in a 5-year study of Dark-eyed Juncos Junco hyemalis in northern Utah, USA. Distribution of clucth sizes differed significantly among years. Although most clutches contained four eggs, 3-egg clutches, due primarily to second nestings, were more common during a year of early snowmelt and 5-egg clutches were most common during two years of late snowmelt. Average clutch size was lowest in an early snowmelt year and average clutch size and date at which meadows became snow-free were significantly positively correlated. Average hatching date of 4-egg clutches was also significantly positively correlated with date at which meadows became snow-free demonstrating that most birds tracked the pattern of snowmelt. Early snowmelt may allow more pairs to attempt second nesting, but late-lying snow causes breeding to be delayed, allowing time for only one nesting attempt. During this delay, female juncos continue to feed and some may gain enough reserves to produce larger clutches, accounting for the increase in average clutch size in years of late snowmelt. Three female juncos examined in June 1982, a period of late snowmelt, had significantly more lipid reserves than did six males collected at the same time, suggesting that females are not physiologically stressed while awaiting snowmelt. By tracking snowmelt patterns, juncos synchronize production of young with peak summer insect abundance and potentially decrease risk of predation. Snow depth and rate of snowmelt are thus proximate environmental factors that may influence the reproductive ecology of ground-nesting passerines.

  20. Impact of Mining Activity upon Environment in Roşia Montană

    Directory of Open Access Journals (Sweden)

    SIGISMUND DUMA

    2008-01-01

    Full Text Available Roşia Montană is the greatest gold ore in Romania and one of the greatest in Europe, and its exploitation has been carried out since Antiquity up to nowadays. If the traditional extraction and processing technologies had a minimal impact upon environment, the ones adopted in modern times have affected all the components of the natural environment. In the perspective of capitalizing the gold ore through the programme elaborated by the Canadian company, Gold Corporation, the zonal geographical space will be degraded up to the level of industrial dessert over an area of 100 km2 and in case of damage, the affected area can extend enormously. The environmental problems are related both to the specific nature of such an industrial activity and, especially, to the use of enormous quantities of sodium cyanide directly on the preparation flux from the industrial plant. Few such cases are known worldwide, in several economically less developed countries. Usually, cyanides are used for treating the gold concentrations, operation done in conditions of maximum security, in closed spaces, situated in isolated zones and the neutralization (detoxification of cyanides is done in situ. The treatment of cyanides in open spaces has always generated environmental problems. Moreover, none of the cyanide treatment technologies eliminates entirely their toxic effect (less toxic chemical products are obtained. In order to avoid the production of an environmental disaster and to preserve the local patrimony values (in this place there lies the richest mining archeological site in Europe, we elaborated several recommendations we consider feasible as they allow both the capitalization of ore, which is a socio-economic necessity of the area, and the ecological reconstruction of the affected geographical space.

  1. Evaluation of semiarid grassland degradation in North China from multiple perspectives

    Science.gov (United States)

    Han, D.; Wang, G.; Xue, B. L.; Xu, X.

    2017-12-01

    There has been increasing interest in grassland ecosystem degradation resulting from intensive human activity and climate change, especially in arid and semiarid regions. Species composition, grassland desertification, and aboveground biomass (AGB) are used as indicators of grassland degradation in this study. We comprehensively analyzed variations in these three indicators in semiarid grassland in North China, on multiple time scales, based on MODIS products and field sampling datasets. Since 1984, species composition has become simpler and species indicative of grassland degradation, such as Potentilla acaulis and Artemisia frigida, have become dominant. These changes indicate that serious grassland degradation has occurred since 1984. Grassland degradation was also analyzed on shorter time scales. Analyses of interannual variations during 2005-2015 showed that desertification decreased and average AGB in the growth season increased over the study area, indicating that grassland was recovering. Analyses of spatial variations showed that the position of slightly desertified grassland shifted and formed a band in the west, where the lowest AGB in the growth season was recorded but tendency ratio of AGB increased from 2005 to 2015. Climatic factors had critical effects on grassland degradation, as identified by the three indicators on different time scales. The simpler species composition resulted from the increase in average temperature and decrease in average precipitation over the past 30 years. For nearly a decade, an increase in precipitation and decreases in temperature and potential evapotranspiration reduced desertification and increased AGB in the growth season overall. Consequently, there has distinct difference in grassland degradation between analysis results on above two time scales, indicating multiple perspectives should be considered to accurately assess the state and characteristics of grassland degradation.

  2. Exacerbated grassland degradation and desertification in Central Asia during 2000-2014.

    Science.gov (United States)

    Zhang, Geli; Biradar, Chandrashekhar M; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Qin, Yuanwei; Zhang, Yao; Liu, Fang; Ding, Mingjun; Thomas, Richard J

    2018-03-01

    Grassland degradation and desertification is a complex process, including both state conversion (e.g., grasslands to deserts) and gradual within-state change (e.g., greenness dynamics). Existing studies hardly separated the two components and analyzed it as a whole based on time series vegetation index data, which cannot provide a clear and comprehensive picture for grassland degradation and desertification. Here we propose an integrated assessment strategy, by considering both state conversion and within-state change of grasslands, to investigate grassland degradation and desertification process in Central Asia. First, annual maps of grasslands and sparsely vegetated land were generated to track the state conversions between them. The results showed increasing grasslands were converted to sparsely vegetated lands from 2000 to 2014, with the desertification region concentrating in the latitude range of 43-48° N. A frequency analysis of grassland vs. sparsely vegetated land classification in the last 15 yr allowed a recognition of persistent desert zone (PDZ), persistent grassland zone (PGZ), and transitional zone (TZ). The TZ was identified in southern Kazakhstan as one hotspot that was unstable and vulnerable to desertification. Furthermore, the trend analysis of Enhanced Vegetation Index during thermal growing season (EVI TGS ) was investigated in individual zones using linear regression and Mann-Kendall approaches. An overall degradation across the area was found; moreover, the second desertification hotspot was identified in northern Kazakhstan with significant decreasing in EVI TGS , which was located in PGZ. Finally, attribution analyses of grassland degradation and desertification were conducted by considering precipitation, temperature, and three different drought indices. We found persistent droughts were the main factor for grassland degradation and desertification in Central Asia. Considering both state conversion and gradual within-state change

  3. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass

    Directory of Open Access Journals (Sweden)

    Fengge Zhang

    2018-04-01

    Full Text Available In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly (p = 0.019 increased following amendment with 9,000 kg ha−1 of Trichoderma biofertilizer (composted cattle manure + inoculum compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha−1 biofertilizer. This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha−1 increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella. Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella. According to our structural equation modeling (SEM, Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  4. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Science.gov (United States)

    Ellison, Kevin S; Ribic, Christine A; Sample, David W; Fawcett, Megan J; Dadisman, John D

    2013-01-01

    Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus]) at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow) and nesting densities increased (all 3 species) in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor]) at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]). Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116) and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland ecosystems.

  5. Impacts of tree rows on grassland birds and potential nest predators: a removal experiment.

    Directory of Open Access Journals (Sweden)

    Kevin S Ellison

    Full Text Available Globally, grasslands and the wildlife that inhabit them are widely imperiled. Encroachment by shrubs and trees has widely impacted grasslands in the past 150 years. In North America, most grassland birds avoid nesting near woody vegetation. Because woody vegetation fragments grasslands and potential nest predator diversity and abundance is often greater along wooded edge and grassland transitions, we measured the impacts of removing rows of trees and shrubs that intersected grasslands on potential nest predators and the three most abundant grassland bird species (Henslow's sparrow [Ammodramus henslowii], Eastern meadowlark [Sturnella magna], and bobolink [Dolichonyx oryzivorus] at sites in Wisconsin, U.S.A. We monitored 3 control and 3 treatment sites, for 1 yr prior to and 3 yr after tree row removal at the treatment sites. Grassland bird densities increased (2-4 times for bobolink and Henslow's sparrow and nesting densities increased (all 3 species in the removal areas compared to control areas. After removals, Henslow's sparrows nested within ≤50 m of the treatment area, where they did not occur when tree rows were present. Most dramatically, activity by woodland-associated predators nearly ceased (nine-fold decrease for raccoon [Procyon lotor] at the removals and grassland predators increased (up to 27 times activity for thirteen-lined ground squirrel [Ictidomys tridecemlineatus]. Nest success did not increase, likely reflecting the increase in grassland predators. However, more nests were attempted by all 3 species (175 versus 116 and the number of successful nests for bobolinks and Henslow's sparrows increased. Because of gains in habitat, increased use by birds, greater production of young, and the effective removal of woodland-associated predators, tree row removal, where appropriate based on the predator community, can be a beneficial management action for conserving grassland birds and improving fragmented and degraded grassland

  6. The influence of boundary features on grassland-edge communities of Alta Murgia

    OpenAIRE

    Cassano, Stefania; Alignier, Audrey; Forte, Luigi; Labadessa, Rocco; Mairota, Paola

    2016-01-01

    Many studies suggest the importance of boundary features on plant community dynamics. Our aim was to investigate the influence of boundary features on edge plant assemblages in semi-natural dry grasslands. For this purpose we selected 16 grassland edges in the central portion of the Natura 2000 site Murgia Alta, in southeastern Italy. These sites were selected according to a combination of boundary features, i.e. the adjoining land use type (road or cereal crop), slope (grassland tilted towar...

  7. Trichoderma Biofertilizer Links to Altered Soil Chemistry, Altered Microbial Communities, and Improved Grassland Biomass.

    Science.gov (United States)

    Zhang, Fengge; Huo, Yunqian; Cobb, Adam B; Luo, Gongwen; Zhou, Jiqiong; Yang, Gaowen; Wilson, Gail W T; Zhang, Yingjun

    2018-01-01

    In grasslands, forage and livestock production results in soil nutrient deficits as grasslands typically receive no nutrient inputs, leading to a loss of grassland biomass. The application of mature compost has been shown to effectively increase grassland nutrient availability. However, research on fertilization regime influence and potential microbial ecological regulation mechanisms are rarely conducted in grassland soil. We conducted a two-year experiment in meadow steppe grasslands, focusing on above- and belowground consequences of organic or Trichoderma biofertilizer applications and potential soil microbial ecological mechanisms underlying soil chemistry and microbial community responses. Grassland biomass significantly ( p = 0.019) increased following amendment with 9,000 kg ha -1 of Trichoderma biofertilizer (composted cattle manure + inoculum) compared with other assessed organic or biofertilizer rates, except for BOF3000 (fertilized with 3,000 kg ha -1 biofertilizer). This rate of Trichoderma biofertilizer treatment increased soil antifungal compounds that may suppress pathogenic fungi, potentially partially responsible for improved grassland biomass. Nonmetric multidimensional scaling (NMDS) revealed soil chemistry and fungal communities were all separated by different fertilization regime. Trichoderma biofertilizer (9,000 kg ha -1 ) increased relative abundances of Archaeorhizomyces and Trichoderma while decreasing Ophiosphaerella . Trichoderma can improve grassland biomass, while Ophiosphaerella has the opposite effect as it may secrete metabolites causing grass necrosis. Correlations between soil properties and microbial genera showed plant-available phosphorus may influence grassland biomass by increasing Archaeorhizomyces and Trichoderma while reducing Ophiosphaerella . According to our structural equation modeling (SEM), Trichoderma abundance was the primary contributor to aboveground grassland biomass. Our results suggest Trichoderma

  8. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    Science.gov (United States)

    Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.

    2016-02-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.

  9. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    International Nuclear Information System (INIS)

    Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Mauder, M; Schmid, H-P; Eugster, W; Montagnani, L; Gianelle, D

    2016-01-01

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies. (letter)

  10. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  11. Grassland birds wintering at U.S. Navy facilities in southern Texas

    Science.gov (United States)

    Woodin, Marc C.; Skoruppa, Mary Kay; Bryan, Pearce D.; Ruddy, Amanda J.; Hickman, Graham C.

    2010-01-01

    Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured

  12. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    Science.gov (United States)

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  13. Ranging behavior of eastern hoolock gibbon (Hoolock leuconedys) in a northern montane forest in Gaoligongshan, Yunnan, China.

    Science.gov (United States)

    Zhang, Dao; Fei, Han-Lan; Yuan, Sheng-Dong; Sun, Wen-Mo; Ni, Qing-Yong; Cui, Liang-Wei; Fan, Peng-Fei

    2014-04-01

    Generally, food abundance and distribution exert important influence on primate ranging behavior. Hoolock gibbons (genus Hoolock) live in lowland and montane forests in India, Bangladesh, Myanmar and China. All information about hoolock gibbons comes from studies on western hoolock gibbons (Hoolock hoolock) living in lowland forest. Between August 2010 and September 2011, we studied the ranging behavior of one habituated group of eastern hoolock gibbon (H. leuconedys) living in a seasonal montane forest in Gaoligongshan, Yunnan, China. Results show that the study group did not increase foraging effort, calculated in this study as the daily path length, when fruit was less available. Instead, the gibbons fed more on leaves and decreased traveling to conserve energy. They relied heavily on a single food species in most study months which was patchily distributed within their total (14-month) home range, and during most months they used only a small portion of their total home range. In order to find enough food, the group shifted its monthly home range according to the seasonal availability of food species. To satisfy their annual food requirements, they occupied a total home range of 93 ha. The absence of neighboring groups of gibbons and the presence of tsaoko cardamom (Amomum tsaoko) plantations may also have influenced the ranging behavior of the group. Further long-term studies of neighboring groups living in intact forests are required to assess these effects.

  14. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-08-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  15. Comparison of carbon uptake estimates from forest inventory and Eddy-Covariance for a montane rainforest in central Sulawesi

    Science.gov (United States)

    Heimsch, Florian; Kreilein, Heiner; Rauf, Abdul; Knohl, Alexander

    2016-04-01

    Rainforests in general and montane rainforests in particular have rarely been studied over longer time periods. We aim to provide baseline information of a montane tropical forest's carbon uptake over time in order to quantify possible losses through land-use change. Thus we conducted a re-inventory of 22 10-year old forest inventory plots, giving us a rare opportunity to quantify carbon uptake over such a long time period by traditional methods. We discuss shortfalls of such techniques and why our estimate of 1.5 Mg/ha/a should be considered as the lower boundary and not the mean carbon uptake per year. At the same location as the inventory, CO2 fluxes were measured with the Eddy-Covariance technique. Measurements were conducted at 48m height with an LI 7500 open-path infrared gas analyser. We will compare carbon uptake estimates from these measurements to those of the more conventional inventory method and discuss, which factors are probably responsible for differences.

  16. Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

    Science.gov (United States)

    Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.

    2017-01-01

    Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.

  17. Gold and Displacement in Eastern Europe: Risks and Uncertainty at Roşia Montană

    Directory of Open Access Journals (Sweden)

    FILIP ALEXANDRESCU

    2011-01-01

    Full Text Available The Canadian-Romanian gold mining project at Roşia Montanǎ in Romania is known as the largest opencast gold mine being planned now in Europe. It involves the displacement of several thousand inhabitants, mostly former gold miners and a smaller number of farmers. The land and houses of more than three quarters of this population have already been acquired by the project owners, although the project has not yet received its formal environmental clearance. The paper analyzes the risks facing the displaced population of Roşia Montană, employing as analytical methodology the Impoverishment Risks and Reconstruction (IRR model, developed by Michael M. Cernea. The paper argues for an expansion of the IRR model. By taking into account the macro (extralocal forces that shape displacement and paying closer attention to the micro (subjective experience of this process, it becomes possible to understand the effects of uncertainty and vulnerability in displacement. The author's participant observations and in-depth interviews with local families are complemented with secondary analyses of data from several other socio-economic surveys and with the analysis of the Resettlement and Relocation Action Plan of the project owners.

  18. A comparison of point counts with a new acoustic sampling method: a case study of a bird community from the montane forests of Mount Cameroon

    Czech Academy of Sciences Publication Activity Database

    Sedláček, O.; Vokurková, J.; Ferenc, M.; Djomo Nana, E.; Albrecht, Tomáš; Hořák, D.

    2015-01-01

    Roč. 86, č. 3 (2015), s. 213-220 ISSN 0030-6525 R&D Projects: GA ČR(CZ) GAP505/11/1617 Institutional support: RVO:68081766 Keywords : abundance * automatic recording units * montane forest * point count * species richness * species turnover Subject RIV: EG - Zoology Impact factor: 0.418, year: 2015

  19. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve, India during wet and dry seasons

    DEFF Research Database (Denmark)

    Singh, S.K.; Singh, Anoop; Rai, J.P.N.

    2011-01-01

    The impact of prevailing disturbances in montane habitats of Nanda Devi Biosphere Reserve (NDBR) was studied on soil microbial population, biomass, soil respiration and enzyme activities during wet and dry seasons. The physico-chemical characteristics of soils exhibited conspicuous variation in t...

  20. An observational study of the carbon-sink strength of East Asian subtropical evergreen forests

    International Nuclear Information System (INIS)

    Tan Zhenghong; Zhang Yiping; Zhang Yongjiang; Song Qinhai; Cao Kunfang; Schaefer, D A; Liu Yuhong; Liang Naishen; Hsia, Yue-Joe; Zhou Guoyi; Li Yuelin; Yan Junhua; Juang, Jehn-Yih; Chu Housen; Yu Guirui; Sun Xiaomin

    2012-01-01

    Relatively little is known about the effects of regional warming on the carbon cycle of subtropical evergreen forest ecosystems, which are characterized by year-round growing season and cold winters. We investigated the carbon balance in three typical East Asia subtropical evergreen forests, using eddy flux, soil respiration and leaf-level measurements. Subtropical evergreen forests maintain continuous, high rates of photosynthetic activity, even during winter cold periods. Warm summers enhance photosynthetic rates in a limited way, because overall ecosystem productivity is primarily restrained by radiation levels during the warm period. Conversely, warm climates significantly enhance the respiratory carbon efflux. The finding of lower sensitivity of photosynthesis relative to that of respiration suggests that increased temperature will weaken the carbon-sink strength of East Asia subtropical evergreen forests. (letter)

  1. The Role of Subtropical Intrusion in the Development of Typhoon Usagi (5W) 2007

    National Research Council Canada - National Science Library

    DeLeon, Raymund P

    2008-01-01

    ... of a decaying baroclinic system in the WNP. This analysis of the formation of Usagi points to sub-tropical intrusion of a strong lower-tropospheric baroclinic system undergoing decay as potential seedlings for typhoon formation in areas...

