WorldWideScience

Sample records for monsoon tropics electronic

  1. Tropical stratospheric circulation and monsoon rainfall

    Science.gov (United States)

    Sikder, A. B.; Patwardhan, S. K.; Bhalme, H. N.

    1993-09-01

    Interannual variability of both SW monsoon (June September) and NE monsoon (October December) rainfall over subdivisions of Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu have been examined in relation to monthly zonal wind anomaly for 10 hPa, 30 hPa and 50 hPa at Balboa (9°N, 80°W) for the 29 year period (1958 1986). Correlations of zonal wind anomalies to SW monsoon rainfall ( r=0.57, significant at 1% level) is highest with the longer lead time (August of the previous year) at 10 hPa level suggesting some predictive value for Coastal Andhra Pradesh. The probabilities estimated from the contingency table reveal non-occurrence of flood during easterly wind anomalies and near non-occurrence of drought during westerly anomalies for August of the previous year at 10 hPa which provides information for forecasting of performance of SW monsoon over Coastal Andhra Pradesh. However, NE monsoon has a weak relationship with zonal wind anomalies of 10 hPa, 30 hPa and 50 hPa for Coastal Andhra Pradesh, Rayalaseema and Tamil Nadu. Tracks of the SW monsoon storms and depressions in association with the stratospheric wind were also examined to couple with the fluctuations in SW monsoon rainfall. It is noted that easterly / westerly wind at 10 hPa, in some manner, suppresses / enhances monsoon storms and depressions activity affecting their tracks.

  2. Morphodynamics of tidal inlets in a tropical monsoon area

    NARCIS (Netherlands)

    Lam, N.T.; Stive, M.J.F.; Verhagen, H.J.; Wang, Z.B.

    2007-01-01

    Morphodynamics of a tidal inlet system on a micro-tidal coast in a tropical monsoon influenced region is modelled and discussed. Influences of river flow and wave climate on the inlet morphology are investigated with the aid of process-based state-of-the-art numerical models. Seasonal and episodic b

  3. Dynamics of Tropical Waves and Monsoons.

    Science.gov (United States)

    1981-04-01

    large-scale rainband in the Baum season. J Vet’,’,r 1o,. large-scale baroclinic forcing. Japon . 52. 448-451. -72 953 MONTHLY % EATHInR REVIEV% V L l 08...monsoon circulation large orographic structures such as the Himalavas. tan importance emanating from the social -economi- and 4) the perturbation of

  4. A new index to describe the tropical Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    XU ZhongFeng; FU CongBin; QIAN YongFu

    2009-01-01

    We define a new monsoon index (MV) as the product of relative vorticity and equivalent potential tem-perature using the long-term NCEP/NCAR reanalysis data.The MV index provides new insights into the intraseasonal and interannual variabilities of the broad-scale tropical Asian summer monsoon (TASM),including the South Asian summer monsoon (SASM) and the South China Sea summer monsoon (SCSSM).On the intraseasonal timescale,the pentad-to-pentad MV index bears a close relationship to the broad-scale rainfall in the TASM regions.Among 29 summers from 1979 to 2007,in 23/27 summers the correlation coefficients are higher than 0.7 in the SASM/SCSSM region.However,in fewer than 9 summers,the correlations between the broad-scale rainfall and the existing circulation indices are higher than 0.7.On the interannual timescale,various existing SASM circulation indices are moderately or well correlated with all-India summer monsoon rainfall,whereas their correlations with broad-scale SASM rainfall are weak.In contrast,the summer mean MV index correlates well with the broad-scale SASM rainfall and all-India summer monsoon rainfall (correlation of 0.73 and 0.65,respectively).In the SCSSM region,the summer mean MV index also bears a close relationship to the SCSSM rainfall,al-though some discrepancies exist during certain years.The composite strong TASM shows a stronger low-tropospheric low pressure in association with the enhanced westerly winds and moisture transfer,stronger convection,and upper-tropospheric easterly winds,which indicate that the MV index can well capture the features of TASM.

  5. A new index to describe the tropical Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We define a new monsoon index (MV) as the product of relative vorticity and equivalent potential temperature using the long-term NCEP/NCAR reanalysis data. The MV index provides new insights into the intraseasonal and interannual variabilities of the broad-scale tropical Asian summer monsoon (TASM), including the South Asian summer monsoon (SASM) and the South China Sea summer monsoon (SCSSM). On the intraseasonal timescale, the pentad-to-pentad MV index bears a close relationship to the broad-scale rainfall in the TASM regions. Among 29 summers from 1979 to 2007, in 23/27 summers the correlation coefficients are higher than 0.7 in the SASM/SCSSM region. However, in fewer than 9 summers, the correlations between the broad-scale rainfall and the existing circulation indices are higher than 0.7. On the interannual timescale, various existing SASM circulation indices are moderately or well correlated with all-India summer monsoon rainfall, whereas their correlations with broad-scale SASM rainfall are weak. In contrast, the summer mean MV index correlates well with the broad-scale SASM rainfall and all-India summer monsoon rainfall (correlation of 0.73 and 0.65, respectively). In the SCSSM region, the summer mean MV index also bears a close relationship to the SCSSM rainfall, although some discrepancies exist during certain years. The composite strong TASM shows a stronger low-tropospheric low pressure in association with the enhanced westerly winds and moisture transfer, stronger convection, and upper-tropospheric easterly winds, which indicate that the MV index can well capture the features of TASM.

  6. Temporal variation of diatom benthic propagules in a monsoon-influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A

    Temporal variations in the diatom benthic propagule (DBP) community and their role in the phytoplankton community in a monsoon-affected tropical estuary, Zuari estuary, Goa (India) are presented. The DBP from the sediments was enumerated using...

  7. Statistically related coupled modes of South Asian summer monsoon interannual variability in the tropics

    Science.gov (United States)

    Syed, Faisal S.; Kucharski, Fred

    2016-04-01

    Statistically coupled patterns of South Asian Summer Monsoon (SASM) interannual variability in the tropical oceans have been explored.Maximum covariance analysis (MCA) performed between global tropical sea surface temperature (SST) and SASM precipitation shows that El-Nino southern oscillation (ENSO) is the leading mode in the tropics, whereas the eastern pole of the Indian Ocean Dipole contributes to the second global mode and is the leading mode in the Indian Ocean. South tropical Atlantic SST variability is contributing to the second and third mode in the tropics and is the leading mode in the tropical Atlantic MCA coupled with SASM. The physical mechamism of the south tropical Atlantic-SASM teleconnection is analysed in more details.

  8. Coherent tropical-subtropical Holocene see-saw moisture patterns in the Eastern Hemisphere monsoon systems

    Science.gov (United States)

    Wang, Yongbo; Bekeschus, Benjamin; Handorf, Dörthe; Liu, Xingqi; Dallmeyer, Anne; Herzschuh, Ulrike

    2017-08-01

    The concept of a Global Monsoon (GM) has been proposed based on modern precipitation observations, but its application over a wide range of temporal scales is still under debate. Here, we present a synthesis of 268 continental paleo-moisture records collected from monsoonal systems in the Eastern Hemisphere, including the East Asian Monsoon (EAsM), the Indian Monsoon (IM), the East African Monsoon (EAfM), and the Australian Monsoon (AuM) covering the last 18,000 years. The overall pattern of late Glacial to Holocene moisture change is consistent with those inferred from ice cores and marine records. With respect to the last 10,000 years (10 ka), i.e. a period that has high spatial coverage, a Fuzzy c-Means clustering analysis of the moisture index records together with ;Xie-Beni; index reveals four clusters of our data set. The paleoclimatic meaning of each cluster is interpreted considering the temporal evolution and spatial distribution patterns. The major trend in the tropical AuM, EAfM, and IM regions is a gradual decrease in moisture conditions since the early Holocene. Moisture changes in the EAsM regions show maximum index values between 8 and 6 ka. However, records located in nearby subtropical areas, i.e. in regions not influenced by the intertropical convergence zone, show an opposite trend compared to the tropical monsoon regions (AuM, EAfM and IM), i.e. a gradual increase. Analyses of modern meteorological data reveal the same spatial patterns as in the paleoclimate records such that, in times of overall monsoon strengthening, lower precipitation rates are observed in the nearby subtropical areas. We explain this pattern as the effect of a strong monsoon circulation suppressing air uplift in nearby subtropical areas, and hence hindering precipitation. By analogy to the modern system, this would mean that during the early Holocene strong monsoon period, the intensified ascending airflows within the monsoon domains led to relatively weaker ascending or

  9. Intra- and inter-seasonal variability of nutrients in a tropical monsoonal estuary (Zuari, India).

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, S.S.; Sardessai, S.; Muthukumar, C.; Mangalaa, K.R.; Sundar, D.; Parab, S.G.; DileepKumar, M.

    A study was conducted to understand the intra- and inter-seasonal variability of dissolved oxygen and nutrients in a tropical monsoon estuary (Zuari in Goa, India). We adopted a dual sampling approach with (a) daily or alternate day sampling at a...

  10. A meridional dipole in premonsoon Bay of Bengal tropical cyclone activity induced by ENSO: TROPICAL CYCLONES, MONSOON AND ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik [Marine Sciences Laboratory, Pacific Northwest National Laboratory, Seattle Washington USA; Leung, L. Ruby [Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland Washington USA; Lu, Jian [Atmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland Washington USA; Foltz, Gregory R. [Physical Oceanography Division, Atlantic Oceanographic and Meteorological Laboratory, Miami Florida USA

    2016-06-27

    Analysis of Bay of Bengal tropical cyclone (TC) track data for the month of May during 1980-2013 reveals a meridional dipole in TC intensification: TC intensification rates increased in the northern Bay and decreased in the southern Bay. The dipole was driven by an increase in low-level vorticity and atmospheric humidity in the northern Bay, making the environment more favorable for TC intensification, and enhanced vertical wind shear in the southern Bay, tending to reduce TC development. These environmental changes were associated with a strengthening of the monsoon circulation for the month of May, driven by a La Nin˜a-like shift in tropical Pacific SSTs andassociated tropical wave dynamics. Analysis of a suite of climate models fromthe CMIP5 archive for the 150-year historical period shows that most models correctly reproduce the link between ENSO and Bay of Bengal TC activity through the monsoon at interannual timescales. Under the RCP 8.5 scenario the same CMIP5 models produce an El Nin˜o like warming trend in the equatorial Pacific, tending to weaken the monsoon circulation. These results suggest

  11. Lag influences of winter circulation conditions in the tropical western Pacific on South Asian summer monsoon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By means of monthly mean NCEP/NCAR data analyses, this note investigates the lag influences of winter circulation conditions in the tropical western Pacific on South Asian summer monsoon through the methods of composite, correlation and statistical confident test. The results indicate clearly that winter climate variations in the equatorial western Pacific would produce significant influences on the following South Asian summer monsoon, and with the lapse of time the lag influences show clearly moving northward and extending westward features. When winter positive (negative) sea level pressure anomalies occupy the equatorial western Pacific, there is an anticyclonic (cyclonic) circulation anomaly appearing in the northwestern Pacific. With the lapse of time, the anticyclonic (cyclonic) circulation anomaly gradually moves to northeast, and its axis in the west-east directions also stretches, therefore, easterly (westerly) anomalies in the south part of the anticyclonic (cyclonic) circulation anomaly continuously expand westward to the peninsula of India. Undoubtedly, the South Asian summer monsoon is weak (strong)

  12. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment.

    Science.gov (United States)

    Khandeparker, Lidita; Anil, Arga Chandrashekar; Naik, Sneha D; Gaonkar, Chetan C

    2015-07-15

    Changing climatic conditions have influenced the monsoon pattern in recent years. Variations in bacterial population in one such tropical environment were observed everyday over two years and point out intra and inter annual changes driven by the intensity of rainfall. Vibrio spp. were abundant during the monsoon and so were faecal coliforms. Vibrio alginolyticus were negatively influenced by nitrate, whereas, silicate and rainfall positively influenced Vibrio parahaemolyticus numbers. It is also known that pathogenic bacteria are associated with the plankton. Changes in the abundance of plankton, which are governed mainly by environmental changes, could be responsible for variation in pathogenic bacterial abundance during monsoon, other than the land runoff due to precipitation and influx of fresh water.

  13. Effects of Arctic geoengineering on precipitation in the tropical monsoon regions

    Science.gov (United States)

    Nalam, Aditya; Bala, Govindasamy; Modak, Angshuman

    2017-07-01

    Arctic geoengineering wherein sunlight absorption is reduced only in the Arctic has been suggested as a remedial measure to counteract the on-going rapid climate change in the Arctic. Several modeling studies have shown that Arctic geoengineering can minimize Arctic warming but will shift the Inter-tropical Convergence Zone (ITCZ) southward, unless offset by comparable geoengineering in the Southern Hemisphere. In this study, we investigate and quantify the implications of this ITCZ shift due to Arctic geoengineering for the global monsoon regions using the Community Atmosphere Model version 4 coupled to a slab ocean model. A doubling of CO2 from pre-industrial levels leads to a warming of 6 K in the Arctic region and precipitation in the monsoon regions increases by up to 15%. In our Arctic geoengineering simulation which illustrates a plausible latitudinal distribution of the reduction in sunlight, an addition of sulfate aerosols (11 Mt) in the Arctic stratosphere nearly offsets the Arctic warming due to CO2 doubling but this shifts the ITCZ southward by 1.5° relative to the pre-industrial climate. The combined effect from this shift and the residual CO2-induced climate change in the tropics is a decrease/increase in annual mean precipitation in the Northern Hemisphere/Southern Hemisphere monsoon regions by up to -12/+17%. Polar geoengineering where sulfate aerosols are prescribed in both the Arctic (10 Mt) and Antarctic (8 Mt) nearly offsets the ITCZ shift due to Arctic geoengineering, but there is still a residual precipitation increase (up to 7%) in most monsoon regions associated with the residual CO2 induced warming in the tropics. The ITCZ shift due to our Global geoengineering simulation, where aerosols (20 Mt) are prescribed uniformly around the globe, is much smaller and the precipitation changes in most monsoon regions are within ±2% as the residual CO2-induced warming in the tropics is also much less than in Arctic and Polar geoengineering. Further

  14. Linkages of Remote Sea Surface Temperatures and Atlantic Tropical Cyclone Activity Mediated by the African Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Taraphdar, Sourav; Leung, Lai-Yung R.; Hagos, Samson M.

    2015-01-28

    Warm sea surface temperatures (SSTs) in North Atlantic and Mediterranean (NAMED) can influence tropical cyclone (TC) activity in the tropical East Atlantic by modulating summer convection over western Africa. Analysis of 30 years of observations show that the NAMED SST is linked to a strengthening of the Saharan heat low and enhancement of moisture and moist static energy in the lower atmosphere over West Africa, which favors a northward displacement of the monsoonal front. These processes also lead to a northward shift of the African easterly jet that introduces an anomalous positive vorticity from western Africa to the main development region (50W–20E; 10N–20N) of Atlantic TC. By modulating multiple processes associated with the African monsoon, this study demonstrates that warm NAMED SST explains 8% of interannual variability of Atlantic TC frequency. Thus NAME SST may provide useful predictability for Atlantic TC activity on seasonal-to-interannual time scale.

  15. Settlement and recruitment of the barnacle Balanus amphitrite from a tropical environment influenced by monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Gaonkar, C.A.; Anil, A.C

    variations, tropical environment, monsoons ____________________________________________________________________ Corresponding author: A.C. Anil E-mail: acanil@nio.org 2    INTRODUCTION In barnacles, settlement is the culmination of cyprid metamorphosis... of Scientific and Industrial Research (CSIR), India. This is a NIO contribution ####. REFERENCES Anil A.C. (1986) Studies on marine biofouling in the Zuari estuary (Goa) west coast of India. Ph.D. thesis, Karnatak University, India. Anil A.C., Chiba K...

  16. Viral-Induced Mortality of Prokaryotes in a Tropical Monsoonal Estuary

    Science.gov (United States)

    Jasna, Vijayan; Parvathi, Ammini; Pradeep Ram, Angia Sriram; Balachandran, Kizhekkapat K.; Madhu, Nikathil V.; Nair, Maheswari; Jyothibabu, Retnamma; Jayalakshmy, K. Veeraraghava; Revichandran, Chenicherry; Sime-Ngando, Télesphore

    2017-01-01

    Viruses are recognized as the most abundant and dynamic biological entities in the marine and estuarine environment. However, studies on the dynamics and activity of viruses in transient estuarine systems are limited. This study examines temporal and spatial variations in viral abundance (VA) and viral activity across the salinity gradient in a monsoon-driven tropical estuarine system (Cochin estuary, CE) along the southwest coast of India. Water samples were collected from five stations (with different hydrological settings) every 3 h for 24 h period during two distinct seasons, namely pre-monsoon (PRM, dry season) and monsoon (MON, wet season). Time series measurements were made for a spring and neap tidal cycle for each season at all the stations. The results showed marked spatial and seasonal variability with relatively low diel and tidal variations in VA and lytic activity. Viral activity was found to be distinct in five stations studied with the maximum activity in the mesohaline regions (salinity <20) of the estuary. This region was characterized by high VA, lytic infection and viral production, accompanied by low (BGE) and high bacterial respiration. Based on viral lytic production, lytic viruses were found to be responsible for the release of ca. 72.9 ± 58.5 μg C L−1d−1 of bacterial carbon. The contribution of the viral shunt to the dissolved organic carbon (DOC) pool was higher during the dry season (PRM) than MON. Statistical analysis confirmed a significant association of viruses with the host availability and salinity. This work demonstrates the spatiotemporal distribution of viruses in a tropical estuarine ecosystem and highlights their role in microbial mortality across different salinity gradients. This study forms the first report on viral processes from a monsoon-driven tropical estuarine ecosystem. PMID:28588564

  17. Tidal Influence on the Diel Vertical Migration Pattern of Zooplankton in a Tropical Monsoonal Estuary

    KAUST Repository

    Vineetha, G.

    2015-04-03

    Monsoonal estuaries, located along the coastline of the Indian subcontinent, differ from other estuaries by their time dependence on the salinity characteristics. Effective sustenance and retention of the mesozooplankton community in the estuarine habitats is often determined by their dominant behavioral patterns: diel vertical migration (DVM) and tidal vertical migration (TVM). The modes of these endogenous rhythms often vary among estuaries based on the river runoff and tidal characteristics. The present study is a pioneering attempt to depict the vertical migration pattern of zooplankton along a diel and tidal scale in a tropical, microtidal, monsoonal estuary. We observed that in spite of the prominent asymmetry in the magnitude of the river runoff between the seasons, most of the zooplankton groups exhibited strong DVM, with a clear increase in biomass and abundance in surface waters during night. The peak increase in biomass and abundance at night always synchronized with the slack periods in the tidal cycles, which differed from the general concepts of downward migration during ebb tide and upward migration during flood tide in estuarine systems. The weak currents during the slack period might have favored the effective vertical migration of the mesozooplankton community in this monsoonal estuarine system. © 2015 Society of Wetland Scientists

  18. Wind profiler observations of a monsoon low-level jet over a tropical Indian station

    Directory of Open Access Journals (Sweden)

    M. C. R. Kalapureddy

    2007-11-01

    Full Text Available Three-year high-resolution wind observations of the wind profiler have been utilized to characterize the diurnal and seasonal features of the monsoon Low-Level Jet (LLJ over a tropical station, Gadanki (13.5° N, 79.2° E, with a focus on the diurnal variability of low-level winds. The Boreal summer monsoon winds show a conspicuously strong westerly LLJ with average wind speed exceeding 20 m s−1. The L-band wind profiler measurements have shown an advantage of better height and time resolutions over the conventional radiosonde method for diurnal wind measurements. An interesting diurnal oscillation of LLJ core has been observed. It is varying in the height range of 1.8±0.6 km with the maximum and minimum intensity noticed during the early morning and afternoon hours, respectively. The jet core (wind maxima height is observed to coincide with the inversion height. Strong wind shears are normally located beneath the LLJ core. The sole wind profiler observations are capable of identifying the monsoon phases, such as onset, break and active spells, etc. The mutual influence between the LLJ and the boundary layer has been discussed. One notices that the observed LLJ diurnal structures depend on the local convective activity, wind shears and turbulence activity associated with boundary layer winds. The day-to-day change in the LLJ structure depends on the latitudinal position of the LLJ core.

  19. Simulations of tropical cyclogenesis associated with different monsoon trough patterns over the western North Pacific

    Science.gov (United States)

    Cao, Xi; Chen, Guanghua; Li, Tim; Ren, Fumin

    2016-08-01

    The numerical simulations of tropical cyclone (TC) genesis during the strong and weak monsoon trough (MT) years, in which meteorological fields are composited, are conducted using advanced research weather research and forecasting model. The simulation results show that both tropical disturbances tend to form in the east of the western North Pacific (WNP) near 160°-170°E during the strong and weak MT years. During the strong MT years, there is a faster formation rate of TC. The eastward-extending MT gradually evolves into a closed monsoon gyre over the WNP during the early stage. The following rapid development of TC can be attributed to the enhanced lower-level southwesterly flows induced by the cross-equatorial currents, enhanced easterly winds, and weak vertical wind shear, which provide a favorable environment for TC genesis. The strengthened large-scale circulation spawns abundant convective updrafts resulting in the aggregation of cyclonic vorticity. In contrast, during the weak MT years, the westward-retreated MT gradually evolves into expansive easterly winds over the WNP. Two episodes of convective updrafts are triggered with a longer interval, and thus lead to a slower TC genesis compared with that during the strong MT years.

  20. Tropical-Extratropical Interactions and Intrasasonal Oscillations in the Indian Monsoon System in a Warmer Planet

    Science.gov (United States)

    Carvalho, L. V.; Jones, C.; Cannon, F.; Norris, J.

    2015-12-01

    The India summer monsoon (ISM) experiences long periods of wet and dry conditions frequently associated with floods and long dry spells. These events are largely governed by northward propagating boreal summer monsoon intraseasonal oscillations (MISO). Here we investigate intraseasonal variability of the ISM in the climate of the 20th century using the Climate Forecast System Reanalysis (1979-2013) and examine future scenarios of climate change using models of the Coupled Model Intercomparison Project Phase-5 project. ISM is characterized with a large-scale index obtained by performing combined EOF analysis of precipitation, low level circulation, specific humidity and temperature. This index realistically defines the monsoon's onset and withdrawal, is well correlated with seasonal precipitation in India and exhibits variance on intraseasonal timescales that are related to MISO and extreme wet and dry conditions in India. With similar approach we investigate the skill of the CMIP5 models in realistically simulating MISO in the 'historic' run (1951-2005) and examine projected changes in the amplitude and persistence these events in the high-emission representative concentration pathway 8.5 (RCP8.5) (2006-2100). MISO is well characterized in CMIP5 models that indicate significant increase in the intensity and frequency of extremely dry and wet conditions affecting India by 2050. We show that the main mechanism driving MISO in CMIP5 models are linked to the propagation of extratropical wave trains and interactions with the tropics. In a warmer planet, the increase in polar temperatures weakens the tropical-extratropical temperature gradient and decreases the intensity of the upper tropospheric jet. These changes in the jet and in the baroclinic structure of the atmosphere result in enhanced extratropical wave activity and more extreme events. We use a wave tracking algorithm to demonstrate these differences and explore physical and dynamical mechanisms underlying

  1. LAND-SEA THERMAL CONTRAST OVER SOUTH ASIA AND ITS INFLUENCES ON TROPICAL MONSOON CIRCULATION

    Institute of Scientific and Technical Information of China (English)

    WANG Tong-mei; WU Guo-xiong

    2008-01-01

    Based on the NCEP/NCAR reanalysis data, the thermodynamic features and the effect of spatially nonuniform heating on the circulation of the tropical monsoon area in South Asia due to the land- sea distribution have been analyzed, The influences of the subcontinent topography on the Asian tropical circulation are mostly characterized by its thermodynamic effects on low-level circulation, of which the strongest is observed in winter and spring but the relatively weak in summer, followed by the weakest in autumn. The thermodynamic difference between the lndo china Peninsula and Indian Peninsula and its influence on the circulation are regulated by the Tibetan Plateau. During the transitional period from spring to early summer, the Tibetan Plateau thermal forcing generates a large-scale cyclonic circulation in low latitudes in the lower troposphere. As a result, the southerlies/northerlies are increased to the east/west of the Bay of Bengal, Therefore latent heating of the atmosphere is strengthened and the surface sensible heating over the Indochina Peninsula is weakened. On the other hand the surface sensible heating over the Indian Peninsula is increased. It is shown that heating with various scales and different kinds can affect the tropical atmosphere in different ways, which lead to the unique characteristics of the tropical Asian circulation.

  2. Sensitivity of Asian Summer Monsoon precipitation to tropical sea surface temperature anomalies

    Science.gov (United States)

    Fan, Lei; Shin, Sang-Ik; Liu, Zhengyu; Liu, Qinyu

    2016-10-01

    Sensitivity of Asian Summer Monsoon (ASM) precipitation to tropical sea surface temperature (SST) anomalies was estimated from ensemble simulations of two atmospheric general circulation models (GCMs) with an array of idealized SST anomaly patch prescriptions. Consistent sensitivity patterns were obtained in both models. Sensitivity of Indian Summer Monsoon (ISM) precipitation to cooling in the East Pacific was much weaker than to that of the same magnitude in the local Indian-western Pacific, over which a meridional pattern of warm north and cold south was most instrumental in increasing ISM precipitation. This indicates that the strength of the ENSO-ISM relationship is due to the large-amplitude East Pacific SST anomaly rather than its sensitivity value. Sensitivity of the East Asian Summer Monsoon (EASM), represented by the Yangtze-Huai River Valley (YHRV, also known as the meiyu-baiu front) precipitation, is non-uniform across the Indian Ocean basin. YHRV precipitation was most sensitive to warm SST anomalies over the northern Indian Ocean and the South China Sea, whereas the southern Indian Ocean had the opposite effect. This implies that the strengthened EASM in the post-Niño year is attributable mainly to warming of the northern Indian Ocean. The corresponding physical links between these SST anomaly patterns and ASM precipitation were also discussed. The relevance of sensitivity maps was justified by the high correlation between sensitivity-map-based reconstructed time series using observed SST anomaly patterns and actual precipitation series derived from ensemble-mean atmospheric GCM runs with time-varying global SST prescriptions during the same period. The correlation results indicated that sensitivity maps derived from patch experiments were far superior to those based on regression methods.

  3. Response of Groundwater table to Eucalyptus Plantations in a Tropical Monsoon Climate, Lake Tana Basin, Ethiopia

    Science.gov (United States)

    Enku, Temesgen; Melesse, Assefa; Ayana, Essaya; Tilahun, Seifu; Abate, Mengiste; Steenhuis, Tammo

    2017-04-01

    Given the increasing demand for water resources and the need for better management of regional water resources, it is essential to quantify the groundwater use by phreatophytes in tropical monsoon climates. Phreatophytes, like eucalyptus plantations are reported to be a groundwater sink and it could significantly affect the regional groundwater resources. In our study, the consumptive groundwater use of a closed eucalyptus plantation was calculated based on the diurnal water table fluctuations observed in monitoring wells for two dry monsoon phases in the Fogera plain, northwest of Ethiopia. Automated recorders were installed to monitor the hourly groundwater table fluctuations. The groundwater table fluctuates from maximum at early in the morning to minimum in the evening daily and generally declined linearly during the dry phase averaging 3.1 cm/day during the two year period under the eucalyptus plantations. The hourly eucalypts transpiration rate over the daylight hours follows the daily solar irradiance curve for clear sky days. It is minimal during the night and reaches maximum of 1.65mm/hour at mid-day. The evapotranspiration from the groundwater by eucalyptus plantations during the dry phases was estimated at about 2300mm from October 1 to 31 May, in 2015 compared to about 900mm without eucalyptus trees. The average daily evapotranspiration was 9.6mm. This is almost twice of the reference evapotranspiration in the area and 2.5 times the actual rate under fallow agricultural fields. Thus, water resources planning and management in the region needs to consider the effect of eucalyptus plantations on the availability of groundwater resources in the highlands of Ethiopia. Key words: Eucalyptus, Evapotranspiration, Groundwater, Ethiopia, Lake Tana

  4. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    Science.gov (United States)

    Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass

  5. THE INFLUENCE OF SOUTH CHINA SEA SUMMER MONSOON ON THE RAINSTORM ASSOCIATED WITH THE LANDFALLING STRONG TROPICAL STORM BILIS (0604)

    Institute of Scientific and Technical Information of China (English)

    LIU Chun-xia; JIANG Xiao-ping; FEI Zhi-bin; ZHAO Si-nan; LUO Wan-jun

    2008-01-01

    Bilis (0604) is a strong tropical storm that sustained over land for a long time, bringing torrential rain. With conventional observation data, radar data and infrared satellite imagery, Mesoscale Convective Systems (MCSs) are found to form and develop successively, which cause torrential rain. Then numerical simulation is conducted using MM5 to simulate a 66-h post-landfall process. The simulated distribution and intensity of precipitation match the observation well. With the simulated result, the characteristics and process of MCS development are analyzed with the finding that the convergence of the tropical depression and South China Sea (SCS) summer monsoon over The south of China causes the formation of a mesoscale vortex, mesoscale convergence center and mesoscale convergence line, which are favorable to the development and sustaining of the MCSs. A sensitivity experiment indicates that the SCS summer monsoon transports unstable energy and water vapor continuously, which is of vital importance to rainstorms.

  6. Doppler SODAR observations of the temperature structure parameter during monsoon season over a tropical rural station, Gadanki

    Indian Academy of Sciences (India)

    M Shravan Kumar; V K Anandan; Amit Kesarkar; P Narasimha Reddy

    2011-02-01

    Doppler SODAR (Sound Detection and Ranging) measurements over a tropical Indian station at National Atmospheric Research Laboratory (NARL), Gadanki (13.5°N, 79.2°E) during two consecutive monsoon seasons, 2007 and 2008, are investigated to study the influence of mechanically generated turbulence on temperature structure parameter (C$^{2}_{T}$) in the convective boundary layer. Increase in the C$^{2}_{T}$ is observed after the arrival of monsoon for both seasons. Contribution of vertical wind shear in horizontal wind component to C$^{2}_{T}$ due to zonal winds is responsible for the increase observed in the temperature structure parameter which is inferred from the results obtained. C$^{2}_{T}$ is found to be increased by an order of 2 in both the lower and upper altitudes, respectively. Magnitude of wind speed is reported to be doubled with the arrival of monsoon. It is also observed that, southwest monsoon wind modulates the day-to-day variations of wind pattern over this station during the onset phase of monsoon season. The lower variability observed at lower height is attributed to the complex topography surrounding this region.

  7. Stratospheric variability of wave activity and parameters in equatorial coastal and tropical sites during the West African monsoon

    Science.gov (United States)

    Kafando, P.; Chane-Ming, F.; Petitdidier, M.

    2016-12-01

    Recent numerical studies in stratospheric dynamics and its variability as well as climate, have highlighted the need of more observational analyses to improve simulation of the West African monsoon (WAM). In this paper, activity and spectral characteristics of short-scale vertical waves (wavelengths tropical lower stratosphere during the WAM. A first detailed description of such waves over West Africa is derived from high-resolution vertical profiles of temperature and horizontal wind obtained during Intensive Observation Period of the African Monsoon Multidisciplinary Analyses (AMMA) Campaign 2006. Monthly variation of wave energy density is revealed to trace the progression of the inter-tropical convergence zone (ITCZ) over West Africa. Mesoscale inertia gravity-waves structures with vertical and horizontal wavelengths of 1.5-2.5 and 400-1100 km respectively and intrinsic frequencies of 1.1-2.2 f or periods tropical LS with intense activity during July and August when the WAM is installed over the tropical West Africa. Over equatorial region, gravity waves with intrinsic frequencies of 1.4-4 f or periods tropical stations.

  8. Strong carbon sink of monsoon tropical seasonal forest in Southern Vietnam

    Science.gov (United States)

    Deshcherevskaya, Olga; Anichkin, Alexandr; Avilov, Vitaly; Duy Dinh, Ba; Luu Do, Phong; Huan Tran, Cong; Kurbatova, Julia

    2014-05-01

    Comparison between anthropogenic emission of carbon dioxide and atmospheric carbon pool change displays that only half of emitted CO2 remains in air, leaving so-called 'missing sink' of carbon. Terrestrial biosphere and ocean accumulate each about a half of this value (Gifford, 1994). Forest biomes play the decisive role in 'missing sink' because of high primary production flux and large carbon pool. Almost all the sink belongs to boreal forests, because warming and wetting coupled with increasing CO2 concentration and N deposition gives more favorable conditions for boreal ecosystems. On the contrary, tropical climate changes effect on forests is not obvious, probably cause more drought conditions; tropical forests suffer from 1.2 % per year area reduction and disturbance. Whether primary tropical forests act as carbon sink is still unclear. Biomass inventories at 146 forest plots across all the tropics in 1987-1997 revealed low carbon sink in humid forests biomass of 49 (29-66; 95% C.I.) g C m-2 year-1 on average (Malhi, 2010). Estimates for undisturbed African forests are close to global (Ciais et al., 2008). Eddy covariance (EC) observations with weak-turbulence correction in Amazonia reveal near-zero or small negative (i.e. sink) balance (Clark, 2004). Three EC sites in SE Asia primary forests give near-zero balance again (Saigusa et al., 2008; Kosugi et al., 2012). There are two main groups of explanations of moderate tropical carbon sink: (a) recovering of large-disturbance in the past or (b) response to current atmospheric changes: increase of CO2 concentration and/or climate change. So, strong carbon accumulation is not common for primary tropical forests. In this context sink of 402 g C m-2 in 2012 at EC station of Nam Cat Tien (NCT), Southern Vietnam (N 11°27', E 107°24', 134 m a.s.l.) in primary monsoon tropical forest looks questionably. EC instrument set at NCT consists of CSAT3 sonic anemometer and LI-7500A open-path gas analyzer. All the standard

  9. Remote response of the East Asian winter monsoon to tropical forcing related to El Niño-Southern Oscillation

    Science.gov (United States)

    Sakai, Kumi; Kawamura, Ryuichi

    2009-03-01

    The mechanism of the East Asian winter monsoon variability in response to El Niño-Southern Oscillation (ENSO)-related tropical forcing is investigated using Japanese long-term reanalysis project data, additionally aided by the Japan Meteorological Agency climate data assimilation system. There are at least two different responses, zonally symmetric and asymmetric, of the Asian jet over South Asia to the ENSO-related tropical convective forcing during the Northern Hemisphere winter. The zonally symmetric response, induced by zonally extended anomalous convection from the Philippine Sea through southern India and Sri Lanka, is pronounced at the mature phase of ENSO. The zonally asymmetric response is intimately associated with anomalous convection localized in the vicinity of the Philippine and South China seas, accompanied by an anomalous Walker circulation cell between the Maritime Continent and tropical Indian Ocean. When this asymmetric response is prominent, ENSO-related anomalous convection can give rise to a change in the East Asian winter monsoon system through stationary Rossby wave propagation along the South Asian waveguide. The North Atlantic Oscillation (NAO)-related extratropical forcing is also a crucial factor and contributes not only to the downstream development of subpolar teleconnections across northern Eurasia but also to the reinforcement of the zonally asymmetric pattern of the Asian jet over South Asia, resulting in a significant effect on the East Asian winter monsoon circulation. A combination of the ENSO- and NAO-related forcing plays a vital role in triggering the occurrence of extraordinary anomalous monsoon circulations, such as extremely heavy snowfall in the 2005/2006 winter in Japan.

  10. Fine-scale responses of phytoplankton to freshwater influx in a tropical monsoonal estuary following the onset of southwest monsoon

    Indian Academy of Sciences (India)

    Suraksha M Pednekar; S G Prabhu Matondkar; Helga Do R Gomes; Joaquim I Goes; Sushma Parab; Vijaya Kerkar

    2011-06-01

    In May of 2007, a study was initiated by the National Institute of Oceanography (NIO), Goa, India, to investigate the influence of monsoonal rainfall on hydrographic conditions in the Mandovi River of India. The study was undertaken at a location ∼2 km upstream of the mouth of this estuary. During the premonsoon (PreM) in May, when circulation in the estuary was dominated by tidal activity, phytoplankton communities in the high saline (35–37 psu) waters at the study site were largely made up of the coastal neritic species Fragilaria oceanica, Ditylum brightwellii and Trichodesmium erythraeum. During the later part of the intermonsoon (InterM) phase, an abrupt decline in salinity led to a surge in phytoplankton biomass (Chlorophyll ∼14 mg m−3), of a population that was dominated by Thalassiosira eccentricus. As the southwest monsoon (SWM) progressed and the estuary freshened salinity and Chlorophyll (Chl ) concentrations decreased during the MoN, Skeletonema costatum established itself as the dominant form. Despite the low biomass (Chl > 2 mg m−3), the phytoplankton community of the MoN was the most diverse of the entire study. During the postmonsoon (PostM), the increase in salinity was marked by a surge in dinoflagellate populations comprising of Ceratium furca, Akashiwo sanguinea, and Pyrophacus horologium.

  11. A THEORETICAL STUDY ON THE MULTIPLE EQUILIBRIA OF TROPICAL ATMOSPHERE AND THEIR RELATION TO THE ONSET OF THE SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    ZHAO Nan; DING Yi-hui; Masaaki Takahashi; SHEN Xin-yong

    2006-01-01

    Multiple equilibria and their stability in tropical atmosphere are investigated through β -plane barotropic models with consideration of heating and dissipation. We have derived the solutions of the model equations corresponding to the multiple equilibria or the steady flows first, and then establish the criteria for the stability of steady flow by use of the Liapunov direct Method. When these criteria are applied to the solutions of equilibria obtained, stable flows, which are closely related to the different patterns of quasi-stationary circulation in the tropical region, are found. The configurations of these stable flows and the shift between two of them as season changes provide quite reasonable explanations to many fundamental problems of tropical circulation features such as the catastrophe mechanism of the onset and the break-active cycle of the Asian summer monsoon. It follows that the onset or the abrupt transition of the Asian summer monsoon could be attributed to the multiple equilibrium property of the tropical circulation resulted from the advective nonlinearity, which provide another explanation among others.

  12. Influence of Summer Monsoon on Asymmetric Bimodal Pattern of Tropical Cyclogenesis Frequency over the Bay of Bengal

    Institute of Scientific and Technical Information of China (English)

    XING Wen; HUANG Fei

    2013-01-01

    influence of summer monsoon on tropical cyclone (TC) genesis over the Bay of Bengal (BoB) is explored using an empirical genesis potential (GP) index.The annual cycle of cyclogenesis frequency over the BoB shows an asymmetric bimodal pattern with the maximum genesis number appearing in late October and the second largest in early May.The two peaks correspond to the withdrawal and onset of the BoB summer monsoon,respectively.The semimonthly GP index calculated without TC days over the BoB is consistent with TC genesis frequency,indicating that the index captures the monsoon-induced changes in the environment that are responsible for the seasonal variation of TC genesis frequency.Of the four environmental variables (i.e.,low-level vorticity,mid-level relative humidity,potential intensity,and vertical wind shear) that enter into the GP index,the potential intensity makes the largest contribution to the bimodal distribution,followed by vertical wind shear due to small wind speed during the summer monsoon onset and withdrawal.The difference in TC genesis frequency between autumn and late spring is mainly owing to the relative humidity difference because a divergence (convergence) of horizontal moisture flux associated with cold dry northerlies (warm wet westerlies) dominates the BoB in late spring (autumn).

  13. Predictability of Indian Monsoon Circulation with High Resolution ECMWF Model in the Perspective of Tropical Forecast During the Tropical Convection Year 2008

    Science.gov (United States)

    De, S.; Sahai, A. K.

    2013-12-01

    To address some of the issues of project Year of Tropical Convection (YOTC) and the project ATHENA as ongoing international activities, an endeavor has been made for the first time to study the predictability of Indian summer monsoon in the backdrop of tropical predictability using 850 hPa atmospheric circulations with the high resolution (T1279) ECMWF model during the boreal summer of 2008 as one of the focus years of YOTC. The major findings obtained from the statistical forecast have been substantiated by the dynamical prediction in terms of the systematic error energy, its growth rate and the attribution of the dominant nonlinear dynamical processes to error growth. The systematic error energy of T1279 (16 km resolution) ECMWF model are generated in African landmass, India and its adjoining oceanic region, in near equatorial west Pacific and around the Madagascar region where the root mean square errors are observed and the zonal wind anomaly shows poor forecast skill. As far as the inadequate predictability of Indian summer monsoon by T1279 ECMWF model (revealed from the results of project ATHENA) is concerned, the systematic error energy and the error growth over Arabian Sea, in the eastern and western India due to the nonlinear convergence and divergence of error flux along with the erroneous Mascarene high may possibly be the determining factors for not showing any discernable improvement in Indian monsoon during the medium range forecast up to 240 h. This work suggests that the higher resolution of ECMWF model may not necessarily lead to the better forecast of Indian monsoon circulations during 2008 unless a methodology can be devised to isolate the errors due to the nonlinear processes that are inherent within the system.

  14. Deglaciation in the tropical Indian Ocean driven by interplay between the regional monsoon and global teleconnections

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Lea, D.W.; Nigam, R.; Mackensen, A.; Naik, Dinesh K.

    by prominent weak monsoon intervals (WMI), lasting a few thousand years. Deglacial WMIs are interpreted as the result of cold temperature anomalies generated by sea ice feedbacks in the North Atlantic, most prominently during Heinrich Events. Recent modeling...

  15. Variations in phytoplankton community in a monsoon-influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    . The break period in monsoon altered the phytoplankton community leading to mixed species bloom of large-sized diatoms and harmful dinoflagellates (Gymnodinium catenatum and Cochlodinium polykrikoides) under high-saline, nutrient-poor, non...

  16. Recent intensification of the South and East Asian monsoon contrast associated with an increase in the zonal tropical SST gradient

    Science.gov (United States)

    Yun, Kyung-Sook; Lee, June-Yi; Ha, Kyung-Ja

    2014-07-01

    Observed analysis of the 35 years of 1979-2013 reveals considerable interdecadal change and significant recent intensification in the difference of convective precipitation between the South Asian monsoon (SAM) and East Asian monsoon (EAM) systems during the major summer monsoon season (June-July). We propose that the recent strengthening of the zonal gradient of sea surface temperature (SST) between the Indian Ocean, western Pacific, and eastern Pacific is a possible cause for the intensification of the convective precipitation contrast. It is noted that the strengthening of the zonal SST gradient associated with the recent mega-La Niña trend tends to reinforce the negative connection between SAM and EAM systems by inducing enhanced convection over the maritime continent and then facilitating the northwestward emanation of Rossby waves. Consequently, a cyclonic circulation anomaly that effectively changes the local Hadley circulation has been formed over the SAM region, resulting in the noticeable difference between the SAM and EAM. The years 2013 and 1983 are further investigated as the strongest extreme years for positive and negative phases of submonsoon contrast, respectively. The result confirms that the meridional dipole height pattern along the Asian Jet stream, which is caused by the strong zonal gradient of tropical SST, serves as a key trigger in strengthening the submonsoon contrast.

  17. A study on the decreasing trend in tropical easterly jet stream (TEJ) and its impact on Indian summer monsoon rainfall

    Science.gov (United States)

    Sreekala, P. P.; Bhaskara Rao, S. V.; Arunachalam, M. S.; Harikiran, C.

