WorldWideScience

Sample records for montana riparian habitats

  1. Wetlands & Deepwater Habitats - Montana Wetland and Riparian Framework - Map Service

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Montana Wetland and Riparian Framework represents the extent, type, and approximate location of wetlands, riparian areas, and deepwater habitats in Montana....

  2. Riparian Habitat - Product of 2 riparian habitat workshops

    Data.gov (United States)

    California Department of Resources — In two riparian habitat workshops held between 2001 and 2002, scientists and managers identified the need for determining the scope of a consistent and acceptable...

  3. Riparian Habitat - San Joaquin River

    Data.gov (United States)

    California Department of Resources — The immediate focus of this study is to identify, describe and map the extent and diversity of riparian habitats found along the main stem of the San Joaquin River,...

  4. Groundwater management institutions to protect riparian habitat

    Science.gov (United States)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  5. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn A.

    1993-02-01

    This report summarizes the habitat protection process developed to mitigate for certain wildlife and wildlife habitat losses due to construction of Hungry Horse and Libby dams in northwestern Montana.

  6. 75 FR 57059 - Montana Department of Natural Resources and Conservation Final Habitat Conservation Plan and...

    Science.gov (United States)

    2010-09-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Fish and Wildlife Service Montana Department of Natural Resources and Conservation Final Habitat... received from the Montana Department of Natural Resources and Conservation (DNRC) a Final...

  7. Riparian Habitats - Sierra Nevada Foothill [ds304

    Data.gov (United States)

    California Department of Resources — These data are habitat polygons within a 200-m radius around point locations where wildlife surveys were conducted along 19 randomly selected watercourses in the...

  8. Flow recommendations for maintaining riparian vegetation along the Upper Missouri River, Montana

    Science.gov (United States)

    Scott, Michael L.; Auble, Gregor T.; Friedman, Jonathan M.; Ischinger, Lee S.; Eggleston, Erik D.; Wondzell, Mark A.; Shafroth, Patrick B.; Back, Jennifer T.; Jordan, Mette S.

    1993-01-01

    Montana Power Company, Inc. (MPC) submitted a final license application to the Federal Energy Regulatory Commission (FERC) on November 30, 1992. In this application, MPC proposed a plan for the protection of fish, wildlife, habitat, and water-quality resources. One concern was maintenance of woody riparian vegetation along the Missouri River, especially along the Wild and Scenic reach of the river, where the riparian forest occurs in relatively small discontinuous stands. The objectives of this project were 1) to recommend flows that would protect and enhance riparian forests along the Missouri River, and 2) to develop elements of an environmental monitoring program that could be used to assess the effectiveness of the recommended flows. Plains cottonwood (Populus deltoides subsp. monilifera) is the key structural component of riparian forests along the Missouri River. Therefore, we focused our analysis on factors affecting populations of this species. Previous work had demonstrated that the age structure of cottonwood populations is strongly influenced by aspects of flow that promote successfully establishment. In this study our approach was to determine the precise age of plains cottonwood trees growing along the Upper Missouri River and to relate years of establishment to the flow record. Our work was carried out between Coal Banks Landing and the Fred G. Robinson Bridge within the Wild and Scenic portion of the Missouri River. This segment of the river occupies a narrow valley and exhibits little channel migration. Maps and notes from the journals of Lewis and Clark (1804-1806) suggest that the present distribution and abundance of cottonwoods within the study reach is generally similar to presettlement conditions. Flows in the study reach are influenced by a number of dams and diversions, most importantly, Canyon Ferry and Tiber Dams. Although flow regulation has decreased peak flows and increased low flows, the gross seasonal pattern of flow has not been

  9. Riparian landscapes: Linking geodiversity with habitat and biodiversity

    Science.gov (United States)

    Chmieleski, Jana; Danzeisen, Laura

    2017-04-01

    Keywords: Oder valley, biodiversity, geodiversity River landscapes of all scales originally showed a high diversity of structures and habitats at a small spatial entity, such as the stream beds, terrasses, sand and gravel banks. This variety, with a lot of different elements, patches and patterns, represents not only a variety of geoelements or geomorhological features but also a large biodiversity, both of habitats and species. Riparian landscapes are both, a natural as well as a geoheritage, often even a cultural heritage (sustainabe land use practices). Embankments, utilization for agriculture, constructions for navigation, management measures lead to a strong loss of these structures. This impacts the value of the landscape as well ecosystem functions, not only the biodiversity and the geodiversity but also the recreation function or the aesthetic values. A case study from the National Park Lower Oder Valley in the Northeastern part of Germany, wich is also part of a Geopark („Eiszeitland am Oderrand") presents the connections of the diversity of geomorphological features with biodiversity and shows the loss of features (loss of values) due to intensive utilisation by using GIS-analysis and landscape-metrics. The Northern part of the Oder valley (National Park, transnational protection area of Germany and Poland) have been modified by man since centuries but even so remained in near-natural state that allows semi-(natural) stream dynamics. While the Oder's reparian zone is marked by the stream itself, by its bayous, reed beds, periodically flooded wet meadows and by its natural riparian forest the mineral morainic plateaus are marked by semi-natural forests and dry grasslands. Two areas of different degradation states, a) near-natural and wilderness area and b) grassland area will be compared in order to identify: quantity and extent of features, relation of measure and coverage, connectivity with other features, quantity and types of habitats (with

  10. Cooperative Recovery Initiative: Bull Trout Restoration: Restoring Cold, Clean, Complex and Connected Habitat in the Blackfoot River Watershed of Montana.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Habitat degradation and the effects of climate change are the biggest threats to bull trout in the Blackfoot River watershed of Montana. Montana Fish, Wildlife &...

  11. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  12. Fire ecology of Montana forest habitat types east of the Continental Divide

    Science.gov (United States)

    William C. Fischer; Bruce D. Clayton

    1983-01-01

    Provides information on fire as an ecological factor for forest habitat types occurring east of the Continental Divide in Montana. Identifies "Fire Groups" of habitat types based on fire's role in forest succession. Describes forest fuels and suggests considerations for fire management.

  13. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    Science.gov (United States)

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  14. Cooperative Recovery Initiative: Bull Trout Restoration: Restoring Cold, Clean, Complex and Connected Habitat in the Blackfoot River Watershed of Montana Interim Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Habitat degradation and the effects of climate change are the biggest threats to bull trout in the Blackfoot River watershed of Montana. Montana Fish, Wildlife &...

  15. Cooperative Recovery Initiative: Bull Trout Restoration: Restoring Cold, Clean, Complex and Connected Habitat in the Blackfoot River Watershed of Montana Interim Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Habitat degradation and the effects of climate change are the biggest threats to bull trout in the Blackfoot River watershed of Montana. Montana Fish, Wildlife...

  16. Riparian buffer design guidelines for water quality and wildlife habitat functions on agricultural landscapes in the Intermountain West

    Science.gov (United States)

    Craig W. Johnson; Susan Buffler

    2008-01-01

    Intermountain West planners, designers, and resource managers are looking for science-based procedures for determining buffer widths and management techniques that will optimize the benefits riparian ecosystems provide. This study reviewed the riparian buffer literature, including protocols used to determine optimum buffer widths for water quality and wildlife habitat...

  17. Tucannon Stream/Riparian Restoration : Fiscal Year 1998 Habitat Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bruegman, Terry; Nordheim, Debbie

    1999-01-01

    In 1993 the Tucannon River was selected by the Bonneville Power Administration to be one of the three Washington Model Watersheds. This plan was developed to identify, protect, and restore fish habitat by utilizing sound technical information and citizen input.

  18. Influence of monsoon-related riparian phenology on yellow-billed cuckoo habitat selection in Arizona

    Science.gov (United States)

    Wallace, Cynthia S.A.; Villarreal, Miguel; Van Riper, Charles

    2013-01-01

    Aim: The western yellow-billed cuckoo (Coccyzus americanus occidentalis), a Neotropical migrant bird, is facing steep population declines in its western breeding grounds owing primarily to loss of native habitat. The favoured esting habitat for the cuckoo in the south-western United States is low-elevation riparian forests and woodlands. Our aim was to explore relationships between vegetation phenology patterns captured by satellite phenometrics and the distribution of the yellow-billed cuckoo, and to use this information to map cuckoo habitat. Location: Arizona, USA. Methods: Land surface phenometrics were derived from satellite Advanced Very High-Resolution Radiometer (AVHRR), bi-weekly time-composite, ormalized difference vegetation index (NDVI) data for 1998 and 1999 at a resolution of 1 km. Fourier harmonics were used to analyse the waveform of the annual NDVI profile in each pixel. To create the models, we coupled 1998 satellite phenometrics with 1998 field survey data of cuckoo presence or absence and with point data that sampled riparian and cottonwood–willow vegetation types. Our models were verified and refined using field and satellite data collected in 1999. Results: The models reveal that cuckoos prefer areas that experience peak greenness 29 days later, are 36% more dynamic and slightly (cuckoos migrate northwards, following the greening of riparian corridors and surrounding landscapes in response to monsoon precipitation, but then select a nesting site based on optimizing the near-term foraging potential of the neighbourhood. Main conclusions: The identification of preferred phenotypes within recognized habitat can be used to refine future habitat models, inform habitat response to climate change, and suggest adaptation strategies. For example, models of phenotype preferences can guide management actions by identifying and prioritizing for conservation those landscapes that reliably exhibit highly preferred phenometrics on a consistent basis.

  19. Tamarix and Diorhabda leaf beetle interactions: implications for Tamarix water use and riparian habitat

    Science.gov (United States)

    Nagler, Pamela; Glenn, Edward P.

    2013-01-01

    Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western United States rivers to control introduced shrubs in the genus Tamarix, with the goals of saving water through removal of an assumed high water-use plant, and of improving habitat value by removing a competitor of native riparian trees. We review recent studies addressing three questions: (1) to what extent are Tamarix weakened or killed by recurrent cycles of defoliation; (2) can significant water salvage be expected from defoliation; and (3) what are the effects of defoliation on riparian ecology, particularly on avian habit? Defoliation has been patchy at many sites, and shrubs at some sites recover each year even after multiple years of defoliation. Tamarix evapotranspiration (ET) is much lower than originally assumed in estimates of potential water savings, and are the same or lower than possible replacement plants. There is concern that the endangered southwestern willow flycatcher (Empidonax trailli extimus) will be negatively affected by defoliation because the birds build nests early in the season when Tamarix is still green, but are still on their nests during the period of summer defoliation. Affected river systems will require continued monitoring and development of adaptive management practices to maintain or enhance riparian habitat values. Multiplatform remote sensing methods are playing an essential role in monitoring defoliation and rates of ET on affected river systems.

  20. Effects of Channelisation, Riparian Structure and Catchment Area on Physical Habitats in Small Lowland Streams

    DEFF Research Database (Denmark)

    Pedersen, Morten Lauge

    2009-01-01

    that are dominated by a hierarchy of physical processes. The complexity is further enhanced by local human alteration of the physical structure, natural processes and alteration of the riparian areas. The aim of the study was to analyse variations in land use and riparian characteristics along small Danish streams......Rivers and streams form a longitudinal network in which physical conditions and biological processes change through the river system. Geomorphology, topography, geology and hydraulic conditions change from site to site within the river system, thereby creating a complex network of reaches...... and to determine the effect of channelisation on physical habitats. Physical stream characteristics were measured in 149 stream small and medium sized Danish streams (catchment area: 0.1 to 67.2 km2). The measured physical parameters included discharge, stream slope, width, depth, current velocity, substrata...

  1. Indirect effects of biocontrol of an invasive riparian plant (Tamarix) alters habitat and reduces herpetofauna abundance

    Science.gov (United States)

    Bateman, H.L.; Merritt, D.M.; Glenn, E.P.; Nagler, P.L.

    2014-01-01

    The biological control agent (tamarisk leaf beetle, Diorhabda spp.) is actively being used to defoliate exotic saltcedar or tamarisk (Tamarix spp.) in riparian ecosystems in western USA. The Virgin River in Arizona and Nevada is a system where tamarisk leaf beetle populations are spreading. Saltcedar biocontrol, like other control methods, has the potential to affect non-target species. Because amphibians and reptiles respond to vegetation changes in habitat and forage in areas where beetles are active, herpetofauna are model taxa to investigate potential impacts of biocontrol defoliation. Our objectives related herpetofauna abundance to vegetation cover and indices (normalized difference vegetation index, NDVI; enhanced vegetation index, EVI) and timing of biocontrol defoliation. We captured herpetofauna and ground-dwelling arthropods in trap arrays and measured vegetation using remotely sensed images and on-the-ground measurements at 16–21 sites 2 years before (2009–2010) and 2 years following (2011–2012) biocontrol defoliation. Following defoliation, riparian stands (including stands mixed with native and exotic trees and stands of monotypic exotic saltcedar) had significantly lower NDVI and EVI values and fewer captures of marked lizards. Total captures of herpetofauna (toads, lizards, and snakes) were related to higher vegetation cover and sites with a lower proportion of saltcedar. Our results suggest that effects of biocontrol defoliation are likely to be site-specific and depend upon the proportion of native riparian trees established prior to biocontrol introduction and defoliation. The mechanisms by which habitat structure, microclimate, and ultimately vertebrate species are affected by exotic plant biocontrol riparian areas should be a focus of natural-resource managers.

  2. Laying the foundation for a comprehensive program of restoration for wildlife habitat in a riparian floodplain

    Science.gov (United States)

    Morrison, Michael L.; Tennant, Tracy; Scott, Thomas A.

    1994-11-01

    We analyzed the past and current distribution and abundance of vegetation and wildlife to develop a wildlife habitat restoration plan for the Sweetwater Regional Park, San Diego County, California. Overall, there has been a substantial loss of native amphibians and reptiles, including four amphibians, three lizards, and 11 snake species. The small-mammal community was depauperate and dominated by the exotic house mouse ( Mus musculus) and the native western harvest mouse ( Reithrodontomys megalotis). It appeared that either house mice are exerting a negative influence on most native species or that they are responding positively to habitat degradation. There has apparently been a net loss of 13 mammal species, including nine insectivores and rodents, a rabbit, and three large mammals. Willow ( Salix) cover and density and cottonwoods ( Populus fremontii) had the highest number of positive correlations with bird abundance. There has been an overall net loss of 12 breeding bird species; this includes an absolute loss of 18 species and a gain of six species. A restoration plan is described that provides for creation and maintenance of willow riparian, riparian woodland, and coastal sage scrub vegetation types; guides for separation of human activities and wildlife habitats; and management of feral and exotic species of plants and animals.

  3. Influence of long-term trends of flooding on habitat conditions in lowland riparian wetlands under low antropopression

    Science.gov (United States)

    Mirosław-Świątek, Dorota; Grygoruk, Mateusz

    2016-04-01

    Temporal, volumetric and areal trends of flooding remain dominant factors shaping habitat conditions of riparian wetlands. In contemporary Europe, where the pristine extent of riparian wetlands strongly decreased due to antropopression and the flow regime of majority of rivers was decently modified in agricultural and hydropower purposes, valuable riparian habitats that remained in good ecological state require appropriate maintenance of floods. Even though multiple environmental regulations were implemented worldwide in order to mitigate negative effects of antropopression to flow regime and habitats, it is the climatic change that challenges riparian ecosystem management to the extent comparable (if not higher) than the direct human interventions. Wishing to detect probable influence of the ongoing climatic change on the flood regime one should search for catchment systems of a low antropopression, where the long term variability of flood extents, flood depths and recurrence intervals are likely to reflect climatic changes rather than human activity. In our study we analysed 60-years long time series of the discharge data of Biebrza river (NE Poland) that was found in numerous studies a reference in a temperate-continental European riparian and mire ecosystem research. Daily data of river discharge was used as boundary conditions in the WETFLOD - a developed integrated river-floodplain-groundwater flow model applied to the environment of Lower Biebrza Basin. The model was used to simulate and analyze trends of changes in flood extent and water depths in selected, well preserved vegetation patches namely the Caricetum appropinquatae, Caricetum gracilis, Phragmitetum communis and Glycerietum maximae. Temporal trends were analysed on the basis of distribution deciles of flood extents, depths and recurrence intervals. Study revealed that flood extents and flood depths in the first decade of the 21st century were decently different from the ones modeled for the second

  4. Chapter 2: Stream and riparian habitat analysis and monitoring with a high-resolution terrestrial-aquatic LiDAR

    Science.gov (United States)

    Jim McKean; Dan Isaak; Wayne. Wright

    2009-01-01

    Management of aquatic habitat in streams requires description of conditions and processes both inside the channels and in the adjacent riparian zones. Biological and physical processes in these environments operate over a range of spatial scales from microhabitat to whole river networks. Limitations of previous survey technologies have focused management and research...

  5. Near-term effects of repeated-thinning with riparian buffers on headwater stream vertebrates and habitats in Oregon, USA

    Science.gov (United States)

    Deanna H. Olson; Julia I. Burton

    2014-01-01

    We examined the effects of a second-thinning harvest with alternative riparian buffer management approaches on headwater stream habitats and associated vertebrates in western Oregon, USA. Our analyses showed that stream reaches were generally distinguished primarily by average width and depth, along with the percentage of the dry reach length, and secondarily, by the...

  6. VASCULAR PLANT SPECIES RELATIONSHIP AND GRASSLAND PRODUCTIVITY IN ARNICA MONTANA HABITATS IN THE LIMESTONE AREA OF GÂRDA DE SUS VILLAGE (APUSENI MOUNTAINS – ROMANIA

    Directory of Open Access Journals (Sweden)

    Andrei Stoie

    2010-06-01

    Full Text Available The Apuseni Mountains region (Romania holds one of the most important romanian grassland areas with the medicinal species protected over Europe – Arnica montana. Following several studies on vegetation growing in the limestone region of Gârda de Sus village, one can conclude that there are some correlations between the species present in the Arnica montana habitats and also between those and the grasslands productivity. The coverage degree of every species was quantified by metric frame method. Arnica montana shows a weak positive correlation with the strong oligotrophic species within the studied grasslands. The habitats productivity show variable correlations with the vascular plants within the Arnica montana habitats. The Arnica montana presents no preferences for the productivity level of the grasslands where it grows, but only within a very restricted range of low productivity that characterize this grasslands.

  7. A Groundwater flow Model of the Colorado River Delta to Support Riparian Habitat Restoration in Northern Mexico

    Science.gov (United States)

    Maddock, T.; Feirstein, E.; Baird, K. J.; Ajami, H.

    2007-05-01

    Quantification of groundwater flow dynamics and of the interactions among groundwater, surface water, and riparian vegetation, represent key components in the development of a balanced restoration plan for functional riparian ecosystems. A groundwater model was developed using MODFLOW 2000 to support of riparian restoration along the Colorado River Delta (Mexico: Baja California, Sonora). The Colorado River is widely recognized as one of the most modified and allocated rivers in the United States. For over 50 years flows into the Delta were severely reduced by the requirements of an emergent American West. However, subsequent to discharge pulses associated with the filling of Lake Powell, and the increased precipitation that accompanied ENSO cycles, a semblance of a native riparian habitat has been observed in the Delta since the 1980's (Zamora- Arroyo et al. 2001). The Delta and the riparian ecosystems of the region have since become the focus of a substantial body of multidisciplinary research. The research goal is to understand water table dynamics with particular attention to stream-aquifer interactions and groundwater behavior in the root zone. Groundwater reliant transpiration requirements were quantified for a set of dominant native riparian species using the Riparian ET (RIP-ET) package, an improved MODFLOW evapotranspiration (ET) module. RIP-ET simulates ET using a set of eco-physiologically based curves that more accurately represents individual plant species, reflects habitat complexity, and deals spatially with plant and water table distribution. When used in conjunction with a GIS based postprocessor (RIP-GIS.net), RIP-ET provides the basis for mapping groundwater conditions as they relate to user-specified plant groups. This explicit link between groundwater and plant sustainability is a driver to restoration design and allows for scenario modeling of various hydrologic conditions. Groundwater requirements determined in this research will be used by

  8. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (<=0.5 m/s) adjacent to the thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  9. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams.

    Science.gov (United States)

    Miserendino, María Laura; Casaux, Ricardo; Archangelsky, Miguel; Di Prinzio, Cecilia Yanina; Brand, Cecilia; Kutschker, Adriana Mabel

    2011-01-01

    Changes in land-use practices have affected the integrity and quality of water resources worldwide. In Patagonia there is a strong concern about the ecological status of surface waters because these changes are rapidly occurring in the region. To test the hypothesis that greater intensity of land-use will have negative effects on water quality, stream habitat and biodiversity we assessed benthic macroinvertebrates, riparian/littoral invertebrates, fish and birds from the riparian corridor and environmental variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 macroinvertebrate taxa, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird species, and 15 aquatic plant species, were recorded considering all sites. Urban land-use produced the most significant changes in streams including physical features, conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and managed native forest sites appeared in an intermediate situation. The highest values of fish and bird abundance and diversity were observed at disturbed sites; this might be explained by the opportunistic behavior displayed by these communities which let them take advantage of increased trophic resources in these environments. As expected, non-managed native forest sites showed the highest integrity of ecological conditions and also great biodiversity of benthic communities. Macroinvertebrate metrics that reflected good water quality were positively related to forest land cover and negatively related to urban and pasture land cover. However, by offering stream edge areas, pasture sites still supported rich communities of riparian/littoral invertebrates, increasing overall biodiversity. Macroinvertebrates were good indicators of land-use impact and water quality conditions and resulted useful tools to early alert of

  10. Libby/Hungry Horse Dams Wildlife Mitigation : Montana Wildlife Habitat Protection : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn

    1992-12-01

    The purpose of this project was to develop and obtain information necessary to evaluate and undertake specific wildlife habitat protection/enhancement actions in northwest Montana as outlined in the Columbia River Basin Fish and Wildlife Program. Three waterfowl projects were evaluated between September 1989 and June 1990. Weaver's Slough project involved the proposed acquisition of 200 acres of irrigated farmland and a donated conservation easement on an additional 213 acres. The proposal included enhancement of the agricultural lands by conversion to upland nesting cover. This project was rated the lowest priority based on limited potential for enhancement and no further action was pursued. The Crow Creek Ranch project involved the proposed acquisition of approximately 1830 acres of grazing and dryland farming lands. The intent would be to restore drained potholes and provide adjacent upland nesting cover to increase waterfowl production. This project received the highest rating based on the immediate threat of subdivision, the opportunity to restore degraded wetlands, and the overall benefits to numerous species besides waterfowl. Ducks Unlimited was not able to participate as a cooperator on this project due to the jurisdiction concerns between State and tribal ownership. The USFWS ultimately acquired 1,550 acres of this proposed project. No mitigation funds were used. The Ashley Creek project involved acquisition of 870 acres adjacent to the Smith Lake Waterfowl Production Area. The primary goal was to create approximately 470 acres of wetland habitat with dikes and subimpoundments. This project was rated second in priority due to the lesser threat of loss. A feasibility analysis was completed by Ducks Unlimited based on a concept design. Although adequate water was available for the project, soil testing indicated that the organic soils adjacent to the creek would not support the necessary dikes. The project was determined not feasible for mitigation

  11. The role of habitat factors in successful invasion of alien plant Acer negundo in riparian zones.

    Science.gov (United States)

    Sikorski, Piotr; Sikorska, Daria

    2016-04-01

    Ash-leaved maple (Acer negundo) is one of the most invasive species occurring in riparian zones. The invasion is especially effective in disturbed areas, as the plant favours anthropogenic sites. The plant was also observed to be able to penetrate into sandy bars, also those separated from the land, inaccessible to people. It's removal is time-consuming and laborious, often involves damage done to sensitive vegetation and the results are doubtful, as the plant quickly regenerates. The invasion patterns and establishment of ash-leaved maple in natural ecosystems are poorly investigated. The aim of this study was to test how habitat factors such as: light availability, soil characteristics and competition contribute to ash-leaved maple effective colonization of natural sand bars free from anthropogenic pressure. In 2014 sand bars located in Vistula River Valley in Warsaw were inventoried and classified basing on their development stage as 1 - initial, 2 - unstable, 3 - stable. Apart from the occurrence of the invasive ash-leaved maple the plants competing with it were recognized and the percentage of the shoots of shrubs and herbaceous plants was estimated. PAR was measured at ground level and 1 meter above ground, the thickness of organic layer formed on the top of the sand was also measured as the indicator of sand bar development stage. The maple's survival in extremely difficult conditions resembles the strategy of willows and poplars naturally occurring in the riparian zones, which are well adapted to this environment. The success of invasion strongly depends on the plants establishment during sand bars initial stage of development. The seedlings growth correlates with the age of the sand bar (r1=0,41, r2=0,42 i r3=0,57). The colonization lasts for 4-6 years and the individuals start to cluster in bigger parches. After that period the maple turns into the phase of competition for space. Habitat factors such as shading (r2=0,41 i r3=0,51) and organic layer

  12. Riparian buffers and thinning in headwater drainages in western Oregon: aquatic vertebrates and habitats

    Science.gov (United States)

    Deanna H. Olson

    2013-01-01

    Th e Density Management and Riparian Buff er Study (DMS) of western Oregon is a template for numerous research projects on managed federal forestlands. Herein, I review the origins of Riparian Buffer Study component and summarize key findings of a suite of associated aquatic vertebrate projects. Aquatic vertebrate study objectives include characterization of headwater...

  13. Near-Term Effects of Repeated-Thinning with Riparian Buffers on Headwater Stream Vertebrates and Habitats in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Deanna H. Olson

    2014-11-01

    Full Text Available We examined the effects of a second-thinning harvest with alternative riparian buffer management approaches on headwater stream habitats and associated vertebrates in western Oregon, USA. Our analyses showed that stream reaches were generally distinguished primarily by average width and depth, along with the percentage of the dry reach length, and secondarily, by the volume of down wood. In the first year post-harvest, we observed no effects of buffer treatment on stream habitat attributes after moderate levels of thinning. One of two “thin-through” riparian treatments showed stronger trends for enlarged stream channels, likely due to harvest disturbances. The effects of buffer treatments on salamanders varied among species and with habitat structure. Densities of Plethodon dunni and Rhyacotriton species increased post-harvest in the moderate-density thinning with no-entry buffers in wider streams with more pools and narrower streams with more down wood, respectively. However, Rhyacotriton densities decreased along streams with the narrowest buffer, 6 m, and P. dunni and Dicamptodon tenebrosus densities decreased in thin-through buffers. Our study supports the use of a 15-m or wider buffer to retain sensitive headwater stream amphibians.

  14. Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003-04

    Science.gov (United States)

    Zelt, Ronald B.; Munn, Mark D.

    2009-01-01

    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the

  15. PLANT COMMUNITIES WITH ARNICA MONTANA IN NATURAL HABITATS FROM THE CENTRAL REGION OF ROMANIAN EASTERN CARPATHIANS

    Directory of Open Access Journals (Sweden)

    Constantin MARDARI

    2015-12-01

    Full Text Available Arnica montana is a species of European Union interest, whose harvest from the wild and exploitation should be made under certain management measures. In Romania it is a vulnerable species due to excessive collection. It is a species with European areal occuring in pastures, meadows, forest glades, shrubs communities of mountain to the subalpine regions and, isolated, up to the alpine belt. Most of the plant communities with Arnica montana are semi-natural, with a floristic composition in which there are numerous rare or threatened species also supporting the need of their conservation. Our study was focused on a numerical classification (hierarchical, using Flexible ß algorithm and Bray-Curtis dissimilarity based on 48 plots, of the plant communities with Arnica montana from the central region of Romanian Eastern Carpathians and on the investigation of the effect of some environmental variables (Ellenberg indicator values, altitude, heat load index on their floristic composition (100 m2 scale. Vegetation – environment relationship was assessed via detrended correspondence analysis and canonical correspondence analysis with Monte Carlo test. Six plant communities with Arnica montana were identified (communities of Festuca rubra with Agrostis capillaris, Festuca nigrescens, Vaccinium myrtillus, Nardus stricta, Vaccinium gaultherioides and Juniperus sibirica with a floristic composition mainly shaped by altitude, temperature and soil nitrogen content. Details related to location and sites characteristics, diagnostic species, floristic composition, presence of other rare or threatened species and Arnica montana abundance were presented for all these plant communities.

  16. HYDROGEOMORPHIC SETTING, CHARACTERISTICS, AND RESPONSE TO STREAM INCISION OF MONTANA RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN--IMPLICATIONS FOR RESTORATION

    Science.gov (United States)

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. An interdisciplinary group has investigated 1) the origin, characteristics, and controls on the evolution of these riparian...

  17. Fall and winter habitat use and movement by Columbia River redband trout in a small stream in Montana

    Science.gov (United States)

    Muhlfeld, Clint C.; Bennett, David H.; Marotz, B.

    2001-01-01

    We used radiotelemetry to quantify the movements and habitat use of resident adult Columbia River redband trout Oncorhynchus mykiss gairdneri (hereafter, redband trout) from October to December 1997 in South Fork Callahan Creek, a third-order tributary to Callahan Creek in the Kootenai River drainage in northwestern Montana. All redband trout (N = 23) were consistently relocated in a stream reach with moderate gradient (2.3%) near the site of original capture. Some fish (N = 13) displayed sedentary behavior, whereas others were mobile (N = 10). The mean total distance moved during the study for all fish combined was 64 m (SD = 105 m; range, 0–362 m), and the mean home range from October through December was 67 m (SD = 99 m; range, 5–377 m). Thirteen redband trout made short upstream and downstream movements (mean total movement = 134 m; range, 8–362 m) that were related to habitat use. Mobile fish commonly migrated to complex pools that spanned the entire channel width (primary pools). Eight of 10 fish that did not change habitat location occupied primary pools, whereas the remaining 2 fish occupied lateral pools. Fish commonly overwintered in primary pools dominated by cobble and boulder substrates that contained large woody debris. As water temperatures decreased from 3.2–6.3°C in October to 0–3.8°C in November and December, we found a 29% average increase (46–75%) in the proportional use of primary pool habitats. The lack of extensive movement and small home ranges indicate that adult redband trout found suitable overwintering habitat in deep pools with extensive amounts of cover within a third-order mountain stream. Resource managers who wish to protect overwintering habitat features preferred by redband trout throughout their limited range in streams affected by land management practices could apply strategies that protect and enhance pool habitat and stream complexity.

  18. Predicted riparian vegetation - Potential for Habitat Improvement in the Columbia River Basin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Basin-wide analysis of potential to improve tributary habitats in the Columbia River basin through restoration of habitat-forming processes. Identification of...

  19. A riparian and wetland habitat evaluation of Browns Park National Wildlife Reufge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On June 8, 1993, a tour on habitat evaluation of management practices at Browns Park NWR took place.The overall objective of the tour was to conduct a habitat...

  20. Small mammal populations in a grazed and ungrazed riparian habitat in Nevada

    Science.gov (United States)

    Dean E. Medin; Warren P. Clary

    1989-01-01

    Small mammal populations were compared between a grazed habitat and a comparable adjoining habitat protected from grazing by an exclosure. Composition, naive densiiy, standing crop biomass, species diversity, and other attributes of the small mammal communities were assessed. More species and higher numbers of most small mammals were found in the ungrazed habitat....

  1. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  2. Decomposition of leaf litter from a native tree and an actinorhizal invasive across riparian habitats.

    Science.gov (United States)

    Harner, Mary J; Crenshaw, Chelsea L; Abelho, Manuela; Stursova, Martina; Shah, Jennifer J Follstad; Sinsabaugh, Robert L

    2009-07-01

    Dynamics of nutrient exchange between floodplains and rivers have been altered by changes in flow management and proliferation of nonnative plants. We tested the hypothesis that the nonnative, actinorhizal tree, Russian olive (Elaeagnus angustifolia), alters dynamics of leaf litter decomposition compared to native cottonwood (Populus deltoides ssp. wislizeni) along the Rio Grande, a river with a modified flow regime, in central New Mexico (U.S.A.). Leaf litter was placed in the river channel and the surface and subsurface horizons of forest soil at seven riparian sites that differed in their hydrologic connection to the river. All sites had a cottonwood canopy with a Russian olive-dominated understory. Mass loss rates, nutrient content, fungal biomass, extracellular enzyme activities (EEA), and macroinvertebrate colonization were followed for three months in the river and one year in forests. Initial nitrogen (N) content of Russian olive litter (2.2%) was more than four times that of cottonwood (0.5%). Mass loss rates (k; in units of d(-1)) were greatest in the river (Russian olive, k = 0.0249; cottonwood, k = 0.0226), intermediate in subsurface soil (Russian olive, k = 0.0072; cottonwood, k = 0.0031), and slowest on the soil surface (Russian olive, k = 0.0034; cottonwood, k = 0.0012) in a ratio of about 10:2:1. Rates of mass loss in the river were indistinguishable between species and proportional to macroinvertebrate colonization. In the riparian forest, Russian olive decayed significantly faster than cottonwood in both soil horizons. Terrestrial decomposition rates were related positively to EEA, fungal biomass, and litter N, whereas differences among floodplain sites were related to hydrologic connectivity with the river. Because nutrient exchanges between riparian forests and the river have been constrained by flow management, Russian olive litter represents a significant annual input of N to riparian forests, which now retain a large portion of slowly

  3. Impact of the arundo wasp, Tetramesa romana (Hymenoptera:Eurytomidae) on biomass of the invasive weed, Arundo donax (Poaceae:Arundinoideae) and on revegetation of riparian habitat along the Rio Grande in Texas

    Science.gov (United States)

    An invasive grass, Arundo donax, occupies thousands of hectares of arid riparian habitat along the Rio Grande and was the first perennial grass to be targeted with biological control, due to the great negative impacts of this weed on water resources and riparian ecosystems. The shoot-tip galling was...

  4. Riparian and wetland ecological health : evaluation of selected streams on the Charles M. Russell National Wildlife Refuge : Appendix A : Key to riparian and wetland sites of Charles M. Russell National Wildlife Refuge and descriptions of habitat types and major seral community types of CMR NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains a key to riparian and wetland sites, as well as description of habitat and community types for the Charles M. Russell National Wildlife Refuge...

  5. Grizzly Bear Aware: Conflict Resolution and Habitat Restoration in the Centennial Valley and Southwest Montana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The project will take a three pronged approach to implement conservation actions that prevent or reduce Grizzly Bear human conflicts, enhance habitats and improve...

  6. Challenges of predicting the potential distribution of a slow-spreading invader: a habitat suitability map for an invasive riparian tree

    Science.gov (United States)

    Jarnevich, Catherine S.; Reynolds, Lindsay V.

    2011-01-01

    Understanding the potential spread of invasive species is essential for land managers to prevent their establishment and restore impacted habitat. Habitat suitability modeling provides a tool for researchers and managers to understand the potential extent of invasive species spread. Our goal was to use habitat suitability modeling to map potential habitat of the riparian plant invader, Russian olive (Elaeagnus angustifolia). Russian olive has invaded riparian habitat across North America and is continuing to expand its range. We compiled 11 disparate datasets for Russian olive presence locations (n = 1,051 points and 139 polygons) in the western US and used Maximum entropy (Maxent) modeling to develop two habitat suitability maps for Russian olive in the western United States: one with coarse-scale water data and one with fine-scale water data. Our models were able to accurately predict current suitable Russian olive habitat (Coarse model: training AUC = 0.938, test AUC = 0.907; Fine model: training AUC = 0.923, test AUC = 0.885). Distance to water was the most important predictor for Russian olive presence in our coarse-scale water model, but it was only the fifth most important variable in the fine-scale model, suggesting that when water bodies are considered on a fine scale, Russian olive does not necessarily rely on water. Our model predicted that Russian olive has suitable habitat further west from its current distribution, expanding into the west coast and central North America. Our methodology proves useful for identifying potential future areas of invasion. Model results may be influenced by locations of cultivated individuals and sampling bias. Further study is needed to examine the potential for Russian olive to invade beyond its current range. Habitat suitability modeling provides an essential tool for enhancing our understanding of invasive species spread.

  7. Northwest Montana Wildlife Mitigation Habitat Protection : Advance Design Appendices G, H, I, J : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Marilyn A.; Manley, Tim

    1993-10-01

    This research project was initiated in January 1989. Field work was completed by late summer. The purpose of this project was to identify reasons for the decline of the grouse population and determine the feasibility of maintaining grouse on the Tobacco Plains. Specific objectives of the project were: (1) To determine the existing and historic availability of sharp-tailed grouse habitat. (2) To document current and past grouse populations. (3) To determine the success or failure of past augmentation efforts. (4) To develop a list of potential sites to be included in a protection plan.

  8. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Directory of Open Access Journals (Sweden)

    John M. Boland

    2016-06-01

    Full Text Available The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp., an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball, and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav. Pers.. Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60% in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70% of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley

  9. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    Science.gov (United States)

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  10. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Science.gov (United States)

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  11. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture.

    Science.gov (United States)

    Xu, Xiaojing; Xiao, Lei; Feng, Jinchao; Chen, Ningmei; Chen, Yue; Song, Buerbatu; Xue, Kun; Shi, Sha; Zhou, Yijun; Jenks, Matthew A

    2016-11-01

    Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C16:0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments.

  12. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-152) - Idaho Model Watershed Habitat Projects – Zeigler Riparian Fence Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Shannon C. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2004-06-30

    The Bonneville Power Administration is proposing to fund the installation of approximately 600 feet of jack post and pole fence along a side channel to the Salmon River in Custer County, Idaho. In 2003 BPA funded the installation of approximately 1,300 feet of riparian fence along the Salmon River at this site. The proposed 600-foot fence addition will meet or exceed BPA’s minimum requirement of a 35-foot setback. This addition will connect with the Phase I fence and will protect a spring and side channel from livestock disturbance. The goal of this project is to enhance salmon and steelhead rearing and migration habitat through exclusion fencing.

  13. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    Science.gov (United States)

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  14. Riparian buffer design guidelines for water quality and wildlife habitat functions on agricultural landscapes in the Intermountain West: Appendix C

    Science.gov (United States)

    Susan Buffler

    2008-01-01

    Currently, there is no scientific literature examining appropriate riparian buffer widths for water quality for streams on private agriculturally dominated lands in arid regions of the Intermountain West. The initial step in this research effort was a review of buffer research as documented in the literature in other physiographic regions of the United States. Research...

  15. Climate change and special habitats in the Blue Mountains: Riparian areas, wetlands, and groundwater-dependent ecosystems [Chapter 7

    Science.gov (United States)

    Kathleen A. Dwire; Sabine Mellmann-Brown

    2017-01-01

    In the Blue Mountains, climate change is likely to have significant, long-term implications for freshwater resources, including riparian areas, wetlands (box 7.1), and groundwater-dependent ecosystems (GDEs, box 7.2). Climate change is expected to cause a transition from snow to rain, resulting in diminished snowpack and shifts in streamflow to earlier in the season (...

  16. Impact of non-native plant removal on lizards in riparian habitats in the southwestern United States

    Science.gov (United States)

    Heather L. Bateman; Alice Chung-MacCoubrey; Howard L. Snell

    2008-01-01

    Many natural processes in the riparian cottonwood (Populus deltoides) forest of the Middle Rio Grande (MRG) in the southwestern United States have been disrupted or altered, allowing non-native plants such as saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) to establish. We investigated...

  17. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: implications for conservation and management.

    Science.gov (United States)

    O'Toole, Amanda C; Hanson, Kyle C; Cooke, Steven J

    2009-08-01

    There is growing concern that recreational shoreline angling activity may negatively impact littoral and riparian habitats independent of any direct or indirect influences of fish harvest or fishing mortality through mechanisms such as disturbance (e.g., trampling, erosion) and pollution (e.g., littering). We sampled a suite of aquatic and terrestrial variables (i.e., water quality, aquatic and terrestrial macrophytes, soil compaction, anthropogenic refuse) at 14 high shoreline angling-activity sites (identified by way of interviews with conservation officers and angling clubs) within an urban area (Ottawa, Canada). For each high angling-activity site, a nearby corresponding low angling-activity site was sampled for comparison. We found that the percentage of barren area and soil compaction were greater in areas of high angling activity compared with areas that experienced relatively low angling activity. In addition, terrestrial and aquatic macrophyte density, height, and diversity were lower at high angling-activity sites. Angling- and non-angling-related litter was present in large quantities at each of the high angling-activity sites, and comparatively little litter was found at low angling-activity sites. Collectively, these findings indicate that shoreline angling does alter the riparian environment, contributing to pollution and environmental degradation in areas of high angling intensity. With growing interest in providing urban angling opportunities and in response to increasing interest in developing protected areas and parks, a better understanding of the ecologic impacts of shoreline angling is necessary to address multiuser conflicts, to develop angler outreach and educational materials, and to optimize management of angling effort to maintain ecologic integrity of riparian and aquatic ecosystems.

  18. Managing grazing of riparian areas in the Intermountain Region

    Science.gov (United States)

    Warren P. Clary; Bert F. Webster

    1989-01-01

    Concern about livestock grazing in riparian habitats and its effect upon riparian-dependent resources has resulted in numerous controversies about the appropriate management approach. This document provides guidance for grazing of riparian areas in a manner that should reduce both nonpoint source pollution and potential grazing impacts on other riparian-dependent...

  19. Bighorn sheep habitat studies, population dynamics, and population modeling in Bighorn Canyon National Recreation Area, Wyoming and Montana, 2000-2003

    Science.gov (United States)

    Singer, Francis J.; Schoenecker, Kathryn A.

    2004-01-01

    At the request of National Park Service resource managers, we began a study in 2000 to evaluate causes for the decline of the bighorn sheep (Ovis canadensis) population inhabiting Bighorn Canyon National Recreation Area (BICA), the Pryor Mountain Wild Horse Range, and surrounding state and U.S. Forest Service lands in Montana and Wyoming. Our study consisted of radio-collaring adult rams and ewes with mortality sensors to monitor adult mortalities, tracking ewes to determine pregnancy and lambing rates, habitat assessments to determine why the population was not expanding into what had been modeled using GIS methodology as suitable bighorn sheep habitat, measuring ungulate herbaceous consumption rates and herbaceous production to determine plant responses, and aerial and boat surveys to determine bighorn sheep population range and population dynamics (Schoenecker and others, this report). Two habitat suitability models were created and conducted (Gudorf, this report; Wockner and others, this report) using different methodologies, and comparisons made between the two. Herd population dynamics were modeled using the POP-II and POP-III programs (Roelle, this report), and a reassessment of ungulate exclosures that were established 8–10 years ago was conducted (Gerhardt, this report).

  20. Cactus, Riparian Habitat, and Turf Grass: Water Budget and Policy Implications of Vegetation Change Under Urban Heat Island and Effluent Irrigation in the Southwest U.S.

    Science.gov (United States)

    Scott, C. A.

    2008-12-01

    This paper assesses the impacts of two urban growth drivers--urban heat island (UHI) and effluent irrigation--on the landscaping vegetation component of water budgets in semi-arid southern Arizona, and has policy significance for other urbanizing regions facing water scarcity. Landscaping irrigation, accounting for up to half of the study area's urban water demand, is influenced by vegetation type, UHI temperature and evapotranspiration, and water type (potable or effluent). Conservation programs that have resulted in widespread adoption of low-flow indoor plumbing fixtures and appliances currently identify irrigation of lawns, trees, and other landscaping as targets to reduce water use. At the same time, however, high water-demand turf grass is expanding on golf courses, public parks, and campuses that are irrigated using effluent that historically has supported riparian corridor habitat. Tucson, Arizona's UHI over 1969-2006 is characterized by a 0.043 degC/yr increase in annual average differences between urban - nonurban minimum temperatures (Tmin). The most pronounced trends in urban Tmin increases are 0.097 degC/yr for the months of March, April, May, and June corresponding to the pre- monsoon period of highest outdoor water demand. The UHI Tmax and reference evapotranspiration trends are less marked but indicate increasing irrigation demand for both residential and public landscaping. Normalized difference vegetation index (NDVI) from Landsat Thematic Mapper for 1984-2005 shows that vegetation, particularly turf on golf courses, is increasing in Tucson's expanding urban fringe but has largely stabilized or is marginally decreasing in the urban core. Regression analysis of NDVI with water use (records only available for 2000-2006) shows mixed results. The tradeoff between water conservation for residential landscaping and expanding turf grass on public landscaping at the cost of riparian corridors is explored from dual water budget and policy perspectives.

  1. Supplement Analysis for the Watershed Management Program EIS - Idaho Model Watershed Habitat Projects - Welp Riparian Enhancement Fence

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-08-04

    The Bonneville Power Administration is proposing to fund the installation of approximately 1.5 miles of post and wire fence along Valley Creek in Stanley, Idaho. The proposed fence will meet or exceed BPA's minimum requirement of a 35-foot setback from the stream. Fence posts will be driven into the ground with a post ponder. The goal of this project is to enhance salmon and steelhead rearing and migration habitat through exclusion fencing.