  2. Estimating N2O processes during grassland renewal and grassland conversion to maize cropping using N2O isotopocules

    Science.gov (United States)

    Buchen, Caroline; Well, Reinhard; Flessa, Heinz; Fuß, Roland; Helfrich, Mirjam; Lewicka-Szczebak, Dominika

    2017-04-01

    Grassland break-up due to grassland renewal and grassland conversion to cropland can lead to a flush of mineral nitrogen from decomposition of the old grass sward and the decomposition of soil organic matter. Moreover, increased carbon and nitrogen mineralisation can result in enhanced nitrous oxide (N2O) emissions. As N2O is known to be an important greenhouse gas and a major precursor for ozone depletion, its emissions need to be mitigated by adjusting agricultural management practices. Therefore, it is necessary to understand the N2O processes involved, as well as the contribution of N2O reduction to N2. Apart from the widely used 15N gas flux method, natural abundance isotopic analysis of the four most abundant isotopocules of N2O species is a promising alternative to assess N2O production pathways. We used stable isotope analyses of soil-emitted N2O (δ18ON2O, δ15NN2Obulk and δ15NN2OSP= intramolecular distribution of 15N within the linear N2O molecule) with an isotopocule mapping approach to simultaneously estimate the magnitude of N2O reduction to N2 and the fraction of N2O originating from the bacterial denitrification pathway or fungal denitrification and/or nitrification. This approach is based on endmember areas of isotopic values for the N2O produced from different sources reported in the literature. For this purpose, we calculated two main scenarios with different assumptions for N2O produced: N2O is reduced to N2 before residual N2O is mixed with N2O of various sources (Scenario a) and vice versa (Scenario b). Based on this, we applied seven different scenario variations, where we evaluated the range of possible values for the potential N2O production pathways (heterotrophic bacterial denitrification and/or nitrifier denitrification and fungal denitrification and/or nitrification). This was done by using a range of isotopic endmember values and assuming different fractionation factors of N2O reduction in order to find the most reliable scenario

  3. Flower resource and land management drives hoverfly communities and bee abundance in seminatural and agricultural grasslands.

    Science.gov (United States)

    Lucas, Andrew; Bull, James C; de Vere, Natasha; Neyland, Penelope J; Forman, Dan W

    2017-10-01

    Pollination is a key ecosystem service, and appropriate management, particularly in agricultural systems, is essential to maintain a diversity of pollinator guilds. However, management recommendations frequently focus on maintaining plant communities, with the assumption that associated invertebrate populations will be sustained. We tested whether plant community, flower resources, and soil moisture would influence hoverfly (Syrphidae) abundance and species richness in floristically-rich seminatural and floristically impoverished agricultural grassland communities in Wales (U.K.) and compared these to two Hymenoptera genera, Bombus, and Lasioglossum . Interactions between environmental variables were tested using generalized linear modeling, and hoverfly community composition examined using canonical correspondence analysis. There was no difference in hoverfly abundance, species richness, or bee abundance, between grassland types. There was a positive association between hoverfly abundance, species richness, and flower abundance in unimproved grasslands. However, this was not evident in agriculturally improved grassland, possibly reflecting intrinsically low flower resource in these habitats, or the presence of plant species with low or relatively inaccessible nectar resources. There was no association between soil moisture content and hoverfly abundance or species richness. Hoverfly community composition was influenced by agricultural improvement and the amount of flower resource. Hoverfly species with semiaquatic larvae were associated with both seminatural and agricultural wet grasslands, possibly because of localized larval habitat. Despite the absence of differences in hoverfly abundance and species richness, distinct hoverfly communities are associated with marshy grasslands, agriculturally improved marshy grasslands, and unimproved dry grasslands, but not with improved dry grasslands. Grassland plant community cannot be used as a proxy for pollinator

  4. The effect of management practice of montane meadows in the Bohemian Forest on selected soil biological and chemical properties

    Czech Academy of Sciences Publication Activity Database

    Šimek, Miloslav; Šantrůčková, Hana; Uhlířová, Eva; Záhora, J.; Picek, T.; Brychtová, L.; Šetlík, J.

    2001-01-01

    Roč. 7, - (2001), s. 69-78 ISSN 1211-7420 R&D Projects: GA ČR GA206/99/1410 Institutional research plan: CEZ:AV0Z6066911 Keywords : microbial community * grassland * mulching Subject RIV: EH - Ecology, Behaviour

  5. Distribution patterns of oceanic micronekton at seamounts and hydrographic fronts of the subtropical Atlantic Ocean

    OpenAIRE

    Diekmann, Rabea

    2004-01-01

    In the past the oceanic environment has often been compared with terrestrial deserts and until today relatively little is known about the ecology of the high seas. Within the present study pelagic oceanic communities of cephalopods and fish in the subtropical North Atlantic were investigated, and it was analysed at different spatial scales how these communities varied in response to physical gradients and hydrographic processes. First, the influence of the subtropical convergence zone in the ...

  6. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Mary R. Gradoville

    2017-07-01

    Full Text Available Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C and dinitrogen (N2 fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG. The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99% from Trichodesmium Clade I (i.e., T. thiebautii, which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S r

  7. Spatial requirements of free-ranging Huon tree kangaroos, Dendrolagus matschiei (Macropodidae, in upper montane forest.

    Directory of Open Access Journals (Sweden)

    Gabriel Porolak

    Full Text Available Tree kangaroos (Macropodidae, Dendrolagus are some of Australasia's least known mammals. However, there is sufficient evidence of population decline and local extinctions that all New Guinea tree kangaroos are considered threatened. Understanding spatial requirements is important in conservation and management. Expectations from studies of Australian tree kangaroos and other rainforest macropodids suggest that tree kangaroos should have small discrete home ranges with the potential for high population densities, but there are no published estimates of spatial requirements of any New Guinea tree kangaroo species. Home ranges of 15 Huon tree kangaroos, Dendrolagus matschiei, were measured in upper montane forest on the Huon Peninsula, Papua New Guinea. The home range area was an average of 139.6±26.5 ha (100% MCP; n = 15 or 81.8±28.3 ha (90% harmonic mean; n = 15, and did not differ between males and females. Home ranges of D. matschiei were 40-100 times larger than those of Australian tree kangaroos or other rainforest macropods, possibly due to the impact of hunting reducing density, or low productivity of their high altitude habitat. Huon tree kangaroos had cores of activity within their range at 45% (20.9±4.1 ha and 70% (36.6±7.5 ha harmonic mean isopleths, with little overlap (4.8±2.9%; n = 15 pairs between neighbouring females at the 45% isopleth, but, unlike the Australian species, extensive overlap between females (20.8±5.5%; n = 15 pairs at the complete range (90% harmonic mean. Males overlapped each other and females to a greater extent than did pairs of females. From core areas and overlap, the density of female D. matschiei was one per 19.4 ha. Understanding the cause of this low density is crucial in gaining greater understanding of variations in density of tree kangaroos across the landscape. We consider the potential role of habitat fragmentation, productivity and hunting pressure in limiting tree kangaroo

  8. Tropical montane forest conversion affects spatial and temporal nitrogen dynamics in Kenyan headwater catchment

    Science.gov (United States)

    Jacobs, Suzanne; Weeser, Björn; Breuer, Lutz; Butterbach-Bahl, Klaus; Guzha, Alphonce; Rufino, Mariana

    2017-04-01

    Deforestation and land use change (LUC) are often stated as major contributors to changes in water quality, although other catchment characteristics such as topography, geology and climate can also play a role. Understanding how stream water chemistry is affected by LUC is essential for sustainable water management and land use planning. However, there is often a lack of reliable data, especially in less studied regions such as East Africa. This study focuses on three sub-catchments (27-36 km2) with different land use types (natural forest, smallholder agriculture and tea/tree plantations) nested in a 1023 km2 headwater catchment in the Mau Forest Complex, Kenya's largest closed-canopy indigenous tropical montane forest. In the past decades approx. 25% of the natural forest was lost due to land use change. We studied seasonal, diurnal and spatial patterns of total dissolved nitrogen (TDN), nitrate (NO3-N) and dissolved organic nitrogen (DON) using a combination of high-resolution in-situ measurements, bi-weekly stream water samples and spatial sampling campaigns. Multiple linear regression analysis of the spatial data indicates that land use shows a strong influence on TDN and nitrate, while DON is more influenced by precipitation. Highest TDN and nitrate concentrations are found in tea plantations, followed by smallholder agriculture and natural forest. This ranking does not change throughout the year, though concentrations of TDN and nitrate are respectively 27.6 and 25.4% lower in all catchments during the dry season. Maximum Overlap Discrete Wavelet Transform (MODWT) analysis of the high resolution nitrate data revealed a seasonal effect on diurnal patterns in the natural forest catchment, where the daily peak shifts from early morning in the wet season to mid-afternoon in the dry season. The smallholder and tea catchment do not exhibit clear diurnal patterns. The results suggest that land use affects dissolved nitrogen concentrations, leading to higher N

  9. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    Science.gov (United States)

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  10. Machine Learning to Assess Grassland Productivity in Southeastern Arizona

    Science.gov (United States)

    Ponce-Campos, G. E.; Heilman, P.; Armendariz, G.; Moser, E.; Archer, V.; Vaughan, R.

    2015-12-01

    We present preliminary results of machine learning (ML) techniques modeling the combined effects of climate, management, and inherent potential on productivity of grazed semi-arid grasslands in southeastern Arizona. Our goal is to support public land managers determine if agency management policies are meeting objectives and where to focus attention. Monitoring in the field is becoming more and more limited in space and time. Remotely sensed data cover the entire allotments and go back in time, but do not consider the key issue of species composition. By estimating expected vegetative production as a function of site potential and climatic inputs, management skill can be assessed through time, across individual allotments, and between allotments. Here we present the use of Random Forest (RF) as the main ML technique, in this case for the purpose of regression. Our response variable is the maximum annual NDVI, a surrogate for grassland productivity, as generated by the Google Earth Engine cloud computing platform based on Landsat 5, 7, and 8 datasets. PRISM 33-year normal precipitation (1980-2013) was resampled to the Landsat scale. In addition, the GRIDMET climate dataset was the source for the calculation of the annual SPEI (Standardized Precipitation Evapotranspiration Index), a drought index. We also included information about landscape position, aspect, streams, ponds, roads and fire disturbances as part of the modeling process. Our results show that in terms of variable importance, the 33-year normal precipitation, along with SPEI, are the most important features affecting grasslands productivity within the study area. The RF approach was compared to a linear regression model with the same variables. The linear model resulted in an r2 = 0.41, whereas RF showed a significant improvement with an r2 = 0.79. We continue refining the model by comparison with aerial photography and to include grazing intensity and infrastructure from units/allotments to assess the

  11. Land-use intensification causes multitrophic homogenization of grassland communities.

    Science.gov (United States)

    Gossner, Martin M; Lewinsohn, Thomas M; Kahl, Tiemo; Grassein, Fabrice; Boch, Steffen; Prati, Daniel; Birkhofer, Klaus; Renner, Swen C; Sikorski, Johannes; Wubet, Tesfaye; Arndt, Hartmut; Baumgartner, Vanessa; Blaser, Stefan; Blüthgen, Nico; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Jorge, Leonardo Ré; Jung, Kirsten; Keyel, Alexander C; Klein, Alexandra-Maria; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Müller, Jörg; Overmann, Jörg; Pašalić, Esther; Penone, Caterina; Perović, David J; Purschke, Oliver; Schall, Peter; Socher, Stephanie A; Sonnemann, Ilja; Tschapka, Marco; Tscharntke, Teja; Türke, Manfred; Venter, Paul Christiaan; Weiner, Christiane N; Werner, Michael; Wolters, Volkmar; Wurst, Susanne; Westphal, Catrin; Fischer, Markus; Weisser, Wolfgang W; Allan, Eric

    2016-12-08

    Land-use intensification is a major driver of biodiversity loss. Alongside reductions in local species diversity, biotic homogenization at larger spatial scales is of great concern for conservation. Biotic homogenization means a decrease in β-diversity (the compositional dissimilarity between sites). Most studies have investigated losses in local (α)-diversity and neglected biodiversity loss at larger spatial scales. Studies addressing β-diversity have focused on single or a few organism groups (for example, ref. 4), and it is thus unknown whether land-use intensification homogenizes communities at different trophic levels, above- and belowground. Here we show that even moderate increases in local land-use intensity (LUI) cause biotic homogenization across microbial, plant and animal groups, both above- and belowground, and that this is largely independent of changes in α-diversity. We analysed a unique grassland biodiversity dataset, with abundances of more than 4,000 species belonging to 12 trophic groups. LUI, and, in particular, high mowing intensity, had consistent effects on β-diversity across groups, causing a homogenization of soil microbial, fungal pathogen, plant and arthropod communities. These effects were nonlinear and the strongest declines in β-diversity occurred in the transition from extensively managed to intermediate intensity grassland. LUI tended to reduce local α-diversity in aboveground groups, whereas the α-diversity increased in belowground groups. Correlations between the β-diversity of different groups, particularly between plants and their consumers, became weaker at high LUI. This suggests a loss of specialist species and is further evidence for biotic homogenization. The consistently negative effects of LUI on landscape-scale biodiversity underscore the high value of extensively managed grasslands for conserving multitrophic biodiversity and ecosystem service provision. Indeed, biotic homogenization rather than local diversity

  12. Grassland carbon sequestration and emissions following cultivation in a mixed crop rotation

    DEFF Research Database (Denmark)

    Acharya, Bharat Sharma; Rasmussen, Jim; Eriksen, Jørgen

    2012-01-01

    Grasslands are potential carbon sinks to reduce unprecedented increase in atmospheric CO2. Effect of age (1–4-year-old) and management (slurry, grazing multispecies mixture) of a grass phase mixed crop rotation on carbon sequestration and emissions upon cultivation was compared with 17-year...... biomass was highest in 4-year-old grassland, but all 1–4-year-old grasslands were in between the pea field (0.81 ± 0.094 g kg−1 soil) and the 17-year-old grassland (3.17 ± 0.22 g kg−1 soil). Grazed grasslands had significantly higher root biomass than cut grasslands. There was no significant difference...... in the CO2 emissions within 1–4-year-old grasslands. Only the 17-year-old grassland showed markedly higher CO2 emissions (4.9 ± 1.1 g CO2 kg−1 soil). Differences in aboveground and root biomass did not affect CO2 emissions, and slurry application did not either. The substantial increase in root biomass...

  13. Response of predominant soil bacteria to grassland succession as monitored by ribosomal RNA analyses

    NARCIS (Netherlands)

    Felske, A.

    1999-01-01

    The research described in this thesis was aimed to provide insight into the effects of grassland succession on the composition of the soil bacteria community in the Drentse A agricultural research area. The Drentse A meadows represent grassland succession at different stages. Since 30 years

  14. Modelling the carbon cycle of grassland in the Netherlands under various management strategies and environmental conditions.

    NARCIS (Netherlands)

    Pol-van Dasselaar, van den A.; Lantinga, E.A.

    1995-01-01

    A simulation model of the grassland carbon cycle (CCGRASS) was developed to evaluate the long-term effects of different management strategies and various environmental conditions on carbon sequestration in a loam soil under permanent grassland in the Netherlands. The model predicted that the rate of

  15. Temporal dynamics of soil nematode communities in a grassland plant diversity experiment.

    NARCIS (Netherlands)

    Viketoft, M.; Sohlenius, B.; Bostrom, S.; Palmborg, C.; Bengtsson, J.; Berg, M.P.; Kuss-Danell, K.

    2011-01-01

    We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups;

  16. The Impact of Ecological Construction Programs on Grassland Conservation in Inner Mongolia, China

    NARCIS (Netherlands)

    Liu, Min; Dries, Liesbeth; Heijman, Wim; Huang, Jikun; Zhu, Xueqin; Hu, Yuanning; Chen, Haibin

    2018-01-01

    A series of Ecological Construction Programs have been initiated to protect the condition of grasslands in China during recent decades. However, grassland degradation is still severe, and conditions have not been restored as intended. This paper aims to empirically examine the effectiveness of these

  17. 78 FR 19444 - Pawnee National Grassland, Colorado; Oil and Gas Leasing Analysis Environmental Impact Statement

    Science.gov (United States)

    2013-04-01

    ... Leasing Analysis on the Pawnee National Grassland (PNG), was signed. That decision determined which Lands... National Grassland. Much of the PNG's federal mineral estate made available per the 1997 ROD has already... [36 CFR 228.102(e)]. Accordingly, the PNG finds it is necessary to disclose the potential effects of...

  18. Long-term after-effects of fertilisation on restoration of calcareous grasslands

    NARCIS (Netherlands)

    Smits, N.A.C.; Bobbink, R.; Willems, J.H.

    2008-01-01

    Question: What are the long-term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of

  19. 77 FR 75119 - Dakota Prairie Grasslands, North Dakota; Oil and Gas Development Supplemental Environmental...

    Science.gov (United States)

    2012-12-19

    ... DEPARTMENT OF AGRICULTURE Forest Service Dakota Prairie Grasslands, North Dakota; Oil and Gas... to prepare a supplemental environmental impact statement. SUMMARY: In June of 2003, the Dakota... Dakota Prairie Grasslands Land and Resource Management Plan, based on the 2001 Northern Great Plains...

  20. Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China.

    Science.gov (United States)

    He, Chunyang; Tian, Jie; Gao, Bin; Zhao, Yuanyuan

    2015-01-01

    Quantitatively distinguishing grassland degradation due to climatic variations from that due to human activities is of great significance to effectively governing degraded grassland and realizing sustainable utilization. The objective of this study was to differentiate these two types of drivers in the Liao River Basin during 1999-2009 using the residual trend (RESTREND) method and to evaluate the applicability of the method in semiarid and semihumid regions. The relationship between the normalized difference vegetation index (NDVI) and each climatic factor was first determined. Then, the primary driver of grassland degradation was identified by calculating the change trend of the normalized residuals between the observed and the predicted NDVI assuming that climate change was the only driver. We found that the RESTREND method can be used to quantitatively and effectively differentiate climate and human drivers of grassland degradation. We also found that the grassland degradation in the Liao River Basin was driven by both natural processes and human activities. The driving factors of grassland degradation varied greatly across the study area, which included regions having different precipitation and altitude. The degradation in the Horqin Sandy Land, with lower altitude, was driven mainly by human activities, whereas that in the Kungl Prairie, with higher altitude and lower precipitation, was caused primarily by climate change. Therefore, the drivers of degradation and local conditions should be considered in an appropriate strategy for grassland management to promote the sustainability of grasslands in the Liao River Basin.