    2014-10-01

    Using the NCEP/NCAR reanalysis wind and temperature data (1948-2011) and India Meteorological Department (IMD) rainfall data, a long-term trend in the tropical easterly jet stream and its effect on Indian summer monsoon rainfall has been explained in the present study. A decreasing trend in zonal wind speed at 100 mb (maximum decrease), 150 mb, and 200 mb (minimum) is observed. The upper-level (100, 150, and 200 mb) zonal wind speed has been correlated with the surface air temperature anomaly index (ATAI) in the month of May, which is taken as the difference in temperature anomaly over land (22.5°N-27.5°N, 80°E-90°E) and Ocean (5°S-0°S, 75°E-85°E). Significant high correlation is observed between May ATAI and tropical easterly jet stream (TEJ) which suggests that the decreasing land-sea temperature contrast could be one major reason behind the decreasing trend in TEJ. The analysis of spatial distribution of rainfall over India shows a decreasing trend in rainfall over Jammu and Kashmir, Arunachal Pradesh, central Indian region, and western coast of India. Increasing trend in rainfall is observed over south peninsular and northeastern part of India. From the spatial correlation analysis of zonal wind with gridded rainfall, it is observed that the correlation of rainfall is found to be high with the TEJ speed over the regions where the decreasing trend in rainfall is observed. Similarly, from the analysis of spatial correlation between rainfall and May ATAI, positive spatial correlation is observed between May ATAI and summer monsoon rainfall over the regions such as south peninsular India where the rainfall trend is positive, and negative correlation is observed over the places such as Jammu and Kashmir where negative rainfall trend is observed. The decreased land-sea temperature contrast in the pre-monsoon month could be one major reason behind the decreased trend in TEJ as well as the observed spatial variation in the summer monsoon rainfall trend. Thus

  18. Promising prediction of the monsoon trough and its implication for tropical cyclone activity over the western North Pacific

    Science.gov (United States)

    Li, Chaofan; Lu, Riyu; Chen, Guanghua

    2017-07-01

    The monsoon trough (MT) is generally recognized as a feeding ground for tropical cyclones (TCs) over the western North Pacific (WNP). In view of the many challenges that remain in current seasonal TC forecasting, it would be a profound benefit to understand the predictability of variations in the MT and the implications of this for the seasonal prediction of TC activity. This study reveals that high predictability of the MT is shown by the current atmosphere-ocean coupled forecasting system, with the correlation coefficient being 0.84 for the model-ensemble prediction with observations from 1960 to 2005. This high predictability arises mainly from the tropical dipole sea surface temperature over the Maritime Continent and tropical Pacific Ocean, which favors convection around the warm pool and further excites the vorticity anomalies over the WNP. It is further found that good knowledge of the MT could provide promising prediction of TC activity over the WNP, including the occurrence and energy of TCs. The findings of this study suggest that coupling between the WNP circulation and tropical ocean acts as an important source of seasonal predictability in the WNP, and highlight the importance of the MT for seasonal prediction of TCs over the WNP.

  19. PRELIMINARY STUDY OF RELATIONSHIP BETWEEN INTERANNUAL VARIATIONS OF SST IN SOUTH CHINA SEA AND TROPICAL INDIAN OCEAN AND SOUTH CHINA SEA MONSOON OUTBREAK

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Conclusions are divided regarding the role of the variations of thermodynamics in the monsoon activity for the South China Sea region. In this study, primary eigenvectors are studied for the SSTA from East Asia to the tropical eastern Indian Ocean in May. The results show that temperature anomalies that center on Sumatra are closely related with the outbreak of the South China Sea monsoon. When the SST is warmer (cooler) than average year, it is likely that the monsoon set in late (early). It may be caused by the changes in meridional difference in thermodynamics between the Indochina Peninsula and its southern tropical oceans. Studying the temporal and spatial evolution of primary eigenvector distribution of the SSTA in the South China Sea-tropical eastern Indian Ocean from winter to summer, we find that the temperature anomalies that center around Sumatra in late spring and early summer can be traced back to the variations of the SST fields in the South China Sea in the preceding winter. Being well associated with the outbreak of the South China Sea monsoon, the latter is a significant index for it. The work helps understanding the atmospheric and oceanic background against which the South China Sea monsoon breaks out and behaves.

  20. Seminal role of stratiform clouds in large-scale aggregation of tropical rain in boreal summer monsoon intraseasonal oscillations

    Science.gov (United States)

    Kumar, Siddharth; Arora, Anika; Chattopadhyay, R.; Hazra, Anupam; Rao, Suryachandra A.; Goswami, B. N.

    2017-02-01

    Modification of the vertical structure of non-adiabatic heating by significant abundance of the stratiform rain in the tropics has been known to influence the large-scale circulation. However, the role of the stratiform rain on the space-time evolution of the observed Boreal summer monsoon intraseasonal oscillations (MISO) has so far been ignored. In the present study, we unravel a feedback mechanism through which the stratiform component of the rain leads to aggregation (organization) of rain on the MISO scale, making it an indispensable component of the MISO evolution dynamics. Using TRMM 3A25 monthly mean data (between 1998 and 2013), the ratio between convective and stratiform rain (RCS) is shown to be strongly related to the total rainfall. Further, composites of rainfall and circulation anomalies corresponding to high (low) values of RCS over the Central India or over the Equatorial Indian Ocean show spatial structures remarkably similar to that associated with the MISOs. Analyzing lead-lag relationship between the convective rain, the stratiform rain and the large scale moisture convergence with respect to peak active (break) spells from daily modern era retrospective-analysis for research and applications data, we unravel that the initial isolated convective elements spawn the stratiform rain which in turn modifies the vertical distribution of heating and leads to stronger large scale moisture convergence thereby producing more convective elements and more stratiform rain ultimately leading to aggregation of rain on the MISO scale. Our finding indicates that large and persisting systematic biases in simulating the summer monsoon rainfall over the Asian monsoon region by climate models are likely to be related to the systematic biases in simulating the MISOs which in turn are related to the serious underestimation of stratiform rain in most climate models.

  1. On the relationship between convection intensity of South China Sea summer monsoon and air-sea temperature difference in the tropical oceans

    Institute of Scientific and Technical Information of China (English)

    LIN Ailan; LIANG Jianyin; GU Dejun; WANG Dongxiao

    2004-01-01

    The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is interdecadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.

  2. Role of the tropical Pacific Ocean in strengthening the East Asian Monsoon: Climate model study of MIS-13

    Science.gov (United States)

    Karami, M.; Herold, N.; Yin, Q.; Berger, A.

    2012-12-01

    Studying past climates is a valuable approach to improve our understanding of the present and future climate systems. Among the significant events in the history of climate, the interglacial periods are good candidates for representation of the future climate because of their astronomical characteristics and their similarity to predicted anthropogenic warming. Moreover, some interglacials exhibited significant changes in atmospheric and oceanic properties due to only small changes in their climatic forcing (greenhouse gases and solar insolation) which also make them a good case for investigating past climates. For instance, the interglacial stage of around 0.5 Ma identified as Marine Isotopic stage 13 (MIS-13), the focus of this study, was characterized by extremely strong East Asian and Indian summer monsoons while the CO2 and CH4 levels were lower and seasonal radiation energy could reach up to 50 Wm-2 higher than today. The extreme monsoon precipitation is quite unexpected for a climate with such forcing. To understand the physics-based mechanism that enhances the East Asian Summer Monsoon (EASM) during MIS-13, we used two fully coupled general circulation models, the HadCM3 and CCSM3. In MIS-13 experiments, concentrations of greenhouse gases were prescribed lower than in pre-industrial and seasonal insolation characterised by Northern-Hemisphere (NH) summer occurring at perihelion instead of aphelion as it does today. Results of both models confirm increased summer precipitation in the monsoon regions. We find that the tropical Pacific Ocean plays a major role in strengthening the EASM in MIS-13. Simulations of MIS-13 show stronger easterly surface winds along the equatorial Pacific and a subsequent increase in the mean thermocline tilt, in addition to a westward shift of the cold tongue. These changes alter the background climatic state of the equatorial Pacific towards a La Niña-type state. The interannual variability around the La Niña-like background

  3. CCN characteristics over a tropical coastal station during south-west monsoon: observations and closure studies

    Science.gov (United States)

    Jayachandran, V.; Nair, Vijayakumar S.; Babu, S. Suresh

    2017-09-01

    Number concentration measurements of cloud condensation nuclei (CCN) at five supersaturation values between 0.2 and 1.0% were made from a coastal site (Thiruvananthapuram) of peninsular India using a single column CCN counter during the summer monsoon period (June-September) of 2013 and 2014. The CCN concentration over this site showed diurnal variations of high values during nighttime and low values during daytime in association with the change in mesoscale circulation patterns. The inter-annual variations of CCN (CCN0.4% = 2,232 ± 672 cm-3 during August 2013 and CCN0.4% = 941 ± 325 cm-3 during August 2014) are mostly associated with the varying intensity of monsoon rainfall. The variation of CCN number concentration with supersaturation is found to be steeper during nighttime (indicating a less CCN active aerosol system) than during daytime (CCN active system). The CCN activation ratio estimated using simultaneous measurements of CCN and aerosol number (CN) concentration clearly depict the role of land-sea breeze circulations with higher values during daytime than the nighttime. The CCN number concentration predicted for different supersaturations, from measured aerosol number size distribution using Kohler theory, indicate the importance of the change in aerosol composition associated with different airmasses in a coastal environment.

  4. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water

  5. Fine particulate matter associated with monsoonal effect and the responses of biomass fire hotspots in the tropical environment

    Directory of Open Access Journals (Sweden)

    M. F. Khan

    2015-08-01

    Full Text Available The health implications of PM2.5 in tropical regions of Southeast Asia are significant as PM2.5 can pose serious health concerns. PM2.5 is strongly influenced by the monsoon. We quantitatively characterize the health risks posed to human populations by selected heavy metals in PM2.5. Monsoonal effects as well as factors influencing the sources of PM2.5 were also determined. Apportionment analysis of PM2.5 was undertaken using US EPA positive matrix factorization (PMF 5.0 and a mass closure model. Overall, 48 % of the samples exceeded the World Health Organization (WHO 24 h guideline. The mass closure model identified four sources of PM2.5: (a mineral matter (MIN (35 %, (b secondary inorganic aerosol (SIA (11 %, (c sea salt (SS (7 %, (d trace elements (TE (2 % and (e undefined (UD (45 %. PMF 5.0 identified five potential sources and motor vehicle emissions and biomass burning were dominant followed by marine and sulfate aerosol, coal burning, nitrate aerosol, and mineral and road dust. The non-carcinogenic risk level for four selected metals (Pb, As, Cd and Ni in PM2.5 and in the identified major sources by PMF > 5.0, with respect to inhalation follows the order of PM2.5 > coal burning > motor vehicle emissions/biomass burning > mineral/road dust. The lifetime cancer risk follows the order of As > Ni > Pb > Cd for mineral/road dust, coal burning and overall of PM2.5 concentration and As > Pb > Ni > Cd for motor vehicle/biomass burning. Overall, the associated cancer risk posed by the exposure of toxic metals in PM2.5 is three to four in 1 000 000 people in this location.

  6. Influence of ligands on metal speciation, transport and toxicity in a tropical river during wet (monsoon) period.

    Science.gov (United States)

    Gogoi, Anindita; Tushara Chaminda, G G; An, Alicia K J; Snow, Daniel D; Li, Yusong; Kumar, Manish

    2016-11-01

    Metal speciation and transport are seldom assessed in densely populated Tropical River. An evaluation of the phase distribution for Copper (Cu), Lead (Pb) and Zinc (Zn) along with chemical speciation, variance with different water quality parameters and toxicity were conducted in the Brahmaputra River of India from upstream to downstream during wet (monsoon) periods in July 2014. Results indicated that metal free ions and carbonates were dominant in the inorganic fractions whereas metal concentrations were negligible in the anionic inorganic fractions. Due to high sediment load in the river during monsoon, metals were substantially higher in the particulate fractions than in the aqueous phase. Partition coefficient for Cu (3.1-6.1), Pb (3.4-6.5) and Zn (3.5-6.9), demonstrated strong adsorption of the metals on suspended matter. Q-mode hierarchical cluster analysis (HCA) illustrated groupings mainly governed by quality parameters rather than by the river course. R-mode results imply selectivity of the affinities of metals for different ligands. Health risk index (HRI) values were less than 1 for dissolved metal for Cu, Pb and Zn while it was greater than 1 for total metal for Pb and Cu indicating potential human health risk. The study demonstrated that binding of metals with naturally occurring dissolved organic matter or suspended particulate matter affects metal bioavailability in river during wet periods when sediment load is particularly high. A combination of empirical, computational and statistical relationships between ionic species and fractions of metals provided greater certitude in identifying the resemblance among the different locations of the river.

  7. Numerical simulations of barnacle larval dispersion coupled with field observations on larval abundance, settlement and recruitment in a tropical monsoon influenced coastal marine environment

    Science.gov (United States)

    Gaonkar, Chetan A.; Samiksha, S. V.; George, Grinson; Aboobacker, V. M.; Vethamony, P.; Anil, Arga Chandrashekar

    2012-06-01

    larval dispersion and retention in the region is predominantly driven by local hydrodynamics operating in the vicinity. Linking larval dispersion and retention with settlement and recruitment of barnacles indicated that the processes are mainly influenced by wind and resultant current patterns. These findings facilitate unravelling the processes operating in the region and to understand the distribution pattern of the intertidal organisms in general in this tropical environment influenced by monsoons.

  8. Decoding the drivers of bank erosion on the Mekong river: The roles of the Asian monsoon, tropical storms, and snowmelt

    Science.gov (United States)

    Darby, Stephen E; Leyland, Julian; Kummu, Matti; Räsänen, Timo A; Lauri, Hannu

    2013-01-01

    We evaluate links between climate and simulated river bank erosion for one of the world's largest rivers, the Mekong. We employ a process-based model to reconstruct multidecadal time series of bank erosion at study sites within the Mekong's two main hydrological response zones, defining a new parameter, accumulated excess runoff (AER), pertinent to bank erosion. We employ a hydrological model to isolate how snowmelt, tropical storms and monsoon precipitation each contribute to AER and thus modeled bank erosion. Our results show that melt (23.9% at the upstream study site, declining to 11.1% downstream) and tropical cyclones (17.5% and 26.4% at the upstream and downstream sites, respectively) both force significant fractions of bank erosion on the Mekong. We also show (i) small, but significant, declines in AER and hence assumed bank erosion during the 20th century, and; (ii) that significant correlations exist between AER and the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO). Of these modes of climate variability, we find that IOD events exert a greater control on simulated bank erosion than ENSO events; but the influences of both ENSO and IOD when averaged over several decades are found to be relatively weak. However, importantly, relationships between ENSO, IOD, and AER and hence inferred river bank erosion are not time invariant. Specifically, we show that there is an intense and prolonged epoch of strong coherence between ENSO and AER from the early 1980s to present, such that in recent decades derived Mekong River bank erosion has been more strongly affected by ENSO. PMID:23926362

  9. Soil erosion and landscape change by feral pigs: fact or fallacy? A 5 year assessment for the monsoonal tropics

    Science.gov (United States)

    Hancock, Greg; Lowry, John; Dever, Chris

    2016-04-01

    Pigs (Sus scrofa) have been introduced in many areas of the world. They are considered to have many significant environmental impacts. Here the effect of feral pigs are quantified in an undisturbed catchment in the monsoonal tropics of northern Australia. Over a five-year period, field data showed that the areal extent of pig disturbance ranged from 0.3-3.3 % of the survey area. The mass of material exhumed through these activities ranged from 4.3 t ha-1 yr-1 to 36.0 t ha-1 yr-1. The findings demonstrate that feral pigs are disturbing large areas as well as exhuming considerable volumes of soil. We have found that the excavations produce surface roughness which act as sediment traps and there was no evidence to suggest that pigs produce any rill or gully erosion. We found that there was a direct relationship between annual rainfall amount and number of disturbances (i.e. more disturbances occurred with higher rainfall). The location of any disturbance appears to be random and had no relationship with topography or geomorphic attributes such as slope, upslope contributing area or wetness indices. While disturbing relatively large volumes of soil any biogeographical change may be occurring slowly and may only be observable over the long-term.

  10. Co-evolution of monsoonal precipitation in East Asia and the tropical Pacific ENSO system since 2.36 Ma: New insights from high-resolution clay mineral records in the West Philippine Sea

    Science.gov (United States)

    Yu, Zhaojie; Wan, Shiming; Colin, Christophe; Yan, Hong; Bonneau, Lucile; Liu, Zhifei; Song, Lina; Sun, Hanjie; Xu, Zhaokai; Jiang, Xuejun; Li, Anchun; Li, Tiegang

    2016-07-01

    Clay mineralogical analysis and scanning electron microscope (SEM) analysis were performed on deep-sea sediments cored on the Benham Rise (core MD06-3050) in order to reconstruct long-term evolution of East Asian Summer Monsoon (EASM) rainfall in the period since 2.36 Ma. Clay mineralogical variations are due to changes in the ratios of smectite, which derive from weathering of volcanic rocks in Luzon Island during intervals of intensive monsoon rainfall, and illite- and chlorite-rich dusts, which are transported from East Asia by winds associated with the East Asian Winter Monsoon (EAWM). Since Luzon is the main source of smectite to the Benham Rise, long-term consistent variations in the smectite/(illite + chlorite) ratio in core MD06-3050 as well as ODP site 1146 in the Northern South China Sea suggest that minor contributions of eolian dust played a role in the variability of this mineralogical ratio and indicate strengthening EASM precipitation in SE Asia during time intervals from 2360 to 1900 kyr, 1200 to 600 kyr, and after 200 kyr. The EASM rainfall record displays a 30 kyr periodicity suggesting the influence of El Niño-Southern Oscillation (ENSO). These intervals of rainfall intensification on Luzon Island are coeval with a reduction in precipitation over central China and an increase in zonal SST gradient in the equatorial Pacific Ocean, implying a reinforcement of La Niña-like conditions. In contrast, periods of reduced rainfall on Luzon Island are associated with higher precipitation in central China and a weakening zonal SST gradient in the equatorial Pacific Ocean, thereby suggesting the development of dominant El Niño-like conditions. Our study, therefore, highlights for the first time a long-term temporal and spatial co-evolution of monsoonal precipitation in East Asia and of the tropical Pacific ENSO system over the past 2.36 Ma.

  11. Summer monsoon circulation and precipitation over the tropical Indian Ocean during ENSO in the NCEP climate forecast system

    Science.gov (United States)

    Chowdary, J. S.; Chaudhari, H. S.; Gnanaseelan, C.; Parekh, Anant; Suryachandra Rao, A.; Sreenivas, P.; Pokhrel, S.; Singh, P.

    2014-04-01

    This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a

  12. Low-Frequency Vortex Pair over the Tropical Eastern Indian Ocean and the South China Sea Summer Monsoon Onset

    Institute of Scientific and Technical Information of China (English)

    PAN Jing; LI Chong-Yin

    2011-01-01

    In this paper, the relationship between a pair of low-frequency vortexes over the equatorial Indian Ocean and the South China Sea (SCS) summer monsoon onset is studied based on a multi-year (1980-2003) analysis. A pair of vortexes symmetric about the equator is an important feature prior to the SCS summer monsoon onset. A composite analysis shows that the life cycle of the pair of vortexes is closely associated with the SCS summer monsoon onset. The westerly between the twin cyclones is an important factor to the SCS summer monsoon onset process.

  13. Delta15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status.

    Science.gov (United States)

    Schmidt, S; Stewart, G R

    2003-03-01

    A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N(2)-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6 per thousand ), AM species had mostly intermediate delta(15)N values (average +0.6 per thousand ), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1 per thousand ). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2 per thousand ) and non-mycorrhizal (average +0.8 and +0.3 per thousand ) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N(2) fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4 per thousand ). Soil nitrification and plant NO(3)(-) use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO(3)(-) using taxa associated with NO(3)(-) rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna

  14. Investigation of dominant hydrological processes in a tropical catchment in a monsoonal climate via the downward approach

    Science.gov (United States)

    Montanari, L.; Sivapalan, M.; Montanari, A.

    2006-10-01

    This study explores the dominant processes that may be responsible for the observed streamflow response in Seventeen Mile Creek, a tropical catchment located in a monsoonal climate in Northern Territory, Australia. The hydrology of this vast region of Australia is poorly understood due to the low level of information and gauging that are available. Any insights that can be gained from the few well gauged catchments that do exist can be valuable for predictions and water resource assessments in other poorly gauged or ungauged catchments in the region. To this end, the available rainfall and runoff data from Seventeen Mile Creek catchment are analyzed through the systematic and progressive development and testing of rainfall-runoff models of increasing complexity, by following the "downward" or "top-down" approach. This procedure resulted in a multiple bucket model (4 buckets in parallel). Modelling results suggest that the catchment's soils and the landscape in general have a high storage capacity, generating a significant fraction of delayed runoff, whereas saturation excess overland flow occurs only after heavy rainfall events. The sensitivity analyses carried out with the model with regard to soil depth and temporal rainfall variability revealed that total runoff from the catchment is more sensitive to rainfall variations than to soil depth variations, whereas the partitioning into individual components of runoff appears to be more influenced by soil depth variations. The catchment exhibits considerable inter-annual variability in runoff volumes and the greatest determinant of this variability turns out to be the seasonality of the climate, the timing of the wet season, and temporal patterns of the rainfall. The water balance is also affected by the underlying geology, nature of the soils and the landforms, and the type, density and dynamics of vegetation, although information pertaining to these is lacking.

  15. Investigation of dominant hydrological processes in a tropical catchment in a monsoonal climate via the downward approach

    Directory of Open Access Journals (Sweden)

    L. Montanari

    2006-01-01

    Full Text Available This study explores the dominant processes that may be responsible for the observed streamflow response in Seventeen Mile Creek, a tropical catchment located in a monsoonal climate in Northern Territory, Australia. The hydrology of this vast region of Australia is poorly understood due to the low level of information and gauging that are available. Any insights that can be gained from the few well gauged catchments that do exist can be valuable for predictions and water resource assessments in other poorly gauged or ungauged catchments in the region. To this end, the available rainfall and runoff data from Seventeen Mile Creek catchment are analyzed through the systematic and progressive development and testing of rainfall-runoff models of increasing complexity, by following the "downward" or "top-down" approach. This procedure resulted in a multiple bucket model (4 buckets in parallel. Modelling results suggest that the catchment's soils and the landscape in general have a high storage capacity, generating a significant fraction of delayed runoff, whereas saturation excess overland flow occurs only after heavy rainfall events. The sensitivity analyses carried out with the model with regard to soil depth and temporal rainfall variability revealed that total runoff from the catchment is more sensitive to rainfall variations than to soil depth variations, whereas the partitioning into individual components of runoff appears to be more influenced by soil depth variations. The catchment exhibits considerable inter-annual variability in runoff volumes and the greatest determinant of this variability turns out to be the seasonality of the climate, the timing of the wet season, and temporal patterns of the rainfall. The water balance is also affected by the underlying geology, nature of the soils and the landforms, and the type, density and dynamics of vegetation, although information pertaining to these is lacking.

  16. Quaternary stratigraphy, geochronology and evolution of the Magela Creek catchment in the monsoon tropics of northern Australia

    Science.gov (United States)

    Nanson, Gerald C.; East, T. Jon; Roberts, Richard G.

    1993-03-01

    Magela Creek, a major tributary of the East Alligator River in northern Australia, has left a detailed sedimentary record of a fluvial landscape dominated by climatic and eustatic changes associated with Quaternary glacial-interglacial cycles. Uranium-series dates from young pisoliths in floodplain deposits indicate that ferruginisation is probably ongoing under present conditions while ferricretes in degraded terraces that flank the lower valley reveal a fluvial history extending back to early Pleistocene or Tertiary time. Inset within this older alluvium is a valley fill which, from thermoluminescence dates, was initiated about 300 kyr ago. With each glacial climate change and associated fall in sea level, distinct palaeochannels have been eroded into these floodplains, infilling later with alluvium when climate and base-level conditions were conducive to fluvial deposition. Radiocarbon dates show that the most recent palaeochannel beneath the modern Magela Creek last started to fill by downstream progradation and vertical accretion of bedload sand about 8 kyr. The palaeochannel filled at an accelerating rate, probably as a result of declining stream competence associated with drier conditions in the late Holocene augmented by the backwater effects of sea-level rise. Continued aggradation blocked the mouths of tributary valleys along Magela Creek, forming alluvial-dammed tributary lakes and deferred-junction tributary streams. From about 300 kyr, cyclic episodes of channel incision and sediment evacuation in this tropical-monsoon river valley have become less effective, possibly because increasing aridity in the late Quaternary has reduced the erosional effectiveness of Australia's northern rivers. Reduced flow regime and rising sea level in the late Holocene has resulted in the latest phase of alluvial accretion.

  17. Fluorescent biological aerosol particle measurements at a tropical high-altitude site in southern India during the southwest monsoon season

    Science.gov (United States)

    Valsan, A. E.; Ravikrishna, R.; Biju, C. V.; Pöhlker, C.; Després, V. R.; Huffman, J. A.; Pöschl, U.; Gunthe, S. S.

    2016-08-01

    An ultraviolet aerodynamic particle sizer (UV-APS) was continuously operated for the first time during two seasons to sample the contrasting winds during monsoon and winter to characterize the properties of fluorescent biological aerosol particles (FBAPs), at a high-altitude site in India. Averaged over the entire monsoon campaign (1 June-21 August 2014), the arithmetic mean number and mass concentrations of coarse-mode (> 1 µm) FBAPs were 0.02 cm-3 and 0.24 µg m-3, respectively, which corresponded to ˜ 2 and 6 % of total aerosol loading, respectively. Average FBAP number size distribution exhibited a peak at ˜ 3 µm, which is attributed to the fungal spores, as supported by scanning electron microscope (SEM) images, and these results are consistent with previous studies made for FBAPs. During 11 weeks of measurements the variability of the total coarse-mode particle number (TAP) concentration was high compared to that observed in FBAP number concentrations. The TAP and FBAP number concentrations measured at this site were strongly dependent on changes in wind direction and rainfall. During periods of westerly/southwesterly winds with heavy persistent rainfall, the TAP and FBAP concentrations exhibited very low values (1.3 and 0.005 cm-3, respectively) with no significant diurnal variations, whereas during periods of northerly winds with scattered rainfall FBAPs exhibited relatively high concentration values (0.05 cm-3) with pronounced diurnal variations, which were strongly coupled with diurnal variations in meteorological parameters. The campaign-averaged FBAP number concentrations were shown to correlate with daily patterns of meteorological parameters and were positively correlated with relative humidity (RH; R2 = 0.58) and negatively with temperature (R2 = 0.60) and wind speed (R2 = 0.60). We did not observe any significant positive correlation with precipitation as reported by previous researchers from selected areas. These measurement results confirm the

  18. A Diagnostic Study of Heavy Rainfall in Karachi Due to Merging of a Mesoscale Low and a Diffused Tropical Depression during South Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    Ghulam RASUL; Qamar-uz-Zaman CHAUDHRY; ZHAO Sixiong; ZENG Qingcun; QI Linlin; ZHANG Gaoying

    2005-01-01

    This paper presents the results of a diagnostic study of a typical case of very heavy rainfall during the South Asian summer monsoon when a mesoscale low in a desert climate merged with a diffused tropical depression. The former low was located over Pakistan's desert region and the latter depression originated over the Bay of Bengal. Surface and NCEP reanalysis data supported by satellite and radar images were incorporated in the diagnosis. The relationship between the heavy precipitation process and large-scale circulations such as monsoon trough, subtropical high, westerly jet, low level jet and water vapor transport were investigated to further understand the mechanism of this peculiar interaction. It was found that: (1)the mesoscale low developed as a result of cold air advection aloft from northern latitudes and strong convection over the region of humidity convergence on 24 July 2003 over the Indian Rajistan area. (2) On the same day, a low that formed over the Bay of Bengal was transformed into a monsoon depression and moved westward to the mesoscale low which existed over southwest India and the adjoining southeastern parts of Pakistan. (3) Initially, the mesoscale low received moisture supply from both the Bay of Bengal as well as the Arabian Sea, whereas the Bay of Bengal maintained the continuous supply of moisture to the monsoon depression. (4) After the depression crossed central India, the Bay's moisture supply was cut off and the Arabian Sea became the only source of moisture to both the closely located systems. On 27July, both of the systems merged together and the merger resulted in a heavy downpour in the Karachi metropolitan and in its surroundings. (5) With the intensification as well as the southeastward extension of the subtropical high and the shift of the monsoon trough axis from southwest-west to northeast-east,the monsoon depression moved southwestward. In this situation, there existed a very favourable condition for a merger of the two

  19. Impact of the Thermal State of the Tropical Western Pacific on Onset Date and Process of the South China Sea Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.

  20. Tropical monsoon forest in Yunnan with comparison to the tropical rain forest%云南热带季雨林及其与热带雨林植被的比较

    Institute of Scientific and Technical Information of China (English)

    朱华

    2011-01-01

    In Chinese botanical literature, the term "tropical monsoon forest" is explained and used inconsistently and is often confused with tropical rain forest. My objective is to clarify differences between the two forests. Schimper defined tropical monsoon forest as being more or less leafless during the dry season and considered it a transitional vegetation type between tropical rain forest and savanna in terms of physiognomy and distribution. I compared tropical monsoon forest and rain forest in physiognomy, floristic composition and geographical elements to describe and characterize the monsoon forest in Yunnan, China. The tropical monsoon forest in Yunnan occurs mainly on river banks and in basins of several large rivers below 1 000 m altitude. The forest has one or two tree layers, and trees of at least the top layer are deciduous in the dry season. In life forms, the forest is rich in hemicryptophytes and relatively rich in geophytes and therophytes, but less rich in woody lianas and almost lacks megaphanerophytes and chamaephytes compared to tropical rain forest. In leaf size and form, the forest has more microphyllous leaves and compound leaves (24% and 44% of tree species, respectively) than tropical rain forest.In terms of floristic elements, the forest has a greater percentage of species of pantropic distribution (30% of the genera) and tropical Asia and tropical Africa disjunct distribution than tropical rain forest. Thus, the tropical monsoon forest in Yunnan has more diverse geographical elements in its flora and a complicated evolution history.%在中国植物学文献中,对热带季雨林的解释和运用是不一致的,特别是易于把季雨林与热带雨林相混淆.季雨林是在具有明显干、湿季变化的热带季风气候下发育的一种热带落叶森林植被,是介于热带雨林与热带稀树草原(savanna)之间的一个植被类型.云南的热带季雨林在分布生境、生态外貌特征、植物种类组成和地理

  1. Differing impact of a major biogeographic barrier on genetic structure in two large kangaroos from the monsoon tropics of Northern Australia.

    Science.gov (United States)

    Eldridge, Mark D B; Potter, Sally; Johnson, Christopher N; Ritchie, Euan G

    2014-03-01

    Tropical savannas cover 20-30% of the world's land surface and exhibit high levels of regional endemism, but the evolutionary histories of their biota remain poorly studied. The most extensive and unmodified tropical savannas occur in Northern Australia, and recent studies suggest this region supports high levels of previously undetected genetic diversity. To examine the importance of barriers to gene flow and the environmental history of Northern Australia in influencing patterns of diversity, we investigated the phylogeography of two closely related, large, vagile macropodid marsupials, the antilopine wallaroo (Macropus antilopinus; n = 78), and the common wallaroo (Macropus robustus; n = 21). Both species are widespread across the tropical savannas of Australia except across the Carpentarian Barrier (CB) where there is a break in the distribution of M. antilopinus. We determined sequence variation in the hypervariable Domain I of the mitochondrial DNA control region and genotyped individuals at 12 polymorphic microsatellite loci to assess the historical and contemporary influence of the CB on these species. Surprisingly, we detected only limited differentiation between the disjunct Northern Territory and QueenslandM. antilopinus populations. In contrast, the continuously distributedM. robustus was highly divergent across the CB. Although unexpected, these contrasting responses appear related to minor differences in species biology. Our results suggest that vicariance may not explain well the phylogeographic patterns in Australia's dynamic monsoonal environments. This is because Quaternary environmental changes in this region have been complex, and diverse individual species' biologies have resulted in less predictable and idiosyncratic responses.

  2. Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the role of monsoonal flows, the Madden–Julian Oscillation, tropical cyclones, squall lines and cold pools

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2014-08-01

    Full Text Available In a joint NRL/Manila Observatory mission, as part of the 7 SouthEast Asian Studies program (7SEAS, a two-week, late September~2011 research cruise in the northern Palawan Archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES and Sulu Sea region. Previous analyses suggested this region as a~receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a~narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Nino/Southern Oscillation (ENSO La Nina year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden–Julian Oscillation (MJO and its associated tropical cyclone (TC activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012. Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol lifecycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN −3, non-sea salt PM2.5=1μg m−3. However, elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm−3 and non-sea salt PM2.510–25

  3. Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the role of monsoonal flows, the Madden-Julian Oscillation, tropical cyclones, squall lines and cold pools

    Science.gov (United States)

    Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L. E.; Zhang, J.

    2014-08-01

    In a joint NRL/Manila Observatory mission, as part of the 7 SouthEast Asian Studies program (7SEAS), a two-week, late September~2011 research cruise in the northern Palawan Archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a~receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a~narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Nino/Southern Oscillation (ENSO) La Nina year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol lifecycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea salt PM2.510-25 μg m-3). These cases corresponded with two different mechanisms

  4. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  5. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  6. The two-step monsoon changes of the last deglaciation recorded in tropical Maar Lake Huguangyan,southern China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The concentrations of biogenic silica, total organic carbon, total nitrogen and total hydrogen inferred from the sediments of tropical Maar Lake Huguangyan, southern China, provide a climate record of the last deglaciation with century resolution. The records fully demonstrate the existence of the two-step shape of the last deglaciation in tropic East Asia, and they point out noticeable differences between the low and high latitudes in the Northern Hemisphere. Thus, the Bφlling first warming at the last deglaciation in the low latitude may have preceded that of the high latitude, whereas the cooling of the Younger Dryas occurred synchronously in the two regions. These results likely suggest that the links between the low and high latitude climates in the Northern Hemisphere during this period are complexity.

  7. A case study on a strong tropical disturbance and record heavy rainfall in Hat Yai, Thailand during the winter monsoon

    Science.gov (United States)

    Wangwongchai, Angkool; Zhao, Sixiong; Zeng, Qingcun

    2005-06-01

    The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai, Thailand from 20 to 23 November 2000 is studied. In the study, the modern three dimensional observational data were collected as completely as possible, and detailed analyses were made. It is revealed that the cold surges of the Asian winter monsoon that originate from Siberia can arrive at the lower latitudes, including South Thailand, Malaysia, Indonesia, cause strong heavy rainfall there, and interact with weather systems in the near-equatorial regions of the Southern Hemisphere. This is strongly supported by Chinese scientist’s original finding in 1930s. The strong convective cloud clusters in the above areas are generated by the direct influence of the cold surges, and are related with the South China Sea disturbances in the lower troposphere. The maximum of the convergence of total moisture flux near South Thailand in the situation under study implies that the water vapour supply is abundant and very favorable to the occurrence of the heavy rainfall. The release of latent heat enhances the Hadley Circulation also. The feedback of the strong severe weather on climate indeed exists, and there are pronounced interactions between the multi-scale systems and between both hemispheres.

  8. A Case Study on a Strong Tropical Disturbance and Record Heavy Rainfall in Hat Yai, Thailand during the Winter Monsoon

    Institute of Scientific and Technical Information of China (English)

    Angkool WANGWONGCHAI; ZHAO Sixiong; ZENG Qingcun

    2005-01-01

    The evolutionary process and structural characteristics of the atmospheric circulation and synoptic situation which caused the record heavy rainfall with a precipitation amount of 550 mm in Hat Yai,Thailand from 20 to 23 November 2000 is studied. In the study, the modern three dimensional observational data were collected as completely as possible, and detailed analyses were made. It is revealed that the cold surges of the Asian winter monsoon that originate from Siberia can arrive at the lower latitudes, including South Thailand, Malaysia, Indonesia, cause strong heavy rainfall there, and interact with weather systems in the near-equatorial regions of the Southern Hemisphere. This is strongly supported by Chinese scientist's original finding in 1930s. The strong convective cloud clusters in the above areas are generated by the direct influence of the cold surges, and are related with the South China Sea disturbances in the lower troposphere. The maximum of the convergence of total moisture flux near South Thailand in the situation under study implies that the water vapour supply is abundant and very favorable to the occurrence of the heavy rainfall. The release of latent heat enhances the Hadley Circulation also. The feedback of the strong severe weather on climate indeed exists, and there are pronounced interactions between the multi-scale systems and between both hemispheres.

  9. Enhanced climate variability in the tropics: a 200 000 yr annual record of monsoon variability from Pangea's equator

    Directory of Open Access Journals (Sweden)

    R. Y. Anderson

    2011-07-01

    Full Text Available A continuous series of 209 000 evaporite varves from the equator of arid western Pangea (age = −255 ma, as a proxy for surface temperature, has a complete suite of Milankovitch cycles and harmonics as expected for a rectified reaction to precession-modulated insolation at the equator. Included are modes of precession (23.4 kyr, 18.2 kyr, semi-precession (11.7 kyr, 9.4 kyr, and harmonics at ~7 kyr and 5.4 kyr. An oscillation of ~100 kyr, with 35 % of total variance, originates as an amplitude modulation of precession cycles. An exceptionally strong 2.3 kyr quasi-bi-millennial oscillation (QBMO appears to have had its own source of forcing, possibly solar, with its amplitude enhanced at Milankovitch frequencies. Seasonal information in varves traces the rectifying process to asymmetrical distribution of Pangea relative to the equator, and its effect on monsoonal circulation and heat flow near the equator during summer solstices in the hemispheres.

  10. The influence of biomass burning and transport on tropospheric composition over the tropical Atlantic Ocean and Equatorial Africa during the West African monsoon in 2006

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2010-10-01

    Full Text Available Biomass burning (BB in southern Africa is the largest emission source of CO and O3 precursors within Africa during the West African Monsoon (WAM between June and August. The long range transport and chemical processing of such emissions thus has the potential to exert a dominant influence on the composition of the tropical troposphere over Equatorial Africa (EA and the Tropical Atlantic Ocean (TAO. We have performed simulations using a three-dimensional global chemistry-transport model (CTM to quantify the effect that continental transport of such BB plumes has on the EA region. BB emissions from southern Africa were found to exert a significant influence over the TAO and EA between 10° S–20° N. The maximum concentrations in CO and O3 occur between 0–5° S near the position of the African Easterly Jet – South as placed by the European Centre for Medium range Weather Forecasts (ECMWF meteorological analysis data. By comparing co-located model output with in-situ measurements we show that the CTM fails to capture the tropospheric profile of CO in southern Africa near the main source region of the BB emissions, as well as the "extreme" concentrations of both CO and O3 seen between 600–700 hPa over EA around 6° N. For more northerly locations the model exhibits high background concentrations in both CO and O3 related to BB emissions from southern Africa. By altering both the temporal resolution and the vertical distribution of BB emissions in the model we show that changes in temporal resolution have the largest influence on the transport of trace gases near the source regions, EA, and in the outflow towards the west of Central Africa. Using a set of trajectory calculations we show that the performance of the CTM is heavily constrained by the ECMWF meteorological fields used to drive the CTM, which transport biomass burning plumes from southern Africa into the lower troposphere of the TAO rather

  11. CHARACTERISTICS OF THE NORTHERN HEMISPHERE SUB-TROPICAL HIGH SEASONAL SPLITTING OVER THE ASIAN MONSOON SECTORS AND ITS POSSIBLE MECHANISM

    Institute of Scientific and Technical Information of China (English)

    祝从文; 何金海; 谭言科

    2004-01-01

    The splitting of the Northern Hemisphere sub-tropical high (SH) during spring to summer and its possible mechanisms has been analyzed. Results indicate that the splitting of SH occurs over the Bay of Bengal to the Indo-China peninsula. However, remarkable contrast exists in the Hadley cell at the lower and upper levels over these sectors during March to May. The land surface sensitive/latent heating both play an important role, and decay the local Hadley cell over the Indo-China peninsula by enhancing the upwelling. In contrast, the dominant land surface sensitive heating over the Bay of Bengal only damages the low-level Hadley cell. Thus, the splitting of SH should occur over the Indo-China peninsula, rather than the Bay of Bengal at lower levels. In addition, the analysis suggests that the faster seasonal snow melting in the east of Indo-China peninsula can enhance the land surface sensitive heating atmosphere and weaken the local Hadley cell, such seasonal change benefits the splitting of the SH.

  12. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs.

    Directory of Open Access Journals (Sweden)

    Navnith K P Kumaran

    Full Text Available The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere.

  13. Monsoon Country

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Heavy rains have battered areas of south China this year,causing death and destruction For most areas south of the Yangtze River,this year’s monsoon season has come early, with heavy rains triggering floods,damaging crops,threatening reservoirs and causing deaths.

  14. Monsoon signatures in recent corals from the Laccadive Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.A.S.

    have reduced water transparency, thereby curtailing the growth rates. Scanning electron microscopy clearly showed the presence of lithogenic and biogenic material in the monsoonal bands and their absence in the non-monsoonal bands. This indicates...

  15. Weakening of Indian Summer Monsoon in Recent Decades

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi

    2005-01-01

    The analysis of 43 years of NCEP-NCAR reanalysis data and station observations reveals the connections between tropospheric temperature variations and the weakening of the Indian summer monsoon circulation. The Indian summer monsoon variation is strongly linked to tropospheric temperature over East Asia, showing significant positive correlations of mean tropospheric temperature with all-Indian summer rainfall and the monsoon circulation intensity. The result shows that Indian summer monsoon circulation underwent two weakening processes in recent decades. The first occurred in circa the mid-1960s, and the other occurred in circa the late 1970s. The finding indicates that the mean tropospheric temperature may play a crucial role in the weakening of the Indian summer monsoon intensity via changing land-sea thermal contrast. The role of the tropospheric temperature contrast between East Asia and the tropical area from the eastern Indian Ocean to the tropical western Pacific is to weaken the Indian summer monsoon circulation.

  16. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Yamazaki, Jun-Ya; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Maruta, Emiko; Diloksumpun, Sapit; Puangchit, Ladawan

    2014-01-01

    In tropical dry forests, uppermost-canopy leaves of evergreen trees possess the ability to use water more conservatively compared with drought-deciduous trees, which may result from significant differences in the photoprotective mechanisms between functional types. We examined the seasonal variations in leaf gas exchange, chlorophyll fluorescence and the amounts of photosynthetic pigments within lamina of the uppermost-canopy leaves of three drought-deciduous trees (Vitex peduncularis Wall., Xylia xylocarpa (Roxb.) W. Theob., Shorea siamensis Miq.), a semi-deciduous tree (Irvingia malayana Miq.) and two evergreen trees (Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels) in Thailand. Area-based maximum carbon assimilation rates (Amax) decreased during the dry season, except in S. siamensis. The electron transport rate (ETR) remained unchanged in deciduous trees, but decreased during the dry season in evergreen and semi-deciduous trees. In the principal component analysis, the first axis (Axis 1) accounted for 44.3% of the total variation and distinguished deciduous from evergreen trees. Along Axis 1, evergreen trees were characterized by a high Stern-Volmer non-photochemical quenching coefficient (NPQ), high xanthophyll cycle pigments/chlorophyll and a high de-epoxidation state of the xanthophyll cycle, whereas the deciduous trees were characterized by a high ETR, a high quantum yield of PSII (ΦPSII = (Fm(') -F)/Fm(')) and a high mass-based Amax under high-light conditions. These findings indicate that drought-deciduous trees showing less conservative water use tend to dissipate a large proportion of electron flow through photosynthesis or alternative pathways. In contrast, the evergreens showed more conservative water use, reduced Amax and ETR and enhanced NPQ and xanthophyll cycle pigments/chlorophyll during the dry season, indicating that down-regulated photosynthesis with enhanced thermal dissipation of excess light energy played an important role in

  17. Relationship Between East Asian Winter Monsoon and Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    YAN Hongming; YANG Hui; YUAN Yuan; LI Chongyin

    2011-01-01

    Using National Centers for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis data and monthly Hadley Center sea surface temperature (SST) data,and selecting a representative East Asian winter monsoon (EAWM) index,this study investigated the relationship between EAWM and East Asian summer monsoon (EASM) using statistical analyses and numerical simulations.Some possible mechanisms regarding this relationship were also explored.Results indicate a close relationship between EAWM and EASM:a strong EAWM led to a strong EASM in the following summer,and a weak EAWM led to a weak EASM in the following summer.Anomalous EAWM has persistent impacts on the variation of SST in the tropical Indian Ocean and the South China Sea,and on the equatorial atmospheric thermal anomalies at both lower and upper levels.Through these impacts,the EAWM influences the land-sea thermal contrast in summer and the low-level atmospheric divergence and convergence over the Indo-Pacific region.It further affects the meridional monsoon circulation and other features of the EASM.Numerical simulations support the results of diagnostic analysis.The study provides useful information for predicting the EASM by analyzing the variations of preceding EAWM and tropical SST.