  2. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  3. Waterfowl breeding population survey for Montana: 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the Waterfowl Breeding Population and Habitat Survey for Montana during 1993. The primary purpose of the survey is to provide information on...

  4. Waterfowl breeding population survey for Montana: 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the Waterfowl Breeding Population and Habitat Survey for Montana during 1998. The primary purpose of the survey is to provide information on...

  5. Waterfowl production survey for Montana: July 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the Waterfowl Production and Habitat Survey for Montana during 1980. The primary purpose of the survey is to provide information on duck...

  6. Riparian Inventory

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset is a digital representation of the 1:24,000 Land Use Riparian Areas Inventory for the state of Kansas. The dataset includes a 100 foot buffer around all...

  7. Riparian States

    African Journals Online (AJOL)

    Kenya, the rest of the Nile River riparian countries fall in the category of least developed ... state econo-political and socio-cultural utilisation remains a major challenge. .... Nyukuri, African Centre for Technology Studies (ACTS), Kenya.

  8. Habitat monitoring needs for Arapaho NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is the refuge's ideas on what level of monitoring is needed for each habitat objective. Habitat objectives include riparian habitat, wetland habitat,...

  9. Birds of the riparian corridors of Potchefstroom, South Africa / Rindert Wyma

    OpenAIRE

    Wyma, Rindert

    2012-01-01

    A riparian ecosystem is the area between the aquatic and terrestrial setting of a stream, and serves as a corridor and habitat for birds. Several riparian ecosystems are located in urban environments, and three main riparian corridors are located in Potchefstroom. They are the Mooi River, Wasgoed Spruit, and Spitskop Spruit, which encompass a wide range of different vegetation types and anthropogenic factors. Therefore, different habitat types for birds occur along the riparian corridors of P...

  10. Hiawatha National Forest Riparian Inventory: A Case Study

    Science.gov (United States)

    Abood, S. A.

    2014-12-01

    Riparian areas are dynamic, transitional ecotones between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Riparian areas offers wildlife habitat and stream water quality, offers bank stability and protects against erosions, provides aesthetics and recreational value, and other numerous valuable ecosystem functions. Quantifying and delineating riparian areas is an essential step in riparian monitoring, riparian management/planning and policy decisions, and in preserving its valuable ecological functions. Previous approaches to riparian areas mapping have primarily utilized fixed width buffers. However, these methodologies only take the watercourse into consideration and ignore critical geomorphology, associated vegetation and soil characteristics. Other approaches utilize remote sensing technologies such as aerial photos interpretation or satellite imagery riparian vegetation classification. Such techniques requires expert knowledge, high spatial resolution data, and expensive when mapping riparian areas on a landscape scale. The goal of this study is to develop a cost effective robust workflow to consistently map the geographic extent and composition of riparian areas within the Hiawatha National Forest boundary utilizing the Riparian Buffer Delineation Model (RBDM) v3.0 and open source geospatial data. This approach recognizes the dynamic and transitional natures of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process and the results would suggests incorporating functional variable width riparian mapping within watershed management planning to improve protection and restoration of valuable riparian functionality and biodiversity.

  11. HABITAT CHARACTERISTICS AND THE EFFECT OF VARIOUS NUTRIENT SOLUTIONS ON GROWTH AND MINERAL-NUTRITION OF ARNICA-MONTANA L GROWN ON NATURAL SOIL

    NARCIS (Netherlands)

    PEGTEL, DM

    1994-01-01

    Arnica montana, one of the character species of the replacement plant community Violion caninae on sandy acid humic podzol, is declining in the Netherlands since 1950. Locally, it is even extinct. This process of decline may be attributed to (i) autonomic succession; (ii) increased rate of

  12. HABITAT CHARACTERISTICS AND THE EFFECT OF VARIOUS NUTRIENT SOLUTIONS ON GROWTH AND MINERAL-NUTRITION OF ARNICA-MONTANA L GROWN ON NATURAL SOIL

    NARCIS (Netherlands)

    PEGTEL, DM

    1994-01-01

    Arnica montana, one of the character species of the replacement plant community Violion caninae on sandy acid humic podzol, is declining in the Netherlands since 1950. Locally, it is even extinct. This process of decline may be attributed to (i) autonomic succession; (ii) increased rate of acidifica

  13. Riparian Buffers for Runoff Control and Sensitive Species Habitat on U.S. Army Corps of Engineers Lake and Reservoir Projects

    Science.gov (United States)

    2016-10-01

    nitrogen in streams, wetlands , and other water bodies (Mayer et al. 2006). • Temperature control - Well-maintained riparian areas along streams and...and nest construction . It prefers dense, brushy areas, particularly associated with early succession (Brown 2010). Availability of surface water is...relatively narrow when compared to many ecological functions, typically on the order of 30 to 50m wide, and some studies indicate that buffers as narrow as

  14. Waterfowl breeding population survey for Montana: May 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the Waterfowl Breeding Population and Habitat Survey for Montana during 1981. The primary purpose of the survey is to provide information on...

  15. Malheur NWR: Woody Riparian Landbird Point Count [PRIMR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of the survey is to assess trend in relative abundance and composition of landbird species in woody riparian habitats in Unit 12. We will monitor all...

  16. Draft final report : Relative abundance and diversity of birds in riparian habitats at North Platte National Wildlife refuge and in grasslands at Crescent Lake National Wildlife Refuge, Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — National Wildlife Refuges (NWRs) are among the few remaining tracts of land that have the potential for providing population-source habitats for many declining bird...

  17. Cooperative Recovery Initiative (2016) Grizzly Bear Aware: Conflict Resolution and Habitat Restoration in the Centennial Valley and Southwest Montana Interim Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The project will take a three pronged approach to implement conservation actions that prevent or reduce Grizzly Bear human conflicts, enhance habitats and improve...

  18. Riparian forestry management and adult stream insects

    Directory of Open Access Journals (Sweden)

    R. A. Briers

    2004-01-01

    Full Text Available The impacts of coniferous plantation forestry on the biology of upland streams in the UK are firmly established. Whilst benthic communities have been well studied, very little research has considered the impacts of riparian forestry management on adult stream insects, yet the essentially terrestrial adult (reproductive phase may be important in determining the abundance and distribution of larval stages. Riparian vegetation has a potentially strong impact on survival and success of adult stages through alteration of microclimate, habitat structure and potential food sources, in addition to effects carried over from larval stages. Here, current riparian management strategies are analysed in the light of available information on the ecology of adult stream insects. On the whole, management practices appear to favour adult stream insects, although an increase in tree cover in riparian areas could be beneficial, by providing more favourable microclimatic conditions for adults. This conclusion is drawn based on rather limited information, and the need for further research into the effects of riparian forestry management on adult stream insects is highlighted. Keywords: microclimate, plantation, life history, riparian vegetation

  19. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-154) - Idaho Model Watershed Habitat Projects – Bauchman (Ives Place) Riparian Fence

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Shannon C. [Bonneville Power Administration (BPA), Portland, OR (United States)

    2004-07-08

    The Bonneville Power Administration is proposing to fund the installation of approximately 5,525 feet of jack post and pole fence along the Salmon River in Custer County, Idaho. The proposed fence will greatly exceed BPA’s minimum requirement of a 35-foot setback, encompassing approximately 11.5 acres of land within the setback. This setback will also protect an existing cotton wood stand that lies between the fence and the river. The goal of this project is to enhance salmon and steelhead rearing and migration habitat through exclusion fencing.

  20. Significance of water quality to fish propagation, waterfowl habitat, livestock watering, and recreation use for 24 lakes and reservoirs in Valley and Phillips Counties, Montana

    Science.gov (United States)

    Ferreira, R.F.

    1983-01-01

    Twenty-four reservoirs were sampled for water quality to determine their suitability for fish propagation, waterfowl habitat, livestock watering, and recreation. Reservoir-surface areas ranged from 0.2 to 146 hectares and depths ranged from 0.01 to 6.0 meters. Of the reservoirs studied, six generally had water quality that would not be detrimental to fish propagation. Most of the reservoirs were enriched with nutrients and supported large concentrations of phytoplankton and dense growth of aquatic plants. In late winter and late summer, enrichment of shallow reservoirs often resulted in dissolved-oxygen concentrations less than 5.0 milligrams per liter, which is detrimental to fish. Three reservoirs lacked aquatic plants for water fowl habitat. Four reservoirs had small dissolved-oxygen concentration in the bottom water that might be critical to the protection of waterfowl if botulism were to occur. Specific conductance of water samples from three reservoirs was sufficiently close to the criterion of 4,800 microsiemens per centimeter at 25 degrees celsius to be regarded as potentially hazardous to livestock. However, most of the reservoirs generally would not be conducive to recreational swimming. Visibility was limited in most of the reservoirs. In addition, leech populations and growth of submersed aquatic plants in most of the reservoirs would be a nuisance to swimmers. (USGS)

  1. Comparison of water-use by alien invasive pine trees growing in riparian and non-riparian zones in the Western Cape Province, South Africa

    CSIR Research Space (South Africa)

    Dzikiti, Sebinasi

    2013-04-01

    Full Text Available Self-established stands of alien invasive pine trees are common in many parts of South Africa and elsewhere. They mainly invade non-riparian settings but sometimes invade riparian habitats. There are clear visual differences in the physical...

  2. Distribution, floristic structure and habitat requirements of the riparian forest community Populetum talassicae ass. nova in the Central Pamir-Alai Mts (Tajikistan, Middle Asia

    Directory of Open Access Journals (Sweden)

    Arkadiusz S. Nowak

    2013-01-01

    Full Text Available This paper discusses the floristic structure, distribution and habitat requirements of a new forest syntaxon, Populetum talassicae ass. nova. The potential range of the Populetum talassicae association comprises the central Pamir-Alai and Tian-Shan Mountains in Middle Asia. The biotope of this community comprises high mountain river valleys and shore zones of mountain lakes situ- ated at elevations between 2200 and 2750 m. Phytocoenoses of the Populetum talassicae association are characterized by a clear predominance in the tree layer of a characteristic species of the association ‒ Populus talassica. Shrubs are not so abundant; how- ever, the undergrowth layer of the community could reach up to 60% of the total cover, consisting mainly of Salix spp., Hipophaë rhamnoides, Lonicera stenantha, Juniperus semiglobosa and J. seravschanica. The herbaceous layer is quite rich and has about 20 species on average. Among associated species mainly meadow, rush and marsh taxa have been noted. Regarding the considerable cover of the meadow species, the association of Populetum talassicae has been classified as the Populetea laurifolio-suaveolentis syntaxon. A new plant alliance was proposed ‒ Populion talassicae all. nova with Pedicularis dolichorhiza and Astragalus tibetanus as diagnostic species. The described forest association is one of the rarest and most rapidly disappearing wood communities in Tajikistan, which means that special conservation attention is called for.

  3. Conflicts in River Management: A Conservationist's Perspective on Sacramento River Riparian Habitats—Impacts, Threats, Remedies, Opportunities, and Consensus

    Science.gov (United States)

    Richard Spotts

    1989-01-01

    The Sacramento River's historic riparian habitats have been reduced by over 98 percent due to cumulative, adverse human activities. These activities continue to jeopardize the remaining riparian habitats. The results of these trends is more endangered species conflicts and listings, coupled with less fish, beautiful scenery, and other resource values. This paper...

  4. Montana StreamStats

    Science.gov (United States)

    2016-04-05

    About this volumeMontana StreamStats is a Web-based geographic information system (http://water.usgs.gov/osw/streamstats/) application that provides users with access to basin and streamflow characteristics for gaged and ungaged streams in Montana. Montana StreamStats was developed by the U.S. Geological Survey (USGS) in cooperation with the Montana Departments of Transportation, Environmental Quality, and Natural Resources and Conservation. The USGS Scientific Investigations Report consists of seven independent but complementary chapters dealing with various aspects of this effort.Chapter A describes the Montana StreamStats application, the basin and streamflow datasets, and provides a brief overview of the streamflow characteristics and regression equations used in the study. Chapters B through E document the datasets, methods, and results of analyses to determine streamflow characteristics, such as peak-flow frequencies, low-flow frequencies, and monthly and annual characteristics, for USGS streamflow-gaging stations in and near Montana. The StreamStats analytical toolsets that allow users to delineate drainage basins and solve regression equations to estimate streamflow characteristics at ungaged sites in Montana are described in Chapters F and G.

  5. MT—Impacts of Oil Exploration and Production to the Northeast Montana Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Northeast Montana Wetland Management District provides habitat for numerous different species of breeding waterfowl and migrating shorebirds, including the...

  6. Riparian dependence, biogeographic status, and likelihood of endangerment in landbirds of the Southwest

    Science.gov (United States)

    Jean-Luc E. Cartron; Scott H. Stoleson; R. Roy Johnson

    1999-01-01

    Riparian habitats and wetlands represent less than 2 percent of the land area of the Southwest, but they support the highest density and abundance of plants and animals in that region (Dahms and Geils 1997). Since the latter part of the 19th century, riparian and wetland ecosystems have been severely impacted by human activities such as woodcutting, mining, livestock...

  7. Riparian Areas of Greece: Their Definition and Characteristics

    Directory of Open Access Journals (Sweden)

    D. Gounaridis

    2010-01-01

    Full Text Available Riparian areas are unique and of high importance ecosystems because they are adjacent to surface freshwater bodies suchas streams, rivers and lakes. They are the semi-aquatic transitional zones (ecotones between terrestrial and aquatic ecosystems.Water, soil and vegetation are the three main characteristics that differentiate them compared to other ecosystems.Furthermore, they are present in all biomes (from deserts to tropical forests and are found in a great range of hydrologic andgeomorphologic conditions that results in a great variety of riparian habitat types. In Greece, there are five major riparianforest habitat types that also occur in most of the semi-arid Mediterranean regions. Frequent disturbance is another uniquecharacteristic that differentiates riparian areas. The major disturbances that shape riparian areas in Greece are unpredictedflood and drought events, as well as fires but to a lesser degree. Wetlands are another important semi-aquatic ecosystemsthat many consider as synonymous to riparian areas. In reality, these two ecosystems overlap but they are also different sincewetlands are considered as “wetter” and less disturbance driven than riparian areas.

  8. Stream characteristics and their implications for the protection of riparian fens and meadows

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, A.; Larsen, S.E.; Andersen, Peter Mejlhede

    2011-01-01

    1. Running waters, including associated riparian areas, are embraced by international legal frameworks outlining targets for the preservation, protection and improvement of the quality of the environment. Interactions between stream and river processes and riparian habitats have not received much...... attention in the management of stream ecosystems, and integrated measures that consider both the ecological status of streams and rivers (sensu EU Water Framework Directive, WFD) and the conservation status of riparian habitats and species (sensu EU Habitats Directive, HD) are rare. 2. Here, we analysed...... the influence of stream size, morphology and chemical water characteristics for the distribution of water-dependent terrestrial habitat types, i.e. alkaline fens, periodically inundated meadows and meadows in riparian areas in Denmark using an extensive data set covering a total of 254 stream reaches. A species...

  9. Riparian Habitat - Sacramento River [ds343

    Data.gov (United States)

    California Department of Resources — This layer was obtained for inclusion in BIOS from the Chico State Geographic Information Center (GIC) Website. Permission to post these data in BIOS was provided to...

  10. Headwater riparian forest-floor invertebrate communities associated with alternative forest management practices.

    Science.gov (United States)

    Rykken, Jessica J; Moldenke, Andrew R; Olson, Deanna H

    2007-06-01

    Headwater streams and their riparian zones are a common, yet poorly understood, component of Pacific Northwest, USA, landscapes. We describe the ecological importance of headwater stream riparian zones as habitat for forest-floor invertebrate communities and assess how alternative management strategies for riparian zones may impact these communities. We compared community composition of forest-floor invertebrates at increasing distances along trans-riparian (stream edge to upslope) transects in mature forests, clearcuts, and riparian buffers of approximately 30-m width with upslope clearcuts. Invertebrates were collected using pitfall traps in five replicate blocks of three treatments each in the Willamette National Forest, Oregon, USA. We measured microclimate and microhabitat variables at pitfall locations. Despite strong elevation and block effects on community composition, community analyses revealed a distinct "riparian" invertebrate community within 1 m of the stream edge in mature forest treatments, which was strongly related to cool, humid microclimate conditions. Invertebrate community composition in buffer treatments was far more similar to that of mature forests than to clearcuts; a pattern mirrored by microclimate. These results suggest that, within our study sites, forest-floor invertebrate distributions are strongly associated with microclimate and that riparian buffers of approximately 30-m width do provide habitat for many riparian and forest species. Riparian reserves may serve as effective forest refugia and/or dispersal corridors for invertebrates and other taxa, and their incorporation into watershed management plans likely will contribute to meeting persistence and connectivity objectives.

  11. 2011 Los Alamos National Laboratory Riparian Inventory Results

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Elizabeth J. [Los Alamos National Laboratory; Hansen, Leslie A. [Los Alamos National Laboratory; Hathcock, Charles D. [Los Alamos National Laboratory; Keller, David C. [Los Alamos National Laboratory; Zemlick, Catherine M. [Los Alamos National Laboratory

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  12. Comparison of bird community indices for riparian restoration planning and monitoring

    Science.gov (United States)

    Young, Jock S.; Ammon, Elisabeth M.; Weisburg, Peter J.; Dilts, Thomas E.; Newton, Wesley E.; Wong-Kone, Diane C.; Heki, Lisa G.

    2013-01-01

    The use of a bird community index that characterizes ecosystem integrity is very attractive to conservation planners and habitat managers, particularly in the absence of any single focal species. In riparian areas of the western USA, several attempts at arriving at a community index signifying a functioning riparian bird community have been made previously, mostly resorting to expert opinions or national conservation rankings for species weights. Because extensive local and regional bird monitoring data were available for Nevada, we were able to develop three different indices that were derived empirically, rather than from expert opinion. We formally examined the use of three species weighting schemes in comparison with simple species richness, using different definitions of riparian species assemblage size, for the purpose of predicting community response to changes in vegetation structure from riparian restoration. For the three indices, species were weighted according to the following criteria: (1) the degree of riparian habitat specialization based on regional data, (2) the relative conservation ranking of landbird species, and (3) the degree to which a species is under-represented compared to the regional species pool for riparian areas. To evaluate the usefulness of these indices for habitat restoration planning and monitoring, we modeled them using habitat variables that are expected to respond to riparian restoration efforts, using data from 64 sampling sites in the Walker River Basin in Nevada and California. We found that none of the species-weighting schemes performed any better as an index for evaluating overall habitat condition than using species richness alone as a community index. Based on our findings, the use of a fairly complete list of 30–35 riparian specialists appears to be the best indicator group for predicting the response of bird communities to the restoration of riparian vegetation.

  13. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Lindsay V. Reynolds,; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  14. The inbuilt long-term unfeasibility of environmental flows when disregarding riparian vegetation requirements

    Directory of Open Access Journals (Sweden)

    R. Rivaes

    2015-10-01

    Full Text Available Environmental flows remain biased towards the traditional fish biological group and ignore the inter-annual flow variability that rules longer species life cycles, thus disregarding the long-term perspective of the riverine ecosystem. Incorporating riparian vegetation requirements into environmental flows could bring an important contribute to fill in this gap. The long-term after-effects of this shortcoming on the biological communities downstream of dams were never estimated before. We address this concern by evaluating the effects of environmental flow regimes disregarding riparian vegetation in the long-term perspective of the fluvial ecosystem. To achieve that purpose, the riparian vegetation evolution was modeled considering its structural response to a decade of different environmental flows, and the fish habitat availability was assessed for each of the resulting riparian habitat scenarios. We demonstrate that fish habitat availability changes accordingly to the long-term structural adjustments that riparian habitat endure following river regulation. Environmental flow regimes considering only aquatic biota become obsolete in few years due to the change of the habitat premises in which they were based on and, therefore, are unsustainable in the long run. Therefore, considering riparian vegetation requirements on environmental flows is mandatory to assure the effectiveness of those in the long-term perspective of the fluvial ecosystem.

  15. Forest regions of Montana

    Science.gov (United States)

    Stephen F. Arno

    1979-01-01

    In this paper, Montana is divided into eight geographic subdivisions called "forest regions," based on distributions of tree and undergrowth species and the relationship of these patterns to climate and topography. The regions serve as a geographic reference for describing patterns of forest vegetation across the State. Data on the distributions of plant...

  16. Arnica montana L

    NARCIS (Netherlands)

    Andreas, Ch.H.

    1958-01-01

    Een eventuele veelvormigheid van de wolverlei, Arnica montana L., heeft in ons land, voor zover mij bekend, geen aanleiding gegeven tot een onderverdeling dezer soort. In Portugal is dat wel het geval; A. de Bolos beschreef in 1948 in het tijdschrift Agronomia Lusitanica 2 ondersoorten voor het Iber

  17. Responses of riparian reptile communities to damming and urbanization

    Science.gov (United States)

    Hunt, Stephanie D.; Guzy, Jacquelyn C.; Price, Steven J.; Halstead, Brian J.; Eskew, Evan A.; Dorcas, Michael E.

    2013-01-01

    Various anthropogenic pressures, including habitat loss, threaten reptile populations worldwide. Riparian zones are critical habitat for many reptile species, but these habitats are also frequently modified by anthropogenic activities. Our study investigated the effects of two riparian habitat modifications-damming and urbanization-on overall and species-specific reptile occupancy patterns. We used time-constrained search techniques to compile encounter histories for 28 reptile species at 21 different sites along the Broad and Pacolet Rivers of South Carolina. Using a hierarchical Bayesian analysis, we modeled reptile occupancy responses to a site's distance upstream from dam, distance downstream from dam, and percent urban land use. The mean occupancy response by the reptile community indicated that reptile occupancy and species richness were maximized when sites were farther upstream from dams. Species-specific occupancy estimates showed a similar trend of lower occupancy immediately upstream from dams. Although the mean occupancy response of the reptile community was positively related to distance downstream from dams, the occupancy response to distance downstream varied among species. Percent urban land use had little effect on the occupancy response of the reptile community or individual species. Our results indicate that the conditions of impoundments and subsequent degradation of the riparian zones upstream from dams may not provide suitable habitat for a number of reptile species.

  18. Building Footprints - Montana Structures/Addresses Framework

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Montana Structures/Addresses Framework is a statewide spatial database of structure and address points in the State of Montana. The Montana Structures/Addresses...

  19. Hippopotamus and livestock grazing : Influences on riparian vegetation and facilitation of other herbivores in the Mara Region of Kenya

    NARCIS (Netherlands)

    Kanga, Erustus M.; Ogutu, Joseph O.; Piepho, Hans-Peter; Olff, Han

    Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing

  20. BIODIVERSITY MANAGEMENT APPROACHES FOR STREAM-RIPARIAN AREAS: PERSPECTIVES FOR PACIFIC NORTHWEST HEADWATER FORESTS, MICROCLIMATES, AND AMPHIBIANS

    Science.gov (United States)

    Stream-riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is...

  1. Ecological assessment of streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06

    Science.gov (United States)

    Peterson, D.A.; Wright, P.R.; Edwards, G.P.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul

    2009-01-01

    Energy and mineral development, particularly coalbed natural gas development, is proceeding at a rapid pace in the Powder River Structural Basin (PRB) in northeastern Wyoming. Concerns about the potential effects of development led to formation of an interagency working group of primarily Federal and State agencies to address these issues in the PRB in Wyoming and in Montana where similar types of resources exist but are largely undeveloped. Under the direction of the interagency working group, an ecological assessment of streams in the PRB was initiated to determine the current status (2005–06) and to establish a baseline for future monitoring.The ecological assessment components include assessment of stream habitat and riparian zones as well as assessments of macroinvertebrate, algal, and fish communities. All of the components were sampled at 47 sites in the PRB during 2005. A reduced set of components, consisting primarily of macroinvertebrate and fish community assessments, was sampled in 2006. Related ecological data, such as habitat and fish community data collected from selected sites in 2004, also are included in this report.The stream habitat assessment included measurement of channel features, substrate size and embeddedness, riparian vegetation, and reachwide characteristics. The width-to-depth ratio (bankfull width/bankfull depth) tended to be higher at sites on the main-stem Powder River than at sites on the main-stem Tongue River and at sites on tributary streams. The streambed substrate particle size was largest at sites on the main-stem Tongue River and smallest at sites on small tributary streams such as Squirrel Creek and Otter Creek. Total vegetative cover at the ground level, understory, and canopy layers ranged from less than 40 percent at a few sites to more than 90 percent at many of the sites. A bank-stability index indicated that sites in the Tongue River drainage were less at risk of bank failure than sites on the main-stem Powder River

  2. Woody species composition, diversity and structure of riparian forests of four watercourses types in Burkina Faso

    Institute of Scientific and Technical Information of China (English)

    Oumarou Sambaré; Fidèle Bognounou; Rüdiger Wittig; Adjima Thiombiano

    2011-01-01

    Riparian forests are classified as endangered ecosystems in general, particularly in sahelian countries like Burkina Faso because of human-induced alterations and civil engineering works. The modification of this important habitat is continuing, with little attention being paid to the ecological or human consequences of these changes. The objective of this study is to describe the variation of woody species diversity and dynamic in riparian forests on different type of watercourse banks along phytogeographical gradient in Burkina Faso. All woody species were systematically measured in 90 sample plots with sides of 50 m × 20 m.Density, dominance, frequency and species and family importance values were computed to characterize the species composition. Different diversity indices were calculated to examine the heterogeneity of riparian forests. A total of 196 species representing 139 genera and 51 families were recorded in the overall riparian forests. The species richness of individuals with dbh ≥ 5cm increased significantly from the North to the South along the phytogeographical gradient and varied significantly between the different types of riparian forests. Similarity in tree species composition between riparian forests was low, which indicates high beta diversity and reflects differences in habitat conditions and topography.The structural characteristics varied significantly along the phytogeographical gradient and between the different types of riparian forests.The diameter class distribution of trees in all riparian forests showed a reverse “J” shaped curve except riparian forest of stream indicating vegetation dominated by juvenile individuals. Considering the ecological importance of riparian forest, there is a need to delineate and classify them along watercourses throughout the country.

  3. Social Organization in Montana. Montana Economic Study-Staff Study.

    Science.gov (United States)

    Bigart, Robert J.

    The four papers in this publication discusses Montana's social structure as it relates to culture, income, urbanism, and communal religious communities. "Montana Social Structure and Culture" includes rural and suburban life styles; the history of rural community organization; rural-small town communities; urban physical conditions;…

  4. An assessment of riparian environmental quality by using butterflies and disturbance susceptibility scores

    Science.gov (United States)

    Nelson, S. Mark; Andersen, Douglas C.

    1994-01-01

    The butterfly community at a revegetated riparian site on the lower Colorado River near Parker, Arizona, was compared to that found in a reference riparian site. Data indicated that the herbaceous plant community, which was lacking at the revegetated site, was important to several butterfly taxa. An index using butterfly sensitivity to habitat change (species classified into risk groups) and number of taxa was developed to monitor revegetation projects and to determine restoration effectiveness.

  5. Riparian vegetation dynamics and evapotranspiration in the riparian corridor in the delta of the Colorado River, Mexico.

    Science.gov (United States)

    Nagler, Pamela L; Glenn, Edward P; Hinojosa-Huerta, Osvel; Zamora, Francisco; Howard, Keith

    2008-09-01

    Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000 ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1 m yr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4 x 10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of

  6. Riparian vegetation and water yield: A synthesis

    Science.gov (United States)

    Salemi, Luiz Felippe; Groppo, Juliano Daniel; Trevisan, Rodrigo; Marcos de Moraes, Jorge; de Paula Lima, Walter; Martinelli, Luiz Antonio

    2012-08-01

    SummaryForested riparian zones perform numerous ecosystem functions, including the following: storing and fixing carbon; serving as wildlife habitats and ecological corridors; stabilizing streambanks; providing shade, organic matter, and food for streams and their biota; retaining sediments and filtering chemicals applied on cultivated/agricultural sites on upslope regions of the catchments. In this paper, we report a synthesis of a different feature of this type of vegetation, which is its effect on water yield. By synthesizing results from studies that used (i) the nested catchment and (ii) the paired catchment approaches, we show that riparian forests decrease water yield on a daily to annual basis. In terms of the treated area increases on average were 1.32 ± 0.85 mm day-1 and 483 ± 309 mm yr-1, respectively; n = 9. Similarly, riparian forest plantation or regeneration promoted reduced water yield (on average 1.25 ± 0.34 mm day-1 and 456 ± 125 mm yr-1 on daily and annual basis, respectively, when prorated to the catchment area subjected to treatment; n = 5). Although there are substantially fewer paired catchment studies assessing the effect of this vegetation type compared to classical paired catchment studies that manipulate the entire vegetation of small catchments, our results indicate the same trend. Despite the occurrence of many current restoration programs, measurements of the effect on water yield under natural forest restoration conditions are still lacking. We hope that presenting these gaps will encourage the scientific community to enhance the number of observations in these situations as well as produce more data from tropical regions.

  7. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape.

    Science.gov (United States)

    de la Peña-Cuéllar, Erika; Benítez-Malvido, Julieta; Avila-Cabadilla, Luis Daniel; Martínez-Ramos, Miguel; Estrada, Alejandro

    2015-02-01

    Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011-2013), mist-netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human-dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.

  8. 上海青浦区不同用地类型河流滨岸带生境及植物群落组成%RIPARIAN HABITAT AND PLANT COMMUNITY COMPOSITION UNDER DIFFERENT LAND USE TYPES IN QINGPU DISTRICT, SHANGHAI

    Institute of Scientific and Technical Information of China (English)

    左倬; 由文辉; 汪冬冬

    2011-01-01

    按照工业用地、农业用地、交通用地、居住用地、绿地和荒地等6类不同用地类型,于上海青浦区选取河流滨岸带样点48个.研究不同用地类型对滨岸带生境及植物群落组成的影响.研究发现:(1)目前该地区河流滨岸带生境优劣程度为:荒地>绿地>农业用地>交通用地>居住区>工业用地.这主要是由于在不同用地类型下人们对河岸类型、滨岸带几何形态以及原有植被的影响所造成.(2)目前该地区河流滨岸带有植物51科118种,平均丰富度水平绿地最高,工业用地最低.从植物的生活型与来源方面看,6类用地类型下的河流滨岸带植物群落组成存在显著差异.工业用地受人为影响强度较大,外来人侵植物比例高达27.22%;农业用地草本平均数量11.75种,为6类用地类型中最高水平;交通用地与居住用地表现出较大人工引种植物比例,分别为37.77%和49.97%;绿地有相对均衡的乔灌草比例,人工引种植物占所有植物的64.05%;荒地缺乏乔木与灌木类型,自然分布植物比例最高,为69.94%.%In this research,a case study in Qingpu District of Shanghai was conducted to determine the impacts of land use changing on riparian habitat and plant community composition. A total of 48 riparian sites in six different land use types were investigated and analyzed. At present,the quality of riparian habitat in Qingpu could be ranked in the order of:wild land>green space>agricultural land>transportation land>residential land>industrial land. The main reason of this result was the changes of bank type, the width and gradient of the riparian zone,and the original vegetation as the land use type varying. A total of 118plants from 51 families were found in Qingpu riparian zone. The highest value of average richness appeared in green space, while the lowest in industrial land. Plant community compositions in six land use types were significantly different from each other

  9. Effects of drought on birds and riparian vegetation in the Colorado River Delta, Mexico

    Science.gov (United States)

    Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Carrillo-Guererro, Yamilett K.; Glenn, Edward P.

    2013-01-01

    The riparian corridor in the delta of the Colorado River in Mexico supports internationally important bird habitat. The vegetation is maintained by surface flows from the U.S. and Mexico and by a high, non-saline aquifer into which the dominant phreatophytic shrubs and trees are rooted. We studied the effects of a regional drought on riparian vegetation and avian abundance and diversity from 2002 to 2007, during which time surface flows were markedly reduced compared to the period from 1995 to 2002. Reduced surface flows led to a reduction in native tree cover but an increase in shrub cover, mostly due to an increase in Tamarix spp., an introduced halophytic shrub, and a reduction in Populus fremontii and Salix gooddingii trees. However, overall vegetation cover was unchanged at about 70%. Overall bird density and diversity were also unchanged, but riparian-obligate species tended to decrease in abundance, and generalist species increased. Although reduction in surface flows reduced habitat value and negatively impacted riparian-obligate bird species, portions of the riparian zone exhibited resilience. Surface flows are required to reduce soil salt levels and germinate new cohorts of native trees, but the main source of water supporting this ecosystem is the aquifer, derived from underflows from irrigated fields in the U.S. and Mexico. The long-term prospects for delta riparian habitats are uncertain due to expected reduced flows of river water from climate change, and land use practices that will reduce underflows to the riparian aquifer and increase salinity levels. Active restoration programs would be needed if these habitats are to be preserved for the future.

  10. Secure & Restore Critical Fisheries Habitat, Flathead Subbasin, FY2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DuCharme, Lynn [Confederated Salish and Kootenai Tribes; Tohtz, Joel [Montana Fish, Wildlife & Parks

    2008-11-12

    The construction of Hungry Horse Dam inundated 125 km of adfluvial trout habitat in the South Fork of the Flathead River and its tributaries, impacting natural fish reproduction and rearing. Rapid residential and commercial growth in the Flathead Watershed now threaten the best remaining habitats and restrict our opportunities to offset natural resource losses. Hydropower development and other land disturbances caused severe declines in the range and abundance of our focal resident fish species, bull trout and westslope cutthroat trout. Bull trout were listed as threatened in 1998 under the Endangered Species Act and westslope cutthroat were petitioned for listing under ESA. Westslope cutthroat are a species of special concern in Montana and a species of special consideration by the Confederated Salish and Kootenai Tribes. The Secure & Protect Fisheries Habitat project follows the logical progression towards habitat restoration outlined in the Hungry Horse Dam Fisheries Mitigation Implementation Plan approved by the NWPPC in 1993. This project is also consistent with the 2000 Fish and Wildlife Program and the Flathead River Subbasin Plan that identifies the protection of habitats for these populations as one of the most critical needs in the subbasin and directs actions to offset habitat losses. The Flathead basin is one of the fastest growing human population centers in Montana. Riparian habitats are being rapidly developed and subdivided, causing habitat degradation and altering ecosystem functions. Remaining critical habitats in the Flathead Watershed need to be purchased or protected with conservation easements if westslope cutthroat and bull trout are to persist and expand within the subbasin. In addition, habitats degraded by past land uses need to be restored to maximize the value of remaining habitats and offset losses caused by the construction of Hungry Horse Dam. Securing and restoring remaining riparian habitat will benefit fish by shading and

  11. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest

    Science.gov (United States)

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-01-01

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest. PMID:20554561

  12. Effects of changes in the riparian forest on the butterfly community (Insecta: Lepidoptera in Cerrado areas

    Directory of Open Access Journals (Sweden)

    Helena S.R. Cabette

    Full Text Available ABSTRACT Preserved riparian vegetation usually has greater environmental complexity than the riparian vegetation modified by human actions. These systems may have a greater availability and diversity of food resources for the species. Our objective was to evaluate the effect of changes on the structure of the riparian forest on species richness, beta diversity and composition of butterfly species in the Cerrado of Mato Grosso. We tested the hypotheses that: (i higher species richness and (ii beta diversity would be recorded in more preserved environments; and (iii species composition would be more homogeneous in disturbed habitats. For hypothesis testing, the riparian vegetation of eight streams were sampled in four periods of the year in a fixed transect of 100 m along the shores. The richness of butterfly species is lower in disturbed than in preserved areas. However, species richness is not affected by habitat integrity. Beta diversity differed among sites, such that preserved sites have greater beta diversity, showing greater variation in species composition. In addition, beta diversity was positively affected by environmental heterogeneity. A total of 23 of the 84 species sampled occurred only in the changed environment, 42 were exclusive to preserved sites and 19 occurred in both environments. The environmental change caused by riparian forest removal drastically affects the butterfly community. Therefore, riparian vegetation is extremely important for butterfly preservation in the Cerrado and may be a true biodiversity oasis, especially during the dry periods, when the biome undergoes water stress and resource supply is more limited.

  13. Riparian erosion vulnerability model based on environmental features.

    Science.gov (United States)

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-12-01

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  14. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    Science.gov (United States)

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  15. Terrestrial Riparian Arthropod Investigations In the Big Beaver Creek Research Natural Area, North Cascades National Park Service Complex,1995-1996: Part III, Arachnida:Araneae

    Data.gov (United States)

    Oak Ridge National Laboratory — Ground-dwelling spider communities of nine distinct habitat types were sampled within the riparian corridor of lower Big Beaver Creek, North Cascades National Park...

  16. Analyzing Landscape Trends on Agriculture, Introduced Exotic Grasslands and Riparian Ecosystems in Arid Regions of Mexico

    Directory of Open Access Journals (Sweden)

    Romeo Mendez-Estrella

    2016-08-01

    Full Text Available Riparian Zones are considered biodiversity and ecosystem services hotspots. In arid environments, these ecosystems represent key habitats, since water availability makes them unique in terms of fauna, flora and ecological processes. Simple yet powerful remote sensing techniques were used to assess how spatial and temporal land cover dynamics, and water depth reflect distribution of key land cover types in riparian areas. Our study area includes the San Miguel and Zanjon rivers in Northwest Mexico. We used a supervised classification and regression tree (CART algorithm to produce thematic classifications (with accuracies higher than 78% for 1993, 2002 and 2011 using Landsat TM scenes. Our results suggest a decline in agriculture (32.5% area decrease and cultivated grasslands (21.1% area decrease from 1993 to 2011 in the study area. We found constant fluctuation between adjacent land cover classes and riparian habitat. We also found that water depth restricts Riparian Vegetation distribution but not agricultural lands or induced grasslands. Using remote sensing combined with spatial analysis, we were able to reach a better understanding of how riparian habitats are being modified in arid environments and how they have changed through time.

  17. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    Science.gov (United States)

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  18. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems.

    Science.gov (United States)

    Kraus, Johanna M; Gibson, Polly P; Walters, David M; Mills, Marc A

    2017-05-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI, USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r(2)  > 0.78) and had similar mean ΣPCB concentrations when averaged across all years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa less effective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2017;36:1278-1286. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is

  19. Libraries in Montana: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/montana.html Libraries in Montana To use the sharing features on ... page, please enable JavaScript. Billings Billings Clinic Medical Library 2825 8th Avenue North Billings, MT 59107-5100 ...

  20. From Midges to Spiders: Mercury Biotransport in Riparian Zones Near the Buffalo River Area of Concern (AOC), USA.

    Science.gov (United States)

    Pennuto, C M; Smith, M

    2015-12-01

    Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.

  1. Dispersal distance and achene quality of the rare anemochorous species Arnica montana L. : implications for conservation

    NARCIS (Netherlands)

    Strykstra, RJ; Pegtel, DM; Bergsma, A

    1998-01-01

    In The Netherlands, Arnica montana (Asteraceae) is a, rare plant species. Future survival in The Netherlands depends on its; ability to disperse between source populations and habitats, newly created by man. Plumed Asteraceae achenes are often considered to disperse over large distances. Therefore,

  2. Diversity, composition and phenology of araneid orb-weavers (Araneae, Araneidae associated with riparian forests in southern Brazil

    Directory of Open Access Journals (Sweden)

    Everton N. L. Rodrigues

    2015-03-01

    Full Text Available The Araneidae is a speciose family including web-spinning spiders that are very abundant in various terrestrial ecosystems. Several studies demonstrate that changes in vegetation surrounding rivers, streams and brooks affect the associated araneofauna. The aim of this research was to compare differences found in diversity (abundance and richness, composition and phenology of Araneidae spiders sampled in different habitats in four riparian forest catchments in southern Brazil. Samples were taken from riparian forests in four rivers of Rio Grande do Sul State: Piratini, Camaquã, Sinos and Maquiné rivers, each in a different hydrographic basin. Samples were taken twice seasonally on each basin during two years, sampling the araneofauna of the tree-shrub strata with beating tray. Six transects were employed on each basin, two per habitat: edge with grassland, forest interior and river edge. Araneids totalled 20 genera and 65 species. Comparing riparian forests significant differences are found. Spider abundance differed among riparian forests as well as species richness. Overall, Piratini river riparian forest had the higher abundance and richness for Araneidae; the lower values were in Sinos river forest. The stronger degradation and fragmentation of the riparian forests of Sinos river probably influenced the results, with human disturbance gradients associated negatively to web building. We present data on the diversity of these spiders, which were very abundant in the riparian forest interior and very rich in species in the grassland/riparian forest edge. Species composition also differs among the studied habitats (the above plus river/riparian forest edge. For the most abundant species the phenological pattern across the seasons was also analysed.

  3. 78 FR 10507 - Montana Regulatory Program

    Science.gov (United States)

    2013-02-14

    ... approved pursuant to 30 CFR 732.17. Therefore, Montana advised that the minor grammatical changes will not.... Montana proposes changes to the Montana Strip and Underground Mine Reclamation Act (MSUMRA) that... conditions of approval in the April 1, 1980, Federal Register (45 FR 21560). You can also find later...

  4. MONTANA PALLADIUM RESEARCH INITIATIVE

    Energy Technology Data Exchange (ETDEWEB)

    Peters, John; McCloskey, Jay; Douglas, Trevor; Young, Mark; Snyder, Stuart; Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4

  5. Down by the riverside: urban riparian ecology

    Science.gov (United States)

    Peter M. Groffman; Daniel J. Bain; Lawrence E. Band; Kenneth T. Belt; Grace S. Brush; J. Morgan Grove; Richard V. Pouyat; Ian C. Yesilonis; Wayne C. Zipperer

    2003-01-01

    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surprisingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem...

  6. Wildlife Linkages: Volumes and Values of Residual Timber in Riparian Zones in Eastern Texas

    Science.gov (United States)

    Garry Allen Burns; R. Montague Whiting; George M. LeGrande; James G. Dickson

    1999-01-01

    In regenerating southern pine, maintenance of riparian zones (RZs)is a major land concession for soil and water protection and wildlife habitat enhancement. However, there are few data quantifying the volume and value of residual timber in such areas. We inventoried merchantable timber in nine RZs of three widths in sapling-class East Texas pine plantations. Present,...

  7. Factors affecting songbird nest survival in riparian forests in a midwestern agricultural landscape

    Science.gov (United States)

    Peak, R.G.; Thompson, F. R.; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55-95 m) and three wide (400-530 m) riparian forests with adjacent grassland-shrub buffer strips and in three narrow and three wide riparian forests without adjacent grassland-shrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most-supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for area-sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance juvenile

  8. Habitat changes: Mount Haggin Wildlife Management Area

    Science.gov (United States)

    Frisina, M.R.; Keigley, R.B.

    2004-01-01

    In 1984, a rest-rotation grazing system was established on the Mount Haggin Wildlife Management Area (MHWMA) in southwest Montana. The area is a mixture of wet and dry meadow types, grass/shrublands, and forest. Prior to implementing the grazing system, photo-monitoring points were established on the MHWMA at locations were cattle concentrate were grazing. The area consists of a three pasture rest-rotation system incorporating 20,000 acres. Photo essays revealed changes in riparian, lowland, and upland sites within the grazing system. In addition, gross changes in the amount of willow present were documented.

  9. Environmental and Anthropogenic Factors Influencing Salamanders in Riparian Forests: A Review

    Directory of Open Access Journals (Sweden)

    Hannah L. Clipp

    2014-11-01

    Full Text Available Salamanders and riparian forests are intimately interconnected. Salamanders are integral to ecosystem functions, contributing to vertebrate biomass and complex food webs in riparian forests. In turn, these forests are critical ecosystems that perform many environmental services, facilitate high biodiversity and species richness, and provide habitat to salamander populations. Due to the global decline of amphibians, it is important to understand, as thoroughly and holistically as possible, the roles of environmental parameters and the impact of human activities on salamander abundance and diversity in riparian forests. To determine the population responses of salamanders to a variety of environmental factors and anthropogenic activities, we conducted a review of published literature that compared salamander abundance and diversity, and then summarized and synthesized the data into general patterns. We identify stream quality, leaf litter and woody debris, riparian buffer width, and soil characteristics as major environmental factors influencing salamander populations in riparian forests, describe and explain salamander responses to those factors, and discuss the effects of anthropogenic activities such as timber harvest, prescribed fires, urbanization, road construction, and habitat fragmentation. This review can assist land and natural resource managers in anticipating the consequences of human activities and preparing strategic conservation plans.