  1. Efficacy of exclosures in conserving local shrub biodiversity in xeric sandy grassland, Inner Mongolia, China

    Science.gov (United States)

    Feng-Rui Li; Zhi-Yu Zhou; Li-Ya Zhao; Ai-Sheng Zhang; Ling-Fen Kang

    2007-01-01

    This study investigated the abundance and frequency of occurrence of all shrub species present in the standing vegetation at four sites, including a 5-year exclosure (protected grassland) and three adjacent unprotected grazing sites that had been subjected to different levels of degradation (light, moderate and severe), in xeric sandy grassland of Inner Mongolia for...

  2. Variation in soil organic carbon within highland grasslands of Langtang National Park, Nepal

    Directory of Open Access Journals (Sweden)

    Keshab Shrestha

    2016-09-01

    Full Text Available Grassland also plays important role in food security. The estimated grassland area in Nepal is about 1.75 million ha. Most of the grassland in Nepal is located in higher elevation above, 2000 meter. The aim of this research is to observe difference in SOC of grassland in different altitude. Soil samples were collected from grasslands of altitude: 1500- 2000m, 2001- 2500m, 2501-3000m, 3001- 3500m and 3501- 4000m. The soil samples were collected at successive depths in each grassland i.e. 0 – 10 cm, 10 – 20 cm and 20 – 30 cm. The maximum SOC was found in grassland at altitude 3001 m- 3500m. The lowest was SOC was found in grassland at altitude 3051m – 4000m. Correlation analysis between altitude and SOC shows that SOC is positively correlated with altitude with correlation coefficient 0.850 (significant at P<0.05 level. But SOC decreases sharply in treeline with negative correlation (Significant at P<0.05.International Journal of Environment Vol.5(3 2016, pp.57-65

  3. Grassland simulation with the LPJmL model : version 3.4.018

    NARCIS (Netherlands)

    Boons-Prins, E.R.

    2010-01-01

    One third of the land surface is covered with natural and cultivated grasslands. Most of these grasslands are intensively or extensively exploited by humans to feed animals. With growing wealth, causing an increase of meat consumption, there is a need to better understand the processes that

  4. Effects of nitrogen fertilization and grazing on the emission of nitrous oxide from grassland

    Energy Technology Data Exchange (ETDEWEB)

    Velthof, G.L.; Brader, A.B.; Oenema, O. [NMI, Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural Univ. (Netherlands)

    1995-11-01

    In the Netherlands, managed grasslands are potentially a large source of nitrous oxide (N{sub 2}O), because of the large nitrogen (N) input and the relatively high ground water levels. To provide insight into the major factors that contribute to N{sub 2}O emission from grassland and to provide quantitative N{sub 2}O emission rates, a monitoring study was carried out on four sites, during March 1992 to March 1994. Fluxes of N{sub 2}O increased after N fertilizer application and grazing, especially during wet conditions. Fluxes were higher from peat soils than from sand and clay soils. Fluxes were low during the winter periods. Total N{sub 2}O losses were 2 to 4.5 times higher on grassland fertilized with 160-460 kg N ha{sup -1} yr{sup -1} than on unfertilized grassland. Losses from grazed grasslands were 1.5 to 3.5 times higher than losses from mown grassland. This study shows that management practice of grassland and soil type are major factors controlling N{sub 2}O emission from grasslands. 2 figs., 3 refs.

  5. Balance matters : N:P stoichiometry and plant diversity in grassland ecosystems

    NARCIS (Netherlands)

    Fujita, Y.

    2010-01-01

    Eutrophication of Nitrogen (N) and Phosphorus (P) is threatening the functioning and biodiversity of grassland ecosystems. A well known effect of eutrophication on grasslands is an increase of above-ground productivity, which intensifies light competition and allows only a few competitive species to

  6. Spatial probability models of fire in the desert grasslands of the southwestern USA

    Science.gov (United States)

    Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...

  7. Root biomass and carbon storage in differently managed multispecies temporary grasslands

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Mortensen, Tine Bloch; Søegaard, Karen

    2012-01-01

    Species-rich grasslands may potentially increase carbon (C) storage in soil, and an experiment was established to investigate C storage in highly productive temporary multi-species grasslands. Plots were established with three mixtures: (1) a herb mixture containing salad burnet (Sanguisorba minor...

  8. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands

    Science.gov (United States)

    Donald L. Hazlett; Michael H. Schiebout; Paulette L. Ford

    2009-01-01

    Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of...

  9. Spatial patterns of grasses and shrubs in an arid grassland environment

    Science.gov (United States)

    In the Chihuahuan Desert of Mexico and New Mexico, shrub invasion is a common problem, and once-abundant grassland ecosystems are being replaced by shrub-dominated habitat. The spatial arrangement of grasses and shrubs in these arid grasslands can provide better insight into community dynamics and c...

  10. Linear objects impact on grassland degradation in the typical steppe region of China

    NARCIS (Netherlands)

    Li, Suying; Verburg, Peter H.; Lv, Shihai; Gao, Shangyu; Wu, Jingle

    2011-01-01

    Despite growing recognition of the issue of grassland degradation, few regional estimates of linear object impacts on grassland degradation [1]. We presented a methodology for evaluating regional impacts on steppe degradation from linear objects which were two uppermost types, rivers and roads, in

  11. Secondary succession after fire in Imperata grasslands of East Kalimantan Indonesia

    NARCIS (Netherlands)

    Yassir, I.; Kamp, van der J.; Buurman, P.

    2010-01-01

    Regeneration of grassland areas is becoming increasingly important, not only to create new secondary forest and recover the original biodiversity, but also recover for agriculture. We studied an early succession in Imperata grasslands in East Kalimantan, Indonesia, using plots that last burned 3

  12. Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits.

    NARCIS (Netherlands)

    Kuiters, A.T.; Huiskes, H.P.J.

    2010-01-01

    Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples

  13. The 2014 summer coral bleaching event in subtropical Hong Kong.

    Science.gov (United States)

    Xie, James Y; Lau, Dickey C C; Kei, Keith; Yu, Vriko P F; Chow, Wing-Kuen; Qiu, Jian-Wen

    2017-11-30

    We reported a coral bleaching event that occurred in August-September 2014 in Hong Kong waters based on video transect surveys conducted at eight sites. The bleaching affected eight species of corals with different growth forms. Bleaching at seven of the eight study sites was minor, affecting only 0.4-5.2% colonies and 0.8-10.0% coral-covered area. Sharp Island East, however, suffered from a moderate level of bleaching, with 13.1% colonies and 30.1% coral-covered area affected. Examination of the government's environmental monitoring data indicated abnormal water quality conditions preceding and during the bleaching event. Follow-up field surveys of tagged colonies showed that 76% of them had fully recovered, 12% partially recovered, and 12% suffered from mortality. These results indicate that the subtropical corals of Hong Kong are not immune to bleaching, and there is a need to study their responses under climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Seagrass community dynamics in a subtropical estuarine lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Thorhaug, A.; Roessler, M.A.

    1977-11-01

    The temporal and spatial distributions of major plant and animal species were investigated for 4 years in south Biscayne Bay including Card Sound, Florida, a subtropical estuarine lagoon. This was part of a larger study including chemical, physical and geological investigations. The major species of plants were Thalassia testudinum Banks ex Konig, turtle grass, Laurencia poitei (Lamour.) Howe, a red macroalga and the green algae Penicillus capitatus Lamarck and Halimeda incrassata (Ellis) Lamour. Standing crop and production of plant material taken bi-weekly is given in detail for 16 stations in Card Sound for the 4-year period and for eight stations in Biscayne Bay for a 1-year period. The major animal species were not equally distributed; in the near-shore Thalassia community, species of Pagurus, Neopanope, Hippolyte, Cerithium, Bulla, Prunum and Modulus were dominant. In mid-bay, where patchy Thalassia plus green algae occurred, Thor and Chondrilla were the dominant animals. Near the fringing islands, where tidal flow caused more oceanic conditions, the community was dominated by sponges, urchins and corals. This highlights the structural differences in what is now termed the ''Thalassia community.'' Comparisons with other known Thalassia communities are made.

  15. Unsynchronized influenza epidemics in two neighboring subtropical cities

    Directory of Open Access Journals (Sweden)

    Xiujuan Tang

    2018-04-01

    Full Text Available Objective: The aim of this study was to examine the synchrony of influenza epidemics between Hong Kong and Shenzhen, two neighboring subtropical cities in South China. Methods: Laboratory-confirmed influenza data for the period January 2006 to December 2016 were obtained from the Shenzhen Center for Disease Control and Prevention and the Department of Health in Hong Kong. The population data were retrieved from the 2011 population censuses. The weekly rates of laboratory-confirmed influenza cases were compared between Shenzhen and Hong Kong. Results: Unsynchronized influenza epidemics between Hong Kong and Shenzhen were frequently observed during the study period. Influenza A/H1N1 caused a more severe pandemic in Hong Kong in 2009, but the subsequent seasonal epidemics showed similar magnitudes in both cities. Two influenza A/H3N2 dominant epidemic waves were seen in Hong Kong in 2015, but these epidemics were very minor in Shenzhen. More influenza B epidemics occurred in Shenzhen than in Hong Kong. Conclusions: Influenza epidemics appeared to be unsynchronized between Hong Kong and Shenzhen most of the time. Given the close geographical locations of these two cities, this could be due to the strikingly different age structures of their populations. Keywords: Influenza epidemics, Synchrony, Shenzhen, Hong Kong

  16. Phylogenetic congruence between subtropical trees and their associated fungi.

    Science.gov (United States)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S; Gilbert, Gregory S; Yu, Shixiao

    2016-12-01

    Recent studies have detected phylogenetic signals in pathogen-host networks for both soil-borne and leaf-infecting fungi, suggesting that pathogenic fungi may track or coevolve with their preferred hosts. However, a phylogenetically concordant relationship between multiple hosts and multiple fungi in has rarely been investigated. Using next-generation high-throughput DNA sequencing techniques, we analyzed fungal taxa associated with diseased leaves, rotten seeds, and infected seedlings of subtropical trees. We compared the topologies of the phylogenetic trees of the soil and foliar fungi based on the internal transcribed spacer (ITS) region with the phylogeny of host tree species based on matK , rbcL , atpB, and 5.8S genes. We identified 37 foliar and 103 soil pathogenic fungi belonging to the Ascomycota and Basidiomycota phyla and detected significantly nonrandom host-fungus combinations, which clustered on both the fungus phylogeny and the host phylogeny. The explicit evidence of congruent phylogenies between tree hosts and their potential fungal pathogens suggests either diffuse coevolution among the plant-fungal interaction networks or that the distribution of fungal species tracked spatially associated hosts with phylogenetically conserved traits and habitat preferences. Phylogenetic conservatism in plant-fungal interactions within a local community promotes host and parasite specificity, which is integral to the important role of fungi in promoting species coexistence and maintaining biodiversity of forest communities.

  17. Physical nutrient transport in the North Atlantic Subtropical Gyre

    Science.gov (United States)

    Jenkins, W.; Lott, D. E.

    2009-04-01

    Use of the helium-3 flux gauge to estimate the physically mediated flux of new nutrients to the euphotic zone of the North Atlantic subtropical gyre broadly suggests a pathway whereby inorganic nutrients that have been remineralized within the main thermocline may be returned to the seasonally accessible layer in the Sargasso Sea: the so-called "Nutrient Spiral" (Jenkins and Doney (2003), Glob. Biog. Cyc., 17(4), doi:1110.1029/2003GB002085.) The challenge, however, is identifying the exact mechanism whereby this occurs. One possible process is that of "obduction", whereby the combination of strong advection and rapidly deepening winter mixed layers result in the effective outcropping of substantial amounts of thermocline nutrients and tritiugenic helium-3. We present here a quantitative estimate based on hydrographic sections and geostrophic transports of the fluxes and transformations of both tritugenic helium-3 and nitrate within the basin, and attempt to relate these estimates to the specific shallow-water behaviors of these tracers, and their global and regional physical transports. An important constraint for these estimates lies in the evolving distributions of the transient tracers tritium and helium-3. We compare these results with other tracer-based estimates of new, net-community, and export production.

  18. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  19. Plastic pollution in the South Pacific subtropical gyre.

    Science.gov (United States)

    Eriksen, Marcus; Maximenko, Nikolai; Thiel, Martin; Cummins, Anna; Lattin, Gwen; Wilson, Stiv; Hafner, Jan; Zellers, Ann; Rifman, Samuel

    2013-03-15

    Plastic marine pollution in the open ocean of the southern hemisphere is largely undocumented. Here, we report the result of a (4489 km) 2424 nautical mile transect through the South Pacific subtropical gyre, carried out in March-April 2011. Neuston samples were collected at 48 sites, averaging 50 nautical miles apart, using a manta trawl lined with a 333 μm mesh. The transect bisected a predicted accumulation zone associated with the convergence of surface currents, driven by local winds. The results show an increase in surface abundance of plastic pollution as we neared the center and decrease as we moved away, verifying the presence of a garbage patch. The average abundance and mass was 26,898 particles km(-2) and 70.96 g km(-2), respectively. 88.8% of the plastic pollution was found in the middle third of the samples with the highest value of 396,342 particles km(-2) occurring near the center of the predicted accumulation zone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Variability of the subtropical mode water in the Southwest Pacific

    Science.gov (United States)

    Fernandez, Denise; Sutton, Philip; Bowen, Melissa

    2017-09-01

    The variability of Subtropical Mode Water (STMW) in the Southwest Pacific is investigated using a 28 year-long time series (1986-2014) of high-resolution expendable bathythermograph data north of New Zealand (PX06) and a shorter time series, the Roemmich-Gilson monthly Argo optimal interpolation for the 2004-2014 period. The variability in STMW inventories is compared to the variability in air-sea heat fluxes, mixed layer depths and transport of the East Auckland Current (EAUC) to assess both the atmospheric and oceanic roles influencing the formation and decay of STMW. The STMW north of New Zealand has a short lifespan with little persistence of the water mass from 1 year to the next one. Deeper mixed layers and negative anomalies in surface heat fluxes are correlated with increased formation of STMW. The heat content of the STMW layer is anticorrelated with inventories, particularly during the El Niño years. This suggests that large volumes of STMW are coincident with cooler conditions in the prior winter and less oceanic heat storage. There is significant seasonal and interannual variability in STMW inventories, however there are no trends in STMW properties, including its core layer temperature over the last decade. The variability of the winter EAUC transport is highly correlated with the STMW inventories and thermocline depth in the following spring, suggesting ocean dynamics deepen the thermocline and precondition for deeper mixed layers.

  1. Impacts of tropical cyclones on hydrochemistry of a subtropical forest

    Directory of Open Access Journals (Sweden)

    C. T. Chang

    2013-10-01

    Full Text Available Tropical cyclones (typhoons/hurricanes have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterised the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of the annual rainfall on average, but ranged from 4 to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus, little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen during an average 9.5 day yr−1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon months. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha−1 yr−1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.

  2. Hemiptera community and species responses to grassland sward islets

    OpenAIRE

    Helden, Alvin J.; Dittrich, Alex D. K.

    2016-01-01

    Sward islet is a term that has been used to describe a patch of longer vegetation in a pasture produced by a reduction in cattle grazing around their dung. They are known to affect the abundance and distribution of grassland arthropods. Hemiptera, like other groups, are found in higher densities within islets than the surrounding sward. Does this modify the community composition or is there just a density effect? Evidence from a paired (islets, non-islets) study at an Irish cattle-grazed site...

  3. Organic matter dynamics and N mineralization in grassland soils

    OpenAIRE

    Hassink, J.

    1995-01-01


    The aims of this study are i) to improve our understanding of the interactions between soil texturelsoil structure, soil organic matter, soil biota and mineralization in grassland soils, ii) to develop a procedure that yields soil organic matter fractions that can be determined directly and can be used in soil organic matter models, iii) to develop a model that predicts the long-term dynamics of soil organic matter, iv) to develop a simple model that can be used by farmers and advi...

  4. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model

    NARCIS (Netherlands)

    Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.K.; Wang, T.

    2012-01-01

    Accurate estimates of the quantity and quality of grasslands, as they vary in space and time and from regional to global scales, furthers our understanding of grassland ecosystems. The Medium Resolution Imaging Spectrometer (MERIS) is a promising sensor for measuring and monitoring grasslands due to

  5. 78 FR 65609 - Medicine Bow-Routt National Forests and Thunder Basin National Grassland; Wyoming; Thunder Basin...

    Science.gov (United States)

    2013-11-01

    ... National Grassland; Wyoming; Thunder Basin National Grassland Prairie Dog Amendment Environmental Impact... Cooperating Agencies. No changes to the Proposed Action or Purpose of and Need for Action have been made... alternatives will be analyzed in the Thunder Basin National Grassland Prairie Dog Amendment EIS. The EIS will...

  6. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Lu Wen

    Full Text Available The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC, and soil total nitrogen (TN were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  7. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  8. Grasslands of Mexico: A perspective on their conservation (Los pastizales del norte de Mexico: Una perspectiva para su conservacion)

    Science.gov (United States)

    Patricia Manzano; Rurik List

    2006-01-01

    Grasslands are areas dominated by grasses and herbs with few or no trees. Grasslands receive too much rain for a desert environment and too little for a forest. Temperate North American grasslands, especially, have undergone changes on a continental level. Their high productivity and fertility, added to their level topography and lack of trees, make them ideal sites...

  9. Site fidelity in the Sichuan Torrent Frog (Amolops mantzorum in a montane region in western China

    Directory of Open Access Journals (Sweden)

    Wen Bo Liao

    2011-12-01

    Full Text Available I used mark-recapture technique to estimate site fidelity in a subtropical high-elevation torrent frog (Amolops mantzorum during the breeding season in Fengtongzhai National Nature Reserve in western China. I captured, measured, and individually marked 30 males and 15 females in 20 May 2007. I recorded each individual’s initial positions using a Global Positioning System (GPS. For each night from 21 May to 10 June 2007, I recaptured the marked individuals and recorded capture points. The results showed that 16 males and 4 females were never recaptured in the field experiment. Most of the remaining individuals were recaptured only one time. Males and female were recaptured more than 2 and 8 times, respectively. Males and females were recaptured from subsequent positions as far apart as 55 m and 30 m, as close as 0.2 m and 0.1 m. Average neighbor distances on successive capture positions of males recaptured was 10.1 m, and that of females was 4.2 m, suggesting that there were significant difference in site fidelity between females and males. However, there was not significant average activity distance between the sexes. For females, small average activity areas were 10.9 ± 14.9 m2.