  18. Community features of two types of typical tropical monsoon forests in Bawangling Nature Reserve, Hainan Island%海南岛霸王岭两种典型热带季雨林群落特征

    Institute of Scientific and Technical Information of China (English)

    刘万德; 臧润国; 丁易

    2009-01-01

    The tropical monsoon forest is an azonal vegetation type in Hainan Island and mainly distributes in the similar elevational ranges as the tropical lowland rainforest but in locations where environmental conditions are stressful, especially in the dry season. Most species and individual trees in the monsoon forest defoliate in the dry season. Bawangling Nature Reserve in Hainan Island contains well-preserved natural and typical tropical monsoon forests which can be classified into Terminalia hainanensis community type(TC) and Liquidambar formosana community type(LC) according to the dominant species. In this present study, species composition, structure, and diversity were investigated on three plots (50m×50m) for each of the two community types. On each plot, species name, height, and DBH(diameter at breast height) of all individuals≥1cm DBH were recorded. The community features of the two community types were compared and analyzed in terms of species richness, abundance, size class distribution, and deciduousness and presence of thorns. The results showed that only a few species (mainly T. hainanensis and L. formosana) apparently dominated in the tropical monsoon forests of Hainan Island. The species richness and abundance for shrubs were higher in the TC than in the LC whereas the species richness, abundance and Shannon-Wiener index for trees were lower in the TC than in the LC. The two community types had no significant difference in species richness and abundance for all but the smallest size class, in which the TC had greater plant density and lower species richness than the LC. The species richness and abundance for trees, shrubs and woody plants with thorns were higher in the TC than in the LC except for lianas, which showed no apparent difference between the two community types. Judging by the community features, the TC is more of typical tropical monsoon forest than the LC in Hainan Island.%热带季雨林为海南岛的隐域性植被类型,分布在

  19. Asian Monsoon Failure and Megadrought During the Last Millennium

    Science.gov (United States)

    Cook, Edward R.; Anchukaitis, Kevin J.; Buckley, Brendan M.; D'Arrigo, Rosanne D.; Jacoby, Gordon C.; Wright, William E.

    2010-04-01

    The Asian monsoon system affects more than half of humanity worldwide, yet the dynamical processes that govern its complex spatiotemporal variability are not sufficiently understood to model and predict its behavior, due in part to inadequate long-term climate observations. Here we present the Monsoon Asia Drought Atlas (MADA), a seasonally resolved gridded spatial reconstruction of Asian monsoon drought and pluvials over the past millennium, derived from a network of tree-ring chronologies. MADA provides the spatiotemporal details of known historic monsoon failures and reveals the occurrence, severity, and fingerprint of previously unknown monsoon megadroughts and their close linkages to large-scale patterns of tropical Indo-Pacific sea surface temperatures. MADA thus provides a long-term context for recent monsoon variability that is critically needed for climate modeling, prediction, and attribution.

  20. Role of ocean heat content in boosting post-monsoon tropical storms over Bay of Bengal during La-Niña events

    Science.gov (United States)

    Bhowmick, Suchandra Aich; Agarwal, N.; Ali, M. M.; Kishtawal, C. M.; Sharma, Rashmi

    2016-11-01

    This study aims to analyze the role of ocean heat content in boosting the post-monsoon cyclonic activities over Bay of Bengal during La-Niña events. In strong La-Niña years, accumulated cyclone energy in Bay of Bengal is much more as compared to any other year. It is observed that during late June to October of moderate to strong La-Nina years, western Pacific is warmer. Sea surface temperature anomaly of western Pacific Ocean clearly indicates the presence of relatively warmer water mass in the channel connecting the Indian Ocean and Pacific Ocean, situated above Australia. Ocean currents transport the heat zonally from Pacific to South eastern Indian Ocean. Excess heat of the southern Indian Ocean is eventually transported to eastern equatorial Indian Ocean through strong geostrophic component of ocean current. By September the northward transport of this excess heat from eastern equatorial Indian Ocean to Bay of Bengal takes place during La-Nina years boosting the cyclonic activities thereafter.

  1. Tropical treeline dendroclimatology in Mexico

    Science.gov (United States)

    Biondi, F.

    2003-04-01

    Dendroclimatology in tropical areas is a relatively new enterprise, and extreme care is needed to provide quantitative calibration against instrumental data. Multi-century tree-ring records were recently developed from Pinus hartwegii trees growing at high elevation on Nevado de Colima, in the middle of the North American Monsoon region (Biondi, F. 2001. Ambio 30: 162-166). We present here three ongoing studies aimed at achieving the best possible calibration of tree growth response to climatic forcing. First, an automated weather station was installed in May 2001 within the forest where tree core samples were collected (3760 m elevation, 19°34.778' N latitude, 103°37.180' W longitude). Meteorological patterns are discussed in terms of atmospheric pressure, incoming solar radiation, air and soil temperature, relative humidity, soil moisture, wind speed and direction, and precipitation. Time scales range from hourly to seasonal, and shed light on variability of water supply at treeline in the tropics of North America. Second, automated electronic sensors for recording tree growth at half-hour intervals were installed at two sites located within a 1-km radius from the weather station. Data from this intensive monitoring experiment help define the length of the timberline growing season, are used to quantify the relationship with weather patterns at multiple time scales, and can test the response of annual tree growth to June precipitation. Third, monthly precipitation data for about 150 stations in Mexico were used to quantify spatio-temporal differences in the North American Monsoon region. Geostatistical techniques were applied to three indices of monsoon precipitation, namely the standardized difference between April and May, May and June, June and July precipitation. This objective classification of monsoon-affected land areas provides a useful backdrop for the evaluation of past changes in water cycle variability at the Nevado de Colima study area.

  2. Warm Indian Ocean, Weak Asian Monsoon

    Science.gov (United States)

    Koll Roxy, Mathew; Ritika, Kapoor; Terray, Pascal; Murtugudde, Raghu; Ashok, Karumuri; Nath Goswami, Buphendra

    2015-04-01

    There are large uncertainties looming over the status and fate of the South Asian monsoon in a changing climate. Observations and climate models have suggested that anthropogenic warming in the past century has increased the moisture availability and the land-sea thermal contrast in the tropics, favoring an increase in monsoon rainfall. In contrast, we notice that South Asian subcontinent experienced a relatively subdued warming during this period. At the same time, the tropical Indian Ocean experienced a nearly monotonic warming, at a rate faster than the other tropical oceans. Using long-term observations and coupled model experiments, we suggest that the enhanced Indian Ocean warming along with the suppressed warming of the subcontinent weaken the land-sea thermal contrast throughout the troposphere, dampen the monsoon Hadley circulation, and reduce the rainfall over South Asia. As a result, the summer monsoon rainfall during 1901-2012 shows a significant weakening trend over South Asia, extending from Pakistan through central India to Bangladesh.

  3. What drives cold-related excess mortality in a south Asian tropical monsoon climate-season vs. temperatures and diurnal temperature changes

    Science.gov (United States)

    Burkart, Katrin; Kinney, Patrick L.

    2016-12-01

    Despite the tropical climate which is characterized by generally high temperatures and persistent mild temperatures during the winter season, Bangladesh, along with many other tropical countries, experiences strong winter and cold-related excess mortality. The objective of this paper was to analyse the nature of these cold effects and understand the role of season vs. temperature and diurnal changes in temperature. For approaching these questions, we applied different Poisson regression models. Temperature as well as diurnal temperature range (DTR) were considered as predictor variables. Different approaches to seasonality adjustment were evaluated and special consideration was given to seasonal differences in atmospheric effects. Our findings show that while seasonality adjustment affected the magnitude of cold effects, cold-related mortality persisted regardless the adjustment approach. Strongest effects of low temperatures were observed at the same day (lag 1) with an increase of 1.7% (95% CI = 0.86-2.54%) per 1 °C decrease in temperature during the winter season. Diurnal temperature affected mortality with increasing levels at higher ranges. Mortality increased with 0.97% (95% CI = 0.17-1.75%) when looking at the entire season, but effects of DTR were not significant during winter when running a seasonal model. Different from effects observed in the mid-latitudes, cold effects in Bangladesh occurred on a very short time scale highlighting the role of temperature versus season. Insufficient adaptation with regard to housing and clothing might lead to such cold-related increases in mortality despite rather moderate temperature values. Although the study did not demonstrate an effect of DTR during the cold season, the strong correlation with (minimum) temperature might cause a multicollinearity problem and effects are difficult to attribute to one driver.

  4. Variations of Indian monsoon precipitation during the last 32 kyr reflected in the surface hydrography of the Western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Govil, P.; Naidu, P.D.

    (Pierrehumbert, 2000). Furthermore, a decrease in Asian monsoon activity during stadials was related to less convective activity in the monsoon regions (Wang et al., 2001), which supports the concept that tropical convection and monsoon strength are related.... Climate Dynamics 12, 213–225. Pierrehumbert, R.T., 2000. Climate change and the tropical Pacific: The sleeping dragon wakes. Proceedings of National Academy of sciences 97, 1355-1358. Prell, W.L., 1984. Variation of monsoonal upwelling: a response...

  5. Observations of the temporal variability in aerosol properties and their relationships to meteorology in the summer monsoonal South China Sea/East Sea: the scale-dependent role of monsoonal flows, the Madden-Julian Oscillation, tropical cyclones, squall lines and cold pools

    Science.gov (United States)

    Reid, J. S.; Lagrosas, N. D.; Jonsson, H. H.; Reid, E. A.; Sessions, W. R.; Simpas, J. B.; Uy, S. N.; Boyd, T. J.; Atwood, S. A.; Blake, D. R.; Campbell, J. R.; Cliff, S. S.; Holben, B. N.; Holz, R. E.; Hyer, E. J.; Lynch, P.; Meinardi, S.; Posselt, D. J.; Richardson, K. A.; Salinas, S. V.; Smirnov, A.; Wang, Q.; Yu, L.; Zhang, J.

    2015-02-01

    In a joint NRL/Manila Observatory mission, as part of the Seven SouthEast Asian Studies program (7-SEAS), a 2-week, late September 2011 research cruise in the northern Palawan archipelago was undertaken to observe the nature of southwest monsoonal aerosol particles in the South China Sea/East Sea (SCS/ES) and Sulu Sea region. Previous analyses suggested this region as a receptor for biomass burning from Borneo and Sumatra for boundary layer air entering the monsoonal trough. Anthropogenic pollution and biofuel emissions are also ubiquitous, as is heavy shipping traffic. Here, we provide an overview of the regional environment during the cruise, a time series of key aerosol and meteorological parameters, and their interrelationships. Overall, this cruise provides a narrative of the processes that control regional aerosol loadings and their possible feedbacks with clouds and precipitation. While 2011 was a moderate El Niño-Southern Oscillation (ENSO) La Niña year, higher burning activity and lower precipitation was more typical of neutral conditions. The large-scale aerosol environment was modulated by the Madden-Julian Oscillation (MJO) and its associated tropical cyclone (TC) activity in a manner consistent with the conceptual analysis performed by Reid et al. (2012). Advancement of the MJO from phase 3 to 6 with accompanying cyclogenesis during the cruise period strengthened flow patterns in the SCS/ES that modulated aerosol life cycle. TC inflow arms of significant convection sometimes span from Sumatra to Luzon, resulting in very low particle concentrations (minimum condensation nuclei CN elevated carbon monoxide levels were occasionally observed suggesting passage of polluted air masses whose aerosol particles had been rained out. Conversely, two drier periods occurred with higher aerosol particle concentrations originating from Borneo and Southern Sumatra (CN > 3000 cm-3 and non-sea-salt PM2.5 10-25 μg m-3). These cases corresponded with two different

  6. Tropical Indian Ocean response to the decay phase of El Niño in a coupled model and associated changes in south and east-Asian summer monsoon circulation and rainfall

    Science.gov (United States)

    Chowdary, Jasti S.; Parekh, Anant; Kakatkar, Rashmi; Gnanaseelan, C.; Srinivas, G.; Singh, Prem; Roxy, M. K.

    2016-08-01

    This study investigates the response of tropical Indian Ocean (TIO) sea surface temperature (SST) to El Niño decay phase and its impacts on South and East Asian summer monsoon in the National Centers for Environmental Prediction Climate Forecast System version 2 free run. The TIO basin-wide warming induced by El Niño at its peak phase (winter; DJF) and next spring (MAM + 1) are reasonably well captured by the model but with weak magnitude. This TIO basin-wide SST warming persists until summer (JJA + 1) and exert strong impact on summer monsoon rainfall and circulation as revealed in the observations. However, TIO SST anomalies are very weak in the model during the El Niño decaying summers. Though El Niño decay is delayed by 2 months in the model, decay of TIO SST warming is faster than the observations. Anomalous latent heat loss from ocean and a feeble southern TIO Rossby waves associated with weak wind response to El Niño are mainly accountable for rapid decay of TIO SST warming by mid-summer in the model. This suggests that JJA + 1 TIO SST response to El Niño decay phase in the model is poorly represented. The model is able to capture the SST anomalies associated with the northwest Pacific anticyclone at the peak phase of El Niño but fail to maintain that during the decay phase in MAM + 1 and JJA + 1. It is found that precipitation and circulation anomalies associated with TIO SST warming over the South and East Asian regions are disorganized in the model during the decay phase of El Niño. Rainfall anomalies over the southwest TIO, west coast of India, northern flank of northwest Pacific anticyclone and over Japan in JJA + 1 are poorly represented by the model. Analysis of lower troposphere stream function and rotational wind component reveals that northwest Pacific anticyclone shifted far eastward to the date line in the model during JJA + 1 unlike in the observations. Anomalous divergence observed over the western TIO and convergence in the northwest

  7. Coherent monsoonal changes in the northern tropics revealed by Chadian lakes (L. Chad and Yoa) sedimentary archives during the African Humid Period

    Science.gov (United States)

    Sylvestre, Florence; Kroepelin, Stefan; Pierre, Deschamps; Christine, Cocquyt; Nicolas, Waldmann; Kazuyo, Tachikawa; Amaral Paula, Do; Doriane, Delanghe; Guillaume, Jouve; Edouard, Bard; Camille, Bouchez; Jean-Claude, Doumnang; Jean-Charles, Mazur; Martin, Melles; Guillemette, Menot; Frauke, Rostek; Nicolas, Thouveny; Volkner, Wennrich

    2016-04-01

    In northern African tropics, it is now well established that the Last Glacial Maximum (LGM) was extremely dry followed by a wetter Holocene. Numerous palaeolake records reveal a fairly consistent pattern of a moister early Holocene resulting in a green Sahara followed by the onset of aridification about 4000 years ago. These palaeoenvironmental conditions are deciphered from several continental records distributed over the sub-Saharan zone and including diverse environments. However, pronounced differences in the timing and amplitude of these moisture changes inferred from sedimentary records point to both regional climatic variability change and site-specific influences of local topographic-hydrogeological factors which biased the evolution of water balance reconstructed from individual lacustrine archives. Here we present hydrological reconstructions from Chadian lakes, i.e. Lake Chad (c. 13°N) and Lake Yoa (19°N). Because of their location, both records allow to reconstruct lake level fluctuations and environmental changes according to a gradient from Sahelian to Saharan latitudes. Whereas Lake Chad is considered as a good sensor of climatic changes because of its large drainage basin covering 610,000 km2 in the Sudanian belt, Lake Yoa logs the northern precipitation changes in the Sahara. Combining sedimentological (laser diffraction grain size) and geochemical (XRF analysis) data associated with bio-indicators proxies (diatoms, pollen), we compare lake-level fluctuations and environmental changes during the last 12,000 years. After the hyperarid Last Glacial Maximum period during which dunes covered the Lake Chad basin, both lake records indicate an onset of more humid conditions between 12.5-11 ka cal BP. These resulted in lacustrine transgressions approaching their maximum extension at c. 10.5 ka cal BP. The lacustrine phase was probably interrupted by a relatively short drying event occurring around 8.2 ka cal BP which is well-defined in Lake Yoa by

  8. Effects of the East Asian Summer Monsoon on Tropical Cyclone Genesis over the South China Sea on an Interdecadal Time Scale

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; ZHOU Wen; LI Chongyin; WANG Dongxiao

    2012-01-01

    Tropical cyclone (TC) genesis over the South China Sea (SCS) during 1965-2004 was analyzed.The locations of TC genesis display evident seasonal changes,with the mean position of formation situated north of 15°N in summer (June-July-August) and south of 15°N in autumn (September-October November).The TC genesis in summer underwent dramatic interdecadal variations,with more and less TC frequency during 1965-1974/1995-2004 and 1979-1993,respectively.In contrast,a significant interannual variation of TC genesis with a period of ~4 years was observed in autumn.This study investigated the relationship of SCS TC genesis to the East Asian jet stream (EAJS) and the western North Pacific subtropical high (WNPSH) on an interdecadal time scale.Analysis and comparison of the impacts of the EAJS and the WNPSH on vertical wind shear changes indicate that changes in the WNPSH and EAJS intensity rather than EAJS meridional location are responsible for changes in TC genesis on an interdecadal time scale.Corresponding to a weaker EAJS,anomalous Rossby wave energy at upper levels displays equatorward propagation at midlatitudes and poleward propagation in the subtropics.This induces anomalous convergence and divergence of wave activity fluxes in East Asia around 30°N and the SCS,respectively.The anomalous divergence of wave activity fluxes reduces easterlies at upper levels over the SCS,which is favorable to TC genesis.

  9. The contrasting features of Asian summer monsoon during surplus and deficient rainfall over India

    Science.gov (United States)

    Raju, P. V. S.; Mohanty, U. C.; Rao, P. L. S.; Bhatla, R.

    2002-12-01

    An endeavour is made to distinguish the mean summer monsoon features during surplus and deficient monsoon seasons. Based on all-India summer monsoon rainfall, over 42 years (1958-99), seven surplus and ten deficient monsoon seasons are identified. Making use of daily averaged (00 Z and 12 Z) reanalysis data sets from the National Center for Environmental Prediction-National Center for Atmospheric Research for the corresponding surplus and deficient monsoon seasons, the mean circulation characteristics and large-scale energetics are examined.The circulation features denote that the cross equatorial flow, low-level jet and tropical easterly jet are stronger during a surplus monsoon. Further, strong Tibetan anticyclonic flow characterizes a surplus monsoon. The large-scale balances of kinetic energy, heat and moisture show a significantly large quantity of diabatic heating, adiabatic generation of kinetic energy, and horizontal convergence of heat and moisture during the surplus monsoon season compared with the deficient state. The regions with statistically significant difference between surplus and deficient monsoon seasons are delineated by a Student's t-test at the 95% confidence level. The remarkable aspect noticed in this study is that the Arabian Sea branch of the monsoon circulation is more vigorous during a surplus monsoon season, whereas the eastern Bay of Bengal branch is stronger during a deficient monsoon. The various large-scale budget terms of kinetic energy, heat and moisture are found to be consistent and in agreement with the seasonal monsoon activity over India.

  10. In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Kunkel, D.; Weigel, R.; de Reus, M.; Schlager, H.; Roiger, A.; Voigt, C.; Hoor, P.; Curtius, J.; Krämer, M.; Schiller, C.; Volk, C. M.; Homan, C. D.; Fierli, F.; di Donfrancesco, G.; Ulanovsky, A.; Ravegnani, F.; Sitnikov, N. M.; Viciani, S.; D'Amato, F.; Shur, G. N.; Belyaev, G. V.; Law, K. S.; Cairo, F.

    2011-01-01

    In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS) ice crystal number concentrations of up to 8.3 cm-3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m-3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm-3, an ice water content of 2.3 × 10-4 g m-3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm-3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10-4 g m-3. All known in-situ measurements of subvisual tropopause cirrus are compared and an

  11. In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Science.gov (United States)

    Frey, W.; Borrmann, S.; Kunkel, D.; Weigel, R.; de Reus, M.; Schlager, H.; Roiger, A.; Voigt, C.; Hoor, P.; Curtius, J.; Krämer, M.; Schiller, C.; Volk, C. M.; Homan, C. D.; Fierli, F.; di Donfrancesco, G.; Ulanovsky, A.; Ravegnani, F.; Sitnikov, N. M.; Viciani, S.; D'Amato, F.; Shur, G. N.; Belyaev, G. V.; Law, K. S.; Cairo, F.

    2011-06-01

    In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS) clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100) and a Cloud Imaging Probe (CIP) operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS). Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6) cm-3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m-3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm-3, an ice water content of 2.3 × 10-4 g m-3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm. Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm-3 with maximum particle sizes of 130 μm, and the mean ice water content was about 1.4 × 10-4 g m-3. All known in situ measurements of subvisual tropopause cirrus are compared

  12. ON THE PROCESS OF SUMMER MONSOON ONSET OVER EAST ASIA

    Institute of Scientific and Technical Information of China (English)

    陈隆勋; 李薇; 赵平; 陶诗言

    2001-01-01

    Using daily observational rainfall data covered 194 stations of China from 1961 to 1995 and NCEP model analyzed pentad precipitation data of global grid point from 1979 to 1997, the distribution of onset date of rainy season over Asian area from spring to summer is studied in this paper. The analyzed results show that there exist two stages of rainy season onset over East Asian region from spring to summer rainy season onset accompanying subtropical monsoon and tropical monsoon respectively. The former rain belt is mainly formed by the convergence of cold air and the recurved southwesterly flow from western part of subtropical high and westerly flow from the so-called western trough of subtropical region occurring during winter to spring over South Asia. The latter is formed in the process of subtropical monsoon rain belt over inshore regions of South China Sea originally coming from south of Changjiang (Yangtze) River Basin advancing with northward shift of subtropical high after the onset of tropical monsoon over South China Sea. The pre-flood rainy season over South China region then came into mature period and the second peak of rainfall appeared. Meiyu, the rainy season over Changjiang-Huaihe River Basin and North China then formed consequently. The process of summer tropical monsoon onset over South China Sea in 1998 is also discussed in this paper. It indicated that the monsoon during summer tropical monsoon onset over South China Sea is the result of the westerly flow over middle part of South China Sea,which is from the new generated cyclone formed in north subtropical high entering into South China Sea, converged with the tropical southwesterly flow recurved by the intensified cross-equatorial flow.

  13. A novel electronic data collection system for large-scale surveys of neglected tropical diseases.

    Directory of Open Access Journals (Sweden)

    Jonathan D King

    Full Text Available BACKGROUND: Large cross-sectional household surveys are common for measuring indicators of neglected tropical disease control programs. As an alternative to standard paper-based data collection, we utilized novel paperless technology to collect data electronically from over 12,000 households in Ethiopia. METHODOLOGY: We conducted a needs assessment to design an Android-based electronic data collection and management system. We then evaluated the system by reporting results of a pilot trial and from comparisons of two, large-scale surveys; one with traditional paper questionnaires and the other with tablet computers, including accuracy, person-time days, and costs incurred. PRINCIPLE FINDINGS: The electronic data collection system met core functions in household surveys and overcame constraints identified in the needs assessment. Pilot data recorders took 264 (standard deviation (SD 152 sec and 260 sec (SD 122 sec per person registered to complete household surveys using paper and tablets, respectively (P = 0.77. Data recorders felt a lack of connection with the interviewee during the first days using electronic devices, but preferred to collect data electronically in future surveys. Electronic data collection saved time by giving results immediately, obviating the need for double data entry and cross-correcting. The proportion of identified data entry errors in disease classification did not differ between the two data collection methods. Geographic coordinates collected using the tablets were more accurate than coordinates transcribed on a paper form. Costs of the equipment required for electronic data collection was approximately the same cost incurred for data entry of questionnaires, whereas repeated use of the electronic equipment may increase cost savings. CONCLUSIONS/SIGNIFICANCE: Conducting a needs assessment and pilot testing allowed the design to specifically match the functionality required for surveys. Electronic data collection

  14. Asian monsoon variability, cyclicities, and forcing mechanisms

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.

    meridonal over turning with the lower circulation limb being the strong low-level southwesterly summer monsoon winds of the western Indian Ocean. The convergence of these air masses and their uplift due to heating and orographic steering cause seasonal... is the dominant climatic feature of the Indian Ocean tropics and the adjacent continent. Boreal summer is characterized by high solar radiation that causes intense sensible and latent heating over northern India and Tibet Plateau. This pattern of heating...

  15. Reappraisal of Asian Summer Monsoon Indices and the Long-Term Variation of Monsoon

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Webster and Yang monsoon index (WYI)-the zonal wind shear between 850 and 200 hPa was calculated and modified on the basis of NCEP/NCAR reanalysis data. After analyzing the circulation and divergence fields of 150-100 and 200 hPa, however, we found that the 200-hPa level could not reflect the real change of the upper-tropospheric circulation of Asian summer monsoon, especially the characteristics and variation of the tropical easterly jet which is the most important feature of the upper-tropospheric circulation. The zonal wind shear U850-U(150+100) is much larger than U850-U200, and thus it can reflect the strength of monsoon more appropriately. In addition, divergence is the largest at 150 hPa rather than 200 hPa, so 150 hPa in the upper-troposphere can reflect the coupling of the monsoon system. Therefore,WYI is redefined as DHI, i.e., IDH=U*850 - U*(150+100), which is able to characterize the variability of not only the intensity of the center of zonal wind shear in Asia, but also the monsoon system in the upper and lower troposphere. DHI is superior to WYI in featuring the long-term variation of Asian summer monsoon as it indicates there is obvious interdecadal variation in the Asian summer monsoon and the climate abrupt change occurred in 1980. The Asian summer monsoon was stronger before 1980 and it weakened after then due to the weakening of the easterly in the layer of 150-100 hPa, while easterly at 200 hPa did not weaken significantly. After the climate jump year in general, easterly in the upper troposphere weakened in Asia, indicating the weakening of summer monsoon; the land-sea pressure difference and thermal difference reduced, resulting in the weakening of monsoon; the corresponding upper divergence as well as the water vapor transport decreased in Indian Peninsula, central Indo-China Peninsula, North China, and Northeast China, indicating the weakening of summer monsoon as well. The difference between NCEP/NCAR and ERA-40 reanalysis data in

  16. In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Directory of Open Access Journals (Sweden)

    W. Frey

    2011-06-01

    Full Text Available In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100 and a Cloud Imaging Probe (CIP operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS. Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.

    Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130

  17. In-situ measurements of tropical cloud properties in the West African monsoon: upper tropospheric ice clouds, mesoscale convective system outflow, and subvisual cirrus

    Directory of Open Access Journals (Sweden)

    W. Frey

    2011-01-01

    Full Text Available In-situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100 and a Cloud Imaging Probe (CIP operated aboard the Russian high altitude research aircraft M-55 ''Geophysica'' with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS. Two or three modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionate more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3, and satellite images clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow (developing MCS ice crystal number concentrations of up to 8.3 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.

    Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130 μm, and the mean

  18. Global surface temperature signals in pine ring-width chronologies from southern monsoon Asia

    Science.gov (United States)

    Buckley, B. M.; Cook, B. I.; Bhattacharyya, A.; Dukpa, D.; Chaudhary, V.

    2005-10-01

    We analyze Pinus ring width chronologies from three locations across monsoon Asia (Bhutan, India, and Thailand) where climate is dominated by the southwest monsoon in the boreal summer. We compare these records to global surface temperatures for the past 150 years, shifting the correlations through three seasonal averages: two seasons preceding the monsoon (Dec-Feb and Mar-May), and the monsoon season itself (Jun-Sep). Clear patterns emerge for each of the chronologies that highlight links to areas of known influence on the Asian monsoon: the Indian Ocean, the tropical eastern Pacific Ocean, and the high-latitude Asian landmass. The Thai and Indian chronologies are from the same species (P. merkusii), and show a strong correlation with tropical Indian and Pacific Ocean bands. The Bhutan chronology (P. Wallichiana) is most strongly linked to climate over the north Pacific and Asian landmass. All of these correlations are strongest in seasons preceding the summer monsoon.

  19. Monsoons, history of

    Digital Repository Service at National Institute of Oceanography (India)

    Niitsuma, N.; Naidu, P.D.

    The evolution of the Asian monsoon started at around 9.5 Ma, in response to the uplift of the Himalayas. The monsoonal intensity reached its maximum at around 5 Ma, and from that time the associated easterly trade winds caused intense upwelling...

  20. Asian Eocene monsoons as revealed by leaf architectural signatures

    Science.gov (United States)

    Spicer, Robert A.; Yang, Jian; Herman, Alexei B.; Kodrul, Tatiana; Maslova, Natalia; Spicer, Teresa E. V.; Aleksandrova, Galina; Jin, Jianhua

    2016-09-01

    The onset and development of the Asian monsoon systems is a topic that has attracted considerable research effort but proxy data limitations, coupled with a diversity of definitions and metrics characterizing monsoon phenomena, have generated much debate. Failure of geological proxies to yield metrics capable of distinguishing between rainfall seasonality induced by migrations of the Inter-tropical Convergence Zone (ITCZ) from that attributable to topographically modified seasonal pressure reversals has frustrated attempts to understand mechanisms underpinning monsoon development and dynamics. Here we circumvent the use of such single climate parameter metrics in favor of detecting directly the distinctive attributes of different monsoon regimes encoded in leaf fossils. Leaf form adapts to the prevailing climate, particularly under the extreme seasonal stresses imposed by monsoons, so it is likely that fossil leaves carry a unique signature of past monsoon regimes. Leaf form trait spectra obtained from fossils from Eocene basins in southern China were compared with those seen in modern leaves growing under known climate regimes. The fossil leaf trait spectra, including those derived from previously published fossil floras from northwestern India, were most similar to those found in vegetation exposed to the modern Indonesia-Australia Monsoon (I-AM), which is largely a product of seasonal migrations of the ITCZ. The presence of this distinctive leaf physiognomic signature suggests that although a monsoon climate existed in Eocene time across southern Asia the characteristics of the modern topographically-enhanced South Asia Monsoon had yet to develop. By the Eocene leaves in South Asia had become well adapted to an I-AM type regime across many taxa and points to the existence of a pervasive monsoon climate prior to the Eocene. No fossil trait spectra typical of exposure to the modern East Asia monsoon were seen, suggesting the effects of this system in southern

  1. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Guoxiong; Liu, Yimin; Duan, Anmin; Bao, Qing [Chinese Academy of Sciences, State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Beijing (China); Dong, Buwen [University of Reading, Department of Meteorology, National Centre for Atmospheric Science, Reading (United Kingdom); Liang, Xiaoyun [China Meteorological Administration, National Climate Center, Beijing (China); Yu, Jingjing [China Meteorological Administration, National Meteorological Information Center, Beijing (China)

    2012-09-15

    Numerical experiments with different idealized land and mountain distributions are carried out to study the formation of the Asian monsoon and related coupling processes. Results demonstrate that when there is only extratropical continent located between 0 and 120 E and between 20/30 N and the North Pole, a rather weak monsoon rainband appears along the southern border of the continent, coexisting with an intense intertropical convergence zone (ITCZ). The continuous ITCZ surrounds the whole globe, prohibits the development of near-surface cross-equatorial flow, and collects water vapor from tropical oceans, resulting in very weak monsoon rainfall. When tropical lands are integrated, the ITCZ over the longitude domain where the extratropical continent exists disappears as a consequence of the development of a strong surface cross-equatorial flow from the winter hemisphere to the summer hemisphere. In addition, an intense interaction between the two hemispheres develops, tropical water vapor is transported to the subtropics by the enhanced poleward flow, and a prototype of the Asian monsoon appears. The Tibetan Plateau acts to enhance the coupling between the lower and upper tropospheric circulations and between the subtropical and tropical monsoon circulations, resulting in an intensification of the East Asian summer monsoon and a weakening of the South Asian summer monsoon. Linking the Iranian Plateau to the Tibetan Plateau substantially reduces the precipitation over Africa and increases the precipitation over the Arabian Sea and the northern Indian subcontinent, effectively contributing to the development of the South Asian summer monsoon. (orig.)

  2. Elucidation of the tidal influence on bacterial populations in a monsoon influenced estuary through simultaneous observations

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Eswaran, R.; Gardade, L.; Kuchi, N.; Mapari, K.E.; Naik, S.D.; Anil, A.C.

    The influence of tides on bacterial populations in a monsoon influenced tropical estuary was assessed through fine resolution sampling (1 to 3 h) during spring and neap tides from mouth to the freshwater end at four stations during pre...

  3. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  4. Measuring the monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R.

    of the monsoons, there are also fluctuations arising from human activities. Most scientists believe that large-scale deforestation and burning of fossil fuels will alter global climatic patterns significantly. For the sake of those people whose lives...

  5. Onset of Indian Summer Monsoon: a retrospective analysis

    Science.gov (United States)

    Sruthi, S.; Mrudula, G.

    2016-05-01

    The monsoon onset over Kerala is considered as the beginning of rain fall over India and it is the end of hot summer. Different criteria have been used to define the monsoon onset over Kerala, with the one given by India Meteorological Department taken as the standard criteria. The analysis of the past 20 years of observations shows that the variables during the monsoon onset do not behave in the same way always. The purpose of this paper is to analyses the monsoon onset phases and to find possible reasons behind the variable nature of the monsoon onset. Different meteorological parameters like precipitation, outgoing long wave radiation (OLR), winds, air temperature, and specific humidity at different levels are analyzed for the same. Research has been done on various distinct features of monsoon such as Low Level Jet (LLJ), Tropical Easterly Jet (TEJ), monsoon trough, and depressions etc., during the onset phase. The analysis showed that in some years the strength of LLJ is lesser compared to the normal years. It is also seen that in some years the wind flow pattern is different from that observed during a standard onset year. The results of these analyses will be presented in detail in the paper.

  6. Quantifying pollution transport from the Asian monsoon anticyclone into the lower stratosphere

    Directory of Open Access Journals (Sweden)

    F. Ploeger

    2017-06-01

    Full Text Available Pollution transport from the surface to the stratosphere within the Asian monsoon circulation may cause harmful effects on stratospheric chemistry and climate. Here, we investigate air mass transport from the monsoon anticyclone into the stratosphere using a Lagrangian chemistry transport model. We show how two main transport pathways from the anticyclone emerge: (i into the tropical stratosphere (tropical pipe, and (ii into the Northern Hemisphere (NH extratropical lower stratosphere. Maximum anticyclone air mass fractions reach around 5 % in the tropical pipe and 15 % in the extratropical lowermost stratosphere over the course of a year. The anticyclone air mass fraction correlates well with satellite hydrogen cyanide (HCN and carbon monoxide (CO observations, confirming that pollution is transported deep into the tropical stratosphere from the Asian monsoon anticyclone. Cross-tropopause transport occurs in a vertical chimney, but with the pollutants transported quasi-horizontally along isentropes above the tropopause into the tropics and NH.

  7. On breaks of the Indian monsoon

    Indian Academy of Sciences (India)

    Sulochana Gadgil; P V Joseph

    2003-12-01

    , there are three or four active-break cycles in a season according to Webster et al (1998) which implies a time scale of about 40 days for which Goswami and Mohan (2000), and Annamalai and Slingo (2001) have studied breaks and active minus break fluctuations. On the other hand, neither the traditional breaks (Ramamurthy 1969; and De et al 1998) nor the rainbreaks occur every year. This suggests that the `breaks' in these studies are weak spells of the intraseasonal variation of the monsoon, which occur every year. We have derived the OLR and circulation patterns associated with rainbreaks and active spells and compared them with the patterns associated with breaks/active minus break spells from these studies. Inspite of differences in the patterns over the Indian region, there is one feature which is seen in the OLR anomaly patterns of breaks identified on the basis of different criteria as well as the rainbreaks identified in this paper viz., a quadrapole over the Asia-west Pacific region arising from anomalies opposite (same) in sign to those over the Indian region occurring over the equatorial Indian Ocean and northern tropical (equatorial) parts of the west Pacific. Thus it appears that this quadrapole is a basic feature of weak spells of the intraseasonal variation over the Asia-west Pacific region. Since the rainbreaks are intense weak spells, this basic feature is also seen in the composite patterns of these breaks. We find that rainbreaks (active spells) are also associated with negative (positive) anomalies over a part of the east Pacific suggesting that the convection over the Indian region is linked to that over the east Pacific not only on the interannual scale (as evinced by the link between the Indian summer monsoon rainfall and ENSO) but on the intraseasonal scale as well.

  8. Forcing mechanism of the Pleistocene east Asian monsoon variations in a phase perspective

    Institute of Scientific and Technical Information of China (English)

    TIAN; Jun; WANG; Pinxian; CHENG; Xinrong; WANG; Rujian; SU

    2005-01-01

    The deep sea records from the ODP Sites 1143 and 1144 in the northern and southern South China Sea (SCS), including foraminiferal δ18O and δ13C, Opal% and pollen percentage, reveal that the variations of the east Asian monsoon have been closely correlated with the variations of the Earth's orbital parameters (eccentricity, obliquity and precession) and the global ice volume on orbital scale. All the monsoonal proxies show strong 100 ka, 41 ka and 23 ka cycles. Although G. ruber δ13C of Site 1143 is coherent with the ETP (ETP= normalized (eccentricity + obliquity-precession) at eccentricity, obliquity and precession bands, most of the coherent relationship focuses on the precession band, and the other monsoonal proxies are coherent with the ETP only at the precession band, which indicate that precession dominates the Pleistocene tropical climate changes. The phase relationship of the monsoonal proxies with the foraminiferal δ18O implies that the global ice volume changes have played a significant role in modulating the east Asian monsoon climate, at least dominating the winter monsoon. This forcing mechanism of the east Asian monsoon is apparently different from that of the Indian ocean monsoon. The variations of the east Asian monsoon at the precession band, at least that of the winter monsoon, have been controlled not only by the sensible heating but also by the latent heating of the surface water in the South China Sea.

  9. Recent change of the global monsoon precipitation (1979-2008)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Liu, Jian [Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Nanjing (China); Kim, Hyung-Jin [Japan Agency for Marine-Earth Science and Technology, Research Institute for Global Change, Yokohama, Kanagawa (Japan); Webster, Peter J. [Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, GA (United States); Yim, So-Young [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States)

    2012-09-15

    The global monsoon (GM) is a defining feature of the annual variation of Earth's climate system. Quantifying and understanding the present-day monsoon precipitation change are crucial for prediction of its future and reflection of its past. Here we show that regional monsoons are coordinated not only by external solar forcing but also by internal feedback processes such as El Nino-Southern Oscillation (ENSO). From one monsoon year (May to the next April) to the next, most continental monsoon regions, separated by vast areas of arid trade winds and deserts, vary in a cohesive manner driven by ENSO. The ENSO has tighter regulation on the northern hemisphere summer monsoon (NHSM) than on the southern hemisphere summer monsoon (SHSM). More notably, the GM precipitation (GMP) has intensified over the past three decades mainly due to the significant upward trend in NHSM. The intensification of the GMP originates primarily from an enhanced east-west thermal contrast in the Pacific Ocean, which is coupled with a rising pressure in the subtropical eastern Pacific and decreasing pressure over the Indo-Pacific warm pool. While this mechanism tends to amplify both the NHSM and SHSM, the stronger (weaker) warming trend in the NH (SH) creates a hemispheric thermal contrast, which favors intensification of the NHSM but weakens the SHSM. The enhanced Pacific zonal thermal contrast is largely a result of natural variability, whilst the enhanced hemispherical thermal contrast is likely due to anthropogenic forcing. We found that the enhanced global summer monsoon not only amplifies the annual cycle of tropical climate but also promotes directly a ''wet-gets-wetter'' trend pattern and indirectly a ''dry-gets-drier'' trend pattern through coupling with deserts and trade winds. The mechanisms recognized in this study suggest a way forward for understanding past and future changes of the GM in terms of its driven mechanisms. (orig.)

  10. Dynamics of the Asian Summer Monsoon Onset and the Tibetan Plateau Impacts

    Science.gov (United States)

    Yimin, Liu; Guoxiong, Wu; Boqi, Liu; Suling, Ren; Yue, Guan

    2015-04-01

    The formation and development of the South Asian High (SAH) in early spring over South China Sea (SCS) provides upper tropospheric pumping over the Southeast Bay of Bengal (BOB) and leads to the BOB monsoon onset. The strong latent heat release of the BOB monsoon results in the northeastward unstable development of the SAH which contributes to the SCS monsoon onset. The zonal asymmetric unstable development of the SAH after the SCS monsoon onset leads to the Indian summer monsoon onset. In spring over South BOB, usually there is vortex development preceding the Asian summer monsoon onset. The rapid development of the BOB monsoon onset vortex is due to the local strong air-sea interaction, which is modulated by the Tibetan Plateau (TP) forcing and the land-sea thermal contrast across South Asia. Strong heating from BOB monsoon generates stationary Rossby-wave in lower troposphere, producing weak cold advection and convection over North SCS. Development of surface BOB cyclone provides Northeastward water vapor transport towards North SCS where convection develops. Before the Indian Summer Monsoon (ISM) onset, the North- South land- sea thermal contrast increases eastward remarkably on the southeast of Arabian Sea. Air traveling eastward along the near- surface tropical westerly jet gets northward accelerated, forcing a lower tropospheric convergence near and to the north of the jet stream. Such a forced convection development occurs intensively over the southeastern Arabian Sea and southwestern India, contributing to the ISM onset.

  11. Research on the cluster of tropical cyclogenesis in the South China Sea-western north Pacific monsoon trough Ⅱ.Mechanism of the influence%南海-西北太平洋季风槽中热带气旋群发的研究Ⅱ.影响机制研究

    Institute of Scientific and Technical Information of China (English)

    高建芸; 吕心艳; 张秀芝; 江志红

    2011-01-01

    By using the western north Pacific tropical cyclone(TC)data, OLR data and the NCEP/DOE AMIP- Ⅱ reanalysis daily data during 1979-2005, the possible mechanism of the cluster of TCs in the South China Sea ( SCS) - western north Pacific monsoon trough (CTC) are discussed, the main results are as follows: (1)During May-October, the intensity and pattern of monsoon trough are closely related to the strength of Somalia's cross-equatorial flow, the location of western north Pacific subtropical high (WNPSH) and the intensity of the Southern Hemisphere Australian winter monsoon.Enhanced intensity of monsoon trough in different regions may lead to CTC.(2) CTC and the low-frequency oscillations of monsoon trough are closely connected..the CTC often occurs when the monsoon trough is in the active phase both of 10~20 and 30~60 d oscillations.(3) CTC is affected by intensity and pattern of monsoon trough which are related to the location of WNPSH, the intra-seasonal oscillation phases of cross-equatorial flows over the Somalia and western Pacific.It supplies favorable conditions to CTC when WNPSH retreats to eastward or is in the north of mean and the cross-equatorial flows enhance either over Somalia or the western Pacific, as well as enhance in both of them.When WNPSH is west and south to the normal, the cross-equatorial flows enhance over Somalia area or the western Pacific, the monsoon trough is located southward leading to less CTC.(4) Typical cases analysis shows that CTC exhibits inter-annual variation due to the different convection and moisture conditions in the main TC generating areas which are caused by the different intensity and pattern of monsoon trough.%应用1979-2005年西北太平洋热带气旋(TC)资料和OLR,NCEP/DOE AMIP-Ⅱ再分析逐日资料,探讨南海-西北太平洋季风槽中TC(简称MTTC)群发的可能机理,得到以下几点结论:(1)5~10月季风槽强度及形态与索马里越赤道气流的强弱、副高的位置以及

  12. Monsoon oscillations regulate fertility of the Red Sea

    KAUST Repository

    Raitsos, Dionysios E.

    2015-02-16

    Tropical ocean ecosystems are predicted to become warmer, more saline, and less fertile in a future Earth. The Red Sea, one of the warmest and most saline environments in the world, may afford insights into the function of the tropical ocean ecosystem in a changing planet. We show that the concentration of chlorophyll and the duration of the phytoplankton growing season in the Red Sea are controlled by the strength of the winter Arabian monsoon (through horizontal advection of fertile waters from the Indian Ocean). Furthermore, and contrary to expectation, in the last decade (1998-2010) the winter Red Sea phytoplankton biomass has increased by 75% during prolonged positive phases of the Multivariate El Niño-Southern Oscillation Index. A new mechanism is reported, revealing the synergy of monsoon and climate in regulating Red Sea greenness. © 2015 The Authors.