  10. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    Science.gov (United States)

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  11. Presence of riparian vegetation increases biotic condition of fish assemblages in two Brazilian reservoirs

    Directory of Open Access Journals (Sweden)

    Fabio Cop Ferreira

    2015-09-01

    Full Text Available Abstract The riparian vegetation in lakes and reservoirs is source of course wood structures such as trunks and branches and is used as sheltering, spawning and foraging habitats for fishes. The reduction of these submerged structures can thus, affect the composition and structure of fish assemblages in reservoirs. Aim To evaluate the influence of riparian vegetation on the biotic condition of fish assemblage by adapting the Reservoir Fish Assemblage Index (RFAI to two reservoirs in the Upper Paranapanema river basin, São Paulo State, Brazil. Methods The RFAI was adapted from metrics related to the functional characteristics and composition of fish assemblages through a protocol of metric selection and validation, and to its response to the presence of riparian vegetation. Results The final RFAI was composed by nine metrics, been lower in sites without riparian vegetation as consequence of the predominance of larger individuals and the percent of piscivorous and detritivorous fishes. Conclusions These results suggest that increasing shore habitat complexity in reservoirs by maintaining riparian vegetation increases fish biotic integrity.

  12. John Day River Sub-Basin Fish Habitat Enhancement Project; 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1999-02-01

    During 1998, three new projects were completed improving 1.8 miles of stream and riparian habitat. Protection for these reaches required the construction of 3.2 miles of riparian fence and 7 livestock water gaps. A previously leased property on the Mainstream was converted from apriarian pasture to a corridor fence after no significant recovery had occurred.

  13. Bryophyte responses to microclimatic edge effects across riparian buffers.

    Science.gov (United States)

    Stewart, Katherine J; Mallik, Azim U

    2006-08-01

    Although riparian buffers are an important aspect of forest management in the boreal forest of Canada, little is known about the habitat conditions within buffers, due in part to complex edge effects in response to both the upland clearcut and the stream. We investigated microclimatic conditions and bryophyte growth and vitality in seven locations between the stream edge and 60 m into the upland undisturbed conifer forests and at the clearcut sites with riparian buffer 30 km northwest of Thunder Bay, Ontario, Canada. We hypothesized that the growth and vitality of a pleurocarpous moss, Hylocomium splendens, and an acrocarpous moss, Polytrichum commune, would be directly related to the microclimatic gradients detected. We further hypothesized that sensitivity of the bryophytes to environmental factors will vary depending on their life form type, i.e., pleurocarpous moss will respond differently than the acrocarpous moss. Both bryophyte species were transplanted in pots and placed at 10-m intervals along 60-m transects perpendicular to the stream across the buffer and undisturbed sites. Bryophyte growth, cover, and vitality, as well as microclimatic parameters and plant cover, were measured over the summer in 2003. The riparian buffers were simultaneously affected by microclimatic gradients extending from both the clearcut edge and the riparian-upland ecotonal edge. Both bryophyte species responded to changes in the microclimatic conditions. However, vapor pressure deficit (VPD) was the most important factor influencing the growth of H. splendens, whereas for P. commune growth soil moisture was most important. Our study confirms earlier findings that interior forest bryophytes such as H. splendens can be used as indicators to monitor edge effects and biodiversity recovery following forest harvesting. We demonstrate that growth and vitality of these bryophytes reflect the prevailing near-ground microclimatic conditions at the forest edges. Abundance estimates of such

  14. 不同生境对金马河温江段河岸带草本群落物种多样性和构件生物量的影响%Effect of Different Habitats on the Species Diversity of Communities and Modular Biomass of Riparian Vegetation in the Wenjiang Section of the Jinma River

    Institute of Scientific and Technical Information of China (English)

    郝建锋; 姚小兰; 黄雨佳; 姚俊宇; 陈亚; 谢宏宇; 陈任华

    2016-01-01

    In order to explore the effect of different habitats on the species diversity and modular biomass of riparian herbaceous vegetation ,we conducted an investigation using the typical sampling method in the Wenjiang section of the Jinma River ,Sichuan .Thestudy site was divided into five habitat types ,i .e .,the flood land (seldom disturbed by sand mining but by some other human activities ) ,the gravel land(formed with the change of water level after sand mining ) ,the reed land(formed by the rolling of vehicles and cov‐ered with reeds later ) ,the S .arundinaceum land(the high ground not affected by the water level and cov‐ered with S .arundinaceum later) ,the sand land (formed after sand mining) .The results suggested that :1) a total of 113 herbaceou species belonging to 32 families and 80 genera ,was recorded across all types of habitats ,among which the number of herbaceous species was the highest (i .e .,a high species richness) in the sand habitats ,with a total of 59 species belonging to 21 families and 46 genera ,while the numbers of plants belonging to the families of Gramineae and Compositae were similar in all the types of habitats ;2) the species diversity index and evenness index were relatively small in the S . arundinaceum and reed lands ,while the dominance index is relatively large compared with other habitats ,indicating a extremely uneven species distribution ,weak concentration ratio and uniformity ,and extremely unstable species com‐munity ;3) The modular biomass was the lowest in the flood land ,and the highest in the S .arundinaceum land ,with significant difference in the root and stem dry weight than that in the other habitats ;4) com‐pared with the other habitats ,the species diversity in the sand land is relatively high ,and the species dis‐tributes evenly with high modular biomass ,indicating that the sand land is suitable for the grow th of ripar‐ian herbaceous plants .%采用典型样地法,以金马河流域温江段河

  15. An Ecohydrological Approach to Riparian Restoration Planning in the American Southwest

    Science.gov (United States)

    Leverich, G. T.; Orr, B.; Diggory, Z.; Dudley, T.; Hatten, J.; Hultine, K. R.; Johnson, M. P.; Orr, D.

    2014-12-01

    Riparian systems across the American southwest region are under threat from a growing and intertwined cast of natural and anthropogenic stressors, including flooding, drought, invasion by non-native plants, wildfire, urban encroachment, and land- and water-use practices. In relatively remote and unregulated systems like the upper Gila River in Arizona, riparian habitat value has persisted reasonably well despite much of it being densely infested with non-native tamarisk (salt cedar). A new concern in the watershed, however, is the eventual arrival of the tamarisk leaf beetle that is expected to soon colonize the tamarisk-infested riparian corridor as the beetle continues to spread across the southwest region. While there are numerous potential benefits to tamarisk suppression (e.g., groundwater conservation, riparian habitat recovery, fire-risk reduction), short-term negative consequences are also possible, such as altered channel hydraulics and canopy defoliation during bird nesting season (e.g., the endangered southwestern willow flycatcher). In preparation for anticipated impacts following beetle colonization, we developed a holistic restoration framework to promote recovery of native riparian habitat and subsequent local increases in avian population. Pivotal to this process was an ecohydrological assessment that identified sustainable restoration sites based on consideration of natural and anthropogenic factors that, together, influence restoration opportunities—flood-scour dynamics, vegetation community structure and resilience, surface- and groundwater availability, soil texture and salinity, wildfire potential, and land-use activities. Data collected included high-resolution remote-sensing products, GIS-based delineation of geomorphic activity, and vegetation field mapping. These data along with other information generated, including pre-biocontrol vegetation monitoring and flycatcher-habitat modeling, were synthesized to produce a comprehensive

  16. Assessment of water-recharging based on ecological features of riparian forest in the lower reaches of Tarim River

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhenyong; WANG Ranghui; SUN Hongbo; ZHANG Huizhi

    2006-01-01

    The occurrence and development of riparian forests which are mainly dominated by mesophytes species relate closely with surface water.Since there is no water discharge to the lower reaches of Tarim River in past 5 decade years, the riparian forests degrade severely. Based on the analyses of the monitored data of Yingsu, Argan and Luobuzhuang in 2002 and 2003, the effect of water-recharging is discussed. The water-recharging project neglects the fact that that it is flooding that controls the process of Populus euphratica colonizing on the bare surface, but focuses on groundwater influence on vegetation. The flooding control deviates inherent laws of riparian forests development, so the natural regeneration of riparian forests is checked.The responsescope of riparian plants on groundwater uplift is extremely narrow, and most riparian communities have not been optimized. No seedlings of dominant species are found in flooding areas because their physio-ecological characteristics are ignored. The vegetation changes in vicinities of stream only reflect the demand of mesophytes species on the shallow groundwater, however, the water-recharging fails to provide suitable habitats for the seedlings establishment of riparian plants. The present water-recharging scheme is difficult to realize vegetation restoration.

  17. Lake shoreline and littoral physical habitat structure in a national lakes assessment

    Science.gov (United States)

    Riparian and littoral habitat components are important to lake biological assemblages, providing refuge from predation, living and egg-laying substrates, and food. Shoreline structure also affects nutrient cycling, littoral production, and sedimentation rates. Measures of ripar...

  18. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland

    DEFF Research Database (Denmark)

    Helama, Samuli; Arentoft, Birgitte W.; Collin-Haubensak, Olivier

    2013-01-01

    Radial growth of boreal tree species is only rarely studied in riparian habitats. Here we investigated chronologies of earlywood, latewood, and annual ring widths and blue intensity (BI; a surrogate to latewood density) from riparian lake shore and upland forest interior pines (Pinus sylvestris L...... with the tree-ring chronologies were related to snow conditions at the start of the growing season. Deeper snowpack led to reduced upland pine growth, possibly due to delayed snowmelt and thus postponed onset of the growing season. Warm late winters were followed by increased riparian pine growth because...... a strong correlation with warm-season temperatures, indicating an encouraging possibility of summer temperature reconstruction using middle/south boreal pine tree-ring archives....

  19. Application of Riparian Evapotranspiration Package in MODFLOW for Riparian Vegetation Restoration

    Science.gov (United States)

    Ajami, H.; Maddock, T., III

    2009-04-01

    Quantifying spatial and temporal variability of riparian evapotranspiration (ET) is essential in water resources management especially in management and restoration of riparian ecosystems where multiple agricultural, industrial, and domestic users may exist. To enhance riparian evapotranspiration estimation in a MODFLOW groundwater model, RIPGIS-NET, an ArcGIS custom application, was developed to derive parameters and visualize results of spatially explicit riparian evapotranspiration in groundwater flow models for ecohydrology, riparian ecosystem management, stream restoration and water resources applications. RIPGIS-NET works with RIP-ET, a modeling package for MODFLOW. RIP-ET improves riparian ET simulations by using a set of eco-physiologically based ET curves for plant functional subgroups (PFSG), and is able to separate ground evaporation and plant transpiration processes. To evaluate impact of riparian restoration scenarios on groundwater resources, the above packages were applied to MODFLOW model of hypothetical Dry Alkaline Valley area. Using riparian ET curve files which show the relation between the groundwater level and ET, aerial extent of riparian vegetation in each season and a digital elevation map, RIPGIS-NET derived RIP-ET model parameters for each season. After running MODFLOW, groundwater head dynamics and spatial variability of riparian ET were visualized in GIS environment for each restoration scenario. This study provided useful information for riparian restoration planning in this area. It further highlighted the advantage of using spatially explicit models and datasets for riparian restoration planning.

  20. DOLUS LAKES ROADLESS AREA, MONTANA.

    Science.gov (United States)

    Elliott, James E.; Avery, Dale W.

    1984-01-01

    A mineral survey of the Dolus Lakes Roadless Area in southwestern Montana, was conducted. Much of the roadless area has probable and substantiated potential for resources of gold, silver, molybdenum, and tungsten. The nature of the geologic terrain indicates that there is little promise for the occurrence of coal, oil, gas, or geothermal resources. Detailed geologic and geochemical studies are suggested to delineate exploration targets that could be tested by drilling.

  1. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  2. The effects of riparian forest management on the freshwater environment: a literature review of best management practice

    Directory of Open Access Journals (Sweden)

    S. Broadmeadow

    2004-01-01

    Full Text Available National Forests and Water Guidelines require the establishment of riparian buffers to help protect the freshwater environment from disturbance by silvicultural operations on the adjacent land. The main functions of the riparian buffer are considered to be sediment removal and erosion control, protection of water quality, moderation of shade and water temperature, maintenance of habitat structural diversity and ecological integrity, and improvement of landscape quality. This review paper assesses how these functions are affected by the design and management of the riparian forest zone, with a focus on the width of the buffer, the structure of the vegetation and species choice. It is not possible to specify a definitive riparian buffer width that will protect the freshwater environment from every potential threat. Forestry agencies usually recommend widths between 10 and 30 m. Buffer widths towards the lower end of this scale tend to protect the physical and chemical characteristics of a stream, while the maintenance of ecological integrity requires widths at the upper end. In terms of structure and species, the benefits are greatest where the riparian buffer replicates native riparian woodland with an open canopy of mixed species of varied age class. The optimum level of shade is difficult to quantify but limited work suggests that a good balance is achieved where around 50% of the stream surface is open to sunlight and the remainder covered by dappled shade. Within the management of riparian woodland there is a need to consider a stream’s sensitivity and intrinsic value. Some sites will benefit from active intervention such as thinning, coppicing or pollarding, while others will be favoured by a hands-off approach. Long-term continuity of management is important to ensure that the potential benefits to the freshwater environment are realised. Keywords: riparian woodland, riparian buffer, woodland management, freshwater environment, water

  3. Camas Creek (Meyers Cove) Anadromous Species Habitat Improvement: Annual Report 1989.

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Terry

    1989-12-01

    Historical agricultural practices and natural events contributed to severe degradation of riparian zones and instream fish habitat in the Meyers Cove area of Camas Creek. In 1984, Salmon National Forest personnel began implementing specific management activities in riparian areas and the stream channel to accelerate habitat recovery. In 1987--88, 4.3 miles of fence was constructed establishing a riparian livestock exclosure in the Meyers Cove area of Camas Creek. One end-gap and two water-crossing corridors were constructed in 1989 to complete the fence system. The riparian exclosure has been fertilized with phosphorous-rich fertilizer to promote root growth. A stream crossing ford was stabilized with angular cobble. Streambank stabilization/habitat cover work was completed at three sites and three additional habitat structures were placed. Extensive habitat inventories were completed to identify quality/quantity of habitat available to anadromous fish. The work accomplished was designed to promote natural revegetation of the riparian area to improve rearing habitat cover and streambank stability. Streambank work was limited to extremely unstable sites. Enhancement activities will improve spawning, incubation, and rearing habitat for wild populations of steelhead trout and chinook salmon. Anadromous species population increases resulting from these enhancement activities will provide partial compensation for downstream losses resulting from hydroelectric developments on the Columbia River system. 9 refs., 6 figs., 7 tabs.

  4. 76 FR 47637 - Montana Disaster #MT-00062

    Science.gov (United States)

    2011-08-05

    ... ADMINISTRATION Montana Disaster MT-00062 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a Notice of the Presidential declaration of a major disaster for the State of Montana (FEMA..., Fort Worth, TX 76155. FOR FURTHER INFORMATION CONTACT: A. Escobar, Office of Disaster Assistance,...

  5. 77 FR 47907 - Montana Disaster #MT-00067

    Science.gov (United States)

    2012-08-10

    ... ADMINISTRATION Montana Disaster MT-00067 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of MONTANA dated 08/02/2012. Incident: Ash Creek Fire. Incident Period: 06/25/2012 through 07/22/2012. Effective Date:...

  6. 77 FR 48198 - Montana Disaster #MT-00068

    Science.gov (United States)

    2012-08-13

    ... ADMINISTRATION Montana Disaster MT-00068 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Montana dated 08/06/2012. Incident: Dahl Fire. Incident Period: 06/26/2012 through 07/06/2012. Effective Date:...

  7. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests inBenin

  8. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests inBenin

  9. Ecological assessment of riparian forests in Benin

    NARCIS (Netherlands)

    Natta, A.K.

    2003-01-01

    The present research deals with the flora, phytosociology and ecology of riparian forests. The overall objective of this research is to contribute to a better knowledge of the flora, diversity and ecology of riparian forests in

  10. Responses to river inundation pressures control prey selection of riparian beetles.

    Science.gov (United States)

    O'Callaghan, Matt J; Hannah, David M; Boomer, Ian; Williams, Mike; Sadler, Jon P

    2013-01-01

    Riparian habitats are subjected to frequent inundation (flooding) and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance. We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples. Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the importance of hydrological variability. With an increasing interest in reconnecting

  11. Responses to river inundation pressures control prey selection of riparian beetles.

    Directory of Open Access Journals (Sweden)

    Matt J O'Callaghan

    Full Text Available BACKGROUND: Riparian habitats are subjected to frequent inundation (flooding and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance. METHOD/PRINCIPAL FINDINGS: We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples. CONCLUSIONS/SIGNIFICANCE: Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the

  12. Review of Invasive Riparian Trees that Impact USACE Ecosystem Restoration Projects

    Science.gov (United States)

    2016-08-01

    part of the woody structure in southwest riparian habitats (Stromberg et al. 2009). Tree-of-Heaven ( Ailanthus altissima). Figure 3. Tree-of...Heaven ( Ailanthus altissima) (Photo credit: Chuck Bargeron, University of Georgia). The Tree-of-Heaven ( Ailanthus altissima) is a tree native to...and forest fauna in Eastern North America. Forests 3:840-852. Hoshovsky, M. C. 1986. Element Stewardship Abstract for Ailanthus altissima, Tree-of

  13. Environmental tolerance of an invasive riparian tree and its potential for continued spread in the southwestern US

    Science.gov (United States)

    Reynolds, L.V.; Cooper, D.J.

    2010-01-01

    Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species-rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species. ?? 2010 International Association for Vegetation Science.

  14. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America

    Science.gov (United States)

    Perry, Laura G.; Andersen, Douglas C.; Reynolds, Lindsay V.; Nelson, S. Mark; Shafroth, Patrick B.

    2012-01-01

    Riparian ecosystems, already greatly altered by water management, land development, and biological invasion, are being further altered by increasing atmospheric CO2 concentrations ([CO2]) and climate change, particularly in arid and semiarid (dryland) regions. In this literature review, we (1) summarize expected changes in [CO2], climate, hydrology, and water management in dryland western North America, (2) consider likely effects of those changes on riparian ecosystems, and (3) identify critical knowledge gaps. Temperatures in the region are rising and droughts are becoming more frequent and intense. Warmer temperatures in turn are altering river hydrology: advancing the timing of spring snow melt floods, altering flood magnitudes, and reducing summer and base flows. Direct effects of increased [CO2] and climate change on riparian ecosystems may be similar to effects in uplands, including increased heat and water stress, altered phenology and species geographic distributions, and disrupted trophic and symbiotic interactions. Indirect effects due to climate-driven changes in streamflow, however, may exacerbate the direct effects of warming and increase the relative importance of moisture and fluvial disturbance as drivers of riparian ecosystem response to global change. Together, climate change and climate-driven changes in streamflow are likely to reduce abundance of dominant, native, early-successional tree species, favor herbaceous species and both drought-tolerant and late-successional woody species (including many introduced species), reduce habitat quality for many riparian animals, and slow litter decomposition and nutrient cycling. Climate-driven changes in human water demand and associated water management may intensify these effects. On some regulated rivers, however, reservoir releases could be managed to protect riparian ecosystem. Immediate research priorities include determining riparian species' environmental requirements and monitoring riparian

  15. Experimental and Ecological Implications of Evening Bird Surveys in Stream-Riparian Ecosystems

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Vierling, Kerri T.

    2009-10-01

    Stream-riparian ecosystems are dynamic and complex entities that can support high levels of bird assemblage abundance and diversity. The myriad patches (e.g., aquatic, floodplain, riparian) found in the riverscape habitat mosaic attract a unique mixture of aquatic, semiaquatic, riparian, and upland birds, each uniquely utilizing the river corridor. Whereas standard morning bird surveys are widely used across ecosystems, the variety of bird guilds and the temporal habitat partitioning that likely occur in stream-riparian ecosystems argue for the inclusion of evening surveys. At 41 stream reaches in Vermont and Idaho, USA, we surveyed bird assemblages using a combination of morning and evening fixed-width transect counts. Student’s paired t-tests showed that while bird abundance was not significantly different between morning and evening surveys, bird assemblage diversity (as measured by species richness, Shannon-Weiner’s index, and Simpson’s index) was significantly higher in the morning than in the evening. NMS ordinations of bird species and time (i.e., morning, evening) indicated that the structure of morning bird assemblages was different from that of evening assemblages. NMS further showed that a set of species was only found in evening surveys. The inclusion of evening counts in surveying bird assemblages in stream-riparian ecosystems has important experimental and ecological implications. Experimentally, the sole use of morning bird surveys may significantly underestimate the diversity and misrepresent the community composition of bird assemblages in these ecosystems. Ecologically, many of the birds detected in evening surveys were water-associated species that occupy high trophic levels and aerial insectivores that represent unique aquatic-terrestrial energy transfers.

  16. Phytostabilization of metals by indigenous riparian vegetation ...

    African Journals Online (AJOL)

    Seven commonly-occurring pollution-tolerant riparian plant species were evaluated to ... Al and Mn. Species included: Cyperus haspan, Schoenoplectus corymbosus, ... yet significantly lower concentrations in the river water compared to areas ...

  17. Effects of increased flooding on riparian vegetation

    DEFF Research Database (Denmark)

    Garssen, Annemarie G.; Baattrup-Pedersen, Annette; Riis, Tenna

    2017-01-01

    In many parts of the world, the magnitude and frequency of cold-season precipitation are expected to increase in the near future. This will result in an increased magnitude and duration of winter and spring flooding by rain-fed streams and rivers. Such climate-driven increases in flooding...... of 3 years. We assessed the responses in riparian plant species richness, biomass, plant-available nitrogen and phosphorus and seed deposition to increased flooding depth (+18 cm on average at the lowest positions along the riparian gradient) and prolonged flooding duration (6 weeks on average). After...... 3 years of increased flooding, there was an overall decline in riparian species richness, while riparian plant biomass increased. Extractable soil nitrogen and phosphorus also increased and are likely to have contributed to the increased biomass. Increased flooding resulted in the arrival of more...

  18. SPECIES DISTRBUTION WITHIN RIPARIAN LANDCAPE ALONG ...

    African Journals Online (AJOL)

    Osondu

    2011-12-30

    Dec 30, 2011 ... The study examines species density and diversity distribution in riparian landscape along 18km stretch of. Mayo Kam. ... Result of species distribution revealed mean densities and diversities in zones A ..... map-based models.

  19. 78 FR 44187 - Montana Disaster # MT-00079

    Science.gov (United States)

    2013-07-23

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Montana Disaster MT-00079 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... have been determined to be adversely affected by the disaster: Primary Counties: Blaine,...

  20. Notes and comments on Montana Refuges

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of actual management actions, and plant community responses on Montana refuges during 1992. It is part of the moist-soil expert system...

  1. Adminstrative Boundary for Glacier National Park, Montana

    Data.gov (United States)

    National Park Service, Department of the Interior — The current administrative boundary of Glacier National Park, Montana. This data is based on 1:24000 scale USGS quad mapping published in 1968, but was revised in...

  2. Parcels and Land Ownership - Montana Cadastral Framework

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The Montana Cadastral Database is comprised of taxable parcels (fee land) and public land (exempt property). It is not broken down into individual lots, for instance...

  3. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  4. Evaluating Connectivity for two mid-sized mammals Across Riparian Corridors using Wildlife Crossing Monitoring and Species Distribution Modeling

    Science.gov (United States)

    Jeong, S.

    2016-12-01

    The movement of wildlife can be constrained by river renovation projects owing to the presence of artificial structures. This study evaluates lateral connectivity, the ability to cross from habitat on one side of the river, through riparian vegetation, embankments, and the river to the other, of two mammal species, the leopard cat (Felis bengalensis euptilura) and water deer (Hydropotes inermis). We used 34 months of monitoring on 250 m stream segments on the Seom river, in South Korea to model the lateral connectivity of the stream between suitable habitats on either side of the steam. Habitat suitability within the landscape was determined using species distribution modelingand was used to determine where we thought the animals would want to pass across the river. We compared the predicted crossing locations to observed crossings.We assessed lateral connectivity suitability with maximum entropy and logistic regression models, and species' presences detected from snow tracking, heat sensor cameras, and scat or other signs, as well as landscape variables. Leopard cats prefer upland forest, while water deer prefer the forest edge and riparian corridor. For both target species, the best riparian habitats were characterized by the presence of vegetation cover on the embankment and by at least one side of an embankment being adjacent to farmland or forest cover. The lateral connectivity for the two target species showed different requirements. Water deer cross through large culverts with an openness ratio of 0.7 or under bridges, whereas leopard cats utilized drainage pipes and culvert boxes with a much smaller openness ratio. Stream reaches located close to a river tributary had the highest connectivity values, and areas modeled as good habitat for both species thatlink watershed and riparian habitats showed high connectivity values. Artifacts such as steep banks, concrete embankments, and adjacent roads were found to degrade the lateral connectivity of wildlife

  5. The impact of flood variables on riparian vegetation

    Science.gov (United States)

    Dzubakova, Katarina; Molnar, Peter

    2016-04-01

    The riparian vegetation of Alpine rivers often grows in temporally dynamic riverine environments which are characterized by pronounced meteorological and hydrological fluctuations and high resource competition. Within these relatively rough conditions, riparian vegetation fulfils essential ecosystem functions such as water retention, biomass production and habitat to endangered species. The identification of relevant flood attributes impacting riparian vegetation is crucial for a better understanding of the vegetation dynamics in the riverine ecosystem. Hence, in this contribution we aim to quantify the ecological effects of flood attributes on riparian vegetation and to analyze the spatial coherence of flood-vegetation interaction patterns. We analyzed a 500 m long and 300-400 m wide study reach located on the Maggia River in southern Switzerland. Altogether five floods between 2008 and 2011 with return periods ranging from 1.4 to 20.1 years were studied. To assess the significance of the flood attributes, we compared post-flood to pre-flood vegetation vigour to flood intensity. Pre- and post-flood vegetation vigour was represented by the Normalized Difference Vegetation Index (NDVI) which was computed from images recorded by high resolution ground-based cameras. Flood intensity was expressed in space in the study reach by six flood attributes (inundation duration, maximum depth, maximum and total velocity, maximum and total shear stress) which were simulated by the 2D hydrodynamic model BASEMENT (VAW, ETH Zurich). We considered three floodplain units separately (main bar, secondary bar, transitional zone). Based on our results, pre-flood vegetation vigour largely determined vegetation reaction to the less intense floods (R = 0.59-0.96). However for larger floods with a strong erosive effect, its contribution was significantly lower (R = 0.59-0.68). Using multivariate regression analysis we show that pre-flood vegetation vigour and maximum velocity proved to be

  6. Occupancy patterns of mammals and lentic amphibians in the Elwha River riparian zone before dam removal

    Science.gov (United States)

    Jenkins, Kurt J.; Chelgren, Nathan; Sager-Fradkin, K.A.; Happe, P.J.; Adams, Michael J.

    2015-01-01

    The downstream transport of sediments and organics and upstream migration of anadromous fishes are key ecological processes in unregulated riverine ecosystems of the North Pacific coast, but their influence on wildlife habitats and populations is poorly documented. Removal of two large hydroelectric dams in Washington’s Elwha Valley provides an unprecedented opportunity to study long-term responses of wildlife populations to dam removal and restoration of these key ecological processes. We compared pre-dam removal patterns in the relative abundance and occupancy of mesocarnivores, small mammals and lentic amphibians of the Elwha River riparian zone above, between and below the dams. Occupancy of riparian habitats by three mesocarnivore species diminished upriver but did not appear to be closely linked with the absence of salmon in the upper river. Although the importance of salmon in the lower river cannot be discounted, other gradients in food resources also likely contributed to observed distribution patterns of mesocarnivores. Abundance and occupancy patterns within congeneric pairs of new world mice (Peromyscus spp.) and shrews (Sorex spp.) indicated that closely related species were negatively associated with each other and responded to habitat gradients in the riparian zone. The availability of lentic habitats of amphibians was highly variable, and occupancy was low as a result of rapidly changing flows during the larval development period. We speculate that long-term changes in habitat conditions and salmon availability following dam removal will elicit long-term changes in distribution of mesocarnivores, small mammals and amphibians. Long-term monitoring will enhance understanding of the role of fish and restored ecosystem processes on wildlife communities along salmon-bearing rivers in the region.

  7. Grazed Riparian Management and Stream Channel Response in Southeastern Minnesota (USA) Streams

    Science.gov (United States)

    Magner, Joseph A.; Vondracek, Bruce; Brooks, Kenneth N.

    2008-09-01

    The U.S. Department of Agriculture-Natural Resources Conservation Service has recommended domestic cattle grazing exclusion from riparian corridors for decades. This recommendation was based on a belief that domestic cattle grazing would typically destroy stream bank vegetation and in-channel habitat. Continuous grazing (CG) has caused adverse environmental damage, but along cohesive-sediment stream banks of disturbed catchments in southeastern Minnesota, short-duration grazing (SDG), a rotational grazing system, may offer a better riparian management practice than CG. Over 30 physical and biological metrics were gathered at 26 sites to evaluate differences between SDG, CG, and nongrazed sites (NG). Ordinations produced with nonmetric multidimensional scaling (NMS) indicated a gradient with a benthic macroinvertebrate index of biotic integrity (IBI) and riparian site management; low IBI scores associated with CG sites and higher IBI scores associated with NG sites. Nongrazed sites were associated with reduced soil compaction and higher bank stability, as measured by the Pfankuch stability index; whereas CG sites were associated with increased soil compaction and lower bank stability, SDG sites were intermediate. Bedrock geology influenced NMS results: sites with carbonate derived cobble were associated with more stable channels and higher IBI scores. Though current riparian grazing practices in southeastern Minnesota present pollution problems, short duration grazing could reduce sediment pollution if managed in an environmentally sustainable fashion that considers stream channel response.

  8. Spatial-scale effects on relative importance of physical habitat predictors of stream health

    NARCIS (Netherlands)

    Frimpong, E.A.; Sutton, T.M.; Engel, B.; Simon, T.P.

    2005-01-01

    A common theme in recent landscape studies is the comparison of riparian and watershed land use as predictors of stream health. The objective of this study was to compare the performance of reach-scale habitat and remotely assessed watershed-scale habitat as predictors of stream health over varying

  9. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.; Ford, W. Mark; Edwards, John W.; McCracken, Gary F.

    2005-07-01

    A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.

  10. Modeled riparian stream shading: Agreement with field measurements and sensitivity to riparian conditions

    Science.gov (United States)

    Li, Guoyuan; Jackson, C. Rhett; Kraseski, Kristin A.

    2012-03-01

    SummaryShading by riparian vegetation and streambanks reduces incident solar radiation on channels, and accurate estimation of riparian shading through the sun's daily arc is a critical aspect of water temperature and dissolved oxygen modeling. However, riparian trees exhibit complex shapes, often leaning and growing branches preferentially over channels to utilize the light resource. As a result, riparian vegetation cast complex shadows with significant variability at the scale of meters. Water quality models necessarily simplify factors affecting shading at the expense of accuracy. All models must make simplifying assumptions about tree geometry. Reach-based models must average channel azimuth and riparian conditions over each reach, and GIS models must also accept errors in the channel-riparian relationships caused by the DEM grid detail. We detail minor improvements to existing shade models and create a model (SHADE2) that calculates shading ratio (%) by riparian canopy at any time and location for given stream characteristics including stream azimuth, stream width, canopy height, canopy overhang, and height of maximum canopy overhang. Sensitivity of simulated shade to these variables is explored. We also present a new field photographic technique for quantifying shade and use this technique to provide data to test the SHADE2 algorithm. Twenty-four independent shade measurements were made in eight channels with mature hardwood riparian trees at different times of the summer and at different times of the day. Agreement between measured and modeled shade was excellent, with r2 of 0.90.

  11. 76 FR 43259 - Southern Montana Resource Advisory Committee

    Science.gov (United States)

    2011-07-20

    ... in Billings, Montana. The committee is meeting as authorized under the Secure Rural Schools and... Grad Montana Hotel and Convention Center, 5500 Midland Road, Billings, MT. Written comments should...

  12. Science Inquiry Learning in Classrooms — Montana Style

    Science.gov (United States)

    Brelsford, M. A.; Peters, J.; Grimberg, B. I.

    2010-04-01

    Montana's ABRC is working with rural school teachers in southwestern Montana. Astrobiology is a new and exciting subject for the teachers and its inter-disciplinary nature is very useful and rewarding for the teachers and their students.

  13. Observations on a Montana water quality proposal.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) No discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.

  14. Habitat degradation and subsequent fishery collapse in Lakes Naivasha and Baringo, Kenya.

    OpenAIRE

    Hickley, P.; Muchiri, M.; Boar, R.; Britton, R.; Adams, C.; Gichuru, N.; Harper, D.

    2004-01-01

    Lakes Naivasha and Baringo in the eastern Rift Valley of Kenya are shallow, freshwater lakes that are subject to major fluctuations in water level and suffer from habitat degradation as a consequence of riparian activity. Lake Naivasha is approximately 160 km2, is bordered by Cyperus papyrus and its aquatic macrophytes are in a state of flux. The most significant riparian activity is the large scale production of flowers for the European market. Lake Baringo is approximately 140 km2 and lies ...

  15. Relationships of field habitat measurements, visual habitat indices, and land cover to benthic macroinvertebrates in urbanized streams of the Santa Clara Valley, California

    Science.gov (United States)

    Fend, S.V.; Carter, J.L.; Kearns, F.R.

    2005-01-01

    We evaluated several approaches for measuring natural and anthropogenic habitat characteristics to predict benthic macroinvertebrate assemblages over a range of urban intensity at 85 stream sites in the Santa Clara Valley, California. Land cover was summarized as percentage urban land cover and impervious area within upstream buffers and the upstream subwatersheds. Field measurements characterized water chemistry, channel slope, sediment, and riparian canopy. In . addition to applying the visual-based habitat assessment in U.S. Environmental Protection Agency's rapid bioassessment protocol, we developed a simplified urban habitat assessment index based on turbidity, fine sediment deposition, riparian condition, and channel modification. Natural and anthropogenic habitat variables covaried along longitudinal stream gradients and were highly correlated with elevation. At the scale of the entire watershed, benthic macroinvertebrate measures were equally correlated with variables expressing natural gradients and urbanization effects. When natural gradients were reduced by partitioning sites into ecoregion subsection groupings, habitat variables most highly correlated with macroinvertebrate measures differed between upland and valley floor site groups. Among the valley floor sites, channel slope and physical modification of channel and riparian habitats appeared more important than upstream land cover or water quality in determining macroinvertebrate richness and ordination scores. Among upland sites, effects of upstream reservoir releases on habitat quality appeared important. Rapid habitat evaluation methods appeared to be an effective method for describing habitat features important to benthic macroinvertebrates when adapted for the region and the disturbance of interest. ?? 2005 by the American Fisheries Society.

  16. Board of Regents' Montana University System (MUS) Strategic Plan 2016

    Science.gov (United States)

    Montana University System, 2016

    2016-01-01

    The Montana University System Strategic Plan is the primary planning document of the Board of Regents. The Plan sets forth an agenda for higher education in Montana by delineating the strategic directions, goals, and objectives that guide the Montana University System (MUS). In July 2006, after several years of study, public dialogue, and internal…

  17. Do beavers promote the invasion of non-native Tamarix in the Grand Canyon riparian zone

    Science.gov (United States)

    Mortenson, S.G.; Weisberg, P.J.; Ralston, B.E.

    2008-01-01

    Beavers (Castor canadensis Kuhl) can influence the competitive dynamics of plant species through selective foraging, collection of materials for dam creation, and alteration of hydrologic conditions. In the Grand Canyon National Park, the native Salix gooddingii C.R.Ball (Goodding's willow) and Salix exigua Nutt. (coyote willow) are a staple food of beavers. Because Salix competes with the invasive Tamarix ramosissima Ledeb., land mangers are concerned that beavers may cause an increase in Tamarix through selective foraging of Salix. A spatial analysis was conducted to assess whether the presence of beavers correlates with the relative abundance of Salix and Tamarix. These methods were designed to detect a system-wide effect of selective beaver foraging in this large study area (367 linear km of riparian habitat). Beavers, Salix, and Tamarix co-occurred at the broadest scales because they occupied similar riparian habitat, particularly geomorphic reaches of low and moderate resistivity. Once the affinity of Salix for particular reach types was accounted for, the presence of Salix was independent of beaver distribution. However, there was a weak positive association between beaver presence and Salix cover. Salix was limited to geomorphic settings with greater sinuosity and distinct terraces, while Tamarix occurred in sinuous and straighter sections of river channel (cliffs, channel margins) where it dominated the woody species composition. After accounting for covariates representing river geomorphology, the proportion of riparian surfaces covered by Tamarix was significantly greater for sites where beavers were present. This indicates that either Tamarix and beavers co-occur in similar habitats, beavers prefer habitats that have high Tamarix cover, or beavers contribute to Tamarix dominance through selective use of its native woody competitors. The hypothesis that beaver herbivory contributes to Tamarix dominance should be considered further through more

  18. Rapid Simultaneous Assessment of Riparian Shade and Buffer Width Using LiDAR Data

    Science.gov (United States)

    Seixas, G.; Beechie, T. J.; Kiffney, P.

    2016-12-01

    Riparian buffers perform a number of functions including provision of shade and wood recruitment to forested streams. Shade is a primary control on stream water temperature and recruitment of large wood is essential for the maintenance of key biological functions such as salmon and invertebrate habitat. Because temperature is a limiting factor for riverine primary production, many aquatic invertebrates, and endangered salmonid species, and because riparian forest structure has been modified by management practices for decades in many of the world's watersheds, rapid assessment of riparian shade and wood recruitment potential is critical for restoration decision-making. We introduce a new automated LiDAR-based method that simultaneously measures two key metrics of riparian vegetation condition—`view-to-sky' openness of the canopy and buffer width. If the height of historical mature trees in the area of interest is known or can be assumed, a change in view-to-sky angle due to land uses may be calculated. We apply the method to portions of the Chehalis River basin in southwestern Washington State, USA, an area of extensive logging and agriculture. We find a high level of modification to view-to-sky angle has occurred in urban and agricultural areas of the basin, whereas riparian shade is maintained by buffers in some regions of active logging. Buffers composed of trees large enough for wood recruitment have all but been eradicated from the basin. Due to the method's simplicity, ease of application and focus on deviation from natural conditions, it has the potential to be used effectively for river restoration planning at the watershed scale.

  19. Riparian Ficus tree communities: the distribution and abundance of riparian fig trees in northern Thailand.

    Directory of Open Access Journals (Sweden)

    Pornwiwan Pothasin

    Full Text Available Fig trees (Ficus are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010-2012. To record the diversity and abundance of riparian fig trees, we (1 calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2 measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance.

  20. Riparian Ficus tree communities: the distribution and abundance of riparian fig trees in northern Thailand.

    Science.gov (United States)

    Pothasin, Pornwiwan; Compton, Stephen G; Wangpakapattanawong, Prasit

    2014-01-01

    Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010-2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance.

  1. Mountain plover responses to plague in Montana.

    Science.gov (United States)

    Dinsmore, Stephen J; Smith, Mark D

    2010-01-01

    Plague is a bacterial (Yersinia pestis) disease that causes epizootic die-offs in black-tailed prairie dog (Cynomys ludovicianus) populations in the North American Great Plains. Through their grazing and burrowing, prairie dogs modify vegetation and landscape structure on their colonies in ways that affect other grassland species. Plague epizootics on prairie dog colonies can have indirect effects on species associated with colonies. The mountain plover (Charadrius montanus) preferentially nests on black-tailed prairie dog colonies and is thus negatively impacted by the loss of prairie dogs. We studied the effects of plague and colony spatial characteristics on the occupancy of 81 prairie dog colonies by nesting plovers in Phillips County, Montana, during a 13-year period (1995-2007). We used a robust design patch occupancy model to investigate how colony occupancy and extinction and colonization rates were affected by plague history, colony size, and colony shape. Here extinction and colonization rates refer to the probability that a colony loses/gains plovers in a subsequent nesting season, given that it had/lacked plovers in that breeding season. Colony occupancy was best explained by a model with no annual variation or plague effects. Colony extinction rates were driven by a combination of a quadratic of colony area, a 3-year plague response, and a measure of colony shape. Conversely, colonization rates were best explained by a model with a 4-year plague response. The estimated annual proportion of colonies occupied by plovers was 0.75 (95% confidence interval = 0.57-0.87). Estimated extinction probability ranged from a low of 0.07 (standard error [SE] = 0.02) in 2002 to a high of 0.25 (SE = 0.03) in 1995; colonization probability ranged from 0.24 (SE = 0.05) in 2006 to 0.35 (SE = 0.05) in 2000. Our results highlight how a bird that depends on prairie dogs for nesting habitat responds to plague history and other spatial characteristics of the colony. Ultimately

  2. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo

    OpenAIRE

    Luke, SH; Barclay, H; Bidin, K.; Vun Khen, C; Ewers, RM; Foster, WA; Nainar, A; Pfeifer, M; Reynolds, G; Turner, EC; Walsh, RPD; Aldridge, DC

    2016-01-01

    Freshwaters provide valuable habitat and important ecosystem services, but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied sixteen streams in Sabah, Borneo, including old growth forest, logged forest, and oil...

  3. Breeding ecology of the redhead duck in western Montana

    Science.gov (United States)

    Lokemoen, J.T.

    1966-01-01

    The habits of the redhead duck (Aythya americana) were studied in the Flathead Valley of western Montana in 1960 and 1961 to determine their habitat preferences in this pothole breeding ground. The 2,600-acre study area, surrounding the Ninepipe Reservoir, contained 686 potholes. Redheads usually were paired by the time they arrived on the study area in March. The average density of redhead breeding pairs was 25 pairs per square mile. For all spring activities except nesting, the birds used large, deep, open potholes or breeding-pair potholes. The several breeding-pair potholes and the nesting pothole utilized by the pair comprised their home range. Starting in late April, the pairs moved about the home range as the hens selected nesting sites, usually in the dense emergent vegetation of small, shallow potholes. Hard-stem bulrush (Scirpus acutus) and cat-tail (Typha latifolia) were preferred nesting cover. Redhead nesting success was only 15 percent, a low rate apparently caused by degenerate nesting behavior complicated by high redhead density, a lack of suitable nest hosts, and certain habitat deficiencies. By late June most drakes and unsuccessful hens had moved from the potholes to nearby reservoirs. All successful hens led their newly hatched broods from the nesting potholes to larger brood potholes and many eventually moved to the reservoir. By mid-July virtually all redheads had moved from the potholes to the reservoirs, where they remained until fall migration.

  4. Methane emissions in Danish riparian wetlands

    DEFF Research Database (Denmark)

    Audet, Joachim; Johansen, Jan Ravn; Andersen, Peter Mejlhede

    2013-01-01

    The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spat......The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating...

  5. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    of riparian zones are extended by accounting for the effect of flooding and a key result is that flooding enhances nitrate removal given the right hydrogeological characteristics. Moreover the re-established riparian zones were characterized to understand the effects of flooding on subsurface hydrological......) and easurements of discharge to the river by seepage meter and river bed temperatures. The numerical model was used to simulate how observed dynamic seasonal flooding affects groundwater flow paths, residence times, and formation of zones with flow stagnation, all of which are key aspects in evaluating...

  6. Flow and transport in Riparian Zones

    DEFF Research Database (Denmark)

    Jensen, Jannick Kolbjørn

    The PhD study presents research results from two re-established Danish riparian zones, Brynemade and Skallebanke, located along Odense River on the island Funen, Denmark. The overall objectives of the PhD study have been to improve the understanding of flow and transport in riparian zones....... The methodology focuses on; construction of field sites along Odense River, understanding flow and transport, and performing numerical/analytical model assessments of flow and transport. An initial 2D simulation study was performed with a conceptual setup based on the Brynemade site. Through a series of 2D model...

  7. Private lands habitat programs benefit California's native birds

    Directory of Open Access Journals (Sweden)

    Ryan T. DiGaudio

    2015-10-01

    Full Text Available To address the loss of wetlands and riparian forests in California, private lands habitat programs are available through U.S. federal and state government agencies to help growers, ranchers and other private landowners create and enhance wildlife habitat. The programs provide financial and technical assistance for implementing conservation practices. To evaluate the benefits of these programs for wildlife, we examined bird use of private wetlands, postharvest flooded croplands and riparian forests enrolled in habitat programs in the Central Valley and North Coast regions of California. We found that private Central Valley wetlands supported 181 bird species during the breeding season. During fall migration, postharvest flooded croplands supported wetland-dependent species and a higher density of shorebirds than did semipermanent wetlands. At the riparian sites, bird species richness increased after restoration. These results demonstrated that the programs provided habitat for the species they were designed to protect; a variety of resident and migratory bird species used the habitats, and many special status species were recorded at the sites.