  10. Integrating hydrogeophysics and hydrological tracers to characterise the spatial structure of groundwater storage in the critical zone of montane environments

    Science.gov (United States)

    Dick, J.; Tetzlaff, D.; Bradford, J.; Soulsby, C.

    2015-12-01

    It is increasingly recognised that groundwater (GW) in montane watersheds has a major influence on the distribution of vegetation communities and ecosystem function, as well as sustaining downstream river flows. In glaciated landscapes, complex and heterogenous drift deposits can have a dominant influence on GW stores and fluxes, and form a poorly understood component of the critical zone. Given the logistical problems and limitations of drilling observation wells in such terrain, hydrogeophysics has outstanding potential to help characterise aquifer structure and understand shallow GW in the critical zone of montane environments. We present the results of electrical resistivity tomography (ERT) surveys in an intensively monitored 3.2km2 watershed in the Scottish Highlands with a strong glacial past. We sought to characterise the structure and spatial organisation of GW stores in diverse quaternary drift deposits. This utilized distributed ERT transects that provided a basis for spatial interpolation using geostatistical methods and high resolution LiDAR surveys. Some transects coincided with shallow observation wells that were used to "ground-truth" the inversion of resistivity data. The surveys showed that the drifts covered around 70% of the catchment and varied from 5m deep on the hillslopes to 40m in the valleys. The water table was within 0.2m of the soil surface in the valley bottom areas and about 1.5m deep on steeper hillslopes. The water content of drifts inferred by the ERT surveys and characterisation of the aquifer properties showed highest water content in the peat (~80%) and basal till (20-30%), and low storage in moraine deposits (10%). Upscaling these estimates of inferred storage to the catchment scale indicated around ~2-3 m of GW storage, equivalent to around 4-6 years of effective precipitation. This generally compared well with independent storage estimates inferred from long-term stable isotope time series collected from the aquifers

  11. Microhabitat selection by three common bird species of montane farmlands in Northern Greece.

    Science.gov (United States)

    Tsiakiris, Rigas; Stara, Kalliopi; Pantis, John; Sgardelis, Stefanos

    2009-11-01

    Common farmland birds are declining throughout Europe; however, marginal farmlands that escaped intensification or land abandonment remain a haven for farmland species in some Mediterranean mountains. The purpose of this study is to identify the most important anthropogenic microhabitat characteristics for Red-Backed Shrike (Lanius collurio), Corn Bunting (Miliaria calandra) and Common Whitethroat (Sylvia communis) in three such areas within the newly established Northern Pindos National Park. We compare land use structural and physiognomic characteristics of the habitat within 133 plots containing birds paired with randomly selected "non-bird" plots. Using logistic regression and classification-tree models we identify the specific habitat requirements for each of the three birds. The three species show a preference for agricultural mosaics dominated by rangelands with scattered shrub or short trees mixed with arable land. Areas with dikes and dirt roads are preferred by all three species, while the presence of fences and periodically burned bushes and hedges are of particular importance for Red-Backed Shrike. Across the gradient of vegetation density and height, M. calandra is mostly found in grasslands with few dwarf shrubs and short trees, S. communis in places with more dense and tall vegetation of shrub, trees and hedges, and L. collurio, being a typical bird of ecotones, occurs in both habitats and in intermediate situations. In all cases those requirements are associated with habitat features maintained either directly or indirectly by the traditional agricultural activities in the area and particularly by the long established extensive controlled grazing that prevent shrub expansion.

  12. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance

    OpenAIRE

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Soussana, Jean-Fran?ois; Klumpp, Katja; Sultan, Benjamin

    2017-01-01

    Background Europe has warmed more than the global average (land and ocean) since pre-industrial times, and is also projected to continue to warm faster than the global average in the twenty-first century. According to the climate models ensemble projections for various climate scenarios, annual mean temperature of Europe for 2071?2100 is predicted to be 1?5.5??C higher than that for 1971?2000. Climate change and elevated CO2 concentration are anticipated to affect grassland management and liv...

  13. Nitrogen acquisition by plants and microorganisms in a temperate grassland.

    Science.gov (United States)

    Liu, Qianyuan; Qiao, Na; Xu, Xingliang; Xin, Xiaoping; Han, Jessie Yc; Tian, Yuqiang; Ouyang, Hua; Kuzyakov, Yakov

    2016-03-10

    Nitrogen (N) limitation is common in most terrestrial ecosystems, often leading to strong competition between microorganisms and plants. The mechanisms of niche differentiation to reduce this competition remain unclear. Short-term (15)N experiments with NH4(+), NO3(-), and glycine were conducted in July, August and September in a temperate grassland to evaluate the chemical, spatial and temporal niche differentiation by competition between plants and microorganisms for N. Microorganisms preferred NH4(+) and NO3(-), while plants preferred NO3(-). Both plants and microorganisms acquired more N in August and September than in July. The soil depth had no significant effects on microbial uptake, but significantly affected plant N uptake. Plants acquired 67% of their N from the 0-5 cm soil layer and 33% from the 5-15 cm layer. The amount of N taken up by microorganisms was at least seven times than plants. Although microorganisms efficiently compete for N with plants, the competition is alleviated through chemical partitioning mainly in deeper soil layer. In the upper soil layer, neither chemical nor temporal niche separation is realized leading to strong competition between plants and microorganisms that modifies N dynamics in grasslands.

  14. BETA DIVERSITY AND COMMUNITY DIFFERENTIATION IN DRY PERENNIAL SAND GRASSLANDS

    Directory of Open Access Journals (Sweden)

    E. KOVACS-LANG

    2011-01-01

    Full Text Available The spatial variability of species composition was studied in perennial sand grasslands in Hungary at multiple scales. Three sites were compared along an aridity gradient. Existing differences in climate along this ca. 200 km gradient correspond to regional climate changes predicted for the next 20-30 years. Six stands of Festucetum vaginatae grasslands were selected at each site within 400 x 1200 m areas for representing the coarse-scale within-site heterogeneity. Fine-scale compositional heterogeneity of vegetation within stands was sampled by recording the presence of species along 52 m long circular belt transects of 1040 units of 5 cm x 5 cm contiguous microquadrats. This sampling design enabled us to study the patterns of species combinations at a wide range of scales. The highest variability of plant species combinations appeared at very fine scales, between 10 cm and 25 cm. Differences in beta diversity along the gradient were scale-dependent. We found a decreasing trend of beta diversity with increasing aridity at fine scale, and on the contrary, an increasing trend at landscape scale. We conclude that the major trend of the vegetation differentiation due to aridity is the decrease of compositional variability at fine-scale accompanied by a coarse-scale diversification.

  15. Weathering controls on mechanisms of carbon storage in grassland soils

    Science.gov (United States)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  16. N2O production pathways in the subtropical acid forest soils in China

    International Nuclear Information System (INIS)

    Zhang Jinbo; Cai Zucong; Zhu Tongbin

    2011-01-01

    To date, N 2 O production pathways are poorly understood in the humid subtropical and tropical forest soils. A 15 N-tracing experiment was carried out under controlled laboratory conditions to investigate the processes responsible for N 2 O production in four subtropical acid forest soils (pH 2 O emission in the subtropical acid forest soils, being responsible for 56.1%, 53.5%, 54.4%, and 55.2% of N 2 O production, in the GC, GS, GB, and TC soils, respectively, under aerobic conditions (40%-52%WFPS). The heterotrophic nitrification (recalcitrant organic N oxidation) accounted for 27.3%-41.8% of N 2 O production, while the contribution of autotrophic nitrification was little in the studied subtropical acid forest soils. The ratios of N 2 O-N emission from total nitrification (heterotrophic+autotrophic nitrification) were higher than those in most previous references. The soil with the lowest pH and highest organic-C content (GB) had the highest ratio (1.63%), suggesting that soil pH-organic matter interactions may exist and affect N 2 O product ratios from nitrification. The ratio of N 2 O-N emission from heterotrophic nitrification varied from 0.02% to 25.4% due to soil pH and organic matter. Results are valuable in the accurate modeling of N2O production in the subtropical acid forest soils and global budget. - Highlights: → We studied N 2 O production pathways in subtropical acid forest soil under aerobic conditions. → Denitrification was the main source of N 2 O production in subtropical acid forest soils. → Heterotrophic nitrification accounted for 27.3%-41.8% of N 2 O production. → While, contribution of autotrophic nitrification to N 2 O production was little. → Ratios of N 2 O-N emission from nitrification were higher than those in most previous references.

  17. Effects of landfill gas on subtropical woody plants

    Science.gov (United States)

    Chan, G. Y. S.; Wong, M. H.; Whitton, B. A.

    1991-05-01

    An account is given of the influence of landfill gas on tree growth in the field at Gin Drinkers' Bay (GDB) landfill, Hong Kong, and in the laboratory. Ten species ( Acacia confusa, Albizzia lebbek, Aporusa chinensis, Bombax malabaricum, Castanopsis fissa, Liquidambar formosana, Litsea glutinosa, Machilus breviflora, Pinus elliottii, and Tristania conferta), belonging to eight families, were transplanted to two sites, one with a high concentration of landfill gas in the cover soil (high-gas site, HGS) and the other with a relatively low concentration of gas (low-gas site, LGS). Apart from the gaseous composition, the general soil properties were similar. A strong negative correlation between tree growth and landfill gas concentration was observed. A laboratory study using the simulated landfill gas to fumigate seedlings of the above species showed that the adventitious root growth of Aporusa chinensis, Bombax malabaricum, Machilus breviflora, and Tristania confera was stimulated by the gas, with shallow root systems being induced. Acacia confusa, Albizzia lebbek, and Litsea glutinosa were gas-tolerant, while root growth of Castanopsis fissa, Liquidambar formosana, and Pinus elliottii was inhibited. In most cases, shoot growth was not affected, exceptions being Bombax malabaricum, Liquidambar formosana, and Tristania conferta, where stunted growth and/or reduced foliation was observed. A very high CO2 concentration in cover soil limits the depth of the root system. Trees with a shallow root system become very susceptible to water stress. The effects of low O2 concentration in soil are less important than the effects of high CO2 concentration. Acacia confusa, Albizzia lebbek, and Tristania conferta are suited for growth on subtropical completed landfills mainly due to their gas tolerance and/or drought tolerance.

  18. Diagnostics of subtropical plants functional state by cluster analysis

    Directory of Open Access Journals (Sweden)

    Oksana Belous

    2016-05-01

    Full Text Available The article presents an application example of statistical methods for data analysis on diagnosis of the adaptive capacity of subtropical plants varieties. We depicted selection indicators and basic physiological parameters that were defined as diagnostic. We used evaluation on a set of parameters of water regime, there are: determination of water deficit of the leaves, determining the fractional composition of water and detection parameters of the concentration of cell sap (CCS (for tea culture flushes. These settings are characterized by high liability and high responsiveness to the effects of many abiotic factors that determined the particular care in the selection of plant material for analysis and consideration of the impact on sustainability. On the basis of the experimental data calculated the coefficients of pair correlation between climatic factors and used physiological indicators. The result was a selection of physiological and biochemical indicators proposed to assess the adaptability and included in the basis of methodical recommendations on diagnostics of the functional state of the studied cultures. Analysis of complex studies involving a large number of indicators is quite difficult, especially does not allow to quickly identify the similarity of new varieties for their adaptive responses to adverse factors, and, therefore, to set general requirements to conditions of cultivation. Use of cluster analysis suggests that in the analysis of only quantitative data; define a set of variables used to assess varieties (and the more sampling, the more accurate the clustering will happen, be sure to ascertain the measure of similarity (or difference between objects. It is shown that the identification of diagnostic features, which are subjected to statistical processing, impact the accuracy of the varieties classification. Selection in result of the mono-clusters analysis (variety tea Kolhida; hazelnut Lombardsky red; variety kiwi Monty

  19. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    Science.gov (United States)

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  20. Nutrient addition modifies phosphatase activities along an altitudinal gradient in a tropical montane forest in Southern Ecuador

    Directory of Open Access Journals (Sweden)

    Karla eDietrich

    2016-02-01

    Full Text Available Atmospheric nutrient deposition and climate change are expected to endanger the diversity of tropical forest ecosystems. Nitrogen (N deposition might influence nutrient fluxes beyond the N cycle by a concomitant increased demand for other nutritional elements such as phosphorus (P. Organisms might respond to the increased P demand by enhanced activity of enzymes involved in releasing inorganic P from organic matter (OM. Our aims were to assess the effect of i climate shifts (approximated by an altitudinal gradient, and ii nutrient addition (N, P, N+P on phosphatase activity (PA in organic layer and mineral soil of a tropical montane rainforest in Southern Ecuador. A nutrient manipulation experiment (NUMEX was set up along an altitudinal gradient (1000, 2000, and 3000 m a.s.l.. We determined PA and inorganic and total P concentrations. PA at 1000 m was significantly lower (mean ± standard error: 48 ± 20 µmol p-NP g-1 dm h-1 as compared to 2000 m and 3000 m (119 ± 11 and 137 ± 19, respectively. One explanation might be that very rapid decomposition of OM at 1000 m results in very thin organic layers reducing the stabilization of enzymes and thus, resulting in leaching loss of enzymes under the humid tropical climate. We found no effect of N addition on PA neither in the organic layer nor in mineral soil, probably because of the low nutrient addition rates that showed ambiguous results so far on productivity measures as a proxy for P demand. In the organic layers of P and N+P treatments, we found decreased PA and increased concentrations of inorganic P. This indicates that the surplus of inorganic P reduced the biosynthesis of phosphatase enzymes. PA in megadiverse montane rainforests is likely to be unaffected by increased atmospheric N deposition but reduced upon atmospheric P deposition.

  1. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    Science.gov (United States)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  2. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  3. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.M.; Wu, G.X.; Liu, H.; Liu, P. [Chinese Academy of Sciences, Beijing (China). Inst. of Atmospheric Physics

    2001-02-01

    The effects of condensation heating on the formation of the subtropical anticyclone in the Eastern Hemisphere (EH) are studied by means of theoretical analysis and numerical simulation. The complete vorticity equation is employed for the analysis. It is found that, due to the vertical gradient of strong condensation heating, the distribution of cyclone and anticyclone in the upper troposphere is out of phase with that in the middle and lower troposphere. This is confirmed by a series of numerical experiments. The horizontal gradient of the condensation heating also affects the configuration of the subtropical anticyclone. It is concluded that condensation heating is a key factor for the formation and location of the summer subtropical anticyclone in the EH. The latent heating released by the Asian monsoon rainfall contributes to the formation of the 200 hPa South Asian anticyclone on the western side of the heating center and the 500 hPa western Pacific subtropical anticyclone on the eastern side of the center. Such configurations are modified to some extent by surface sensible heating and orography. The circulation in mid-latitudes is also affected by the latent heating in the subtropical area through the propagation of Rossby waves. (orig.)

  4. Understanding of Grassland Ecosystems under Climate Change and Economic Development Pressures in the Mongolia Plateau

    Science.gov (United States)

    Qi, J.; Chen, J.; Shan, P.; Pan, X.; Wei, Y.; Wang, M.; Xin, X.

    2011-12-01

    The land use and land cover change, especially in the form of grassland degradation, in the Mongolian Plateau, exhibited a unique spatio-temporal pattern that is a characteristic of a mixed stress from economic development and climate change of the region. The social dimension of the region played a key role in shaping the landscape and land use change, including the cultural clashes with economic development, conflicts between indigenous people and business ventures, and exogenous international influences. Various research projects have been conducted in the region to focus on physical degradation of grasslands and/or on economic development but there is a lack of understanding how the social and economic dimensions interact with grassland ecosystems and changes. In this talk, a synthesis report was made based on the most recent workshop held in Hohhot, Inner Mongolia, of China, that specifically focused on climate change and grassland ecosystems. The report analyzed the degree of grassland degradation, its climate and social drivers, and coupling nature of economic development and conservation of traditional grassland values. The goal is to fully understand the socio-ecological-economic interactions that together shape the trajectory of the grassland ecosystems in the Mongolia Plateau.

  5. Impact of Climate Change on Temperate and Alpine Grasslands in China during 1982–2006

    Directory of Open Access Journals (Sweden)

    Xiangjin Shen

    2015-01-01

    Full Text Available Based on GIMMS NDVI and climate data from 1982 to 2006, this study analyzed the impact of climate change on grassland in China. During the growing season, there were significant effects of precipitation on the growth of all the grassland types (P<0.05, except for meadow vegetation. For the air temperatures, there existed asymmetrical effects of maximum temperature (Tmax and minimum temperature (Tmin on grassland vegetation, especially for the temperate grasslands and alpine steppe. The growing season NDVI correlated negatively with Tmax but positively with Tmin for temperate grasslands. Seasonally, these opposite effects were only observed in summer. For alpine steppe, the growing season NDVI correlated positively with Tmax but negatively with Tmin, and this pattern of asymmetrical responses was only obvious in spring and autumn. Under the background of global asymmetric warming, more attention should be paid to this asymmetric response of grassland vegetation to daytime and night-time warming, especially when we want to predict the productivity of China’s grasslands in the future.

  6. Are Agrofuels a conservation threat or opportunity for grassland birds in the United States?

    Science.gov (United States)

    Robertson, Bruce A.; Rice, Robert A.; Ribic, Christine; Babcock, Bruce A.; Landis, Douglas A.; Herkert, James R.; Fletcher, Robert J.; Fontaine, Joseph J; Doran, Patrick J.; Schemske, Douglas W.

    2012-01-01

    In the United States, government-mandated growth in the production of crops dedicated to biofuel (agrofuels) is predicted to increase the demands on existing agricultural lands, potentially threatening the persistence of populations of grassland birds they support. We review recently published literature and datasets to (1) examine the ability of alternative agrofuel crops and their management regimes to provide habitat for grassland birds, (2) determine how crop placement in agricultural landscapes and agrofuel-related land-use change will affect grassland birds, and (3) identify critical research and policy-development needs associated with agrofuel production. We find that native perennial plants proposed as feedstock for agrofuel (switchgrass, Panicum virgatum, and mixed grass—forb prairie) have considerable potential to provide new habitat to a wide range of grassland birds, including rare and threatened species. However, industrialization of agrofuel production that maximizes biomass, homogenizes vegetation structure, and results in the cultivation of small fields within largely forested landscapes is likely to reduce species richness and/or abundance of grassland-dependent birds. Realizing the potential benefits of agrofuel production for grassland birds' conservation will require the development of new policies that encourage agricultural practices specifically targeting the needs of grassland specialists. The broad array of grower-incentive programs in existence may deliver new agrofuel policies effectively but will require coordination at a spatial scale broader than currently practiced, preferably within an adaptive-management framework.