  13. Electron impact ionization technique on the study of terpenes and related species in French Guiana tropical forest

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Paula Regina Corain; Bustillos, Oscar W.V., E-mail: paulinhacorain@usp.br, E-mail: ovega@ipen.br [Instituto de Pesquisa Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Guenther, Alex B.; Turnipseed, Andrew A.; Emmons, Louisa, E-mail: guenther@ucar.edu [Biosphere Atmosphere Interaction Group, Atmosphere Chemistry Division of National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Bonal, Damien; Burban, Benoit; Siebicke, Lukas, E-mail: lukas.siebicke@ecofog.gf [Institut National de la Recherche Agronomique (INRA-UMR EEF), Nancy (France); Serca, Dominique, E-mail: dominique.serca@aero.obs-mip.fr [Universite Paul Sabatier (UPS), Toulouse (France). Laboratoire d' Aerologie

    2013-07-01

    The electron impact ionization is, originally, a mass spectrometry ionization method and still the most widely used of all ionization methods.In this technique, a beam of electrons passes through the gas phase sample. An electron that collides with a neutral analyte molecule can knock off another electron, resulting in a positively charged ion. The fragmentation process dependent sup on many qualities including primary structure, electron energy and ion source temperature. This paper presents a study on the seasonal variation of isoprene and some other significant biogenic volatile organic compounds (BVOC) such as α-pinene, β-pinene, limonene, e-βocimene and longifolene, measured at the Guyaflux Tower located in a wet tropical forest in French Guiana using the Relaxed Eddy Accumulation technique and analyzed by a mass spectrometer coupled to a gas chromatograph, a thermo desorption unit and a flame ionization detector (TD-GC-MS-FID). The results showed that isoprene was by far the biogenic volatile organic compound with the highest concentration and flux, followed by alpha-pinene. Previous limited studies in Amazonia and the Congo suggested that a higher concentration and flux rate of isoprene and alpha-pinene should be expected during the dry season with lower emissions during the wet season, which is in relative agreement with what was observed at this tropical forest site in French Guiana. The exceptions were observed in a long wet period in which the concentration of isoprene and alpha-pinene increased more than it was expected to, for this time of the year. (author)

  14. Indian monsoon variability on millennial-orbital timescales.

    Science.gov (United States)

    Kathayat, Gayatri; Cheng, Hai; Sinha, Ashish; Spötl, Christoph; Edwards, R Lawrence; Zhang, Haiwei; Li, Xianglei; Yi, Liang; Ning, Youfeng; Cai, Yanjun; Lui, Weiguo Lui; Breitenbach, Sebastian F M

    2016-04-13

    The Indian summer monsoon (ISM) monsoon is critical to billions of people living in the region. Yet, significant debates remain on primary ISM drivers on millennial-orbital timescales. Here, we use speleothem oxygen isotope (δ(18)O) data from Bittoo cave, Northern India to reconstruct ISM variability over the past 280,000 years. We find strong coherence between North Indian and Chinese speleothem δ(18)O records from the East Asian monsoon domain, suggesting that both Asian monsoon subsystems exhibit a coupled response to changes in Northern Hemisphere summer insolation (NHSI) without significant temporal lags, supporting the view that the tropical-subtropical monsoon variability is driven directly by precession-induced changes in NHSI. Comparisons of the North Indian record with both Antarctic ice core and sea-surface temperature records from the southern Indian Ocean over the last glacial period do not suggest a dominant role of Southern Hemisphere climate processes in regulating the ISM variability on millennial-orbital timescales.

  15. Transport pathways from the Asian monsoon anticyclone to the stratosphere

    Science.gov (United States)

    Garny, Hella; Randel, William

    2016-04-01

    The upper tropospheric Asian monsoon anticyclone emerges in response to persistent deep convection over India and southeast Asia in northern summer. The monsoon circulation is associated with rapid transport from the surface to the upper troposphere within convective updrafts, leading to tracer anomalies within the anticyclone. Possibly air is transported further into the stratosphere, but the exact pathways of air from the upper tropospheric anticyclone to the stratosphere are currently under debate. While air is thought to be confined to the anticyclone by its surrounding wind jets, large variability in the anticyclone results in shedding of air from the anticyclone to its surrounding, and possibly air might reach the extratropical lower stratosphere by isentropic mixing. On the other hand, positive vertical velocities in the anticyclone region suggests upward transport of air into the tropical lower stratosphere. In this study, we investigate transport pathways of air originating in the upper tropospheric Asian monsoon anticyclone based on isentropic and three-dimensional trajectories. Trajectories are driven by ERA-Interim reanalysis data, and three-dimensional results are based both on kinematic and diabatic transport calculations. Isentropic calculations show that air parcels are typically confined within the anticyclone for 10-20 days, and spread over the tropical belt within a month of their initialization. However, only few parcels (3 % at 360 K, 8 % at 380 K) reach the extratropical stratosphere by isentropic transport. When considering vertical transport we find that 31 % (48 %) of the trajectories reach the stratosphere within 60 days when using vertical velocities or diabatic heating rates to calculate vertical transport, respectively. In both cases, most parcels that reach the stratosphere are transported upward within the anticyclone and enter the stratosphere in the tropics, typically 10-20 days after their initialization at 360 K. This suggests

  16. Propagation and effects of monsoonal seasonally intense rainfall signal in river strata

    Science.gov (United States)

    Plink-Bjorklund, P.

    2014-12-01

    Climatic forcing signals in river systems tend to be modified on different temporal and spatial scales due to inherent signal buffering, re-routing, and a complex mixing of multiple autogenic and allogenic signals. Thus climate forcing response is generally assumed inherently non-linear with significant hysteresis effects. This paper explores propagation and effects of monsoonal, seasonally intense rainfall signal in river strata in the monsoonal and bordering subtropical domains. Some such rivers occur completely within the monsoon climate zone. Others have parts of their drainages in temperate climate zones, or on high elevations and receive some of their water discharge from other sources. Yet others, have their upstream drainages in the tropical monsoon climates, but flow through bordering subtropical drylands. Yet, all these rivers characteristically experience seasonal high magnitude floods as the effect of intense monsoon precipitation. Many rivers in the bordering subtropical zone receive monsoon rain and transmit discharge only during abnormal or strengthened monsoon seasons and associated cyclonic flow. Field datasets, comparison to modern river deposits and a literature review of monsoonal and bordering subtropical domain rivers reveal that the effects of the intense seasonal monsoon rain and the resultant flooding are readily recognizable in modern and ancient fluvial strata. This paper argues that this distinct and dominant climate signal propagation occurs because it is the monsoon discharge that is commonly responsible for up to 100% of sediment erosion, transport and deposition, creating a system wide flushing or splash effect on a single season to multi-million year time scale. The distinct monsoon flood deposits are interbedded with other types of fluvial strata in systems where significant deposition also occurs from low-magnitude flood or non-flood discharges.

  17. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India

    Directory of Open Access Journals (Sweden)

    M. Reuter

    2013-01-01

    Full Text Available Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27–24 Ma. Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system in the Early Miocene. The vast shell concentrations comprise a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deep to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished each recording a relative storm wave base depth. (1 A shallow storm wave base is shown by nearshore mollusks, corals and Clypeaster echinoids; (2 an intermediate storm wave base depth is indicated by lepidocyclind foraminifers, Eupatagus echinoids and corallinaceans; and (3 a deep storm wave base is represented by an Amussiopecten–Schizaster echinoid assemblage. Vertical changes in these skeletal associations give evidence of gradually increasing tropical cyclone intensity in line with third-order sea level rise. The intensity of cyclones over the Arabian Sea is primarily linked to the strength of the Indian monsoon. Therefore and since the topographic boundary conditions for the Indian monsoon already existed in the Late Oligocene, the longer-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~26 Ma followed by a period of monsoon weakening during the peak of the Late Oligocene

  18. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    Science.gov (United States)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  19. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India

    Directory of Open Access Journals (Sweden)

    M. Reuter

    2013-09-01

    Full Text Available Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27–24 Ma. Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene–Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1 A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2 an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3 a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the

  20. What drives the global summer monsoon over the past millennium?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian [Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Nanjing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, HI (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Yim, So-Young; Lee, June-Yi [University of Hawaii at Manoa, International Pacific Research Center, Honolulu, HI (United States); Jhun, Jong-Ghap [Seoul National University, School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul (Korea, Republic of); Ha, Kyung-Ja [Pusan National University, Division of Earth Environmental System, Busan (Korea, Republic of)

    2012-09-15

    The global summer monsoon precipitation (GSMP) provides a fundamental measure for changes in the annual cycle of the climate system and hydroclimate. We investigate mechanisms governing decadal-centennial variations of the GSMP over the past millennium with a coupled climate model's (ECHO-G) simulation forced by solar-volcanic (SV) radiative forcing and greenhouse gases (GHG) forcing. We show that the leading mode of GSMP is a forced response to external forcing on centennial time scale with a globally uniform change of precipitation across all monsoon regions, whereas the second mode represents internal variability on multi-decadal time scale with regional characteristics. The total amount of GSMP varies in phase with the global mean temperature, indicating that global warming is accompanied by amplification of the annual cycle of the climate system. The northern hemisphere summer monsoon precipitation (NHSMP) responds to GHG forcing more sensitively, while the southern hemisphere summer monsoon precipitation (SHSMP) responds to the SV radiative forcing more sensitively. The NHSMP is enhanced by increased NH land-ocean thermal contrast and NH-minus-SH thermal contrast. On the other hand, the SHSMP is strengthened by enhanced SH subtropical highs and the east-west mass contrast between Southeast Pacific and tropical Indian Ocean. The strength of the GSMP is determined by the factors controlling both the NHSMP and SHSMP. Intensification of GSMP is associated with (a) increased global land-ocean thermal contrast, (b) reinforced east-west mass contrast between Southeast Pacific and tropical Indian Ocean, and (c) enhanced circumglobal SH subtropical highs. The physical mechanisms revealed here will add understanding of future change of the global monsoon. (orig.)

  1. Comparison of East Asian winter monsoon indices

    Directory of Open Access Journals (Sweden)

    Gao Hui

    2007-01-01

    Full Text Available Four East Asian winter monsoon (EAWM indices are compared in this paper. In the research periods, all the indices show similar interannual and decadal-interdecadal variations, with predominant periods centering in 3–4 years, 6.5 years and 9–15 years, respectively. Besides, all the indices show remarkable weakening trends since the 1980s. The correlation coefficient of each two indices is positive with a significance level of 99%. Both the correlation analyses and the composites indicate that in stronger EAWM years, the Siberian high and the higher-level subtropical westerly jet are stronger, and the Aleutian low and the East Asia trough are deeper. This circulation pattern is favorable for much stronger northwesterly wind and lower air temperature in the subtropical regions of East Asia, while it is on the opposite in weaker EAWM years. Besides, EAWM can also exert a remarkable leading effect on the summer monsoon. After stronger (weaker EAWM, less (more summer precipitation is seen over the regions from the Yangtze River valley of China to southern Japan, while more (less from South China Sea to the tropical western Pacific.

  2. Climatology of monsoon precipitation over the Tibetan Plateau from 13-year TRMM observations

    Science.gov (United States)

    Aijuan, Bai; Guoping, Li

    2016-10-01

    Based on the 13-year data from the Tropical Rainfall Measuring Mission (TRMM) satellite during 2001-2013, the influencing geographical location of the Tibetan Plateau (Plateau) monsoon is determined. It is found that the domain of the Plateau monsoon is bounded by the latitude between 27° N and 37° N and the longitude between 60° E and 103° E. According to the annual relative precipitation, the Plateau monsoon can be divided into three sections: the Plateau winter monsoon (PWM) over Iran and Afghanistan, the Plateau summer monsoon (PSM) over the central Plateau, and the transiting zone of the Plateau monsoon (TPM) over the south, west, and east edges of the Plateau. In PWM and PSM, the monsoon climatology has a shorter rainy season with the mean annual rainfall of less than 800 mm. In TPM, it has a longer rainy season with the mean annual rainfall of more than 1800 mm. PWM experiences a single-peak monthly rainfall with the peak during January to March; PSM usually undergoes a multi-peak pattern with peaks in the warm season; TPM presents a double-peak pattern, with a strong peak in late spring to early summer and a secondary peak in autumn. The Plateau monsoon also characterizes an asymmetrical seasonal advance of the rain belt. In the east of the Plateau, the rain belt migrates in a south-north orientation under the impact of the tropical and subtropical systems' oscillation. In the west of the Plateau, the rain belt advances in an east-west direction, which is mainly controlled by the regional Plateau monsoon.

  3. Toward a 530,000-year Hydroclimate History for the Southern Half of the Australasian Monsoon

    Science.gov (United States)

    Gagan, M. K.; Scroxton, N. G.; Kimbrough, A. K.; Krause, C.; Hantoro, W. S.; Ayliffe, L. K.; Dunbar, G. B.; Cheng, H.; Edwards, R. L.; Hellstrom, J. C.; Shen, C. C.; Scott-Gagan, H.; Suwargadi, B. W.; Rifai, H.

    2015-12-01

    Speleothem 18O/16O records have revealed key aspects of past hydroclimates in the northern Australasian monsoon domain on orbital to millennial scales, but much less is known about the southern half of the monsoon system. We aim to develop a hydroclimate history for the southern Australasian monsoon based on speleothems from southwest Sulawesi and Flores, Indonesia (latitudes 5-9oS), which extend back to ~530 kyr BP and 90 kyr BP, respectively. To date, the 18O/16O record for Sulawesi covers glacial terminations TIV (~340 kyr BP), TIII (~245 kyr BP) and TI (~18 kyr BP). The details of each termination are different, however two important hydroclimate patterns are emerging. First, the 18O/16O record shows sharp weakening of the monsoon immediately before each termination. This surprisingly robust pattern marks a southern extension of the northern 'weak monsoon interval', and reinforces the idea that southward monsoon displacement is a fundamental feature of terminations. Second, monsoon intensification around Sulawesi lags the rise in atmospheric CO2 and Antarctic temperature by several thousand years, but parallels the 18O/16O decrease in atmospheric O2. Our finding extends that of Wang et al. (2008) and Cheng et al. (2009) who noted the influence of the low-latitude hydrological cycle on the 18O/16O of tropical transpiration, and its potential for correlating ice core and paleomonsoon records. Further south, the 90-kyr 18O/16O record for Flores shows clear precession-scale antiphasing with China, and southerly positioning of the summer monsoon rainfall belt during Heinrich stadials. Heinrich stadials 5, 4, 2 and 1 occur during wetter intervals in Flores that accompanied relatively high southern summer insolation. Intriguingly, these events are associated with abrupt atmospheric CH4 signals that may be due to increased Southern Hemisphere CH4 production related to intensification of monsoon rainfall over southern tropical land areas (Rhodes et al., 2014).

  4. Effects of increased CO{sub 2} levels on monsoons

    Energy Technology Data Exchange (ETDEWEB)

    Cherchi, Annalisa; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici, Bologna (Italy)

    2011-07-15

    Increased atmospheric carbon dioxide concentration provided warmer atmospheric temperature and higher atmospheric water vapor content, but not necessarily more precipitation. A set of experiments performed with a state-of-the-art coupled general circulation model forced with increased atmospheric CO{sub 2} concentration (2, 4 and 16 times the present-day mean value) were analyzed and compared with a control experiment to evaluate the effect of increased CO{sub 2} levels on monsoons. Generally, the monsoon precipitation responses to CO{sub 2} forcing are largest if extreme concentrations of carbon dioxide are used, but they are not necessarily proportional to the forcing applied. In fact, despite a common response in terms of an atmospheric water vapor increase to the atmospheric warming, two out of the six monsoons studied simulate less or equal summer mean precipitation in the 16 x CO{sub 2} experiment compared to the intermediate sensitivity experiments. The precipitation differences between CO{sub 2} sensitivity experiments and CTRL have been investigated specifying the contribution of thermodynamic and purely dynamic processes. As a general rule, the differences depending on the atmospheric moisture content changes (thermodynamic component) are large and positive, and they tend to be damped by the dynamic component associated with the changes in the vertical velocity. However, differences are observed among monsoons in terms of the role played by other terms (like moisture advection and evaporation) in shaping the precipitation changes in warmer climates. The precipitation increase, even if weak, occurs despite a weakening of the mean circulation in the monsoon regions (''precipitation-wind paradox''). In particular, the tropical east-west Walker circulation is reduced, as found from velocity potential analysis. The meridional component of the monsoon circulation is changed as well, with larger (smaller) meridional (vertical) scales. (orig.)

  5. Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean

    Science.gov (United States)

    Raicich, Fabio; Pinardi, Nadia; Navarra, Antonio

    2003-02-01

    The teleconnections with Indian monsoon and Sahel rainfall indices are investigated here on an interannual time scale in terms of meteorological and marine dynamics over the Mediterranean area. Sea-level pressure from gridded data sets and from individual stations, together with sea-level data from stations all around the Mediterranean coastlines, are used.In summer (July-August-September, JAS) the sea-level pressure field over the eastern Mediterranean anticorrelates with the Indian monsoon index (correlation coefficient C = -0.5 on average). A Mediterranean pressure index (MPI), defined as the standardized difference between sea-level atmospheric pressure at Mersa Matruh (southeastern Mediterranean) and Marseille (northwestern Mediterranean) stations, anticorrelates with Indian monsoon index even more (C = -0.68). The MPI is proportional to the mean geostrophic surface flow field across an imaginary line joining the two stations and turns out to be significantly correlated with the meridional wind component over the eastern Mediterranean, known as the low-level Etesian wind regime. This wind regime represents the inflow surface field into the African inter-tropical convergence zone and, therefore, has an association with the Indian monsoon regime. The ocean response, evident by sea-level anomalies at coastal stations, shows a maximum anticorrelation with Indian monsoon index in late summer and autumn (September-October-November, SON).The Sahel index anticorrelates with sea-level pressure, with the maximum absolute value in June-July-August. This may be interpreted as a tendency of the Mediterranean sea-level pressure anomalies to precede those of Sahel precipitation, which is characterized by maximum rainfall in July-September. The MPI anticorrelates with Sahel index during and before JAS, indicating that the Etesian wind regime intensity is connected to Sahel rainfall. The sea level again anticorrelates with the Sahel index, with the maximum absolute value in

  6. Indian summer monsoon forcing on the deglacial polar cold reversals

    Indian Academy of Sciences (India)

    Virupaxa K Banakar; Sweta Baidya; Alexander M Piotrowski; D Shankar

    2017-08-01

    The deglacial transition from the last glacial maximum at $\\sim$20 kiloyears before present (ka) to the Holocene (11.7 ka to Present) was interrupted by millennial-scale cold reversals, viz., Antarctic Cold Reversal ($\\sim$14.5–12.8 ka) and Greenland Younger Dryas ($\\sim$12.8–11.8 ka) which had different timings and extent of cooling in each hemisphere. The cause of this synchronously initiated, but different hemispheric cooling during these cold reversals (Antarctic Cold Reversal $\\sim$3∘C and Younger Dryas $\\sim$10∘C) is elusive because CO2, the fundamental forcing for deglaciation, and Atlantic meridional overturning circulation, the driver of antiphased bipolar climate response, both fail to explain this asymmetry. We use centennial-resolution records of the local surface water $\\delta ^{18}\\hbox {O}$ of the Eastern Arabian Sea, which constitutes a proxy for the precipitation associated with the Indian Summer Monsoon, and other tropical precipitation records to deduce the role of tropical forcing in the polar cold reversals. We hypothesize a mechanism for tropical forcing, via the Indian Summer Monsoons, of the polar cold reversals by migration of the Inter-Tropical Convergence Zone and the associated cross-equatorial heat transport.

  7. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2014-08-01

    Full Text Available The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS. We employ the global chemistry–climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide reservoir species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. The model is evaluated with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-E and aircraft campaigns during the monsoon season (June–September. There are three regions which contribute substantial pollution to the UTLS during the monsoon: the Asian summer monsoon (ASM, the North American Monsoon (NAM and the West African monsoon (WAM. However, penetration due to ASM convection is deeper into the UTLS as compared to NAM and WAM outflow. The circulation in these monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward to partly merge with the ASM plume. Strong ASM convection transports these remote and regional pollutants into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning generation and thereby the emission of NOy species. This will affect the distribution of PAN in the UTLS. The estimates of lightning produced PAN, HNO3, NOx and ozone obtained from control and lightning-off simulations shows high percentage changes over the regions of convective transport especially equatorial Africa and America and comparatively less over the ASM. This indicates higher anthropogenic pollution transport from the ASM region into the UTLS.

  8. Atlantic effects on recent decadal trends in global monsoon

    Science.gov (United States)

    Kamae, Youichi; Li, Xichen; Xie, Shang-Ping; Ueda, Hiroaki

    2017-01-01

    Natural climate variability contributes to recent decadal climate trends. Specifically the trends during the satellite era since 1979 include Atlantic and Indian Ocean warming and Pacific cooling associated with phase shifts of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation, and enhanced global monsoon (GM) circulation and rainfall especially in the Northern Hemisphere. Here we evaluate effects of the oceanic changes on the global and regional monsoon trends by partial ocean temperature restoring experiments in a coupled atmosphere-ocean general circulation model. Via trans-basin atmosphere-ocean teleconnections, the Atlantic warming drives a global pattern of sea surface temperature change that resembles observations, giving rise to the enhanced GM. The tropical Atlantic warming and the resultant Indian Ocean warming favor subtropical deep-tropospheric warming in both hemispheres, resulting in the enhanced monsoon circulations and precipitation over North America, South America and North Africa. The extratropical North Atlantic warming makes an additional contribution to the monsoon enhancement via Eurasian continent warming and resultant land-sea thermal gradient over Asia. The results of this study suggest that the Atlantic multidecadal variability can explain a substantial part of global climate variability including the recent decadal trends of GM.

  9. Shift in Indian summer monsoon onset during 1976/1977

    Science.gov (United States)

    Sahana, A. S.; Ghosh, Subimal; Ganguly, Auroop; Murtugudde, Raghu

    2015-05-01

    The Indian summer monsoon rainfall (ISMR) contributes nearly 80% of the annual rainfall over India and has a significant influence on the country’s gross domestic product through the agricultural sector. Onset of the ISMR displays substantial interannual variability and controls the crop calendar and hence the agricultural output. This variability is traditionally linked to sea surface temperature (SST) anomalies over the tropical Pacific Ocean. The tropical Pacific SST underwent a regime shift during 1976/77. We report a prominent delay in the Indian summer monsoon (ISM) onset following the regime shift. The onset dates are computed with the Hydrologic Onset and Withdrawal Index, based on vertically integrated moisture transport over the Arabian Sea (AS). The shift in onset is found to be due to the change in moisture availability over the AS. A delay in the development of easterly vertical shear reduces northward-propagating intraseasonal variability during May-June, limiting the moisture supply from the equatorial Indian Ocean (IO) to the AS. This, along with enhanced precipitation over the IO during the pre-monsoon, drives a reduction in moisture availability over the AS region from pre- to post-1976/77, delaying the ISM onset in recent decades. Our findings highlight the need for the re-assessment of the crop calendar in India, which is now based on the mean onset date computed from long-term data, without considering the regime shift or trends in onset.

  10. Cyclone trends constrain monsoon variability during Late Oligocene sea level highstands (Kachchh Basin, NW India)

    OpenAIRE

    Reuter, M.; W. E. Piller; M. Harzhauser; Kroh, A

    2013-01-01

    Important concerns about the consequences of climate change for India are the potential impact on tropical cyclones and the monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as an indicator of tropical cyclone activity along the NW Indian coast during the Late Oligocene warming period (~27–24 Ma). Direct proxies providing information about the atmospheric circulation dynamics over the Indian subcontinent at this ...

  11. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    OpenAIRE

    Reuter, M.; W. E. Piller; M. Harzhauser; Kroh, A

    2013-01-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27–24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorga...

  12. Changes in the in-phase relationship between the Indian and subsequent Australian summer monsoons during the past five decades

    Directory of Open Access Journals (Sweden)

    J.-Y. Yu

    2007-10-01

    Full Text Available This study examines the decadal changes in the in-phase relationship between Indian summer monsoon and the subsequent Australian summer monsoon using observational data from 1950–2005. The in-phase relationship is the tendency for a strong Indian summer monsoon to be followed by a strong Australian summer monsoon and vice versa. It is found that the in-phase relationship was weak during the late 1950s and early 1960s, strengthened to a maximum in the early 1970s just before the 1976/77 Pacific climate shift, then declined until the late 1990s. Pacific SST anomalies are noticed to have strong persistence from boreal to austral summer, providing the memory to connect the Indian and subsequent Australian summer monsoon. The simultaneous correlation between the Pacific SST anomalies and the Indian summer monsoon is always strong. It is the weakening and strengthening of the simultaneous correlation between the Australian summer monsoon and the Pacific SST anomalies that contributes to the decadal variations of the in-phase monsoon relation. This study suggests that the interaction between the Australian monsoon and the Pacific Ocean is crucial to tropical climate variability and has experienced significant changes over the past five decades.

  13. Improving Energy-Based Estimates of Monsoon Location in the Presence of Proximal Deserts

    CERN Document Server

    Shekhar, Ravi

    2016-01-01

    Two theoretical frameworks have been widely used to understand the response of monsoons to local and remote forcings: the vertically integrated atmospheric energy budget and convective quasi-equilibrium (CQE). Existing forms of these frameworks neglect some of the complexities of monsoons, such as the shallow meridional circulations that advect dry air from adjacent deserts into the middle and lower troposphere of monsoon regions. Here the fidelity of energy budget and CQE theories for monsoon location is assessed in a three-dimensional beta-plane model with boundary conditions representative of an off-equatorial continent with a tropical grassland and an adjacent subtropical desert. Energy budget theories show mixed success for various SST and land surface albedo forcings, with the ITCZ being collocated with the energy flux equator but a non-monotonic relationship existing between ITCZ latitude and cross-equatorial energy transport. Accounting for the off-equatorial position of the unperturbed energy flux eq...

  14. Global association of the Madden-Julian Oscillation with monsoon lows and depressions

    Science.gov (United States)

    Haertel, Patrick; Boos, William R.

    2017-08-01

    Previous research has revealed that monsoon lows and depressions are modulated on intraseasonal time scales in a few regions, including India, Australia, and the East Pacific. This study examines whether such modulation occurs on a global scale and, in particular, how the Madden-Julian Oscillation (MJO) is associated with changes in synoptic-scale vortices across all monsoon regions. The spatial climatology of monsoon disturbances is largely insensitive to MJO amplitude. However, monsoon disturbance frequency (MDF) varies substantially with MJO phase, with regional perturbations of 25 to 90% of the seasonal mean value across the tropics. In off-equatorial locations, MDF maxima occur in locations where the MJO enhances low level cyclonic vorticity, typically near the western edge of midlevel moisture perturbations. In contrast, equatorial MDF perturbations are in phase with MJO moisture and rainfall anomalies, with maxima in regions with strong low level zonal wind convergence.

  15. Global warming and South Indian monsoon rainfall-lessons from the Mid-Miocene.

    Science.gov (United States)

    Reuter, Markus; Kern, Andrea K; Harzhauser, Mathias; Kroh, Andreas; Piller, Werner E

    2013-04-01

    Precipitation over India is driven by the Indian monsoon. Although changes in this atmospheric circulation are caused by the differential seasonal diabatic heating of Asia and the Indo-Pacific Ocean, it is so far unknown how global warming influences the monsoon rainfalls regionally. Herein, we present a Miocene pollen flora as the first direct proxy for monsoon over southern India during the Middle Miocene Climate Optimum. To identify climatic key parameters, such as mean annual temperature, warmest month temperature, coldest month temperature, mean annual precipitation, mean precipitation during the driest month, mean precipitation during the wettest month and mean precipitation during the warmest month the Coexistence Approach is applied. Irrespective of a ~ 3-4 °C higher global temperature during the Middle Miocene Climate Optimum, the results indicate a modern-like monsoonal precipitation pattern contrasting marine proxies which point to a strong decline of Indian monsoon in the Himalaya at this time. Therefore, the strength of monsoon rainfall in tropical India appears neither to be related to global warming nor to be linked with the atmospheric conditions over the Tibetan Plateau. For the future it implies that increased global warming does not necessarily entail changes in the South Indian monsoon rainfall.

  16. Extreme monsoon precipitation events over South Asia in a warming world

    Science.gov (United States)

    Raghavan, K.; Sabin, T. P.; Mujumdar, M.; Priya, P.

    2012-04-01

    The recent series of flood events over Pakistan and Northwest India during the monsoon seasons of 2010 and 2011 are examples of extreme phenomena during the last century that have evoked considerable interest among various scientific communities. One of the causes for the 2010 intense precipitation over Pakistan has been attributed to the interaction between the tropical monsoon surge and southward intruding extra-tropical circulation anomalies (Hong et al. 2011). On the other hand, it has been hypothesized by Mujumdar et al. (2012) that the westward shift of the West Pacific Subtropical High (WPSH) in response to the strong La Nina conditions during 2010 was instrumental in altering the convection and circulation over the Bay of Bengal and the monsoon trough region, which in turn sustained the moist convective activities over Indo-Pak through transport of moisture from the Arabian Sea. However several aspects of the dynamics of these intense monsoon precipitation events are not adequately understood especially when atmospheric convective instabilities are expected to amplify in the backdrop of the ongoing global warming. Here, we have carried out a set of ensemble simulation experiments using a high-resolution global climate model to understand the evolution of intense monsoon precipitation events over Pakistan and Northwest India as in 2010. The results based on the model simulations indicate that while interactions among the WPSH, the South Asian monsoon trough and sub-tropical westerlies are conducive for development of convective instabilities over the Indo-Pak region, the local convective activities are found to significantly amplify in response to the large build up of moisture associated with global warming. The present results have implications in understanding how extreme monsoon precipitation events in the Indo-Pak region might have responded to past climatic variations.

  17. Seasonally asymmetric transition of the Asian monsoon in response to ice age boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Hiroaki; Kuroki, Harumitsu; Kamae, Youichi [University of Tsukuba, Graduate School of Life and Environmental Sciences, Tsukuba, Ibaraki (Japan); Ohba, Masamichi [Central Research Institute of Electric Power Industry, Environmental Science Research Laboratory, Abiko (Japan)

    2011-12-15

    Modulation of a monsoon under glacial forcing is examined using an atmosphere-ocean coupled general circulation model (AOGCM) following the specifications established by Paleoclimate Modelling Intercomparison Project phase 2 (PMIP2) to understand the air-sea-land interaction under different climate forcing. Several sensitivity experiments are performed in response to individual changes in the continental ice sheet, orbital parameters, and sea surface temperature (SST) in the Last Glacial Maximum (LGM: 21 ka) to evaluate the driving mechanisms for the anomalous seasonal evolution of the monsoon. Comparison of the model results in the LGM with the pre-industrial (PI) simulation shows that the Arabian Sea and Bay of Bengal are characterized by enhancement of pre-monsoon convection despite a drop in the SST encompassing the globe, while the rainfall is considerably suppressed in the subsequent monsoon period. In the LGM winter relative to the PI, anomalies in the meridional temperature gradient (MTG) between the Asian continents minus the tropical oceans become positive and are consistent with the intensified pre-monsoon circulation. The enhanced MTG anomalies can be explained by a decrease in the condensation heating relevant to the suppressed tropical convection as well as positive insolation anomalies in the higher latitude, showing an opposing view to a warmer future climate. It is also evident that a latitudinal gradient in the SST across the equator plays an important role in the enhancement of pre-monsoon rainfall. As for the summer, the sensitivity experiments imply that two ice sheets over the northern hemisphere cools the air temperature over the Asian continent, which is consistent with the reduction of MTG involved in the attenuated monsoon. The surplus pre-monsoon convection causes a decrease in the SST through increased heat loss from the ocean surface; in other words, negative ocean feedback is also responsible for the subsequent weakening of summer

  18. Orbital pacing and ocean circulation-induced collapses of the Mesoamerican monsoon over the past 22,000 y.

    Science.gov (United States)

    Lachniet, Matthew S; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J; Vazquez-Selem, Lorenzo

    2013-06-04

    The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.

  19. Analysis of Basic Features of the Onset of the Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, a relatively systematic climatological research on the onset of the Asian tropical summer monsoon (ATSM) was carried out. Based on a unified index of the ATSM onset, the advance of the whole ATSM was newly made and then the view that the ATSM firstly breaks out over the tropical eastern Indian Ocean and the middle and southern Indo-China Peninsula was further documented, which was in the 26th pentad (about May 10), then over the South China Sea (SCS) in the 28th pentad. It seems that the ATSM onset over the two regions belongs to the different stages of the same monsoon system. Then, the onset mechanism of ATSM was further investigated by the comprehensive analysis on the land-sea thermodynamic contrast, intraseasonal oscillation, and so on, and the several key factors which influence the ATSM onset were put forward. Based on these results, a possible climatological schematic map that the ATSM firstly breaks out over the tropical eastern Indian Ocean, the Indo-China Peninsula, and the SCS was also presented, namely seasonal evolution of the atmospheric circulation was the background of the monsoon onset; the enhancement and northward advance of the convections, the sensible heating and latent heating over the Indo-China Peninsula and its neighboring areas, the dramatic deepening of the India-Burma trough, and the westerly warm advection over the eastern Tibetan Plateau were the major driving forces of the summer monsoon onset, which made the meridional gradient of the temperature firstly reverse over this region and ascending motion develop. Then the tropical monsoon and precipitation rapidly developed and enhanced. The phase-lock of the 30-60-day and 10-20-day low frequency oscillations originated from different sources was another triggering factor for the summer monsoon onset. It was just the common effect of these factors that induced the ATSM earliest onset over this region.

  20. Mesoscale characteristics of monsoonal convection and associated stratiform precipitation

    Science.gov (United States)

    Keenan, Thomas D.; Rutledge, Steven A.

    1993-01-01

    Observations undertaken on 12 January 1990 at Darwin (Australia) are used to document the structure of a monsoonal rainband in a low convective available potential energy low-shear tropical environment. Dual-Doppler radar analyses are employed to investigate the structure and kinematics of the convective and stratiform regions. A system with the characteristics of a relatively short-lived squall line in which warm rain processes play a significant role in the production of precipitation is evident. Planetary boundary layer cold-pool production is important in the organization and motion of the system. A trailing stratiform region is evident with a mean updraft-downdraft circulation, but is composed of in situ decaying convective cells. A storm-relative mesoscale cyclonic circulation is also observed within the stratiform cloud. This vortex was maintained by thermodynamically induced midlevel convergence, convectively generated storm-scale circulations, and their interaction with the background monsoon flow.

  1. The CLIVAR C20C project: which components of the Asian-Australian monsoon circulation variations are forced and reproducible?

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Li, Lijuan [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Wu, Bo [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Scaife, A.A.; Fereday, D.; Folland, C.K.; Knight, J.R. [Met Office Hadley Centre, Exeter (United Kingdom); Broennimann, S.; Fischer, A.M. [ETH, Institute for Atmospheric and Climate Science, Zurich (Switzerland); Cherchi, A.; Navarra, A. [Centro Euromediterraneo per i Cambiamenti Climatici, Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Jin, K.E.; Kinter, J. [Centre for Ocean-Land-Atmosphere Studies, Calverton (United States); Kucharski, F. [Abdus Salam International Center for Theoretical Physics, Trieste (Italy); Kusunoki, S.; Nakaegawa, T. [Japan Meteorological Agency, Meteorological Research Institute, Tsukuba (Japan); Lau, N.C.; Nath, M.J. [NOAA, Geophysical Fluid Dynamics Laboratory, Princeton (United States); Pegion, P.; Schubert, S. [NASA Goddard Space Flight Center, Greenbelt (United States); Rozanov, E. [ETH, Institute for Atmospheric and Climate Science, Zurich (Switzerland); World Radiation Center, Physical-Meteorological Observatory, Davos (Switzerland); Sporyshev, P. [Voeikov Main Geophysical Observatory, St Petersburg (Russian Federation); Voldoire, A. [CNRM, Meteo France, Toulouse Cedex 1 (France); Wen, Xinyu [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Beijing University, Department of Atmospheric Sciences, Beijing (China); Yoon, J.H.; Zeng, N. [University of Maryland, Baltimore (United States)

    2009-12-15

    A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950-1999 is studied to identify and understand which components of the Asian-Australian monsoon (A-AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A-AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A-AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June-July-August SSTs in the equatorial eastern Pacific in recent decades. Among the A-AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A-AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices. (orig.)

  2. The East Asian subtropical summer monsoon: Recent progress

    Science.gov (United States)

    He, Jinhai; Liu, Boqi

    2016-04-01

    The East Asian subtropical summer monsoon (EASSM) is one component of the East Asian summer monsoon system, and its evolution determines the weather and climate over East China. In the present paper, we firstly demonstrate the formation and advancement of the EASSM rainbelt and its associated circulation and precipitation patterns through reviewing recent studies and our own analysis based on JRA-55 (Japanese 55-yr Reanalysis) data and CMAP (CPC Merged Analysis of Precipitation), GPCP (Global Precipitation Climatology Project), and TRMM (Tropical Rainfall Measuring Mission) precipitation data. The results show that the rainy season of the EASSM starts over the region to the south of the Yangtze River in early April, with the establishment of strong southerly wind in situ. The EASSM rainfall, which is composed of dominant convective and minor stratiform precipitation, is always accompanied by a frontal system and separated from the tropical summer monsoon system. It moves northward following the onset of the South China Sea summer monsoon. Moreover, the role of the land-sea thermal contrast in the formation and maintenance of the EASSM is illustrated, including in particular the effect of the seasonal transition of the zonal land-sea thermal contrast and the influences from the Tibetan Plateau and midlatitudes. In addition, we reveal a possible reason for the subtropical climate difference between East Asia and East America. Finally, the multi-scale variability of the EASSM and its influential factors are summarized to uncover possible reasons for the intraseasonal, interannual, and interdecadal variability of the EASSM and their importance in climate prediction.

  3. Transport pathways of peroxyacetyl nitrate in the upper troposphere and lower stratosphere from different monsoon systems during the summer monsoon season

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2015-06-01

    Full Text Available The Asian summer monsoon involves complex transport patterns with large scale redistribution of trace gases in the upper troposphere and lower stratosphere (UTLS. We employ the global chemistry-climate model ECHAM5-HAMMOZ in order to evaluate the transport pathways and the contributions of nitrogen oxide species PAN, NOx, and HNO3 from various monsoon regions, to the UTLS over Southern Asia and vice versa. Simulated long term seasonal mean mixing ratios are compared with trace gas retrievals from the Michelson Interferometer for Passive Atmospheric Sounding aboard ENVISAT(MIPAS-E and aircraft campaigns during the monsoon season (June–September in order to evaluate the model's ability to reproduce these transport patterns. The model simulations show that there are three regions which contribute substantial pollution to the South Asian UTLS: the Asian summer monsoon (ASM, the North American Monsoon (NAM and the West African monsoon (WAM. However, penetration due to ASM convection reaches deeper into the UTLS as compared to NAM and WAM outflow. The circulation in all three monsoon regions distributes PAN into the tropical latitude belt in the upper troposphere. Remote transport also occurs in the extratropical upper troposphere where westerly winds drive North American and European pollutants eastward where they can become part of the ASM convection and be lifted into the lower stratosphere. In the lower stratosphere the injected pollutants are transported westward by easterly winds. The intense convective activity in the monsoon regions is associated with lightning and thereby the formation of additional NOx. This also affects the distribution of PAN in the UTLS. According to sensitivity simulations with and without lightning, increase in concentrations of PAN (~ 40%, HNO3 (75%, NOx (70% and ozone (30% over the regions of convective transport, especially over equatorial Africa and America and comparatively less over the ASM. This indicates that

  4. The South Asian Monsoon Circulation in Moist Isentropic coordinates

    Science.gov (United States)

    Thazhe Purayil, Sabin; Pauluis, Olivier

    2016-04-01

    The atmospheric circulation and thermodynamic structure during the South Asian Summer Monsoon season is analyzed in isentropic coordinates through the mass transport represented in terms of the potential temperature and equivalent potential temperature. This approach, originally developed to analyze the global meridional circulation, makes it possible to identify the thermodynamic properties of the inflow and outflow of different air mass. To understand the thermodynamic properties of air mass in south Asian monsoon region, we have used three diagnostics; a) the joint distribution of the mass transport as a function of dry and moist entropy, b) the vertical mass flux over the monsoon domain and c) the mass transport and isentropic thickness for different moist ventilation range of tropical atmosphere. The thermodynamic properties of the various air masses, such as the inflow of warm moist air in the boundary layer, upper tropospheric outflow, and midlatitude dry air intrusion are being systematically identified. The isentropic distribution of the vertical mass flux transport in terms of equivalent potential temperature is used to explain the characteristics of ascending and descending air parcels over the Indian subcontinent. Diagnosis based on the isentropic thickness reveals that the regional monsoon circulation and associated precipitation features can be systematically explained by this method. This technique is used to study the evolution of the monsoon flow in the seasonal scale. We used the data from AMIP-type simulations carried out with prescribed Sea Surface Temperature and sea ice for a 25 year period (1981-2005) from the GFDL High-resolution atmospheric model (HiRAM) with an average grid spacing of ~25km over the globe.

  5. Sea surface height anomaly and upper ocean temperature over the Indian Ocean during contrasting monsoons

    Science.gov (United States)

    Gera, Anitha; Mitra, A. K.; Mahapatra, D. K.; Momin, I. M.; Rajagopal, E. N.; Basu, Swati

    2016-09-01

    Recent research emphasizes the importance of the oceanic feedback to monsoon rainfall over the Asian landmass. In this study, we investigate the differences in the sea surface height anomaly (SSHA) and upper ocean temperature over the tropical Indian Ocean during multiple strong and weak monsoons. Analysis of satellite derived SSHA, sea surface temperature (SST) and ocean reanalysis data reveals that patterns of SSHA, SST, ocean temperature, upper ocean heat content (UOHC) and propagations of Kelvin and Rossby waves differ during strong and weak monsoon years. During strong monsoons positive SSH, SST and UOHC anomalies develop over large parts of north Indian Ocean whereas during weak monsoons much of the north Indian Ocean is covered with negative anomalies. These patterns can be used as a standard tool for evaluating the performance of coupled and ocean models in simulating & forecasting strong and weak monsoons. The rainfall over central India is found to be significantly correlated with SSHA over the regions (Arabian Sea and West central Indian Ocean and Bay of Bengal) where SSHA is positively large during strong monsoons. The SST-SSHA correlation is also very strong over the same area. The study reveals that much convection takes place over these regions during strong monsoons. In contrast during weak monsoons, convection takes place over eastern equatorial region. These changes in SST are largely influenced by oceanic Kelvin and Rossby waves. The Rossby waves initiated in spring at the eastern boundary propagate sub-surface heat content in the ocean influencing SST in summer. The SST anomalies modulate the Hadley circulation and the moisture transport thereby contributing to rainfall over central India. Therefore oceanic Kelvin and Rossby waves influence the rainfall over central India.

  6. Land-sea heating contrast in an idealized Asian summer monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C. [Environmental Change Research Project, Institute of Earth Sciences, Academia Sinica, Taipei, 115 (Taiwan)

    2003-07-01

    Mechanisms determining the tropospheric temperature gradient that is related to the intensity of the Asian summer monsoon are examined in an intermediate atmospheric model coupled with a mixed-layer ocean and a simple land surface model with an idealized Afro-Eurasian continent and no physical topography. These include processes involving in the influence of the Eurasian continent, thermal effects of the Tibetan Plateau and effects of sea surface temperature. The mechanical effect on the large-scale flow induced by the Plateau is not included in this study. The idealized land-sea geometry without topography induces a positive meridional tropospheric temperature gradient thus a weak Asian summer monsoon circulation. Higher prescribed heating and weaker surface albedo over Eurasia and the Tibetan Plateau, which mimic effects of different land surface processes and the thermal effect of the uplift of the Tibetan Plateau, strengthens the meridional temperature gradient, and so as cold tropical SST anomalies. The strengthened meridional temperature gradient enhances the Asian summer monsoon circulation and favors the strong convection. The corresponding monsoon rainbelt extends northward and northeastward and creates variations of the monsoon rainfall anomalies in different subregions. The surface albedo over the Tibetan Plateau has a relatively weak inverse relation with the intensity of the Asian summer monsoon. The longitudinal gradient of ENSO-like SST anomalies induces a more complicated pattern of the tropospheric temperature anomalies. First, the positive (negative) longitudinal gradient induced by the El Nino (La Nina)-like SST anomalies weakens (strengthens) the Walker circulation and the circulation between South Asia and northern Africa and therefore the intensity of the Asian summer monsoon, while the corresponding monsoon rainbelt extends northward (southward). The El Nino (La Nina)-like SST anomalies also induces colder (warmer) tropospheric temperature

  7. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhengtang; Wu, Haibin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); Zhou, Xin [Chinese Academy of Sciences, Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Beijing (China); University of Science and Technology of China, School of Earth and Space Sciences and Institute of Polar Environment, Hefei (China)

    2012-09-15

    The causes of atmospheric methane (CH{sub 4}) changes are still a major contention, in particular with regards to the relative contributions of glacial-interglacial cycles, monsoons in both hemispheres and the late Holocene human intervention. Here, we explore the CH{sub 4} signals in the Antarctic EPICA Dome C and Vostok ice records using the methods of timeseries analyses and correlate them with insolation and geological records to address these issues. The results parse out three distinct groups of CH{sub 4} signals attributable to different drivers. The first group ({proportional_to}80% variance), well tracking the marine {delta}{sup 18}O record, is attributable to glacial-interglacial modulation on the global water cycle with the effects shared by wetlands at all latitudes, from monsoonal and non-monsoonal regions in both hemispheres. The second group ({proportional_to}15% variance), centered at the {proportional_to}10-kyr semi-precession frequency, is linkable with insolation-driven tropical monsoon changes in both hemispheres. The third group ({proportional_to}5% variance), marked by millennial frequencies, is seemingly related with the combined effect of ice-volume and bi-hemispheric insolation changes at the precession bands. These results indicate that bi-hemispheric monsoon changes have been a constant driver of atmospheric CH{sub 4}. This mechanism also partially explains the Holocene CH{sub 4} reversal since {proportional_to}5 kyr BP besides the human intervention. In the light of these results, we propose that global monsoon can be regarded as a system consisting of two main integrated components, one primarily driven by the oscillations of Inter-Tropical Convergence Zone (ITCZ) in response to the low-latitude summer insolation changes, anti-phase between the two hemispheres (i.e. the ITCZ monsoon component); and another modulated by the glacial-interglacial cycles, mostly synchronous at the global scale (i.e. the glacial-interglacial monsoon

  8. Role of low level flow on the summer monsoon rainfall over the Indian subcontinent during two contrasting monsoon years

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.; RameshKumar, M.R.