  8. Managing the Weed-Shaped Hole: Improving Nitrogen Uptake and Preventing Re-invasion in Urban Riparian Restoration

    OpenAIRE

    2013-01-01

    As the field of ecological restoration grows, novel methods to improve the effectiveness of restoration projects are being advanced and tested. Here, measured plant functional traits are used to select a native planting palette for the restoration of riparian habitat at Strawberry Creek, a heavily invaded urban ecosystem in Berkeley, CA. I partnered with an active restoration program and together we focused on methods to prevent re-invasion by a dominant non-native understory species and redu...

  9. Final report on the safety assessment of Arnica montana extract and Arnica montana.

    Science.gov (United States)

    2001-01-01

    Arnica Montana Extract is an extract of dried flowerheads of the plant, Arnica montana. Arnica Montana is a generic term used to describe a plant material derived from the dried flowers, roots, or rhizomes of A. montana. Common names for A. montana include leopard's bane, mountain tobacco, mountain snuff, and wolf's bane. Two techniques for preparing Arnica Montana Extract are hydroalcoholic maceration and gentle disintegration in soybean oil. Propylene glycol and butylene glycol extractions were also reported. The composition of these extracts can include fatty acids, especially palmitic, linoleic, myristic, and linolenic acids, essential oil, triterpenic alcohols, sesquiterpene lactones, sugars, phytosterols, phenol acids, tannins, choline, inulin, phulin, arnicin, flavonoids, carotenoids, coumarins, and heavy metals. The components present in these extracts are dependent on where the plant is grown. Arnica Montana Extract was reported to be used in almost 100 cosmetic formulations across a wide range of product types, whereas Arnica Montana was reported only once. Extractions of Arnica Montana were tested and found not toxic in acute toxicity tests in rabbits, mice, and rats; they were not irritating, sensitizing, or phototoxic to mouse or guinea pig skin; and they did not produce significant ocular irritation. In an Ames test, an extract of A. montana was mutagenic, possibly related to the flavenoid content of the extract. No carcinogenicity or reproductive/developmental toxicity data were available. Clinical tests of extractions failed to elicit irritation or sensitization, yet Arnica dermatitis, a delayed type IV allergy, is reported in individuals who handle arnica flowers and may be caused by sesquiterpene lactones found in the flowers. Ingestion of A. montana-containing products has induced severe gastroenteritis, nervousness, accelerated heart rate, muscular weakness, and death. Absent any basis for concluding that data on one member of a botanical

  10. Evaluating the quality of riparian forest vegetation: the Riparian Forest Evaluation (RFV index

    Directory of Open Access Journals (Sweden)

    Fernando Magdaleno

    2014-08-01

    Full Text Available Aim of study: This paper presents a novel index, the Riparian Forest Evaluation (RFV index, for assessing the ecological condition of riparian forests. The status of riparian ecosystems has global importance due to the ecological and social benefits and services they provide. The initiation of the European Water Framework Directive (2000/60/CE requires the assessment of the hydromorphological quality of natural channels. The Directive describes riparian forests as one of the fundamental components that determine the structure of riverine areas. The RFV index was developed to meet the aim of the Directive and to complement the existing methodologies for the evaluation of riparian forests.Area of study: The RFV index was applied to a wide range of streams and rivers (170 water bodies inSpain.Materials and methods: The calculation of the RFV index is based on the assessment of both the spatial continuity of the forest (in its three core dimensions: longitudinal, transversal and vertical and the regeneration capacity of the forest, in a sampling area related to the river hydromorphological pattern. This index enables an evaluation of the quality and degree of alteration of riparian forests. In addition, it helps to determine the scenarios that are necessary to improve the status of riparian forests and to develop processes for restoring their structure and composition.Main results: The results were compared with some previous tools for the assessment of riparian vegetation. The RFV index got the highest average scores in the basins of northernSpain, which suffer lower human influence. The forests in central and southern rivers got worse scores. The bigger differences with other tools were found in complex and partially altered streams and rivers.Research highlights: The study showed the index’s applicability under diverse hydromorphological and ecological conditions and the main advantages of its application. The utilization of the index allows a

  11. Montana BioDiesel Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent [Montana State Univ., Bozeman, MT (United States)

    2017-01-29

    This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentally sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.

  12. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    Science.gov (United States)

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  13. 76 FR 76111 - Montana Regulatory Program

    Science.gov (United States)

    2011-12-06

    ...--Regulatory Planning and Review This rule is exempted from review by the Office of Management and Budget (OMB... to and additions of statutory definitions for ``approximate original contour,'' ``in situ coal..., Federal Register (45 FR 21560). You can also find later actions concerning Montana's program and...

  14. 77 FR 73965 - Montana Regulatory Program

    Science.gov (United States)

    2012-12-12

    ... Section 503(a) of the Act permits a State to assume primacy for the regulation of surface coal mining and... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926 Montana Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; withdrawal...

  15. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  16. 76 FR 64047 - Montana Regulatory Program

    Science.gov (United States)

    2011-10-17

    ... until 4 p.m., m.d.t. November 16, 2011. If requested, we will hold a public hearing on the amendment on November 14, 2011. We will accept requests to speak until 4 p.m., m.d.t. on November 1, 2011. ADDRESSES... . Edward L. Coleman, Bureau Chief, Industrial and Energy Minerals Bureau, Montana Department...

  17. 76 FR 64045 - Montana Regulatory Program

    Science.gov (United States)

    2011-10-17

    ... hearing, if one is requested. DATES: We will accept written comments on this amendment until 4 p.m., m.d.t... will accept requests to speak until 4 p.m., m.d.t. on November 1, 2011. ADDRESSES: You may submit... ; Edward L. Coleman, Bureau Chief, Industrial and Energy Minerals Bureau, Montana Department...

  18. Case studies of riparian and watershed restoration in the southwestern United States—Principles, challenges, and successes

    Science.gov (United States)

    Ralston, Barbara E.; Sarr, Daniel A.; Ralston, Barbara E.; Sarr, Daniel A.

    2017-07-18

    Globally, rivers and streams are highly altered by impoundments, diversions, and stream channelization associated with agricultural and water delivery needs. Climate change imposes additional challenges by further reducing discharge, introducing variability in seasonal precipitation patterns, and increasing temperatures. Collectively, these changes in a river or stream’s annual hydrology affects surface and groundwater dynamics, fluvial processes, and the linked aquatic and riparian responses, particularly in arid regions. Recognizing the inherent ecosystem services that riparian and aquatic habitats provide, society increasingly supports restoring the functionality of riparian and aquatic ecosystems.Given the wide range in types and scales of riparian impacts, approaches to riparian restoration can range from tactical, short-term, and site-specific efforts to strategic projects and long-term collaborations best pursued at the watershed scale. In the spirit of sharing information, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center convened a workshop June 23-25, 2015, in Flagstaff, Ariz. for practitioners in restoration science to share general principles, successful restoration practices, and discuss the challenges that face those practicing riparian restoration in the southwestern United States. Presenters from the Colorado River and the Rio Grande basins, offered their perspectives and experiences in restoration at the local, reach and watershed scale. Outcomes of the workshop include this Proceedings volume, which is composed of extended abstracts of most of the presentations given at the workshop, and recommendations or information needs identified by participants. The organization of the Proceedings follows a general progression from local scale restoration to river and watershed scale approaches, and finishes with restoration assessments and monitoring.

  19. Seasonal change detection of riparian zones with remote sensing images and genetic programming in a semi-arid watershed.

    Science.gov (United States)

    Makkeasorn, Ammarin; Chang, Ni-Bin; Li, Jiahong

    2009-02-01

    Riparian zones are deemed significant due to their interception capability of non-point source impacts and the maintenance of ecosystem integrity region wide. To improve classification and change detection of riparian buffers, this paper developed an evolutionary computational, supervised classification method--the RIparian Classification Algorithm (RICAL)--to conduct the seasonal change detection of riparian zones in a vast semi-arid watershed, South Texas. RICAL uniquely demonstrates an integrative effort to incorporate both vegetation indices and soil moisture images derived from LANDSAT 5 TM and RADARSAT-1 satellite images, respectively. First, an estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) images was conducted via the first-stage genetic programming (GP) practice. Second, for the statistical analyses and image classification, eight vegetation indices were prepared based on reflectance factors that were calculated as the response of the instrument on LANDSAT. These spectral vegetation indices were then independently used for discriminate analysis along with soil moisture images to classify the riparian zones via the second-stage GP practice. The practical implementation was assessed by a case study in the Choke Canyon Reservoir Watershed (CCRW), South Texas, which is mostly agricultural and range land in a semi-arid coastal environment. To enhance the application potential, a combination of Iterative Self-Organizing Data Analysis Techniques (ISODATA) and maximum likelihood supervised classification was also performed for spectral discrimination and classification of riparian varieties comparatively. Research findings show that the RICAL algorithm may yield around 90% accuracy based on the unseen ground data. But using different vegetation indices would not significantly improve the final quality of the spectral discrimination and classification. Such practices may lead to the formulation of more effective management strategies

  20. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    Science.gov (United States)

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  1. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    Science.gov (United States)

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B

  2. Stream thermal heterogeneity prolongs aquatic-terrestrial subsidy and enhances riparian spider growth.

    Science.gov (United States)

    Uno, Hiromi

    2016-10-01

    Emerging aquatic insects from streams are important food sources for riparian predators, yet their availability is seasonally limited. Spatial heterogeneity in stream water temperature was found to spatially desynchronize the emergence timing of aquatic insects, and prolong their flight period, potentially enhancing consumer growth. While a mayfly Ephemerella maculata emergence lasted for 12-22 d in local sites along a river, mayflies emerged 19 days earlier from warmer than cooler sites. Therefore, the overall emergence of E. maculata from the river lasted for 37 d, and adult swarms were observed over that same period in an adjacent reproductive habitat. A feeding experiment with the riparian spider Tetragnatha versicolor showed that a prolonged subsidy, as would occur in a heterogeneous river, led to higher juvenile growth than a synchronous pulsed subsidy of equal total biomass, as would typify a more homogeneous river. Since larger female adult spiders produce more eggs, spiders that received prolonged subsidy as juveniles should achieve higher fecundity. Restoring spatial heterogeneity in streams may benefit not only stream communities but also riparian predators.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Montana

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Zachary T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poehlman, Eric A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Montana. Moving to the 2015 IECC from the 2014 Montana State Code base code is cost-effective for residential buildings in all climate zones in Montana.

  4. Vegetation development following stream/river restoration: more natural fluvial dynamics and morphology, return of aquatic and riparian plant species?

    Science.gov (United States)

    Soons, M. B.

    2012-04-01

    After centuries of human interventions in stream/river dynamics and morphology aimed at optimizing landscapes for agricultural and industrial purposes, new insights have inspired water managers to try and combine stream and river ecosystem functions with the conservation of biodiversity. Around the world, aquatic and riparian species have declined strongly due to pollution, destruction and fragmentation of their habitat, so that biodiversity conservation initiatives primarily focus on habitat restoration. In the past decades many stream and river restoration projects have been carried out and often hydrological dynamics and morphology have been restored to a more natural state. However, the successful restoration of aquatic and riparian habitats very often failed to result in restoration of their biodiversity. This lack of success from a biodiversity conservation perspective is usually attributed to 'dispersal limitation', meaning that the habitat may be restored, but species fail to reach the site and re-colonize it. Especially re-colonization by aquatic and riparian plant species is important, as such species function as ecosystem engineers: their presence alters fluvial dynamics and morphology, generates additional habitat heterogeneity and provides habitat and food for animal species. Following minor disturbances, re-colonization is often possible through locally remaining populations, by seeds in the seed bank or by surviving plant fragments. However, following major disturbances, colonization and establishment from other source populations are necessary. This usually occurs through dispersal of seeds (and in more aquatic species also by dispersal of vegetative fragments) into the restored wetland area. As dispersal occurs predominantly over short distances and source populations of aquatic and riparian species may be lacking in the surroundings, dispersal may be a limiting factor in the development of aquatic and riparian vegetation at a restored site. But

  5. Comparative use of riparian corridors and oases by migrating birds in southeast Arizona

    Science.gov (United States)

    Skagen, S.K.; Melcher, C.P.; Howe, W.H.; Knopf, F.L.

    1998-01-01

    vicinity of our study sites, covering less than 1% of the landscape. We conclude that all riparian patches in southeastern Arizona are important as stopover sites to en route migrants regardless of their size and degree of isolation or connectivity. In light of potential habitat limitation, the protection of both small, disjunct riparian patches and extensive riverine tracts in western landscapes is imperative.

  6. Population patterns of Copperbelly Water Snakes (Nerodia erythrogaster neglecta) in a riparian corridor impacted by mining and reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Lacki, M.J.; Hummer, J.W.; Fitzgerald, J.L. [University of Kentucky, Lexington, KY (United States). Dept. of Forestry

    2005-04-01

    Habitat loss has been identified as a principle reason for decline of many water snakes, and surface mining for coal could potentially put Copperbelly Water Snakes (Nerodia erythrogaster neglecta) at risk due to the severity of land cover change that takes place once mining and reclamation are complete. We studied Copperbelly water snakes in riparian habitat impacted by adjacent surface mining in southern Indiana. Snakes were surveyed premining (1992 and 1993), during mining (1994 to 1996) and post mining (1997 to 2000). The data indicate that the population of Copperbelly Water Snakes was reproductively active, sustained higher levels of abundance following completion of mining and reclamation and made frequent use of reclaimed habitat. The extensive use of constructed ponds and drainage ditches by these snakes suggests that reclamation following mining can be done in a manner that facilitates recovery of habitat for this species.

  7. Restoration ecology and invasive riparian plants: An introduction to the special section on Tamarix spp. in western North America

    Science.gov (United States)

    Shafroth, Patrick B.; Briggs, Mark K.

    2008-01-01

    River systems around the world are subject to various perturbations, including the colonization and spread of non-native species in riparian zones. Riparian resource managers are commonly engaged in efforts to control problematic non-native species and restore native habitats. In western North America, small Eurasian trees or shrubs in the genus Tamarixoccupy hundreds of thousands of hectares of riparian lands, and are the targets of substantial and costly control efforts and associated restoration activities. Still, significant information gaps exist regarding approaches used in control and restoration efforts and their effects on riparian ecosystems. In this special section of papers, eight articles address various aspects of control and restoration associated with Tamarix spp. These include articles focused on planning restoration and revegetation; a synthetic analysis of past restoration efforts; and several specific research endeavors examining plant responses, water use, and various wildlife responses (including birds, butterflies, and lizards). These articles represent important additions to the Tamarix spp. literature and contain many lessons and insights that should be transferable to other analogous situations in river systems globally.

  8. Examination of Habitat Fragmentation and Effects on Species Persistence in the Vicinity of Naval Base Pt. Loma and Marine Corps Air Station Miramar, San Diego, CA and Development of a Multi-Species Planning Framework for Fragmented Landscapes

    Science.gov (United States)

    2011-02-01

    occurring in woody habitats including chaparral, coastal sage scrub, oak and riparian woodlands, and coniferous forests in coastal central and...suitability was on riverwash soils and by far the lowest was on soils of metamorphic origin ; suitability was similar among the rest of the soil...macrotis is a widespread species occurring in woody habitats including chaparral, coastal sage scrub, oak and riparian woodlands, and coniferous forests in

  9. Ord's kangaroo rats living in floodplain habitats: Factors contributing to habitat attraction

    Science.gov (United States)

    Miller, M.S.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    High densities of an aridland granivore, Ord's kangaroo rat (Dipodomys ordii), have been documented in floodplain habitats along the Yampa River in northwestern Colorado. Despite a high probability of inundation and attendant high mortality during the spring flood period, the habitat is consistently recolonized. To understand factors that potentially make riparian habitats attractive to D. ordii, we compared density and spatial pattern of seeds, density of a competitor (western harvester ant, Pogonomyrmex occidentalis), and digging energetics within floodplain habitats and between floodplain and adjacent upland habitats. Seed density within the floodplain was greatest in the topographically high (rarely flooded) floodplain and lowest immediately after a spring flood in the topographically low (frequently flooded) floodplain. Seed densities in adjacent upland habitat that never floods were higher than the lowest floodplain habitat. In the low floodplain prior to flooding, seeds had a clumped spatial pattern, which D. ordii is adept at exploiting; after spring flooding, a more random pattern resulted. Populations of the western harvester ant were low in the floodplain relative to the upland. Digging by D. ordii was energetically less expensive in floodplain areas than in upland areas. Despite the potential for mortality due to annual spring flooding, the combination of less competition from harvester ants and lower energetic costs of digging might promote the use of floodplain habitat by D. ordii.

  10. Desert riparian areas: Landscape perceptions and attitudes

    Science.gov (United States)

    Zube, Ervin H.; Sheehan, Michele R.

    1994-05-01

    The perceptions and attitudes of residents and special interest groups along the Upper Gila River in the vicinity of the town of Safford, Arizona, USA, were studied with a primary focus on descriptions of the riparian landscape and attitudes towards planning and management in and around the riparian area. Special interest groups included farmers, resource managers, realtors, and local decision makers. Attention was directed to differences between resource managers and other groups. Findings from this study are compared with those from a previous study along the Upper San Pedro River. Notable differences between the two areas included perceptions of appropriate land uses, with a greater emphasis on agriculture and related activities in the Upper Gila River area and on wildlife and natural area preservation in the Upper San Pedro area. Relationships of perceptions and attitudes with the socioeconomic contexts of the two study areas are explored.

  11. Government Districts, Other - Montana Administrative Boundary Web Mapping Service

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Montana Administrative Boundaries Map Service includes the following boundaries: State, County, Incorporated City/Town, Reservation, School Districts, Tax Increment...

  12. Lower Yakima Valley Wetlands and Riparian Restoration Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1994-10-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Mitigation Agreement pertaining to the Lower Yakima Valley Wetlands and Riparian Restoration Project (Project) in a cooperative effort with the Yakama Indian Nation and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities for the Project within the boundaries of the Yakama Indian Reservation. This Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large 20, 340 hectare (50, 308 acre) project area. As individual properties are secured for the Project, three site-specific activities (habitat enhancement, operation and maintenance, and monitoring and evaluation) may be subject to further site-specific environmental review. All required Federal/Tribal coordination, permits and/or approvals would be obtained prior to ground disturbing activities.

  13. Fish Habitat Improvement Projects in the Fifteenmile Creek and Trout Creek Basins of Central Oregon: Field Review and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J. Boone

    1993-07-01

    A field review of stream habitat improvement project sites in the lower Deschutes River Basin was conducted by riparian ecology, fisheries, and hydrology specialists. Habitat management objectives, limiting factors, project implementation, land use history, and other factors were discussed at each site. This information, in conjunction with the reviewer`s field inspections of portions of a particular habitat project, provided the basis for this report.

  14. Habitat Selection

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide information on the relationship between California red-legged frogs and their habitat in a unique ecosystem to better conserve this threatened...

  15. Habitat Observations

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide information on the relationship between California red-legged frogs and their habitat in a unique ecosystem to better conserve this threatened...

  16. WEST PIONEER WILDERNESS STUDY AREA, MONTANA.

    Science.gov (United States)

    Berger, Byron R.; Benham, John R.

    1984-01-01

    The West Pioneer Wilderness Study Area is in the Pioneer Mountains, Beaverhead County, Montana. A mineral-resource study of the area identified eight areas with molybdenum potential, four areas with gold-silver potential, one area with tungsten potential, and one area with barite potential. Several small mines were encountered, but none were accessible for the purposes of resource evaluation. No energy resources were identified in the study.

  17. Value of Riparian Vegetation Remnants for Leaf-Litter Ants (Hymenoptera: Formicidae) in a Human-Dominated Landscape in Central Veracruz, Mexico.

    Science.gov (United States)

    García-Martínez, Miguel Á; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela; Valenzuela-González, Jorge E

    2015-12-01

    Riparian remnants are linear strips of vegetation immediately adjacent to rivers that may act as refuges for biodiversity, depending on their habitat quality. In this study, we evaluated the role of riparian remnants in contributing to the diversity of leaf-litter ants by determining the relationship between ant diversity and several riparian habitat characteristics within a human-dominated landscape in Veracruz, Mexico. Sampling was carried out in 2012 during both dry and rainy seasons at 12 transects 100 m in length, where 10 leaf-litter samples were collected along each transect and processed with Berlese-Tullgren funnels and Winkler sacks. A total of 8,684 individuals belonging to 53 species, 22 genera, and seven subfamilies were collected. The observed mean alpha diversity accounted for 34.4% of the total species recorded and beta diversity for 65.6%. Species richness and composition were significantly related to litter-layer depth and soil compaction, which could limit the distribution of ant species depending on their nesting, feeding, and foraging habits. Riparian remnants can contribute toward the conservation of ant assemblages and likely other invertebrate communities that are threatened by anthropogenic pressures. In human-dominated landscapes where remnants of riparian vegetation give refuge to a diverse array of myrmecofauna, the protection of the few remaining and well-preserved riparian sites is essential for the long-term maintenance of biodiversity. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders.

    Science.gov (United States)

    Benjamin, Joseph R; Fausch, Kurt D; Baxter, Colden V

    2011-10-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout.

  19. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders

    Science.gov (United States)

    Benjamin, J.R.; Fausch, K.D.; Baxter, C.V.

    2011-01-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout. ?? 2011 Springer-Verlag.

  20. Biogeomorphic feedbacks within riparian corridors: the role of positive interactions between riparian plants

    Science.gov (United States)

    Corenblit, Dov; Steiger, Johannes; Till-Bottraud, Irène

    2017-04-01

    Riparian vegetation affects hydrogeomorphic processes and leads to the construction of wooded fluvial landforms within riparian corridors. Multiple plants form dense multi- and mono-specific stands that enhance plant resistance as grouped plants are less prone to be uprooted than free-standing individuals. Riparian plants which grow in dense stands also enhance their role as ecosystem engineers through the trapping of sediment, organic matter and nutrients. The wooded biogeomorphic landforms which originate from the effect of vegetation on geomorphology lead in return to an improved capacity of the plants to survive, exploit resources, and reach sexual maturity in the intervals between destructive floods. Thus, these vegetated biogeomorphic landforms likely represent a positive niche construction of riparian plants. The nature and intensity of biotic interactions between riparian plants of different species (inter-specific) or the same species (intra-specific) which form dense stands and construct together the niche remain unclear. We strongly suspect that indirect inter-specific positive interactions (facilitation) occur between plants but that more direct intra-specific interactions, such as cooperation and altruism, also operate during the niche construction process. Our aim is to propose an original theoretical framework of inter and intra-specific positive interactions between riparian plants. We suggest that positive interactions between riparian plants are maximized in river reaches with an intermediate level of hydrogeomorphic disturbance. During establishment, plants that grow within dense stands improve their survival and growth because individuals protect each other from shear stress. In addition to the improved capacity to trap mineral and organic matter, individuals which constitute the dense stand can cooperate to mutually support a mycorrhizal fungi network that will connect plants, soil and ground water and influence nutrient transfer, cycling and

  1. The interactive effects of climate change, riparian management, and a non-native predators on stream-rearing salmon

    Science.gov (United States)

    Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.

    2014-01-01

    Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We

  2. Influence of forest and rangeland management on anadromous fish habitat in Western North America: rehabilitating and enhancing stream habitat—2. Field applications.

    Science.gov (United States)

    Gordon H. Reeves; Terry D. Roelofs

    1982-01-01

    Current techniques for rehabilitating and enhancing habitat to increase natural production of anadromous salmonids in the Pacific Northwest and Alaska are described. Methods to enhance spawning, rearing, and riparian habitat, and to improve access are reviewed. The information was compiled from published literature, unpublished reports by State and Federal agencies,...

  3. Fifteenmile Basin Habitat Enhancement Project: Annual Report FY 1988.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Roger C.; Marx, Steven D.

    1989-04-01

    The goal of the Fifteenmile Creek Habitat Enhancement Project is to improve wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power Administration. Cooperators in the habitat enhancement project include the USDA Forest Service, Wasco County Soil and Water Conservation District and the Confederated Tribes of the Warms Springs. Installation of instream fish habitat structures was completed on four miles of Ramsey Creek and on one mile of Fifteenmile Creek. One hundred thirty-five structures were installed in treatment areas. Construction materials included logs and rock. Riparian protection fencing was completed on Dry Creek and Ramsey Creek worksites. Five and one-half miles of new fence was added to existing fence on Ramsey Creek to afford riparian protection to four miles of stream. Six miles of stream on Dry Creek will be afforded riparian protection by constructing 4.5 miles of fence to complement existing fence. 2 refs., 5 figs.

  4. 2011 Montana Youth Risk Behavior Survey: Alternative Schools

    Science.gov (United States)

    Montana Office of Public Instruction, 2011

    2011-01-01

    This report presents the 2011 Montana Youth Risk Behavior alternative school student frequency distributions. These frequency distributions are based upon surveys with 274 alternative school students in Montana during February of 2011. Frequency distributions may not total 274 due to nonresponse and percents may not total 100 percent due to…

  5. 2011 Montana Youth Risk Behavior Survey: Students with Disabilities

    Science.gov (United States)

    Montana Office of Public Instruction, 2011

    2011-01-01

    This report presents the 2011 Montana Youth Risk Behavior Survey high school student frequency distributions for students with disabilities. These frequency distributions are based upon surveys with 1,672 high school students with disabilities in Montana during February of 2011. Frequency distributions may not total 1,672 due to nonresponse and…

  6. 76 FR 63323 - Notice of Competitive Coal Lease Sale, Montana

    Science.gov (United States)

    2011-10-12

    ...-L13200000-EL0000-P; MTM 97988] Notice of Competitive Coal Lease Sale, Montana AGENCY: Bureau of Land... described below in Musselshell County, Montana, will be offered for competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will...

  7. 77 FR 2316 - Notice of Competitive Coal Lease Sale, Montana

    Science.gov (United States)

    2012-01-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Montana AGENCY: Bureau of Land... described below in Musselshell County, Montana, will be offered for competitive lease by sealed bid in accordance with the provisions of the Mineral Leasing Act of 1920, as amended. DATES: The lease sale will...

  8. Tipificación de "Arnica montana" L. (Asteraceae)

    OpenAIRE

    Ferrer Gallego, Pedro Pablo

    2014-01-01

    Se designa un lectótipo para Arnica montana L. (Asteraceae) a partir del material original de Linneo conservado en el herbario UPS-BURSER. A lectotype for Arnica montana L. (Asteraceae) is designated from Linnaeus’ original material preserved in the UPS-BURSER herbarium.

  9. A Response to "A Description of Merger Applied to the Montana State University Context."

    Science.gov (United States)

    Sexton, Ronald P.; And Others

    1996-01-01

    Contains three responses to Stephen L. Coffman's article appearing in the same issue, "A Description of Merger Applied to the Montana State University Context": one from the chancellor of Montana State University-Billings, one from the president of Montana State University-Bozeman, and one from the commissioner of the Montana State University…

  10. Breeding Bird Community Continues to Colonize Riparian Buffers Ten Years after Harvest.

    Directory of Open Access Journals (Sweden)

    Scott F Pearson

    Full Text Available Riparian ecosystems integrate aquatic and terrestrial communities and often contain unique assemblages of flora and fauna. Retention of forested buffers along riparian habitats is a commonly employed practice to reduce potential negative effects of land use on aquatic systems. However, very few studies have examined long-term population and community responses to buffers, leading to considerable uncertainty about effectiveness of this practice for achieving conservation and management outcomes. We examined short- (1-2 years and long-term (~10 years avian community responses (occupancy and abundance to riparian buffer prescriptions to clearcut logging silvicultural practices in the Pacific Northwest USA. We used a Before-After-Control-Impact experimental approach and temporally replicated point counts analyzed within a Bayesian framework. Our experimental design consisted of forested control sites with no harvest, sites with relatively narrow (~13 m forested buffers on each side of the stream, and sites with wider (~30 m and more variable width unharvested buffer. Buffer treatments exhibited a 31-44% increase in mean species richness in the post-harvest years, a pattern most evident 10 years post-harvest. Post-harvest, species turnover was much higher on both treatments (63-74% relative to the controls (29%. We did not find evidence of local extinction for any species but found strong evidence (no overlap in 95% credible intervals for an increase in site occupancy on both Narrow (short-term: 7%; long-term 29% and Wide buffers (short-term: 21%; long-term 93% relative to controls after harvest. We did not find a treatment effect on total avian abundance. When assessing relationships between buffer width and site level abundance of four riparian specialists, we did not find strong evidence of reduced abundance in Narrow or Wide buffers. Silviculture regulations in this region dictate average buffer widths on small and large permanent streams that

  11. Riparian forests, a unique but endangered ecosystem in Benin

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2002-01-01

    Riparian forests are often small in area, but are of extreme ecological and economic value for local people. The interest of riparian forests lies in their resources: basically fertile and moist soils, water, wood and non-timber forest products that are utilised by neighbouring populations to satisf

  12. Riparian forests, a unique but endangered ecosystem in Benin

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2002-01-01

    Riparian forests are often small in area, but are of extreme ecological and economic value for local people. The interest of riparian forests lies in their resources: basically fertile and moist soils, water, wood and non-timber forest products that are utilised by neighbouring populations to satisf

  13. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  14. Riparian adaptive management symposium: a conversation between scientists and management

    Science.gov (United States)

    Douglas F. Ryan; John M. Calhoun

    2010-01-01

    Scientists, land managers and policy makers discussed whether riparian (stream side) forest management and policy for state, federal and private lands in western Washington are consistent with current science. Answers were mixed: some aspects of riparian policy and management have a strong basis in current science, while other aspects may not. Participants agreed that...

  15. PATTERNS OF TREE DOMINANCE IN CONIFEROUS RIPARIAN FORESTS

    Science.gov (United States)

    This research quantified patterns of riparian tree dominance in western Oregon, USA and then compared the observed patterns with the expected patterns defined from the literature. Research was conducted at 110 riparian sites located on private and public lands. The field sites we...

  16. Riparian forests, a unique but endangered ecosystem in Benin

    NARCIS (Netherlands)

    Natta, A.K.; Sinsin, B.; Maesen, van der L.J.G.

    2002-01-01

    Riparian forests are often small in area, but are of extreme ecological and economic value for local people. The interest of riparian forests lies in their resources: basically fertile and moist soils, water, wood and non-timber forest products that are utilised by neighbouring populations to

  17. Incorporating Climate Change and Exotic Species into Forecasts of Riparian Forest Distribution

    Science.gov (United States)

    Ikeda, Dana H.; Grady, Kevin C.; Shuster, Stephen M.; Whitham, Thomas G.

    2014-01-01

    We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4) By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent) and P. fremontii (13 percent). In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC. PMID:25216285

  18. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  19. Eder Acquisition 2007 Habitat Evaluation Procedures Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul R.

    2008-01-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Eder acquisition in July 2007 to determine how many protection habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the project site as partial mitigation for habitat losses associated with construction of Grand Coulee and Chief Joseph Dams. Baseline HEP surveys generated 3,857.64 habitat units or 1.16 HUs per acre. HEP surveys also served to document general habitat conditions. Survey results indicated that the herbaceous plant community lacked forbs species, which may be due to both livestock grazing and the late timing of the surveys. Moreover, the herbaceous plant community lacked structure based on lower than expected visual obstruction readings (VOR); likely a direct result of livestock impacts. In addition, introduced herbaceous vegetation including cultivated pasture grasses, e.g. crested wheatgrass and/or invader species such as cheatgrass and mustard, were present on most areas surveyed. The shrub element within the shrubsteppe cover type was generally a mosaic of moderate to dense shrubby areas interspersed with open grassland communities while the 'steppe' component was almost entirely devoid of shrubs. Riparian shrub and forest areas were somewhat stressed by livestock. Moreover, shrub and tree communities along the lower reaches of Nine Mile Creek suffered from lack of water due to the previous landowners 'piping' water out of the stream channel.

  20. Geology and mineral resources of the North-Central Montana Sagebrush Focal Area: Chapter D in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Mauk, Jeffrey L.; Zientek, Michael L.; Hearn, B. Carter; Parks, Heather L.; Jenkins, M. Christopher; Anderson, Eric D.; Benson, Mary Ellen; Bleiwas, Donald I.; DeAngelo, Jacob; Denning, Paul D.; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Folger, Helen W.; Giles, Stuart A.; Glen, Jonathan M. G.; Granitto, Matthew; Haacke, Jon E.; Horton, John D.; Kelley, Karen D.; Ober, Joyce A.; Rockwell, Barnaby W.; San Juan, Carma A.; Sangine, Elizabeth S.; Schweitzer, Peter N.; Shaffer, Brian N.; Smith, Steven M.; Williams, Colin F.; Yager, Douglas B.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the North-Central Montana SFA. The proposed withdrawal area that is evaluated in this report is located in north-central Montana, and includes parts of Fergus, Petroleum, Phillips, and Valley Counties.

  1. Habitat Evaluation Procedures Report; Graves Property - Yakama Nation.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul; Muse, Anthony

    2008-02-01

    A habitat evaluation procedures (HEP) analysis was conducted on the Graves property (140 acres) in June 2007 to determine the number of habitat units to credit Bonneville Power Administration (BPA) for providing funds to acquire the property as partial mitigation for habitat losses associated with construction of McNary Dam. HEP surveys also documented the general ecological condition of the property. The Graves property was significantly damaged from past/present livestock grazing practices. Baseline HEP surveys generated 284.28 habitat units (HUs) or 2.03 HUs per acre. Of these, 275.50 HUs were associated with the shrubsteppe/grassland cover type while 8.78 HUs were tied to the riparian shrub cover type.

  2. Asotin Creek Instream Habitat Alteration Projects : Habitat Evaluation, Adult and Juvenile Habitat Utilization and Water Temperature Monitoring : 2001 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  3. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Directory of Open Access Journals (Sweden)

    S. Peter

    2012-11-01

    Full Text Available For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3 removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3 concentration (> 50% was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3 pool (by up to 22‰ for δ15N and up to 12‰ for δ18O provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3 removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3 concentration with a rate of ~21 μmol N l−1 d−1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3 removal rates were lower (~6 μmol l−1 d−1. Hence, discharge-modulated vegetation–soil–groundwater coupling was found to be a key driver for riparian NO3 removal. We estimated that

  4. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    Science.gov (United States)

    Peter, S.; Rechsteiner, R.; Lehmann, M. F.; Brankatschk, R.; Vogt, T.; Diem, S.; Wehrli, B.; Tockner, K.; Durisch-Kaiser, E.

    2012-11-01

    For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N) can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3-) removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ) were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3- concentration (> 50%) was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3- pool (by up to 22‰ for δ15N and up to 12‰ for δ18O) provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3- removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3- concentration with a rate of ~21 μmol N l-1 d-1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3- removal rates were lower (~6 μmol l-1 d-1). Hence, discharge-modulated vegetation-soil-groundwater coupling was found to be a key driver for riparian NO3- removal. We estimated that, despite higher rates in the fairly constrained willow bush hot spot, total NO3- removal from the groundwater is lower than in the extended forest area. Overall, the aquifer in the restored section was more effective and removed ~20% more NO3- than the channelized section.

  5. BLM Density Management and Riparian Buffer Study: Establishment Report and Study Plan

    Science.gov (United States)

    Cissel, J.H.; Anderson, P.D.; Olson, Deanna H.; Puettmann, Klaus; Berryman, Shanti; Chan, Samuel; Thompson, Charley

    2006-01-01

    The Bureau of Land Management (BLM), Pacific Northwest Research Station (PNW), U.S. Geological Survey (USGS), and Oregon State University (OSU) established the BLM Density Management and Riparian Buffer Study (DMS) in 1994 to demonstrate and test options for young stand management to meet Northwest Forest Plan objectives in western Oregon. The primary objectives of the DMS are to evaluate the effects of alternative forest density management treatments in young stands on the development of important late-successional forest habitat attributes and to assess the combined effects of density management and alternative riparian buffer widths on aquatic and riparian ecosystems. The DMS consists of three integrated studies: initial thinning, rethinning, and riparian buffer widths. The initial thinning study was installed in 50- to 80-year-old stands that had never been commercially thinned. Four stand treatments of 30-60 acres each were established at each of seven study sites: (1) unthinned control, (2) high density retention [120 trees per acre (TPA)], (3) moderate density retention (80 TPA), and (4) variable density retention (40-120 TPA). Small (1/4 to 1 acre in size) leave islands were included in all treatments except the control, and small patch cuts (1/4 to 1 acre in size) were included in the moderate and variable density treatments. An eighth site, Callahan Creek, contains a partial implementation of the study design. The rethinning study was installed in four 70- to 90-year-old stands that previously had been commercially thinned. Each study stand was split into two parts: one part as an untreated control and the other part as a rethinning (30-60 TPA). The riparian buffer study was nested within the moderate density retention treatment at each of the eight initial thinning study sites and two rethinning sites. Alternative riparian buffer widths included: (1) streamside retention (one tree canopy width, or 20-25 feet), (2) variable width (follows topographic and

  6. Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO.

    Science.gov (United States)

    Albert, Andreas; Sareedenchai, Vipaporn; Heller, Werner; Seidlitz, Harald K; Zidorn, Christian

    2009-05-01

    Plants in alpine habitats are exposed to many environmental stresses, in particular temperature and radiation extremes. Recent field experiments on Arnica montana L. cv. ARBO indicated pronounced altitudinal variation in plant phenolics. Ortho-diphenolics increased with altitude compared to other phenolic compounds, resulting in an increase in antioxidative capacity of the tissues involved. Factors causing these variations were investigated by climate chamber (CC) experiments focusing on temperature and ultraviolet (UV)-B radiation. Plants of A. montana L. cv. ARBO were grown in CCs under realistic climatic and radiation regimes. Key factors temperature and UV-B radiation were altered between different groups of plants. Subsequently, flowering heads were analyzed by HPLC for their contents of flavonoids and caffeic acid derivatives. Surprisingly, increased UV-B radiation did not trigger any change in phenolic metabolites in Arnica. In contrast, a pronounced increase in the ratio of B-ring ortho-diphenolic (quercetin) compared to B-ring monophenolic (kaempferol) flavonols resulted from a decrease in temperature by 5 degrees C in the applied climate regime. In conclusion, enhanced UV-B radiation is probably not the key factor triggering shifts in the phenolic composition in Arnica grown at higher altitudes but rather temperature, which decreases with altitude.

  7. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo.

    Science.gov (United States)

    Luke, Sarah H; Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M; Foster, William A; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C; Walsh, Rory P D; Aldridge, David C

    2017-06-01

    Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.

  8. Riparian woodland flora in upland rivers of Western Greece

    Directory of Open Access Journals (Sweden)

    S. ZOGARIS

    2012-12-01

    Full Text Available Although natural riparian woodlands are an important feature that affects the quality of aquatic conditionsin streams and rivers, surveying riparian zone flora is rarely implemented in the Mediterraneancountries. We developed a rapid assessment method for gathering standardized plot-based woody flora andvegetation data from riparian woodlands. In 2005 we surveyed 218 streamside vegetation plots at 109 sitesin upland areas of four major rivers in mainland Greece (Alfios, Acheloos, Arachthos, and Aoos. Herewe describe the survey method and provide selected results from its initial implementation. The simplicityand effectiveness of this survey procedure supports the use of rapid site-based biodiversity surveys for riparianzones alongside aquatic status assessments.

  9. Northwest Montana Libby/Hungry Horse Dams Wildlife Mitigation; Columbian Sharp-Tailed Grouse, 1990-1991 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, Michael G. [Montana State Univ., Bozeman, MT (United States)]|[Montana Dept. of Fish, Wildlife and Parks, Kalispell, MT (United States)

    1992-07-01

    Distribution, habitat use and survival of transplanted Columbian sharp-tailed grouse in the Tobacco Plains, Montana were studied from April, 1990 to August, 1991. For transplant purposes, 12 grouse (5 female and 7 male) were trapped on dancing grounds near Douglas Lake, British Columbia, Canada during spring, 1990. In April, 1991, trapping of 4 female and 2 male grouse for transplant occurred on the Sand Creek Wildlife Management Area in southeast Idaho while 3 additional males were transplanted from Douglas Lake. Minimum annual survival of transplanted grouse in the Tobacco Plains is relatively high (47%). High survival is possibly due to 2 factors: (1) topography and habitat characteristics that discourage dispersal and (2) the presence of limited but relatively good habitat. Two of 18 radio-equipped grouse dispersed out of the study area, while 2 others survived in the area for over 590 days. A negative correlation in distances moved between consecutive relocations and length of survival was seen in radio-equipped grouse in this study. Data collected during this study showed the importance of habitat associated with the Dancing Prairie Preserve. Three of 5 females transplanted in 1990 attempted to nest after being released. Nesting and brood rearing sites were characterized by dense grass cover with an average effective height {ge}20 cm. Shrub cover was associated only with brood rearing sites. Overall habitat use by transplanted Columbian Sharp-tailed grouse showed an apparent avoidance of agricultural land and use of other habitat types in proportion to their availability.

  10. Some biological compounds, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. sub sp. montana from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Emre, I.; Kursat, M.; Yilmaz, O.; Erecevit, P.

    2011-07-01

    This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids), radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54+-0.13-3.05+-0.04%), oleic acid (C18:1 n9, 22.41+-0.8-18.83+-0.1%) and a-inolenic acid were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol and ergosterol as well as beta-sitosterol. The present findings show that Nepeta italica L. contains morin, catechin, naringin and Sideritis montana L. subsp. montana contains morin, naringenin as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios. (Author).

  11. Some biological compounds, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana from Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Emre, I.; Kursat, M.; Yilmaz, O.; Erecevit, P.

    2011-07-01

    This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids), radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54+-0.13-3.05+-0.04%), oleic acid (C18:1 n9, 22.41+-0.8-18.83+-0.1%) and a-inolenic acid were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol and ergosterol as well as beta-sitosterol. The present findings show that Nepeta italica L. contains morin, catechin, naringin and Sideritis montana L. subsp. montana contains morin, naringenin as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios. (Author).

  12. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  13. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Science.gov (United States)

    Tape, Ken D; Gustine, David D; Ruess, Roger W; Adams, Layne G; Clark, Jason A

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  14. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management

    Science.gov (United States)

    Bury, R.B.

    2008-01-01

    Temperature has a profound effect on survival and ecology of amphibians. In the Pacific Northwest, timber harvest is known to increase peak stream temperatures to 24??C or higher, which has potential to negatively impact cold-water stream amphibians. I determined the Critical Thermal Maxima (CT max) for two salamanders that are endemic to the Pacific Northwest. Rhyacotriton variegatus larvae acclimated at 10??C had mean CTmax of 26.7 ?? 0.7 SD??C and adults acclimated at 11??C had mean CT max of 27.9 ?? 1.1??C. These were among the lowest known values for any amphibian. Values were significantly higher for larval Dicamptodon tenebrosus acclimated at 14??C (x = 29.1 ?? 0.2??C). Although the smallest R. variegatus had some of the lowest values, size of larvae and adults did not influence CTmax in this species. Current forest practices retain riparian buffers along larger fish-bearing streams; however, such buffers along smaller headwaters and non-fish bearing streams may provide favorable habitat conditions for coldwater-associated species in the Pacific Northwest. The current study lends further evidence to the need for protection of Northwest stream amphibians from environmental perturbations. Forest guidelines that include riparian buffer zones and configurations of upland stands should be developed, while monitoring amphibian responses to determine their success. ?? 2008 Brill Academic Publishers.

  15. Impact of Dams on Riparian Frog Communities in the Southern Western Ghats, India

    Directory of Open Access Journals (Sweden)

    Rohit Naniwadekar

    2014-08-01

    Full Text Available The Western Ghats is a global biodiversity hotspot and home to diverse and unique assemblages of amphibians. Several rivers originate from these mountains and hydropower is being tapped from them. The impacts of hydrological regulation of riparian ecosystems to wildlife and its habitat are poorly documented, and in particular the fate of frog populations is unknown. We examined the effects of dams on riparian frog communities in the Thamirabarani catchment in southern Western Ghats. We used nocturnal visual encounter surveys constrained for time, to document the species richness of frogs below and above the dam, and also at control sites in the same catchment. While we did not find differences in species richness below and above the dams, the frog community composition was significantly altered as a likely consequence of altered flow regime. The frog species compositions in control sites were similar to above-dam sites. Below-dam sites had a distinctly different species composition. Select endemic frog species appeared to be adversely impacted due to the dams. Below-dam sites had a greater proportion of generalist and widely distributed species. Dams in the Western Ghats appeared to adversely impact population of endemic species, particularly those belonging to the genus Nyctibatrachus that shows specialization for intact streams.