  7. Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands.

    Directory of Open Access Journals (Sweden)

    Lourdes Martínez-Estévez

    Full Text Available Anthropogenic impacts on North American grasslands, a highly endangered ecosystem, have led to declines of prairie dogs, a keystone species, over 98% of their historical range. While impacts of this loss on maintenance of grassland biodiversity have been widely documented, much less is known about the consequences on the supply of ecosystem services. Here we assessed the effect of prairie dogs in the supply of five ecosystem services by comparing grasslands currently occupied by prairie dogs, grasslands devoid of prairie dogs, and areas that used to be occupied by prairie dogs that are currently dominated by mesquite scrub. Groundwater recharge, regulation of soil erosion, regulation of soil productive potential, soil carbon storage and forage availability were consistently quantitatively or qualitatively higher in prairie dog grasslands relative to grasslands or mesquite scrub. Our findings indicate a severe loss of ecosystem services associated to the absence of prairie dogs. These findings suggest that contrary to a much publicize perception, especially in the US, prairie dogs are fundamental in maintaining grasslands and their decline have strong negative impacts in human well - being through the loss of ecosystem services.

  8. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  9. Grasslands and Croplands Have Different Microbial Biomass Carbon Levels per Unit of Soil Organic Carbon

    Directory of Open Access Journals (Sweden)

    Terence P. McGonigle

    2017-07-01

    Full Text Available Primarily using cropped systems, previous studies have reported a positive linear relationship between microbial biomass carbon (MBC and soil organic carbon (SOC. We conducted a meta-analysis to explore this relationship separately for grasslands and croplands using available literature. Studies were limited to those using fumigation–extraction for MBC for field samples. Trials were noted separately where records were distinct in space or time. Grasslands were naturally occurring, restored, or seeded. Cropping systems were typical of the temperate zone. MBC had a positive linear response to increasing SOC that was significant in both grasslands (p < 0.001; r2 = 0.76 and croplands (p < 0.001; r2 = 0.48. However, MBC increased 2.5-fold more steeply per unit of increasing SOC for grassland soils, as compared to the corresponding response in cropland soils. Expressing MBC as a proportion of SOC across the regression overall, slopes corresponded to 2.7% for grasslands and 1.1% for croplands. The slope of the linear relationship for grasslands was significantly (p = 0.0013 steeper than for croplands. The difference between the two systems is possibly caused by a greater proportion of SOC in grasslands being active rather than passive, relative to that in croplands, with that active fraction promoting the formation of MBC.

  10. Assessing the biophysical naturalness of grassland in eastern North Dakota with hyperspectral imagery

    Science.gov (United States)

    Zhou, Qiang

    Over the past two decades, non-native species within grassland communities have quickly developed due to human migration and commerce. Invasive species like Smooth Brome grass (Bromus inermis) and Kentucky Blue Grass (Poa pratensis), seriously threaten conservation of native grasslands. This study aims to discriminate between native grasslands and planted hayfields and conservation areas dominated by introduced grasses using hyperspectral imagery. Hyperspectral imageries from the Hyperion sensor on EO-1 were acquired in late spring and late summer on 2009 and 2010. Field spectra for widely distributed species as well as smooth brome grass and Kentucky blue grass were collected from the study sites throughout the growing season. Imagery was processed with an unmixing algorithm to estimate fractional cover of green and dry vegetation and bare soil. As the spectrum is significantly different through growing season, spectral libraries for the most common species are then built for both the early growing season and late growing season. After testing multiple methods, the Adaptive Coherence Estimator (ACE) was used for spectral matching analysis between the imagery and spectral libraries. Due in part to spectral similarity among key species, the results of spectral matching analysis were not definitive. Additional indexes, "Level of Dominance" and "Band variance", were calculated to measure the predominance of spectral signatures in any area. A Texture co-occurrence analysis was also performed on both "Level of Dominance" and "Band variance" indexes to extract spatial characteristics. The results suggest that compared with disturbed area, native prairie tend to have generally lower "Level of Dominance" and "Band variance" as well as lower spatial dissimilarity. A final decision tree model was created to predict presence of native or introduced grassland. The model was more effective for identification of Mixed Native Grassland than for grassland dominated by a single

  11. Lesser prairie-chicken avoidance of trees in a grassland landscape

    Science.gov (United States)

    Lautenbach, Joseph M.; Plumb, Reid T.; Robinson, Samantha G.; Hagen, Christian A.; Haukos, David A.; Pitman, James C.

    2016-01-01

    Grasslands are among the most imperiled ecosystems in North America. Reasons that grasslands are threatened include conversion to row-crop agriculture, fragmentation, and changes in fire regimes. The reduction of fire processes in remaining prairies has resulted in tree encroachment and establishment in grasslands, further reducing grassland quantity and quality. Grassland birds have been experiencing precipitous population declines in recent decades, commensurate with landscape changes to grasslands. The lesser prairie-chicken (Tympanuchus pallidicinctus Ridgway) is a declining species of prairie grouse of conservation concern. We used second- and third-order habitat selection metrics to test if female lesser prairie-chickens avoid grasslands where trees were present. Our results indicated that female lesser prairie-chickens selected habitats avoiding the nearest trees by 283 m on average, nearly twice as far as would be expected at random. Lesser prairie-chickens were 40 times more likely to use habitats with tree densities of 0 trees ∙ ha− 1 than habitats with 5 trees ∙ ha− 1. Probability of use indicated that lesser prairie-chickens were 19 times more likely to use habitats 1000 m from the nearest tree when compared with using habitats 0 m from the nearest tree. Nest survival was not affected at densities 2 trees ∙ ha− 1. Avoidance of trees could be due to perceived increased predation risk, reduced habitat quality, or a combination of these potentially confounding factors. Preventing further establishment and expansion of trees in landscapes occupied by lesser prairie-chickens could contribute to the continued persistence of the species. Additionally, restoring grasslands through tree removal may facilitate conservation efforts for grassland species such as the lesser prairie-chicken by improving habitat quality and promoting expansion of occupied range.

  12. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    Science.gov (United States)

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  13. Traditional cattle grazing in a mosaic alkali landscape: effects on grassland biodiversity along a moisture gradient.

    Directory of Open Access Journals (Sweden)

    Péter Török

    Full Text Available Extensively managed pastures are of crucial importance in sustaining biodiversity both in local- and landscape-level. Thus, re-introduction of traditional grazing management is a crucial issue in grassland conservation actions worldwide. Traditional grazing with robust cattle breeds in low stocking rates is considered to be especially useful to mimic natural grazing regimes, but well documented case-studies are surprisingly rare on this topic. Our goal was to evaluate the effectiveness of traditional Hungarian Grey cattle grazing as a conservation action in a mosaic alkali landscape. We asked the following questions: (i How does cattle grazing affect species composition and diversity of the grasslands? (ii What are the effects of grazing on short-lived and perennial noxious species? (iii Are there distinct effects of grazing in dry-, mesophilous- and wet grassland types? Vegetation of fenced and grazed plots in a 200-ha sized habitat complex (secondary dry grasslands and pristine mesophilous- and wet alkali grasslands was sampled from 2006-2009 in East-Hungary. We found higher diversity scores in grazed plots compared to fenced ones in mesophilous- and wet grasslands. Higher cover of noxious species was typical in fenced plots compared to their grazed counterparts in the last year in every studied grassland type. We found an increasing effect of grazing from the dry- towards the wet grassland types. The year-to-year differences also followed similar pattern: the site-dependent effects were the lowest in the dry grassland and an increasing effect was detected along the moisture gradient. We found that extensive Hungarian Grey cattle grazing is an effective tool to suppress noxious species and to create a mosaic vegetation structure, which enables to maintain high species richness in the landscape. Hungarian Grey cattle can feed in open habitats along long moisture gradient, thus in highly mosaic landscapes this breed can be the most suitable

  14. Recent trends, drivers, and projections of carbon cycle processes in forests and grasslands of North America

    Science.gov (United States)

    Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.

    2017-12-01

    In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.

  15. Quantifying the pedo-ecohydrological structure and function of degraded, grassland ecosystems

    Science.gov (United States)

    Brazier, Richard E.

    2015-04-01

    Grassland ecosystems cover significant areas of the terrestrial land mass, across a range of geoclimates, from arctic tundra, through temperate and semi-arid landscapes. In very few locations, such grasslands may be termed 'pristine' in that they remain undamaged by human activities and resilient to changing climates. In far more cases, grasslands are being degraded, often irreversibly so, with significant implications for a number of ecosystem services related to water resources, soil quality, nutrient cycles, and therefore both global food and water security. This paper draws upon empirical research that has been undertaken over the last decade to characterise a range of different grasslands in terms of soil properties, vegetation structure and geomorphology and to understand how these structures or patterns might interact or control how the grassland ecosystems function. Particular emphasis is placed upon quantifying fluxes of water, within and from grasslands, but also fluxes of sediment, via the processes of soil erosion and finally fluxes of the macronutrients Nitrogen, Phosphorus and Carbon from the landscape to surface waters. Data are presented from semi-arid grasslands, which are subject to severe encroachment by woody species, temperate upland grasslands that have been 'improved' via drainage to support grazing, temperate lowland grasslands, that are unimproved (Culm or Rhôs pastures) and finally intensively managed grasslands in temperate regions, that have been significantly modified via land management practices to improve productivity. It is hypothesised that, once degraded, the structure and function of these very diverse grassland ecosystems follows the same negative trajectory, resulting in depleted soil depths, nutrient storage capacities and therefore reduced plant growth and long-term carbon sequestration. Results demonstrate that similar, but highly complex and non-linear responses to perturbation of the ecosystem are observed, regardless of

  16. Serological Survey of Hantavirus in Inhabitants from Tropical and Subtropical Areas of Brazil

    Directory of Open Access Journals (Sweden)

    Felipe Alves Morais

    2016-01-01

    Full Text Available Brazil has reported more than 1,600 cases of hantavirus cardiopulmonary syndrome (HPS since 1993, with a 39% rate of reported fatalities. Using a recombinant nucleocapsid protein of Araraquara virus, we performed ELISA to detect IgG antibodies against hantavirus in human sera. The aim of this study was to analyze hantavirus antibody levels in inhabitants from a tropical area (Amazon region in Rondônia state and a subtropical (Atlantic Rain Forest region in São Paulo state, Brazil. A total of 1,310 serum samples were obtained between 2003 and 2008 and tested by IgG-ELISA, and 82 samples (6.2%, of which 62 were from the tropical area (5.8% and 20 from the subtropical area (8.3%, tested positive. Higher levels of hantavirus antibody were observed in inhabitants of the populous subtropical areas compared with those from the tropical areas in Brazil.

  17. Effects of management practices on grassland birds: Grasshopper Sparrow

    Science.gov (United States)

    Dechant, Jill A.; Sondreal, Marriah L.; Johnson, Douglas H.; Igl, Lawrence D.; Goldade, Christopher M.; Nenneman, Melvin P.; Euliss, Betty R.

    1998-01-01

    Information on the habitat requirements and effects of habitat management on grassland birds were summarized from information in more than 5,500 published and unpublished papers. A range map is provided to indicate the relative densities of the species in North America, based on Breeding Bird Survey (BBS) data. Although birds frequently are observed outside the breeding range indicated, the maps are intended to show areas where managers might concentrate their attention. It may be ineffectual to manage habitat at a site for a species that rarely occurs in an area. The species account begins with a brief capsule statement, which provides the fundamental components or keys to management for the species. A section on breeding range outlines the current breeding distribution of the species in North America, including areas that could not be mapped using BBS data. The suitable habitat section describes the breeding habitat and occasionally microhabitat characteristics of the species, especially those habitats that occur in the Great Plains. Details on habitat and microhabitat requirements often provide clues to how a species will respond to a particular management practice. A table near the end of the account complements the section on suitable habitat, and lists the specific habitat characteristics for the species by individual studies. A special section on prey habitat is included for those predatory species that have more specific prey requirements. The area requirements section provides details on territory and home range sizes, minimum area requirements, and the effects of patch size, edges, and other landscape and habitat features on abundance and productivity. It may be futile to manage a small block of suitable habitat for a species that has minimum area requirements that are larger than the area being managed. The Brown-headed Cowbird (Molothrus ater) is an obligate brood parasite of many grassland birds. The section on cowbird brood parasitism summarizes rates

  18. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  19. Nocturnal activity of nesting shrubland and grassland passerines: Chapter 9

    Science.gov (United States)

    Slay, Christy M.; Ellison, Kevin S.; Ribic, Christine; Smith, Kimberly G.; Schmitz, Carolyn M.

    2013-01-01

    Nocturnal activity of nesting passerines is largely undocumented in field situations. We used video recordings to quantify sleep patterns of four shrubland and three grassland bird species during the nestling period. All species exhibited “back sleep” (bill tucked under scapular feathers); individuals woke frequently for vigils of their surroundings. Sleep-bout duration varied from 6 minutes (grasshopper sparrow) to 28 minutes (blue-winged warbler, field sparrow). Duration on nest varied from 6.4 hours (field sparrow) to 8.8 hours (indigo bunting). Adults woke 20–30 minutes before sunrise. First morning absence from the nest was short; nestlings were fed within 12 minutes of a parent’s departure. Further research is needed to understand energetic costs of sleep and behavioral adaptations to environmental pressures.

  20. Transient behavior of cadmium in a grassland arthropod food chain

    International Nuclear Information System (INIS)

    Van Hook, R.I.; Yates, A.J.

    1975-01-01

    Biological assimilation and transport of cadmium were determined for an arthropod food chain in an east Tennessee grassland community. Laboratory experiments demonstrated that there were no significant differences (P greater than 0.05) in assimilation rates (17 percent assimilation per day) or biological half-lives (7 days) of 109 Cd either as soluble nitrate or insoluble oxide in crickets under identical conditions. Field experiments demonstrated that primary consumers (crickets) accumulated 109 Cd much more rapidly (uptake rate = 0.55 day -1 ) than did the spider predators (uptake rate = 0.08 day -1 ). Equilibrium concentrations in crickets were obtained in 9 days (0.04 ppM cadmium), while equilibrium was not reached in spiders during the 30-day study. Food-chain concentration of cadmium did not occur as crickets accumulated levels of cadmium 60 percent of that in their vegetation food sources and spiders accumulated only 70 percent of the cadmium present in the cricket tissues

  1. Stormwater quality from extensive green roofs in a subtropical region

    Science.gov (United States)

    Onis Pessoa, Jonas; Allasia, Daniel; Tassi, Rutineia; Vaz Viega, Juliana; Fensterseifer, Paula

    2016-04-01

    Green roofs have increasingly become an integral part of urban environments, mainly due to their aesthetic benefits, thermal comfort and efficiency in controlling excess runoff. However, the effects of this emerging technology in the qualitative characteristics of rainwater is still poorly understood. In this study was evaluated the effect of two different extensive green roofs (EGRs) and a traditional roof built with corrugated fiber cement sheets (control roof) in the quality of rainwater, in a subtropical climate area in the city of Santa Maria, in southern Brazil. The principal variant between the two EGRs were the type of plant species, time since construction, soil depth and the substrate characteristics. During the monitoring period of the experiment, between the months of April and December of 2015 fourteen rainfall events were selected for qualitative analysis of water from the three roofs and directly from rainfall. It was analyzed physical (turbidity, apparent color, true color, electrical conductivity, total solids, dissolved solids, suspended solids and temperature), chemical (pH, phosphate, total nitrogen, nitrate, nitrite, chloride, sulfate, BOD, iron and total hardness), heavy metals (copper, zinc, lead and chromium) and microbiological parameters (total coliforms and E. coli). It was also characterized the substrates used in both extensive green roofs. The results showed that the quality of the water drained from EGR s was directly influenced by their substrates (in turn containing significant levels of nutrients, organic matter and some metals). The passage of rainwater through green roofs and control roof resulted in the elevation of pH, allowing the conversion of the slightly acidic rainfall into basic water. Similarly, on both types of roofs occurred an increase of the values of most of the physical, chemical and microbiological parameters compared to rainwater. This same trend was observed for heavy metals, although with a much smaller degree

  2. The culture of Tilapia species in tropical and subtropical conditions

    Directory of Open Access Journals (Sweden)

    De Maeseneer, J.

    1984-01-01

    Full Text Available Although since long known by African fishermen it is only in the last 40 years that Tilapia has been recognized as one of the most promising groups of fish species for culture. The initial successes for culture in Central Africa were followed by several failures mainly because of excessive breeding and early sexual maturity in shallow waterbodies as ponds. From the present knowledge it appears that tilapia has a great future for increasing the productivity in unmanaged environments as man-made lakes and reservoirs primarily destined for the production of hydro-electricity. Careful stocking of paddies and irrigation canals can solve a number of biological problems associated with them and provide an additional though valuable high-protein food source. Great future offers also the culture of tilapia in traditional pond culture especially in polyculture with members of the carp family, mullets and waterfowl in areas of the tropical and subtropical belt. In coastal ponds T, mossambica is a valuable species for sanitary reasons. The culture of tilapia in small farm ponds often meets with failure owing to excessive breeding and stunting unless the all-male technique can be applied through government input and encouragement. As a rule this type of production will be the least attractive. Although Tilapia spp. do not achieve the largest individu al growth their tolerance towards adverse conditions and their acceptance of a wide variety of foodstuffs, primarily waste products from agriculture, their resistance to diseases and (at least in some species their tolerance of crowded environments make them suitable subject for cultures in raceways, circular tanks and cages. Through heavy inputs of water and pelletized feeds nearly incredible annual yields as 2 000 tonnes per ha of water surface (1 and more were realized. This means that this type of production surpasses by far any other known form of animal husbandry but it needs high technological input (thus

  3. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas

    International Nuclear Information System (INIS)

    Shaheen, H.; Khan, R.W.A.; Hussain, K.; Ullah, T.S.; Mehmood, A.