    The summer monsoon rainfall over the Indian subcontinent shows 1 large inter-annual variability in three important aspects, namely, the onset date, quantum of monsoon rainfall and the monsoon activity within the monsoon (June - September) period...

  9. The turbulence underside of the West African Monsoon

    Science.gov (United States)

    Lothon, M.; Lohou, F.; Saïd, F.; Campistron, B.; Canut, G.; Couvreux, F.; Durand, P.; Kalapureddy, M. C.; Lee, Y.; Madougou, S.; Serça, D.

    2009-09-01

    momentum transfer across the inversion. The turbulence vertical structure is studied with aircraft measurements all along the monsoon setting, and estimates of entrainment at the PBL inversion were made. Entrainment rate decreases as the monsoon sets and are linked with the position of the inter tropical front. At surface, the fluxes and scalar scales reveal the change of the predominant forcing PBL process from the start of the monsoon setting to the end of the active phase, in relation with the change of the mean vertical structure of the low troposphere along the wet season. This depends on the considered scalar and the possible sink or source at bottom or top. For example, entrainment at the PBL top has a specific signature on water vapour and can significantly impact on the spatial variability and the fluctuations of water vapour within the PBL down to the surface if the inversion reaches the monsoon/SAL interface.

  10. Interannual variability of South American monsoon circulation

    Science.gov (United States)

    Alonso Gan, Manoel; Rafaele Araújo Lima, Jeane

    2016-04-01

    The South America Monsoon System (SAMS) is responsible for influencing the atmospheric circulation and precipitation over most of tropical South America (SA) during the summer season. Studies for aiming to understand the temporal variability of this system have great value to the scientific community, because the processes that control the monsoon climate are not totally clear. Thus, the main objective of this research is to investigate the possible large-scale climatic factors and the remote interaction mechanisms, which may be associated with summer season interannual variability focusing on identifying the main differences between dry and wet extremes rainy season in the South-eastern Amazon Basin (SAB), Central-West (WC) and Southeast (SE) of Brazil, which are areas influenced by the summer monsoon regime. For such analyzes, Pearson correlations, quantile method and composite analysis were used during the period from 1979 to 2014. The correlation between precipitation anomaly in SAB and the sea surface temperature anomaly (SSTA) and wind at 850hPa and 300hPa indicate El Niño-Southern Oscillation (ENSO) influence. Precipitation anomalies in WC did not show significant correlation with SSTA. However, a pattern similar to ENSO Modoki type was observed in the composite analysis. At 850 hPa, the presence of an anomalous cyclonic (anticyclonic) circulation was observed over the central region of SA during wet (dry) summers seasons. Over SE region of Brazil, a dipole SSTA pattern over the South Atlantic was identified, as well the presence of anomalous circulations with an equivalent barotropic structure over these SSTA areas. This pattern is more evident in case of dry summer on the SE. At 300 hPa, the wave train between 30°S-60°S was observed presenting a feature curvature from 120°W reaching SA, similar to the Pacific-South American pattern (PSA). Analysis of the summer interannual variability indicated the manifestation of wet summers more frequently than dry

  11. RELATIONSHIPS BETWEEN AUTUMN INDIAN OCEAN DIPOLE MODE AND THE STRENGTH OF SCS SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    LI Dong-hui; ZHANG Gui; ZHU Yi-min; TAN Yan-ke; WANG Xue-zhong

    2007-01-01

    Based on 1948 - 2004 monthly Reynolds Sea Surface Temperature (SST) and NCEP/NCAR atmospheric reanalysis data, the relationships between autumn Indian Ocean Dipole Mode (IODM) and the strength of South China Sea (SCS) Summer Monsoon are investigated through the EOF and smooth correlation methods. The results are as the following. (1) There are two dominant modes of autumn SSTA over the tropical Indian Ocean. They are the uniformly signed basin-wide mode (USBM) and Indian Ocean dipole mode (IODM), respectively. The SSTA associated with USBM are prevailing decadal to interdecadal variability characterized by a unanimous pattern, while the IODM mainly represents interannual variability of SSTA. (2) When positive (negative) IODM exists over the tropical Indian Ocean during the preceding fall,the SCS summer monsoon will be weak (strong). The negative correlation between the interannual variability of IODM and that of SCS summer monsoon is significant during the warm phase of long-term trend but insignificant during the cool phase. (3) When the SCS summer monsoon is strong (weak), the IODM will be in its positive (negative) phase during the following fall season. The positive correlation between the interannual variability of SCS summer monsoon and that of IODM is significant during both the warm and cool phase of the long-term trend, but insignificant during the transition between the two phases.

  12. Precipitation top heights of orographic heavy rainfall in the Asian monsoon regions

    Science.gov (United States)

    Shige, Shoichi; Kummerow, Christian

    2016-04-01

    In contrast to the dominant view that heavy rainfall results from deep clouds, the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) frequently observed heavy, but shallow orographic rainfall over coastal mountain ranges of the Asian monsoon regions. The low-level horizontal winds, leading to topographic forced upward motion on the windward slopes, are dynamically important for its occurrence. This paper focuses on the thermodynamic character of the atmospheric environment associated with shallow orographic heavy rainfall. The precipitation-top heights of orographic heavy rainfall generally decrease with low- and mid-level relative humidity especially for coastal mesoscale mountain ranges during summer monsoon. This differs from what has been observed for convection over the tropical ocean in previous studies, but is consistent with abundant shallow convection during the moist summer monsoon season. In contrast, the precipitation-top heights over Annam Cordillera during the transition phase from boreal summer to winter monsoon seasons, facing the prevailing northeasterly, increase with low-level and mid-level relative humidity, demonstrating that convection depth is not a simple function of humidity. The precipitation-top heights of orographic heavy rainfall decrease with the low-level stability for all regions considered in this study as well as Annam Cordillera during the transition phase from boreal summer to winter monsoon seasons. Therefore, low-level static stability, which inhibits cloud growth and promotes cloud detrainment, is inferred to be an equally important parameter in determining the precipitation-top heights.

  13. Indian monsoon cycles through the last twelve million years

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    stream_size 98222 stream_content_type text/plain stream_name Earth_Sci_India_3_248.pdf.txt stream_source_info Earth_Sci_India_3_248.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Open access e...) and ~21st December (longest night), respectively. Twice crossing over of equator by Sun heats up the tropical ocean, evaporates surface waters, makes clouds, which get transported by the monsoonal winds blowing towards India and resulting into rains...

  14. A composite study of onset of the Australian summer monsoon

    Science.gov (United States)

    Hendon, Harry H.; Liebmann, Brant

    1990-01-01

    The circulation changes that accompany an onset (defined as the first occurrence of wet 850-mb westerly winds at Darwin, Australia) of the Australian summer monsoon are documented by a composite study for the years 1957-1987. Composites of atmospheric fields at stations in and about the Australian tropics are constructed relative to the onset data at Darwin. It is shown that the composite onset is dominated by a slow eastward migration of a deep-baroclinic convective circulation displaced south of the equator. This propagating anomaly exhibited many features of the so-called 40-50 day oscillation, including an upper level anticyclone that accompanies the convective anomaly.

  15. Zonal propagation of kinetic energy and convection in the South China Sea and Indian monsoon regions in boreal summer

    Institute of Scientific and Technical Information of China (English)

    CHEN Longxun; GAO Hui; HE Jinhai; TAO Shiyan; JIN Zuhui

    2004-01-01

    Zonal propagation of kinetic energy (KE) and convection in the South China Sea (SCS) and Indian summer monsoon areas are examined in present study. Results suggest that the SCS and Indian summer monsoon prevailed regions (5-15°N) are dominated by the southwesterly wind, however, the disturbances of KE at 850 hPa and convection are observed mainly coming from the western Pacific Ocean (140-150°E), after passing through the SCS, and westward propagated into the Bay of Bengal (90-100°E). In the Indian summer monsoon domain, where the disturbances of KE are found mainly coming from the Arabian Sea (AS) and eastward propagated into the Bay of Bengal. Therefore, the SCS and the Indian summer monsoon are quite different in zonal propagation of KE and convection. The SCS summer monsoon is mainly affected by the KE and convection coming from the tropical western Pacific. The Indian summer monsoon, however, can be partly influenced by the AS and the SCS summer monsoon. The analysis also suggests that the interaction region between the SCS and the Indian summer monsoon is around 90-95°E, rather than 105°E as proposed by earlier studies.

  16. Meteorological results of monsoon-88 Expedition (pre-monsoon period)

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Krishnamurthy, L.; Babu, M.T.

    Mean atmospheric circulation, moisture budget and net heat exchange were studied during a pre-monsoon period (18th March to 3rd May, 1988), making use of the data collected on board "Akademik Korolev" in the central equatorial and southern Arabian...

  17. The effect of El-Niño on South Asian Monsoon and agricultural production

    Science.gov (United States)

    Mukherjee, A.

    2015-12-01

    Mukherjee A, Wang S.Y.Abstract:The South Asian Monsoon has a prominent and significant impact on South Asian countries like India, Bangladesh, Nepal, Pakistan, Sri Lanka and it is one of the most studied phenomena in the world. The monsoon is historically known to be influenced by El Niño-Southern Oscillation (ENSO). The inter-annual and inter-decadal variability of seasonal precipitation over India strongly depends upon the ENSO phasing. The average southwest monsoon rainfall received during the years with El Niño was found to be less compared to normal years and the average rainfall during the northeast monsoon is higher in coastal Andhra Pradesh. ENSO is anti-correlated with Indian summer monsoon (ISM). The last prominent effect of ENSO on India's monsoon occurred in 2009 with 23% reduction in annual rainfall, reducing summer sown crops such as rice, sugar cane etc. and pushing up food prices. Climatic resources endowment plays a major role in planning agricultural production in tropical and sub-tropical environment especially under rain-fed agriculture, and so contingent crop planning drawn on this relationship would help to mitigate the effects of ENSO episodes in the region. The unexplored area in this domain of research is the changes in the frequency and intensity of ENSO due to global warming and its impact on ENSO prediction and agricultural management practices. We analyze the last 30 years datasets of Pacific SST, and precipitation and air temperature over Southeast Asia to examine the evolution of ENSO teleconnections with ISM, as well as making estimates of drought indices such as Palmer Drought Severity Index. This research can lead toward better crop management strategies in the South Asian monsoon region.

  18. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    Sea surface temperature (SST) in the southwestern tropical Indian Ocean exerts a significant influence on global climate through its influence on the Indian summer monsoon and Northern Hemisphere atmospheric circulation. In this study, measurements...

  19. The South American Monsoon Variability over the Last Millennium in CMIP5/PMIP3 simulations

    Directory of Open Access Journals (Sweden)

    M. Rojas

    2015-12-01

    Full Text Available In this paper we assess South American Monsoon System (SAMS variability throughout the Last Millennium as depicted by the Coupled Modelling Intercomparison Project version 5/Paleo Modelling Intercomparison Project version 3 (CMIP5/PMIP3 simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly period and a stronger monsoon during the Little Ice Age (LIA. Due to the small forcing during the past 1000 years, CMIP5/PMIP3 model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, as suggested by rainfall reconstructions in South America. However, with an ad-hoc definition of these two periods for each model simulation, several coherent large-scale atmospheric circulation anomalies were identified. The models feature a stronger Monsoon during the LIA associated with: (i an enhancement of the rising motion in the SAMS domain in austral summer, (ii a stronger monsoon-related upper-troposphere anticyclone, (iii activation of the South American dipole, which results to a certain extent in a poleward shift in the South Atlantic Convergence Zone and (iv a weaker upper-level sub tropical jet over South America, this providing important insights into the mechanisms of these climate anomalies over South America during the past millennium.

  20. Catastrophic drought in East Asian monsoon region during Heinrich event 1

    Science.gov (United States)

    Zhou, Xin; Sun, Liguang; Chu, Yangxi; Xia, Zehui; Zhou, Xinying; Li, Xiangzhong; Chu, Zhuding; Liu, Xiangjun; Shao, Da; Wang, Yuhong

    2016-06-01

    Heinrich event 1 (H1) is an important millennial climate event during the last deglaciation. The substantial decreasing of monsoon strength in the East Asian monsoon region during the H1, as shown by stalagmite δ18O records, has been attributed to the southward shift of the intertropical convergence zone (ITCZ), which is caused by the slowdown/collapse of the Atlantic meridional overturning circulation (AMOC). However, records from different Asian monsoon regions show various trends in precipitation changes during the H1, and these trends cannot be solely interpreted by the southward shift of the ITCZ. In the present study, we reconstructed time-series of East Asian monsoon precipitation between 25,000 and 10,000 a BP from floodplain sediments in the Huai River Basin. A white sediment layer, distinct from other layers in the profile, contains significantly low TOC, tree pollen and fern spore contents, and more positive δ13Corg, and it is deposited during the H1 event. The determined TOC, pollen and δ13Corg time-series, together with previously reported stalagmite δ18O, indicate a catastrophic (severe) drought in Jianghuai Region, one of the East Asian monsoon regions, during the H1. The La Niña condition in tropical Pacific likely also contributes to the catastrophic drought in Jianghuai Region and the precipitation variations in the Asian monsoon region during the H1.

  1. Interactive Aspects of the Indian and the African Summer Monsoon Systems

    Science.gov (United States)

    Sanjeeva Rao, P.; Sikka, D. R.

    2007-09-01

    This study addresses an understanding of the possible mutual interactions of sub-seasonal variability of the two neighboring regional monsoon systems through data analysis. The NCEP/NCAR re-analysis and OLR data for three years was used to reveal the large-scale organization of convective episodes on synoptic (~5 days) and low frequency (15 50 day) scales. It is found that synoptic scale organization over both the sectors is influenced by the eastward migration of large-scale convective episodes associated with the Madden Julian Oscillation (MJO) on the low frequency scale. The organization of convection associated with the African monsoon on the synoptic scale is influenced by the pulsatory character of lower mid-troposphere and upper troposphere wind regimes moving westward over the African sector. Over the Indian region formation of low pressure areas and depressions in the monsoon trough occur in an overlapping manner under an envelope of low frequency seasonal oscillation. We have also found some correspondence between the summer monsoon rainfall over tropical North Africa and India on a decadal basis, which would suggest a common mode of multi-decadal variability in the two monsoon systems. The study points out the need to organize simultaneous field campaigns over the Indian and the African monsoon regions so as to bring out observational features of possible interactions between the two neighboring systems, which could then be validated through modeling studies.

  2. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM

    Science.gov (United States)

    Bosmans, J. H. C.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Lourens, L. J.

    2015-01-01

    We investigate, for the first time, the response of the North African summer monsoon to separate precession and obliquity forcings using a high-resolution state-of-the-art coupled general circulation model, EC-Earth. Our aim is to better understand the mechanisms underlying the astronomical forcing of this low-latitude climate system in detail. The North African monsoon is strengthened when northern hemisphere summer insolation is higher, as is the case in the minimum precession and maximum obliquity experiments. In these experiments, the low surface pressure areas over the Sahara are intensified and located farther north, and the meridional pressure gradient is further enhanced by a stronger South Atlantic high pressure area. As a result, the southwesterly monsoon winds are stronger and bring more moisture into the monsoon region from both the northern and southern tropical Atlantic. The monsoon winds, precipitation and convection also extend farther north into North Africa. The precession-induced changes are much larger than those induced by obliquity, but the latter are remarkable because obliquity-induced changes in summer insolation over the tropics are nearly zero. Our results provide a different explanation than previously proposed for mechanisms underlying the precession- and, especially, obliquity-related signals in paleoclimate proxy records of the North African monsoon. The EC-Earth experiments reveal that, instead of higher latitude mechanisms, increased moisture transport from both the northern and southern tropical Atlantic is responsible for the precession and obliquity signals in the North African monsoon. This increased moisture transport results from both increased insolation and an increased tropical insolation gradient.

  3. Role of distinct flavours of IOD events on Indian summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, N.; RameshKumar, M.R.; Sajeev, R.; Saji, P.K.

    -monsoon months of July and August together con- tribute to about 61 % of the mean seasonal rainfall (Ramesh Kumar and Uma 2004). A prolonged break in these 2 months is critical for the quantum of ISMR. Though studies indicate a clear link between IOD and ISMR...:1317–1326 1321 123 3.5 ISMR It is well known that El Nino is associated deficit (drought) monsoon conditions over India. The Oceanic Nino Index (ONI) has been used for identifying the El Nino events in the tropical Pacific. It is the 3-month mean SST anomaly...

  4. Seasonal variability of tropical cyclones generated over the South China Sea

    Institute of Scientific and Technical Information of China (English)

    WANG Guihua; WANG Hui; QI Yiquan

    2007-01-01

    The seasonal variability of tropical cyclones (CTCs) generated over the South China Sea (SCS) from 1948 to 2003 is analyzed. It peaks in occurrence in August and few generate in late winter (from January to March). The seasonal activity is attributed to the variability of atmosphere and ocean environments associated with the monsoon system. It is found that the monsoonal characteristics of the SCS basically determine the region of tropical cyclone (TC) genesis in each month.

  5. Monsoonal response to mid-holocene orbital forcing in a high resolution GCM

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2012-04-01

    Full Text Available In this study, we use a sophisticated high-resolution atmosphere-ocean coupled climate model, EC-Earth, to investigate the effect of Mid-Holocene orbital forcing on summer monsoons on both hemispheres. During the Mid-Holocene (6 ka, there was more summer insolation on the Northern Hemisphere than today, which intensified the meridional temperature and pressure gradients. Over North Africa, monsoonal precipitation is intensified through increased landward monsoon winds and moisture advection as well as decreased moisture convergence over the oceans and more convergence over land compared to the pre-industrial simulation. Precipitation also extends further north as the ITCZ shifts northward in response to the stronger poleward gradient of insolation. This increase and poleward extent is stronger than in most previous ocean-atmosphere GCM simulations. In north-westernmost Africa, precipitation extends up to 35° N. Over tropical Africa, internal feedbacks completely overcome the direct warming effect of increased insolation. We also find a weakened African Easterly Jet. Over Asia, monsoonal precipitation during the Mid-Holocene is increased as well, but the response is different than over North-Africa. There is more convection over land at the expense of convection over the ocean, but precipitation does not extend further northward, monsoon winds over the ocean are weaker and the surrounding ocean does not provide more moisture. On the Southern Hemisphere, summer insolation and the poleward insolation gradient were weaker during the Mid-Holocene, resulting in a reduced South American monsoon through decreased monsoon winds and less convection, as well as an equatorward shift in the ITCZ. This study corroborates the findings of paleodata research as well as previous model studies, while giving a more detailed account of Mid-Holocene monsoons.

  6. Future projection of mean and variability of the Asian Summer Monsoon and Indian Ocean Climate systems

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, H [IPRC, University of Hawaii

    2014-09-15

    The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observations and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical

  7. Linking hemispheric radiation budgets, ITCZ shifts, and monsoons

    Science.gov (United States)

    McGee, D.; Donohoe, A.; Marshall, J.; Ferreira, D.

    2014-12-01

    We explore the relationship between the Intertropical Convergence Zone (ITCZ), hemispheric heat budgets, and monsoon strength in past climates. Modern seasonal and interannual variability in the globally-averaged position of the ITCZ (as estimated by the tropical precipitation centroid) reflects the interhemispheric heat balance, with the ITCZ's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that ITCZ shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean (annually and zonally averaged) ITCZ require large changes in hemispheric heat budgets, placing tight bounds on mean ITCZ shifts in past climates. To test this energetic argument, we use the observed relationship between mean ITCZ position and tropical sea surface temperature (SST) gradients in combination with proxy-based estimates of past SST gradients to show that mean ITCZ shifts for the mid-Holocene, Heinrich Stadial 1 and Last Glacial Maximum are not likely to have been more than 1 degree latitude from its present mean position. In exploring these results, we provide brief descriptions of the estimated radiation budgets of past climates that help demonstrate how different climate forcings change the interhemispheric heat balance and thus the ITCZ's global-mean position. We also address the seeming inconsistency between the small ITCZ shifts indicated by energetic constraints and the large changes in monsoon rainfall suggested by proxy data. We compare global-average and regional-scale tropical precipitation in observations and explore their responses to a variety of forcings (orbital changes, ice sheets, hosing) in models. These comparisons make clear that monsoon precipitation can change substantially even in the

  8. Spacebased Observations of the Oceanic Responses to Monsoons in South China Sea and Arabian Sea

    Science.gov (United States)

    Xie, Xiao-Su; Liu, W. Timothy

    2000-01-01

    A large percentage of the world's population and their agrarian economy must endure the vagaries of the monsoons over the tropical oceans between Africa and the Philippines. We know very little about the oceanic responses to changes of the monsoon in the South China Sea (SCS), which is under the influence of the East Asian Monsoon System, and the Arabian Sea (AS), which is dominated by the Indian Monsoon System; oceanic observations are sparse in both regions. Data from spaceborne microwave scatterometers and radiometers have been used to estimate the two major atmospheric forcing, momentum flux and latent heat flux (LHF), which change with the monsoon winds. Spaceborne sensors also observed the surface signatures of the oceanic response: SST and sea level changes (SLC. Sufficient durations of these data have recently become available to allow the meaningful studies of the annual cycles and interannual anomalies. In SCS, the winter monsoon is strong and steady but the summer monsoon is weak and has large intraseasonal fluctuations. In AS, the summer monsoon is much stronger than the winter monsoon. Significant correlations between LHF and SST tendency, and between curl of wind stress and SLC are found in both oceans. In the north SCS, winds are strong and dry, LHF is high, and ocean cooling is also large in fall; LHF is low and the ocean warms up in spring. In AS, LHF and SST tendency have a semi annual period; LHF is high in summer when the wind is strong and in winter when the wind is dry. Along the coast of Oman, the strong summer southwest monsoon causes intense upwelling, low SST and LHF in summer; such wind-driven SST changes is not as obvious along the Vietnam coast because of the weaker summer monsoon. The negative correlation between curl of wind stress and SLC found in the central basins of both SCS and AS agrees with a simple Ekman pumping scenario. Cyclonic winds drive surface divergence and upwelling in the ocean; the rise of the thermocline causes

  9. Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon

    Institute of Scientific and Technical Information of China (English)

    李建平; 曾庆存

    2000-01-01

    The significance of the normalized seasonality of wind field is theoretically studied and the intrinsic relationship between its critical value and the definition of the monsoon region is revealed. As a result, the rationality which the monsoon region is characterized by the significant normalized seasonality is proved. Based on this, by use of the NECP/NCAR reanalysis data during 1958-1997, the spatial structure of the significant normalized seasonality of wind field is investigated, and the significant baroclinity of the seasonal variation of the atmospheric general circulation in the vertical direction is verified. Moreover, in the tropics there exists an anti-symmetric distribution between the significant seasonality in the eastern hemisphere and that in the western hemisphere, and the monsoon is linked closely to some important systems such as the subtropical highs, the night jet and the west wind channels.

  10. Generation of near-inertial oscillations by summer monsoon onset over the South China Sea in 1998 and 1999

    Science.gov (United States)

    Shu, Yeqiang; Pan, Jiayi; Wang, Dongxiao; Chen, Gengxin; Sun, Lu; Yao, Jinglong

    2016-12-01

    The summer monsoon onset over the South China Sea (SCS) is an abrupt event in May or early June every year. After the summer monsoon onset in 1998 and 1999, strong near-inertial oscillations (NIOs) in the central SCS were observed with Acoustic Doppler Current Profilers (ADCP) mooring data. The near-inertial current speed reached 0.25 ms-1, comparable to that induced by tropical storms (TS) in the same area, although the wind speed ( 10 ms-1) of the monsoon onset was much lower than what is typical of TSs. Further analyses suggest that the shallow mixed-layer (speed and direction resulting from the summer monsoon onset were responsible for developing the near-inertial current. The generated NIOs could be enhanced by a warm eddy appearing during the monsoon onset in the central SCS. The strong NIOs appeared in the middle of the SCS in May when the SCS summer monsoon starts to prevail, which implies that the beginning of the SCS summer monsoon may be a vital factor for generation of the strong NIOs in May.

  11. Role of Anomalous States of Upper Tropospheric Circulation on Extremely Dry and Wet Summer Monsoon Events

    Science.gov (United States)

    Ahmad, S.; Koike, T.; Nishii, K.; Shrestha, M.

    2011-12-01

    Seasonal changes in wind pattern, monsoon, sometimes result in severe droughts and intense flooding in many parts of the world including South Asian countries like Pakistan. The livelihood of a vast population in Pakistan depends on agriculture and land use is strongly influenced by water-based ecosystems that depend on the monsoon rains. Furthermore, climate change studies undertaken so far reveal that action is essential in order to prevent long term damage to water cycle and thus of great concern to the community and stakeholders. Pakistan Summer Monsoon (PSM) is affected by both the disturbances from the tropical and the extratropical regions; however there is lack of understanding of physical mechanisms of PSM compared to other regional studies i.e. Indian Summer Monsoon (ISM) and South-East Asian Monsoon (SEAM). In our study, we applied heat and vorticity budgets, and wave train analysis to reveal the mechanisms of the extremely dry and wet PSM events associated with the anomalous upper tropospheric conditions. We found that the extremely dry (wet) PSM events were closely related with the anomalous cyclonic (anticyclonic) upper-tropospheric circulation around northwest of Pakistan, and mid-upper tropospheric cooling (warming) anomaly around Pakistan and to its north/northwest. We also found in addition to Rossby wave response due to the suppressed (enhanced) convective activities around monsoon regions, the midlatitude wave energy propagation emanating around cyclonic/anticyclonic anomaly around northwestern Atlantic, northeastern Atlantic, Europe or Mediterranean regions induced/reinforced/maintained the anomalous upper tropospheric cyclonic (anticyclonic) circulation around northwest of Pakistan during extremely dry (wet) PSM events. Therefore, devastating drought (flood) events over the PSM region resulting from weak (strong) convection anomalies are induced by both the tropical and extratropical processes.

  12. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  13. Response of the Asian Summer Monsoon to Weakening of Atlantic Thermohaline Circulation

    Institute of Scientific and Technical Information of China (English)

    Lu Riyu; Buwen DONG

    2008-01-01

    Various paleocllimate records have shown that the Asian monsoon was punctuated by numerous sub-orbital time-scale events,,and these events were coeval with those that happened in the North Atlantic..This study investigates the Asian summer monsoon responses to the Atlantic 0cean forcing by applying an additional freshwater flux into the North Atlantic.The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation(THC)due to the freshwater flux lead to significantly suppressed Asian summer monsoon.The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon,and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role.Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific,and the atmosphere-ocean jinteraction in the tropical Pacific and Indian 0pcean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.

  14. Dinoflagellates in a mesotrophic, tropical environment influenced by monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.; Patil, J.S.; Hegde, S.; DeSilva, M.S.; Chourasia, M.

    efficient in converting food to energy. Heterotrophic dinoflagellates, considered ‘specialists’ due to their mode of nutrition, proliferate under these conditions. These changes were also reflected in the zooplankton population in the study area. During...-cyst forming dinoflagellates and capable of mixotrophy. Mixotrophy is an important adaptation to life in planktonic habitats and increases access to growth-limiting nutrients, carbon and other growth factors. Mixotrophic organisms can sustain growth when...

  15. Tropical wetlands - problems and potentials as paleo-monsoon archives

    Science.gov (United States)

    Chabangborn, Akkaneewut; Chawchai, Sakonvan; Fritz, Sherilyn; Löwemark, Ludvig; Wohlfarth, Barbara

    2014-05-01

    Paleoclimatic and paleoenvironmental information is still scarce for Southeast Asia despite the fact that this large region is home to numerous natural lakes and wetlands that may contain long sedimentary archives. During the past years we have been surveying lakes and wetlands in different parts of Thailand to select the most promising and longest sedimentary sequences for paleoenvironmental studies. Our survey of more than 30 lakes shows that only very few lakes and wetlands still contain soft sediments. The sediments in the majority of the lakes and wetlands have been dredged and excavated during the past 10 years to provide open and clear water for fishing and recreation. Dredging and excavation using large caterpillars has disturbed and in some cases completely destroyed the sedimentary records. Stiff clays now drape most of the lake bottoms. Based on our extensive survey, we found five sites, from which we successfully obtained intact sediment sequences: Lakes Kumphawapi and Pa Kho in northeast Thailand, Nong Leng Sai in northern Thailand and Sam Roi Yod and Nong Thale Pron in southern Thailand. All of these sites contain a detailed sedimentary record covering the past 2000 years, two of the sites cover parts of or, the entire Holocene; and two sites have sediments covering the last Termination and MIS 3, respectively.

  16. Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K R; Yasunari, T

    2005-12-20

    The Earth's monsoon systems are the life-blood of more than two-thirds of the world's population through the rainfall they provide to the mainly agrarian societies they influence. More than 60 experts gathered to assess the current understanding of monsoon variability and to highlight outstanding problems simulating the monsoon.

  17. Systematic errors in Monsoon simulation: importance of the equatorial Indian Ocean processes

    Science.gov (United States)

    Annamalai, H.; Taguchi, B.; McCreary, J. P., Jr.; Nagura, M.; Miyama, T.

    2015-12-01

    H. Annamalai1, B. Taguchi2, J.P. McCreary1, J. Hafner1, M. Nagura2, and T. Miyama2 International Pacific Research Center, University of Hawaii, USA Application Laboratory, JAMSTEC, Japan In climate models, simulating the monsoon precipitation climatology remains a grand challenge. Compared to CMIP3, the multi-model-mean (MMM) errors for Asian-Australian monsoon (AAM) precipitation climatology in CMIP5, relative to GPCP observations, have shown little improvement. One of the implications is that uncertainties in the future projections of time-mean changes to AAM rainfall may not have reduced from CMIP3 to CMIP5. Despite dedicated efforts by the modeling community, the progress in monsoon modeling is rather slow. This leads us to wonder: Has the scientific community reached a "plateau" in modeling mean monsoon precipitation? Our focus here is to better understanding of the coupled air-sea interactions, and moist processes that govern the precipitation characteristics over the tropical Indian Ocean where large-scale errors persist. A series idealized coupled model experiments are performed to test the hypothesis that errors in the coupled processes along the equatorial Indian Ocean during inter-monsoon seasons could potentially influence systematic errors during the monsoon season. Moist static energy budget diagnostics has been performed to identify the leading moist and radiative processes that account for the large-scale errors in the simulated precipitation. As a way forward, we propose three coordinated efforts, and they are: (i) idealized coupled model experiments; (ii) process-based diagnostics and (iii) direct observations to constrain model physics. We will argue that a systematic and coordinated approach in the identification of the various interactive processes that shape the precipitation basic state needs to be carried out, and high-quality observations over the data sparse monsoon region are needed to validate models and further improve model physics.

  18. Impact of Ocean-Continent Distribution over Southern Asia on the Formation of Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    JIN Qihua; HE Jinhai; CHEN Longxun; ZHU Congwen

    2006-01-01

    Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China PeninsulaSouth China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean,Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation.In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS.However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes,so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.

  19. Competing influences of greenhouse warming and aerosols on Asian summer monsoon circulation and rainfall

    Science.gov (United States)

    Lau, William Ka-Ming; Kim, Kyu-Myong

    2017-05-01

    In this paper, we have compared and contrasted competing influences of greenhouse gases (GHG) warming and aerosol forcing on Asian summer monsoon circulation and rainfall based on CMIP5 historical simulations. Under GHG-only forcing, the land warms much faster than the ocean, magnifying the pre-industrial climatological land-ocean thermal contrast and hemispheric asymmetry, i.e., warmer northern than southern hemisphere. A steady increasing warm-ocean-warmer-land (WOWL) trend has been in effect since the 1950's substantially increasing moisture transport from adjacent oceans, and enhancing rainfall over the Asian monsoon regions. However, under GHG warming, increased atmospheric stability due to strong reduction in mid-tropospheric and near surface relative humidity coupled to an expanding subsidence areas, associated with the Deep Tropical Squeeze (DTS, Lau and Kim, 2015b) strongly suppress monsoon convection and rainfall over subtropical and extratropical land, leading to a weakening of the Asian monsoon meridional circulation. Increased anthropogenic aerosol emission strongly masks WOWL, by over 60% over the northern hemisphere, negating to a large extent the rainfall increase due to GHG warming, and leading to a further weakening of the monsoon circulation, through increasing atmospheric stability, most likely associated with aerosol solar dimming and semi-direct effects. Overall, we find that GHG exerts stronger positive rainfall sensitivity, but less negative circulation sensitivity in SASM compared to EASM. In contrast, aerosols exert stronger negative impacts on rainfall, but less negative impacts on circulation in EASM compared to SASM.

  20. Earth as diode: monsoon source of the orbital ~100 ka climate cycle

    Directory of Open Access Journals (Sweden)

    R. Y. Anderson

    2010-08-01

    Full Text Available A potential source for Earth's enigmatic ~100 ka climate cycle, which is found in many ancient geological records at low latitudes and also in the pacing of glaciation during the late Pleistocene, is traced to a climatic rectifying process inherent in the monsoon. Seasonal information needed to identify the rectifying mechanism is preserved within varves of a continuous, 200 ka recording of annual maximum surface temperature (Tmax from the equator of Western Pangea. Specific seasonal reactions recorded in varves show how the monsoon reacted to seasonal differences in insolation at equinox to produce a 11.7 ka semi-precession cycle in Tmax. At solstice, anti-phasing of insolation in the Northern and Southern Hemispheres, intensified and focused by a highly asymmetric Pangea relative to the equator, produced a strong equatorial maritime monsoon that performed a nonlinear rectifying function similar to that of a simple rectifying diode. Expressed in the resulting varve series are substantial cycles in Tmax of 100 ka, 23.4 ka, and 11.7 ka. Importantly, any external or internal forcing of the tropical (monsoon climate system at higher-than-orbital frequencies (e.g. solar, ENSO should also be amplified at Milankovitch frequencies by the monsoon.

  1. Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon.

    Science.gov (United States)

    He, Bian; Wu, Guoxiong; Liu, Yimin; Bao, Qing

    2015-12-01

    The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based on astronomical radiation analysis and numerical modeling, here we show that in winter the plateaus cannot block such a northerly intrusion; while in summer the daily solar radiation at the top of the atmosphere and at the surface, and the surface potential temperature to the north of the Tibetan Plateau, are higher than their counterparts to its south, and such plateau shielding is not needed. By virtue of hydrological analysis, we show that the high energy near the surface required for continental monsoon development is maintained mainly by high water vapor content. Results based on potential vorticity-potential temperature diagnosis further demonstrate that it is the pumping of water vapor from sea to land due to the thermal effects of the plateaus that breeds the Asian continental monsoon.

  2. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 450 ka during late Quaternary from Core MD05-2901 off Middle Vietnam in the western South China Sea are reported to reconstruct a history of East Asian monsoon evolution.Variations in Illite,chlorite,and kaolinite contents indicate a strong glacial-interglacial cyclicity,while changes in smectite content present a higher frequency cyclicity.The provenance analysis indicates a mixture of individual clay minerals from various sources surrounding the South China Sea.Smectite derived mainly from the Sunda shelf and its major source area of the Indonesian islands.Illite and chlorite originated mainly from the Mekong and Red rivers.Kaolinite was provided mainly by the Pearl River.Spectral analysis of the kaolinite/(illite+chlorite) ratio displays a strong eccentricity period of 100 ka,implying the ice sheet-forced winter monsoon evolution; whereas higher frequency changes in the smectite content show an ice sheet-forced obliquity period of 41 ka,and precession periods of 23 and 19 ka and a semi-precession period of 13 ka as well,implying the tropical-forced summer monsoon evolution.The winter monsoon evolution is generally in coherence with the glacial-interglacial cyclicity,with intensified winter monsoon winds during glacials and weakened winter monsoon winds during interglacials; whereas the summer monsoon evolution provides an almost linear response to the summer insolation of low latitude in the Northern Hemisphere,with strengthened summer monsoon during higher insolation and weakened summer monsoon during lower insolation.The result suggests that the high-latitude ice sheet and low-latitude tropical factor could drive the late Quaternary evolution of East Asian winter and summer monsoons,respectively,implying their diplex and self-contained forcing mechanism.

  3. Indian monsoon variability at different time scales: Marine and terrestrial proxy records

    Digital Repository Service at National Institute of Oceanography (India)

    Patnaik, R.; Gupta, A.K.; Naidu, P.D.; Yadav, R.R.; Bhattacharyya, A.; Kumar, M.

    , Akli Formation (early Eocene ligtes of Rajasthan), contain large number of fossil plants derived from tropical- subtropical rainforests (Prasad et al., 2009; Saxena and Trivedi, 2009; Tripathi et al. 2009; Trivedi, 2009). Besides a diverse...). The diversity and ecomorphological aspects of fossil murine rodents of Siwalik indicate that monsoon probably initiated in the Indian subcontinent around 14 Ma ago. The present day climatic zonations cannot be directly applied to the Late Miocene; because...

  4. Factors controlling the temporal and spatial variations in Synechococcus abundance in a monsoonal estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Rajaneesh, K.M.; Mitbavkar, S.

    , 508-521. 13 Devassy, V., Goes, J., 1988. Phytoplankton community structure and succession in a tropical estuarine complex (central west coast of India). Estuarine, Coastal and Shelf Science 27, 671- 685. Ernst, A., Deicher, M., Herman, P. M. J...., Hess, W., Vaulot, D., 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews 63, 106-127. Patil, J.S., Anil, A.C., 2011. Variations in phytoplankton community in a monsoon...

  5. A glimpse of the Quaternary monsoon history from India and adjoining seas

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Nigam, R.; Correge, T.

    hemispheric climate and the monsoon on millennial time scales (Kudrass et al., 2001; Ivanochko et al., 2005). Additionally, ice core records from the tropical regions also provide strong evidence for a significant control of tropical hydrological cycle..., 83-98. Altabet, M.A., Higginson, M.J., Murray, D.W., 2002. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature 415, 159-162. An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian...

  6. The Dominant Synoptic-Scale Modes of North American Monsoon Precipitation

    Science.gov (United States)

    Serra, Y. L.; Seastrand, S.; Castro, C. L.; Ritchie, E.

    2014-12-01

    In this study we explore the mechanisms of synoptic rainfall variability using observations from the Tropical Rainfall Measuring Mission satellite. While previously shown to have an important impact on North American monsoon rainfall, tropical cyclones are excluded from this analysis, in order to focus on more frequent synoptic disturbances within the region. A rotated empirical orthogonal function analysis of North American monsoon rainfall for June through September 2002-2009 suggests low-level tropical disturbances contribute to the leading two modes of precipitation variability within this region. The low-level disturbances result in gulf surges, or low-level surges of moisture up the Gulf of California, and provide a key low-level moisture source to facilitate development of organized convection. In the first mode the low-level trough brings precipitation to lower elevations along the western slopes of the Sierra Madre Occidental south of Hermosillo, Mexico and over the southern Baja Peninsula. In the second mode the low-level trough interacts with an upper-level inverted trough enhancing precipitation into the southwestern United States and northwest Mexico. In particular, the upper-level trough contributes to the easterly-northeasterly shear across the region, favoring mesoscale convective organization and enhanced deep convection over the Sierra Madre Occidental and higher elevations in southeast Arizona. The EOF methodology offers an objective approach for determining the dominant modes of precipitation for the monsoon region useful for identifying past and monitoring future low-frequency impacts on these modes.

  7. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    Science.gov (United States)

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  8. Teleconnections due the north Indian Ocean tropical disturbances

    Science.gov (United States)

    Jayanthi, V.; Behera, S. K.; Masumoto, Y.; Yamagata, T.

    2012-12-01

    Teleconnections due to long lasting intense tropical disturbances in the north Indian Ocean are investigated in this study. The analyses is carried out for both the pre-monsoon (April-May) and post-monsoon (Oct-Dec) periods. The OLR distribution of the pre-monsoon tropical storms in the Bay of Bengal shows a dipole like structure. The composite plot reveals strong negative OLR anomalies over the Bay region and strong positive OLR anomalies near the Indonesian region. The composite also shows negative OLR anomalies extending from the north-west Pacific region to the western Japan, which is remote from the origin of the Bay of Bengal disturbances. The associated surface temperature anomalies show positive surface temperature anomalies over the northwestern parts of India, Pakistan and Afghanistan with cold anomalies over the Arabian region which is also remote to the region of the tropical disturbances. Further analyses of the anomalies shows that, the negative OLR anomalies over western Japan are due to the Rossby waves generated by the heating over the Bay besides the enhancement of the Pacific-Japan teleconnection. However, the post-monsoon disturbances in the Bay of Bengal and the disturbances formed in the Arabian Sea in both pre- and post-monsoon seasons do not develop remote teleconnections associated with the above type of Rossby wave mechanism.

  9. Amplification of the solar signal in the summer monsoon rainband in China by synergistic actions of different dynamical responses

    Science.gov (United States)

    Zhao, Liang; Wang, Jingsong; Liu, Haiwen; Xiao, Ziniu

    2017-02-01

    A rainband meridional shift index (RMSI) is defined and used to statistically prove that the East Asian summer monsoon rainband is usually significantly more northward in the early summer of solar maximum years than that of solar minimum years. By applying continuous wavelet transform, cross wavelet transform, and wavelet coherence, it is found that throughout most of the 20th century, the significant decadal oscillations of sunspot number (SSN) and the RMSI are phase-locked and since the 1960s, the SSN has led the RMSI slightly by approximately 1.4 yr. Wind and Eliassen-Palm (EP) flux analysis shows that the decadal meridional oscillation of the June rainband likely results from both a stronger or earlier onset of the tropical monsoon and poleward shift of the subtropical westerly jet in high-solar months of May and June. The dynamical responses of the lower tropical monsoon and the upper subtropical westerly jet to the 11-yr solar cycle transmit bottom-up and top-down solar signals, respectively, and the synergistic actions between the monsoon and the jet likely amplify the solar signal at the northern boundary of the monsoon to some extent.

  10. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    Science.gov (United States)

    Attada, Raju; Parekh, Anant; Chowdary, J. S.; Gnanaseelan, C.

    2017-07-01

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003-2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  11. Reanalysis of the Indian summer monsoon: four dimensional data assimilation of AIRS retrievals in a regional data assimilation and modeling framework

    KAUST Repository

    Attada, Raju

    2017-07-04

    This work is the first attempt to produce a multi-year downscaled regional reanalysis of the Indian summer monsoon (ISM) using the National Centers for Environmental Prediction (NCEP) operational analyses and Atmospheric Infrared Sounder (AIRS) version 5 temperature and moisture retrievals in a regional model. Reanalysis of nine monsoon seasons (2003–2011) are produced in two parallel setups. The first set of experiments simply downscale the original NCEP operational analyses, whilst the second one assimilates the AIRS temperature and moisture profiles. The results show better representation of the key monsoon features such as low level jet, tropical easterly jet, subtropical westerly jet, monsoon trough and the spatial pattern of precipitation when AIRS profiles are assimilated (compared to those without AIRS data assimilation). The distribution of temperature, moisture and meridional gradients of dynamical and thermodynamical fields over the monsoon region are better represented in the reanalysis that assimilates AIRS profiles. The change induced by AIRS data on the moist and thermodynamic conditions results in more realistic rendering of the vertical shear associated with the monsoon, which in turn leads to a proper moisture transport and the moist convective feedback. This feedback benefits the representation of the regional monsoon characteristics, the monsoon dynamics and the moist convective processes on the seasonal time scale. This study emphasizes the use of AIRS soundings for downscaling of ISM representation in a regional reanalysis.