  16. Community structure of ferns in riparian forest: evaluation in anthropization gradient

    Directory of Open Access Journals (Sweden)

    Ivanete Teresinha Mallmann

    2016-03-01

    Full Text Available Riparian forests are essential to the maintenance of biodiversity and foster the development of ferns that are indicators of environmental quality. However, these forests have been degraded due mainly to high population density, pattern of urban settlement and agricultural expansion in rural areas. This study evaluated the environmental quality of riparian vegetation of the Cadeia River in Southern Brazil, using phytosociological parameters of the understory’s fern community and a Rapid Assessment Protocol of Habitat Quality (RAPQH. One hundred and twenty plots of 25 m2 were equally distributed among three fragments (FI, FII, FIII. All species of herbaceous ferns were inventoried in each sample unit. We calculated parameters of density, frequency, relative dominance and importance value (IV of species for the analysis of community structure. The lowest species richness was recorded at FIII (seven species. The floristic composition is more heterogeneous and richness is higher in FI, where the parcels had greater plant cover and RAPQH scores. The RAPQH score decreased with increasing degree of urbanization in the surrounding matrix and FI and FII were classified as “natural,” while FIII was classified as “impacted.” Considering the four species with the highest IV in the three fragments (totaling 69.11% of IV in the FI, 78.36% and 91.06% in FII and FIII respectively, it can be affirmed that the fern community structure is degraded with increasing anthropization.

  17. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  18. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Science.gov (United States)

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  19. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    Science.gov (United States)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  20. Northwest Montana [Waterfowl Production Area] Narrative report: Fical year 1975

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Northwest Montana Wetland Management District outlines Refuge accomplishments during the 1975 fiscal year. The report begins by...

  1. Montana National Wildlife Refuges: Contaminant issues of concern

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to: (1) identify specific contaminant issues of concern for each Montana refuge and wetland management district; (2) summarize the...

  2. Montana Fish, Wildlife & Parks 2008 Avian Influenza Surveillance Project Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the work performed by Montana Fish, Wildlife and Parks (FWP) during the 2008 surveillance period. The objectives of the project were to employ...

  3. Planning and accomplishment narrative: Northwest Montana Waterfowl Production Area [1973

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This planning and accomplishments narrative report for Northwest Montana Wetland Management District outlines Refuge accomplishments during the 1973 calendar year....

  4. Building Points - Montana Structures/Addresses Framework - Web Service

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Map service for the Montana Structures MSDI Framework. The service will only display at scales of 1:100,000 or larger. Structures are grouped into general categories...

  5. Building Points - Montana Structures/Addresses Framework - Web Service

    Data.gov (United States)

    NSGIC State | GIS Inventory — Map service for the Montana Structures MSDI Framework. The service will only display at scales of 1:100,000 or larger. Structures are grouped into general categories...

  6. Land Use and Land Cover - Montana Land Cover Framework 2013

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This statewide land cover theme is a baseline digital map of Montana's natural and human land cover. The baseline map is adapted from the Northwest ReGAP project...

  7. Northwest Montana Wetland Management District : Annual Narrative : Calendar Year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Northwest Montana WMD outlines Refuge accomplishments during the 1995 calendar year. The report begins with a summary of the year's...

  8. Northwest Montana Wetland Management District : Annual Narrative : Calendar Year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Northwest Montana WMD outlines Refuge accomplishments during the 1992 calendar year. The report begins with a summary of the year's...

  9. Northwest Montana Wetland Management District : Annual Narrative : Calendar Year 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Northwest Montana WMD outlines Refuge accomplishments during the 1994 calendar year. The report begins with a summary of the year's...

  10. Northwest Montana Wetland Management District : Annual Narrative : Calendar Year 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Northwest Montana WMD outlines Refuge accomplishments during the 1993 calendar year. The report begins with a summary of the year's...

  11. Bone foreshafts from a clovis burial in southwestern montana.

    Science.gov (United States)

    Lahren, L; Bonnichsen, R

    1974-10-11

    Formal and functional analyses of bone artifacts from a Clovis burial in southwestern Montana suggest that they were constructed to serve as (detachable or nondetachable) foreshafts for attaching fluted projectile points to lance shafts.

  12. [Predator disease sampling results in Montana 1993-1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains data from predator disease sampling in Montana for the reintroduction of black-footed ferrets at Charles M. Russell National Wildlife Refuge....

  13. Population sinks resulting from degraded habitats of an obligate life-history pathway.

    Science.gov (United States)

    Hickford, Michael J H; Schiel, David R

    2011-05-01

    Many species traverse multiple habitats across ecosystems to complete their life histories. Degradation of critical, life stage-specific habitats can therefore lead to population bottlenecks and demographic deficits in sub-populations. The riparian zone of waterways is one of the most impacted areas of the coastal zone because of urbanisation, deforestation, farming and livestock grazing. We hypothesised that sink populations can result from alterations of habitats critical to the early life stages of diadromous fish that use this zone, and tested this with field-based sampling and experiments. We found that for Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, obligate riparian spawning habitat was very limited and highly vulnerable to disturbance across 14 rivers in New Zealand. Eggs were laid only during spring tides, in the highest tidally influenced vegetation of waterways. Egg survival increased to >90% when laid in three riparian plant species and where stem densities were great enough to prevent desiccation, compared to no survival where vegetation was comprised of other species or was less dense. Experimental exclusion of livestock, one of the major sources of riparian degradation in rural waterways, resulted in quick regeneration, a tenfold increase in egg laying by fish and a threefold increase in survival, compared to adjacent controls. Overall, there was an inverse relationship between river size and egg production. Some of the largest rivers had little or no spawning habitat and very little egg production, effectively becoming sink populations despite supporting large adult populations, whereas some of the smallest pristine streams produced millions of eggs. We demonstrate that even a wide-ranging species with many robust adult populations can be compromised if a stage-specific habitat required to complete a life history is degraded by localised or more diffuse impacts.

  14. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, Guy; Pero, Vincent (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2000-01-01

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of the project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.

  15. Nitrogen, phosphorus and silicon in riparian ecosystems along the ...

    African Journals Online (AJOL)

    2011-09-05

    Sep 5, 2011 ... 2Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, .... transformation processes, e.g. removal by denitrification (e.g. ... riparian wetlands, as well as the effects of increasing human.

  16. Riparian trees as common denominators across the river flow ...

    African Journals Online (AJOL)

    2014-03-04

    Mar 4, 2014 ... Riparian species disperse, reproduce and survive in response to river flow timing ..... transformed when assumptions of heterogeneity of variance ..... soil type on growth, vessel diameter and vessel frequency in seed-.

  17. Riparian zone controls on base cation concentrations in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-01-01

    Full Text Available Forest riparian zones are a major in control of surface water quality. Base cation (BC concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  18. Riparian zone controls on base cation concentrations in boreal streams

    Science.gov (United States)

    Ledesma, J. L. J.; Grabs, T.; Futter, M. N.; Bishop, K. H.; Laudon, H.; Köhler, S. J.

    2013-01-01

    Forest riparian zones are a major in control of surface water quality. Base cation (BC) concentrations, fluxes, and cycling in the riparian zone merit attention because of increasing concern of negative consequences for re-acidification of surface waters from future climate and forest harvesting scenarios. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 riparian zones and 14 streams in a boreal catchment in northern Sweden. The Riparian Flow-Concentration Integration Model (RIM) was used to estimate riparian zone flow-weighted concentrations and tested to predict the stream flow-weighted concentrations. Spatial variation in BC and Si concentrations as well as in flow-weighted concentrations was related to differences in Quaternary deposits, with the largest contribution from lower lying silty sediments and the lowest contribution from wetland areas higher up in the catchment. Temporal stability in the concentrations of most elements, a remarkably stable Mg / Ca ratio in the soil water and a homogeneous mineralogy suggest that the stable patterns found in the riparian zones are a result of distinct mineralogical upslope groundwater signals integrating the chemical signals of biological and chemical weathering. Stream water Mg / Ca ratio indicates that the signal is subsequently maintained in the streams. RIM gave good predictions of Ca, Mg, and Na flow-weighted concentrations in headwater streams. The difficulty in modelling K and Si suggests a stronger biogeochemical influence on these elements. The observed chemical dilution effect with flow in the streams was related to variation in groundwater levels and element concentration profiles in the riparian zones. This study provides a first step toward specific investigations of the vulnerability of riparian zones to changes induced by forest management or climate change, with focus on BC or other compounds.

  19. The Marysville, Montana Geothermal Project. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    1975-09-01

    This report describes the exploration of an anomalous site near Marysville, Montana, where the geothermal heat flow is about 10 times the regional average. The site arouses scientific interest because there are no surface manifestations such as young volcanics, hot springs, geysers, etc., within 20 miles of it. Also, there is significant economic interest in exploring the source of heat as a potential for the generation of electricity. Included herein are independent sections prepared by each contractor. Consequently, there is some overlapping information, generally presented from different viewpoints. The project consists of geophysical surveys in 1973 and 1974, the drilling of the deep well in the summer of 1974 to a depth of 6790 feet, the coring and logging of the well, the supporting scientific studies, and the data analysis. Since so much data are available on the Marysville system, it can serve as a testing and research area to help locate and understand similar systems. (GRA)

  20. US hydropower resource assessment for Montana

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  1. Associations of breeding birds with fire-influenced and riparian-upland gradients in a longleaf pine ecosystem

    Science.gov (United States)

    Allen, J.C.; Krieger, S.M.; Walters, J.R.; Collazo, J.A.

    2006-01-01

    We determined the effects of fire history and a riparian-upland gradient on the breeding bird community at Fort Bragg Military Installation in North Carolina, one of the largest remnant areas of the endangered longleaf pine (Pinus palustris) ecosystem. Study sites were classified into two treatments: fire-intense (areas experiencing growing-season burns) and fire-suppressed (areas lacking fires). Within each treatment, bird and vegetation data were recorded at point-count stations positioned at three distances from streamhead pocosins to characterize the riparian-upland habitat gradient: 0, 75, and ???150 m. Total bird abundance and species richness varied significantly along the riparian-upland gradient, with pocosins contributing greatly to avian biodiversity. Our data revealed strong effects of fire history and riparian-upland gradient on bird species, which we described in terms of breeding-bird assemblages. Members of the open longleaf assemblage (e.g., Red-cockaded Woodpecker [Picoides borealis], Bachman's Sparrow [Aimophila aestivalis]) were most common in fire-intense areas and at upland locations. Members of the fire-suppressed assemblage (e.g., Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapilla]) were confined to pocosins in fire-intense areas, but became more abundant in fire-suppressed areas. Members of the pocosin assemblage (e.g., Eastern Towhee [Pipilo erythropthalamus], Common Yellowthroat [Geothlypis trichas]) were largely confined to pocosins and, in some cases, were most abundant in fire-intense pocosins. Fire suppression increased structural diversity of vegetation and promoted one breeding-bird assemblage (fire-suppressed), but at the expense of two others (open longleaf, pocosin). Continued management of Fort Bragg to promote longleaf pine restoration is essential for supporting conservation of the open-longleaf bird assemblage; in addition, it will benefit the pocosin assemblage. ?? The American Ornithologists' Union, 2006.

  2. 31 flavors to 50 shades of grey: battling Phytophthoras in native habitats managed by the Santa Clara Valley Water District

    Science.gov (United States)

    Janet Hillman; Tedmund J. Swiecki; Elizabeth A. Bernhardt; Heather K. Mehl; Tyler B. Bourret; David Rizzo

    2017-01-01

    The Santa Clara Valley Water District (District) is a wholesale water supplier for 1.8 million people in Santa Clara County, California. Capital, water utility, and stream maintenance projects result in extensive, long-term mitigation requirements in riparian, wetland, and upland habitats throughout the county. In 2014, several restoration sites on the valley floor and...

  3. A sampling plan for riparian birds of the Lower Colorado River-Final Report

    Science.gov (United States)

    Bart, Jonathan; Dunn, Leah; Leist, Amy

    2010-01-01

    A sampling plan was designed for the Bureau of Reclamation for selected riparian birds occurring along the Colorado River from Lake Mead to the southerly International Boundary with Mexico. The goals of the sampling plan were to estimate long-term trends in abundance and investigate habitat relationships especially in new habitat being created by the Bureau of Reclamation. The initial objective was to design a plan for the Gila Woodpecker (Melanerpes uropygialis), Arizona Bell's Vireo (Vireo bellii arizonae), Sonoran Yellow Warbler (Dendroica petechia sonorana), Summer Tanager (Piranga rubra), Gilded Flicker (Colaptes chrysoides), and Vermilion Flycatcher (Pyrocephalus rubinus); however, too little data were obtained for the last two species. Recommendations were therefore based on results for the first four species. The study area was partitioned into plots of 7 to 23 hectares. Plot borders were drawn to place the best habitat for the focal species in the smallest number of plots so that survey efforts could be concentrated on these habitats. Double sampling was used in the survey. In this design, a large sample of plots is surveyed a single time, yielding estimates of unknown accuracy, and a subsample is surveyed intensively to obtain accurate estimates. The subsample is used to estimate detection ratios, which are then applied to the results from the extensive survey to obtain unbiased estimates of density and population size. These estimates are then used to estimate long-term trends in abundance. Four sampling plans for selecting plots were evaluated based on a simulation using data from the Breeding Bird Survey. The design with the highest power involved selecting new plots every year. Power with 80 plots surveyed per year was more than 80 percent for three of the four species. Results from the surveys were used to provide recommendations to the Bureau of Reclamation for their surveys of new habitat being created in the study area.

  4. Sinuosity-Driven Water Pressure Distribution on Slope of Slightly-Curved Riparian Zone: Analytical Solution Based on Small-disturbance Theory and Comparison to Experiments

    Directory of Open Access Journals (Sweden)

    Jihong Xia

    2016-02-01

    Full Text Available A curved riparian zone can create highly complex flow patterns that have a great effect on erosion, pollutant transport, surface water-groundwater exchange and habitat qualities. The small-disturbance theory has been applied to derive the analytical solutions of pressure distributions along a sinusoidal riverbank. Experiments have also been performed to test the hydrodynamic and geomorphic effects on pressure distribution and to verify the applicability of the derived expressions. The derived expressions were simple, accurate and agreed remarkably well with experimental results for the riparian banks with a low degree of curvature. On the contrary, when a riparian bank had a high degree of curvature, these expressions applying the approach of small-disturbance, could not effectively estimate the pressure distributions for a complex bank boundary or complex flow conditions. Moreover, sensitive analysis has indicated that the disturbed pressures along the riparian banks increased with increasing Froude number Fr, as well as the ratio of bank amplitude to wavelength a/λ. However, a/λ has been found to have more significant influence on pressure variation in subcritical flow.

  5. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes.

    Science.gov (United States)

    Rheindt, Frank E; Christidis, Les; Norman, Janette A

    2008-07-07

    Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have played an important role in facilitating habitat shifts by

  6. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    Directory of Open Access Journals (Sweden)

    Christidis Les

    2008-07-01

    Full Text Available Abstract Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have

  7. Montana StreamStats—A method for retrieving basin and streamflow characteristics in Montana: Chapter A in Montana StreamStats

    Science.gov (United States)

    McCarthy, Peter M.; Dutton, DeAnn M.; Sando, Steven K.; Sando, Roy

    2016-04-05

    The U.S. Geological Survey (USGS) provides streamflow characteristics and other related information needed by water-resource managers to protect people and property from floods, plan and manage water-resource activities, and protect water quality. Streamflow characteristics provided by the USGS, such as peak-flow and low-flow frequencies for streamflow-gaging stations, are frequently used by engineers, flood forecasters, land managers, biologists, and others to guide their everyday decisions. In addition to providing streamflow characteristics at streamflow-gaging stations, the USGS also develops regional regression equations and drainage area-adjustment methods for estimating streamflow characteristics at locations on ungaged streams. Regional regression equations can be complex and often require users to determine several basin characteristics, which are physical and climatic characteristics of the stream and its drainage basin. Obtaining these basin characteristics for streamflow-gaging stations and ungaged sites traditionally has been time consuming and subjective, and led to inconsistent results.StreamStats is a Web-based geographic information system application that was created by the USGS to provide users with access to an assortment of analytical tools that are useful for water-resource planning and management. StreamStats allows users to easily obtain streamflow and basin characteristics for USGS streamflow-gaging stations and user-selected locations on ungaged streams. The USGS, in cooperation with Montana Department of Transportation, Montana Department of Environmental Quality, and Montana Department of Natural Resources and Conservation, completed a study to develop a StreamStats application for Montana, compute streamflow characteristics at streamflow-gaging stations, and develop regional regression equations to estimate streamflow characteristics at ungaged sites. Chapter A of this Scientific Investigations Report describes the Montana Stream

  8. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    Science.gov (United States)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  9. Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and

  10. Hood River Production Program : Hood River Fish Habitat Protection, Restoration, and Monitoring Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Coccoli, Holly; Lambert, Michael

    2000-02-01

    Effective habitat protection and rehabilitation are essential to the long-term recovery of anadromous fish populations in the Hood River subbasin. This Habitat Protection, Restoration, and Monitoring Plan was prepared to advance the goals of the Hood River Production Program (HRRP) which include restoring self-sustaining runs of spring chinook salmon and winter and summer steelhead. The HRPP is a fish supplementation and monitoring and evaluation program initiated in 1991 and funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council Fish and Wildlife Program. The HRPP is a joint effort of the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO) and Oregon Department of Fish and Wildlife (ODFW). Using recent watershed assessment and federal watershed analysis reports, this Plan reviews the historic and current condition of riparian, instream and upland habitats; natural watershed processes; anadromous and resident fish populations; identifies limiting factors, and indicates those subbasin areas that need protection or are likely to respond to restoration. Primary habitat restoration needs were identified as (1) improved fish screening and upstream adult passage at water diversions; (2) improved spawning gravel availability, instream habitat structure and diversity; and (3) improved water quality and riparian conditions. While several early action projects have been initiated in the Hood River subbasin since the mid 1990s, this Plan outlines additional projects and strategies needed to protect existing high quality habitat, correct known fish survival problems, and improve the habitat capacity for natural production to meet HRPP goals.

  11. 77 FR 12581 - Public Water System Supervision Program Revision for the State of Montana

    Science.gov (United States)

    2012-03-01

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Public Water System Supervision Program Revision for the State of Montana AGENCY: Environmental... the state of Montana has revised its Public Water System Supervision (PWSS) Program by...

  12. 75 FR 69434 - Public Water System Supervision Program Revision for the State of Montana

    Science.gov (United States)

    2010-11-12

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Public Water System Supervision Program Revision for the State of Montana AGENCY: Environmental... the State of Montana has revised its Public Water System Supervision (PWSS) Primacy Program...

  13. The Montana Wild Virus Hunt | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... Health: The Montana Wild Virus Hunt Follow us The Montana Wild Virus Hunt Blake Wiedenheft is a ... their passion for health and science. What is the focus of your research? Viruses that infect bacteria ( ...

  14. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    Science.gov (United States)

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands raccoons were able to utilize multiple habitat types for foraging resources, a selection of intact forest and RMZs at multiple spatial scales indicates the need of mature forest (with large-diameter trees) for this species in managed forests in the central Appalachians.

  15. Artificial perches as a nucleation technique for restoration of a riparian environment: characterization of the seed rain and of natural regeneration

    Directory of Open Access Journals (Sweden)

    Aline Luiza Tomazi

    2010-09-01

    Full Text Available Riparian habitats are important to the maintenance of ecological processes and environmental services. However, a significant portion of the riparian vegetation in the Brazilian Atlantic forest has been removed in response to increasing human pressure. Therefore, the application of restoration techniques in these habitats becomes essential. In this context, a nucleation model with 18 artificial perches was evaluated for the restoration of a degraded riparian area in Gaspar, Santa Catarina, Brazil, by the characterization of the seed rain and natural regeneration. In two years we collected 21,864 seeds of 51 morphospecies, and recorded 42 colonizing species. Zoochoric seeds belonging to 15 plant families comprised 17% of the seed rain and 19.05% of the spontaneously regenerating plant species. Asteraceae and Poaceae were the most represented families. The artificial perches performed the nucleating function through the increase of zoochoric seed rain. However, possibly due to different barriers that were not evaluated in this study, part of these seeds was not recruited. We recommend the application of this technique for the attraction of dispersers in degraded areas similar to the study site.

  16. Developing a Climate Change Boundary Organization: the Montana Adaptation Exchange

    Science.gov (United States)

    Whitlock, C. L.; Brooks, S.; Armstrong, T.; Bryan, B.

    2016-12-01

    Small-population large-area states like Montana are often challenged by a need to offer timely and relevant climate-change information that addresses diverse and widely dispersed stakeholder groups. In Montana, filling the gap between science and various types of decision-makers has motivated development of the first Montana Climate Assessment (MCA1), to be released in 2017 with a focus on climate-change impacts for agricultural, water and forestry sectors. To sustain and build on the MCA1 effort, we are also in the process of creating a Boundary Organization (defined by the National Academy of Sciences) called the Montana Adaptation Exchange (the Exchange); this entity will facilitate the flow of information across the boundaries between science, knowledge and implementation. In Montana, the Exchange brings scientists and practitioners together to seek solutions related to climate-change adaptation and other pressing environmental and social-economic challenges. The Montana Adaptation Exchange (1) is a collaborative partnership of members from the science and practitioner communities under a shared governance and participatory model; (2) presents research that has been vetted by the scientific community at large and represents the current state of knowledge; (3) allows for revision and expansion of assessments like the MCA; (4) communicates relevant, often technical, research and findings to a wide variety of resource managers and other stakeholders; (5) develops and maintains an extensive online database that organizes, regularly updates, and makes research data products readily available; and (6) offers an online portal and expert network of affiliated researchers and climate adaptation specialists to provide effective customer support. Boundary organizations, such as the Montana Adaptation Exchange, offer a scalable path to effectively move from "science to knowledge to action" while also allowing stakeholder needs to help inform research agendas.

  17. Water Table Dynamics of a Rocky Mountain Riparian Area

    Science.gov (United States)

    Westbrook, C. J.

    2009-05-01

    Riparian areas in mountain valleys serve as collection points for local precipitation, hillslope runoff, deeper groundwater, and channel water. Little is known about how complex hydrological interactions among these water sources govern riparian water table dynamics, particularly on an event basis partly owing to a lack of high frequency spatial and temporal data. Herein I describe the magnitude and rate of change of groundwater storage in a 1.3 km2 Canadian Rocky Mountain peat riparian area. Weekly manual measurement of hydraulic heads in a network of 51 water table wells during the summers of 2006 and 2007 showed large temporal and spatial variations in well response. A near constant increase in the spatial heterogeneity of the water table was observed as the riparian area dried. Cluster analysis and principle components analysis were performed on these weekly data to objectively classify the riparian area into spatial response units. Results were classification of the standpipes into five distinct water table regimes. One well representing each water table regime was outfitted with a sensor in 2008 that measured hourly head, which was used to characterize temporal dynamics of water table response. In spring, snowmelt runoff combined with an ice lens 20-30 cm below the ground surface led to consistently high water tables throughout the riparian area. In summer, the water table fell throughout the riparian in response to declining hillslope inputs and increased evaporative demand, but rates of decline were highly variable among the water table regimes. Chloride concentrations suggest variability reflects differences in the degree to which the water table regimes are influenced by stream stage, hillslope inputs, and proximity to beaver dams. Water table regime responses to rain events were flashy, with dramatic rises and falls (up to 20 cm) in short periods of time (export and plant community composition.

  18. Louisiana ESI: HABITATS (Habitat and Plant Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for coastal habitats in Louisiana. Vector polygons represent various habitats, including marsh types, other...

  19. Using a Remote Sensing/GIS Model to Predict Southwestern Willow Flycatcher Breeding Habitat along the Rio Grande, New Mexico

    Science.gov (United States)

    Hatten, James R.; Sogge, Mark K.

    2007-01-01

    Introduction The Southwestern Willow Flycatcher (Empidonax traillii extimus; hereafter SWFL) is a federally endangered bird (USFWS 1995) that breeds in riparian areas in portions of New Mexico, Arizona, southwestern Colorado, extreme southern Utah and Nevada, and southern California (USFWS 2002). Across this range, it uses a variety of plant species as nesting/breeding habitat, but in all cases prefers sites with dense vegetation, high canopy, and proximity to surface water or saturated soils (Sogge and Marshall 2000). As of 2005, the known rangewide breeding population of SWFLs was roughly 1,214 territories, with approximately 393 territories distributed among 36 sites in New Mexico (Durst et al. 2006), primarily along the Rio Grande. One of the key challenges facing the management and conservation of the Southwestern Willow Flycatcher is that riparian areas are dynamic, with individual habitat patches subject to cycles of creation, growth, and loss due to drought, flooding, fire, and other disturbances. Former breeding patches can lose suitability, and new habitat can develop within a matter of only a few years, especially in reservoir drawdown zones. Therefore, measuring and predicting flycatcher habitat - either to discover areas that might support SWFLs, or to identify areas that may develop into appropriate habitat - requires knowledge of recent/current habitat conditions and an understanding of the factors that determine flycatcher use of riparian breeding sites. In the past, much of the determination of whether a riparian site is likely to support breeding flycatchers has been based on qualitative criteria (for example, 'dense vegetation' or 'large patches'). These determinations often require on-the-ground field evaluations by local or regional SWFL experts. While this has proven valuable in locating many of the currently known breeding sites, it is difficult or impossible to apply this approach effectively over large geographic areas (for example, the

  20. Using a remote sensing/GIS model to predict southwestern Willow Flycatcher breeding habitat along the Rio Grande, New Mexico

    Science.gov (United States)

    Hatten, James R.; Sogge, Mark K.

    2007-01-01

    Introduction The Southwestern Willow Flycatcher (Empidonax traillii extimus; hereafter SWFL) is a federally endangered bird (USFWS 1995) that breeds in riparian areas in portions of New Mexico, Arizona, southwestern Colorado, extreme southern Utah and Nevada, and southern California (USFWS 2002). Across this range, it uses a variety of plant species as nesting/breeding habitat, but in all cases prefers sites with dense vegetation, high canopy, and proximity to surface water or saturated soils (Sogge and Marshall 2000). As of 2005, the known rangewide breeding population of SWFLs was roughly 1,214 territories, with approximately 393 territories distributed among 36 sites in New Mexico (Durst et al. 2006), primarily along the Rio Grande. One of the key challenges facing the management and conservation of the Southwestern Willow Flycatcher is that riparian areas are dynamic, with individual habitat patches subject to cycles of creation, growth, and loss due to drought, flooding, fire, and other disturbances. Former breeding patches can lose suitability, and new habitat can develop within a matter of only a few years, especially in reservoir drawdown zones. Therefore, measuring and predicting flycatcher habitat - either to discover areas that might support SWFLs, or to identify areas that may develop into appropriate habitat - requires knowledge of recent/current habitat conditions and an understanding of the factors that determine flycatcher use of riparian breeding sites. In the past, much of the determination of whether a riparian site is likely to support breeding flycatchers has been based on qualitative criteria (for example, 'dense vegetation' or 'large patches'). These determinations often require on-the-ground field evaluations by local or regional SWFL experts. While this has proven valuable in locating many of the currently known breeding sites, it is difficult or impossible to apply this approach effectively over large geographic areas (for example, the

  1. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  2. Effects of Habitat Enhancement on Steelhead Trout and Coho Salmon Smolt Production, Habitat Utilization, and Habitat Availability in Fish Creek, Oregon, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everest, Fred H.; Reeves, Gordon H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

    1987-06-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, was continued in fiscal year 1986 by the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The study began in 1982 when PNW entered into an agreement with the Mt. Hood National Forest to evaluate fish habitat improvements in the Fish Creek basin on the Estacada Ranger District. The project was initially conceived as a 5-year effort (1982-1986) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station (see Appendix 2). The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat

  3. Characterization of benthic communities and physical habitat in the Stanislaus, Tuolumne, and Merced Rivers, California.

    Science.gov (United States)

    Hall, Lenwood W; Killen, William D; Anderson, Ronald D

    2006-04-01

    The primary goal of this study was to characterize physical habitat and benthic communities (macroinvertebrates) in the Stanislaus, Tuolumne and Merced Rivers in California's San Joaquin Valley in 2003. These rivers have been listed as impaired water bodies (303 (d) list) by the State of California due to the presence of organophosphate (OP) insecticides chlorpyrifos and diazinon, Group A pesticides (i.e., organochlorine pesticides), mercury, or unknown toxicity. Based on 10 instream and riparian physical habitat metrics, total physical habitat scores in the Stanislaus River ranged from 124 to 188 (maximum possible total score is 200). The highest total habitat score was reported at the upstream site. Tuolumne River physical habitat scores ranged from 86 to 167. Various Tuolumne River physical habitat metrics, including total habitat score, increased from downstream to upstream in this river. Merced River physical habitat scores ranged from 121 to 170 with a significant increase in various physical habitat metrics, including total habitat score, reported from downstream to upstream. Channel flow (an instream metric) and bank stability (a riparian metric) were the most important physical habitat metrics influencing the various benthic metrics for all three rivers. Abundance measures of benthic macroinvertebrates (5,100 to 5,400 individuals) were similar among the three rivers in the San Joaquin watershed. Benthic communities in all three rivers were generally dominated by: (1) Baetidae species (mayflies) which are a component of EPT taxa generally considered sensitive to environmental degradation; (2) Chironomidae (midges) which can be either tolerant or sensitive to environmental stressors depending on the species; (3) Ephemerellidae (mayflies) which are considered sensitive to pollution stress; and (4) Naididae (aquatic worms) which are generally considered tolerant to environmental stressors. The presence of 117 taxa in the Stanislaus River, 114 taxa in the

  4. Conflation and aggregation of spatial data improve predictive models for species with limited habitats: a case of the threatened yellow-billed cuckoo in Arizona, USA

    Science.gov (United States)

    Villarreal, Miguel L.; Van Riper, Charles; Petrakis, Roy E.

    2013-01-01

    Riparian vegetation provides important wildlife habitat in the Southwestern United States, but limited distributions and spatial complexity often leads to inaccurate representation in maps used to guide conservation. We test the use of data conflation and aggregation on multiple vegetation/land-cover maps to improve the accuracy of habitat models for the threatened western yellow-billed cuckoo (Coccyzus americanus occidentalis). We used species observations (n = 479) from a state-wide survey to develop habitat models from 1) three vegetation/land-cover maps produced at different geographic scales ranging from state to national, and 2) new aggregate maps defined by the spatial agreement of cover types, which were defined as high (agreement = all data sets), moderate (agreement ≥ 2), and low (no agreement required). Model accuracies, predicted habitat locations, and total area of predicted habitat varied considerably, illustrating the effects of input data quality on habitat predictions and resulting potential impacts on conservation planning. Habitat models based on aggregated and conflated data were more accurate and had higher model sensitivity than original vegetation/land-cover, but this accuracy came at the cost of reduced geographic extent of predicted habitat. Using the highest performing models, we assessed cuckoo habitat preference and distribution in Arizona and found that major watersheds containing high-probably habitat are fragmented by a wide swath of low-probability habitat. Focus on riparian restoration in these areas could provide more breeding habitat for the threatened cuckoo, offset potential future habitat losses in adjacent watershed, and increase regional connectivity for other threatened vertebrates that also use riparian corridors.

  5. EcologicHabitat_WLH

    Data.gov (United States)

    Vermont Center for Geographic Information — The Wildlife Linkage Habitat Analysis uses landscape scale data to identify or predict the location of potentially significant wildlife linkage habitats (WLH)...

  6. 2006 Progress report: Riparian willow restoration along the Illinois river at Arapahoe NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report concerning riparian willow restoration on Arapahoe NWR. Riparian willow communities along the Illinois River at Arapaho NWR provide...

  7. 2005 Progress report: Riparian willow restoration along the Illinois river at Arapahoe NWR, Colorado

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a progress report concerning riparian willow restoration on Arapahoe NWR. Riparian willow communities along the Illinois River at Arapaho NWR provide...

  8. The dark side of suibsidies: quantifying contaminant exposure to riparian predators via stream insects

    Science.gov (United States)

    Aquatic insects provide a critical nutrient subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated relationships between aquatic (resource utilization) and contaminant exposure for a riparian invert...

  9. Toward efficient riparian restoration: integrating economic, physical, and biological models.

    Science.gov (United States)

    Watanabe, Michio; Adams, Richard M; Wu, Junjie; Bolte, John P; Cox, Matt M; Johnson, Sherri L; Liss, William J; Boggess, William G; Ebersole, Joseph L

    2005-04-01

    This paper integrates economic, biological, and physical models to explore the efficient combination and spatial allocation of conservation efforts to protect water quality and increase salmonid populations in the Grande Ronde basin, Oregon. We focus on the effects of shade on water temperatures and the subsequent impacts on endangered juvenile salmonid populations. The integrated modeling system consists of a physical model that links riparian conditions and hydrological characteristics to water temperature; a biological model that links water temperature and riparian conditions to salmonid abundance, and an economic model that incorporates both physical and biological models to estimate minimum cost allocations of conservation efforts. Our findings indicate that conservation alternatives such as passive and active riparian restoration, the width of riparian restoration zones, and the types of vegetation used in restoration activities should be selected based on the spatial distribution of riparian characteristics in the basin. The relative effectiveness of passive and active restoration plays an important role in determining the efficient allocations of conservation efforts. The time frame considered in the restoration efforts and the magnitude of desired temperature reductions also affect the efficient combinations of restoration activities. If the objective of conservation efforts is to maximize fish populations, then fishery benefits should be directly targeted. Targeting other criterion such as water temperatures would result in different allocations of conservation efforts, and therefore are not generally efficient.

  10. Rivers through time: historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use.

    Science.gov (United States)

    Hoffman, M Timm; Rohde, Richard Frederick

    2011-01-01

    This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36-113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region's historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries.

  11. Effects of reintroduced beaver (Castor canadensis) on riparian bird community structure along the upper San Pedro River, southeastern Arizona and northern Sonora, Mexico

    Science.gov (United States)

    Johnson, Glenn E.; van Riper, Charles

    2014-01-01

    Chapter 1.—We measured bird abundance and richness along the upper San Pedro River in 2005 and 2006, in order to document how beavers (Castor canadensis) may act as ecosystem engineers after their reintroduction to a desert riparian area in the Southwestern United States. In areas where beavers colonized, we found higher bird abundance and richness of bird groups, such as all breeding birds, insectivorous birds, and riparian specialists, and higher relative abundance of many individual species—including several avian species of conservation concern. Chapter 2.—We conducted bird surveys in riparian areas along the upper San Pedro River in southeastern Arizona (United States) and northern Sonora (Mexico) in order to describe factors influencing bird community dynamics and the distribution and abundance of species, particularly those of conservation concern. These surveys were also used to document the effects of the ecosystem-altering activities of a recently reintroduced beavers (Castor canadensis). Chapter 3.—We reviewed Southwestern Willow Flycatcher (Empidonax traillii extimus) nest records and investigated the potential for future breeding along the upper San Pedro River in southeastern Arizona, where in July 2005 we encountered the southernmost verifiable nest attempt for the species. Continued conservation and management of the area’s riparian vegetation and surface water has potential to contribute additional breeding sites for this endangered Willow Flycatcher subspecies. Given the nest record along the upper San Pedro River and the presence of high-density breeding sites to the north, the native cottonwood-willow forests of the upper San Pedro River could become increasingly important to E. t. extimus recovery, especially considering the anticipated effect of the tamarisk leaf beetle (Diorhabda carinulata) on riparian habitat north of the region.

  12. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds

    Science.gov (United States)

    Merritt, D.M.; Scott, M.L.; Leroy, Poff N.; Auble, G.T.; Lytle, D.A.

    2010-01-01

    Riparian vegetation composition, structure and abundance are governed to a large degree by river flow regime and flow-mediated fluvial processes. Streamflow regime exerts selective pressures on riparian vegetation, resulting in adaptations (trait syndromes) to specific flow attributes. Widespread modification of flow regimes by humans has resulted in extensive alteration of riparian vegetation communities. Some of the negative effects of altered flow regimes on vegetation may be reversed by restoring components of the natural flow regime. 2. Models have been developed that quantitatively relate components of the flow regime to attributes of riparian vegetation at the individual, population and community levels. Predictive models range from simple statistical relationships, to more complex stochastic matrix population models and dynamic simulation models. Of the dozens of predictive models reviewed here, most treat one or a few species, have many simplifying assumptions such as stable channel form, and do not specify the time-scale of response. In many cases, these models are very effective in developing alternative streamflow management plans for specific river reaches or segments but are not directly transferable to other rivers or other regions. 3. A primary goal in riparian ecology is to develop general frameworks for prediction of vegetation response to changing environmental conditions. The development of riparian vegetation-flow response guilds offers a framework for transferring information from rivers where flow standards have been developed to maintain desirable vegetation attributes, to rivers with little or no existing information. 4. We propose to organise riparian plants into non-phylogenetic groupings of species with shared traits that are related to components of hydrologic regime: life history, reproductive strategy, morphology, adaptations to fluvial disturbance and adaptations to water availability. Plants from any river or region may be grouped

  13. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Science.gov (United States)

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  14. Variation of sesquiterpene lactone contents in different Arnica montana populations: influence of ecological parameters.

    Science.gov (United States)

    Seemann, Andreas; Wallner, Teresa; Poschlod, Peter; Heilmann, Jörg

    2010-05-01

    In ten grassland or heathland sites along a geographic (north to south) and climatic gradient in Germany, flowerheads of Arnica montana were collected, and the total content of sesquiterpene lactones (SLs) as well as the content of the detected single compounds were determined. The ratios of helenalin (H)- and corresponding 11 alpha,13-dihydrohelenalin(DH)-type compounds were calculated. All habitats were characterised concerning the climatic and soil conditions, and the values obtained were correlated with SL contents according to univariate statistical analyses. All populations showed very similar and constant ratios of helenalin ( 1)/11 alpha,13-dihydrohelenalin ( 2) at around 1.5-2/1 irrespective of different ecological parameters. The ratio of helenalin/11 alpha,13-dihydrohelenalin esters was several fold higher in all samples, but it was nearly identical in every habitat among each other, except for the helenalin/11 alpha,13-dihydrohelenalin 2-methylbutyrate pair ( 5/ 11), which showed a constantly twofold higher H/DH ratio. However, the 6- O-isovalerylhelenalin content ( 6) showed highly significant correlations to climatic factors.

  15. Karyomorphometric analysis of Fritillaria montana group in Greece

    Directory of Open Access Journals (Sweden)

    Sofia Samaropoulou

    2016-12-01

    Full Text Available Fritillaria Linnaeus, 1753 (Liliaceae is a genus of geophytes, represented in Greece by 29 taxa. Most of the Greek species are endemic to the country and/or threatened. Although their classical cytotaxonomic studies have already been presented, no karyomorphometric analysis has ever been given. In the present study, the cytological results of Fritillaria montana Hoppe ex W.D.J. Koch, 1832 group, which includes F. epirotica Turrill ex Rix, 1975 and F. montana are statistically evaluated for the first time. Further indices about interchromosomal and intrachromosomal asymmetry are given. A new population of F. epirotica is also investigated, while for F. montana, a diploid individual was found in a known as triploid population. Paired t-tests and PCoA analysis have been applied to compare the two species.

  16. Hydrological heterogeneity in agricultural riparian buffer strips

    Science.gov (United States)

    Hénault-Ethier, Louise; Larocque, Marie; Perron, Rachel; Wiseman, Natalie; Labrecque, Michel

    2017-03-01

    Riparian buffer strips (RBS) may protect surface water and groundwater in agricultural settings, although their effectiveness, observed in field-scale studies, may not extend to a watershed scale. Hydrologically-controlled leaching plots have often shown RBS to be effective at buffering nutrients and pesticides, but uncontrolled field studies have sometimes suggested limited effectiveness. The limited RBS effectiveness may be explained by the spatiotemporal hydrological heterogeneity near non-irrigated fields. This hypothesis was tested in conventional corn and soy fields in the St. Lawrence Lowlands of southern Quebec (Canada), where spring melt brings heavy and rapid runoff, while summer months are hot and dry. One field with a mineral soil (Saint-Roch-de-l'Achigan) and another with an organic-rich soil (Boisbriand) were equipped with passive runoff collectors, suction cup lysimeters, and piezometers placed before and after a 3 m-wide RBS, and monitored from 2011 to 2014. Soil topography of the RBS was mapped to a 1 cm vertical precision and a 50 cm sampling grid. On average, surface runoff intersects the RBS perpendicularly, but is subject to substantial local heterogeneity. Groundwater saturates the root zones, but flows little at the time of snowmelt. Groundwater flow is not consistently perpendicular to the RBS, and may reverse, flowing from stream to field under low water flow regimes with stream-aquifer connectivity, thus affecting RBS effectiveness calculations. Groundwater flow direction can be influenced by stratigraphy, local soil hydraulic properties, and historical modification of the agricultural stream beds. Understanding the spatiotemporal heterogeneity of surface and groundwater flows is essential to correctly assess the effectiveness of RBS in intercepting agro-chemical pollution. The implicit assumption that water flows across vegetated RBS, from the field to the stream, should always be verified.

  17. Spatial use and habitat associations of Columbian white-tailed deer fawns in southwestern Oregon

    Science.gov (United States)

    Ricca, M.A.; Anthony, R.G.; Jackson, D.H.; Wolfe, S.A.

    2003-01-01

    Fawns represent a critical life history stage in the dynamics of deer populations, yet little recent information is available on the ecology of neonatal Columbian white-tailed deer (CWTD), a geographically isolated and federally endangered sub-species. We described home ranges, areas of concentrated use, and habitat associations of CWTD fawns in southwestern Oregon during the summers of 1997 and 1998. Spatial use patterns and habitat use within areas of concentrated use were described for 11 radio-marked fawns. Pooled habitat use was described for 24 radio-marked fawns. Areas of concentrated use averaged 2.4 ha, which was 13.3% of mean 95% home range size (18.0 ha). Frequent use of oak-madrone woodland and riparian cover types characterized fawn habitat use patterns. Cover types containing conifers were rarely used and usually not available within home ranges. Although we found no detectable patterns of habitat selection or avoidance among fawns, areas of concentrated use were composed mostly of oak-madrone woodland (35%) and riparian (26%) cover types. Moreover, 74% of concentrated use area was within 200 m of streams. Our results provide useful information on habitat characteristics used frequently by CWTD fawns.

  18. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  19. Flavonoids from the aerial parts of Onobrychis montana subsp. scardica

    Directory of Open Access Journals (Sweden)

    BORIS PEJIN

    2008-05-01

    Full Text Available Rutin (1, main constituent and two flavone C-glycosides, vitexin (2 and vitexin 2''-O-alpha-rhamnopyranoside (3 were isolated from the aerial parts of Onobrychis montana subsp. scardica. They were identified by 1H-NMR, 13C-NMR and UV–Vis spectroscopy (procedure with shift reagents, and high resolution ESI-MS. A relatively high content of 1 (5.27 mg/g of dry plant material, measured by HPLC, indicated O. montana subsp. scardica as a new natural source of this biologically active compound. The isolated flavonoid compounds might be of value as chemotaxonomic markers.

  20. Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everest, Fred H. (Oregon State University, Pacific Northwest Forest and Range Experiment Station, Corvallis, OR); Hohler, David B.; Cain, Thomas C. (Mount Hood National Forest, Clackamas River Ranger District, Estacada, OR)

    1988-03-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

  1. Methods for estimating streamflow characteristics at ungaged sites in western Montana based on data through water year 2009: Chapter G in Montana StreamStats

    Science.gov (United States)

    McCarthy, Peter M.; Sando, Roy; Sando, Steven K.; Dutton, DeAnn M.

    2016-04-05

    The U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality and the Montana Department of Natural Resources and Conservation, developed regional regression equations based on basin and streamflow characteristics for streamflow-gaging stations through water year 2009 that can be used to estimate streamflow characteristics for ungaged sites in western Montana. The regression equations allow estimation of low-flow frequencies; mean annual and mean monthly streamflows; and the 20-, 50-, and 80-percent durations for annual and monthly duration streamflows for ungaged sites in western Montana that are unaffected by regulation.