    2016-01-01

    Estimation of carbon sequestration in forest ecosystem is necessary to mitigate impacts of climate change. Current research project was focused to assess the Carbon contents in standing trees and soil of different subtropical forest sites in Kashmir. Tree biomass was estimated by using allometric equations whereas Soil carbon was calculated by Walkey-Black titration method. Total carbon stock was computed as 186.27 t/ha with highest value of 326 t/ha recorded from Pinus roxburghii forest whereas lowest of 75.86 t/ha at mixed forest. Average biomass carbon was found to be 151.38 t/ha with a maximum value of 294.7 t/ha and minimum of 43.4 t/ha. Pinus roxburghii was the most significant species having biomass value of 191.8 t/ha, followed by Olea cuspidata (68.9 t/ha), Acacia modesta (12.71 t/ha), Dalbergia sissoo (12.01 t/ha), Broussonetia papyrifera (5.93 t/ha), Punica granatum (2.27 t/ha), Mallotus philippensis (2.2 t/ha), Albizia lebbeck (1.8t/ha), Ficus palmata (1.51 t/ha), Acacia arabica (1.4 t/ha), Melia azedarach, (1.14 t/ha) and Ficus carica (1.07 t/ha) respectively. Recorded value of tree density was 492/ha; average DBH was 87.27 cm; tree height was 13.3m; and regeneration value was 83 seedlings/ha. Soil carbon stocks were found to be 34.89 t/ha whereas agricultural soil carbon was calculated as 27.18 t/ha. Intense deforestation was represented by a stump density of 147.4/ha. The results of Principal Component Analysis (PCA) revealed the distinct species clusters on the basis of location, biomass and Carbon stock values. Pinus roxburghii and Olea cuspidata were found to be the major contributors of carbon stock having maximum vector lengths in the PCA Biplot. Forest in the area needs to be managed in a sustainable manner to increase its carbon sequestration potential. (author)

  4. Experimental control of Spanish broom (Spartium junceum invading natural grasslands

    Directory of Open Access Journals (Sweden)

    Cristina Sanhueza

    2012-12-01

    Full Text Available A group of legumes generically known as brooms are among the most successful shrubs invading grasslands in South America and otherregions. These species share a set of biological features that enhance their invasiveness, such as abundant and long-lasting seed banks,aggressive root systems and rapid growth, combined with their ability for re-sprouting after cutting or burning and for avoiding herbivores.They grow in dense stands that exclude native vegetation and are able to change ecological processes, increasing fire frequency and intensity,and fixing atmospheric nitrogen. The Spanish broom (Spartium junceum is a shrub native form the Mediterranean that was introduced intothe Argentine Pampas grasslands where it spreads over remnants of pristine ecosystems, threatening their biodiversity. This paper reports theresults obtained after an adaptive management strategy aimed at controlling this species in a nature reserve, and compares the efficiency ofdifferent mechanical and chemical control techniques in terms of the number of plants killed and the effects on surrounding vegetation andon the recruitment of broom seedlings. Control was implemented in two phases, the first included three treatments: i cut at the base of theplant, ii cut followed by the immediate application of Togar (Picloram 3% + Triclopyr 6%, at a 5% dilution in diesel oil on top of the cut stump, and iii foliar spraying with Togar. The follow-up treatments, implemented one year later, consisted of spraying the re-sprouts with Togar (5% in diesel oil or Glyphosate 36% (2% in water. The best option in terms of controlling Spanish broom was spraying the resprouts with Togar which gave 100% mortality of the treated plants, compared with values of 40% - 100% re-sprouting for the other optionstested. None of the methods was associated with an increase in seedling recruitment, nor with significant changes in the vegetation in the immediate vicinity of the controlled brooms.

  5. Surface temperature retrieval in a temperate grassland with multiresolution sensors

    Science.gov (United States)

    Goetz, S. J.; Halthore, R. N.; Hall, F. G.; Markham, B. L.

    1995-12-01

    Radiometric surface temperatures retrieved at various spatial resolutions from aircraft and satellite measurements at the FIFE site in eastern Kansas were compared with near-surface temperature measurements to determine the accuracy of the retrieval techniques and consistency between the various sensors. Atmospheric characterizations based on local radiosonde profiles of temperature, pressure, and water vapor were used with the LOWTRAN-7 and MODTRAN atmospheric radiance models to correct measured thermal radiances of water and grassland targets for atmospheric attenuation. Comparison of retrieved surface temperatures from a helicopter-mounted modular multispectral radiometer (MMR) (˜5-m "pixel"), C-130 mounted thematic mapper simulator (TMS) (NS001, ˜20-m pixel), and the Landsat 5 thematic mapper (TM) (120-m pixel) was done. Differences between atmospherically corrected radiative temperatures and near-surface measurements ranged from less than 1°C to more than 8°C. Corrected temperatures from helicopter-MMR and NS001-TMS were in general agreement with near-surface infrared radiative thermometer (IRT) measurements collected from automated meteorological stations, with mean differences of 3.2°C and 1.7°C for grassland targets. Much better agreement (within 1°C) was found between the retrieved aircraft surface temperatures and near-surface measurements acquired with a hand-held mast equipped with a MMR and IRT. The NS001-TMS was also in good agreement with near-surface temperatures acquired over water targets. In contrast, the Landsat 5 TM systematically overestimated surface temperature in all cases. This result has been noted previously but not consistently. On the basis of the results reported here, surface measurements were used to provide a calibration of the TM thermal channel. Further evaluation of the in-flight radiometric calibration of the TM thermal channel is recommended.

  6. Modelling nitrous oxide emissions from grazed grassland systems

    International Nuclear Information System (INIS)

    Wang Junye; Cardenas, Laura M.; Misselbrook, Tom H.; Cuttle, Steve; Thorman, Rachel E.; Li Changsheng

    2012-01-01

    Grazed grassland systems are an important component of the global carbon cycle and also influence global climate change through their emissions of nitrous oxide and methane. However, there are huge uncertainties and challenges in the development and parameterisation of process-based models for grazed grassland systems because of the wide diversity of vegetation and impacts of grazing animals. A process-based biogeochemistry model, DeNitrification-DeComposition (DNDC), has been modified to describe N 2 O emissions for the UK from regional conditions. This paper reports a new development of UK-DNDC in which the animal grazing practices were modified to track their contributions to the soil nitrogen (N) biogeochemistry. The new version of UK-DNDC was tested against datasets of N 2 O fluxes measured at three contrasting field sites. The results showed that the responses of the model to changes in grazing parameters were generally in agreement with observations, showing that N 2 O emissions increased as the grazing intensity increased. - Highlights: ► Parameterisation of grazing system using grazing intensity. ► Modification of UK D NDC for the UK soil and weather conditions. ► Validation of the UK D NDC against measured data of N 2 O emissions in three UK sites. ► Estimating influence of animal grazing practises on N 2 O emissions. - Grazing system was parameterised using grazing intensity and UK-DNDC model was modified and validated against measured data of N 2 O emissions in three UK sites.

  7. Grassland communities of traditional orchards in the Western Carpathians (Slovakia

    Directory of Open Access Journals (Sweden)

    Hubert Zarnovican

    2017-06-01

    Full Text Available Traditional orchards are a valuable feature of the rural landscape and they are specific for regions with scattered settlement such as the Myjava hilly land and White Carpathians. Here, the permanent species-rich grasslands beneath trees were regularly managed in the traditional manner until some were replaced in the 1970’s and 80’s by intensively managed orchards, some of which were abandoned in the early 1990’s. Our 2011–2015 phytosociological research followed the standard Braun-Blanquet approach. We classified 178 phytosociological relevés recorded in orchard meadows (156 relevés, former intensively managed orchards (16 relevés, and two relevés from a semi-intensively grazed orchard. Traditionally managed orchard meadows were classified in the following five units: (i Pastinaco sativae-Arrhenatheretum elatioris – thermophilous variant, (ii Pastinaco sativae-Arrhenatheretum elatioris – transitional variant to Alchemillo-Arrhenatheretum elatioris, (iii Ranunculo bulbosi-Arrhenatheretum elatioris, (iv Onobrychido viciifoliae-Brometum erecti, and (v Brachypodio pinnati-Molinietum arundinaceae. Formerly intensively managed large-scale orchards were classified as Pastinaco sativae-Arrhenatheretum elatioris association and the semi-intensively grazed orchard as Lolio perennis-Cynosuretum cristati association. The species composition varies considerably due to tree-shading and different management treatments applied in the orchards, so the relevés of the delimited syntaxonomic units are not typical and have transitional character. Moisture, soil nutrients, and soil reaction were identified as the main environmental gradients influencing species composition. We tested four management treatments in direct gradient analysis and found that abandonment has the strongest effect on species composition. Comparison of grassland vegetation in the studied traditional orchards with that described in Germany reveals differences in species

  8. Grassland invader responses to realistic changes in native species richness.

    Science.gov (United States)

    Rinella, Matthew J; Pokorny, Monica L; Rekaya, Romdhane

    2007-09-01

    The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion.

  9. Prescribed burning supports grassland biodiversity - A multi-species study

    Science.gov (United States)

    Valkó, Orsolya; Deák, Balázs; Magura, Tibor; Török, Péter; Kelemen, András; Tóth, Katalin; Horváth, Roland; Nagy, Dávid; Debnár, Zsuzsanna; Zsigrai, György; Kapocsi, István; Tóthmérész, Béla

    2017-04-01

    During ancient times, fire was an important factor shaping European landscapes. Nowadays, prescribed burning can be one of the most effective conservation tools for the management of open landscapes, controlling dominant species, reducing accumulated litter or decreasing wildfire risk. In a prescribed burning experiment, we studied the effects of fire on dry alkaline grasslands. We tested whether autumn prescribed burning can be an alternative conservation measure in these grasslands. We selected six sites in Hungary: in three sites, prescribed burning was applied in November 2011, while three sites remained unburnt. We studied the effects of fire on soil characteristics, plant biomass and on the vegetation and arthropod assemblages (isopods, spiders, ground beetles and rove beetles). Soluble salt content increased significantly in the burnt sites, but soil pH, organic matter, potassium and phosphorous did not change. We found that prescribed fire had several positive effects from the nature conservation viewpoint. Diversity and the number of flowering shoots were higher, and the cover of the dominant grass was lower in the burnt sites. Graminoid biomass was lower, while total, green and forb biomass were higher in the burnt plots compared to the control ones. Our findings suggest that prescribed burning fire did not harm arthropods; species-level analyses showed that out of the most abundant invertebrate species, the abundance of ten was not affected, one decreased and one increased after burning. Our findings highlight that mosaic prescribed fire is a viable management tool in open landscapes, because it supports plant diversity and does not threaten arthropods.

  10. Dynamics of leaf litter humidity, depth and quantity: two restoration strategies failed to mimic ground microhabitat conditions of a low montane and premontane forest in Costa Rica

    OpenAIRE

    Zaidett Barrientos

    2012-01-01

    Little is known about how restoration strategies affect aspects like leaf litter’s quantity, depth and humidity. I analyzed leaf litter’s quantity, depth and humidity yearly patterns in a primary tropical lower montane wet forest and two restored areas: a 15 year old secondary forest (unassisted restoration) and a 40 year old Cupressus lusitanica plantation (natural understory). The three habitats are located in the Río Macho Forest Reserve, Costa Rica. Twenty litter samples were ...

  11. Combined community ecology and floristics, a synthetic study on the upper montane evergreen broad-leaved forests in Yunnan, southwestern China

    Institute of Scientific and Technical Information of China (English)

    Hua Zhu; Yong Chai; Shisun Zhou; Lichun Yan; Jipu Shi; Guoping Yang

    2016-01-01

    The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous, island-like, distribution. It is diverse, rich in endemic species, and likely to be sensitive to climate change. Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan. All trees with d.b.h.>1 cm in each plot were identified. Patterns of seed plant distributions were quantified at the specific, generic and family levels. The forests are dominated by the families Fagaceae, Lauraceae, Theaceae and Magnoliaceae, but are very diverse with only a few species shared between sites. Floristic similarities at the family and generic level were high, but they were low at the specific level, with species complementarity between plots. Diversity varied greatly among sites, with greater species richness and more rare species in western Yunnan than central Yunnan. The flora is dominated by tropical biogeographical elements, mainly the pantropic and the tropical Asian distributions at the family and genus levels. In contrast, at the species level, the flora is dominated by the southwest or the southeast China distributions, including Yunnan endemics. This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin, and has adapted to cooler temperatures with the uplift of the Himalayas. Due to great sensitivity to climate, high endemism and species complementarity, as well as the discontinuous, island-like, distribution patterns of the upper montane forest in Yunnan, the regional conservation of the forest is especially needed.

  12. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species.

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M; Dusenge, Mirindi Eric; Medlyn, Belinda E; Hasper, Thomas B; Nsabimana, Donat; Uddling, Johan

    2015-05-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species with those of exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to carbon dioxide (CO2 ) at different temperatures (20-40°C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  13. Photosynthetic temperature responses of tree species in Rwanda: evidence of pronounced negative effects of high temperature in montane rainforest climax species

    Science.gov (United States)

    Vårhammar, Angelica; Wallin, Göran; McLean, Christopher M.; Dusenge, Mirindi Eric; Medlyn, Belinda E.; Hasper, Thomas B.; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    The sensitivity of photosynthetic metabolism to temperature has been identified as a key uncertainty for projecting the magnitude of the terrestrial feedback on future climate change. While temperature responses of photosynthetic capacities have been comparatively well investigated in temperate species, the responses of tropical tree species remain unexplored. We compared the responses of seedlings of native cold-adapted tropical montane rainforest tree species to exotic warm-adapted plantation species, all growing in an intermediate temperature common garden in Rwanda. Leaf gas exchange responses to CO2 at different temperatures (20 - 40 C) were used to assess the temperature responses of biochemical photosynthetic capacities. Analyses revealed a lower optimum temperature for photosynthetic electron transport rates than for Rubisco carboxylation rates, along with lower electron transport optima in the native cold-adapted than in the exotic warm-adapted species. The photosynthetic optimum temperatures were generally exceeded by daytime peak leaf temperatures, in particular in the native montane rainforest climax species. This study thus provides evidence of pronounced negative effects of high temperature in tropical trees and indicates high susceptibility of montane rainforest climax species to future global warming. (Reference: New Phytologist, in press)

  14. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions.

    NARCIS (Netherlands)

    Waterloo, M.J.; Bruijnzeel, L.A.; Vugts, H.F.; Rawaqa, T.T.

    1999-01-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of

  15. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions

    NARCIS (Netherlands)

    Waterloo, M.J.; Bruijnzeel, L.A.; Vugts, H.F.; Rawaqa, T.T.

    1999-01-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of

  16. NPP Grassland: Beacon Hill, U.K., 1972-1993, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains two ASCII text files, one providing productivity measurements for a chalk grassland on Beacon Hill, West Sussex, U.K. (50.92 N, -0.85 W) and...

  17. Soil communities promote temporal stability and species asynchrony in experimental grassland communities

    NARCIS (Netherlands)

    Pellkofer, Sarah; Van Der Heijden, Marcel G A; Schmid, Bernhard; Wagg, Cameron

    2016-01-01

    Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities,

  18. Seasonal dynamics and vertical distribution of plant-feeding nematode communities in grasslands

    NARCIS (Netherlands)

    Verschoor, B.C.; Goede, de R.G.M.; Hoop, de J.W.; Vries, de F.W.

    2001-01-01

    The vertical distribution and seasonal dynamics of plant- and fungal-feeding nematode taxa in permanent grasslands were investigated. Dolichodoridae, Paratylenchus, Pratylenchus, Tylenchidae and Aphelenchoides dominated the upper 10 cm soil and their numbers strongly decreased with depth. The

  19. Threshold responses to interacting global changes in a California grassland ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Field, Christopher [Carnegie Inst. of Science, Stanford, CA (United States); Mooney, Harold [Stanford Univ., CA (United States); Vitousek, Peter [Stanford Univ., CA (United States)

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place in the context of 4 global change factors – warming, elevated CO2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.

  20. Monitoring Grassland Tourist Season of Inner Mongolia, China Using Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Quansheng Ge

    2014-01-01

    Full Text Available Phenology-driven events, such as spring wildflower displays or fall tree colour, are generally appreciated by tourists for centuries around the world. Monitoring when tourist seasons occur using satellite data has been an area of growing research interest in recent decades. In this paper, a valid methodology for detecting the grassland tourist season using remote sensing data was presented. On average, the beginning, the best, and the end of grassland tourist season of Inner Mongolia, China, occur in late June (±30 days, early July (±30 days, and late July (±50 days, respectively. In south region, the grassland tourist season appeared relatively late. The length of the grassland tourist season is about 90 days with strong spatial trend. South areas exhibit longer tourist season.

  1. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; van Dijk, Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  2. Spontaneous colonization of restored dry grasslands by target species: restoration proceeds beyond sowing regional seed mixtures

    Czech Academy of Sciences Publication Activity Database

    Johanidesová, E.; Fajmon, K.; Jongepierová, I.; Prach, Karel

    2015-01-01

    Roč. 70, č. 4 (2015), s. 631-638 ISSN 0142-5242 Institutional support: RVO:67985939 Keywords : restoration * grasslands * spontaneous colonization Subject RIV: EH - Ecology, Behaviour Impact factor: 1.617, year: 2015

  3. PCDD/F and Aromatic Emissions from Simulated Forest and Grassland Fires

    Science.gov (United States)

    Emissions of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) from simulated grassland and forest fires were quantitatively sampled to derive emission factors in support of PCDD/F inventory development. Grasses from Kentucky and Minnesota; forest shrubs fro...

  4. Strategic Grassland Bird Conservation throughout the annual cycle: Linking policy alternatives, landowner decisions, and biological population outcomes

    Science.gov (United States)

    Drum, Ryan G.; Ribic, Christine; Koch, Katie; Lonsdorf, Eric V.; Grant, Edward C.; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, D.C.; Rideout, Catherine; Sample, David W.

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  5. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes.

    Directory of Open Access Journals (Sweden)

    Ryan G Drum

    Full Text Available Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  6. Specialist plant species harbour higher reproductive performances in recently restored calcareous grasslands than in reference habitats

    OpenAIRE

    Harzé, Mélanie; Mahy, Grégory; Bizoux, Jean-Philippe; Piqueray, Julien; Monty, Arnaud

    2015-01-01

    Background and aims_Calcareous grasslands are local biodiversity hotspots in temperate regions that suffered intensive fragmentation. Ecological restoration projects took place all over Europe. Their success has traditionally been assessed using a plant community approach. However, population ecology can also be useful to assess restoration success and to understand underlying mechanisms. Methods_We took advantage of three calcareous grassland sites in Southern Belgium, where reference p...