  12. Global monsoon in a geological perspective

    Institute of Scientific and Technical Information of China (English)

    WANG PinXian

    2009-01-01

    Monsoon is now considered as a global system rather than regional phenomena only. For over 300 years, monsoon has been viewed as a gigantic land-sea breeze, but now satellite and conventional observations support an alternative hypothesis which considers monsoon as a manifestation of sea-sonal migration of the intertropical convergence zone (ITCZ) and, hence, a climate system of the global scale. As a low-latitude climate system, monsoon exists over all continents but Antarctica, and through all the geological history at least since the Phenorozoic. The time is ripe for systematical studies of monsoon variations in space and time.As evidenced by the geological records, the global monsoon is controlled by the Wilson cycle on the tectonic time scale (106-108a). A "Mega-continent" produces "Mega-monsoon", and its breakdown leads to weakening of the monsoon Intensity. On the time scales of 104-105 a, the global monsoon displays the precessional cycles of~20 ka and eccentricity cycles of 100- and 400-ka, i.e. the orbital cycles. On the time scales of 103 a and below, the global monsoon intensity is modulated by solar cy-cles and other factors. The cyclicity of global monsoon represents one of the fundamental factors re-sponsible for variations in the Earth surface system as well as for the environmental changes of the human society. The 400-ka long eccentricity cycles of the global monsoon is likened to "heartbeat" of the Earth system, and the precession cycle of the global monsoon was responsible for the collapse of several Asian and African ancient cultures at~4000 years ago, whereas the Solar cycles led to the de-mise of the Maya civilization about a thousand years ago. Therefore, paleoclimatology should be fo-cused not only on the high-latitude processes centered at ice cap variations, but also on the low-latitude processes such as monsoons, as the latter are much more common in the geological history compared to the glaciations.

  13. Aerosol and monsoon climate interactions over Asia

    Science.gov (United States)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from

  14. Tropical malabsorption

    Science.gov (United States)

    Ramakrishna, B S; Venkataraman, S; Mukhopadhya, A

    2006-01-01

    Malabsorption is an important clinical problem both in visitors to the tropics and in native residents of tropical countries. Infections of the small intestine are the most important cause of tropical malabsorption. Protozoal infections cause malabsorption in immunocompetent hosts, but do so more commonly in the setting of immune deficiency. Helminth infections occasionally cause malabsorption or protein‐losing enteropathy. Intestinal tuberculosis, chronic pancreatitis and small‐bowel bacterial overgrowth are important causes of tropical malabsorption. In recent years, inflammatory bowel disease and coeliac disease have become major causes of malabsorption in the tropics. Sporadic tropical sprue is still an important cause of malabsorption in adults and in children in South Asia. Investigations to exclude specific infective, immunological or inflammatory causes are important before considering tropical sprue as a diagnosis. This article briefly reviews the management of tropical sprue and presents an algorithm for its investigation and management. PMID:17148698

  15. Piomiosite tropical Tropical pyomyositis

    Directory of Open Access Journals (Sweden)

    Nilton Ghiotti de Siqueira

    1998-06-01

    Full Text Available A piomiosite tropical, apesar de ser uma patologia reconhecida em nosso meio há mais de cem anos, ainda é pouco divulgada no Brasil, e pode-se perder tempo e dinheiro em exames para afastar a possibilidade de tumores ou tratar sua incidência vem aumentando em regiões de clima temperado, devido à disseminação do Vírus da lmunodeticiência Humana e aos tratamentos imúnossupressivos. Apesar de realizado em instituições que muitas vezes não apresentam recursos diagnósticos de primeira linha, demonstramos que o tratamento pode ser adequado se houver experiência clínica e bom senso. São descritos quarenta casos de piomiosite tropical, atendidos consecutivamente por um mesmo cirurgião; a idade média dos pacientes foi de 16 anos e o sexo predominante o masculino. O diagnóstico foi clínico em 73% dos casos e o tratamento realizado foi drenagem por incisão direta sobre a massa, deixando dreno tubular, usado para irrigação do abscesso. O tempo médio de permanência do dreno no local foi de cinco dias, e a média de permanência hospitalar, sete dias. Dois casos (5% evoluíram para osteomielite e um caso foi a óbito. A evolução foi satisfatória em 93% dos pacientes.Tropical pyomyositis, although a recognized pathology for more than a century, is still poorly known in Brazil, and one could waste time and money on exams for negative diagnosis for tumors or inadequately treat a potentially fatal disease. Initially referred to as a tropical disease, its incidence is increasing in temperate regions due to the dissemination of the Human Immunodeficiency Virus and immunosuppressive treatments. In spite of our Institution frequently lacking quality diagnostic resources, we managed adequate treatment by using clinical experience and good judgement. A total of 40 cases of tropical pyomyositis are described, all treated by the same surgeon, with a mean age of 16 years, predominantly male. Clinical diagnosis was realized in 73% of the cases

  16. Towards understanding the unusual Indian monsoon in 2009

    Indian Academy of Sciences (India)

    P A Francis; Sulochana Gadgil

    2010-08-01

    The Indian summer monsoon season of 2009 commenced with a massive deficit in all-India rainfallof 48% of the average rainfall in June. The all-India rainfall in July was close to the normal but that in August was deficit by 27%. In this paper, we first focus on June 2009, elucidating the special features and attempting to identify the factors that could have led to the large deficit in rainfall. In June 2009, the phase of the two important modes, viz., El Niño and Southern Oscillation (ENSO) and the equatorial Indian Ocean Oscillation (EQUINOO) was unfavourable. Also, the eastern equatorial Indian Ocean (EEIO) was warmer than in other years and much warmer than the Bay. In almost all the years, the opposite is true, i.e., the Bay is warmer than EEIO in June. It appears that this SST gradient gave an edge to the tropical convergence zone over the eastern equatorial Indian Ocean, in competition with the organized convection over the Bay. Thus, convection was not sustained for more than three or four days over the Bay and no northward propagations occurred. We suggest that the reversal of the sea surface temperature (SST) gradient between the Bay of Bengal and EEIO, played a critical role in the rainfall deficit over the Bay and hence the Indian region. We also suggest that suppression of convection over EEIO in association with the El Niño led to a positive phase of EQUINOO in July and hence revival of the monsoon despite the El Niño. It appears that the transition to a negative phase of EQUINOO in August and the associated large deficit in monsoon rainfall can also be attributed to the El Niño.

  17. Response of Asian Summer Monsoon to CO2 Doubling

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian; LIU Qinyu; HUANG Fei

    2011-01-01

    Based on simulations of the IPCC 20C3M and SRES A1B experiments in ten coupled models,the Asian summer monsoon (ASM) response to CO2 doubling and the different responses among models are examined.Nine models show the similar results that the weakening of land-ocean thermal contrast caused by the CO2 doubling contributes to a weaker large-scale ASM circulation.Further analysis in this study also shows that the major ASM components,such as the Somali cross-equatorial flow,the low level India-South China Sea monsoon trough,and the upper level tropical easterly jet stream,weaken as CO2 doubles.However,the ASM rainfall increases as a result of the increased moisture from the warmer Indian Ocean and the South China Sea,and the enhanced northward moisture transport over the ASM region.For the response of enhanced northward moisture transport over South Asia,the positive contribution of moisture content increase in the Indian Ocean is dominant and the negative contribution of the weaker monsoon circulation is secondary at 850 hPa,but both have positive contribution to the total moisture transport along the East China coast.The paradox of the weaker ASM circulation and the increasing precipitation in CO2 doubling is confirmed.It is found that strengthening of northward moisture transport could intensify the precipitation and atmospheric heat source over the north Arabian Sea and East China,and result in enhanced southwesterly at 850hPa as global warming occurs.All ten models show significant enhanced southwesterly response over the north Arabian Sea,and six of them show enhanced southwesterly response along the East China coast.

  18. Three million years of monsoon variability over the northern Sahara

    Energy Technology Data Exchange (ETDEWEB)

    Larrasoana, J.C.; Roberts, A.P.; Rohling, E.J.; Winklhofer, M. [School of Ocean and Earth Science, Southampton Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH (United Kingdom); Wehausen, R. [Institut fuer Chemie und Biologie des Meeres (ICBM), Carl-von-Ossietzky-Universitaet, 26111, Oldenburg (Germany)

    2003-12-01

    We present a 3 million year record of aeolian dust supply into the eastern Mediterranean Sea, based on hematite contents derived from magnetic properties of sediments from Ocean Drilling Program Site 967. Our record has an average temporal resolution of {proportional_to}400 years. Geochemical data validate this record of hematite content as a proxy for the supply of aeolian dust from the Sahara. We deduce that the aeolian hematite in eastern Mediterranean sediments derives from the eastern Algerian, Libyan, and western Egyptian lowlands located north of the central Saharan watershed ({proportional_to}21 N). In corroboration of earlier work, we relate dust flux minima to penetration of the African summer monsoon front to the north of the central Saharan watershed. This would have enhanced soil humidity and vegetation cover in the source regions, in agreement with results from ''green Sahara'' climate models. Our results indicate that this northward monsoon penetration recurred during insolation maxima throughout the last 3 million years. As would be expected, this orbital precession-scale mechanism is modulated on both short ({proportional_to}100-kyr) and long ({proportional_to}400-kyr) eccentricity time scales. We also observe a strong expression of the {proportional_to}41-kyr (obliquity) cycle, which we discuss in terms of high- and low-latitude mechanisms that involve Southern Hemisphere meridional temperature contrasts and shifts in the latitudes of the tropics, respectively. We also observe a marked increase in sub-Milankovitch variability around the mid-Pleistocene transition ({proportional_to}0.95 Ma), which suggests a link between millennial-scale climate variability, including monsoon dynamics, and the size of northern hemisphere ice sheets. (orig.)

  19. South American Summer Monsoon history recorded in Brazilian speleothems

    Science.gov (United States)

    Wang, X.; Auler, A. S.; Edwards, R. L.; Cheng, H.

    2008-12-01

    We have obtained three high-resolution oxygen isotopic records of cave calcites from Caverna Botuverá, southern Brazil, Gruta do Padre, central Brazil, and Caverna Paraíso, Amazonian Brazil. All three records have chronologies determined by U-Th dates and span the last 90, 20 and 50 thousand years, respectively. Tests for equilibrium conditions show that their oxygen isotopic variations are primarily caused by climate change. The three records thus can provide information about precipitation history and fluctuations of the South American Summer Monsoon along a latitudinal transect from 28° S to 4° S. During the last glacial period, the three oxygen isotopic profiles show abrupt millennial-scale variations, which are anti- correlated with the Chinese speleothem monsoon records and northern high-latitude ice core records. This is likely related to the displacement of the mean position of the intertropical convergence zone and associated asymmetry of Hadley cells, consistent with an oceanic meridional overturning circulation mechanism for driving the abrupt climate events. However, the three records show distinct isotopic patterns in Holocene epoch. The δ18O values in the Botuvera record decrease steadily throughout Holocene, while in the Padre record, the δ18O drops slightly until ~6-7 thousand years ago and then gradually increases until the present. The Paraiso Holocene record is similar to the Padre one, but with a much greater amplitude. Together with Andean ice core and lake records, our observations suggest asynchronous changes in Holocene monsoonal precipitation in South America, possibly related to strengthened zonal tropical air-sea interactions after the melting of the large northern ice sheets.

  20. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  1. CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate

    Science.gov (United States)

    Dong, Guangtao; Zhang, H.; Moise, A.; Hanson, L.; Liang, P.; Ye, H.

    2016-01-01

    A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST

  2. Indian summer monsoon rainfall characteristics during contrasting monsoon years.

    Digital Repository Service at National Institute of Oceanography (India)

    Varikoden, H.; RameshKumar, M.R.; Babu, C.A.

    , Vinayachandran P, and Yamagata T, 1999. A dipole mode in the tropical Indian Ocean, Nature, 401 , 360–363. Shepard D, 1968. A two-dimensional interpolation function for irregularly- spaced data, in Proceedings of the 1968 23rd ACM National Conference, pp. 517...

  3. OBSERVATIONAL STUDY OF MESO-β WAVE IN LOW LATITUDES OF SOUTH CHINA SEA OVER THE SUMMER MONSOON

    Institute of Scientific and Technical Information of China (English)

    余欲晓; 刘正奇

    2002-01-01

    The intensive observation data of the Nansha Islands are used to study and discuss the meso-and fine-scale systems existing with large-scale monsoon circulation during the onset of the southwesterly monsoon in the low-latitude areas of the South China Sea.Effects of low-latitude tropical meso-scale gravity waves on weather have been disclosed.The generation and transportation of the local meso-scale gravity wave have been preliminarily studied from the viewpoint of dynamics.

  4. Upper ocean physical processes in the Tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, L.V.G.; Ram, P.S.

    This monograph is the outcome of an attempt by the authors to present a synthesis of the studies on physical processes in the Tropical Indian Ocean (TIO) in relation to air-sea interaction, monsoon/climate variability and biological productivity...

  5. An Indian Ocean precursor for Indian summer monsoon rainfall variability

    Science.gov (United States)

    Sreejith, O. P.; Panickal, S.; Pai, S.; Rajeevan, M.

    2015-11-01

    The Indian summer monsoon rainfall (ISMR) depicts large interannual variability strongly linked with El Niño-Southern Oscillation (ENSO). However, many of the El Niño years were not accompanied by deficient ISMR. The results from the study reveal the significant role of coupled air-sea interaction over the tropical Indian Ocean (IO) in modifying the ENSO-ISMR association. The IO warm water volume (WWV), a measure of heat content variations in the equatorial IO has strong influence on ISMR. A deepening (shoaling) of thermocline in the eastern equatorial IO (EEIO) during late boreal spring (April-May) accompanied by increase (decrease) in WWV anomalies weaken (enhance) the ISMR by enhancing (suppressing) the convection over EEIO resulting in the below (above) normal ISMR. Thus, the changes in the WWV anomalies in the EEIO along with ENSO conditions during boreal spring can be considered as a precursor for the performance of subsequent ISMR.

  6. Teleconnections associated with Northern Hemisphere summer monsoon intraseasonal oscillation

    Science.gov (United States)

    Moon, Ja-Yeon; Wang, Bin; Ha, Kyung-Ja; Lee, June-Yi

    2013-06-01

    The boreal summer intraseasonal oscillation (BSISO) has strong convective activity centers in Indian (I), Western North Pacific (WNP), and North American (NA) summer monsoon (SM) regions. The present study attempts to reveal BSISO teleconnection patterns associated with these dominant intraseasonal variability centers. During the active phase of ISM, a zonally elongated band of enhanced convection extends from India via the Bay of Bengal and Philippine Sea to tropical central Pacific with suppressed convection over the eastern Pacific near Mexico. The corresponding extratropical circulation anomalies occur along the waveguides generated by the North African-Asian jet and North Atlantic-North European jet. When the tropical convection strengthens over the WNPSM sector, a distinct great circle-like Rossby wave train emanates from the WNP to the western coast of United States (US) with an eastward shift of enhanced meridional circulation. In the active phase of NASM, large anticyclonic anomalies anchor over the western coast of US and eastern Canada and the global teleconnection pattern is similar to that during a break phase of the ISM. Examination of the evolution of the BSISO teleconnection reveals quasi-stationary patterns with preferred centers of teleconnection located at Europe, Russia, central Asia, East Asia, western US, and eastern US and Canada, respectively. Most centers are embedded in the waveguide along the westerly jet stream, but the centers at Europe and Russia occur to the north of the jet-induced waveguide. Eastward propagation of the ISO teleconnection is evident over the Pacific-North America sector. The rainfall anomalies over the elongated band near the monsoon domain over the Indo-western Pacific sector have an opposite tendency with that over the central and southern China, Mexico and southern US, providing a source of intraseasonal predictability to extratropical regions. The BSISO teleconnection along and to the north of the subtropical jet

  7. Atmospheric circulation processes contributing to a multidecadal variation in reconstructed and modeled Indian monsoon precipitation

    Science.gov (United States)

    Wu, Qianru; Hu, Qi

    2015-01-01

    analysis of the recently reconstructed gridded May-September total precipitation in the Indian monsoon region for the past half millennium discloses significant variations at multidecadal timescales. Meanwhile, paleo-climate modeling outputs from the National Center for Atmospheric Research Community Climate System Model 4.0 show similar multidecadal variations in the monsoon precipitation. One of those variations at the frequency of 40-50 years per cycle is examined in this study. Major results show that this variation is a product of the processes in that the meridional gradient of the atmospheric enthalpy is strengthened by radiation loss in the high-latitude and polar region. Driven by this gradient and associated baroclinicity in the atmosphere, more heat/energy is generated in the tropical and subtropical (monsoon) region and transported poleward. This transport relaxes the meridional enthalpy gradient and, subsequently, the need for heat production in the monsoon region. The multidecadal timescale of these processes results from atmospheric circulation-radiation interactions and the inefficiency in generation of kinetic energy from the potential energy in the atmosphere to drive the eddies that transport heat poleward. This inefficiency creates a time delay between the meridional gradient of the enthalpy and the poleward transport. The monsoon precipitation variation lags that in the meridional gradient of enthalpy but leads that of the poleward heat transport. This phase relationship, and underlining chasing process by the transport of heat to the need for it driven by the meridional enthalpy gradient, sustains this multidecadal variation. This mechanism suggests that atmospheric circulation processes can contribute to multidecadal timescale variations. Interactions of these processes with other forcing, such as sea surface temperature or solar irradiance anomalies, can result in resonant or suppressed variations in the Indian monsoon precipitation.

  8. TIGERZ I: Aerosols, Monsoon and Synergism

    Science.gov (United States)

    Holben, B. N.; Tripathi, S. N.; Schafer, J. S.; Giles, D. M.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Krishnmoorthy, K.; Sorokin, M. G.; Newcomb, W. W.; Tran, A. K.; Sikka, D. R.; Goloub, P.; O'Neill, N. T.; Abboud, I.; Randles, C.; Niranjan, K.; Dumka, U. C.; Tiwari, S.; Devara, P. C.; Kumar, S.; Remer, L. A.; Kleidman, R.; Martins, J. V.; Kahn, R.

    2008-12-01

    The Indo-Gangetic Plain of northern India encompasses a vast complex of urban and rural landscapes, cultures that serve as anthropogenic sources of fine mode aerosols mixed with coarse mode particles transported from SW Asia. The summer monsoon and fall Himalayan snowmelt provide the agricultural productivity to sustain an extremely high population density whose affluence is increasing. Variations in the annual monsoon precipitation of 10% define drought, normal and a wet season; the net effects on the ecosystems and quality of life can be dramatic. Clearly investigation of anthropogenic and natural aerosol impacts on the monsoon, either through the onset, monsoon breaks or end points are a great concern to understand and ultimately mitigate. Many national and international field campaigns are being planned and conducted to study various aspects of the Asian monsoon and some coordinated under the Asian Monsoon Years (AMY) umbrella. A small program called TIGERZ conducted during the pre-monsoon of 2008 in North Central India can serve as a model for contributing significant resources to existing field programs while meeting immediate project goals. This poster will discuss preliminary results of the TIGERZ effort including ground-based measurements of aerosol properties in the I-G from AERONET and synergism with various Indian programs, satellite observations and aerosol modeling efforts.

  9. Lack of Dependence of Indian Summer Monsoon Rainfall Extremes on Temperature: An Observational Evidence

    Science.gov (United States)

    Vittal, H.; Ghosh, Subimal; Karmakar, Subhankar; Pathak, Amey; Murtugudde, Raghu

    2016-08-01

    The intensification of precipitation extremes in a warming world has been reported on a global scale and is traditionally explained with the Clausius-Clapeyron (C-C) relation. The relationship is observed to be valid in mid-latitudes; however, the debate persists in tropical monsoon regions, with the extremes of the Indian Summer Monsoon Rainfall (ISMR) being a prime example. Here, we present a comprehensive study on the dependence of ISMR extremes on both the 2 m surface air temperature over India and on the sea surface temperature over the tropical Indian Ocean. Remarkably, the ISMR extremes exhibit no significant association with temperature at either spatial scale: neither aggregated over the entire India/Tropical Indian Ocean area nor at the grid levels. We find that the theoretical C-C relation overestimates the positive changes in precipitation extremes, which is also reflected in the Coupled Model Intercomparison Project 5 (CMIP5) simulations. We emphasize that the changing patterns of extremes over the Indian subcontinent need a scientific re-evaluation, which is possible due to availability of the unique long-term in-situ data. This can aid bias correction of model projections of extremes whose value for climate adaptation can hardly be overemphasized, especially for the developing tropical countries.

  10. Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene

    Directory of Open Access Journals (Sweden)

    P. Braconnot

    2008-04-01

    Full Text Available Monsoon is the major manifestation of the seasonal cycle in the tropical regions, and there is a wide range of evidence from marine and terrestrial data that monsoon characteristics are affected by changes in the Earth's orbital parameters. We consider 3 periods in the Eemian and in the Holocene that present some analogy in the Earth's orbital configuration in terms of obliquity and precession. Simulations with the IPSL_CM4 ocean-atmosphere coupled model allow us to discuss the response of the Indian and African monsoon in terms of amplitude and response to the insolation forcing. Results show that precession plays a large role in shaping the seasonal timing of the monsoon system. Differences are found in the response of the two sub-systems. They result from the phase relationship between the insolation forcing and the seasonal characteristics of each sub-system. Also the response of the Indian Ocean is very different in terms of temperature and salinity when the change in insolation occurs at the summer solstice or later in the year. Monsoon has a large contribution to heat and water transports. It is shown that the relative importance of monsoon on the change in the energetic of the tropical regions also vary with precession.

  11. Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene

    Directory of Open Access Journals (Sweden)

    P. Braconnot

    2008-11-01

    Full Text Available Monsoon is the major manifestation of the seasonal cycle in the tropical regions, and there is a wide range of evidence from marine and terrestrial data that monsoon characteristics are affected by changes in the Earth's orbital parameters. We consider 3 periods in the Eemian and 3 in the Holocene that present some analogy in the Earth's orbital configuration in terms of obliquity and precession. Simulations with the IPSL_CM4 ocean-atmosphere coupled model allow us to discuss the response of the Indian and African monsoon in terms of amplitude and response to the insolation forcing. Results show that precession plays a large role in shaping the seasonal timing of the monsoon system. Differences are found in the response of the two sub-systems. They result from the phase relationship between the insolation forcing and the seasonal characteristics of each sub-system. Also the response of the Indian Ocean is very different in terms of temperature and salinity when the change in insolation occurs at the summer solstice or later in the year. Monsoon has a large contribution to heat and water transports. It is shown that the relative importance of monsoon on the change in the energetic of the tropical regions also vary with precession.

  12. On Winning the Race for Predicting the Indian Summer Monsoon Rainfall

    Science.gov (United States)

    Goswami, Bhupendra

    2013-03-01

    Skillful prediction of Indian summer monsoon rainfall (ISMR) one season in advance remains a ``grand challenge'' for the climate science community even though such forecasts have tremendous socio-economic implications over the region. Continued poor skill of the ocean-atmosphere coupled models in predicting ISMR is an enigma in the backdrop when these models have high skill in predicting seasonal mean rainfall over the rest of the Tropics. Here, I provide an overview of the fundamental processes responsible for limited skill of climate models and outline a framework for achieving the limit on potential predictability within a reasonable time frame. I also show that monsoon intra-seasonal oscillations (MISO) act as building blocks of the Asian monsoon and provide a bridge between the two problems, the potential predictability limit and the simulation of seasonal mean climate. The correlation between observed ISMR and ensemble mean of predicted ISMR (R) can still be used as a metric for forecast verification. Estimate of potential limit of predictability of Asian monsoon indicates that the highest achievable R is about 0.75. Improvements in climate models and data assimilation over the past one decade has slowly improved R from near zero a decade ago to about 0.4 currently. The race for achieving useful prediction can be won, if we can push this skill up to about 0.7. It requires focused research in improving simulations of MISO, monsoon seasonal cycle and ENSO-monsoon relationship by the climate models. In order to achieve this goal by 2015-16 timeframe, IITM is leading a Program called Monsoon Mission supported by the Ministry of Earth Sciences, Govt. of India (MoES). As improvement in skill of forecasts can come only if R & D is carried out on an operational modeling system, the Climate Forecast System of National Centre for Environmental Prediction (NCEP) of NOAA, U.S.A has been selected as our base system. The Mission envisages building partnership between

  13. A lidar study of atmospheric aerosols during two contrasting monsoon seasons

    Energy Technology Data Exchange (ETDEWEB)

    Devara, P.C.S.; Raj, P.E. [Indian Institute of Tropical Meteorology (India)

    1998-10-01

    The vertical profiles of the boundary-layer aerosols obtained with a bistatic argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India, during two contrasting, successive south-west (summer) monsoon seasons of 1987 (weak monsoon year) and 1988 (active monsoon year) have been examined. The concurrent meteorological parameters such as temperature, relative humidity and rainfall over Pune have also been studied. It is noticed that the aerosol columnar content (integration of vertical profile throughout the height range) is greater during the active monsoon months and less during the weak monsoon months. Thus the monsoon season total rainfall during 1987 and 1988, apart from other meteorological parameters, shows close correspondence with the aerosol columnar content over the experimental station. A brief description of the lidar experimental setup and the database is given. The observed association between the aerosol columnar content and the monsoon activity is explained in terms of the environmental and meteorological conditions prevailing over Pune. [Spanish] Los perfiles verticales de los aerosoles de la capa fronteriza obtenidos mediante un sistema de Lidar biestatico de iones de argon en el Instituto de Meteorologia Tropical (IITM) en Pune, India, durante dos estaciones contrastantes y suscesivas del monzon del SW (verano) de 1987 (ano de monzon debil) y 1988 (ano activo de monzon) han sido estudiados. Los parametros meteorologicos concurrentes tales como temperatura, humedad relativa y lluvia en Pune, han sido tambien estudiados. Se observa que el contenido columnar de aerosoles (integracion del perfil vertical en toda la gama de alturas) es mayor durante los meses del monzon activo y menor en los meses del monzon debil. De manera que, el total de la lluvia monzonica durante 1987 y 1988, aparte de otros parametros meteorologicos, muestran una correspondencia intima con el contenido columnar de a erosoles sobre la estacion

  14. Impact of El Nino on Large-scale Circulation of Southeast Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    白学志; 吴爱明

    2003-01-01

    Multi year SST and NCEP/NCAR reanalyzed wind data were employed to study the impacts of El Nino on the Southeast Asian summer monsoon (SEASM). It was found that the impacts of El Nino on the SEASM differed distinctly from those on the East Asian summer monsoon (EASM) and the Indian summer monsoon (ISM). Composite analysis indicated that the "gear point" of coupling between the Indo monsoon circulation and the Pacific Walker circulation was located in the western margins of Southeast Asia when the developing stage of El Nino events covered the boreal summer. The anomalous circulations in the lower and upper troposphere and divergent circulation are all favorable for the strengthening of the SEASM during this period. Following the evolution of El Nino, the "gear point" of the two cells shifted eastward tothe central Pacific when the mature or decaying period of El Nino events covered the boreal summer. The anomalous circulations are favorable for the weakening of the SEASM. The anomalous indexes of intensity of SEASM accord well withthe above results. Additionally, the difference of SSTA patterns in the tropical Indo Pacific Ocean between the two stages of the El Nino may play an important role.

  15. Evaluation of multi-satellite rainfall products over India during monsoon

    Science.gov (United States)

    Mitra, Ashis K.; Prakash, Satya; Pai, D. S.; Srivastava, A. K.

    2016-05-01

    Simulation and prediction of Indian monsoon rainfall at scales from days-to-season is a challenging task for numerical modelling community worldwide. Gridded estimates of daily rainfall data are required for both land and oceanic regions for model validation, process studies and in turn for model development. Due to recent developments in satellite meteorology, it has become possible to produce realistic near real-time gridded rainfall datasets at operational basis by combining satellite estimates with rain gauge values and other available in-situ observations. Microwave and space based radar based estimates of rainfall has revolutionised the preparation of rainfall datasets especially for tropics. However, a variety of multi-satellite products are available over Indian monsoon region from a variety of sources. Popular products like TRMM TMPA3B42 (RT and V7), GsMaP, CPC/RFE, GPCP and GPM are available to end users in various space/time scales for applications and model validation. In this study, we show the representation and skill of monsoon rainfall from a variety of multi-satellite products over the Indian region. The bias and skill of multi-satellite rainfall are evaluated against gauge based observations. It was found that the TRMM based TMPA was one of the best dataset for Indian monsoon region. Attempt is made to compare the latest GPM based data with other products. The GPM based rainfall product is seen to be superior compared to TRMM.

  16. Seasonal Transition Features of Large-Scale Moisture Transport in the Asian-Australian Monsoon Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using NCEP/NCAR reanalysis data for the period of 1957-2001, the climatological seasonal transition features of large-scale vertically integrated moisture transport (VIMT) in the Asian-Australian monsoon region are investigated in this paper. The basic features of the seasonal transition of VIMT from winter to summer are the establishment of the summertime "great moisture river" pattern (named the GMR pattern)and its eastward expansion, associated with a series of climatological events which occurred in some "key periods", which include the occurrence of the notable southerly VIMT over the Indochina Peninsula in mid March, the activity of the low VIMT vortex around Sri Lanka in late April, and the onset of the South China Sea summer monsoon in mid May, among others. However, during the transition from summer to winter, the characteristics are mainly exhibited by the establishment of the easterly VIMT belt located in the tropical area, accompanied by some events occurring in "key periods". Further analyses disclose a great difference between the Indian and East Asian monsoon regions when viewed from the meridional migration of the westerly VIMT during the seasonal change process, according to which the Asian monsoon region can be easily divided into two parts along the western side of the Indochina Peninsula and it may also denote different formation mechanisms between the two regions.

  17. Hydroclimate variations in central and monsoonal Asia over the past 700 years.

    Science.gov (United States)

    Fang, Keyan; Chen, Fahu; Sen, Asok K; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki

    2014-01-01

    Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia.

  18. Influence of air-sea fluxes on atmospheric aerosols during summer monsoon in the Indian Ocean.

    Science.gov (United States)

    Zavarsky, Alex; Booge, Dennis; Fiehn, Alina; Krüger, Kirstin; Atlas, Elliot; Marandino, Christa

    2017-04-01

    The local influence of air-sea trace gas fluxes on atmospheric aerosols in the remote marine boundary layer (MBL) is still heavily disputed. During summer monsoon, the western tropical Indian Ocean is predicted to be a hotspot for dimethylsulfide (DMS) emissions, the major marine sulfur source to the atmosphere and an important aerosol precursor. Other aerosol relevant fluxes, such as isoprene and sea salt fluxes, should also be enhanced, due to the steady strong winds during the monsoon. In addition, maritime air masses dominate the area during the summer monsoon, excluding the influence of continentally derived pollutants. During the 234-2/235 cruise in the western tropical Indian Ocean from July-August, 2014, directly measured eddy covariance DMS fluxes confirm that the area is a large source of sulfur to the atmosphere (8.4 μmolm-2d-1). The directly measured fluxes, as well as computed isoprene and sea salt fluxes, were combined with FLEXPART back- and forward trajectories to track the emissions in space and time. The fluxes correlate with satellite aerosol products from MODIS-TERRA and Suomi-NPP, showing significant values from 0.42 to 0.62. The maximum correlations were found between 3 and 10 hours after emission, reflecting reasonable timing for atmospheric transformations and indicating a local influence of marine emissions on atmospheric aerosol properties.

  19. A hemispheric climatology of monsoon depressions

    Science.gov (United States)

    Hurley, J. V.; Boos, W.

    2012-12-01

    Monsoon depressions are large (1000-2000 km diameter) cyclonic low pressure systems having organized deep convection, best known for forming in the Bay of Bengal and migrating northwest over northern India in the monsoon trough. About 3 to 5 of these systems occur during each monsoon season, contributing about half of the Indian summer rainfall. Despite their importance as a precipitation source, their dynamics are poorly constrained. Furthermore, although they do occur elsewhere, such as around Australia and in the southern Indian Ocean, there does not exist a collective inventory of these systems outside of the Bay of Bengal region. Here we present a climatology of monsoon depressions produced from the ERA-Interim Reanalysis. Feature tracks are identified using an automated tracking algorithm (K. Hodges' TRACK code) applied to the 850 hPa relative vorticity field for local summer, 1989 to 2003. Using criteria based on relative vorticity and sea level pressure, cyclonic low pressure systems are separated into different intensity categories, one of which corresponds to the definition for monsoon depressions used by the India Meteorological Department. The resultant distribution of storms obtained for the Bay of Bengal region compares well with a previously compiled climatology of monsoon depressions that was limited to the region surrounding India. Having validated our ability to identify monsoon depressions in their classic genesis region near India, we then extend the methods to include the western Pacific, Australia, and the southern Indian Ocean. Track distributions and composite structures of monsoon depressions for these different regions will be presented.

  20. A comparative study of the Indian summer monsoon hydroclimate and its variations in three reanalyses

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Vasubandhu [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Florida State University, Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States); Pantina, P. [Science Systems and Application, Inc., Lanham, MD (United States); NASA/GSFC, Cloud and Radiation Laboratory, Greenbelt, MD (United States); Chan, S.C. [Newcastle University, School of Civil Engineering and Geosciences, Newcastle upon Tyne (United Kingdom); Met Office Hadley Center, Exeter (United Kingdom); DiNapoli, S. [Florida State University, Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL (United States)

    2012-09-15

    This study examines the Indian summer monsoon hydroclimate in the National Centers for Environmental Prediction (NCEP)-Department of Energy (DOE) Reanalysis (R2), the Climate Forecast System Reanalysis (CFSR), and the Modern Era Retrospective-Analysis for Research and Applications (MERRA). The three reanalyses show significant differences in the climatology of evaporation, low-level winds, and precipitable water fields over India. For example, the continental evaporation is significantly less in CFSR compared to R2 and MERRA. Likewise the mean boreal summer 925 hPa westerly winds in the northern Indian Ocean are stronger in R2. Similarly the continental precipitable water in R2 is much less while it is higher and comparable in MERRA and CFSR. Despite these climatological differences between the reanalyses, the climatological evaporative sources for rain events over central India show some qualitative similarities. Major differences however appear when interannual variations of the Indian summer monsoon are analyzed. The anomalous oceanic sources of moisture from the adjacent Bay of Bengal and Arabian Sea play a significant role in determining the wet or dry year of the Indian monsoon in CFSR. However in R2 the local evaporative sources from the continental region play a more significant role. We also find that the interannual variability of the evaporative sources in the break spells of the intraseasonal variations of the Indian monsoon is stronger than in the wet spells. We therefore claim that instead of rainfall, evaporative sources may be a more appropriate metric to observe the relationship between the seasonal monsoon strength and intraseasonal activity. These findings are consistent across the reanalyses and provide a basis to improve the predictability of intraseasonal variability of the Indian monsoon. This study also has a bearing on improving weather prediction for tropical cyclones in that we suggest targeting enhanced observations in the Bay of Bengal

  1. Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events

    Science.gov (United States)

    Raghavan, Krishnan; Panickal, Swapna

    2010-05-01

    A majority of positive Indian Ocean Dipole (IOD) events in the last 50-years were accompanied by enhanced summer-monsoon circulation and above-normal precipitation over central-north India. Given that IODs peak during boreal-autumn following the summer-monsoon season, this study examines the role of the summer-monsoon flow on the Indian Ocean (IO) response using a suite of ocean model experiments and supplementary data-diagnostics. The present results indicate that if the summer-monsoon Hadley-type circulation strengthens during positive-IOD events, then the strong off-equatorial south-easterly winds over the northern flanks of the intensified Australian High can effectively promote upwelling in the south-eastern tropical Indian Ocean and amplify the zonal-gradient of the IO heat-content response. While it is noted that a strong-monsoon cross-equatorial flow by itself may not generate a dipole-like response, a strengthening (weakening) of monsoon easterlies to the south-of-equator during positive-IOD events tends to reinforce (hinder) the zonal-gradient of the upper-ocean heat-content response. The findings show that an intensification of monsoonal-winds during positive-IOD periods produces nonlinear amplification of easterly wind-stress anomalies to the south-of-equator due to the nonlinear dependence of wind-stress on wind-speed. It is noted that such an off-equatorial intensification of easterlies over SH enhances upwelling in the eastern IO off Sumatra-Java; and the thermocline shoaling provides a zonal pressure-gradient which drives anomalous eastward equatorial under-currents (EUC) in the sub-surface. Furthermore, the combination of positive-IOD and stronger-than-normal monsoonal flow favors intensification of shallow transient meridional-overturning circulation in the eastern IO; and enhances the feed of cold subsurface off-equatorial waters to the EUC. References: P. Swapna and R. Krishnan 2008: Geophy. Res. Lett. 35, L14S04, doi: 10.1029/ 2008GL033430 R

  2. Tropical tele-connections to the Mediterranean climate and weather

    Directory of Open Access Journals (Sweden)

    P. Alpert

    2005-01-01

    Full Text Available Some strong natural fluctuations of climate in the Eastern Mediterranean (EM region are shown to be connected to the major tropical systems. Potential relations between EM rainfall extremes to tropical systems, e.g. El Niño, Indian Monsoon and hurricanes, are demonstrated. For a specific event, high resolution modelling of the severe flood on 3-5 December 2001 in Israel suggests a relation to hurricane Olga. In order to understand the factors governing the EM climate variability in the summer season, the relationship between extreme summer temperatures and the Indian Monsoon was examined. Other tropical factors like the Red-Sea Trough system and the Saharan dust are also likely to contribute to the EM climate variability.

  3. Three exceptionally strong East-Asian summer monsoon events during glacial conditions in the past 470 kyr

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2008-12-01

    characterize a strong African summer monsoon with relatively low surface water salinity in the Indian Ocean. Changes in the precipitation regime could correspond to a response to a particular astronomical configuration (low obliquity, low precession, summer solstice at perihelion leading to an increased summer insolation gradient between the tropics and the high latitudes and resulting in enhanced atmospheric water transport from the tropics to the African and Asian continents. However, other climate drivers such as reorganization of marine and atmospheric circulations, tectonic, and the extent of the Northern Hemisphere ice sheet are also discussed.

  4. Three exceptionally strong East-Asian summer monsoon events during glacial times in the past 470 kyr

    Directory of Open Access Journals (Sweden)

    D.-D. Rousseau

    2009-04-01

    characterize a strong African summer monsoon with relatively low surface water salinity in the Indian Ocean. Changes in the precipitation regime could correspond to a response to a particular astronomical configuration (low obliquity, low precession, summer solstice at perihelion leading to an increased summer insolation gradient between the tropics and the high latitudes and resulting in enhanced atmospheric water transport from the tropics to the African and Asian continents. However, other climate drivers such as reorganization of marine and atmospheric circulations, tectonic, and the extent of the Northern Hemisphere ice sheet are also discussed.

  5. Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches

    Science.gov (United States)

    Vathsala, H.; Koolagudi, Shashidhar G.

    2017-01-01

    In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.

  6. Characteristics of monsoon low level jet (MLLJ) as an index of monsoon activity

    Indian Academy of Sciences (India)

    N V Sam; K P R Vittal Murty

    2002-12-01

    Temperature and wind data are used to describe variation in the strength of the Monsoon Low Level Jet (MLLJ) from an active phase of the monsoon to a break phase. Also estimated are the characteristics of turbulence above and below MLLJ.

  7. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  8. Tropical Zoology

    OpenAIRE

    Messana, Giuseppe; Chelazzi, Lorenzo; Taiti, Stefano; Paoli, Pasquino

    2008-01-01

    Tropical Zoology is an international journal publishing original papers in the fields of experimental and descriptive zoology concerning tropical areas, with particular attention to the Afrotropical Region. Review papers are welcome. A book review is included. As a rule, the yearly volume comprises two issues.

  9. Tropical Zoology

    OpenAIRE

    Messana, Giuseppe; Chelazzi, Lorenzo; Taiti, Stefano

    2011-01-01

    Tropical Zoology is an international journal publishing original papers in the fields of experimental and descriptive zoology concerning tropical areas, with particular attention to the Afrotropical Region. Review papers are welcome. A book review is included. As a rule, the yearly volume comprises two issues.

  10. The First Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons

    Energy Technology Data Exchange (ETDEWEB)

    Sperber, K R; Yasunari, T

    2005-07-27

    In 2004 the Joint Scientific Committee (JSC) that provides scientific guidance to the World Climate Research Programme (WCRP) requested an assessment of (1) WCRP monsoon related activities and (2) the range of available observations and analyses in monsoon regions. The purpose of the assessment was to (a) define the essential elements of a pan-WCRP monsoon modeling strategy, (b) identify the procedures for producing this strategy, and (c) promote improvements in monsoon observations and analyses with a view toward their adequacy, and addressing any undue redundancy or duplication. As such, the WCRP sponsored the ''1st Pan-WCRP Workshop on Monsoon Climate Systems: Toward Better Prediction of the Monsoons'' at the University of California, Irvine, CA, USA from 15-17 June 2005. Experts from the two WCRP programs directly relevant to monsoon studies, the Climate Variability and Predictability Programme (CLIVAR) and the Global Energy and Water Cycle Experiment (GEWEX), gathered to assess the current understanding of the fundamental physical processes governing monsoon variability and to highlight outstanding problems in simulating the monsoon that can be tackled through enhanced cooperation between CLIVAR and GEWEX. The agenda with links to the presentations can be found at: http://www.clivar.org/organization/aamon/WCRPmonsoonWS/agenda.htm. Scientific motivation for a joint CLIVAR-GEWEX approach to investigating monsoons includes the potential for improved medium-range to seasonal prediction through better simulation of intraseasonal (30-60 day) oscillations (ISO's). ISO's are important for the onset of monsoons, as well as the development of active and break periods of rainfall during the monsoon season. Foreknowledge of the active and break phases of the monsoon is important for crop selection, the determination of planting times and mitigation of potential flooding and short-term drought. With a few exceptions simulations of ISO are

  11. Atmospheric processes sustaining a multidecadal variation in reconstructed and model-simulated Indian monsoon precipitation during the past half millennium

    Science.gov (United States)

    Wu, Qianru

    Analyses of recently reconstructed and model-simulated Indian May-September precipitation disclose a statistically significant multidecadal variation at the frequency of 40-50 year per cycle during the last half millennium. To understand the mechanism of this variation, we examined the energy and dynamic processes in the atmosphere, and the potential forcings from the sea surface temperature (SST) variations around the globe. Comparisons of paleo-SST and the paleo-precipitation simulations suggest that the SST is not a significant forcing of the multidecadal variation found in the Indian monsoon precipitation. Instead, analyses suggest that atmospheric processes characterized by phase differences between the meridional enthalpy gradient and poleward eddy enthalpy transport are important to sustain this variation. In this phase relationship, the meridional enthalpy gradient is strengthened by radiative loss in high latitudes. Driven by this enlarged gradient and associated changes in baroclinicity in the mid-latitude atmosphere, more energy is generated in the tropical and subtropical (monsoon) regions and transported poleward. The monsoon is strengthened to allow more energy being transported poleward. The increased enthalpy transport, in turn, weakens the meridional enthalpy gradient and, subsequently, softens the demand for energy production in the monsoon region. The monsoon weakens and the transport decreases. The variation in monsoon precipitation lags that in the meridional enthalpy gradient, but leads that in the poleward heat transport. This phase relationship and underlining chasing process by the heat transport to the gradient sustain this variation at the multidecadal timescale. This mechanism suggests that atmospheric circulation processes can contribute to multidecadal timescale variations in the Indian monsoon precipitation.