  2. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    Science.gov (United States)

    Tagwireyi, Paradzayi; Sullivan, S Mažeika P

    2015-01-01

    Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods.

  3. Riparian reforestation: are there changes in soil carbon and soil microbial communities?

    Science.gov (United States)

    Mackay, J E; Cunningham, S C; Cavagnaro, T R

    2016-10-01

    Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (β-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon:nitrogen (C:N) and fungal:bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling

  4. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    Directory of Open Access Journals (Sweden)

    Paradzayi Tagwireyi

    Full Text Available Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation, computed patch metrics (area, density, edge, richness, and shape, and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM], whereas ant diversity (using the Berger-Park Index [DBP] was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57. Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62 whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65. Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64. These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian

  5. Agricultural conservation planning framework: 2. Classification of riparian buffer design-types with application to assess and map stream corridors

    Science.gov (United States)

    A watershed’s riparian corridor presents opportunities to stabilize streambanks, intercept runoff, and influence shallow groundwater with riparian buffers. This paper presents a system to classify these riparian opportunities and apply it towards riparian management planning in HUC12 watersheds. Hig...

  6. Non-parametric methods – Tree and P-CFA – for the ecological evaluation and assessment of suitable aquatic habitats: A contribution to fish psychology

    Directory of Open Access Journals (Sweden)

    Andreas H. Melcher

    2012-09-01

    Full Text Available This study analyses multidimensional spawning habitat suitability of the fish species “Nase” (latin: Chondrostoma nasus. This is the first time non-parametric methods were used to better understand biotic habitat use in theory and practice. In particular, we tested (1 the Decision Tree technique, Chi-squared Automatic Interaction Detectors (CHAID, to identify specific habitat types and (2 Prediction-Configural Frequency Analysis (P-CFA to test for statistical significance. The combination of both non-parametric methods, CHAID and P-CFA, enabled the identification, prediction and interpretation of most typical significant spawning habitats, and we were also able to determine non-typical habitat types, e.g., types in contrast to antitypes. The gradual combination of these two methods underlined three significant habitat types: shaded habitat, fine and coarse substrate habitat depending on high flow velocity. The study affirmed the importance for fish species of shading and riparian vegetation along river banks. In addition, this method provides a weighting of interactions between specific habitat characteristics. The results demonstrate that efficient river restoration requires re-establishing riparian vegetation as well as the open river continuum and hydro-morphological improvements to habitats.

  7. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  8. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D. (Oregon Department of Fish and Wildlife, John Day, OR)

    2005-01-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.

  9. Population ecology of vervet monkeys in a high latitude, semi-arid riparian woodland

    Directory of Open Access Journals (Sweden)

    Graham Pasternak

    2013-02-01

    Full Text Available Narrow riparian woodlands along non-perennial streams have made it possible for vervet monkeys to penetrate the semi-arid karoo ecosystem of South Africa, whilst artificial water points have more recently allowed these populations to colonize much more marginal habitat away from natural water sources. In order to better understand the sequelae of life in these narrow, linear woodlands for historically ‘natural’ populations and to test the prediction that they are ecologically stressed, we determined the size of troops in relation to their reliance on natural and artificial water sources and collected detailed data from two river-centred troops on activity, diet and ranging behaviour over an annual cycle. In comparison to other populations, our data indicate that river-centred troops in the karoo were distinctive primarily both for their large group sizes and, consequently, their large adult cohorts, and in the extent of home range overlap in what is regarded as a territorial species. Whilst large group size carried the corollary of increased day journey length and longer estimated interbirth intervals, there was little other indication of the effects of ecological stress on factors such as body weight and foraging effort. We argue that this was a consequence of the high density of Acacia karroo, which accounted for a third of annual foraging effort in what was a relatively depauperate floristic habitat. We ascribed the large group size and home range overlap to constraints on group fission.Conservation implications: The distribution of group sizes, sampled appropriately across habitats within a conservation area, will be of more relevance to management than average values, which may be nothing more than a statistical artefact, especially when troop sizes are bimodally distributed.

  10. Pacific Yew: A Facultative Riparian Conifer with an Uncertain Future

    Science.gov (United States)

    Stanley Scher; Bert Schwarzschild

    1989-01-01

    Increasing demands for Pacific yew bark, a source of an anticancer agent, have generated interest in defining the yew resource and in exploring strategies to conserve this species. The distribution, riparian requirements and ecosystem functions of yew populations in coastal and inland forests of northern California are outlined and alternative approaches to conserving...

  11. Guide to effective monitoring of aquatic and riparian resources

    Science.gov (United States)

    Jeffrey L. Kershner; Eric K. Archer; Marc Coles-Ritchie; Ervin R. Cowley; Richard C. Henderson; Kim Kratz; Charles M. Quimby; David L. Turner; Linda C. Ulmer; Mark R. Vinson

    2004-01-01

    This monitoring plan for aquatic and riparian resources was developed in response to monitoring needs addressed in the Biological Opinions for bull trout (U.S. Department of the Interior, Fish and Wildlife Service 1998) and steelhead (U.S. Department of Commerce, National Marine Fisheries Service). It provides a consistent framework for implementing the effectiveness...

  12. Effects of riparian vegetation development in a restored lowland stream

    NARCIS (Netherlands)

    Vargas-Luna, A.; Crosato, A.; Hoitink, A.J.F.; Groot, J.; Uijttewaal, W.S.J.

    2016-01-01

    This paper presents the morphodynamic effects of riparian vegetation growth in a lowland restored stream. Hydrological series, high-resolution bathymetric data and aerial photographs are combined in the study. The vegetation root system was found to assert a strong control on soil stabilization,

  13. Monitoring vegetation water uptake in a semiarid riparian corridor

    Science.gov (United States)

    Robinson, J.; Ochoa, C. G.; Leonard, J.

    2015-12-01

    With a changing global climate and growing demand for water throughout the world, responsible and sustainable land and water resource management practices are becoming increasingly important. Accounting for the amount of water used by riparian vegetation is a critical element for better managing water resources in arid and semiarid environments. The objective of this study was to determine water uptake by selected riparian vegetative species in a semiarid riparian corridor in North-Central Oregon. Exo-skin sap flow sensors (Dynamax, Houston, TX, U.S.A.) were used to measure sap flux in red alder (Alnus rubra) trees, the dominant overstory vegetation at the field site. Xylem sap flow data was collected from selected trees at the field site and in a greenhouse setting. Transpiration rates were determined based on an energy balance method, which makes it possible to estimate the mass flow of sap by measuring the velocity of electrical heat pulses through the plant stem. Preliminary field results indicate that red alder tree branches of about 1 inch diameter transpire between 2 and 6 kg of water/day. Higher transpiration rates of up to 7.3 kg of water/day were observed under greenhouse conditions. Streamflow and stream water temperature, vegetation characteristics, and meteorological data were analyzed in conjunction with transpiration data. Results of this study provide insight on riparian vegetation water consumption in water scarce ecosystems. This study is part of an overarching project focused on climate-vegetation interactions and ecohydrologic processes in arid and semiarid landscapes.

  14. Effects of riparian buffers on hydrology of northern seasonal ponds

    Science.gov (United States)

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  15. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    Science.gov (United States)

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  16. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  17. Sex and the single Salix: considerations for riparian restoration

    Science.gov (United States)

    Thomas D. Landis; David R. Dreesen; R. Kasten Dumroese

    2003-01-01

    Most restoration projects strive to create a sustain able plant community but exclusive use of vegetatively propagated material may be preventing this goal. The dioecious willows and cottonwoods of the Salicaceae are widely used in riparian restoration projects. Hardwood cuttings have traditionally been used to propagate these species in nurseries, and live stakes,...

  18. Riparian Meadow Response to Modern Conservation Grazing Management

    Science.gov (United States)

    Oles, Kristin M.; Weixelman, Dave A.; Lile, David F.; Tate, Kenneth W.; Snell, Laura K.; Roche, Leslie M.

    2017-09-01

    Riparian meadows occupy a small proportion of the public lands in the western United States but they provide numerous ecosystem services, including the production of high-quality forage for livestock grazing. Modern conservation management strategies (e.g., reductions in livestock stocking rates and adoption of new riparian grazing standards) have been implemented to better balance riparian conservation and livestock production objectives on publicly managed lands. We examined potential relationships between long-term changes in plant community, livestock grazing pressure and environmental conditions at two spatial scales in meadows grazed under conservation management strategies. Changes in plant community were not associated with either livestock stocking rate or precipitation at the grazing allotment (i.e., administrative) scale. Alternatively, both grazing pressure and precipitation had significant, albeit modest, associations with changes in plant community at the meadow (i.e., ecological site) scale. These results suggest that reductions in stocking rate have improved the balance between riparian conservation and livestock production goals. However, associations between elevation, site wetness, precipitation, and changes in plant community suggest that changing climate conditions (e.g., reduced snowpack and changes in timing of snowmelt) could trigger shifts in plant communities, potentially impacting both conservation and agricultural services (e.g., livestock and forage production). Therefore, adaptive, site-specific management strategies are required to meet grazing pressure limits and safeguard ecosystem services within individual meadows, especially under more variable climate conditions.

  19. AN INDICATOR OF POTENTIAL STREAM WOOD CONTRIBUTION FOR RIPARIAN FORESTS

    Science.gov (United States)

    In northwestern Oregon a key function of riparian forests is to provide wood to the stream network. This function is a prominent feature of Federal and State forest practices in the region. Thus, defining indicators which are associated with this function are important for desi...

  20. Status of riparian ecosystems in the United States

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An attempt was made to review all available data on the extent and status of riparian ecosystems in the U.S.A. This report presents a synthesis of the findings,...

  1. Transpirational water loss in invaded and restored semiarid riparian forests

    Science.gov (United States)

    Georgianne W. Moore; M. Keith Owens

    2011-01-01

    The invasive tree, Tamarix sp., was introduced to the United States in the 1800s to stabilize stream banks. The riparian ecosystem adjacent to the middle Rio Grande River in central NewMexico consists of mature cottonwood (Populus fremontii ) gallery forests with a dense Tamarix understory. We hypothesized that Populus would compensate for reduced competition by...

  2. Riparian Sediment Delivery Ratio: Stiff Diagrams and Artifical Neural Networks

    Science.gov (United States)

    Various methods are used to estimate sediment transport through riparian buffers and grass jilters with the sediment delivery ratio having been the most widely applied. The U.S. Forest Service developed a sediment delivery ratio using the stiff diagram and a logistic curve to int...

  3. Fire history of coniferous riparian forests in the Sierra Nevada

    Science.gov (United States)

    K. Van de Water; M. North

    2010-01-01

    Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often...

  4. Integrating active restoration with environmental flows to improve native riparian tree establishment in the Colorado River Delta

    Science.gov (United States)

    Schlatter, Karen; Grabau, Matthew R.; Shafroth, Patrick B.; Zamora-Arroyo, Francisco

    2017-01-01

    Drastic alterations to river hydrology, land use change, and the spread of the nonnative shrub, tamarisk (Tamarix spp.), have led to the degradation of riparian habitat in the Colorado River Delta in Mexico. Delivery of environmental flows to promote native cottonwood (Populus spp.) and willow (Salix spp.) recruitment in human-impacted riparian systems can be unsuccessful due to flow-magnitude constraints and altered abiotic–biotic feedbacks. In 2014, an experimental pulse flow of water was delivered to the Colorado River in Mexico as part of the U.S.-Mexico binational agreement, Minute 319. We conducted a field experiment to assess the effects of vegetation removal, seed augmentation, and environmental flows, separately and in combination, on germination and first-year seedling establishment of cottonwood, willow, and tamarisk at five replicate sites along 5 river km. The relatively low-magnitude flow deliveries did not substantively restore natural fluvial processes of erosion, sediment deposition, and vegetation scour, but did provide wetted surface soils, shallow groundwater, and low soil salinity. Cottonwood and willow only established in wetted, cleared treatments, and establishment was variable in these treatments due to variable site conditions and inundation duration and timing. Wetted soils, bare surface availability, soil salinity, and seed availability were significant factors contributing to successful cottonwood and willow germination, while soil salinity and texture affected seedling persistence over the growing season. Tamarisk germinated and persisted in a wider range of environmental conditions than cottonwood and willow, including in un-cleared treatment areas. Our results suggest that site management can increase cottonwood and willow recruitment success from low-magnitude environmental flow events, an approach that can be applied in other portions of the Delta and to other human-impacted riparian systems across the world with similar

  5. 2011 Montana Youth Risk Behavior Survey: Nonpublic Accredited Schools

    Science.gov (United States)

    Montana Office of Public Instruction, 2011

    2011-01-01

    This report presents the 2011 Montana Youth Risk Behavior Survey high school student frequency distributions for nonpublic accredited schools. These frequency distributions are based upon surveys with 349 high school students in Nonpublic Region during February of 2011. Frequency distributions may not total 349 due to nonresponse and percents may…

  6. A new fauna from the Colorado group of southern Montana

    Science.gov (United States)

    Reeside, John B.

    1925-01-01

    This paper describes a small but interesting fauna collected in 1921 by W. T. Thorn, Jr., Gail F. Moulton, T. W. Stanton, and K. C. Heald in the Crow Indian Reservation in southern Montana. The locality is in sec. 36, T. 6 S., R. 32 E., Big Horn County, and is 2 miles east of the Soap Creek oil field.

  7. American Indian High School Completion in Rural Southeastern Montana.

    Science.gov (United States)

    Ward, Carol

    1995-01-01

    Factors related to dropping out were examined among Northern Cheyenne and Crow high school students living in three southeastern Montana communities and attending a Catholic school, a public school, or a tribal school. Place of residence, parental educational attainment, and school experiences were important variables, but their effects varied by…

  8. Thymol derivatives from hairy roots of Arnica montana.

    Science.gov (United States)

    Weremczuk-Jezyna, I; Kisiel, W; Wysokińska, H

    2006-09-01

    Five known thymol derivatives were isolated from roots of Arnica montana transformed with Agrobacterium rhizogenes LBA 9402. The compounds were characterized by spectral methods. The pattern of thymol derivatives in light-grown hairy roots was slightly different from that in dark-grown ones. This is the first report on the presence of thymol derivatives in hairy roots of the plant.

  9. Methylated Flavonoids from Arnica montana and Arnica chamissonis.

    Science.gov (United States)

    Merfort, I

    1984-02-01

    From the flowers of ARNICA CHAMISSONIS Less, subsp. FOLIOSA var. INCANA, the methylated flavonoids acacetin, pectolinarigenin, hispidulin, jaceosidin, 6-methoxykaempferol, and betuletol have been isolated and identified by spectroscopic methods. Except for acacetin, the same flavonoids were identified in the flowers of ARNICA MONTANA L. Betuletol was found for the first time in the family of Asteraceae.

  10. On-site energy consumption at softwood sawmills in Montana

    Science.gov (United States)

    Dan Loeffler; Nathaniel Anderson; Todd A. Morgan; Colin B. Sorenson

    2016-01-01

    Total on-site energy requirements for wood product manufacturing are generally not well understood or publicly available, particularly at subregional scales, such as the state level. This article uses a mail survey of softwood sawmills in Montana to develop a profile of all on-site energy consumption. Energy use is delineated by fuel type on a production basis...

  11. Essential oil of Arnica montana and Arnica chamissonis

    Directory of Open Access Journals (Sweden)

    Ristić Mihailo

    2007-01-01

    Full Text Available The essential oil isolated from flowers of Arnica montana and A chamissonis grown on Tara mountain and neighbourhood of Užice was analyzed. Three samples of A. montana and three of A. chamissonis were tested. The oil was isolated by distillation in a Clevenger type apparatus and analyzed by gas chromatography. The content of the oil was lower than 0.1% (up to 0.08% in all the samples. Among about hundred recorded constituents, 84 were identified and quantified. Sum of contents of identified components ranged between 96.1 and 98.8%. The most abundant constituents of the A. montana oil were p-caryophyllene (31.5-34.6%, germacrene D (12.5-16.3%, trans-a-ionone (3.9-4.3% and decanal (2.7-5.3%, while, in the case of A. chamissonis these were germacrene D (18.0-38.3%, a-pinene (6.6-19.1%, p-cymene (2.9-9.0% and P-caryophyllene (2.7-4.7%. Along with detail chemical analysis of essential oil of these two commercially important herbal drugs it should be noticed that gas chromatographic technique can be used for differentiation of A. montana and A. chamissonis.

  12. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    Science.gov (United States)

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  13. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  14. Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2004-11-01

    A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

  15. The role of habitat patches on mammalian diversity in cork oak agroforestry systems

    Science.gov (United States)

    Rosalino, Luis M.; Rosário, João do; Santos-Reis, Margarida

    2009-07-01

    Habitat patches, depending on the degree of differentiation from the matrix, can add few or many elements to the species pool of a particular landscape. Their importance to biodiversity is particularly relevant in areas with complex landscapes, where natural, naturalized, or managed habitats are interspersed by small patches of habitat types with very different biophysical characteristics; e.g., fruit orchards and riparian areas. This is the case of the montado landscape, a cork oak agroforestry system that largely covers south-western Portugal. We evaluated whether the high mammalian biodiversity found in this system is, in part, the cumulative result of the species found in the non-matrix habitats. Our results indicate that in areas where there are inclusions of orchards/olive yards and riparian vegetation in the cork oak woodland, a significantly higher number of mammalian species are present. We further detected a positive effect of low human disturbance on mammal diversity. Ultimately, our results can be used by managers to augment their management options, since we show that the inclusion and maintenance of non-matrix habitat patches in cork oak agro-silvo-forestry systems can help to maximize mammal biodiversity without compromising services associated with agriculture and forestry.

  16. Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, W.Mark; Menzel, Jennifer M.; Menzel, Michael A.: Edwards, John W.; Kilgo, John C.

    2006-10-01

    Abstract During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand, and landscape-level features such as forest structural metrics, forest type, proximity to riparian zones and Carolina bay wetlands, insect abundance, and weather. There was considerable empirical support to suggest that the majority of the activity of bats across most of the 6 species occurred at smaller, stand-level habitat scales that combine measures of habitat clutter (e.g., declining forest canopy cover and basal area), proximity to riparian zones, and insect abundance. Accordingly, we hypothesized that most foraging habitat relationships were more local than landscape across this relatively large area for generalist species of bats. The southeastern myotis (Myotis austroriparius) was the partial exception, as its presence was linked to proximity of Carolina bays (best approximating model) and bottomland hardwood communities (other models with empirical support). Efforts at SRS to promote open longleaf pine (Pinus palustris) and loblolly pine (P. taeda) savanna conditions and to actively restore degraded Carolina bay wetlands will be beneficial to bats. Accordingly, our results should provide managers better insight for crafting guidelines for bat habitat conservation that could be linked to widely accepted land management and environmental restoration practices for the region.

  17. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Science.gov (United States)

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  18. Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico

    Directory of Open Access Journals (Sweden)

    Manuel Mendoza-Carranza

    Full Text Available Mangrove and seagrass habitats are important components of tropical coastal zones worldwide, and are conspicuous habitats of Centla Wetland Biosphere Reserve (CWBR in Tabasco, Mexico. In this study, we examine food webs in mangrove- and seagrass-dominated habitats of CWBR using stable isotope ratios of carbon and nitrogen. Our objective was to identify the importance of carbon derived from mangroves and seagrasses to secondary production of aquatic consumers in this poorly studied conservation area. Carbon and nitrogen isotope ratios of basal sources and aquatic consumers indicated that the species-rich food webs of both habitats are dependent on riparian production sources. The abundant Red mangrove Rhizophora mangle appears to be a primary source of carbon for the mangrove creek food web. Even though dense seagrass beds were ubiquitous, most consumers in the lagoon food web appeared to rely on carbon derived from riparian vegetation (e.g. Phragmites australis. The introduced Amazon sailfin catfish Pterygoplichthys pardalis had isotope signatures overlapping with native species (including high-value fisheries species, suggesting potential competition for resources. Future research should examine the role played by terrestrial insects in linking riparian and aquatic food webs, and impacts of the expanding P. pardalis population on ecosystem function and fisheries in CWBR. Our findings can be used as a baseline to reinforce the conservation and management of this important reserve in the face of diverse external and internal human impacts.

  19. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  20. Prevalence of vector-borne bacterial pathogens in riparian brush rabbits (Sylvilagus bachmani riparius) and their ticks.

    Science.gov (United States)

    Schmitz, Kelly M; Foley, Janet E; Kasten, Rickie W; Chomel, Bruno B; Larsen, R Scott

    2014-04-01

    From June to October 2010, 48 endangered riparian brush rabbits (Sylvilagus bachmani riparius) were trapped at a captive propagation site in central California with the intention of release into re-established habitats. During prerelease examinations, ticks and blood samples were collected for surveillance for Rickettsia spp., Anaplasma phagocytophilum, Borrelia burgdorferi, and Bartonella spp. Ticks were identified, and DNA was extracted for PCR analysis. Serology was performed to detect exposure to Rickettsia spp., B. burgdorferi, and A. phagocytophilum. DNA was extracted from blood samples and analyzed for A. phagocytophilum using PCR assays. Rabbit blood samples were also cultured for Bartonella spp. Haemaphysalis leporispalustris ticks were detected on all rabbits except one. A total of 375 ticks were collected, with 48% of the rabbits (23 rabbits) having a burden ranging from 0 to 5 ticks, 15% (seven rabbits) from 6 to 10 ticks, 25% (12 rabbits) from 11 to 15 ticks, and 12% (six rabbits) with >15 ticks. There was no evidence of B. burgdorferi or R. rickettsii in tick or rabbit samples. There was also no evidence of Bartonella spp. in the rabbit samples. Four tick samples and 14 rabbits were weakly PCR positive for A. phagocytophilum, and six rabbits were antibody positive for A. phagocytophilum. These results suggest that there may be little risk of these tick-borne diseases in riparian brush rabbits or to the people in contact with them.

  1. Nest site characteristics of the Great-spotted Woodpecker in a bottomland riparian forest in the presence of invasive tree species

    Directory of Open Access Journals (Sweden)

    Ónodi Gábor

    2016-06-01

    Full Text Available This study was carried out in Hungary, in an old unmanaged riparian poplar-willow forest during the breeding seasons of 2014 and 2015. The occurrence of two invasive tree species, the green ash and boxelder, is significant in the study area, which influences negatively the populations of native riparian tree species in Central Europe. We studied Great-spotted Woodpecker nest sites in the presence of these invasive species. Throughout the study period, eight and twelve nesting cavity trees were mapped. Trees were recorded in 20-20 circular plots of 0.05 ha both for each mapped nest trees and random plots as well. Species, diameter at breast height and condition were recorded for each tree. Composition and diversity of nest site and random plots were compared. Distributions and preferences were calculated for nest tree use. Most of the recorded trees were invasive. Nest site plots had more native trees compared to random plots. Nest site showed higher diversity in terms of all three variables. Decayed and dead willow and white poplar hybrid trees were preferred for nesting. Diameter at breast height of nest trees was between 30-90 cm. Studies about cavity excavators in transformed habitats have high importance for nature conservation of riparian forests.

  2. Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Gerson A. Müller

    2012-03-01

    Full Text Available Crepuscular activity of culicids (Diptera, Culicidae in the peridomicile and in the remaining riparian forest in Tibagi river, State of Paraná, Brazil. Human-attracted mosquitoes were collected for one hour, around sunset time (half hour before and half after, from April to December 2006, in two environments (riparian forest and near houses, in Tibagi river basin, Palmeira municipality, State of Paraná. Seven-hundred forty-nine mosquitoes, belonging to 13 species, were collected. Psorophora champerico Dyar & Knab, 1906 (42.86% and Psorophora discrucians (Walker, 1856 (40.59% were the most frequent species. No significant differences between quantities of Ps. champerico (t = -0.792; d.f. = 16; p = 0.43 and Ps. discrucians (t = 0.689; d.f. = 16; p = 0.49 obtained in riparian forest and near houses were observed, indicating similar conditions for crepuscular activity of these species in both environments. Psorophora champerico and Ps. discrucians responded (haematophagic activity to environmental stimuli associated with the twilight hours differently in distinct habitats studied. The former species is registered for the first time in the Atlantic forest biome.

  3. Suicide Report: A Health Risk Behavior Comparison of Montana High School Students Based on Attempted Suicide. 2011 Montana Youth Risk Behavior Survey

    Science.gov (United States)

    Montana Office of Public Instruction, 2013

    2013-01-01

    The Montana Youth Risk Behavior Survey (YRBS) is administered by the Montana Office of Public Instruction every two years to students in grades 7 through 12. The purpose of the survey is to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems…

  4. Smokers Report: A Health Risk Behavior Comparison of Montana High School Students Based on Current Smoking. 2011 Montana Youth Risk Behavior Survey

    Science.gov (United States)

    Montana Office of Public Instruction, 2013

    2013-01-01

    The Montana Youth Risk Behavior Survey (YRBS) is administered by the Montana Office of Public Instruction every two years to students in grades 7 through 12. The purpose of the survey is to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems…

  5. Sports Team Participation: A Risk Behavior Comparison of Montana High School Students Based on Sports Team Participation. 2011 Montana Youth Risk Behavior Survey

    Science.gov (United States)

    Montana Office of Public Instruction, 2012

    2012-01-01

    The Montana Youth Risk Behavior Survey (YRBS) is administered by the Montana Office of Public Instruction every two years to students in grades 7 through 12. The purpose of the survey is to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems…

  6. Students with Special Needs: A Health Risk Behavior Comparison of Montana High School Students Based on Special Education Assistance. 2011 Montana Youth Risk Behavior Survey

    Science.gov (United States)

    Montana Office of Public Instruction, 2012

    2012-01-01

    The Montana Youth Risk Behavior Survey (YRBS) is administered by the Montana Office of Public Instruction every two years to students in grades 7 through 12. The purpose of the survey is to help monitor the prevalence of behaviors that not only influence youth health, but also put youth at risk for the most significant health and social problems…

  7. Habitat monitoring plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Management of habitat is required in order to achieve the refuge purpose and wildlife objectives. The Upland Habitat Management Plan (1993, Interim Plan) and the...

  8. EcologicHabitat_WCV

    Data.gov (United States)

    Vermont Center for Geographic Information — WCV describes the value of the Wildlife Habitat Suitability as it approaches the state highway system. This analysis was designed to use the Wildlife Habitat...

  9. California Condor Critical Habitat

    Data.gov (United States)

    California Department of Resources — These Data identify (in general) the areas where critical habitat for the California Condor occur. Critical habitat for the species consists of the following 10...

  10. Predictive Seagrass Habitat Model

    Science.gov (United States)

    Restoration of ecosystem services provided by seagrass habitats in estuaries requires a firm understanding of the modes of action of multiple interacting stressors including nutrients, climate change, coastal land-use change, and habitat modification. We explored the application...

  11. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America

    OpenAIRE

    Caroline A. E. Strömberg

    2005-01-01

    Because of a dearth of Cenozoic grass fossils, the timing of the taxonomic diversification of modern subclades within the grass family (Poaceae) and the rise to ecological dominance of open-habitat grasses remain obscure. Here, I present data from 99 Eocene to Miocene phytolith assemblages from the North American continental interior (Colorado, Nebraska, Wyoming, and Montana/Idaho), constituting the only high-resolution mid-Cenozoic record of grasses. Analyses of these assemblages show that o...

  12. [Research progress on the degradation mechanisms and restoration of riparian ecosystem].

    Science.gov (United States)

    Huang, Kai; Guo, Huai-cheng; Liu, Yong; Yu, Ya-juan; Zhou, Feng

    2007-06-01

    Restoration and reconstruction of degraded riparian ecosystem caused by natural and anthropogenic disturbances is one of the important issues in restoration ecology and watershed ecology. The disturbances on riparian ecosystem include flow regime alteration, direct modification and watershed disturbance, which have different affecting mechanisms. Flow regime alteration affects riparian ecosystem by changing riparian soil humidity, oxidation-reduction potential, biotaliving environment, and sediment transfer; direct modification affects riparian vegetation diversity through human activities and exotic plants invasion; and watershed disturbance mainly manifests in the channel degradation, aggradation or widening, the lowering of groundwater table, and the modification in fluvial process. The assessment objects of riparian restoration are riparian ecosystem components, and the assessment indicators are shifted from ecological to synthetic indices. Riparian restoration should be based on the detailed understanding of the biological and physical processes which affect riparian ecosystem, and implemented by vegetation restoration and hydrological adjustment at watershed or landscape scale. To extend the research scales and objects and to apply interdisciplinary approaches should be the key points in the further studies on the degradation mechanisms and restoration of riparian ecosystem.

  13. Range expansion of moose in arctic Alaska linked to warming and increased shrub habitat

    Science.gov (United States)

    Tape, Ken D.; Gustine, David D.; Reuss, Roger W.; Adams, Layne G.; Clark, Jason A.

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  14. Habitat Evaluation Procedures (HEP) Report Wanaket Wildlife Area, Techical Report 2005-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Ashley, Paul

    2006-02-01

    The Regional HEP Team (RHT) and Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Wildlife Program staff conducted a follow-up habitat evaluation procedures (HEP) analysis on the Wanaket Wildlife Management Area in June 2005. The 2005 HEP investigation generated 3,084.48 habitat units (HUs) for a net increase of 752.18 HUs above 1990/1995 baseline survey results. The HU to acre ratio also increased from 0.84:1.0 to 1.16:1.0. The largest increase in habitat units occurred in the shrubsteppe/grassland cover type (California quail and western meadowlark models), which increased from 1,544 HUs to 2,777 HUs (+43%), while agriculture cover type HUs were eliminated because agricultural lands (managed pasture) were converted to shrubsteppe/grassland. In addition to the agriculture cover type, major changes in habitat structure occurred in the shrubsteppe/grassland cover type due to the 2001 wildfire which removed the shrub component from well over 95% of its former range. The number of acres of all other cover types remained relatively stable; however, habitat quality improved in the riparian herb and riparian shrub cover types. The number and type of HEP species models used during the 2005 HEP analysis were identical to those used in the 1990/1995 baseline HEP surveys. The number of species models employed to evaluate the shrubsteppe/grassland, sand/gravel/mud/cobble, and riparian herb cover types, however, were fewer than reported in the McNary Dam Loss Assessment (Rassmussen and Wright 1989) for the same cover types.

  15. Riparian zone hydrology and soil water total organic carbon (TOC: implications for spatial variability and upscaling of lateral riparian TOC exports

    Directory of Open Access Journals (Sweden)

    T. Grabs

    2012-10-01

    Full Text Available Groundwater flowing from hillslopes through riparian (near-stream soils often undergoes chemical transformations that can substantially influence stream water chemistry. We used landscape analysis to predict total organic carbon (TOC concentration profiles and groundwater levels measured in the riparian zone (RZ of a 67 km2 catchment in Sweden. TOC exported laterally from 13 riparian soil profiles was then estimated based on the riparian flow–concentration integration model (RIM. Much of the observed spatial variability of riparian TOC concentrations in this system could be predicted from groundwater levels and the topographic wetness index (TWI. Organic riparian peat soils in forested areas emerged as hotspots exporting large amounts of TOC. These TOC fluxes were subject to considerable temporal variations caused by a combination of variable flow conditions and changing soil water TOC concentrations. Mineral riparian gley soils, on the other hand, were related to rather small TOC export rates and were characterized by relatively time-invariant TOC concentration profiles. Organic and mineral soils in RZs constitute a heterogeneous landscape mosaic that potentially controls much of the spatial variability of stream water TOC. We developed an empirical regression model based on the TWI to move beyond the plot scale and to predict spatially variable riparian TOC concentration profiles for RZs underlain by glacial till.

  16. Rock glacier ice as a microbial habitat

    Science.gov (United States)

    Florentine, C. E.; Skidmore, M. L.; Montross, S. N.

    2010-12-01

    Rock glaciers are ubiquitous geomorphic features in alpine environments, recognizable by a talus mantle, steep-toe, lobate shape and that flow due to the inferred presence of internal ice. Rock glaciers consist of both ice and debris, and are abundant in mountain ranges such as the Rocky Mountains, the Andes and the European Alps. Rock glacier ice has not previously been considered as a microbial habitat. However, given recent research showing debris-rich basal layers in glaciers harbor viable microbes, the debris-rich ice in a rock glacier has potential as a microbial habitat. The glacier research has demonstrated increased cell numbers in the debris rich basal ice relative to the clean glacier ice, and the finely-ground debris is considered to be a source of nutrients for the microbes. In August 2009 3 m of surface talus was excavated from the Lone Peak rock glacier, one of ~ 380 in Southwest Montana, to expose the underlying rock glacier ice. The ice contained numerous large rocks making sampling difficult, but 25 cm thick blocks with layers of clean and amber (~ 0.01% debris) ice were sampled. The isotopic, microbiological, and geochemical composition of the clean and amber ice was analyzed. The isotopic data provides some relative age dating for the ice and the geochemical data information on nutrient availability. Differences were observed between the microbial communities in the clean and amber ice by both cell counts and culturing techniques suggesting that as in glacier ice the debris-rich (amber) ice is a more amenable habitat for microbes.

  17. Interfacing models of wildlife habitat and human development to predict the future distribution of puma habitat

    Science.gov (United States)

    Burdett, Christopher L.; Crooks, Kevin R.; Theobald, David M.; Wilson, Kenneth R.; Boydston, Erin E.; Lyren, Lisa A.; Fisher, Robert N.; Vickers, T. Winston; Morrison, Scott A.; Boyce, Walter M.

    2010-01-01

    The impact of human land uses on ecological systems typically differ relative to how extensively natural conditions are modified. Exurban development is intermediate-intensity residential development that often occurs in natural landscapes. Most species-habitat models do not evaluate the effects of such intermediate levels of human development and even fewer predict how future development patterns might affect the amount and configuration of habitat. We addressed these deficiencies by interfacing a habitat model with a spatially-explicit housing-density model to study the effect of human land uses on the habitat of pumas (Puma concolor) in southern California. We studied the response of pumas to natural and anthropogenic features within their home ranges and how mortality risk varied across a gradient of human development. We also used our housing-density model to estimate past and future housing densities and model the distribution of puma habitat in 1970, 2000, and 2030. The natural landscape for pumas in our study area consisted of riparian areas, oak woodlands, and open, conifer forests embedded in a chaparral matrix. Pumas rarely incorporated suburban or urban development into their home ranges, which is consistent with the hypothesis that the behavioral decisions of individuals can be collectively manifested as population-limiting factors at broader spatial scales. Pumas incorporated rural and exurban development into their home ranges, apparently perceiving these areas as modified, rather than non-habitat. Overall, pumas used exurban areas less than expected and showed a neutral response to rural areas. However, individual pumas that selected for or showed a neutral response to exurban areas had a higher risk of mortality than pumas that selected against exurban habitat. Exurban areas are likely hotspots for puma-human conflict in southern California. Approximately 10% of our study area will transform from exurban, rural, or undeveloped areas to suburban or

  18. Riparian Vegetation Encroachment Ratios in rivers below large Dams

    Science.gov (United States)

    Garcia de Jalón, Diego; Martínez-Fernández, Vanesa; González del Tánago, Marta

    2017-04-01

    Large Dams and reservoirs change the natural flow regime and consequently cause many alterations in riparian vegetation dynamics which may be assessed at different spatial and temporal scales. In Mediterranean regions flow regulation is frequently associated with irrigation. Regulated rivers with this purpose very often show reduced discharges during the wet season when the reservoir is being filled and increased discharges during the dry season when irrigation takes place. This type of regulation frequently promotes riparian vegetation growth as soil moisture levels are increased during summer when a natural drought would otherwise limit its growth. Additionally, flow regulation by large dams promotes the aging of late seral riparian vegetation reducing the frequency of flood disturbance and consequently, the potential recruitment of pioneer species. In this work we study the response of woody riparian vegetation to flow regulation by large dams in four rivers from Central Spain: Jarama, Manzanares, Guadalix and Alberche. The aim is to quantify the annual vegetation encroachment ratios and to develop a model to understand the main controlling factors, such as floodplain and channel traits; flow regulation intensity; type of regulation; present vegetation canopy; distance to the dam; and time since dam commissioning. A temporal comparison using aerial photographs from 1956, 1966, 1972, 1991, 2011 and 2014 was done in thirteen river reaches downstream from large dams, to evaluate their morphological evolution.. Floodplain dimensions and channel and riparian vegetation changes were assessed by comparing different pre-dam and post-dam conditions. Recent coloured photographs with 0.5 m spatial resolution and older black-and-white photographs at 1:33 000 spatial scale were supplied by the National Geographic Institute of Spain (www.ign.es) and the Statistical Institute (www.madrid.org/nomecalles/Inicio.icm) from Madrid Community. Similar visual scales were used to cope

  19. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    Science.gov (United States)

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  20. VOLATILE COMPOUNDS OF WATER-ETHANOLIC EXTRACT OF SATUREJA MONTANA L.

    Directory of Open Access Journals (Sweden)

    A. E. Paliy

    2014-01-01

    Full Text Available We have studied a composition and content of volatile compounds of Satureja montana L. extract. It was established that concentration of volatile compounds in water-ethanol extract of S. montana amounted to 325 mg/100g. The principal component of the extract is carvacrol. It was shown that the extract of Satureja montana represents high biological value

  1. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  2. Baxter v. Montana, libertarianism, and end-of-life: the ripe time for a paradigm shift.

    Science.gov (United States)

    Ruble, James H

    2010-09-01

    Baxter v. Montana (2009 WL 5155363 [Mont. 2009]) is a recent decision from the Montana Supreme Court that provides new legal insight into the societal issue of aid in dying. This case involves interests of persons with terminal illness, medical practitioners, law enforcement, legislative and judicial bodies, as well as the citizens of Montana. A summary judgment ruling at the Montana district court level was based almost entirely on a constitutional fundamental rights analysis. In contrast, the Montana Supreme Court affirming decision was based almost entirely on a statutory rights analysis. Both rulings from the Montana courts support the position that licensed prescribers in Montana who provide aid in dying assistance to terminally ill patients have some immunity from criminal prosecution. Each side in the case argued what they believed to be the intents and purposes of the people of Montana. Baxter v. Montana illustrates different methods to determine the will of the people concerning aid in dying and public policy. This case very subtly suggests a paradigm shift may be occurring in aid in dying policy.

  3. Sediment dynamics in restored riparian forest with agricultural surroundings

    Science.gov (United States)

    Stucchi Boschi, Raquel; Cooper, Miguel; Alencar de Matos, Vitor; Ortega Gomes, Matheus; Ribeiro Rodrigues, Ricardo

    2017-04-01

    The riparian forests are considered Permanent Preservation Areas due to the ecological services provided by these forests. One of these services is the interception of the sediments before they reach the water bodies, which is essential to preserve water quality. The maintenance and restoration of riparian forests are mandatory, and the extent of these areas is defined based on water body width, following the Brazilian Forest Code. The method used to define the size of riparian forest areas elucidates the lack of accurate scientific data of the influence of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests of a Semideciduous Tropical Forest situated in agricultural areas inserted in sugarcane landscapes in the state of São Paulo, Brazil. We defined two sites with soils of contrasting texture to monitor the dynamics and amount of deposited sediments. Site A is in the municipality of Araras and the soil is mainly clay. Site B is in the municipality of São Manuel and is dominated by sandy soils. In both areas, we defined plots to install graded metal stakes that were partially buried to monitor the dynamics of sediments. In site A, we defined eight plots and installed 27 metal stakes in each one. Three of the plots presented 30 m of riparian forest, two presented 15 m of riparian forest and three, 15 m of pasture followed by 15 m of forest. The design of the metal stakes was similar for all plots and was defined based on the type of erosion observed in site A. In site B, we defined seven points to monitor the sediments inside the reforested areas. Here, we observed erosive processes of great magnitude inside the forests, which results in a different design for the metal stakes. A total of nearly 150 metal stakes were installed to monitor these processes and also to verify the deposition in areas not yet

  4. What Carbon Sources Support Groundwater Microbial Activity in Riparian Forests?

    Science.gov (United States)

    Gurwick, N. P.; Groffman, P. M.; McCorkle, D. C.; Stolt, M. H.; Kellogg, D. Q.; Gold, A. J.

    2004-05-01

    A major question in riparian research is the source of energy to support subsurface microbial denitrification activity. The supply of microbially-available carbon frequently limits microbial activity in the subsurface. Therefore, identifying the relative importance of carbon sources in the riparian subsurface helps explain the sustainability and spatial heterogeneity of denitrification rates. We have investigated the importance of buried, carbon-rich soil horizons, deep roots and dissolved organic carbon as potential carbon sources to support groundwater denitrification in riparian forests in Rhode Island. We used field observations, laboratory incubations and in-situ experiments to evaluate these sources at four sites in different geomorphic settings. In particular, we measured the 14C-DIC signature and DIC concentration of ambient groundwater and groundwater that had been degassed, re-introduced into the well, and incubated in-situ. Buried horizons appear to be an important source of carbon in the subsurface, as shown by active respiration in laboratory incubations; greater microbial biomass in buried carbon-rich soils compared to surrounding carbon-poor soils; and the presence of very old carbon (>1,000 ybp) in DIC 225 cm beneath the surface. DIC collected from shallower wells showed no clear evidence of ancient carbon. Roots also appear to be important, creating hotspots of carbon availability and denitrification in the generally carbon poor subsurface matrix. Dissolved organic carbon did not stimulate denitrification in aquifer microcosms in the laboratory, suggesting that this was not an important carbon source for denitrification in our sites. Determining which carbon source is fueling denitrification has practical implications. Where buried horizons are the key source, surface management of the riparian zone will likely have little direct influence on groundwater denitrification. Where roots are the key source, changes in the plant community are likely to

  5. Montana Organization for Research in Energy (MORE) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bromenshenk, Jerry

    1999-12-31

    MORE is a consortium of educational, governmental, and industrial partners in cooperation with the state's Tribal colleges. Formed in 1994, the objectives are to develop and promote energy-related research and education in the state of Montana and the Northwestern region. Specifically, they set out to: (1) promote collaboration and cooperation among Montana's Colleges and Universities; (2) maximize use of existing personnel and resources; (3) foster partnerships with industries, state agencies, and tribal nations; and (4) enhance energy research and training. The 1st Implementation Grant consisted of Management and Coordination, Human Outreach, and two Research Clusters Petroleum Reservoir Characterization and Wind Energy. Overall, they consider this program to have been highly successful. That conclusion was mirrored by the DOE site reviewers, and by invitations from Dr. Matesh Varma, the DOE/EPSCoR National Program Director, to present their programs and outcomes as models for other states the National DOE/EPSCoR meetings.

  6. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern ontario watershed.

    Science.gov (United States)

    Yang, Wanhong; Liu, Yongbo; Ou, Chunping; Gabor, Shane

    2016-06-01

    Wetland conservation has two important tasks: The first is to halt wetland loss and the second is to conduct wetland restoration. In order to facilitate these tasks, it is important to understand the environmental degradation from wetland loss and the environmental benefits from wetland restoration. The purpose of the study is to develop SWAT based wetland modelling to examine water quality effects of riparian wetland loss and restoration scenarios in the 323-km(2) Black River watershed in southern Ontario, Canada. The SWAT based wetland modelling was set up, calibrated and validated to fit into watershed conditions. The modelling was then applied to evaluate various scenarios of wetland loss from existing 7590 ha of riparian wetlands (baseline scenario) to 100% loss, and wetland restoration up to the year 1800 condition with 11,237 ha of riparian wetlands (100% restoration). The modelling was further applied to examine 100% riparian wetland loss and restoration in three subareas of the watershed to understand spatial pattern of water quality effects. Modelling results show that in comparing to baseline condition, the sediment, total nitrogen (TN), and total phosphorus (TP) loadings increase by 251.0%, 260.5%, and 890.9% respectively for 100% riparian wetland loss, and decrease by 34.5%, 28.3%, and 37.0% respectively for 100% riparian wetland restoration. Modelling results also show that as riparian wetland loss increases, the corresponding environmental degradation worsens at accelerated rates. In contrast, as riparian wetland restoration increases, the environmental benefits improve but at decelerated rates. Particularly, the water quality effects of riparian wetland loss or restoration show considerable spatial variations. The watershed wetland modelling contributes to inform decisions on riparian wetland conservation or restoration at different rates. The results further demonstrate the importance of targeting priority areas for stopping riparian wetland loss

  7. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  8. John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H. (Oregon Department of Fish and Wildlife, John Day, OR)

    2006-03-01

    Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelhead redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.

  9. Estimation of Streamflow Characteristics for Charles M. Russell National Wildlife Refuge, Northeastern Montana

    Science.gov (United States)

    Sando, Steven K.; Morgan, Timothy J.; Dutton, DeAnn M.; McCarthy, Peter M.