  7. Extensive Management Promotes Plant and Microbial Nitrogen Retention in Temperate Grassland

    Science.gov (United States)

    de Vries, Franciska T.; Bloem, Jaap; Quirk, Helen; Stevens, Carly J.; Bol, Roland; Bardgett, Richard D.

    2012-01-01

    Leaching losses of nitrogen (N) from soil and atmospheric N deposition have led to widespread changes in plant community and microbial community composition, but our knowledge of the factors that determine ecosystem N retention is limited. A common feature of extensively managed, species-rich grasslands is that they have fungal-dominated microbial communities, which might reduce soil N losses and increase ecosystem N retention, which is pivotal for pollution mitigation and sustainable food production. However, the mechanisms that underpin improved N retention in extensively managed, species-rich grasslands are unclear. We combined a landscape-scale field study and glasshouse experiment to test how grassland management affects plant and soil N retention. Specifically, we hypothesised that extensively managed, species-rich grasslands of high conservation value would have lower N loss and greater N retention than intensively managed, species-poor grasslands, and that this would be due to a greater immobilisation of N by a more fungal-dominated microbial community. In the field study, we found that extensively managed, species-rich grasslands had lower N leaching losses. Soil inorganic N availability decreased with increasing abundance of fungi relative to bacteria, although the best predictor of soil N leaching was the C/N ratio of aboveground plant biomass. In the associated glasshouse experiment we found that retention of added 15N was greater in extensively than in intensively managed grasslands, which was attributed to a combination of greater root uptake and microbial immobilisation of 15N in the former, and that microbial immobilisation increased with increasing biomass and abundance of fungi. These findings show that grassland management affects mechanisms of N retention in soil through changes in root and microbial uptake of N. Moreover, they support the notion that microbial communities might be the key to improved N retention through tightening linkages

  8. Energy production from grassland - Assessing the sustainability of different process chains under German conditions

    International Nuclear Information System (INIS)

    Roesch, Christine; Skarka, J.; Raab, K.; Stelzer, V.

    2009-01-01

    In many regions of Europe, grassland shapes the landscape and fulfils important functions in protecting nature, soil, and water. However, the traditional uses of grassland for forage production are vanishing with progress in breeding and structural adaptations in agriculture. On the other hand, the demand for biomass energy is rising due to political sustainability goals and financial measures to support renewable energy. Against this background, the Institute for Technology Assessment and Systems Analysis investigated the applicability, economic efficiency, and sustainability of different techniques for energy production from grassland as well as from grassland converted into maize fields or short-rotation poplars under German conditions. The results show that despite relatively high energy prices and the financial support for bioenergy, the effects of energy production from grassland on employment in agriculture and farmers' income are modest. What is beneficial are savings in non-renewable energy, reductions in greenhouse gas emissions, and local provision of energy carriers. If grassland biomass (grass silage or hay) is used for energy purposes, this brings the further advantages of preserving biodiversity and the cultural landscape and protecting of soil and groundwater. Negative impacts on sustainable development result from an increase in emissions, which leads to acidification, eutrophication, and risks to human health. The overall evaluation indicates that short-rotation poplars are comparatively advantageous from the economic and ecological point of view. Therefore, a development plan for grassland is required to identify areas where grassland could be used as an energy resource or where it would be favourable to install energy plantations with fast-growing perennial plants

  9. Farming for pests? Local and landscape-scale effects of grassland management on rabbit densities

    OpenAIRE

    Petrovan , Silviu O.; Barrio , Isabel C.; Ward , Alastair I.; Wheeler , Philip M.

    2010-01-01

    Abstract In recent decades in the UK, there has been an increasing trend in numbers of the European wild rabbit, a significant agricultural pest typically associated with grassland habitats. However, the relationship between rabbit abundance and grassland management, in particular grazing, has not been sufficiently explained. We studied rabbit densities in seven pasture-dominated sites in north-east England between autumn and spring in two consecutive years, and used generalised li...

  10. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China.

    Science.gov (United States)

    Wang, Shao-Kun; Zuo, Xiao-An; Zhao, Xue-Yong; Li, Yu-Qiang; Zhou, Xin; Lv, Peng; Luo, Yong-Qing; Yun, Jian-Ying

    2016-01-01

    Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

  11. Effect of soil properties and hydrology on Archaeal community composition in three temperate grasslands on peat

    DEFF Research Database (Denmark)

    Görres, Carolyn-Monika; Conrad, Ralf; Petersen, Søren O

    2013-01-01

    Grasslands established on drained peat soils are regarded as negligible methane (CH4) sources; however, they can still exhibit considerable soil CH4 dynamics. We investigated archaeal community composition in two different fen peat soils and one bog peat soil under permanent grassland in Denmark........ Overall, there seemed to be a significant coupling between peat type and archaeal community composition, with local hydrology modifying the strength of this coupling....

  12. Grassland habitat restoration: lessons learnt from long term monitoring of Swanworth Quarry, UK, 1997–2014

    Directory of Open Access Journals (Sweden)

    Barbara Maria Smith

    2017-11-01

    Full Text Available Habitat restoration projects are often conducted when prior use or extraction of natural resources results in land degradation. The success of restoration programmes, however, is variable, and studies that provide evidence of long term outcomes are valuable for evaluation purposes. This study focused on the restoration of vegetation within a limestone quarry in Dorset, UK between 1997 and 2014. Using a randomised block design, the effect of seed mix and seed rate on the development of community assemblage was investigated in comparison to a nearby target calcareous grassland site. We hypothesised that seed mix composition and sowing rate would influence both the trajectory of the grassland assemblage and final community composition. We found that species composition (in relation to both richness and community assemblage was strongly influenced by time and to some extent by seed rate and seed mix. However, no treatments achieved strong resemblance to the calcareous grassland target vegetation; rather they resembled mesotrophic communities. We conclude that (as with previous studies there is no “quick fix” for the establishment of a grassland community; long-term monitoring provides useful information on the trajectory of community development; sowing gets you something (in our case mesotrophic grassland, but, it may not be the target vegetation (e.g., calcicolous grassland you want that is difficult to establish and regenerate; it is important to sow a diverse mix as subsequent recruitment opportunities are probably limited; post-establishment management should be explored further and carefully considered as part of a restoration project.

  13. Striking a balance: socioeconomic development and conservation in grassland through community-based zoning.

    Directory of Open Access Journals (Sweden)

    Craig Leisher

    Full Text Available The goal of preserving nature is often in conflict with economic development and the aspirations of the rural poor. Nowhere is this more striking than in native grasslands, which have been extensively converted until a mere fraction of their original extent remains. This is not surprising; grasslands flourish in places coveted by humans, primed for agriculture, plantations, and settlements that nearly always trump conservation efforts. The Umgano grassland conservation and poverty reduction project in KwaZulu-Natal Province, South Africa uses community-based spatial planning to balance the conversion of its lower-conservation value grasslands to a timber plantation, while conserving higher-value grasslands for heritage purposes and managed livestock grazing. Ten years after project launch, we measured the ecological and socioeconomic impacts of the project using Normalized Differential Vegetation Index remote sensing data and over 500 household interviews, as compared with similar non-conserved areas. Zoned management of the Umgano area had resulted in between 9% and 17% greater average peak production in the grassland areas compared to control sites. There was also a 21% gain in incomes for the roughly one hundred people employed by the forestry efforts, when compared to others in their village. Community-based spatial zoning is an overlooked tool for balancing conservation and development but may require, as we found in Umgano, certain critical factors including strong local leadership, an accountable financial management mechanism to distribute income, outside technical expertise for the zoning design, and community support.

  14. Research priorities for grassland science: the need of long term integrated experiments networks

    Directory of Open Access Journals (Sweden)

    G. Lemaire

    2007-07-01

    Full Text Available Grasslands have to be considered not only as a mean for providing foods for domestic herbivore but also as an important biome of terrestrial biosphere. This function of grasslands as an active component of our environment requires specific studies on the role and impact of this ecosystem on soil erosion and soil quality, quality and quantity of water resources, atmosphere composition and greenhouse gas emission or sequestration, biodiversity dynamics at different scales from field plot to landscape. All these functions have to be evaluated in conjunction with the function of providing animal products for increasing human population. So multifunctionality of grasslands become a new paradigm for grassland science. Environmental and biodiversity outputs require long term studies, being the long term retro-active processes within soil, vegetation and micro-organism communities in relation to changes in management programme. So grassland science needs to carry on long term integrated experimentation for studying all the environmental outputs and ecological services associated to grassland management systems.

  15. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    Science.gov (United States)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  16. Throughfall patterns of a Subtropical Atlantic Forest in Brazil

    Science.gov (United States)

    Macedo Sá, João Henrique; Borges Chaffe, Pedro Luiz; Yuimi de Oliveira, Debora; Nery Giglio, Joana; Kobiyama, Masato

    2017-04-01

    The interception process is responsible for the spatial and temporal redistribution of the precipitation that reaches the ground. This process is important especially in forested areas since it influences recycling of moisture from the air and also the amount of water that effectively reaches the ground. The contact of the precipitation with the canopy influences on the water quality, increasing the concentration of various nutrients in the throughfall (Tf) and stemflow (Sf). Brazil, only about 8% of the original Atlantic Forest cover remains. That is an important biome and little is known about the characteristics of rainfall interception of this forest. The total interception loss in forested areas is usually formulated as the gross precipitation (P) minus the sum of the throughfall (Tf) and the stemflow (Sf). The stems characteristics influence on Sf, meanwhile, the value of Tf strongly depends on the canopy and leaf structures. Because of the complex structure of the canopy, these characteristics are usually expressed by the simpler Leaf Area Index (LAI) or the Canopy Cover Fraction (CCF). The Araponga river experimental catchment (ARA) with 5.3 ha is on the northern plateau of Santa Catarina State, southern Brazil. It is an area completely covered by secondary subtropical Atlantic Forest, the regional climate is the Köppen Cfb type, i.e., temperate climate without dry season and with warm summer (the mean temperature of the hottest month is always under 22°C). The objectives of the present study were (i) to evaluate the spatial and temporal variation of canopy cover; (ii) to influence of the interception process on the precipitation quality; and (iii) to explore the relation between canopy cover and throughfall. Inside the catchment, 9 Tf gauges were installed 40 cm above the soil surface in order to include the interception by shrub. 28 hand-made gauges were installed on a circular area of 3 m radius to analyze the spatial variability of throughfall. During

  17. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    Science.gov (United States)

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that

  18. Business Ethics in Third World Countries. A Romanian Representative Case: Roşia Montană

    Directory of Open Access Journals (Sweden)

    Iuliana Zaharia

    2010-03-01

    Full Text Available Roşia Montană case became representative by its complexity, considering the interaction of the economic with other social sectors on one hand, and on the other hand, considering the context of a economy on the globalization edge in a South-eastern European country 'rebuilt' after 1989 and in a permanent 'reform' of 20 years, representative by the way the economics dictates to the politics, sealing the road to sustainable disaster in an "era of sustainable development”. Edifying symbol of the times that we live at the beginning of the XXIst century, maintaing the focus on the Romanian opened wound Roşia Montană is equivalent to a live lesson about the survival or the collapse of the (human ecosystem. About the morality as a reality of another order than that of biological life and as a sine qua non condition of the humanity preservation.Note: The aggregate term Third World was challenged as misleading starting with the Cold War period, because it got various meanings depending on different points of view: 1. it was used to define during the Cold War the countries that remained non-aligned or not moving at all with either capitalism and NATO (which along with its allies represented the First World or communism and the Soviet Union (which along with its allies represented the Second World; 2. it has also a completely different definition according to human development index – the term Third World, when used today generally denotes countries that have not "developed" to the same levels as OECD countries, and which are thus in the process of "developing"; 3. in the 1980s, economist Peter Bauer offered a competing definition for the term Third World, claiming that the attachment of Third World status to a particular country was not based on any stable economic or political criteria, and was a mostly arbitrary process. The large diversity of countries that were considered to be part of the Third World, from Indonesia to Afghanistan, ranged

  19. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    Science.gov (United States)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  20. Lack of a response of the sub-tropical rodent (Saccostomus ...

    African Journals Online (AJOL)

    1998-03-09

    Mar 9, 1998 ... A potential strategy for southern African small mammals to maximise reproductive success is to cue breeding activity to rainfall and subsequent vegetative growth via a secondary plant compound such as 6-methoxyben- zoxazolinone (6MBOA). This study investigated whether the sub-tropical rodent ...

  1. The western boundary current of the seasonal subtropical gyre in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.; Gouveia, A.D.; Shenoi, S.S.C.; Sundar, D.; Michael, G.S.; Nampoothiri, G.

    , and monthly mean wind stress, we propose that the poleward current is the western boundary current of a seasonal anticyclonic subtropical gyre which forms in the Bay during January, is best developed during March-April, and decays by June. The gyre...

  2. Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010

    Science.gov (United States)

    J. M. Tucker Lima; C. L. Staudhammer; T. J. Brandeis; F. J. Escobedo; W. Zipperer

    2013-01-01

    Several studies report urban tree growth and mortality rates as well as species composition, structural dynamics, and other characteristics of urban forests in mostly temperate, inland urban areas. Temporal dynamics of urban forests in subtropical and tropical forest regions are, until now, little explored and represent a new and important direction for study and...

  3. Manure management in the (Sub-)Tropics : training manual for extension workers

    NARCIS (Netherlands)

    Teenstra, E.D.; Buisonjé, de F.E.; Ndambi, A.; Pelster, D.

    2015-01-01

    Having identified a general lack of knowledge about the value of livestock manure and integrated manure management at multiple levels in government and society, a concerted action led to the compilation of a training manual for extension workers on manure management in the (sub-)tropics. Covering

  4. Spatio-temporal patterns and predictions of phytoplankton assemblages in a subtropical river delta system

    DEFF Research Database (Denmark)

    Wang, Chao; Li, Xinhui; Wang, Xiangxiu

    2016-01-01

    Spatial and seasonal sampling within a subtropical river delta system, the Pearl River Delta (China), provided data to determine seasonal phytoplankton patterns and develop prediction models. The high nutrient levels and frequent water exchanges resulted in a phytoplankton community with greatest...

  5. INFLUENCE OF LIGHT ON BACTERIOPLANKTON PRODUCTION AND RESPIRATION IN A SUBTROPICAL CORAL REEF

    Science.gov (United States)

    The influence of sunlight on bacterioplankton production (14C-leucine (Leu) and 3H-thymidine (TdR) incorporation; changes in cell abundances) and O2 consumption was investigated in a shallow subtropical coral reef located near Key Largo, Florida. Quartz (light) and opaque (dark) ...

  6. Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea)

    NARCIS (Netherlands)

    Wall-Palmer, D.; Burridge, A.K.; Peijnenburg, K.T.C.A.

    2016-01-01

    The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to

  7. Transformation and fate of microphytobenthos carbon in subtropical shallow subtidal sands: A

    NARCIS (Netherlands)

    Oakes, J.M.; Eyre, B.D.; Middelburg, J.J.

    2012-01-01

    Microphytobenthos (MPB) in photic sediments are highly productive but the fate of this production remains uncertain. Over 33 d, tracing of C-13 from added bicarbonate in subtropical shallow subtidal sand showed rapid transfer of MPB-derived carbon to deeper sediment; below 2 cm (31% within 60 h) and

  8. The structuring role of submerged macrophytes in a large subtropical shallow lake

    NARCIS (Netherlands)

    Finkler Ferreira, Tiago; Crossetti, Luciane O.; Motta Marques, David M.L.; Cardoso, Luciana; Fragoso, Carlos Ruberto; Nes, van Egbert H.

    2018-01-01

    It is well known that submerged macrophytes exert positive feedback effects that enhance the water transparency, stabilizing the clear-water state in shallow temperate lakes. However, the structuring effect of macrophytes on the food web of subtropical and tropical ecosystems is still poorly

  9. Residents’ Experiences of Privacy and Comfort in Multi-Storey Apartment Dwellings in Subtropical Brisbane

    Directory of Open Access Journals (Sweden)

    Rosemary Kennedy

    2015-06-01

    Full Text Available Dwellings in multi-storey apartment buildings (MSAB are predicted to increase dramatically as a proportion of housing stock in subtropical cities over coming decades. The problem of designing comfortable and healthy high-density residential environments and minimising energy consumption must be addressed urgently in subtropical cities globally. This paper explores private residents’ experiences of privacy and comfort and their perceptions of how well their apartment dwelling modulated the external environment in subtropical conditions through analysis of 636 survey responses and 24 interviews with residents of MSAB in inner urban neighbourhoods of Brisbane, Australia. The findings show that the availability of natural ventilation and outdoor private living spaces play important roles in resident perceptions of liveability in the subtropics where the climate is conducive to year round “outdoor living”. Residents valued choice with regard to climate control methods in their apartments. They overwhelmingly preferred natural ventilation to manage thermal comfort, and turned to the air-conditioner for limited periods, particularly when external conditions were too noisy. These findings provide a unique evidence base for reducing the environmental impact of MSAB and increasing the acceptability of apartment living, through incorporating residential attributes positioned around climate-responsive architecture.

  10. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.

    Science.gov (United States)

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong

    2016-07-28

    Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated 'peat deposit-lake sediment' alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles.

  11. Experimental evidence for a phylogenetic Janzen-Connell effect in a subtropical forest

    NARCIS (Netherlands)

    Liu, Xubing; Liang, Minxia; Etienne, Rampal S.; Wang, Yongfan; Staehelin, Christian; Yu, Shixiao

    Observational evidence increasingly suggests that the JanzenConnell effect extends beyond the species boundary. However, this has not been confirmed experimentally. Herein, we present both observational and experimental evidence for a phylogenetic JanzenConnell effect. In a subtropical forest in

  12. Brief history of the development of the Subtropical Botanical Garden of the Kuban

    Directory of Open Access Journals (Sweden)

    Karpun Yuriy Nikolaevich

    2017-12-01

    Full Text Available A retrospective report of the Director of the Subtropical Botanical Garden of Kuban, Karpun YN, at the opening of the First National Dendrological Conference, dedicated to the 40th anniversary of the Garden, held on March 14-16, 2017 in Sochi

  13. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities

    Science.gov (United States)

    Francisco Escobedo; Sebastian Varela; Min Zhao; John E. Wagner; Wayne Zipperer

    2010-01-01

    Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and...

  14. Seasonal influenza vaccine policy, use and effectiveness in the tropics and subtropics: a systematic literature review.