  12. Heat exchange at air-sea interface in the South China Sea during monsoon periods in 1986

    Institute of Scientific and Technical Information of China (English)

    WU Disheng; LU Boming; FENG Weizhong; XU Jianping; YAN Jinghua; ZHAO Xue; ZHOU Shuihua; ZHANG Jiwei; QIAO Guanyu; LIN Fu

    2006-01-01

    In order to explore the interaction between the sea and monsoon in the South China Sea, the heat exchanges at air-sea interface during monsoon periods in 1986 were calculated using observational data. It shows that when the summer monsoon bursts and prevails over the South China Sea, the air-sea interface heat exchange is strong and the latent heat rises rapidly in the intertropical convergence zone and the tropic cyclone system near 20.49°N, 114.14°E. On May 24, 1986, the sensible heat became positive in the typhoon system. The heating exchange indicates that heat is transported from ocean to atmosphere, with major contribution of latent heat. When the summer monsoon prevails over the South China Sea and the weather is fine, even SST (sea surface temperature) is high, but sensible heat appears to be negative. The heat exchange indicates that heat is transported from atmosphere to ocean, with major contribution of short-wave radiation absorbed by sea surface and sensible heat. When summer monsoon is over and the northeast monsoon prevails over the South China Sea, the heat exchange at air-sea interface is very strong. The heating exchange shows that the ocean heats the atmosphere, with major contribution of latent heat when cold air arrives at the sea surface and the sensible heat rises to positive rapidly. Therefore it can be concluded that the heat exchange at air-sea interface is different from the SST in South China Sea. When the summer monsoon prevails over the South China Sea, the main trend is the ocean responding to the atmosphere.

  13. Quasi-biweekly oscillations of the South Asian monsoon and its co-evolution in the upper and lower troposphere

    Science.gov (United States)

    Ortega, Sebastián; Webster, Peter J.; Toma, Violeta; Chang, Hai-Ru

    2017-01-01

    The Upper Tropospheric Quasi-Biweekly Oscillation (UQBW) of the South Asian monsoon is studied using the potential vorticity field on the 370 K isentrope. The UQBW is shown to be a common occurrence in the upper troposphere during the monsoon, and its typical evolution is described. We suggest that the UQBW is a phenomenon of both the middle and tropical latitudes, owing its existence to the presence of the planetary-scale upper-tropospheric monsoon anticyclone. The UQBW is first identified as Rossby waves originating in the northern flank of the monsoon anticyclone. These Rossby waves break when reaching the Pacific Ocean, and their associated cyclonic PV anomalies move southward to the east of Asia and then westward across the Indian Ocean and Africa advected by the monsoon anticyclone. A strong correlation, or co-evolution, between the UQBW and quasi-biweekly oscillations in the lower troposphere (QBW) is also found. In particular, analysis of vertically-integrated horizontal moisture transport, 850 hPa geopotential, and outgoing long-wave radiation show that the UQBW is usually observed at the same time as, and co-evolves with, the lower tropospheric QBW over South Asia. We discuss the nature of the UQBW, and its possible physical link with the QBW.

  14. An Analysis of the Characteristics of Monsoon Onset over the Bay of Bengal and the South China Sea in 2010

    Institute of Scientific and Technical Information of China (English)

    DING Xuan-Ru; WANG Dong-Xiao; LI Wei-Biao; GUAN Zhao-Yong

    2012-01-01

    Based on NCEP/NCAR daily reanalysis and the Tropical Rainfall Measuring Mission data, the back- ground atmospheric circulation and the characteristics of meteorological elements during the period of the Bay of Bengal monsoon (BOBM) and the South China Sea (SCS) monsoon (SCSM) in 2010 are studied. The impacts of the BOBM onset on the SCSM onset and the relationship between the two monsoons are also analyzed. The two main results are as follows: (l) The BOBM onset obvi- ously occurs earlier than the SCSM onset in 2010, which is a typical onset process of the Asian monsoon. During the BOBM's onset, northward jump, and eastward expansion, convective precipitation and southwest winds occurred over the SCS, which resulted in the onset of the SCSM. (2) The relationship among strong convection, heavy rainfall, and vertical circulation configuration is obtained during the monsoon onsets over the BOB and SCS, and it is concluded that the South Asian High plays an important role in this period.

  15. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    Science.gov (United States)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  16. Tropical Climate Dynamics and Civilizations

    Science.gov (United States)

    Haug, G. H.; Yancheva, G.; Peterson, L. C.

    2005-12-01

    Dr. James P. Kennett has been a leader in the area of rapid climate change. Jim and his son Douglas J. Kennett, a scientific archeologist, were among the first to make a serious effort to combine high-quality climate data with archeological information to study the impact of climate on societies. They argued about the 'strong relationship between climatically induced changes in environmental conditions and social, political, and economic responses' in coastal California during the past 2 millennia. One tropical climate archive with an appropriate memory for the most relevant sub-centennial to sub-decadal scale climate swings is the anoxic Cariaco Basin off northern Venezuela. Millimeter to micrometer-scale geochemical data in the laminated sediments of the Cariaco Basin have been interpreted to reflect variations in the hydrological cycle and the mean annual position of the Intertropical Convergence Zone (ITCZ) over tropical South America during the past millennia. These data with decadal to (sub)annual resolution show that the Terminal Collapse of the Classic Maya civilization occurred during an extended dry period. In detail, the Cariaco record reveals evidence for three separate droughts during the period of Maya downfall, each lasting a decade or less. These data suggest that climate change was potentially one immediate cause of the demise of Mayan civilization, with a century-scale decline in rainfall putting a general strain on resources and several multi-year events of more intense drought pushing Mayan society over the edge. Here, we present a new data set of comparable quality and resolution from Southern China. In the sediments of lake Huguang Maar in coastal southeast China, the titanium content and redox-sensitive magnetic properties record the strength of winter monsoon winds at subdecadal resolution over the last 16 thousand years. The record indicates a stronger winter monsoon prior to the Boelling-Alleroed warming, during the Younger Dryas, and

  17. Drying projection over western maritime continent during Southwest and Northeast monsoon seasons

    Science.gov (United States)

    Kartika Lestari, R.

    2017-04-01

    In the maritime continent, the precipitation variability is large and recently, this region experiences longer dry season and more number of severe drought events that are threatening the human life, such as, water supply for daily life and agriculture, and unhealthy air quality due to the increased number of wildfires. Global warming has been known to contribute to the rainfall anomalies around the world, and present study investigate the extent to which the drying conditions are going to be happened in 21st century over western part of the maritime continent (WMC), where the population is much larger than the eastern part, during both active Southwest (SW) and Northeast (NE) monsoon seasons. A future change in the precipitation over WMC is suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. In addition to CMIP5, we analyse the downscaled data of nine selected CMIP5 models to examine if there is modification in the drying projection when higher resolution data are used. While the north and south of equator show out of phase in the precipitation change, the region around equator shows decreased precipitation during both the SW monsoon in June-July-August-September (JJAS) and the peak of NE monsoon in February (FEB). The drying projection is robustly shown in FEB when Intertropical Convergence Zone (ITCZ) shift to the southern hemisphere, but the same robustness is not shown in JJAS when the monsoon over South China Sea is active. The detail results, including the mechanisms and the impacts of tropical climate features (such as, warming Pacific Ocean, monsoon, ITCZ) that drive the drying projection, and the possible reasons causing different degree in the robustness between two seasons, will be shown in the presentation.

  18. Local and remote impacts of aerosol species on Indian summer monsoon rainfall in a GCM

    Science.gov (United States)

    Guo, Liang; Turner, Andrew; Highwood, Eleanor

    2016-04-01

    The HadGEM2 AGCM is used to determine the most important anthropogenic aerosols in the Indian monsoon using experiments in which observed trends in individual aerosol species are imposed. Sulphur dioxide (SD) emissions are shown to impact rainfall more strongly than black carbon (BC) aerosols, causing reduced rainfall especially over northern India. Significant perturbations due to BC are not noted until its emissions are scaled up in a sensitivity test, in which rainfall increases over northern India as a result of the Elevated Heat Pump mechanism, enhancing convection during the pre-monsoon and bringing forward the monsoon onset. Secondly, the impact of anthropogenic aerosols is compared to that of increasing greenhouse-gas concentrations and observed sea-surface temperature (SST) warming. The tropospheric temperature gradient driving the monsoon shows weakening when forced by either SD or imposed SST trends. However the observed SST trend is dominated by warming in the deep tropics; when the component of SST trend related to aerosol emissions is removed, further warming is found in the extratropical northern hemisphere that tends to offset monsoon weakening. This suggests caution is needed when using SST forcing as a proxy for greenhouse warming. Finally, aerosol emissions are decomposed into those from the Indian region and those elsewhere, in pairs of experiments with SD and BC. Both local and remote aerosol emissions are found to lead to rainfall changes over India; for SD, remote aerosols contribute around 75% of the rainfall decrease over India, while for BC the remote forcing is even more dominant.

  19. Spatio-temporal Distribution of Latent Heating in the Southeast Asian Monsoon Region

    Science.gov (United States)

    Zuluaga, M. D.; Hoyos, C. D.; Webster, P. J.

    2007-12-01

    The Latent Heat (LH), released as a result of deep convection, plays an important role in the vertical distribution of the diabatic energy budget from the surface to the atmosphere: the motor which drives the global atmospheric circulation, including the Southeast Asian Monsoon. In particular, knowing the spatio-temporal structure of the LH during the wet monsoon season could be a key factor to understand the interaction between seasonal features of the monsoon with the summer manifestation of the intra-seasonal oscillation in the Indian Ocean basin, and hence the distribution of the precipitation. Several studies have investigated how the structure of heating in the tropics has a direct influence in the dynamical response of the atmosphere to the large-scale dynamical forcing associated with tropical precipitating systems. However, these studies assume a uniform geographically distribution of the vertical diabatic heating profiles across the Tropics. The major objective of this study is to produce and to examine three-dimensional latent heating structures over the Indian Monsoon region for the three summer seasons of 1998-2000 period using TRMM-2A12 (GPROF algorithm) and TRMM-CSH (CSH algorithm) data. A specific goal in this work is to explore the differences in the distribution of the latent heating throughout the intraseasonal cycle. This intra- seasonal cycle not only generates wet and dry spells over the South-East Asian continent but also determines the spatial distribution of the climatological JJAS rainfall in the Indian Monsoon Region. Results show spatial distribution differences between the LH profiles during the suppressed and active phases of the oscillation as well as differences in the vertical. During an active phase of the oscillation over the Indian Ocean, the released latent heat is concentrated predominantly near the equator while during the suppressed phased the heating is concentrated in the Bay of Bengal and the continental South East Asia

  20. Insolation and Abrupt Climate Change Effects on the Western Pacific Maritime Monsoon

    Science.gov (United States)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Cardenas, M.; Siringan, F. P.; Hori, M.; Okumura, Y.; Banner, J. L.; Lin, K.; Jiang, X.; Taylor, F. W.

    2013-12-01

    Many monsoon-sensitive paleoclimate archives capture the response of the Asian-Australian monsoon system to changes in summer insolation, as well as abrupt climate changes such as the Younger Dryas (YD). The response is commonly a direct one in Holocene and YD archives. In the case of insolation, increased summer insolation leads to increased monsoon rainfall over land, as captured in stalagmite δ18O records from Oman and China. We evaluate this direct response using maritime stalagmite records from the island of Palawan, Philippines (10 N, 119 E). The wet season in Palawan occurs over the same months (June-October) as in Oman, India and China. Therefore, we expected the Palawan stalagmite δ18O record, a proxy of rainfall, to have a similar response to changing insolation and hence, a trend of decreasing monsoon rainfall over the Holocene. However, the Holocene trend in two partially replicated stalagmite δ18O records is opposite to that expected: rainfall increases over the Holocene, despite the decrease of summer insolation over the Holocene. We interpret the Holocene trend observed at Palawan to be the result of an increase in the maritime monsoon that balances the reduction in the land monsoon; an interpretation that is consistent with previously published results from coupled ocean-atmosphere general circulation model runs. Seawater δ18O reconstructions from marine sediment cores in the western tropical Pacific contain a freshening trend over the Holocene, also supporting the hypothesis of increase maritime monsoon rainfall. The direct relationship between monsoon rainfall over land as recorded in the YD interval in Chinese stalagmite records is also observed in maritime monsoon rainfall during the YD at Palawan: both records get drier during the YD cold interval. This agreement between YD stalagmite records from China and Palawan contrasts sharply with the inverse relationship between these records over the Holocene. We further investigate the nature of

  1. Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2

    Science.gov (United States)

    Shukla, Ravi P.; Huang, Bohua

    2016-06-01

    The capability of the National Centers for Environmental Prediction climate forecast system version 2 (CFSv2) in simulating the Indian summer monsoon (ISM) is evaluated in the context of the global monsoon in the Indo-Pacific domain and its variability. Although the CFSv2 captures the ISM spatial structure qualitatively, it demonstrates a severe dry bias over the Indian subcontinent. The weaker model monsoon may be related to an excessive surface convergence over the equatorial Indian Ocean, which reduces the moisture transport toward the Indian subcontinent. The excessively low equatorial pressure is in turn a part of a tropical-wise bias with the largest errors in the central and eastern equatorial Pacific associated with the cold sea surface temperature bias and an overly strong inter-tropical convergence zone. In this sense, the model bias in the tropical Pacific influences those in the Indian Ocean-ISM region substantially. The leading mode of the June-September averaged CFSv2 rainfall anomalies covering the ISM and its adjacent oceanic regions is qualitatively similar to that of the observations, characterized by a spatial pattern of strong anomalies over either side of the Indian peninsula as well as center of opposite sign over Myanmar. However, the model fails to reproduce the northward expansion of rainfall anomalies from Myanmar, leading to opposite anomalies over northeast India and Himalayas region. A substantial amount of the anomalous fluctuation is attributed to the El Niño and the Southern Oscillation (ENSO), although the model variability depends more strongly on ENSO. The active regional influences in the observations may contribute to its baroclinic vertical structure of the geopotential height anomalies in the ISM region, compared with the predominantly barotropic one in CFSv2. Model ENSO deficiencies also affects its ISM simulation significantly.

  2. The Glacial-Interglacial Monsoon Recorded by Speleothems from Sulawesi, Indonesia

    Science.gov (United States)

    Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Hellstrom, J. C.; Rifai, H.

    2015-12-01

    The Indo-Pacific Warm Pool is a primary source of heat and moisture to the global atmosphere and a key player in tropical and global climate variability. There is mounting evidence that atmospheric convection and oceanic processes in the tropics can modulate global climate on orbital and sub-orbital timescales. Glacial-interglacial cycles represent the largest natural climate changes over the last 800 kyr with each cycle terminated by rapid global warming and sea level rise. Our understanding of the role and response of tropical atmospheric convection during these periods of dramatic warming is limited. We present the first speleothem paleomonsoon record for southwest Sulawesi (5ºS, 119ºE), spanning two glacial-interglacial cycles, including glacial termination IV (~340 kyr BP) and both phases of termination III (~248 and ~220 kyr BP). This unique record is constructed from multiple stalagmites from two separate caves and is based on a multi-proxy approach (δ18O, δ13C, Mg/Ca, Sr/Ca) that provides insight into the mechanisms controlling Australian-Indonesian summer monsoon variability. Speleothem δ18O and trace element data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. Terminations IV, III, and I are each characterized by an abrupt 3‰ decrease in δ18O. Variability in δ18O leading-in to glacial terminations is also similar, and corresponds to October insolation. Prior to deglaciation, there is a distinct shift to higher δ18O that is synchronized with weak monsoon intervals in Chinese speleothem records. The remarkably consistent pattern among terminations implies that the response of tropical convection to changing background climates is well regulated. Furthermore, we find that speleothem δ13C leads δ18O by ~5 kyr during glacial terminations. The early decrease in speleothem δ13C may reflect the response of tropical vegetation to rising atmospheric CO2 and temperature, rather than regional changes in rainfall.

  3. Thrusts and Prospects on Understanding and Predicting Asian Monsoon Climate

    Institute of Scientific and Technical Information of China (English)

    WANG Bin

    2008-01-01

    Development of monsoon climate prediction through integrated research efforts to improve our understanding of monsoon variability and predictability is a primary goal of the Asian Monsoon Years (2007-2011) and International Monsoon Study under the leadership of the World Climate Research Programme.The present paper reviews recent progress in Asian monsoon research focusing on (1) understanding and modeling of the monsoon variability, (2) determining the sources and limits of predictability, and (3) assessing the current status of climate prediction, with emphasis on the weekly to interannual time scales. Particular attention is paid to identify scientific issues and thrust areas, as well as potential directions to move forward in an attempt to stimulate future research to advance our understanding of monsoon climate dynamics and improve our capability to forecast Asian monsoon climate variation.

  4. Vertical extension of the Tibetan high of the Asian summer monsoon

    OpenAIRE

    Krishnamurti, T. N.; Biswas, Mrinal K.; Bhaskar Rao, D. V.

    2008-01-01

    We illustrate the vast expanse and the connection of anticyclonic flows of the Tibetan high (at the 200 hPa level) to the pole centred hemispheric North Polar anticyclone at the 10 hPa level during 1988. This feature of clockwise flows appears in the form of a tilted cone that appears to connect the Asian summer monsoon to the 10 hPa high. The anticyclonic flow tapers down to the vortex of the cone near the 400 hPa level. The tropical easterly jet of the Asian summer season is found near 10°N...

  5. Monsoon sensitivity to aerosol direct radiative forcing in the community atmosphere model

    Science.gov (United States)

    Sajani, S.; Krishna Moorthy, K.; Rajendran, K.; Nanjundiah, Ravi S.

    2012-08-01

    Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a

  6. Cloud radar deployment for Indian Monsoon observations: Preliminary Results

    Science.gov (United States)

    Chakravarty, K.; Kalapureddy, M.; Pa, M.; Deshpandy, S.; Das, S.; Pandithurai, G.; Prabhakaran, T.; Chandrasekar, C. V.; Goswami, B.

    2013-12-01

    Indian Institute of Tropical Meteorology (IITM)'s acquired Ka-band radar for the Study of the interaction between Cloud and Environment for formation of Precipitation. Main objective of it is to make simultaneous high resolution measurements on dynamical, cloud microphysical and precipitation parameters pertain to monsoon system probably at diverse locations. The goal is to understand the interplay between cloud processes and environment that not only allow understanding the fundamental cloud-environment interactions but also precipitation formation mechanisms and further to estimate cloud contribution to the re-distribution of energy and water in climate system. For this, Polarimetric weather Doppler Radar at higher frequencies (9.5 and 35 GHz) can be a potential tool to gain knowledge on this scientific as well as societal application oriented programme. IITM's Polarimetric scanning Ka-band (cloud) radar operations started recently during May 2013. Mobile Ka-band Scanning Polarimetric Doppler Radar (KaSPR) is a cloud radar operating at wavelength of 8.5 mm with average powers of 110 W. KaSPR incorporates a conduction cooled Extended Interaction Klystron Amplifier. It is having four foot diameter Ka-band cassegrain antenna. Liquid cooled air-sealed RF unit provides excellent temperature stability. Antenna on the top of RF unit is mounted on the Elevation over azimuth pedestal which is designed to rotate continuously in the azimuth axis and a full 180 degrees in the elevation axis (horizon to horizon) with a maximum velocity of 200/sec and maximum acceleration of 120/s2. KaSPR uses dual channel 16-bit digital receiver having dynamic range of more than 80 dB with bandwidths 10 MHz. Arbitrary waveform generator capable of generating any user-defined waveform of up to 16K samples in length. It is having sensitivity of the order -45 dBZ at 5 km. KaSPR has been providing high sensitivity versatile measurements of cloud and precipitation at tropical site (Manderdev, 18

  7. Role of stratiform heating on the organization of convection over the monsoon trough

    Science.gov (United States)

    Ajayamohan, R. S.; Khouider, Boualem; Majda, Andrew J.; Deng, Qiang

    2016-12-01

    It has been recently demonstrated that stratiform heating plays a critical role in the scale-selection of organized tropical convection, in an aquaplanet version of a coarse-resolution atmospheric general circulation model coupled to a stochastic multicloud cumulus parameterization scheme. It is shown that Madden-Julian oscillation-like organization dominates when the model is tuned to produce strong and long lived stratiform heating while it gives rise to mostly convectively coupled waves in the case of weak and short lived stratiform clouds. The study is extended here to the case of an asymmetric forcing mimicking the migration of the intertropical convergence zone (ITCZ) during summer to understand the impact of changes in stratiform heating on the monsoon dynamics. Consistent with the equatorial ITCZ case, strong and long lived stratiform heating promotes northward and eastward moving intraseasonal disturbances while weak and short lived stratiform heating yields mostly westward propgating synoptic scale low pressure systems. Moreover, the underlying intraseasonal versus low pressure system activity seems to impact the strength and extend of the monsoon trough (MT). In the regime with intraseasonal activity the MT is much stronger and extends northward while in the low pressure system case MT is some what weaker in strength but extends further westward. In the low pressure dominated regime, the background vorticity and zonal wind profiles over the monsoon trough are consistent with the observations.

  8. Moisture transport and intraseasonal variability in the South America monsoon system

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leila M.V. [University of California Santa Barbara, Department of Geography, Santa Barbara, CA (United States); University of Sao Paulo, Department of Atmospheric Sciences, Sao Paulo (Brazil); University of California Santa Barbara, Institute for Computational Earth System Sciences, Santa Barbara, CA (United States); Silva, Ana E.; Rocha, Humberto R. [University of Sao Paulo, Department of Atmospheric Sciences, Sao Paulo (Brazil); Jones, Charles [University of California Santa Barbara, Institute for Computational Earth System Sciences, Santa Barbara, CA (United States); Liebmann, Brant [CIRES Climate Diagnostics Center, Boulder, CO (United States); Silva Dias, Pedro L. [University of Sao Paulo, Department of Atmospheric Sciences, Sao Paulo (Brazil); National Laboratory for Scientific Computing, Petropolis (Brazil)

    2011-05-15

    This paper examines moisture transport on intraseasonal timescales over the continent and over the South Atlantic convergence zone (SACZ) during the South America (SA) summer monsoon. Combined Empirical Orthogonal Function analysis (EOFc) of Global Precipitation Climatology Project pentad precipitation, specific humidity, air temperature, zonal and meridional winds at 850 hPa (NCEP/NCAR reanalysis) are performed to identify the large-scale variability of the South America monsoon system and the SACZ. The first EOFc was used as a large-scale index for the South American monsoon (LISAM), whereas the second EOFc characterized the SACZ. LISAM (SACZ) index showed spectral variance on 30-90 (15-20) days and were both band filtered (10-100 days). Intraseasonal wet anomalies were defined when LISAM and SACZ anomalies were above the 75th percentile of their respective distribution. LISAM and SACZ wet events were examined independently of each other and when they occur simultaneously. LISAM wet events were observed with the amplification of wave activity in the Northern Hemisphere and the enhancement of northwesterly cross-equatorial moisture transport over tropical continental SA. Enhanced SACZ was observed with moisture transport from the extratropics of the Southern Hemisphere. Simultaneous LISAM and SACZ wet events are associated with cross-equatorial moisture transport along with moisture transport from Subtropical Southwestern Atlantic. (orig.)

  9. Has influence of extratropical waves in modulating Indian summer monsoon rainfall (ISMR) increased?

    Indian Academy of Sciences (India)

    A K Srivastava; Somenath Dutta; S R Kshirsagar; Kavita Srivastava

    2014-04-01

    In the paper, influence of extratropical circulation features on Indian Summer Monsoon Rainfall (ISMR) is examined. Energetics of extra tropics, north of Indian subcontinent for deficient and nondeficient ISMR years, during two periods 1951–1978 and 1979–2005, are calculated and critically analyzed. It is observed that for the period 1951–1978, only two out of the 10 energetic parameters, viz., the zonal available potential energy (high) and conversion of zonal available potential with kinetic energy to eddy kinetic energy (low) differed significantly in JJA months of the deficient years from that of the nondeficient years. However, during the 1979–2005 period, as many as six out of the 10 energetic parameters, viz., eddy available potential energy, zonal available potential energy, eddy kinetic energy, generation of zonal available potential energy, conversion of zonal available potential energy to zonal kinetic energy and conversion of zonal kinetic energy to eddy kinetic energy differed significantly in JJA months of the deficient years from that of the nondeficient years. These results confirm growing influence of the transient stationary waves in deficient years after the climate shift year, 1979. Analysis of energetic parameters of the pre-monsoon season of the two periods also reveals similar results. This suggests that forcings apparently responsible for energetics in JJA months of the deficient years of the later period were present even before the advent of Indian summer monsoon season.

  10. Primary sand-dune plant community and soil properties during the west-coast India monsoon

    Directory of Open Access Journals (Sweden)

    Willis A.

    2016-06-01

    Full Text Available A seven-station interrupted belt transect was established that followed a previously observed plant zonation pattern across an aggrading primary coastal dune system in the dry tropical region of west-coast India. The dominant weather pattern is monsoon from June to November, followed by hot and dry winter months when rainfall is scarce. Physical and chemical soil characteristics in each of the stations were analysed on five separate occasions, the first before the onset of monsoon, three during and the last post-monsoon. The plant community pattern was confirmed by quadrat survey. A pH gradient decreased with distance from the shoreline. Nutrient concentrations were deficient, increasing only in small amounts until the furthest station inland. At that location, there was a distinct and abrupt pedological transition zone from psammite to humic soils. There was a significant increase over previous stations in mean organic matter, ammonium nitrate and soil-water retention, although the increase in real terms was small. ANOVA showed significant variation in electrical conductivity, phosphorus, calcium, magnesium and sodium concentrations over time. There was no relationship between soil chemistry characteristics and plant community structure over the transect. Ipomoea pes-caprae and Spinifex littoreus were restricted to the foredunes, the leguminous forb Alysicarpus vaginalis and Perotis indica to the two stations furthest from the strand. Ischaemum indicum, a C4 perennial grass species adopting an ephemeral strategy was, in contrast, ubiquitous to all stations.

  11. Summer monsoon intraseasonal oscillation over eastern Arabian Sea – as revealed by TRMM microwave imager products

    Indian Academy of Sciences (India)

    S H Rahman; B Simon

    2006-10-01

    The time evolution of atmospheric parameters on intraseasonal time scale in the eastern Arabian Sea (EAS) is studied during the summer monsoon seasons of 1998–2003 using Tropical Rainfall Measuring Mission Microwave Imager (TMI) data. This is done using the spectral and wavelet analysis. Analysis shows that over EAS, total precipitable water vapour (TWV) and sea surface wind speed (SWS) have a periodicity of 8–15 days, 15–30 days and 30–60 days during the monsoon season. Significant power is seen in the 8–15-day time scale in TWV during onset and retreat of the summer monsoon. Analysis indicates that the timings of the intensification of 8–15, 15–30, and 30–60 days oscillations have a profound effect on the evolution of the daily rainfall over west coast of India. The positive and negative phases of these oscillations are directly related to the active and dry spells of rainfall along the west coast of India. The spectral analysis shows interannual variation of TWV and SWS. Heavy rainfall events generally occur over the west coast of India when positive phases of both 30–60 days and 15–30 days modes of TWV and SWS are simultaneously present.

  12. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept

    Science.gov (United States)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-10-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150 000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in northern Australia and southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase. This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggests that low latitude climatic variation precedes increases in global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronously on the different monsoon systems.

  13. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon

    Science.gov (United States)

    Beaufort, L.; van der Kaars, S.; Bassinot, F. C.; Moron, V.

    2010-06-01

    Past variations in the dynamics of the Australian monsoon have been estimated from multi-proxy analysis of a core retrieved in the Eastern Banda Sea. Records of coccolith and pollen assemblages, spanning the last 150,000 years, allow reconstruction of past primary production in the Banda Sea, summer moisture availability, and the length of the dry season in Northern Australia and Southeastern Indonesia. The amount of moisture available during the summer monsoon follows typical glacial/interglacial dynamics with a broad asymmetrical 100-kyr cycle. Primary production and length of the dry season appear to be closely related, given that they follow the precessional cycle with the same phase (August insolation). This indicates their independence from ice-volume variations. The present inter-annual variability of both parameters is related to El Niño Southern Oscillation (ENSO), which modulates the Australian Winter Monsoon (AWM). The precessional pattern observed in the past dynamics of the AWM is found in ENSO and monsoon records of other regions. A marked shift in the monsoon intensity occurring during the mid Holocene during a period of constant ice volume, suggest that low latitude climatic variation precedes global ice volume. This precessional pattern suggests that a common forcing mechanism underlies low latitude climate dynamics, acting specifically and synchronically on the different monsoon systems.

  14. Diagnosing potential changes in Asian summer monsoon onset and duration in IPCC AR4 model simulations using moisture and wind indices

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huqiang; Moise, A.; Hanson, L. [Centre for Australian Weather and Climate Research, A Partnership between the Australian Bureau of Meteorology and CSIRO, GPO Box 1289k, Melbourne, VIC (Australia); Liang, Ping [China Meteorological Administration, Shanghai Regional Climate Center, Shanghai (China)

    2012-11-15

    Using daily precipitable water (PW) and 850 hPa monsoon wind, which represent large-scale moisture and dynamic conditions for monsoon development, we analyze potential changes in Asian monsoon onset, retreat and duration simulated by 13 IPCC AR4 models. Most models are able to reproduce the observed temporal and spatial evolution patterns of the Asian monsoon system. Nevertheless, there are significant model biases and some models fail in reproducing the broad structure. Under a warmed climate, changes in onset and duration days are only moderate (about 3-10 days), with significant discrepancies among the models, particularly over the East Asia land area where the models are almost equally divided. In the tropical Indian Ocean, maritime continent and Indochina Peninsula, the majority of the models tend to simulate delayed onset and shortened duration while in the western North Pacific most models exhibit an early onset and longer duration. There are two reasons leading to such uncertainties: (1) the key processes determining the Asian monsoon onset/retreat are different among the models. Some are more influenced by ENSO-like processes. But in some models, monsoon onset/retreat is more significantly correlated to circulations in the tropics. (2) The model-simulated changes in these dominant processes are different. In some models, surface warming is more intense in the central and eastern Pacific Ocean with El Nino-like patterns, while others do not show such features. If the model-simulated monsoon onset/retreat is correlated to the central and eastern Pacific warming and at the same time the model simulates much larger warming of the central and eastern Pacific Ocean, then it is very likely that these models will show significant delay of south Asian monsoon onset and shortened duration. In some models, the delayed onsets are more related to the reduction of westerlies in the west of the warm pool region. The patterns of anomalous SST and wind conditions

  15. Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Susmitha; Sahai, A.K.; Goswami, B.N. [Indian Institute of Tropical Meteorology, Pune (India); Terray, Pascal; Masson, Sebastian [LOCEAN, Paris (France); Luo, J.J. [RIGC, Yokohama (Japan)

    2012-04-15

    Reasonably realistic climatology of atmospheric and oceanic parameters over the Asian monsoon region is a pre-requisite for models used for monsoon studies. The biases in representing these features lead to problems in representing the strength and variability of Indian summer monsoon (ISM). This study attempts to unravel the ability of a state-of-the-art coupled model, SINTEX-F2, in simulating these characteristics of ISM. The coupled model reproduces the precipitation and circulation climatology reasonably well. However, the mean ISM is weaker than observed, as evident from various monsoon indices. A wavenumber-frequency spectrum analysis reveals that the model intraseasonal oscillations are also weaker-than-observed. One possible reason for the weaker-than-observed ISM arises from the warm bias, over the tropical oceans, especially over the equatorial western Indian Ocean, inherent in the model. This warm bias is not only confined to the surface layers, but also extends through most of the troposphere. As a result of this warm bias, the coupled model has too weak meridional tropospheric temperature gradient to drive a realistic monsoon circulation. This in turn leads to a weakening of the moisture gradient as well as the vertical shear of easterlies required for sustained northward propagation of rain band, resulting in weak monsoon circulation. It is also noted that the recently documented interaction between the interannual and intraseasonal variabilities of ISM through very long breaks (VLBs) is poor in the model. This seems to be related to the inability of the model in simulating the eastward propagating Madden-Julian oscillation during VLBs. (orig.)

  16. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia

    Science.gov (United States)

    Yang, Bao; Kang, Shuyuan; Ljungqvist, Fredrik Charpentier; He, Minhui; Zhao, Yan; Qin, Chun

    2014-08-01

    The northern fringe of the Asian summer monsoon region (NASM) in China refers to the most northwestern extent of the Asian summer monsoon. Understanding the characteristics and underlying mechanisms of drought variability at long and short time-scales in the NASM region is of great importance, because present and future water shortages are of great concern. Here, we used newly developed and existing tree-ring, historical documentary and instrumental data available for the region to identify spatial and temporal patterns, and possible mechanisms of drought variability, over the past two millennia. We found that drought variations were roughly consistent in the western (the Qilian Mountains and Hexi Corridor) and eastern (the Great Bend of the Yellow River, referred to as GBYR) parts of the NASM on decadal to centennial timescales. We also identified the spatial extent of typical multi-decadal GBYR drought events based on historical dryness/wetness data and the Monsoon Asia Drought Atlas. It was found that the two periods of drought, in AD 1625-1644 and 1975-1999, exhibited similar patterns: specifically, a wet west and a dry east in the NASM. Spatial characteristics of wetness and dryness were also broadly similar over these two periods, such that when drought occurred in the Karakoram Mountains, western Tianshan Mountains, the Pamirs, Mongolia, most of East Asia, the eastern Himalayas and Southeast Asia, a wet climate dominated in most parts of the Indian subcontinent. We suggest that the warm temperature anomalies in the tropical Pacific might have been mainly responsible for the recent 1975-1999 drought. Possible causes of the drought of 1625-1644 were the combined effects of the weakened Asian summer monsoon and an associated southward shift of the Pacific Intertropical Convergence Zone. These changes occurred due to a combination of Tibetan Plateau cooling together with more general Northern Hemisphere cooling, rather than being solely due to changes in the sea

  17. IMPACT OF JUTE RETTING ON PHYTOPLANKTON DIVERSITY AND AQUATIC HEALTH: BIOMONITORING IN A TROPICAL OXBOW LAKE

    Directory of Open Access Journals (Sweden)

    Dipankar Ghosh

    2015-11-01

    Full Text Available Phytoplankton acts as a primary producer and biological filter of aquatic ecosystem. Jute retting during monsoon is a common anthropological activity in the rural Bengal. Quantitative seasonal bio-monitoring of phytoplankton community composition with relative abundance and its diversity indices was carried out in this study from April 2013 to March 2014 to assess water quality and the impact of jute retting on phytoplankton diversity of a tropical fresh water oxbow lake in Nadia district of India. We recorded a total of 34 genera of 5 distinct classes, Chlorophyceae (15, Bacillariophyceae (13, Cyanophyceae (4, Dinophyceae (1 and Euglenophyceae (1. Members of Chlorophyceae dominated throughout the year. Unlike Cyanophyceae, Bacillariophyceae was found to be significantly increased during monsoon when compared to the rest of the year. Average phytoplankton density was highest in post-monsoon (8760/L followed by monsoon (4680/L and pre-monsoon (3650/L. Owing to the dominance of class Chlorophyceae and Bacillariophyceae we found this lake to be oligotrophic to mesotrophic. Indices values of genera richness, Shannon-Wiener, evenness and Simpson’s diversity reached their lowest 14, 1.61, 0.61 and 0.68 in monsoon and highest 23, 2.42, 0.77 and 0.86 in post monsoon respectively. The lowest diversity values during monsoon clearly suggested that the selected lake has highest anthropogenic pollution due to jute retting which impacted significantly on phytoplankton diversity. Therefore, the lake is not conducive for fish growth especially during monsoon and we opine that there is a need to regulate jute retting process, intensity and its density in the lake during the monsoon to ensure enhanced biodiversity for sustainable management and conservation of aquatic environment of this Oxbow lake.

  18. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India

    Science.gov (United States)

    Pai, D. S.; Bhate, Jyoti; Sreejith, O. P.; Hatwar, H. R.

    2011-01-01

    The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler-Hendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly

  19. Impact of MJO on the intraseasonal variation of summer monsoon rainfall over India

    Energy Technology Data Exchange (ETDEWEB)

    Pai, D.S.; Sreejith, O.P.; Hatwar, H.R. [India Meteorological Department, Pune (India); Bhate, Jyoti [National Atmospheric Research Laboratory, Gadnki (India)

    2011-01-15

    The summer monsoon rainfall over India exhibits strong intraseasonal variability. Earlier studies have identified Madden Julian Oscillation (MJO) as one of the most influencing factors of the intraseasonal variability of the monsoon rainfall. In this study, using India Meteorological Department (IMD) high resolution daily gridded rainfall data and Wheeler-Hendon MJO indices, the intra-seasonal variation of daily rainfall distribution over India associated with various Phases of eastward propagating MJO life cycle was examined to understand the mechanism linking the MJO to the intraseasonal variability. During MJO Phases of 1 and 2, formation of MJO associated positive convective anomaly over the equatorial Indian Ocean activated the oceanic tropical convergence zone (OTCZ) and the resultant changes in the monsoon circulation caused break monsoon type rainfall distribution. Associated with this, negative convective anomalies over monsoon trough zone region extended eastwards to date line indicating weaker than normal northern hemisphere inter tropical convergence zone (ITCZ). The positive convective anomalies over OTCZ and negative convective anomalies over ITCZ formed a dipole like pattern. Subsequently, as the MJO propagated eastwards to west equatorial Pacific through the maritime continent, a gradual northward shift of the OTCZ was observed and negative convective anomalies started appearing over equatorial Indian Ocean. During Phase 4, while the eastwards propagating MJO linked positive convective anomalies activated the eastern part of the ITCZ, the northward propagating OTCZ merged with monsoon trough (western part of the ITCZ) and induced positive convective anomalies over the region. During Phases 5 and 6, the dipole pattern in convective anomalies was reversed compared to that during Phases 1 and 2. This resulted active monsoon type rainfall distribution over India. During the subsequent Phases (7 and 8), the convective and lower tropospheric anomaly

  20. Influence of Soil Moisture on the Asian and African Monsoons. Part II: Interannual Variability.

    Science.gov (United States)

    Douville, H.

    2002-04-01

    The relevance of soil moisture (SM) for simulating the interannual climate variability has not been much investigated until recently. Much more attention has been paid on SST anomalies, especially in the Tropics where the El Niño-Southern Oscillation represents the main mode of variability. In the present study, ensembles of atmospheric integrations based on the Action de Recherche Petit Echelle Grande Echelle (ARPEGE) climate model have been performed for two summer seasons: 1987 and 1988, respectively. The aim is to compare the relative impacts of using realistic boundary conditions of SST and SM on the simulated variability of the Asian and African monsoons. Besides control runs with interactive SM, sensitivity tests have been done in which SM is relaxed toward a state-of-the-art SM climatology, either globally or regionally over the monsoon domain. The simulations indicate that the variations of the Asian monsoon between 1987 and 1988 are mainly driven by SST anomalies. This result might be explained by the strong teleconnection with the ENSO and by a weak SM-precipitation feedback over south Asia (Part I of the study). The influence of SM is more obvious over Africa. The model needs both realistic SST and SM boundary conditions to simulate the observed variability of the Sahelian monsoon rainfall. The positive impact of the SM relaxation is not only due to a local mechanism whereby larger surface evaporation leads to larger precipitation. The best results are obtained when the relaxation is applied globally, suggesting that remote SM impacts also contribute to the improved simulation of the precipitation variability. A relationship between the Sahelian rainfall anomalies and the meridional wind anomalies over North Africa points out the possible influence of the Northern Hemisphere midlatitudes. The comparison of the low- and midtropospheric anomalies in the various pairs of experiments indicates that SM anomalies can trigger stationary waves over Europe, and

  1. Future of West African Monsoon in A Warming Climate

    Science.gov (United States)

    Raj, Jerry; Kunhu Bangalath, Hamza; Stenchikov, Georgiy

    2016-04-01

    West Africa is the home of more than 300 million people whose agriculture based economy highly relies on West African Monsoon (WAM), which produces a mean annual rainfall of 150 - 2,500 mm and variability and change of which have devastating impact on the local population. The observed widespread drought in West Africa during the 1970s and 1980s was the most significant drought at regional scale during the twentieth century. In this study, a high resolution AGCM, High Resolution Atmospheric Model (HiRAM), is used to study the effects of anthropogenic greenhouse warming on WAM. HiRAM is developed at GFDL based on AM2 and employs a cubed-sphere finite volume dynamical core and uses shallow convective scheme (for moist convection and stratiform cloudiness) instead of deep convective parameterization. Future projections are done using two representative concentration pathways, RCP 4.5 and RCP 8.5 from 2007 to 2050 at C360 (~25 km) resolution. Both RCP 4.5 and RCP 8.5 scenarios predict warming over West Africa during boreal summer, especially over Western Sahara. Also, both scenarios predict southward shift in WAM rainfall pattern and drying over Southern Sahara, while RCP 8.5 predicts enhanced rainfall over Gulf of Guinea. The intensification of rainfall over tropical latitudes is caused by increased low level winds due to warm SST over Gulf of Guinea.

  2. Towards Understanding Planetary Boundary Layer Regimes in Relation to Indian Summer Monsoon

    Science.gov (United States)

    Sathyanadh, A.

    2015-12-01

    Atmospheric boundary layer processes play crucial role in modulating weather and climate of the earth. Information on the planetary boundary layer characteristics are important in various aspects. Analyses presented in the study are mainly carried out using Modern Era Retrospective analysis for Research and Applications (MERRA) reanalysis data products. Hourly values of PBL height, soil moisture, fluxes, cloud cover, and atmospheric stability in the region 5-38° N, 60 - 100o E are used. The MERRA PBL heights are validated with PBL heights calculated using GPS RO atmospheric profiles during 2007-09 and radiosonde observations in order to assess the suitability of MERRA data for the PBL analysis. The radiosonde data used are from two sources: (i) routine radiosonde observations conducted by India Meteorological Department over the Indian subcontinent and (ii) additional radiosonde observations conducted by the Indian Institute of Tropical Meteorology as a part of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment during theSW monsoon, 2009. Spatio-temporal variations of PBL height in relation to different phases of monsoon and intra-seasonal variations are investigated in detail. Seasonal variations show a deeper premonsoon boundary layer and a shallower monsoon boundary layer, with large spatial variations. The PBLH variations over inland locations are found to be in good agreement with onset and progress of monsoon rainfall and associated soil moisture variations. The active and break spell monsoon PBL heights analyzed using 20-year PBL data showed deeper PBLHs during break periods compared to active period. Based on the maximum PBLH and growth characteristics, different regimes are identified which are mainly controlled by soil moisture/ evaporative fraction, but further influenced by stability of the surface, cloudiness, wind shear, etc. resulting in complex PBL regimes in relation to monsoon. The maximum PBLH, growth rate, time of occurrence

  3. Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hai [Institute of Earth Environment, Chinese Academy of Sciences, State Key Laboratory of Loess and Quaternary Geology, Xi' an, Shaanxi Province (China); Hong, Yetang; Hong, Bin [Institute of Geochemistry, Chinese Academy of Sciences, State Key Laboratory of Environmental Geochemistry, Guiyang (China)

    2012-10-15

    The trend of the Indian summer monsoon (ISM) intensity and its nature during the past 100 and 200 years still remain unclear. In this study we reconstructed the ISM intensity during the past 270 years from tree ring {delta}{sup 18}O at Hongyuan, eastern edge of the Tibet Plateau. The monsoon failures inferred from {delta}{sup 18}O{sub tree} {sub ring} correlate well with those recorded in ice cores, speleothem, and historical literature sources. 22.6, 59.0, and 110.9-years frequency components in the Hongyuan {delta}{sup 18}O{sub tree} {sub ring} series, which may be the responses to solar activities, synchronize well with those recorded in other ISM indices. A notable feature of the reconstructed ISM intensity is the gradually decreasing trend from about 1860 to the present, which is inversely related to the increasing temperature trend contemporaneously. Such ''decreasing ISM intensity-increasing temperature'' tendency can also be supported by ice core records and meteorological records over a wide geographic extension. The decrease in sea surface temperature gradient between tropical and north Indian Ocean, and the decrease in land-sea thermal contrast between tropical Indian Ocean and ''Indian sub-continent-western Himalaya'' are possibly responsible for the observed decreasing ISM trend. (orig.)

  4. Can Open Science save us from a solar-driven monsoon?

    Directory of Open Access Journals (Sweden)

    Laken Benjamin A.

    2016-01-01

    Full Text Available Numerous studies have been published claiming strong solar influences on the Earth’s weather and climate, many of which include documented errors and false-positives, yet are still frequently used to substantiate arguments of global warming denial. Recently, Badruddin & Aslam (2015 reported a highly significant relationship between the Indian monsoon and the cosmic ray flux. They found strong and opposing linear trends in the cosmic ray flux during composites of the strongest and weakest monsoons since 1964, and concluded that this relationship is causal. They further speculated that it could apply across the entire tropical and sub-tropical belt and be of global importance. However, examining the original data reveals the cause of this false-positive: an assumption that the data’s underlying distribution was Gaussian. Instead, due to the manner in which the composite samples were constructed, the correlations were biased towards high values. Incorrect or problematic statistical analyses such as this are typical in the field of solar-terrestrial studies, and consequently false-positives are frequently published. However, the widespread adoption of Open Science approaches, placing an emphasis on reproducible open-source analyses as demonstrated in this work, could remedy the situation.