    2009-01-01

    Charles M. Russell National Wildlife Refuge (CMR) encompasses about 1.1 million acres (including Fort Peck Reservoir on the Missouri River) in northeastern Montana. To ensure that sufficient streamflow remains in the tributary streams to maintain the riparian corridors, the U.S. Fish and Wildlife Service is negotiating water-rights issues with the Reserved Water Rights Compact Commission of Montana. The U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, conducted a study to gage, for a short period, selected streams that cross CMR, and analyze data to estimate long-term streamflow characteristics for CMR. The long-term streamflow characteristics of primary interest include the monthly and annual 90-, 80-, 50-, and 20-percent exceedance streamflows and mean streamflows (Q.90, Q.80, Q.50, Q.20, and QM, respectively), and the 1.5-, 2-, and 2.33- year peak flows (PK1.5, PK2, and PK2.33, respectively). The Regional Adjustment Relationship (RAR) was investigated for estimating the monthly and annual Q.90, Q.80, Q.50, Q.20, and QM, and the PK1.5, PK2, and PK2.33 for the short-term CMR gaging stations (hereinafter referred to as CMR stations). The RAR was determined to provide acceptable results for estimating the long-term Q.90, Q.80, Q.50, Q.20, and QM on a monthly basis for the months of March through June, and also on an annual basis. For the months of September through January, the RAR regression equations did not provide acceptable results for any long-term streamflow characteristic. For the month of February, the RAR regression equations provided acceptable results for the long-term Q.50 and QM, but poor results for the long-term Q.90, Q.80, and Q.20. For the months of July and August, the RAR provided acceptable results for the long-term Q.50, Q.20, and QM, but poor results for the long-term Q.90 and Q.80. Estimation coefficients were developed for estimating the long-term streamflow characteristics for which the RAR did not provide

  10. Hydrological and Meteorological Disturbances in Rio Grande Riparian Ecosystems

    Science.gov (United States)

    Thibault, J. R.; Cleverly, J. R.; Dahm, C.

    2012-12-01

    Invasive species and ecohydrological disturbances are imperiling native riparian ecosystems. Adaptable, resilient exotic competitors including tamarisk have colonized many waterways in the western US. Alteration of the natural flow regime due to water diversions is expected to be exacerbated by climate change in this region, confounding restoration efforts. Climate change may also increase the likelihood of other disturbances, including extreme weather events (drought, floods, temperatures). We investigate how hydrological and meteorological variability impact water use by tamarisk communities that have overtaken native riparian vegetation. We have collected more than a decade of complete growing season eddy covariance evapotranspiration (ET) and water table (WT) elevation data at two sites along the Rio Grande corridor of central New Mexico, USA. Conditions have ranged from extreme drought to exceedingly wet years with extensive overbank flooding, and from record setting warm to cold temperatures. Severe to extreme droughts persisted throughout 2002 and 2003. Abundant snowpacks and wetter conditions led to extensive flooding early in the 2005 and 2008 growing seasons. Along with a return to intense drought conditions, extreme temperatures struck New Mexico in 2011. A deep freeze in early February followed by an extraordinarily late, extended hard freeze at the onset of the growing season was then succeeded by the warmest summer in the state's 117 year record. We present how water use by the replacement communities responds to droughts, flooding, and extreme temperatures, all of which are expected to increase in frequency, and speculate how these disturbances will affect native riparian ecosystems.

  11. Sensitivity Analysis of a Riparian Vegetation Growth Model

    Directory of Open Access Journals (Sweden)

    Michael Nones

    2016-11-01

    Full Text Available The paper presents a sensitivity analysis of two main parameters used in a mathematic model able to evaluate the effects of changing hydrology on the growth of riparian vegetation along rivers and its effects on the cross-section width. Due to a lack of data in existing literature, in a past study the schematization proposed here was applied only to two large rivers, assuming steady conditions for the vegetational carrying capacity and coupling the vegetal model with a 1D description of the river morphology. In this paper, the limitation set by steady conditions is overcome, imposing the vegetational evolution dependent upon the initial plant population and the growth rate, which represents the potential growth of the overall vegetation along the watercourse. The sensitivity analysis shows that, regardless of the initial population density, the growth rate can be considered the main parameter defining the development of riparian vegetation, but it results site-specific effects, with significant differences for large and small rivers. Despite the numerous simplifications adopted and the small database analyzed, the comparison between measured and computed river widths shows a quite good capability of the model in representing the typical interactions between riparian vegetation and water flow occurring along watercourses. After a thorough calibration, the relatively simple structure of the code permits further developments and applications to a wide range of alluvial rivers.

  12. How do riparian woody seedlings survive seasonal drought?

    Science.gov (United States)

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  13. An invasive riparian tree reduces stream ecosystem efficiency via a recalcitrant organic matter subsidy.

    Science.gov (United States)

    Mineau, Madeleine M; Baxter, Golden V; Marcarelli, Amy M; Minshall, G Wayne

    2012-07-01

    A disturbance, such as species invasion, can alter the exchange of materials and organisms between ecosystems, with potential consequences for the function of both ecosystems. Russian olive (Elaeagnus angustifolia) is an exotic tree invading riparian corridors in the western United States, and may alter stream organic matter budgets by increasing allochthonous litter and by reducing light via shading, in turn decreasing in-stream primary production. We used a before-after invasion comparison spanning 35 years to show that Russian olive invasion increased allochthonous litter nearly 25-fold to an invaded vs. a control reach of a stream, and we found that this litter decayed more slowly than native willow. Despite a mean 50% increase in canopy cover by Russian olive and associated shading, there were no significant changes in gross primary production. Benthic organic matter storage increased fourfold after Russian olive invasion compared to pre-invasion conditions, but there were no associated changes in stream ecosystem respiration or organic matter export. Thus, estimated stream ecosystem efficiency (ratio of ecosystem respiration to organic matter input) decreased 14%. These findings show that invasions of nonnative plant species in terrestrial habitats can alter resource fluxes to streams with consequences for whole-ecosystem functions.

  14. Remote sensing analysis of riparian vegetation response to desert marsh restoration in the Mexican Highlands

    Science.gov (United States)

    Norman, Laura M.; Villarreal, Miguel; Pulliam, H. Ronald; Minckley, Robert L.; Gass, Leila; Tolle, Cindy; Coe, Michelle

    2014-01-01

    Desert marshes, or cienegas, are extremely biodiverse habitats imperiled by anthropogenic demands for water and changing climates. Given their widespread loss and increased recognition, remarkably little is known about restoration techniques. In this study, we examine the effects of gabions (wire baskets filled with rocks used as dams) on vegetation in the Cienega San Bernardino, in the Arizona, Sonora portion of the US-Mexico border, using a remote-sensing analysis coupled with field data. The Normalized Difference Vegetation Index (NDVI), used here as a proxy for plant biomass, is compared at gabion and control sites over a 27-year period during the driest months (May/June). Over this period, green-up occurred at most sites where there were gabions and at a few of the control sites where gabions had not been constructed. When we statistically controlled for differences among sites in source area, stream order, elevation, and interannual winter rainfall, as well as comparisons of before and after the initiation of gabion construction, vegetation increased around gabions yet did not change (or decreased) where there were no gabions. We found that NDVI does not vary with precipitation inputs prior to construction of gabions but demonstrates a strong response to precipitation after the gabions are built. Field data describing plant cover, species richness, and species composition document increases from 2000 to 2012 and corroborate reestablished biomass at gabions. Our findings validate that gabions can be used to restore riparian vegetation and potentially ameliorate drought conditions in a desert cienega.

  15. Bioactivity and phytochemical characterization of Arenaria montana L.

    OpenAIRE

    Pereira, Eliana; Barros, Lillian; Calhelha, Ricardo C.; Dueñas, Montserrat; Carvalho, Ana Maria; Santos-Buelga, Celestino; Isabel C. F. R. Ferreira

    2014-01-01

    The bioactivity (antioxidant and cytotoxic activities) of the aqueous and methanolic extracts of Arenaria montana L., a plant commonly used in Portuguese folk medicine, was evaluated and compared. Furthermore, the phytochemical composition was determined regarding hydrophilic (sugars, organic acids and phenolic compounds) and lipophilic (fatty acids and tocopherols) compounds, in order to valorize this plant material as a functional food/nutraceutical. Fructose, oxalic acid, methyl-luteolin 2...

  16. Metal contamination and post-remediation recovery in the Boulder River watershed, Jefferson County, Montana

    Science.gov (United States)

    Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.

    2009-01-01

    The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to

  17. Resource selection by black-footed ferrets in South Dakota and Montana

    Science.gov (United States)

    Jachowski, D.S.; Millspaugh, J.J.; Biggins, D.E.; Livieri, T.M.; Matchett, M.R.; Rittenhouse, C.D.

    2011-01-01

    The black-footed ferret (Mustela nigripes), once extinct in the wild, remains one of the most critically endangered mammals in North America despite 18 years of reintroduction attempts. Because black-footed ferrets are specialized predators of prairie dogs (Cynomys sp.), a better understanding of how black-footed ferrets select resources might provide insight into how best to identify and manage reintroduction sites. We monitored ferret resource selection at two reintroduction sites with different densities of prairie dog populations-one that contained a high density of prairie dogs (Conata Basin, South Dakota) and one that was lower (UL Bend, Montana). We evaluated support for hypotheses about ferret resource selection as related to the distribution of active burrows used by black-tailed prairie dogs (Cynomys ludovicianus), interactions between ferrets, and habitat edge effects. We found support for all three factors within both populations; however, they affected ferret resource selection differently at each site. Ferrets at Conata Basin tended to select areas with high prairie dog burrow density, closer to the colony edge, and that overlapped other ferret ranges. In contrast, ferrets at UL Bend tended not to select areas of high active prairie dog burrow density, avoided areas close to edge habitat, and females avoided areas occupied by other ferrets. The differences observed between the two sites might be best explained by prairie dog densities, which were higher at Conata Basin (119.3 active burrows per ha) than at UL Bend (44.4 active burrows per ha). Given the positive growth of ferret populations at Conata Basin, management that increases the density of prairie dogs might enhance ferret success within natural areas. To achieve long-term recovery of ferrets in the wild, conservationists should increasingly work across and outside natural area boundaries to increase prairie dog populations.

  18. Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Day, Warren C.; Frost, Thomas P.; Hammarstrom, Jane M.; Zientek, Michael L.

    2016-08-19

    Scientific Investigations Report 2016–5089 and accompanying data releases are the products of the U.S. Geological Survey (USGS) Sagebrush Mineral-Resource Assessment (SaMiRA). The assessment was done at the request of the Bureau of Land Management (BLM) to evaluate the mineral-resource potential of some 10 million acres of Federal and adjacent lands in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming. The need for this assessment arose from the decision by the Secretary of the Interior to pursue the protection of large tracts of contiguous habitat for the greater sage-grouse (Centrocercus urophasianus) in the Western United States. One component of the Department of the Interior plan to protect the habitat areas includes withdrawing selected lands from future exploration and development of mineral and energy resources, including copper, gold, silver, rare earth elements, and other commodities used in the U.S. economy. The assessment evaluates the potential for locatable minerals such as gold, copper, and lithium and describes the nature and occurrence of leaseable and salable minerals for seven Sagebrush Focal Areas and additional lands in Nevada (“Nevada additions”) delineated by BLM. Supporting data are available in a series of USGS data releases describing mineral occurrences (the USGS Mineral Deposit Database or “USMIN”), oil and gas production and well status, previous mineral-resource assessments that covered parts of the areas studied, and a compilation of mineral-use cases based on data provided by BLM, as well as results of the locatable mineral-resource assessment in a geographic information system. The present assessment of mineral-resource potential will contribute to a better understanding of the economic and environmental trade-offs that would result from closing approximately 10 million acres of Federal lands to mineral entry.

  19. 76 FR 71355 - United States et al. v. Blue Cross and Blue Shield of Montana, Inc. et al.; Proposed Final...

    Science.gov (United States)

    2011-11-17

    ... affordable prices can attract businesses and jobs to a state or region, and higher health-insurance prices.... *Attorney of Record. FOR PLAINTIFF STATE OF MONTANA: Steve Bullock, Attorney General of Montana. James...

  20. Groundwater quality comparison between rural farms and riparian wells in the western Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Nei K Leite

    2011-01-01

    Full Text Available Groundwater quality of a riparian forest is compared to wells in surrounding rural areas at Urupá River basin. Groundwater types were calcium bicarbonated at left margin and sodium chloride at right, whereas riparian wells exhibited a combination of both (sodium bicarbonate. Groundwater was mostly solute-depleted with concentrations within permissible limits for human consumption, except for nitrate. Isotopic composition suggests that inorganic carbon in Urupá River is mostly supplied by runoff instead of riparian groundwater. Hence, large pasture areas in addition to narrow riparian forest width in this watershed may have an important contribution in the chemical composition of this river.

  1. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  2. Seasonal change in tropical habitat quality and body condition for a declining migratory songbird.

    Science.gov (United States)

    McKinnon, Emily A; Rotenberg, James A; Stutchbury, Bridget J M

    2015-10-01

    Many migratory songbirds spend their non-breeding season in tropical humid forests, where climate change is predicted to increase the severity and frequency of droughts and decrease rainfall. For conservation of these songbirds, it is critical to understand how resources during the non-breeding season are affected by seasonal patterns of drying, and thereby predict potential long-term effects of climate change. We studied habitat quality for a declining tropical forest-dwelling songbird, the wood thrush (Hylocichla mustelina), and tested the hypothesis that habitat moisture and arthropod abundance are drivers of body condition during the overwintering period. We examined habitat moisture, abundance of arthropods and fruit, and condition of individual birds (n = 418) in three habitat types--mature forest, mature forest with increased presence of human activity, and riparian scrub--from October to April. We found a strong pattern of habitat drying from October (wet season) to March (prior to spring migration) in all habitats, with concurrent declines in arthropod and fruit abundance. Body condition of birds also declined (estimated ~5 % decline over the wintering period), with no significant difference by habitat. Relatively poor condition (low body condition index, low fat and pectoral muscles scores) was equally apparent in all habitat types in March. Climate change is predicted to increase the severity of dry seasons in Central America, and our results suggest that this could negatively affect the condition of individual wood thrushes.

  3. Finding of No Significant Impact for the Missouri River Recovery Program Lower Little Sioux Bend Shallow Water Habitat Construction Project

    Science.gov (United States)

    2011-07-01

    mallard ducks (Anas platyrhynchus), blue-winged teal (Anas discors), Canada geese (Branta Canadensis), spotted sandpipers (Actitis macularia), and...streams, riparian forest, woodland, and grassland habitats that would otherwise result in the taking of migratory birds, eggs , young, and/or active nests...Since 1972 the Act has extended eligibility to recreational and open space lands such as scenic highway corridors, salt ponds and wildlife preserves

  4. Preliminary assessment report for Fort William Henry Harrison, Montana Army National Guard, Helena, Montana. Installation Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    DuWaldt, J.; Meyer, T.

    1993-07-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at a Montana Army National Guard (MTARNG) property near Helena, Montana. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the Fort William Henry Harrison property, requirements of the Department of Defense Installation Restoration Program.

  5. Stratigraphy and geologic history of the Montana group and equivalent rocks, Montana, Wyoming, and North and South Dakota

    Science.gov (United States)

    Gill, James R.; Cobban, William Aubrey

    1973-01-01

    During Late Cretaceous time a broad north-trending epicontinental sea covered much of the western interior of North America and extended from the Gulf of Mexico to the Arctic Ocean. The sea was bounded on the west by a narrow, unstable, and constantly rising cordillera which extended from Central America to Alaska and which separated the sea from Pacific oceanic waters. The east margin of the sea was bounded by the low-lying stable platform of the central part of the United States.Rocks of the type Montana Group in Montana and equivalent rocks in adjacent States, which consist of eastward-pointing wedges of shallow-water marine and nonmarine strata that enclose westward-pointing wedges of fine-grained marine strata, were deposited in and marginal to this sea. These rocks range in age from middle Santonian to early Maestrichtian and represent a time span of about 14 million years. Twenty-nine distinctive ammonite zones, each with a time span of about half a million years, characterize the marine strata.Persistent beds of bentonite in the transgressive part of the Claggett and Bearpaw Shales of Montana and equivalent rocks elsewhere represent periods of explosive volcanism and perhaps concurrent subsidence along the west shore in the vicinity of the Elkhorn Mountains and the Deer Creek volcanic fields in Montana. Seaward retreat of st randlines, marked by deposition of the Telegraph Creek, Eagle, Judith River, and Fox Hills Formations in Montana and the Mesaverde Formation in Wyoming, may be attributed to uplift in near-coastal areas and to an increase in volcaniclastic rocks delivered to the sea.Rates of transgression and regression determined for the Montana Group in central Montana reveal that the strandline movement was more rapid during times of transgression. The regression of the Telegraph Creek and Eagle strandlines averaged about 50 miles per million years compared with a rate of about 95 miles per million years for the advance of the strand-line during

  6. Multicriteria analysis to evaluate the energetic reuse of riparian vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, Lucia; Cini, Enrico [Dipartimento di Ingegneria Agraria e Forestale, Universita di Firenze, Piazzale delle Cascine 15, 50144 Firenze (Italy); Corsi, Stefano [Consorzio di Bonifica per la difesa del suolo e la tutela dell' ambiente della Toscana Centrale, via Verdi 16, 50122 Firenze (Italy)

    2010-01-15

    The management of riparian vegetation which includes cutting operations of grass, reeds, bushes and trees, is very important to reduce hydrogeologic risk. In Tuscany, riparian biomass and residues are mainly left shredded along courses or disposed in landfills as special wastes: actually different laws prohibit that tree trunks are abandoned in areas naturally affected by flooding, because they can be moved contributing to increase the water level and to maximize the hydraulic risk of some other nearby areas. In some cases, it is also possible to store the logs in specified sites from where they can be taken and used as a fuel in fireplaces or domestic heating plants. This work studies the possibility of the reuse of riparian vegetation as biomass for energy production and evaluates benefits and drawbacks from the economical, environmental and managerial points of view. Particularly, a specific methodology has been developed for two hydrological districts of Tuscany, with different typologies and densities of vegetation. First, an estimation of biomass distribution on the land and an evaluation of annual wood availability have been carried out; then, different chains concerning harvesting operation, biomass transport, storage conditions and final utilisation, have been defined and compared by a specific multicriteria analysis (MCA); finally, for the most suitable bio-energy chains the Life Cycle Assessment (LCA) has been implemented. Results of the LCA have also permitted to validate some environmental indicators used in the MCA, as mechanisation level of yards, energy efficiency of plants or transport distances. The decision making tool developed allows to compare costs and environmental benefits of the energy use of riparian vegetation, supporting local authorities involved in energy planning: in this way it is possible to confront different alternatives to match the energy demand and meet the energy saving and sustainability issues at the lowest cost for the

  7. Delineating riparian zones for entire river networks using geomorphological criteria

    Directory of Open Access Journals (Sweden)

    D. Fernández

    2012-03-01

    Full Text Available Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC, while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance. As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment. Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that

  8. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  9. Trends on Habitat Management

    Directory of Open Access Journals (Sweden)

    Raluca Giuşcă

    2008-01-01

    Full Text Available According to traditional image, human habitat constitution is the result of natural inter-relations, the fundamental premise of the existence of natural resources, the climate, and the access to more developed proximities for commercial trading. Human habitat represents a complex system, with environmental values, having live and natural components that are inter-related. The dwelling is the fundamental component of the habitat and by relationship with the other components determines the level of habitation.

  10. Shorebird Habitat Suitability Indicies

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This dataset consists of predicted habitat suitability indices and species richness for eight shorebird species (Black-bellied Plover [Pluvialis squatarola],...

  11. Spatial patterns of water-dispersed seed deposition along stream riparian gradients.

    Science.gov (United States)

    Fraaije, Rob G A; Moinier, Sophie; van Gogh, Iris; Timmers, Robert; van Deelen, Joost J; Verhoeven, Jos T A; Soons, Merel B

    2017-01-01

    Riparian ecosystems along streams naturally harbour a high plant diversity with many increasingly endangered species. In our current heavily modified and fragmented catchments, many of these species are sensitive to dispersal limitation. Better understanding of riparian plant dispersal pathways is required to predict species (re-)colonization potential and improve success rates of stream and riparian zone conservation and restoration. Dispersal by water (hydrochory) is an important mechanism for longitudinal and lateral dispersal of riparian species. Crucially for recruitment potential, it also influences the elevation along the riparian hydrological gradient where seeds become deposited. Due to the complex interplay between abiotic and biotic factors, however, it remains unclear how exactly patterns in seed deposition are formed. We compared hydrochorous and non-hydrochorous seed deposition, and quantified patterns of seed deposition along the bare substrate of newly created stream riparian gradients. Water levels were monitored and seed deposition was measured with seed traps along the full range of riparian hydrological conditions (from permanently flooded to never flooded). Average seed numbers and species richness were significantly higher in flooded than in non-flooded seed traps (5.7 and 1.5 times higher, respectively). Community-weighted trait means indicated that typically water-dispersed seeds were more dominant in flooded than in non-flooded seed traps and gradually decreased in concentration from the channel to the upland. Moreover, highly buoyant seeds accumulated at the average water line, and clear elevational sorting of non-buoyant seeds occurred within the floodplain. These results establish a critical role of flooding in shaping patterns of seed deposition along the riparian gradient, delivering many seeds of typical riparian species to riparian zones and depositing them at species-specific elevations as influenced by seed traits, suggesting

  12. Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

    2009-06-09

    During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

  13. Stroke Knowledge among Urban and Frontier First Responders and Emergency Medical Technicians in Montana

    Science.gov (United States)

    McNamara, Michael J.; Oser, Carrie; Gohdes, Dorothy; Fogle, Crystelle C.; Dietrich, Dennis W.; Burnett, Anne; Okon, Nicholas; Russell, Joseph A.; DeTienne, James; Harwell, Todd S.; Helgerson, Steven D.

    2008-01-01

    Purpose: To assess stroke knowledge and practice among frontier and urban emergency medical services (EMS) providers and to evaluate the need for additional prehospital stroke training opportunities in Montana. Methods: In 2006, a telephone survey of a representative sample of EMS providers was conducted in Montana. Respondents were stratified…

  14. 75 FR 4698 - Approval and Promulgation of Air Quality Implementation Plans; Montana; Revisions to the...

    Science.gov (United States)

    2010-01-29

    ... Administrative Rules of Montana. Revisions include minor editorial and grammatical changes, updates to the... minor editorial and grammatical changes, and update the citations and references to Federal laws and... Montana; they make minor editorial and grammatical changes, update the citations and references to...

  15. 75 FR 3993 - Approval and Promulgation of Air Quality Implementation Plans; Montana; Revisions to the...

    Science.gov (United States)

    2010-01-26

    ... the Administrative Rules of Montana; they include minor editorial and grammatical changes, updates to... minor editorial and grammatical changes, update the citations and references to federal and state laws... Rules of Montana; they make minor editorial and grammatical changes, update the citations and...

  16. Scheduling Recess before Lunch: Exploring the Benefits and Challenges in Montana Schools

    Science.gov (United States)

    Bark, Katie; Stenberg, Molly; Sutherland, Shelly; Hayes, Dayle

    2010-01-01

    Purpose/Objectives: The purpose of the "Montana Recess Before Lunch Survey" was to explore benefits, challenges, and factors associated with successful implementation of Recess Before Lunch (RBL), from the perspective of school principals. Methods: An online written questionnaire was distributed to all (N = 661) Montana elementary and…

  17. 75 FR 3489 - Notice of Public Meeting, Eastern Montana Resource Advisory Council Meeting

    Science.gov (United States)

    2010-01-21

    ... Montana Resource Advisory Council will be held on March 4, 2010, in Billings, MT. The meeting will start... in Montana. At these meetings, topics will include: Miles City and Billings Field Office manager..., 2010. M. Elaine Raper, District Manager. BILLING CODE 4310-DN-P...

  18. 2011 Montana Youth Risk Behavior Survey: American Indian Students on or near a Reservation

    Science.gov (United States)

    Montana Office of Public Instruction, 2011

    2011-01-01

    This report presents the 2011 Montana Youth Risk Behavior Survey high school student frequency distributions for American Indian students on or near a reservation. These frequency distributions are based upon surveys with 720 high school American Indian students on or near a reservation in Montana during February of 2011. Frequency distributions…

  19. The Otter Habitat Network Europe (OHNE Project Has Been Started

    Directory of Open Access Journals (Sweden)

    Reuther C.

    1998-10-01

    Full Text Available East and west of Central Europe there are thriving otter populations, but in Central Europe, populations are fragmented and isolated. THis could lead to extinction in the middle range, and the development of subspecies on either side. Project OHNE, the Otter Habitat Network for Europe, aims to reverse this by reconnecting otter populations across Central Europe. The decline is due, not to overhunting, but to habitat destruction. The project therefore concentrates on restoration of otter habitats. The only chance for the survival of the otter is a management of riverine habitats and wetlands on a large spatial base. This means that we have to develop management or utilisation strategies for the landscape which allow man to satisfy his economic and social demands as well as allow the otter to survive. The proof of concept for the project is the revitalisation of the River Ise in Lower Saxony, subject to heavy pollution, canalisation and intensive use. Since 1987, led by Aktion Fischotterschutz, approximately 500 hectares of arable land have been transformed into extensive pastureland and more than 20 kilometres of riparian woodland and hedges have been planted, the costs being borne by the Federal Ministry of Environment, the Lower Saxony Ministry of Environment, the county of Gifhorn and the donors and sponsors of Aktion Fischotterschutz. The first phase of OHNE will be the identification of areas suitable as habitat corridors for dispersal or stepping stones for reinforcing locally low populations. The second phase will use this information to induce international, national and private organisations to include these data in planning and to take initiatives for regional otter habitat network programmes.

  20. [Special use permit for predator disease study associated with Montana black-footed ferret reintroduction, summer 1994 : Montana Department of Fish, Wildlife and Parks

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains a memorandum providing the Montana Black-Footed Ferret Working Group with information on the proposed predator collection that will happen...

  1. The spatial distribution and temporal variation of desert riparian forests and their influencing factors in the downstream Heihe River basin, China

    Science.gov (United States)

    Ding, Jingyi; Zhao, Wenwu; Daryanto, Stefani; Wang, Lixin; Fan, Hao; Feng, Qiang; Wang, Yaping

    2017-05-01

    Desert riparian forests are the main restored vegetation community in Heihe River basin. They provide critical habitats and a variety of ecosystem services in this arid environment. Since desert riparian forests are also sensitive to disturbance, examining the spatial distribution and temporal variation of these forests and their influencing factors is important to determine the limiting factors of vegetation recovery after long-term restoration. In this study, field experiment and remote sensing data were used to determine the spatial distribution and temporal variation of desert riparian forests and their relationship with the environmental factors. We classified five types of vegetation communities at different distances from the river channel. Community coverage and diversity formed a bimodal pattern, peaking at the distances of 1000 and 3000 m from the river channel. In general, the temporal normalized difference vegetation index (NDVI) trend from 2000 to 2014 was positive at different distances from the river channel, except for the region closest to the river bank (i.e. within 500 m from the river channel), which had been undergoing degradation since 2011. The spatial distribution of desert riparian forests was mainly influenced by the spatial heterogeneity of soil properties (e.g. soil moisture, bulk density and soil particle composition). Meanwhile, while the temporal variation of vegetation was affected by both the spatial heterogeneity of soil properties (e.g. soil moisture and soil particle composition) and to a lesser extent, the temporal variation of water availability (e.g. annual average and variability of groundwater, soil moisture and runoff). Since surface (0-30 cm) and deep (100-200 cm) soil moisture, bulk density and the annual average of soil moisture at 100 cm obtained from the remote sensing data were regarded as major determining factors of community distribution and temporal variation, conservation measures that protect the soil structure

  2. HOW EFFECTIVE ARE RIPARIAN BUFFERS IN CONTROLLING NUTRIENT EXPORT FROM AGRICULTURAL WATERSHEDS?

    Science.gov (United States)

    Riparian buffers are being established in many parts of the world as part of nonpoint source pollution management strategies. A large number of studies have documented the potential of riparian buffers to reduce export of nutrients, especially nitrogen, in shallow ground water of...

  3. Twelve invasive plant taxa in U.S. western riparian ecosystems

    Science.gov (United States)

    Assessments of stream ecosystems often include an evaluation of riparian condition; a key stressor in riparian ecosystems is the presence of invasive plants. We analyzed the distribution of 12 invasive taxa (common burdock [Arctium minus], giant reed [Arundo donax], cheatgrass [B...

  4. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system

    Science.gov (United States)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  5. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Science.gov (United States)

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  6. Quality and Conservation of Riparian Forest in a Mountain Subtropical Basin of Argentina

    Directory of Open Access Journals (Sweden)

    Romina Daiana Fernández

    2016-01-01

    Full Text Available The aims of this work were to describe the conservation status of riparian forests located in a mountain subtropical basin of Tucumán province, Argentina, and assess how the quality of riparian forests is related with altitude, plant species richness, proportion of exotic species, and Total Suspended Solids (TSS in adjacent rivers. Composition and species richness of riparian forests were studied at 16 sites located along an altitudinal gradient and TSS was determined from water samples collected in each site. In order to evaluate conservation status of riparian forests, we calculated an index of Quality of Yungas Riparian Forests (QBRy. We recorded 90 plant species at all sites, from which 77% were native. QBRy index was mainly associated with altitude and varied from riparian forests with good preservation or slightly disturbed to those with extreme degradation. At lower altitude, forests were more disturbed, more invaded by exotic plant species, and closer to urban and cropped areas. QBRy was not correlated with species richness or TSS. Like other riparian forests of Argentina, plant species invasion increased their degradation; therefore, future studies should focus on native riparian forests conservation and on the management of invasive plant species, which affect their quality.

  7. Approaches to characterizing biogeochemistry effects of groundwater and surface water interaction at the riparian interface

    Science.gov (United States)

    Groundwater-surface water interaction (GSI) in riparian ecosystems strongly influences biological activity that controls nutrient flux and processes. Shallow groundwater in riparian zones is a hot spot for nitrogen removal processes, a storage zone for solutes, and a target for ...

  8. Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds

    Science.gov (United States)

    Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...

  9. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  10. Geomorphic controls on riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon

    Science.gov (United States)

    Grabs, T.; Ledesma, J.; Laudon, H.; Seibert, J.; Kohler, S. J.; Bishop, K. H.

    2014-12-01

    Near stream (riparian) zones are an important link between terrestrial and aquatic ecosystems and influence a wide range of processes including solute transport or hydrologic behavior of headwater catchments. Understanding the links between geomorphology and riparian soils, vegetation and hydrology is, thus, a prerequisite for relating small scale processes to observations at the watershed scale. Geographic information systems (GIS) have traditionally been used to study links between geomorphology and properties of terrestrial ecosystems. Applying this approach to riparian zones, however, has only recently become feasible with the availability of high-resolution digital elevation models and the new development of suitable computational methods. In this study we present links between geomorphology and riparian zone hydrology, carbon pools and fluxes of dissolved organic carbon. Geomorphometric attributes were successfully used to predict (1) riparian groundwater levels and flow pathways, (2) the size of riparian soil carbon pools, (3) the vertical variation of dissolved organic carbon (DOC) in riparian soil profiles, as well as (4) riparian carbon fluxes and turnover times.

  11. The Effect of Riparian Zones on Nitrate Removal by Denitrification at the River Basin Scale

    NARCIS (Netherlands)

    Hoang, N.K.L.

    2013-01-01

    The riparian zone, the interface between terrestrial and aquatic ecosystems, plays an important role in nitrogen removal in spite of the minor proportion of the land area that it covers. This is verified in a large number of studies related to the effect of wetlands/riparian zones on the discharge o

  12. Rapid riparian buffer width and quality analysis using lidar in South Carolina

    Science.gov (United States)

    Akturk, Emre

    The importance of protecting water quality and aquatic resources are increasing because of harmful human impacts within and around waterways. Establishing or restoring functional riparian areas protect water quality and are a good mechanism to conserve aquatic systems, plants, and wildlife. Laser-based remote sensing technology offers a high resolution approach to both characterize and document changes in riparian buffer zones (RBZs). The objectives of this study were to build a model to calculate riparian buffer width on both sides of a stream using a LiDAR-derived slope variable, to classify riparian buffers and determine their quality, and to evaluate the appropriateness of using LiDAR in riparian buffer assessment. For this purpose, RBZs were delineated for Hunnicutt and King Creek, which are located in Oconee and Pickens counties, in South Carolina. Results show that LiDAR was effective in delineating required riparian buffer widths based on the topography slope of upstream areas, and to calculate the ratio of tree cover in those riparian buffer zones to qualify them. Furthermore, the riparian buffer assessment model that was created in this research has potential for use in different sites and different studies.

  13. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    NARCIS (Netherlands)

    Kristensen, P.B.; Kristensen, E.A.; Riis, T.; Alnoee, A.B.; Larsen, S.E.; Verdonschot, P.F.M.; Baattrup-Pedersen, A.

    2015-01-01

    Predictions of future climate suggest that stream water temperature will increase in temperate lowland areas. Streams without riparian forest will be particularly prone to elevated temperature. Planting riparian forest is a potential mitigation measure to reduce water temperature for the benefit

  14. Thinning and riparian buffer configuration effects on down wood abundance in headwater streams in coniferous forests

    Science.gov (United States)

    Adrian Ares; Deanna H. Olson; Klaus J. Puettmann

    2013-01-01

    Down wood is associated with the function, structure, and diversity of riparian systems. Considerable knowledge has been generated regarding down wood stocks and dynamics in temperate forests, but there are few studies on effects of silvicultural practices and riparian buffer design on down wood, particularly in headwater streams. We analyzed interactive eff ects of...

  15. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native

  16. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  17. Field Review of Fish Habitat Improvement Projects in the Grande Ronde and John Day River Basins of Eastern Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Beschta, Robert L.; Platts, William S.; Kauffman, J. Boone

    1991-10-01

    The restoration of vegetation adapted to riparian environments and the natural succession of riparian plant communities is necessary to recreate sustainable salmonid habitat and should be the focal point for fish habitat improvement programs. In mid-August of 1991, a field review of 16 Salmon habitat improvement sites in the Grande Ronde and John Day River Basins in Eastern Oregon was undertaken. The review team visited various types of fish habitat improvements associated with a wide range of reach types, geology, channel gradients, stream sizes, and vegetation communities. Enhancement objectives, limiting factors, landuse history, and other factors were discussed at each site. This information, in conjunction with the reviewer's field inspection of portions of a particular habitat improvement project, provided the basis for the following report. This report that follows is divided into four sections: (1) Recommendations, (2) Objectives, (3) Discussion and Conclusions, and (4) Site Comments. The first section represents a synthesis of major recommendations that were developed during this review. The remaining sections provide more detailed information and comments related to specific aspects of the field review.

  18. 2004 progress report : Effects of ungulate browsing on post-fire recovery of riparian cottonwoods : Implications for management of riparian forests, Seedskadee National Wildlife Refuge, Wyoming

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Browsing pressure by ungulates may limit natural establishment of native cottonwood and willow stands, and fires, which have become more frequent on riparian lands...

  19. Habitat Evaluation Procedures (HEP) Report; Burlington Bottoms, Technical Report 1993-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, Susan

    1993-08-01

    Burlington Bottoms, consisting of approximately 417 acres of riparian and wetland habitat, was purchased by the Bonneville Power Administration in November 1991. The site is located approximately 1/2 mile north of the Sauvie Island Bridge (T2N R1W Sections 20, 21), and is bound on the east side by Multnomah Channel and on the west side by the Burlington Northern Railroad right-of-way and U.S. Highway 30 (Figures 1 and 2). Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Columbia and Willamette River Basin's Fish and Wildlife Program and Amendments. Under this Program, mitigation goals were developed as a result of the loss of wildlife habitat due to the development and operation of Federal hydro-electric facilities in the Columbia and Willamette River Basins. In 1993, an interdisciplinary team was formed to develop and implement quantitative Habitat Evaluation Procedures (HEP) to document the value of various habitats at Burlington Bottoms. Results of the HEP will be used to: (1) determine the current status and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area. HEP participants included; Charlie Craig, BPA; Pat Wright, Larry Rasmussen, and Ron Garst, U. S. Fish and Wildlife Service; John Christy, The Nature Conservancy; and Doug Cottam, Sue Beilke, and Brad Rawls, Oregon Department of Fish and Wildlife.

  20. Summer Home Range Size and Habitat Use by River Otters in Ohio

    Directory of Open Access Journals (Sweden)

    David A. Helon

    2004-01-01

    Full Text Available Reintroduced river otters (Lontra canadensis are an important component of Ohio’s biological diversity, and are a key indicator of wetland and watershed health and quality. However, few data are available on their home range sizes and habitat use. We monitored river otters using radio-telemetry in the Killbuck Watershed, in northeastern Ohio, during 2002 and 2003 to determine home range and habitat use. Overall, mean home range size was 802.4 ha (range = 84.5–3,376.3, SE = 448.2 for female river otters and 1,101.7 ha (range = 713.8–1,502.6, SE = 102.2 for male river otters. Home range size of female and male river otters did not differ in 2002 (P = 0.763, but males had larger home range size than females during 2003 (P = 0.001. Based on compositional analysis, habitat use differed in proportion to availability of the 5 habitat types available in the study area (marsh, wet meadow, riparian/floodplain, open water, and flooded upland (P < 0.0001. Overall, river otters used marsh habitat with a diverse association of floating aquatics and emergent vegetation in greater proportion than was available. Knowledge and understanding of river otter habitat use and home range size in Ohio will help managers identify habitats suitable for river otters in the Midwestern United States.

  1. Linking channel hydrology with riparian wetland accretion in tidal rivers

    Science.gov (United States)

    Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.

    2014-01-01

    hydrologic processes by which tide affects river channel and riparian morphology within the tidal freshwater zone are poorly understood yet are fundamental to predicting the fate of coastal rivers and wetlands as sea level rises. We investigated patterns of sediment accretion in riparian wetlands along the nontidal through oligohaline portion of two coastal plain rivers in Maryland, U.S., and how flow velocity, water level, and suspended sediment concentration (SSC) in the channel may have contributed to those patterns. Sediment accretion was measured over a 1 year period using artificial marker horizons, channel hydrology was measured over a 1 month period using acoustic Doppler current profilers, and SSC was predicted from acoustic backscatter. Riparian sediment accretion was lowest at the nontidal sites (mean and standard deviation = 8 ± 8 mm yr-1), highest at the upstream tidal freshwater forested wetlands (TFFW) (33 ± 28 mm yr-1), low at the midstream TFFW (12 ± 9 mm yr-1), and high at the oligohaline (fresh-to-brackish) marshes (19 ± 8 mm yr-1). Channel maximum flood and ebb velocity was twofold faster at the oligohaline than tidal freshwater zone on both tidal rivers, corresponding with the differences in in-channel SSC: The oligohaline zone's SSC was more than double the tidal freshwater zone's and was greater than historical SSC at the nontidal gages. The tidal wave characteristics differed between rivers, leading to significantly greater in-channel SSC during floodplain inundation in the weakly convergent than the strongly convergent tidal river. High sediment accretion at the upstream TFFW was likely due to high river discharge following a hurricane.

  2. Riparian zone control on base cation concentration in boreal streams

    Directory of Open Access Journals (Sweden)

    J. L. J. Ledesma

    2013-06-01

    Full Text Available Riparian zones (RZ are a major factor controlling water chemistry in forest streams. Base cations' (BC concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.

  3. Mycorrhizas effects on nutrient interception in two riparian grass species

    Directory of Open Access Journals (Sweden)

    Hamid Reza Asghari

    2014-12-01

    Full Text Available Effects of arbuscular mycorrhizal (AM fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively for 8 weeks under glasshouse conditions. Mycorrhizal colonization, AM external hyphae development, plant growth, nutrient uptake and NO3, NH4 and available P in soil and leachate were measured. Mycorrhizal fungi highly colonized roots of exotic grass Phalaris aquatica and significantly increased plant growth and nutrient uptake. Columns containing of AM Phalaris aquatica had higher levels of AM external hyphae, lower levels of NO3, NH4 and available P in soil and leachate than NM columns. Although roots of native grass Austrodanthonia caespitosa had moderately high levels of AM colonization and AM external hyphae in soil, AM inoculation had no significant effects on plant growth, soil and leachate concentration of NO3 and NH4. But AM inoculation decreased available soil P concentration in deeper soil layer and had no effects on dissolved P in leachate. Although both grass species had nearly the same biomass, results showed that leachate collected from Austrodanthonia caespitosa columns significantly had lower levels of NO3, NH4 and dissolve P than leachate from exotic Phalaris aquatica columns. Taken together, these data shows that native plant species intercept higher nutrient than exotic plant species and had no responsiveness to AM fungi related to nutrient leaching, but AM fungi play an important role in interception of nutrient in exotic plant species.

  4. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  5. Riparian zone control on base cation concentration in boreal streams

    Science.gov (United States)

    Ledesma, J. L. J.; Grabs, T.; Futter, M. N.; Bishop, K. H.; Laudon, H.; Köhler, S. J.

    2013-06-01

    Riparian zones (RZ) are a major factor controlling water chemistry in forest streams. Base cations' (BC) concentrations, fluxes, and cycling in the RZ merit attention because a changing climate and increased forest harvesting could have negative consequences, including re-acidification, for boreal surface waters. We present a two-year study of BC and silica (Si) flow-weighted concentrations from 13 RZ and 14 streams in different landscape elements of a boreal catchment in northern Sweden. The spatial variation in BC and Si dynamics in both RZ and streams was explained by differences in landscape element type, with highest concentrations in silty sediments and lowest concentrations in peat-dominated wetland areas. Temporal stability in BC and Si concentrations in riparian soil water, remarkably stable Mg/Ca ratios, and homogeneous mineralogy suggest that patterns found in the RZ are a result of a distinct mineralogical upslope signal in groundwater. Stream water Mg/Ca ratios indicate that the signal is subsequently maintained in the streams. Flow-weighted concentrations of Ca, Mg, and Na in headwater streams were represented by the corresponding concentrations in the RZ, which were estimated using the Riparian Flow-Concentration Integration Model (RIM) approach. Stream and RZ flow-weighted concentrations differed for K and Si, suggesting a stronger biogeochemical influence on these elements, including K recirculation by vegetation and retention of Si within the RZ. Potential increases in groundwater levels linked to forest harvesting or changes in precipitation regimes would tend to reduce BC concentrations from RZ to streams, potentially leading to episodic acidification.

  6. Water quality dynamics and hydrology in nitrate loaded riparian zones in the Netherlands.

    Science.gov (United States)

    Hefting, Mariet; Beltman, Boudewijn; Karssenberg, Derek; Rebel, Karin; van Riessen, Mirjam; Spijker, Maarten

    2006-01-01

    Riparian zones are known to function as buffers, reducing non-point source pollution from agricultural land to streams. In the Netherlands, riparian zones are subject to high nitrogen inputs. We combined hydrological, chemical and soil profile data with groundwater modelling to evaluate whether chronically N loaded riparian zones were still mitigating diffuse nitrate fluxes. Hydraulic parameters and water quality were monitored over 2 years in 50 piezometres in a forested and grassland riparian zone. Average nitrate loadings were high in the forested zone with 87 g NO(3)(-)-N m(-2) y(-1) and significantly lower in the grassland zone with 15 g NO(3)(-)-N m(-2) y(-1). Groundwater from a second aquifer diluted the nitrate loaded agricultural runoff. Biological N removal however occurred in both riparian zones, the grassland zone removed about 63% of the incoming nitrate load, whereas in the forested zone clear symptoms of saturation were visible and only 38% of the nitrate load was removed.