    NARCIS (Netherlands)

    Hirve, S.; Lambach, P.; Paget, J.; Vandemaele, K.; Fitzner, J.; Zhang, W.

    2016-01-01

    Aim: The evidence needed for tropical countries to take informed decisions on influenza vaccination is scarce. This paper reviews policy, availability, use and effectiveness of seasonal influenza vaccine in tropical and subtropical countries. Method: Global health databases were searched in three

  15. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NARCIS (Netherlands)

    Neggers, R.A.J.; Ackerman, Andrew S.; Angevine, W. M.; Bazile, Eric; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; cheng, A; van der Dussen, J.J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H; Cheedela, S. K.; Larson, V. E.; Lefebvre, Marie Pierre; Lock, A. P.; Meyer, N. R.; de Roode, S.R.; de Rooy, WC; Sandu, I; Xiao, H; Xu, K. M.

    2017-01-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using

  16. Lysogenic infection in sub-tropical freshwater cyanobacteria cultures and natural blooms

    NARCIS (Netherlands)

    Steenhauer, L.M.; Pollard, P.C.; Brussaard, C.P.D.; Säwström, C.

    2014-01-01

    Lysogeny has been reported for a few freshwater cyanobacteria cultures, but it is unknown how prevalent it is in freshwater cyanobacteria in situ. Here we tested for lysogeny in (a) cultures of eight Australian species of subtropical freshwater cyanobacteria; (b) seven strains of one species:

  17. Stability and activity of anaerobic sludge from UASB reactors treating sewage in subtropical regions

    NARCIS (Netherlands)

    Seghezzo, L.; Cuevas, C.M.; Trupiano, A.P.; Guerra, R.G.; Gonzalez, S.M.; Zeeman, G.; Lettinga, G.

    2006-01-01

    The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical

  18. Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico.

    Science.gov (United States)

    Ariel E. Lugo F.N. Scatena

    1995-01-01

    Relationships between landforms, soil nutrients, forest structure, and the relative importance of different disturbances were quantified in two subtropical wet steepland watersheds in Puerto Rico. Ridges had fewer landslides and treefall gaps, more above-ground biomass, older aged stands, and greater species richness than other landscape positions. Ridge soils had...

  19. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    Science.gov (United States)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  20. Current status of the South African research program on the radiation preservation of subtropical fruits

    International Nuclear Information System (INIS)

    Thomas, A.C.; Brodrick, H.T.

    1977-05-01

    In July 1976, the Atomic Energy Board (AEB) entered into a Research Agreement with the International Atomic Energy Agency (IAEA). This was done at the invitation of the Agency, as part of its function of coordinating research programs and assisting in broadening the contact of scientific investigators with similar interests. The relevant AEB research project is that involving radiation preservation of subtropical fruits, which forms part of the IAEA's coordinated program on Technological and Economic Feasibility of Food Irradiation. The report describes the results of several season's research carried out at the AEB in conjunction with the Citrus and Subtropical Fruit Research Institute, Nelspruit, on the radiation treatment of subtropical fruits. A commercial feasibility study for mango processing is summarised and plans for pilot-plant operation are described. Equally promising results have been obtained with respect to disease control and delayed senescence in papayas. Disease in litchis was also markedly reduced by irradiation treatment, but work on this fruit is still at an early stage. In the case of avocados, a greatly reduced dose, with a mild heat treatment, produced delayed ripening without significant adverse effects, and results in a shelf-life extention of about six days. The results obtained show that the irradiation of subtropical fruits holds considerable promise in terms of reduced losses, better fruit quality, improved distribution and large-scale exports [af

  1. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume

    Science.gov (United States)

    Thomas J. Brandeis; Matthew Delaney; Bernard R. Parresol; Larry Royer

    2006-01-01

    Carbon accounting, forest health monitoring and sustainable management of the subtropical dry forests of Puerto Rico and other Caribbean Islands require an accurate assessment of forest aboveground biomass (AGB) and stem volume. One means of improving assessment accuracy is the development of predictive equations derived from locally collected data. Forest inventory...

  2. FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO

    Science.gov (United States)

    Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire

    2012-01-01

    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...

  3. Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre

    NARCIS (Netherlands)

    Brach, Laurent; Deixonne, Patrick; Bernard, Marie France; Durand, Edmée; Desjean, Marie Christine; Perez, Emile; van Sebille, Erik; ter Halle, Alexandra

    2018-01-01

    There are fundamental gaps in our understanding of the fates of microplastics in the ocean, which must be overcome if the severity of this pollution is to be fully assessed. The predominant pattern is high accumulation of microplastic in subtropical gyres. Using in situ measurements from the 7th

  4. Diet preferences of goats in a subtropical dry forest and implications for habitat management

    Science.gov (United States)

    Genie M. Fleming; Joseph Wunderle Jr.; David N. Ewert

    2016-01-01

    As part of an experimental study of using controlled goat grazing to manage winter habitat of the Kirtland’s warbler (Setophaga kirtlandii), an endangered Nearctic neotropical migratory bird, we evaluated diet preferences of domesticated goats within early successional subtropical dry forest in The Bahamas. We expected goats would show a low preference for two plants (...

  5. Seasonal influenza vaccine policy, use and effectiveness in the tropics and subtropics - a systematic literature review

    NARCIS (Netherlands)

    Hirve, S.; Lambach, P.; Paget, J.; Vandemaele, K.; Fitzner, J.; Zhang, W.

    2016-01-01

    AIM: The evidence needed for tropical countries to take informed decisions on influenza vaccination is scarce. This article reviews policy, availability, use and effectiveness of seasonal influenza vaccine in tropical and subtropical countries. METHOD: Global health databases were searched in three

  6. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems

    NARCIS (Netherlands)

    Petruzella, A.; Grutters, B.M.C.; Thomaz, S.M.; Bakker, E.S.

    2017-01-01

    Invasions of tropical and subtropical aquatic plants threaten biodiversity and cause ecological and economic impacts worldwide. An urgent question is whether native herbivores are able to inhibit the spread of these alien species thus providing biotic resistance. The potential for biotic resistance

  7. Comparison of stream nutrient conditions in a subtropical lowland watershed to EPA suggested criteria

    Science.gov (United States)

    April Mason; Y. Jun Xu; Johnny M. Grace

    2007-01-01

    Nutrients such as nitrogen, phosphorus and organic carbon are essential to the health and diversity of stream ecosystems. However, excess nutrients can cause eutrophication, resulting in overgrowth of aquatic plants and decline of the ecosystem diversity. A paired-watershed study was initiated in a subtropical forested watershed within the Ouachita River Basin in...

  8. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  9. Seasonal/Interannual Variations of Carbon Sequestration and Carbon Emission in a Warm-Season Perennial Grassland

    OpenAIRE

    Deepa Dhital; Tomoharu Inoue; Hiroshi Koizumi

    2014-01-01

    Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emi...

  10. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments

    Directory of Open Access Journals (Sweden)

    Claire eMahaffey

    2014-12-01

    Full Text Available Phosphorus is an essential nutrient for all life on earth. In the ocean, the most bioavailable form of phosphorus is inorganic phosphate, but in the extensive subtropical gyres, phosphate concentrations can be chronically low and limit primary productivity and nitrogen fixation. In these regions, organisms produce hydrolytic enzymes, such as alkaline phosphatase (AP, that enable them to utilize the more replete dissolved organic phosphorus (DOP pool to meet their cellular phosphorus demands. In this study, we synthesized data from 14 published studies and present our own findings from two research cruises (D326 and D361 in the eastern subtropical Atlantic to explore the relationship between AP activity (APA and nutrients, Saharan dust and trace metals. We found that below a threshold phosphate concentration of ~ 30 nM, APA increased with an inverse hyperbolic relationship with phosphate concentration. Meanwhile, DOP concentrations decreased with enhanced APA, indicating utilization of the DOP pool. We found APA rates were significantly higher in the subtropical Atlantic compared to the subtropical Pacific Ocean, even over the same low phosphate concentration range (0 to 50 nM. While the phosphate concentration may have a first order control on the APA rates, we speculate that other factors influence this basin scale contrast. Using bioassay experiments, we show that the addition of Saharan dust and zinc significantly increased the rate of APA. To our knowledge, our results are the first direct field-based evidence that APA is limited by zinc in the subtropical ocean. Further work is required to explore the relationship between trace metals such as iron and zinc, which are co-factors of phosphohydrolytic enzymes, specifically PhoX and PhoA, respectively, and APA in the ocean.

  11. Caterpillars and host plant records for 59 species of Geometridae (Lepidoptera) from a montane rainforest in southern Ecuador.

    Science.gov (United States)

    Bodner, Florian; Brehm, Gunnar; Homeier, Jürgen; Strutzenberger, Patrick; Fiedler, Konrad

    2010-01-01

    During four months of field surveys at the Reserva Biológica San Francisco in the south Ecuadorian Andes, caterpillars of 59 Geometridae species were collected in a montane rainforest between 1800 and 2800m altitude and reared to adults. The resulting data on host plant affiliations of these species was collated. The preimaginal stages of 58 and adult stages of all 59 species are depicted in colour plates. Observations on morphology and behaviour are briefly described. Five species, documented for the first time in the study area by means of larval collections, had not been previously collected by intensive light-trap surveys. Together with published literature records, life-history data covers 8.6% of the 1271 geometrid species observed so far in the study area. For 50 species these are the first records of their early stages, and for another 7 the data significantly extend known host plant ranges. Most larvae were collected on shrubs or trees, but more unusual host plant affiliations, such as ferns (6 geometrid species) and lichens (3 geometrid species), were also recorded. Thirty-four percent of the caterpillars were infested by wasp or tachinid parasitoids.

  12. Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations.

    Science.gov (United States)

    Maxwell, Toby M; Silva, Lucas C R; Horwath, William R

    2018-05-01

    This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO 2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region. Copyright © 2018 the Author(s). Published by PNAS.

  13. Fog in a marginal agricultural area surrounded by montane Andean cloud forest during El Niño climate

    Science.gov (United States)

    García-Santos, G.

    2010-07-01

    The aim of the present study was to evaluate temporal variations of water inputs, rainfall and fog (cloud water), and its contribution to the water balance in a marginal agricultural area of potato surrounded by tropical montane cloud forest in Colombia. Fog in the air boundary layer was estimated using a cylindrical fog collector. Liquid water content of fog events were evaluated before and during natural climate event of El Niño. Our study shows the temporal variation of these two water inputs in both daily and monthly cycles on Boyacá at 2900 m a.s.l. Rainfall was the most frequently observed atmospheric phenomenon, being present on average 62% of the days per year, whereas fog was 45% of the time. Reflected on the lower frequency, annual amount of fog was 11% of precipitation. However during the anomalous dry climate of El Niño, total amount of rainfall was negligible and the few fog events were the only water source for plant growth. Estimated water crop requirements were higher than the water inputs. The survival of the crops was explained by meteorological conditions during dew and fog events. High relative humidity might have eased the plant’s water stress by decreasing transpiration and temperature in leaves and soil, affecting the water balance and the heat exchange between the atmosphere-land interfaces in the marginal agricultural areas during exceptional dry climate.

  14. Comparative Drought Responses of Quercus ilex L. and Pinus sylvestris L. in a Montane Forest Undergoing a Vegetation Shift

    Directory of Open Access Journals (Sweden)

    David Aguadé

    2015-07-01

    Full Text Available Different functional and structural strategies to cope with water shortage exist both within and across plant communities. The current trend towards increasing drought in many regions could drive some species to their physiological limits of drought tolerance, potentially leading to mortality episodes and vegetation shifts. In this paper, we study the drought responses of Quercus ilex and Pinus sylvestris in a montane Mediterranean forest where the former species is replacing the latter in association with recent episodes of drought-induced mortality. Our aim was to compare the physiological responses to variations in soil water content (SWC and vapor pressure deficit (VPD of the two species when living together in a mixed stand or separately in pure stands, where the canopies of both species are completely exposed to high radiation and VPD. P. sylvestris showed typical isohydric behavior, with greater losses of stomatal conductance with declining SWC and greater reductions of stored non-structural carbohydrates during drought, consistent with carbon starvation being an important factor in the mortality of this species. On the other hand, Q. ilex trees showed a more anisohydric behavior, experiencing more negative water potentials and higher levels of xylem embolism under extreme drought, presumably putting them at higher risk of hydraulic failure. In addition, our results show relatively small changes in the physiological responses of Q. ilex in mixed vs. pure stands, suggesting that the current replacement of P. sylvestris by Q. ilex will continue.

  15. Disturbance Alters the Relative Importance of Topographic and Biogeochemical Controls on Microbial Activity in Temperate Montane Forests

    Directory of Open Access Journals (Sweden)

    Rebecca A. Lybrand

    2018-02-01

    Full Text Available Fire and pathogen-induced tree mortality are the two dominant forms of disturbance in Western U.S. montane forests. We investigated the consequences of both disturbance types on the controls of microbial activity in soils from 56 plots across a topographic gradient one year after the 2012 High Park wildfire in Colorado. Topsoil biogeochemistry, soil CO2 efflux, potential exoenzyme activities, and microbial biomass were quantified in plots that experienced fire disturbance, beetle disturbance, or both fire and beetle disturbance, and in plots where there was no recent evidence of disturbance. Soil CO2 efflux, N-, and P-degrading exoenzyme activities in undisturbed plots were positively correlated with soil moisture, estimated from a topographic wetness index; coefficient of determinations ranged from 0.5 to 0.65. Conversely, the same estimates of microbial activities from fire-disturbed and beetle-disturbed soils showed little correspondence to topographically inferred wetness, but demonstrated mostly negative relationships with soil pH (fire only and mostly positive relationships with DOC/TDN (dissolved organic carbon/total dissolved nitrogen ratios for both disturbance types. The coefficient of determination for regressions of microbial activity with soil pH and DOC/TDN reached 0.8 and 0.63 in fire- and beetle-disturbed forests, respectively. Drivers of soil microbial activity change as a function of disturbance type, suggesting simple mathematical models are insufficient in capturing the impact of disturbance in forests.

  16. Sustainable utilization and conservation of plant biodiversity in montane ecosystems: the western Himalayas as a case study.

    Science.gov (United States)

    Khan, Shujaul Mulk; Page, Sue E; Ahmad, Habib; Harper, David M

    2013-08-01

    Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities' utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities.

  17. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  18. Effect of Tree-to-Shrub Type Conversion in Lower Montane Forests of the Sierra Nevada (USA) on Streamflow.

    Science.gov (United States)

    Bart, Ryan R; Tague, Christina L; Moritz, Max A

    2016-01-01

    Higher global temperatures and increased levels of disturbance are contributing to greater tree mortality in many forest ecosystems. These same drivers can also limit forest regeneration, leading to vegetation type conversion. For the Sierra Nevada of California, little is known about how type conversion may affect streamflow, a critical source of water supply for urban, agriculture and environmental purposes. In this paper, we examined the effects of tree-to-shrub type conversion, in combination with climate change, on streamflow in two lower montane forest watersheds in the Sierra Nevada. A spatially distributed ecohydrologic model was used to simulate changes in streamflow, evaporation, and transpiration following type conversion, with an explicit focus on the role of vegetation size and aspect. Model results indicated that streamflow may show negligible change or small decreases following type conversion when the difference between tree and shrub leaf areas is small, partly due to the higher stomatal conductivity and the deep rooting depth of shrubs. In contrast, streamflow may increase when post-conversion shrubs have a small leaf area relative to trees. Model estimates also suggested that vegetation change could have a greater impact on streamflow magnitude than the direct hydrologic impacts of increased temperatures. Temperature increases, however, may have a greater impact on streamflow timing. Tree-to-shrub type conversion increased streamflow only marginally during dry years (annual precipitation importance of accounting for changes in vegetation communities to accurately characterize future hydrologic regimes for the Sierra Nevada.

  19. Complex Spatial Structure in a Population of Didymopanax pittieri, A Tree of Wind-Exposed Lower Montane Rain Forest

    Science.gov (United States)

    Lawton, Robert M.; Lawton, Robert O.

    2010-01-01

    Didymopanax pittieri is a common shade-intolerant tree colonizing treefall gaps in the elfin forests on windswept ridgecrests in the lower montane rain forests of the Cordillera de Tilarain, Costa Rica. All D. pittieri taller than > 0.5 m in a 5.2-ha elfin forested portion of a gridded study watershed in the Monteverde Cloud Forest Preserve were located, mapped, and measured. This local population of D. pittieri is spatially inhomogeneous, in that density increases with increasing wind exposure; D. pittieri are more abundant near ridge crests than lower on windward slopes. The important and ubiquitous phenomenon of spatial inhomogeneity in population density is addressed and corrected for in spatial analyses by the application of the inhomogeneous version of Ripley's K. The spatial patterns of four size classes of D. pittieri ( 20 cm dbh) were investigated. Within the large-scale trend in density driven by wind exposure, D. pittieri saplings are clumped at the scale of treefall gaps and at the scale of patches of aggregated gaps. D. pittieri 5-10 cm dbh are randomly distributed, apparently due to competitive thinning of sapling clumps during the early stages of gap-phase regeneration. D. pittieri larger than 10 cm dbh are overdispersed at a scale larger than that of patches of gaps. Natural disturbance can influence the distribution of shade intolerant tree populations at several different spatial scales, and can have discordant effects at different life history stages.

  20. Status and limiting factors of two rare plant species in dry montane communities of Hawai`i Volcanoes National Park.

    Science.gov (United States)

    Pratt, Linda W.; VanDeMark, Joshua R.; Euaparadorn, Melody

    2012-01-01

    Two rare plants native to montane dry forests and woodland communities of Hawai`i Volcanoes National Park (HAVO) were studied for more than two years to determine their stand structure, short-term mortality rates, patterns of reproductive phenology, success of fruit production, floral visitor composition, seed germination rates in the greenhouse, and survival of both natural and planted seedlings. Phyllostegia stachyoides, a shrubby Hawaiian mint (Lamiaceae) that is a species of concern, was studied within two small kīpuka at a natural population on the park’s Mauna Loa Strip, and three plantings at sites along the Mauna Loa Road were also monitored. Silene hawaiiensis, a threatened shrub species in the pink family (Caryophyllaceae), was monitored at two natural populations, one on Mauna Loa at the Three Trees Kīpuka and the second on Kīlauea Crater Rim south of Halema`uma`u. Silene hawaiiensis plantings were also made inside and outside ungulate exclosures at the park’s Kahuku Unit