  7. Some Biological Compounds, Radical Scavenging Capacities and Antimicrobial Activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana from Turkey

    Directory of Open Access Journals (Sweden)

    Erecevit, Pınar

    2011-03-01

    Full Text Available This study determined some biological compounds (fatty acid compositions, lipid-soluble vitamins, sterols, flavonoids, radical scavenging capacities and antimicrobial activities in the seeds of Nepeta italica L. and Sideritis montana L. subsp. montana. It was found that palmitic acid (C16:0; 8.54±0.13- 3.05±0.04%, oleic acid (C18:1 n9, 22.41±0.8-18.83±0.1% and α-linolenic acid (C18:3 n3;39.56±0.67-77.04±2.07% were the dominant fatty acids in both Nepeta italica L. and Sideritis montana L. subsp. montana. It was concluded that both Nepeta italica L. and Sideritis montana L. subsp. montana contained stigmasterol (630.07±1.81µg/g, 80.74±0.71µg/g, respectively and ergosterol (1.11±0.14µg/g, 161.32±0.63µg/g respectively as well as beta-sitosterol (2.93±0.03 µg/g. The present findings show that Nepeta italica L. contains morin (37.79±1.09μg/g, catechin (124.39±2.23µg/g, naringin (475.96±3.57µg/g and Sideritis montana L. subsp. montana contains morin (188.41±2.53µg/g, catechin (64.14±1.86μg/g, naringenin (38.34±1.78μg/g as major flavonoids. It was also determined that methanol extracts of Nepeta italica L. and Sideritis montana L. subsp. montana were most effective against DPPH radicals. The results of the present study show that the vitamins, flavonoids and fatty acid extracts in the seeds of N. italica L. and S. montana L. subsp. montana prevented the growth of the microorganisms used in the tests at different ratios.Este estudio ha determinado algunos compuestos biológicos (ácidos grasos, vitaminas liposolubles, esteroles y flavonoides, capacidad atrapadora de radicales libres, y actividades antimicrobianas de las semillas de Nepeta italica L. y Sideritis montana L. subsp. montana. Se encontró que el ácido palmítico (C16:0; 8.54±0.13-3.05±0.04%, ácido oleico (C18:1 n9, 22.41±0.8-18.83±0.1% y α-linolénico (C18:3 n 3;39.56±0.67-77.04±2.07% eran mayoritarios en ambas semillas de Nepeta italica L. y Sideritis

  8. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  9. Habitat Evaluation Procedures (HEP) Report; Iskuulpa Wildlife Mitigation and Watershed Project, Technical Report 1998-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Quaempts, Eric

    2003-01-01

    U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to evaluate lands acquired and leased in Eskuulpa Watershed, a Confederated Tribes of the Umatilla Indian Reservation watershed and wildlife mitigation project. The project is designed to partially credit habitat losses incurred by BPA for the construction of the John Day and McNary hydroelectric facilities on the Columbia River. Upland and riparian forest, upland and riparian shrub, and grasslands cover types were included in the evaluation. Indicator species included downy woodpecker (Picuides puhescens), black-capped chickadee (Pams atricopillus), blue grouse (Beadragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petschia), mink (Mustela vison), and Western meadowlark (Sturnello neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 55,500 feet of transects, 678 m2 plots, and 243 one-tenth-acre plots. Between 123.9 and f 0,794.4 acres were evaluated for each indicator species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total habitat units credited to BPA for the Iskuulpa Watershed Project and its seven indicator species is 4,567.8 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest, which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing or implementation of restoration grazing schemes, road de-commissioning, reforestation, large woody debris additions to floodplains, control of competing and unwanted vegetation, reestablishing displaced or reduced native vegetation species

  10. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  11. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants

    Science.gov (United States)

    Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela

    2017-01-01

    Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to

  12. Earthworm survival and behavior results from a Clark Fork River Superfund site: Grant-Kohrs Ranch N.H.S., Montana

    Energy Technology Data Exchange (ETDEWEB)

    Rader, B.R.; Nimmo, D.R.; Chapman, P.L. [Colorado State Univ., Fort Collins, CO (United States)

    1995-12-31

    Concentrations of heavy metals in sediments and soils deposited along the floodplain of the Clark Fork River, within the boundaries of the Grant-Kohrs Ranch National Historic Site, have exceeded those typically found in uncontaminated soils. Upstream mining activities along the Clark Fork River in the Deer Lodge Valley, Montana, have produced substantial quantities of mine waste which have been deposited throughout the watershed. Releases and re-releases of these contaminated substances continue to occur, and appear to be preventing the germination and establishment of critical riparian plant species and depressing soil microbe activity. Slickens, bare spots devoid of all vegetation, occur frequently in the floodplain along the Clark Fork River. This research investigates the toxicity of slicken soils using a series of earthworm (Eisenia foetida andrei) survival and behavior tests. In dilution tests, earthworm survival was reduced significantly in as little as 12.5% slicken soil. Results from earthworm behavior tests currently being conducted using non-lethal slicken soil dilutions will also be presented.

  13. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process

  14. Helenalin Acetate in in vitro Propagated Plants of Arnica montana.

    Science.gov (United States)

    Malarz, J; Stojakowska, A; Dohnal, B; Kisiel, W

    1993-02-01

    Propagated "IN VITRO" shoots and plantlets of ARNICA MONTANA L. (Asteraceae) have been shown to produce sesquiterpene lactones, i.e. helenalin and 11,13-dihydrohelenalin esters. The compounds were detected in green organs only; roots of the plantlets contained no sesquiterpene lactones. The helenalin acetate content in leaves of the plantlets (0.073% dry wt) was 4-times higher than in proliferated shoots (0.016% dry wt). The best rate of shoot multiplication was achieved on MS medium, supplemented with NAA 0.5mg/l and Kn 2.5 mg/l (formation of 22 shoots within 8 weeks).

  15. Immunologically active polysaccharides of Arnica montana cell cultures.

    Science.gov (United States)

    Puhlmann, J; Zenk, M H; Wagner, H

    1991-01-01

    From the nutrition medium of Arnica montana cell cultures two homogeneous polysaccharides, an acidic arabino-3,6-galactan-protein with mean Mr of 100,000 and a neutral fucogalactoxyloglucan with mean Mr of 22,500 have been isolated by DEAE-Sepharose CL-6B and Sephacryl S-400 column chromatography. Their structures were elucidated mainly by methylation analysis, partial acidic and enzymatic hydrolysis and 13C NMR spectroscopy. The fucogalactoxyloglucan shows a pronounced enhancement of phagocytosis in vivo. The arabino-3,6-galactan-protein displays a strong anticomplementary effect and stimulates macrophages to excrete the tumour necrosis factor (TNF alpha).

  16. Flavonoid Glycosides from Arnica montana and Arnica chamissonis.

    Science.gov (United States)

    Merfort, I; Wendisch, D

    1987-10-01

    Five flavonoid glycosides were identified from flowers of ARNICA MONTANA, four from A. CHAMISSONIS subsp. FOLIOSA var. INCANA. The structures were established on the basis of total acid hydrolysis and spectral data (UV, (1)H-NMR, (13)C-NMR, MS) as hispidulin 7- O-beta-glucoside, isorhamnetin 3- O-beta-glucoside, 3- O-beta- D-glucopyranosides of spinacetin, 6-methoxykaempferol and patuletin and querectin 3- O-(6''- O-acetyl)-beta- D-glucopyranoside. The latter compound can serve as distinctive marker between these two ARNICA species. The (1)H-NMR spectra in CD (3)OD are discussed.

  17. Avian use of Norris Hill Wind Resource Area, Montana

    Energy Technology Data Exchange (ETDEWEB)

    Harmata, A.; Podruzny, K.; Zelenak, J. [Montana State Univ., Bozeman, MT (United States). Biology Dept.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  18. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  19. Habitat Evaluation Procedures (HEP) Report : Ladd Marsh, 2001 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon Department of Fish and Wildlife

    2001-10-01

    ]) have been working together since 1991 to coordinate the planning, selection, and implementation of BPA-funded wildlife mitigation projects. In 1997, the Oregon wildlife managers developed a programmatic project for mitigation planning and implementation within Oregon. The Ladd Marsh Wildlife Area Additions project is one of many habitat acquisition and restoration projects proposed under the Oregon wildlife managers programmatic project that have been approved and recommended for funding by the NWPPC. The Ladd Marsh Wildlife Area Additions mitigation project will protect and restore wetland, riparian and other habitats on newly acquired parcels at ODFW's Ladd Marsh Wildlife Area (LMWA). Wildlife habitat values resulting from the acquisition and enhancement of Ladd Marsh Wildlife Area lands will contribute towards mitigating for habitat lost as a result of the development and operation of the Columbia Basin hydropower system. This report summarizes the HEP survey conducted in June 2001 to document the baseline habitat values on four parcels recently added to the Ladd Marsh Wildlife Area: the 309.66-acre Wallender property, the 375.54-acre Simonis property, the 161.07-acre Conley Lake property, and the 74.55-acre Becker property. The 2001 HEP Team was comprised of the following members and agencies: Susan Barnes (ODFW), Allen Childs (CTUIR), Tracy Hames (Yakama Indian Nation), Dave Larson (ODFW), Cathy Nowak (Cat Tracks Wildlife Consulting), and Ken Rutherford (ODFW). Results of the HEP will be used to (1) determine the pre-restoration habitat values of the project sites, (2) the number of Habitat Units to be credited to BPA for protection of habitats within the project area, (3) determine the enhancement potential of the sites, and (4) develop a habitat management plan for the area.

  20. [Effects of riparian ecological restoration engineering with offshore wave-elimination weir on restoration area's water quality].

    Science.gov (United States)

    Tang, Hao; Zhang, Hui; Xie, Fei; Xu, Chi; Wang, Lei; Liu, Mao-Song

    2012-06-01

    Riparian ecological restoration engineering with offshore wave-elimination weir is an engineering measure with piled wave-elimination weir some meters away from the shore. This measure can dissipate waves, promote sediment deposition, and create an artificial semi-closed bay to restore vegetation in a riparian area which has hard dam and destroyed vegetation. Three habitat gradient zones, i. e., emerged vegetation zone, submerged vegetation zone, and open water area, can be formed after this engineering. In June 2010-May 2011, a field investigation was conducted on the water quality in the three zones in an ecological restoration area of Gonghu Bay, Taihu Lake. The water body inside the weir generally had lower concentrations of nitrite and nitrate but higher concentrations of ammonium and total nitrogen than the water body outside the weir. The water phosphorus concentration inside the weir was lower than that outside the weir in autumn and winter, while an opposite trend was observed in spring and summer. The coefficients of variation of the water body' s nitrite and orthophosphate concentration inside the weir decreased, and the annual maximum values of the water nitrite, nitrate, and orthophosphate concentrations inside the weir were lower than those outside the weir. On the contrary, the coefficients of variation of the water body's ammonium and total nitrogen concentrations inside the weir increased, and the annual maximum values of the water ammonium and total nitrogen concentrations inside the weir were higher than those outside the weir. To some extent, the restoration engineering could exacerbate the deterioration of the water quality indices such as ammonium and total nitrogen in the restoration area by the end of growth season

  1. Elevated stream inorganic nitrogen impacts on a dominant riparian tree species: Results from an experimental riparian stream system

    Science.gov (United States)

    Hultine, K. R.; Jackson, T. L.; Burtch, K. G.; Schaeffer, S. M.; Ehleringer, J. R.

    2008-12-01

    The release of inorganic nitrogen from intensive agricultural practices and urbanization has resulted in significant alterations of the aquatic nitrogen cycle in riparian ecosystems. Nevertheless, impacts of stream nitrogen inputs on the terrestrial nitrogen cycle and the water and carbon cycles are unclear. Information on terrestrial ecosystem responses to stream N loading is largely absent in part because of the difficulty in controlling for temporal and spatial variation in streamflow, geomorphology, climate, and vegetation. To address these issues, we constructed a dual-plot artificial stream riparian system within a 10-year-old plantation of a dominant riparian tree species, box elder (Acer negundo). The dual-plot design allowed for different concentrations of stream inorganic nitrogen between plots while controlling for ecohydrologic and geohydrologic variability. The system was used to investigate elevated inorganic stream nitrogen impacts on water use patterns, above-ground productivity, and leaf chemistry of streamside box elder trees over two consecutive growing seasons (2006 and 2007). One plot received inorganic soluble fertilizer that brought the NO3 concentration of stream water from 5 μmol l-1 to about 100 μmol l-1, while the second plot received no additional nitrogen. Relative stem sap flux density (Js) did not vary between plots until near the conclusion of the 2006 growing season, when trees in the fertilized plot showed a steep upswing in Js relative to trees in the control plot. Sap flux in 2007 increased consistently by 0.4% day-1 in the fertilized plot relative to the control plot over a 75-day period, before leveling off near the conclusion of the growing season. At the onset of the experiment, leaf nitrogen per unit mass and leaf nitrogen per unit area were significantly higher in the control plot, and leaf C:N ratios were lower. In 2007, however, differences in leaf chemistry disappeared, suggesting that leaf nitrogen increased in the

  2. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie [Oregon Department of Fish and Wildlife

    2009-07-15

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since the initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.

  3. Woody riparian vegetation of Great Basin National Park. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, C.L.; Smith, S.D.; Murray, K.J.; Landau, F.H.; Sala, A.

    1994-07-01

    The community composition and population structure of the woody riparian vegetation in Great Basin National Park are described. Community analyses were accomplished by sampling 229 plots placed in a systematic random fashion along elevational gradients of 8 major stream systems (Baker, Big Wash, Lehman, Pine, Pole, Shingle, Snake, and Strawberry Creeks) in the Park using the releve method. Stand demographics were determined for the four dominant tree species in the Park, based on absolute stem counts at 15 sites along 6 major watersheds. Elevational ranges of the dominant tree and shrub species along 8 major streams were determined via transect analysis and systematic reconnaissance efforts. TWINSPAN (two-way indicator analysis) indentified 4 primary species groups and 8 stand groups in the Park. Because of the homogeneity of riparian zones, both presence and abundance of species were important parameters in determining species groups. Although species such as Populus tremuloides (aspen), Abies concolor (white fir) and Rosa woodsii (Woods rose) are very common throughout the Park, they are particularly abundant at higher, upper intermediate, and lower intermediate elevations.

  4. Scales of form roughness on riverbanks with different riparian vegetation

    Science.gov (United States)

    Konsoer, K. M.; Rhoads, B. L.; Best, J.; Langendoen, E. J.; Ursic, M.; Abad, J. D.; Garcia, M. H.

    2013-12-01

    Riverbanks often include topographic irregularities that occur over a range of scales and that are produced by interactions among erosional processes, vegetation, and the geotechnical properties of the banks and floodplains. Irregularity of the bank surface can increase form drag, affecting the overall flow resistance, near-bank shear stresses, and patterns of sediment transport. Understanding how dominant scales of form roughness influence the near-bank flow structure, and thus the shear stress partitioning, is vital for the development of accurate predictive morphodynamic models. In this paper, the scales of bank roughness are examined for two meander bends of a large alluvial river with differing riparian vegetation on the Wabash River near Grayville, Illinois. Detailed measurements of bank topography were obtained using terrestrial LiDAR during low flow events and a multibeam echo sounder (MBES) during bankfull events. These measurements yielded high spatial resolution maps (~5-10 cm) that were used to analyze scales of roughness at different elevations along the banks during both subaerial and subaqueous conditions. The results of these analyses provide insight into the influence of riparian vegetation on form roughness and patterns of near-bank flow structure as documented using acoustic Doppler current profilers (ADCP).

  5. Ecological Impact of LAN: San Pedro Riparian National Conservation Area

    Science.gov (United States)

    Craine, Eric Richard; Craine, Brian L.

    2015-08-01

    The San Pedro River in Southeastern Arizona is home to nearly 45% of the 900 total species of birds in the United States; millions of songbirds migrate though this unique flyway every year. As the last undammed river in the Southwest, it has been called one of the “last great places” in the US. Human activity has had striking and highly visible impacts on the San Pedro River. As a result, and to help preserve and conserve the area, much of the region has been designated the San Pedro Riparian National Conservation Area (SPRNCA). Attention has been directed to impacts of population, water depletion, and border fence barriers on the riparian environment. To date, there has been little recognition that light at night (LAN), evolving with the increased local population, could have moderating influences on the area. STEM Laboratory has pioneered techniques of coordinated airborne and ground based measurements of light at night, and has undertaken a program of characterizing LAN in this region. We conducted the first aerial baseline surveys of sky brightness in 2012. Geographic Information Systems (GIS) shapefiles allow comparison and correlation of various biological databases with the LAN data. The goal is to better understand how increased dissemination of night time lighting impacts the distributions, behavior, and life cycles of biota on this ecosystem. We discuss the baseline measurements, current data collection programs, and some of the implications for specific biological systems.

  6. Hepatitis B and C virus infection among Brazilian Amazon riparians

    Directory of Open Access Journals (Sweden)

    Claudia Suellen Ferro de Oliveira

    2011-10-01

    Full Text Available INTRODUCTION: Viral hepatitis is a major public health concern in Brazil. There are few past studies on this issue, especially among riparian communities. This study aims at determining the seroprevalence of viral hepatitis B and C in the riparian community of Pacuí Island, within the Cametá municipality of Pará State, Brazil. Moreover, this study aims to investigate the principal risk factors that this community is exposed to. METHODS: The current study has accessed blood samples from 181 volunteers who have answered an epidemiological questionnaire. Analyses on serological markers have been tested with commercial ELISA kits for detecting HBsAg, total anti-HBc, anti-HBs, and anti-HCV. Within seroreactive patients for HCV, RT-PCR and line probe assay have been performed to identify the viral genotype. RESULTS: In the serological marker analysis for hepatitis B, no reactivity for HBsAg, rate of 1.1% for total anti-HBc, and rate of 19.3% for anti-HBs have been observed. On hepatitis C, 8.8% seroprevalence has been found, in which 62.5% have gotten viral RNA. Among the risk factors studied, the following have been highlighted: non-use of condoms, sharing of cutting instruments, use of illicit drugs, and reports of family disease with HBV or HCV. CONCLUSIONS: The vaccination coverage against HBV is low, and the high prevalence of HCV within this community has been observed.

  7. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape.

    Science.gov (United States)

    Williams, Neal M; Kremen, Claire

    2007-04-01

    Within mosaic landscapes, many organisms depend on attributes of the environment that operate over scales ranging from a single habitat patch to the entire landscape. One such attribute is resource distribution. Organisms' reliance on resources from within a local patch vs. those found among habitats throughout the landscape will depend on local habitat quality, patch quality, and landscape composition. The ability of individuals to move among complementary habitat types to obtain various resources may be a critical mechanism underlying the dynamics of animal populations and ultimately the level of biodiversity at different spatial scales. We examined the effects that local habitat type and landscape composition had on offspring production and survival of the solitary bee Osmia lignaria in an agri-natural landscape in California (U.S.A.). Female bees were placed on farms that did not use pesticides (organic farms), on farms that did use pesticides (conventional farms), or in seminatural riparian habitats. We identified pollens collected by bees nesting in different habitat types and matched these to pollens of flowering plants from throughout the landscape. These data enabled us to determine the importance of different plant species and habitat types in providing food for offspring, and how this importance changed with landscape and local nesting-site characteristics. We found that increasing isolation from natural habitat significantly decreased offspring production and survival for bees nesting at conventional farms, had weaker effects on bees in patches of seminatural habitat, and had little impact on those at organic farm sites. Pollen sampled from nests showed that females nesting in both farm and seminatural habitats relied on pollen from principally native plant species growing in seminatural habitat. Thus connectivity among habitats was critical for offspring production. Females nesting on organic farms were buffered to isolation effects by switching to

  8. Hydrogeologic data for the northern Rocky Mountains intermontane basins, Montana

    Science.gov (United States)

    Dutton, DeAnn M.; Lawlor, Sean M.; Briar, D.W.; Tresch, R.E.

    1995-01-01

    The U.S. Geological Survey began a Regional Aquifer- System Analysis of the Northern Rocky Mountains Intermontane Basins of western Montana and central and central and northern Idaho in 1990 to establish a regional framework of information for aquifers in 54 intermontane basins in an area of about 77,500 square miles. Selected hydrogeologic data have been used as part of this analysis to define the hydro- logic systems. Records of 1,376 wells completed in 31 of the 34 intermontane basins in the Montana part of the study area are tabulated in this report. Data consist of location, alttiude of land surface, date well constructed, geologic unit, depth of well, diameter of casing, type of finish, top of open interval, primary use of water, water level, date water level measured, discharge, specific capacity, source of discharge data, type of log available, date water-quality parameters measured, specific conductance, pH, and temperature. Hydrographs for selected wells also are included. Locations of wells and basins are shown on the accompanying plate.

  9. Chemical characteristics of the major thermal springs of Montana

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, R.H.; Presser, T.S.; Evans, W.C.

    1976-07-01

    Twenty-one thermal springs in western Montana were sampled for chemical, isotope, and gas compositions. Most of the springs issue dilute to slightly saline sodium-bicarbonate waters of neutral to slightly alkaline pH. A few of the springs issue sodium-mixed anion waters of near neutral pH. Fluoride concentrations are high in most of the thermal waters, up to 18 miligrams per litre, while F/Cl ratios range from 3/1 in the dilute waters to 1/10 in the slightly saline waters. Most of the springs are theoretically in thermodynamic equilibrium with respect to calcite and fluorite. Nitrogen is the major gas escaping from most of the hot springs; however, Hunters Hot Springs issue principally methane. The deuterium content of the hot spring waters is typical of meteoric water in western Montana. Geothermal calculations based on silica concentrations and Na-K-Ca ratios indicate that most of the springs are associated with low temperature aquifers (less than 100/sup 0/C). Chalcedony may be controlling the silica concentrations in these low temperature aquifers even in ''granitic'' terranes.

  10. Green Turtle Critical Habitat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  11. VT Wildlife Linkage Habitat

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Wildlife Linkage Habitat Analysis uses landscape scale data to identify or predict the location of potentially significant wildlife linkage...

  12. Designated Critical Habitat

    Data.gov (United States)

    Kansas Data Access and Support Center — Critical habitats include those areas documented as currently supporting self-sustaining populations of any threatened or endangered species of wildlife as well as...

  13. Habitats, activities, and signs

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh; Brynskov, Martin

    2004-01-01

    Digital habitats is a framework for designing and modeling environments for activities that involve mobile and embedded computing systems. This paper 1) introduces the basic concepts of the framework, i.e. activity, thematic role, and the three ‘dimensions’ of a habitat: physical, informational, ......, and pragmatic, 2) proposes a notation, and 3) sketches a method and exemplifies areas of application using authentic cases from hospital work, primary school education, the maritime domain, and other areas......Digital habitats is a framework for designing and modeling environments for activities that involve mobile and embedded computing systems. This paper 1) introduces the basic concepts of the framework, i.e. activity, thematic role, and the three ‘dimensions’ of a habitat: physical, informational...

  14. Green Turtle Critical Habitat

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  15. Right Whale Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for Right Whale as designated by Federal Register Vol. 59, No. 28805, May 19, 1993, Rules and Regulations.

  16. Habitat Mapping Camera (HABCAM)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset entails imagery collected using the HabCam towed underwater vehicle and annotated data on objects or habitats in the images and notes on image...

  17. Green Turtle Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for green turtle as designated by Federal Register Vol. 63, No. 46701, September 2, 1998, Rules and Regulations.

  18. Critical Habitat Designations

    Data.gov (United States)

    Department of Homeland Security — The Endangered Species Act (ESA) requires the Federal government to designate 'critical habitat' for any species it lists under the ESA. This dataset combines both...

  19. Johnsons Seagrass Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for Johnson's Seagrass as designated by Federal Register Vol. 65, No. 66, Wednesday, April 5, 2000, Rules and Regulations.

  20. Smalltooth Sawfish Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for smalltooth sawfish (Pristis pectinatat) as designated by 74 FR 45353, September 2, 2009, Rules and Regulations.

  1. Influence of floods on natural riparian forests along the Ergis River,west China

    Institute of Scientific and Technical Information of China (English)

    CHENG Kewu; ZANG Runguo; ZHOU Xiaofang; ZHANG Weiyin; BAI Zhiqiang

    2007-01-01

    The riparian forests along the Ergis River,west China,composed mainly of Salicaceae species,play an important role in eco-environment protection and sustainable development of local agriculture,stockbreeding,and social economy of the northern desert region of Xinjiang Uygur Autonomous Region.The study of the influence of floods on the natural riparian forests is imperative for the understanding of the successional process and the acceleration of conservation and restoration of forests.By investigating the relationship between floods and dispersal of seeds,sprouting,natural regeneration,the structure of the forests,and their current distribution,we conclude that:1) the ripening and dispersal periods of Salicaceae species seeds overlap largely with flood occurrence periods,and the sprouting and natural regeneration of seeds depend greatly on flood events;2) floods supply soil water and increase groundwater level of riparian land through flood irrigation and horizontal infiltration to maintain the normal growth of the riparian forests;3) floods have a decisive influence on the structure,composition,and distribution pattern of riparian forests,and any disturbance in the water flow has a profound effect on these characteristics.Given these facts,some management measures for conservation and restoration of the riparian forests are proposed,including the establishment of riparian forest buffer belt,bank stabilization measures,and maintenance of flood protection.

  2. Habitat Evaluation Procedures (HEP) Report; Yakama Nation Wildlife Management Areas, Technical Report 1999-2000.

    Energy Technology Data Exchange (ETDEWEB)

    Raedeke, Kenneth; Raedeke, Dorothy

    2000-06-01

    Construction of the Dalles, Bonneville, McNary, and John Day Dams on the Columbia River by the federal government resulted in a substantial loss of riparian bottomland along the Columbia River. Impacts associated with the Mid-Columbia Projects were assessed for several wildlife species using the Habitat Evaluation Procedures (HEP) developed by the U.S. Fish and Wildlife Service (USDI-FWS 1980). The studies documented the loss of riparian habitat and established a baseline against which mitigation measures could be developed (USDI-FWS 1990 and USDE-BPA 1990). The impact assessments established a mitigation goal, a portion of which would be satisfied by the creation, restoration, and enhancement of riparian lands on tributaries to the Columbia River, including the Yakima Valley. The Yakama Nation (YN), the Northwest Power Planning Council, and the Bonneville Power Administration have agreed that the Yakama Nation would be funded to implement habitat restoration on lands within and adjacent to their reservation. Some of the targeted lands are owned by the Yakama Nation, some are trust lands, and some lands have been in private ownership. Since the early 1990s, the Yakama Nation has been in the process of assembling riparian lands into Wildlife Management Areas, and restoring natural hydrology and natural cover-types on these lands. The Northwest Power Planning Council, through the Bonneville Power Administration, has supported the program. HEP studies were performed by the Yakama Nation in 1990 (Bich et al. 1991) to establish baseline conditions and inventory wildlife habitat at the initiation of the restoration project. The 1990 HEP used a simplified version of the HEP to quantify baseline conditions. The present assessment is designed to evaluate the progress of the mitigation plan in meeting its stated goals. The 1999 HEP assessment has two distinct tasks: (1) Evaluation of the mitigation plan as currently implemented using the simplified YN HEP methodologies for

  3. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  4. Summary of information on aquatic biota and their habitats in the Willamette Basin, Oregon, through 1995

    Science.gov (United States)

    Altman, Bob; Henson, C.M.; Waite, I.R.

    1997-01-01

    Available information on aquatic biota of the Willamette Basin was reviewed and summarized to describe current and historical conditions as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Biological parameters emphasized include the status, distribution, and trends of aquatic biota, particularly algae, macroinvertebrates, and fish; the condition of aquatic and riparian habitat in which these biota reside; and the response of these biota to natural and human-associated impacts, including the level, type, and effect of contaminants.

  5. Characterization of ecological risks at the Milltown Reservoir-Clark Fork River Sediments Superfund Site, Montana

    Science.gov (United States)

    Pascoe, Gary A.; Blanchet, Richard J.; Linder, Greg L.; Palawski, Don; Brumbaugh, William G.; Canfield, Tim J.; Kemble, Nile E.; Ingersoll, Chris G.; Farag, Aïda M.; DalSoglio, Julie A.

    1994-01-01

    A comprehensive field and laboratory approach to the ecological risk assessment for the Milltown Reservoir-Clark Fork River Sediments Site, a Superfund site in the Rocky Mountains of Montana, has been described in the preceding reports of this series. The risk assessment addresses concerns over the ecological impacts of upstream releases of mining wastes to fisheries of the upper Clark Fork River (CFR) and the benthic and terrestrial habitats further downstream in Milltown Reservoir. The risk characterization component of the process integrated results from a triad of information sources: (a) chemistry studies of environmental media to identify and quantify exposures of terrestrial and aquatic organisms to site-related contaminants; (b) ecological or population studies of terrestrial vegetation, birds, benthic communities, and fish; and (c) in situ and laboratory toxicity studies with terrestrial and aquatic invertebrates and plants, small mammals, amphibians, and fish exposed to contaminated surface water, sediments, wetland soils, and food sources. Trophic transfer studies were performed on waterfowl, mammals, and predatory birds using field measurement data on metals concentrations in environmental media and lower trophic food sources. Studies with sediment exposures were incorporated into the Sediment Quality Triad approach to evaluate risks to benthic ecology. Overall results of the wetland and terrestrial studies suggested that acute adverse biological effects were largely absent from the wetland; however, adverse effects to reproductive, growth, and physiological end points of various terrestrial and aquatic species were related to metals exposures in more highly contaminated depositional areas. Feeding studies with contaminated diet collected from the upper CFR indicated that trout are at high risk from elevated metals concentrations in surface water, sediment, and aquatic invertebrates. Integration of chemical analyses with toxicological and ecological

  6. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    Science.gov (United States)

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  7. Establishment of woody riparian species from natural seedfall at a former gravel pit

    Science.gov (United States)

    Roelle, J.E.; Gladwin, D.N.

    1999-01-01

    Establishment of native riparian communities through natural seedfall may be a viable reclamation alternative at some alluvial sand and gravel mines where water level can be controlled in the abandoned pit. We experimented with this approach at a pit in Fort Collins, Colorado, where a drain culvert equipped with a screw gate allows water levels to be manipulated. From 1994 to 1996 we conducted a series of annual drawdowns during the period of natural seedfall of Populus deltoides subsp. monilifera (plains cottonwood), Salix amygdaloides (peachleaf willow), and S. exigua (sand-bar willow), thus providing the bare, moist substrate conducive to establishment of these species. Establishment was highly variable from year to year; in the fall following establishment, frequency of occurrence on 0.5-m2 sample plots ranged from 8.6% to 50.6% for cottonwood, 15.9% to 22.0% for peachleaf willow, and 21.7% to 50.0% for sandbar willow. Mean densities, however, were comparable to those reported for other locations. Concurrent establishment of the undesirable exotic Tamarix ramosissima (saltcedar) was a problem, but we were able to eradicate most saltcedar seedlings by reflooding the lower elevations of the annual drawdown zones each fall. At the end of the 3-year period, at least one of the three native woody species survived on 41.1% of the plots, while saltcedar was present on only 6.1%. In addition to the potential for establishing valuable native habitats, adaptations of the techniques described may require less earth moving than other reclamation approaches.

  8. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    Science.gov (United States)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  9. Value and Resilience in the Case of 'Invasive' Tamarix in the Colorado River Riparian Corridor

    Science.gov (United States)

    Loring, P. A.; Gerlach, S.; Zamora, F.

    2009-12-01

    A common premise of science for conservation and sustainability is an assumption that despite any human definitions of value, there are ecological first principles, e.g., resilience, which must be understood if sustainability is to be possible. As I show here, however, pursuits such as restoration, conservation, and sustainability remain tangled in (and sometimes at odds with one another regarding) many value-laden decisions regarding the equity, justice, and morality of human-environment interactions. These include such important decisions as: what should be restored or sustained and for whom, how and by whom, and at what cost. This paper uses examples from the lower Colorado River Riparian Corridor, in particular the issue of the so-called ‘invasive’ saltcedar (Tamarix spp.), to illustrate some of the implicit value judgments common to the practice of managing ecosystems. There are many possible perspectives to be taken on a matter like Tamarix, each implicitly or explicitly representing different worldviews and agendas for the ecosystems in question. Resilience theory provides one such perspective, but as I show here, it proves incapable of producing recommendations for managing the corridor that are free of subjective valuations. I end with a case study of habitat and Tamarix management practices in the Mexican portion of the Colorado River Delta, highlighting the proven potential when up-front values are explicitly coupled to the practice of sustainability science, rather than left as details for 'good governance,' a realm presently imagined as separate from science, to sort out. Map of the Colorado River Delta. The Sonoran Institute manages projects in the Mexican portion of the Colorado River Delta region, along the Rio Hardy, the mainstem of the Colorado River in Baja California, MX and in the Cienega de Santa Clara wetlands, Sonora, MX. Map courtesy of Water Education Foundation. www.watereducation.org

  10. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    Science.gov (United States)

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems.

  12. Camas Creek (Meyers Cove) Anadromous Species Habitat Improvement: Annual Report 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Seaberg, Glen

    1990-06-01

    Populations of wild salmon and steelhead in the Middle Fork of the Salmon River are at historical lows. Until passage and flow problems associated with Columbia River dams are corrected to reduce mortalities of migrating smolts, continuance of habitat enhancements that decrease sediment loads, increase vegetative cover, remove passage barriers, and provide habitat diversity is imperative to maintain surviving populations of these specially adapted fish. In 1987-1988, 4.3 miles of fence was constructed establishing a riparian livestock exclosure. One end-gap and two water-crossing corridors were constructed in 1989 to complete the fence system. Areas within the exclosure have been fertilized to promote tree and shrub root growth and meadow recovery. A stream crossing ford was stabilized with angular cobble. Streambank stabilization/habitat cover work was completed at three sites and three additional habitat structures were placed. Extensive inventories were completed to identify habitat available to anadromous fish. Streambank stabilization work was limited to extremely unstable banks, minimizing radical alterations to an active stream channel. Enhancement activities will improve spawning, incubation, and rearing habitat for wild populations of steelhead trout and chinook salmon. Anadromous species population increases resulting from these enhancement activities will provide partial compensation for downstream losses resulting from hydroelectric developments on the Columbia River system. 10 refs., 11 figs., 5 tabs.

  13. Riparian and in-stream controls on nutrient concentrations along a headwater forested stream

    Directory of Open Access Journals (Sweden)

    S. Bernal

    2014-07-01

    Full Text Available Headwater streams have a strong capacity to transform and retain nutrients, and thus, a longitudinal decrease in stream nutrient concentrations would be expected from in-stream nutrient removal alone. Yet, a number of other factors within the catchment, including biogeochemical processing within the riparian zone and export to streams, can contribute to stream nutrient concentration, which may overcome the effect of in-stream biogeochemical processing. To explore this idea, we analyzed the longitudinal patterns of stream and riparian groundwater concentrations for chloride (Cl−, nitrate (NO3−, ammonium (NH4+, and phosphate (PO43− along a 3.7 km reach at an annual scale. The reach showed a gradual increase in stream and riparian width, riparian tree basal area, and abundance of riparian N2-fixing tree species. Concentrations of Cl− indicated a~strong hydrological connection at the riparian-stream edge. However, stream and riparian groundwater nutrient concentrations showed a moderate to null correlation, suggesting high biogeochemical processing at the riparian-stream edge and within the stream. A mass balance approach along the reach indicated that, on average, in-stream net nutrient uptake prevailed over release for NH4+ and PO43−, but not for NO3−. On an annual basis, in-stream processes contributed to change stream input fluxes by 11%, 26%, and 29% for NO3−, NH4+, and PO43−, respectively. Yet, longitudinal trends in concentration were not consistent with the prevailing in-stream biogeochem ical processes. During the riparian dormant period, stream concentration decreased along the reach for NO3−, but increased for NH4+ and PO43−. During the riparian vegetative period, NO3− and PO43− increased along the reach while NH4+ showed no clear pattern. These longitudinal trends were partially related to riparian forest features and groundwater inputs, especially for NO3− and PO43−. Our study

  14. Research/Evaluate Restoration of NE Oregon Streams: Effects of Livestock Exclosures (Corridor Fencing) on Riparian Vegetation, Stream Geomorphic Features and Fish Populations; Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J. Boone

    2002-09-17

    The Pacific Northwest Electric Power Planning and Conservation Act of 1980 indicated ''The council shall properly develop and adopt a program to protect, mitigate, and enhance fish and wildlife, including related spawning grounds and habitat on the Columbia River and its tributaries.'' As a result, the Bonneville Power Administration (BPA) has spent millions of dollars on various instream projects throughout the Columbia Basin with the goal of increasing system-wide production of anadromous fisheries through a combination of habitat restoration and enhancement measures. For two decades, numerous BPA-funded projects have been initiated in the upper Columbia River Basin for the express intent of improving the aquatic habitats of anadromous salmonids. Largely missing from most of these projects has been any rigorous evaluation of project success or failure. Some field reviews of some habitat projects have been undertaken (e.g., Beschta et al. 1991, Kauffman et al. 1993) and provide an overview of major problems and opportunities associated with selected projects. However, there continues to be a lack of quantifiable information, collected in a systematic manner that could be used as the basis for scientifically assessing the effects of individual projects on riparian/aquatic habitats, functions, or processes. Recent publications (e.g., NRC 1992, ISG 1996, NRC 1996, Beschta 1997, and Kauffman et al. 1997) have identified and summarized important concepts associated with the restoration and improvement of aquatic ecosystems. While such conceptual approaches provide an important structure for those undertaking restoration efforts, there remains a paucity of basic information throughout the upper Columbia Basin on the hydrologic, geomorphic, and biologic responses that occur from various enhancement approaches. Basic data on the spatial and temporal responses of restoration approaches would provide: (1) a better understanding of project effects upon

  15. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn (Nez Perce Soil and Conservation District, Lewiston, ID)

    2006-07-01

    The ''Restoring Anadromous Fish Habitat in the Big Canyon Creek Watershed'' is a multi-phase project to enhance steelhead trout in the Big Canyon Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District. Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period September 1, 2004 through October 31, 2005 include; 2.7 riparian miles treated, 3.0 wetland acres treated, 5,263.3 upland acres treated, 106.5 riparian acres treated, 76,285 general public reached, 3,000 students reached, 40 teachers reached, 18 maintenance plans completed, temperature data collected at 6 sites, 8 landowner applications received and processed, 14 land inventories completed, 58 habitat improvement project designs completed, 5 newsletters published, 6 habitat plans completed, 34 projects installed, 2 educational workshops, 6 displays, 1 television segment, 2 public service announcements, a noxious weed GIS coverage, and completion of NEPA, ESA, and cultural resources requirements.

  16. Vegetation stability and the habitat associations of the endemic taxa of the Olympic Peninsula, Washington, USA

    Directory of Open Access Journals (Sweden)

    Daniel G. Gavin

    2015-07-01

    Full Text Available Explanations for areas of endemism often involve relative climatic stability, or low climate velocity, over time scales ranging from the Pleistocene to the late Cenozoic. Given that many narrowly endemic taxa in forested landscapes display discrete habitat associations, habitat stability should be similarly important for endemic persistence. Furthermore, while past climate variability is exceedingly difficult to quantify on millennial time scales, past distributions of habitats may be robustly inferred from paleoecological records. The Olympic Peninsula, Washington, supports a biota with several insular features including 29 endemic plant and animal taxa. Here I present the geographic distribution and habitat of the endemic taxa, and then examine the vegetation stability of the past 14,300 years from five pollen records associated with discrete vegetation zones on the peninsula. I show that 11 endemics have distributions centered on dry alpine scree and rock in the northeastern quadrant of the peninsula, and nine occur in shaded riparian forests in the southwest. Vegetation turnover during the post-glacial period was smallest in these areas. However, another long pollen record from the western peninsula reveals existence of shrub tundra and greatly reduced forest cover, indicating southward displacement of shaded riparian habitats by perhaps as much as 100 km. Although this study supports an association of post-glacial vegetation stability with endemism, records spanning the glacial maximum indicate widespread tundra during long periods of the late Pleistocene and therefore suggest southern displacement of forest-associated endemics. While some of the alpine scree-associated endemics may have persisted in situ, many others likely arrived via a variety of dispersal trajectories. These histories include dispersal from southern refugia towards ocean barriers preventing further northward dispersal, contraction from more widespread distributions, and

  17. Preferred habitat of breeding birds may be compromised by climate change: unexpected effects of an exceptionally cold, wet spring.

    Directory of Open Access Journals (Sweden)

    Michael J Whitehouse

    Full Text Available Previous studies of the consequences for breeding birds of climate change have explored how their populations may respond to increasing temperatures. However, few have considered the likely outcome of predicted extreme conditions and the relative vulnerability of populations in different habitats. Here, we compare phenology and breeding success in great tits and blue tits over a 10 year period, including the extremely harsh conditions during spring 2012, at three sites in eastern England--mixed deciduous woodland, riparian and urban habitat. Production, measured as brood biomass, was significantly lower in 2012 compared with the previous 9 years, with the decrease in productivity relatively greatest in woodland habitat. Production was related to hatch delay, i.e. birds not initiating incubation immediately after clutch completion, which was more common in 2012 than in previous years. The best predictor of hatch delay was daytime temperature (not nighttime minimum temperature and rainfall, which convincingly reflected low growth and activity of caterpillar prey. We found that birds breeding in riparian and urban habitats were less vulnerable to the extremes of weather than those breeding in mixed deciduous woodland.

  18. Home range and use of habitat of western yellow-billed cuckoos on the middle Rio Grande, New Mexico

    Science.gov (United States)

    Juddson Sechrist, jschrist@nsbr.gov; Darrell Ahlers, dahlers@usbr.gov; Katherine Potak Zehfuss, kzehfuss@usbr.gov; Robert Doster, rob_doster@fws.gov; Paxton, Eben; Ryan, Vicky M.

    2013-01-01

    The western yellow-billed cuckoo (Coccyzus americanus occidentalis) is a Distinct Population Segment that has been proposed for listing under the Endangered Species Act, yet very little is known about its spatial use on the breeding grounds. We implemented a study, using radio telemetry, of home range and use of habitat for breeding cuckoos along the Middle Rio Grande in central New Mexico in 2007 and 2008. Nine of 13 cuckoos were tracked for sufficient time to generate estimates of home range. Overall size of home ranges for the 2 years was 91 ha for a minimum-convex-polygon estimate and 62 ha for a 95%-kernel-home-range estimate. Home ranges varied considerably among individuals, highlighting variability in spatial use by cuckoos. Additionally, use of habitat differed between core areas and overall home ranges, but the differences were nonsignificant. Home ranges calculated for western yellow-billed cuckoos on the Middle Rio Grande are larger than those in other southwestern riparian areas. Based on calculated home ranges and availability of riparian habitat in the study area, we estimate that the study area is capable of supporting 82-99 nonoverlapping home ranges of cuckoos. Spatial data from this study should contribute to the understanding of the requirements of area and habitat of this species for management of resources and help facilitate recovery if a listing occurs.

  19. RICHNESS AND FLORISTIC COMPOSITION OF THE FERN COMMUNITY IN RIPARIAN FOREST OF THE RIVER ‘CADEIA’, IN RIO GRANDE DO SUL STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanete Teresinha Mallmann

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813327The present study analyzed richness and specific composition of the fern community in fragments fromthe riparian forest of river ‘Cadeia’, under different levels of human impact, in Santa Maria do Herval, RioGrande do Sul state, Brazil. An amount of 120 sample units were delimited, equitably distributed in threefragments (FI, II and III in which all species were surveyed and the richness was recorded. The floristiccomposition among fragments was compared using Jaccard’s index and spatial distribution of units wasevaluated through multidimensional scaling. Richness data were presented in the form of rarefaction curvesbased on samples and non-parametric diversity estimators. A total of 40 species were found, belonging to13 families. The greater floristic similarity was between FI and FII. Sample units from FI formed the mostdefined grouping and they had more exclusive species than the others. The rarefaction curve for the totalsampling almost reached the asymptote and estimators indicated a maximum of 45 species, which meansthat the majority of species was surveyed at the study site. A decreasing gradient of mean richness per unitwas observed as the urbanization increased in the matrix habitat of the fragments. These results form a database to be used in management, conservation and reforestation measures in degraded riparian forests. Theycan be directly compared to results from other studies that used rarefaction and richness estimators, whichis not possible to do with many of the surveys accomplished in Brazil so far.

  20. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America.

    Science.gov (United States)

    Strömberg, Caroline A E

    2005-08-23

    Because of a dearth of Cenozoic grass fossils, the timing of the taxonomic diversification of modern subclades within the grass family (Poaceae) and the rise to ecological dominance of open-habitat grasses remain obscure. Here, I present data from 99 Eocene to Miocene phytolith assemblages from the North American continental interior (Colorado, Nebraska, Wyoming, and Montana/Idaho), constituting the only high-resolution mid-Cenozoic record of grasses. Analyses of these assemblages show that open-habitat grasses had undergone considerable taxonomic diversification by the earliest Oligocene (34 million years ago) but that they did not become ecologically dominant in North America until 7-11 million years later (Late Oligocene or Early Miocene). This pattern of decoupling suggests that environmental changes (e.g., climate changes), rather than taxonomic radiations within Poaceae, provided the key opportunity for open-habitat grasses to expand in North America.