  5. CSSP MESETA : Simulation of the East Asian Summer Monsoon with idealized Tibetan Plateau orography

    Science.gov (United States)

    Wong, K. C.; Curio, J.; Turner, A. G.; Schiemann, R.

    2016-12-01

    Contrary to the traditional view on monsoon dynamics, recent studies have showed that the Asian summer monsoon can be reproduced in idealized simulations in which the Tibetan Plateau (TP) is removed, leaving only the Himalayan ranges. This suggests mechanical blocking by the Himalayas is perhaps more important than the elevated sensible heating from TP in maintaining the summer circulation. The CSSP MESETA project aims to further investigate the impact of TP on the East and South Asian monsoons, in particular the relative importance of thermal and mechanical forcing, on the regional and downstream climate. The state-of-the-art HadGEM3 atmospheric general circulation model of the UK Met Office was used to perform experiments with various idealized orography settings designed to assess the mechanical and thermal forcing exerted by the TP. Results from the idealized simulations show that the TP has a remarkable influence on the East Asian Summer Monsoon in terms of its intensity and onset. The summer moisture flux into the South China Sea and precipitation over southern China, in particular, reduced significantly when most of the TP was removed from the model domain leaving only the Himalayan ranges. Upper-tropospheric circulation such as the strength and position of the sub-tropical jet also showed variation under different orography settings which affected the climate of downstream regions in the western north Pacific. Therefore, it is clear that the TP plays a vital role in shaping the climate over East Asia. We also examine the impact of orographic perturbations of the Tibetan Plateau region on Rossby wave source terms and thereby on remote teleconnections to elsewhere on the planet. This has implications for our understanding of the impact of systematic model biases in terms of orographic effects on regional and global circulation.

  6. Policy making and organization in managing tropical diseases in China

    Institute of Scientific and Technical Information of China (English)

    贺联印

    2001-01-01

    @@China have a vast territory and a large population. It is situated between north latitude 2°-58° and east longitude 74°-135°. Most of China is lacated in the temperate and subtropical zones, with a small part in the tropical zone. Due to the influence of monsoons from the Pacific Ocean during the summer season, rainfall is plentful, and the weather can be hot and humid. The natural conditions create a good environment for the rise and spread of most tropical diseases (infectious and parasitic diseases), especially in South-eastern China, where about 80% of the population lives.

  7. Orbital-scale nonlinear response of East Asian summer monsoon to its potential driving forces in the late Quaternary

    Science.gov (United States)

    Yi, Liang; Shi, Zhengguo; Tan, Liangcheng; Deng, Chenglong

    2017-06-01

    We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation.

  8. Twenty-first century projected summer mean climate in the Mediterranean interpreted through the monsoon-desert mechanism

    Science.gov (United States)

    Cherchi, Annalisa; Annamalai, H.; Masina, Simona; Navarra, Antonio; Alessandri, Andrea

    2016-10-01

    The term "monsoon-desert mechanism" indicates the relationship between the diabatic heating associated with the South Asian summer monsoon rainfall and the remote response in the western sub-tropics where long Rossby waves anchor strong descent with high subsidence. In CMIP5 twenty-first century climate scenarios, the precipitation over South Asia is projected to increase. This study investigates how this change could affect the summer climate projections in the Mediterranean region. In a linear framework the monsoon-desert mechanism in the context of climate change would imply that the change in subsidence over the Mediterranean should be strongly linked with the changes in South Asian monsoon precipitation. The steady-state solution from a linear model forced with CMIP5 model projected precipitation change over South Asia shows a broad region of descent in the Mediterranean, while the results from CMIP5 projections differ having increased descent mostly in the western sector but also decreased descent in parts of the eastern sector. Local changes in circulation, particularly the meridional wind, promote cold air advection that anchors the descent but the barotropic Rossby wave nature of the wind anomalies consisting of alternating northerlies/southerlies favors alternating descent/ascent locations. In fact, the local mid-tropospheric meridional wind changes have the strongest correlation with the regions where the difference in subsidence is largest. There decreased rainfall is mostly balanced by changes in moisture, omega and in the horizontal advection of moisture.

  9. Differential impact of monsoon and large amplitude internal waves on coral reef development in the Andaman Sea.

    Science.gov (United States)

    Wall, Marlene; Schmidt, Gertraud Maria; Janjang, Pornpan; Khokiattiwong, Somkiat; Richter, Claudio

    2012-01-01

    The Andaman Sea and other macrotidal semi-enclosed tropical seas feature large amplitude internal waves (LAIW). Although LAIW induce strong fluctuations i.e. of temperature, pH, and nutrients, their influence on reef development is so far unknown. A better-known source of disturbance is the monsoon affecting corals due to turbulent mixing and sedimentation. Because in the Andaman Sea both, LAIW and monsoon, act from the same westerly direction their relative contribution to reef development is difficult to discern. Here, we explore the framework development in a number of offshore island locations subjected to differential LAIW- and SW-monsoon impact to address this open question. Cumulative negative temperature anomalies - a proxy for LAIW impact - explained a higher percentage of the variability in coral reef framework height, than sedimentation rates which resulted mainly from the monsoon. Temperature anomalies and sediment grain size provided the best correlation with framework height suggesting that so far neglected subsurface processes (LAIW) play a significant role in shaping coral reefs.

  10. Tropical Deforestation.

    Science.gov (United States)

    Raven, Peter H.

    1988-01-01

    Outlines the deforestation problem and some efforts for solving the problem. Considers the impact of population growth, poverty, and ignorance. Includes a discussion of the current rapid decline in tropical forests, the consequences of destruction, and an outlook for the future. (YP)

  11. Emission of carbon dioxide from a tropical estuarine system, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; Manerikar, M.

    Carbon dioxide species were studied in Mandovi-Zuari system, a tropical estuarine complex influenced by strong monsoonal run-off, with implications to build up and air-water exchange of CO sub(2) . Total carbon dioxide (TOC sub(2)) behaved...

  12. Mixing and stratification in a tropical tidal embayment subject to a distributed freshwater source

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Maren, van D.S.; Hoekstra, P.

    2011-01-01

    The Bay of Banten provides an example of a semicircular shallow tidal embayment in a tropical ROFI (Region Of Freshwater Influence), subject to a mixed, mainly diurnal tidal regime and a monsoon-driven residual circulation. A partially inactivated delta shapes the east coast of the bay and constitut

  13. The Indian winter monsoon and its response to external forcing over the last two and a half centuries

    Science.gov (United States)

    Munz, Philipp M.; Lückge, Andreas; Siccha, Michael; Böll, Anna; Forke, Sven; Kucera, Michal; Schulz, Hartmut

    2016-10-01

    The Indian winter monsoon (IWM) is a key component of the seasonally changing monsoon system that affects the densely populated regions of South Asia. Cold winds originating in high northern latitudes provide a link of continental-scale Northern Hemisphere climate to the tropics. Western disturbances associated with the IWM play a critical role for the climate and hydrology in northern India and the western Himalaya region. It is vital to understand the mechanisms and teleconnections that influence IWM variability to better predict changes in future climate. Here we present a study of regionally calibrated winter (January) temperatures and according IWM intensities, based on a planktic foraminiferal record with biennial (2.55 years) resolution. Over the last 250 years, IWM intensities gradually weakened, based on the long-term trend of reconstructed January temperatures. Furthermore, the results indicate that IWM is connected on interannual- to decadal time scales to climate variability of the tropical and extratropical Pacific, via El Niño Southern Oscillation and Pacific Decadal Oscillation. However, our findings suggest that this relationship appeared to begin to decouple since the beginning of the twentieth century. Cross-spectral analysis revealed that several distinct decadal-scale phases of colder climate and accordingly more intense winter monsoon centered at the years 1800, 1890 and 1930 can be linked to changes of the North Atlantic Oscillation.

  14. Investigating the Dominant Source for the Generation of Gravity Waves during Indian Summer Monsoon Using Ground-based Measurements

    Institute of Scientific and Technical Information of China (English)

    Debashis NATH; CHEN Wen

    2013-01-01

    Over the tropics,convection,wind shear (i.e.,vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves.During the summer monsoon season (June-August) over the Indian subcontinent,convection and wind shear coexist.To determine the dominant source of gravity waves during monsoon season,an experiment was conducted using mesosphere-stratosphere-troposphere (MST) radar situated at Gadanki (13.5°N,79.2°E),a tropical observatory in the southern part of the Indian subcontinent.MST radar was operated continuously for 72 h to capture high-frequency gravity waves.During this time,a radiosonde was released every 6 h in addition to the regular launch (once daily to study low-frequency gravity waves) throughout the season.These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves.Data available from collocated instruments along with satellite-based brightness temperature (TBB) data were utilized to characterize the convection in and around Gadanki,Despite the presence of two major sources of gravity wave generation (i.e.,convection and wind shear) during the monsoon season,wind shear (both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales.

  15. Future projections of Indian Ocean SSTs and its impact on monsoon

    Science.gov (United States)

    Thelliyil Sabeerali, Cherumadanakadan; Ravindran, Ajayamohan

    2016-04-01

    Assessing the future projections of the Indian Ocean (IO) Sea Surface Temperatures (SSTs) under the global warming scenario has a paramount societal impact considering its potential to alter the seasonal mean rainfall over the Indian subcontinent. Observations show a pronounced warming in the western tropical IO compared to other ocean basins. Here, we explore the projections of boreal summer SSTs over the IO using the Representative Concentration Pathways 8.5 (RCP8.5) scenarios of Coupled Model Intercomparison Project Phase5 (CMIP5) simulations. Consistent with observations, most of the CMIP5 models show a faster warming rate over the western tropical IO compared to other ocean basins. Model simulations indicate a shift in the mean Walker circulation with an anomalous ascending motion over the central equatorial Pacific and an anomalous descending motion over the eastern tropical IO. As a consequence of this, a negative SST skewness is evident in the eastern tropical IO which leads to the increased frequency of positive Indian Ocean Dipole (IOD) events. Mechanisms responsible for this pronounced western IO warming is studied by analyzing the changes in the mean thermocline depth and circulation features. The impact of these changes in IO SST on seasonal mean monsoon precipitation and circulation in a warming scenario and its associated mechanisms are also investigated.

  16. A Comparison of Pre-monsoonal and Monsoonal Radiative Forcing by Anthropogenic Aerosols over South Asia

    Science.gov (United States)

    Lee, S.; Cohen, J. B.; Wang, C.

    2012-12-01

    Radiative forcing by anthropogenic aerosols after monsoon onset is often considered unimportant compared to forcing during the pre-monsoonal period, due to precipitation scavenging. We tested this assumption for the South Asian monsoon using three model runs with forcing prescribed during the pre-monsoonal period (March-May), monsoon period (June-September) and both periods. The forcing represents the direct radiative effects of sulfate, organic carbon and black carbon. It was derived from a set of Kalman filter-optimised black carbon emissions from a modelling system based on the CAM3 GCM, a two-moment multi-scheme aerosol and radiation model, and a coupled urban scale processing package; we expect it to be reliable within its given error bounds. The monthly climatological forcing values were prescribed over South Asia every year for 100 years to CESM 1.0.4, a coupled atmosphere-ocean model. We shall compare the three resultant climatologies with climatologies from a no aerosol model and a full aerosol model.

  17. Forecasting Monsoon Precipitation Using Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper explores the application of Artificial Intelligent (AI) techniques for climate forecast. It pres ents a study on modelling the monsoon precipitation forecast by means of Artificial Neural Networks (ANNs). Using the historical data of the total amount of summer rainfall over the Delta Area of Yangtze River in China, three ANNs models have been developed to forecast the monsoon precipitation in the corre sponding area one year, five-year, and ten-year forward respectively. Performances of the models have been validated using a 'new' data set that has not been exposed to the models during the processes of model development and test. The experiment results are promising, indicating that the proposed ANNs models have good quality in terms of the accuracy, stability and generalisation ability.

  18. Development of summer monsoon and onset of continuous rains over central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    rains happening during the last phase of monsoon development as a consequence of and after (2-5 weeks) the establishment of monsoon circulation or monsoon front. Summer monsoon front, as the term 'monsoon' originally meant, is to be delineated from...

  19. A Study on Extremely Dry and Wet Summer Monsoon in Pakistan by Focusing on the Anomalous States of the Upper Troposphere

    Science.gov (United States)

    Ahmad, S.; Koike, T.; Nishii, K.

    2012-04-01

    Seasonally-changes in wind pattern, monsoon, sometimes results in severe droughts and intense flooding in many parts of the world including South Asian countries like Pakistan. The livelihood of a vast population in Pakistan depends on agriculture and land use is strongly influenced by water-based ecosystems that depend on the monsoon rains. Furthermore, climate change studies undertaken so far reveal that action is essential in order to prevent long term damage to water cycle and thus of great concern to the community and stakeholders. Pakistan Summer Monsoon (PSM) is generally affected by both the disturbances from the tropical and the extratropical regions; however there is lack of understanding of physical mechanisms of PSM compared to other regional studies i.e. Indian Summer Monsoon (ISM) and South-East Asian Monsoon (SEAM). In our study, we applied heat and vorticity budgets and wave train analysis to reveal the mechanisms of the extremely dry and wet PSM events associated with the anomalous upper tropospheric circulation. We found that the extremely dry (wet) PSM events are closely related with the strengthening(weakening) of the upper-tropospheric central Asian high. We also found that in addition to Rossby-wave (Matsuno-Gill) type atmospheric response, the Rossby wave train along the Asian Jet originating from northwestern Europe or North Atlantic Ocean strengthened(weakened) the upper-tropospheric central Asian high. Therefore strong convection anomalies resulting in severe flooding (drought) events over the PSM region are induced by both the tropical and extratropical processes. Key Words: Pakistan, Extremes Monsoon Events, Physical Processes, Heat Budget, Vorticity, Wave Train

  20. East Asian monsoon climate simulated in the PlioMIP

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-02-01

    Full Text Available Based on the simulations with fifteen climate models in the Pliocene Model Intercomparison Project (PlioMIP, the regional climate of East Asia (focusing on China during the mid-Pliocene is investigated in this study. Compared to the pre-industrial, the multi-model ensemble mean (MMM of all models shows the East Asian summer wind (EASW largely strengthens in monsoon China, and the East Asian winter wind (EAWW strengthens in south monsoon China but slightly weakens in north monsoon China in mid-Pliocene. The MMM of all models also illustrates a warmer and wetter mid-Pliocene climate in China. The simulated weakened mid-Pliocene EAWW in north monsoon China and intensified EASW in monsoon China agree well with geological reconstructions. However, the model-model discrepancy in simulating mid-Pliocene East Asian monsoon climate, in particular EAWW, should be further addressed in the future work of PlioMIP.

  1. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included) In English, one or 2 pages. Functional ecology of tropical forest recovery Currently in the tropics, the area of second

  2. Early warnings and missed alarms for abrupt monsoon transitions

    OpenAIRE

    Z. A. Thomas; Kwasniok, F.; C. A. Boulton; Cox, P.M.; Jones, R. T.; Lenton, T. M.; C. S. M. Turney

    2015-01-01

    Palaeo-records from China (Cheng et al., 2009; Wang et al., 2008, 2001) demonstrate the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesised that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them (Schewe et al., 2012). Here we test this hypothesis by looki...

  3. Early warnings and missed alarms for abrupt monsoon transitions

    OpenAIRE

    Z. A. Thomas; Kwasniok, F.; C. A. Boulton; Cox, P.M.; Jones, R. T.; Lenton, T. M.; C. S. M. Turney

    2015-01-01

    Palaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesized that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them. Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem δ18O records fro...

  4. Summer monsoon rainfall variability over North East regions of India and its association with Eurasian snow, Atlantic Sea Surface temperature and Arctic Oscillation

    Science.gov (United States)

    Prabhu, Amita; Oh, Jaiho; Kim, In-won; Kripalani, R. H.; Mitra, A. K.; Pandithurai, G.

    2016-11-01

    This observational study during the 29-year period from 1979 to 2007 evaluates the potential role of Eurasian snow in modulating the North East-Indian Summer Monsoon Rainfall with a lead time of almost 6 months. This link is manifested by the changes in high-latitude atmospheric winter snow variability over Eurasia associated with Arctic Oscillation (AO). Excessive wintertime Eurasian snow leads to an anomalous cooling of the overlying atmosphere and is associated with the negative mode of AO, inducing a meridional wave-train descending over the tropical north Atlantic and is associated with cooling of this region. Once the cold anomalies are established over the tropical Atlantic, it persists up to the following summer leading to an anomalous zonal wave-train further inducing a descending branch over NE-India resulting in weak summer monsoon rainfall.

  5. The Influence of Regional SSTs on the Interdecadal Shift of the East Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    FU Jianjian; LI Shuanglin

    2013-01-01

    East Asia has experienced a significant interdecadal climate shift since the late 1970s.This shift was accompanied by a decadal change of global SST.Previous studies have suggested that the decadal shift of global SST background status played a substantial role in such a climatic shift.However,the individual roles of different regional SSTs remain unclear.In this study,we investigated these roles using ensemble experiments of an atmospheric general circulation model,GFDL (Geophysical Fluid Dynamics Laboratory) AM2.Two kinds of ensembles were performed.The first was a control ensemble in which the model was driven with the observed climatological SSTs.The second was an experimental ensemble in which the model was driven with the observed climatological SSTs plus interdecadal SST background shifts in separate ocean regions.The results suggest that the SST shift in the tropics exerted more important influence than those in the extratropics,although the latter contribute to the shift modestly.The variations of summer monsoonal circulation systems,including the South Asian High,the West Pacific Subtropical High,and the lower-level air flow,were analyzed.The results show that,in comparison with those induced by extratropical SSTs,the shifts induced by tropical SSTs bear more similarity to the observations and to the simulations with global SSTs prescribed.In particular,the observed SST shift in the tropical Pacific Ocean,rather than the Indian Ocean,contributed significantly to the shift of East Asian summer monsoon since the 1970s.

  6. Fine-scale responses of phytoplankton to freshwater influx in a tropical monsoonal estuary following the onset of southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Pednekar, S.M.; Matondkar, S.G.P.; Gomes, H.R.; Goes, J.I.; Parab, S.G.; Kerkar, V.

    estuary; Estuarine Coast. Shelf Sci. 1 107–111. Hallegraeff G M, Anderson D M and Cembella A D 2003 Manual on harmful marine microalgae; UNESCO Publishing. Huang L, Jian W, Song X, Huang X, Liu S, Qian P, Yin K and Wu M 2004 Species diversity...

  7. Onset, active and break periods of the Australian monsoon

    Energy Technology Data Exchange (ETDEWEB)

    Shaik, Hakeem A [Northern Territory Regional Office, Australian Bureau of Meteorology, PO Box 40050, NT Regional Office, Bureau of Meteorology, Casuarina NT 0811, Darwin (Australia); Cleland, Samuel J, E-mail: h.shaik@bom.gov.a [Bureau of Meteorology, Cape Grim BAPS, Smithton Tasmania TAS 7300 (Australia)

    2010-08-15

    Four operational techniques of monsoon monitoring the Australian monsoon at Darwin have been developed in the Darwin Regional Specialised Meteorological Centre. Two techniques used the rainfall only criteria and look into the onset of wet season rainfall/monsoon rainfall. The other two techniques are based purely on Darwin wind data. The data used for the study ranges from 14 to 21 years. The main purpose of the study is to develop near-real time monitoring tools for the Australian monsoon at Darwin. The average date of onset of the monsoon ranges from 19 December to 30 December. The average date of monsoon onset is 28 December. In eleven out of twenty-one years the onset date remained within three days range between the two rainfall techniques, whereas it is eleven out of fourteen years between the wind techniques. The median number of active monsoon spells in a wet season is 3 for the rainfall techniques and 6 for the wind techniques. The average length of each active monsoon spell is around 4 days for all of the techniques. The date of onset of the monsoon has shown negative correlation with the Southern Oscillation Index (SOI) that is late onset is found to occur in El Nino years while early onset is more likely in La Nina years.

  8. Satellite observations of the role and impacts of dry season climate limitations on tropical forest fates

    Science.gov (United States)

    Huete, A. R.; Restrepo-Coupe, N.; Wu, J.; Devadas, R.; Guan, K.; Liu, Y.; Ratana, P.; Sun, Q.; Schaaf, C.; Saleska, S. R.

    2015-12-01

    Climate change scenarios projected for the 21st century predict drying of the Amazon, greening of monsoon tropical Asia and no change in the tropics of Australia. Dry season variability is increasing with complex associated forest responses and feedbacks as they become exposed to longer and/or more intense dry seasons. The functional response of tropical forests to dry seasonal periods is thus crucial to forest resilience, as forests may respond with either enhanced photosynthesis (due to more sunlight) or may dry down with greater susceptibility to fires and release of greenhouse gases and severe public health haze alerts. In this study, we use multiple satellite remote sensing datasets representing forest canopy states, environmental drivers (light and water status), and disturbance (fires), along with in situ flux tower measures of photosynthesis to assess whole ecosystem patterns and test mechanisms of forest- dry season climate interactions. We compare photosynthesis patterns and dry season responses of Asia-Oceania tropical forests with neotropical forests to better understand forest resilience to climate change and human impacts. In contrast to the neotropics, human activities in monsoon tropical Asia have resulted in intensive transformations of tropical forests. We find forest disturbance exerts a strong influence on tropical forest functioning and a partial loss or degradation of tropical forests can reverse dry seasonal responses with substantial impacts on carbon fluxes. Neotropical forests displayed large variations in dry season forest responses due to spatially variable dry season lengths and magnitude, whereas most of monsoon Asia tropical forests lacked well-defined dry seasons, yet were highly sensitive to shorter term, intense drought events that impacted severely upon the disturbed forests. Our results highlight the interactions among rainfall, radiation and forest health with the relative importance of each factor varying with the

  9. Relative roles of anthropogenic aerosols and greenhouse gases in land and oceanic monsoon changes during past 156 years in CMIP5 models

    Science.gov (United States)

    Zhang, Lei; Li, Tim

    2016-05-01

    Relative roles of anthropogenic aerosols (AAs) and greenhouse gases (GHGs) in land and oceanic monsoon changes during boreal summer over the period 1850-2005 in Coupled Model Intercomparison Project Phase 5 (CMIP5) models are explored. It is found that the GHG effect dominates rainfall trend over oceanic monsoon region. As a result, precipitation over western North Pacific (WNP) monsoon region and Intertropical Convergence Zone (ITCZ) over tropical eastern Pacific are strengthened through the so-called "richest-get-richer" mechanism. Over land monsoon region, GHG and AA effects are different over India and East Asia (EA). The two effects tend to offset each other over India, but the AA effect dominates over EA and induces a drying trend. The weakened effect of GHGs on EA is attributed to the large offset of thermodynamic and dynamic effects associated with GHGs. While the former tends to strengthen EA rainfall through increased moisture, the latter tends to decrease EA rainfall due to the strengthened WNP monsoon impact.

  10. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model

    Science.gov (United States)

    Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.

    2017-09-01

    Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (GloSea5), an initialized coupled model. We analyze a series of nine-member hindcasts from GloSea5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and air-sea interaction processes pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated air-sea interactions in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in GloSea5.

  11. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  12. Stable isotopes in monsoon precipitation and water vapour in Nagqu, Tibet, and their implications for monsoon moisture

    Science.gov (United States)

    He, Siyuan; Richards, Keith

    2016-09-01

    Understanding climate variations over the Qinghai-Tibetan plateau has become essential because the high plateau sustains various ecosystems and water sources, and impacts on the Asian monsoon system. This paper provides new information from isotopic signals in meteoric water and atmospheric water vapour on the Qinghai-Tibetan Plateau using high frequency observation data over a relatively short period. The aim is to explore temporal moisture changes and annual variations at the onset and during the summer monsoon season at a transitional site with respect to the monsoon influence. Data show that high frequency and short period observations can reveal typical moisture changes from the pre-monsoon to the monsoon seasons (2010), and the large variation in isotopic signals in different years with respect to active/inactive periods during a mature phase of the monsoon (2011), especially inferring from the temporal changes in the d-excess of precipitation and its relationship with δ18O values, when higher d-excess is found in the pre-monsoon precipitation. In this transition zone on a daily basis, δ18O values in precipitation are controlled mainly by the amount of rainfall during the monsoon season, while temperature seems more important before the onset of monsoon. Furthermore, the "amount effect" is significant for night-time rain events. From comparison of signals in both the precipitation and water vapour, an inconsistent relationship between d-excess values suggests various moisture fluxes are active in a short period. The temporal pattern of isotopic signal change from the onset of the monsoon to the mature monsoon phase provides information about the larger circulation dynamics of the Asian monsoon.

  13. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain

    Science.gov (United States)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2017-07-01

    This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia.

  14. On the dominant intra-seasonal modes over the East Asia-western North Pacific summer monsoon region

    Science.gov (United States)

    Ha, Kyung-Ja; Oh, Hyoeun

    2017-04-01

    Intra-seasonal monsoon prediction is the most imperative task due to high impact on 2/3 of world populations' daily life, but there remains an enduring challenge in climate science. The present study aims to provide a physical understanding of the sources for prediction of dominant intra-seasonal modes in the East Asian-western North Pacific summer monsoon (EA-WNPSM): preMeiyu&Baiu, Changma&Meiyu, WNPSM, and monsoon gyre modes classified by the self-organizing map analysis. The major modes tend to be dominated by the moisture convergence of the moisture budget equation along the rain-band. The preMeiyu-Baiu mode is strongly linked to both the anomalous low-level convergence and vertical wind shear through baroclinic instability, and the Changma&Meiyu mode has a strengthened tropic-subtropics connection along the western north Pacific subtropical high, which induces vertical destabilization and strong convective instability. The WNPSM and monsoon gyre modes are characterized by anomalous southeasterly flow of warm and moist air from western north Pacific monsoon, and low-level easterly flow, respectively. Prominent difference in response to the ENSO leads to different effects of the Indian Ocean and western Pacific thermal state, and consequently, the distinct moisture supply and instability variations for the EASM intra-seasonal modes. We discuss the major driving forces of sub-seasonal variability over EA-WNPSM regions. Lastly we attempted to determine the predictability sources for the four modes in the EA-WNPSM. The selected predictors are based on the persistent and tendency signals of the SST/2m air temperature and sea level pressure fields, which reflect the asymmetric response to the ENSO and the ocean and land surface anomalous conditions. For the preMeiyu&Baiu mode, the SST cooling tendency over the WNP, which persists into summer, is the distinguishing contributor that results in strong baroclinic instability. A major precursor for the Changma&Meiyu mode

  15. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  16. Meteorological fields variability over the Indian seas in pre and summer monsoon months during extreme monsoon seasons

    Indian Academy of Sciences (India)

    U C Mohanty; R Bhatla; P V S Raju; O P Madan; A Sarkar

    2002-09-01

    In this study, the possible linkage between summer monsoon rainfall over India and surface meteorological fields (basic fields and heat budget components) over monsoon region (30° E-120°E, 30°S-30°N) during the pre-monsoon month of May and summer monsoon season (June to September) are examined. For this purpose, monthly surface meteorological fields anomaly are analyzed for 42 years (1958-1999) using reanalysis data of NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric Research). The statistical significance of the anomaly (difference) between the surplus and deficient monsoon years in the surface meteorological fields are also examined by Student's t-test at 95% confidence level. Significant negative anomalies of mean sea level pressure are observed over India, Arabian Sea and Arabian Peninsular in the pre-monsoon month of May and monsoon season. Significant positive anomalies in the zonal and meridional wind (at 2m) in the month of May are observed in the west Arabian Sea off Somali coast and for monsoon season it is in the central Arabian Sea that extends up to Somalia. Significant positive anomalies of the surface temperature and air temperature (at 2m) in the month of May are observed over north India and adjoining Pakistan and Afghanistan region. During monsoon season this region is replaced by significant negative anomalies. In the month of May, significant positive anomalies of cloud amount are observed over Somali coast, north Bay of Bengal and adjoining West Bengal and Bangladesh. During monsoon season, cloud amount shows positive anomalies over NW India and north Arabian Sea. There is overall reduction in the incoming shortwave radiation flux during surplus monsoon years. A higher magnitude of latent heat flux is also found in surplus monsoon years for the month of May as well as the monsoon season. The significant positive anomaly of latent heat flux in May, observed over southwest Arabian Sea, may be considered

  17. Effects of Intraseasonal Oscillation on the Anomalous East Asian Summer Monsoon During 1999

    Institute of Scientific and Technical Information of China (English)

    SUN Ying; DING Yihui

    2008-01-01

    The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions.The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley.The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea(SCS)as in normal years.Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan.The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process.During this year,the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20℃N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes.The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific,which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport.also did not reach the region north of 30℃N as well.Under this circumstance,the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999.The SCS and South China were mostly affected by the alrflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones.respectively,and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions.The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation.with the rainfall maximum occurring in the SCS (South China)when the 30-60-day

  18. Meso-scale distribution of summer monsoon rainfall near the Western Ghats (India)

    Science.gov (United States)

    Patwardhan, S. K.; Asnani, G. C.

    2000-04-01

    The spatial distribution of southwest monsoon rainfall is studied over Maharashtra State (India), which includes part of the well-known Western Ghats mountain range, near its western boundary, running almost from north to south, perpendicular to the summer monsoon current in the lower troposphere. Meso-scale analysis of daily rainfall is performed for Maharashtra State, including the Western Ghats, for the two mid-monsoon months of July and August, during the 10-year period of 1971-1980. Strong and weak monsoon days were identified for the 5-year period of 1976-1980. The meso-scale pattern of average daily rainfall is obtained separately for strong and for weak monsoon conditions.All these average patterns show the following features: (i) the rainfall increases rapidly from the Arabian Sea coast close to the line of maximum height of the Western Ghats; (ii) there are two rainfall maxima corresponding to the two mountain peaks parallel to the coast line; (iii) between the two mountain peaks, there is a valley which is narrow at the western end (upwind end), broadening towards the east (on the downwind side). Ground contour height of the valley rises eastwards and ends as a part of the Deccan Plateau east of the Ghats. Here the valley opens out like a funnel with higher mountains flanking its two sides. In the valley, the rainfall increases from the coast up to the line of maximum height of the Ghats, and then decreases eastwards towards the plateau. The rainfall isopleths also take a funnel-shaped configuration. An interesting feature is that near the wider section of the valley funnel, there is a rainfall minimum and then the rainfall increases further eastwards on the downwind side. This feature of rainfall minimum is somewhat similar to the rainfall minimum reported by Asnani and Kinuthia (personal communication); Asnani (Asnani GC. 1993. Tropical Meteorology, Vol. I. Prof. G.C. Asnani: Pune, India; 603) attributed the rainfall minimum to the Bernoulli effect. A

  19. Tropical Convection: A Half Century Quest for Understanding

    Science.gov (United States)

    Houze, R.

    2012-12-01

    The tropics have been called the "boiler box" of the atmosphere because that is where the sun's energy enters the system and the population of active tropical clouds are continually distributing this energy through the depth of the troposphere. These clouds not only drive the global circulation but they are integral components of the circulation features that account for the variability the tropical circulation, from El Nino, to the monsoons, to tropical cyclones. The need to represent clouds accurately in global weather and climate models has driven a quest to understand the details of tropical clouds, their various forms, the factors controlling them and their feedbacks to the larger-scale atmospheric circulation. This quest has led to major field expeditions in all the major oceans and land regions of the tropics. These campaigns combined with a series of revolutionary satellites, culminating in TRMM and CloudSat, have led to major improvements in our understanding of the tropical cloud population and its interactions with larger scales of atmospheric motions. In this talk, we will review these advances.

  20. Early forecasting of Indian Summer Monsoon: case study 2016

    Science.gov (United States)

    Surovyatkina, Elena; Stolbova, Veronika; Kurths, Jurgen

    2017-04-01

    The prior knowledge of dates of onset and withdrawal of monsoon is of vital importance for the population of the Indian subcontinent. In May 2016 before monsoon season, India recorded its highest-ever temperature of 51C. Hot waves have decimated crops, killed livestock and left 330 million people without enough water. At the end of monsoon season the floods in Indian this year have also broken previous records. Severe and devastating rainfall poured down, triggering dams spilling and floods. Such extreme conditions pose the vital questions such as: When will the monsoon come? When will the monsoon withdraw? More lead time in monsoon forecast warning is crucial for taking appropriate decisions at various levels - from the farmer's field (e.g. plowing day, seeding) to the central government (e.g. managing water and energy resources, food procurement policies). The Indian Meteorological Department issues forecasts of onset of monsoon for Kerala state in South India on May 15-th. It does not give such predictions for the other 28 states of the country. Our study concerns the central part of India. We made the monsoon forecast using our recently developed method which focuses on Tipping elements of the Indian monsoon [1]. Our prediction relies on observations of near-surface air temperature and relative humidity from both the ERA-40 and NCEP/NCAR reanalyses. We performed both of our forecasts for the onset and withdrawal of monsoon for the central part of India, the Eastern Ghats (20N,80E). We predicted the monsoon arrival to the Eastern Ghats (20N,80E) on the 13th of June with a deviation of +/-4 days. The prediction was made on May 6-th, 2016 [2], that is 40 days in advance of the date of the forecast. The actual monsoon arrival was June 17-th. In this day near-surface air temperature and relative humidity overcame the critical values and the monsoon season started, that was confirmed by observations of meteorological stations located around the EG-region. We

  1. Assessing how seasonal hydrological balance has changed during the warming 20th century in the montane forests of Southeast Asian monsoon region using a stable isotope dendroclimatology approach

    Science.gov (United States)

    Zhu, M.; Stott, L. D.

    2010-12-01

    Tropical montane forests act as water catchment and host of biodiversity in the Southeast Asian monsoon region, and understanding how their hydrological conditions change with global warming is vitally important. Global climate model simulations project enhanced moisture cycle in the tropics, which would cause stronger summer monsoon precipitations, but on the other hand the adiabatic lapse rate would be shifted towards a moister condition (amplification of warming at high elevation), inhibiting dry season orographic lifting cloud/fog formation (lifting cloud base hypothesis), enhancing evapo-transpiration, and leading to a net moisture loss during winter dry season. In this study, we have attempted to investigate how the seasonal moisture balance in Southeast Asia has evolved in response to these influences through the 20th century using the oxygen isotopic composition (δ18O) of subannual tree cellulose samples extracted from the annual rings of pine trees that grow in Doi Chiang Dao, a limestone mountain in northern Thailand. At this location the δ18O of cellulose exhibits distinctive annual cycles of up to 12‰, which is primarily a reflection of both the so-called ‘isotope amount effect’ that is associated with the strong monsoon precipitation during summer wet season and the moisture availability from different sources during winter dry season. We have demonstrated that tree cellulose δ18O could be used as a proxy for regional monsoon strength by showing that the annual mean cellulose δ18O correlate significantly with All India Rainfall, Webster-Yang monsoon index, as well as with both local and regional monsoon precipitation. ENSO is the dominant influence on interannual rainfall variability and this is well expressed in the interannual cellulose δ18O record. Using a 21-year moving window correlation analysis we find a weakening of ENSO influence after 1980, coinciding with the most rapid atmospheric warming. We expect to analyze older trees to

  2. Time-dependence of salinity in monsoonal estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Vijith, V.; Sundar, D.; Shetye, S.R.

    and come under the influence of the Indian Summer Monsoon (ISM) is never in a steady state. We refer to such estuaries as "monsoonal estuaries", an example of which is the Mandovi estuary located on the west coast of India. We describe the annual cycle...

  3. Evaporation over the Arabian Sea during two contrasting monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sadhuram, Y.

    monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal...

  4. Reconciling societal and scientific definitions for the monsoon

    Science.gov (United States)

    Reeve, Mathew; Stephenson, David

    2014-05-01

    Science defines the monsoon in numerous ways. We can apply these definitions to forecast data, reanalysis data, observations, GCMs and more. In a basic research setting, we hope that this work will advance science and our understanding of the monsoon system. In an applied research setting, we often hope that this work will benefit a specific stakeholder or community. We may want to inform a stakeholder when the monsoon starts, now and in the future. However, what happens if the stakeholders cannot relate to the information because their perceptions do not align with the monsoon definition we use in our analysis? We can resolve this either by teaching the stakeholders or learning from them about how they define the monsoon and when they perceive it to begin. In this work we reconcile different scientific monsoon definitions with the perceptions of agricultural communities in Bangladesh. We have developed a statistical technique that rates different scientific definitions against the people's perceptions of when the monsoon starts and ends. We construct a probability mass function (pmf) around each of the respondent's answers in a questionnaire survey. We can use this pmf to analyze the time series of monsoon onsets and withdrawals from the different scientific definitions. We can thereby quantitatively judge which definition may be most appropriate for a specific applied research setting.

  5. The floras of southern and tropical southeastern Yunnan have been shaped by divergent geological histories.

    Science.gov (United States)

    Hua, Zhu

    2013-01-01

    The southern and tropical southeastern regions of the Yunnan Province in southwestern China have similar monsoonal climates and lowland tropical rain forest vegetations. The floras of both regions are dominated by tropical floristic elements (78.3% in southern Yunnan and 68.83% in southeastern Yunnan), and both belong to the Indo-Malaysian flora at the northern margin of tropical Asia. However, some temperate East Asian characteristic families are well represented in the flora of tropical southeastern Yunnan, while families characteristic of tropical Asia are well represented in the flora of southern Yunnan. Additionally, there are 14 mainly east Asian families in tropical southeastern Yunnan that are not found in southern Yunnan. Although the two regions share 80% of their genera, 237 genera are restricted to southern Yunnan, and 349 genera to tropical southeastern Yunnan. Furthermore, 57 genera with an East Asian distribution, 53 genera with a North temperate distribution, 22 genera endemic to China, and 17 genera with an East Asia and North America disjunct distribution are found only in tropical southeastern Yunnan. The flora of tropical southeastern Yunnan is more closely related to Eastern Asian flora, while the flora of southern Yunnan is more closely related to Indo-Malaysian flora. The divergence of the flora is well supported by the geological history of the region; the flora of tropical southeastern Yunnan was mainly derived from the South China Geoblock, while the southern Yunnan flora derived from the Shan-Thai Geoblock.

  6. Effects of volcanic eruptions on China's monsoon precipitation over the past 700 years

    Science.gov (United States)

    Zhuo, Z.; Gao, C.

    2013-12-01

    Tropical volcanic eruptions were found to affect precipitation especially in Asia and Africa monsoon region. However, studies with different types of eruptions suggested different impacts as well as the spatial patterns. In this study, we combined the Monsoon Asia Drought Atlas (MADA, [Cook et al., 2010]) and the Chinese Historical Drought Disaster Index (CHDDI) compiled from the historic meteorological records to study the effect of volcanic eruptions on China's monsoon precipitation over the past 700 years. Histories of past volcanism were compiled from the IVI2[Gao et al., 2008] and Crowley2013[Crowley and Unterman, 2013] reconstructions. Volcanic events were classified into 2×Pinatubo, 1×Pinatubo , ≥5 Tg sulfate aerosols injection in the northern hemisphere (NH) stratosphere for IVI2; and NH sulfate flux more than 20/15/10/5 kg km-2 for Crowley2013. In both cases, average MADA show a drying trend over mainland China from year zero(0) to year three(+3) after the eruption; and the more sulfate aerosol injected into the NH stratosphere or the larger the sulfate flux, the more severe this drying trend seem to reveal. In comparison, a wetting trend was found in the eruption year with Southern Hemisphere (SH) only injections. Superposed epoch analysis with a 10,000 Monte Carlo resampling procedure showed that 97.9% (96.9%) of the observed MADA values are statistically significant at the 95% (99%) confidence level. The drying is probably caused by a reduction of the latent heat flux due to volcanic aerosol' cooling effect, leading to the weakening of south Asian monsoon and decrease of moisture vapor over tropical oceans, which contribute to a reduced moisture flux over china. Spatial distribution of the average MADA show a southward movement of the driest areas in eastern China from year zero to year three after the 1×Pinatubo and 2×Pinatubo eruptions, whereas part of north china experienced unusual wetting condition. This is in good agreement with CHDDI, which

  7. Effect of cloud microphysics on Indian summer monsoon precipitating clouds: A coupled climate modeling study

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh K.; Pokhrel, Samir

    2017-04-01

    The quest for one of the most dominant processes controlling the large-scale circulations in the tropics is unraveled. The impact of cloud microphysical processes is known to have effects on rainfall and local atmospheric thermodynamics; however, its effect on the prevailing mean circulations is not yet studied. Two sets of coupled global climate model experiments (ICE and NO ICE microphysics) reveal that ice microphysics improves the strength of the Hadley circulation with respect to observation. Results pinpoint that ICE simulation enhances high cloud fraction (global tropics: 59%, India: 51%) and stratiform rain (global tropics: 5%, India: 15%) contribution. ICE and NO ICE cloud microphysics impacts differently on the outgoing longwave radiation (OLR), tropospheric temperature, and surface shortwave and longwave radiation. The effect of ice microphysics reduces OLR, which signifies deeper convection in the ICE run. The global annual average of the net radiation flux (shortwave and longwave) at the surface in ICE run (108.1 W/m2) is close to the observation (106 W/m2), which is overestimated in NO ICE run (112 W/m2). The result of apparent heat source term over the land and ocean surface eventually modifies regional Hadley circulation. Thus, the effect of ice microphysics in the global coupled model is important not only because of microphysics but also due to the radiation feedbacks. Therefore, better ice-phase microphysics is required in the new generation of climate forecast model, which may lead to improvements in the simulation of monsoon.

  8. Asian monsoons in a late Eocene greenhouse world

    Science.gov (United States)

    Licht, A.; van Cappelle, M.; Abels, H. A.; Ladant, J.-B.; Trabucho-Alexandre, J.; France-Lanord, C.; Donnadieu, Y.; Vandenberghe, J.; Rigaudier, T.; Lécuyer, C.; Terry, D., Jr.; Adriaens, R.; Boura, A.; Guo, Z.; Soe, Aung Naing; Quade, J.; Dupont-Nivet, G.; Jaeger, J.-J.

    2014-09-01

    The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan-Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55-34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan-Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

  9. Autoencoder-based identification of predictors of Indian monsoon

    Science.gov (United States)

    Saha, Moumita; Mitra, Pabitra; Nanjundiah, Ravi S.

    2016-10-01

    Prediction of Indian summer monsoon uses a number of climatic variables that are historically known to provide a high skill. However, relationships between predictors and predictand could be complex and also change with time. The present work attempts to use a machine learning technique to identify new predictors for forecasting the Indian monsoon. A neural network-based non-linear dimensionality reduction technique, namely, the sparse autoencoder is used for this purpose. It extracts a number of new predictors that have prediction skills higher than the existing ones. Two non-linear ensemble prediction models of regression tree and bagged decision tree are designed with identified monsoon predictors and are shown to be superior in terms of prediction accuracy. Proposed model shows mean absolute error of 4.5 % in predicting the Indian summer monsoon rainfall. Lastly, geographical distribution of the new monsoon predictors and their characteristics are discussed.

  10. Identifying the northernmost summer monsoon location in East Asia

    Institute of Scientific and Technical Information of China (English)

    Hu Haoran; Qian Weihong

    2007-01-01

    An integrated index which can be used to indicate the advance of subtropical summer monsoon in East Asia has been proposed in this paper. The index was combined by three variables including precipitation, wind and pseudo-equivalent potential temperature. The northernmost summer monsoon location (NSML) was identified by using this index annually. It was found that the NSML experienced an interdecadal shift in the period 1977-1979 based on the annual index analysis from 1961 to 2001. A comparison of the NSML with other four summer monsoon indices has also been made. The result showed that the NSML could well represent the interannual and interdecadal variability of summer monsoon precipitation in North China (beyond 35°N), while other four indices could well indicate the precipitation anomalies of East Asian summer monsoon along the Yangtze River valley (around 30°N).

  11. Cloud Radiative Forcing in Asian Monsoon Region Simulated by IPCC AR4 AMIP Models

    Institute of Scientific and Technical Information of China (English)

    LI Jiandong; LIU Yimin; WU Guoxiong

    2009-01-01

    This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0°-50°N,60°-150°E)simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models.During boreal winter,no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP.During boreal summer,there are larger biases for central location and intensity of simulated CRF in active convective regions.The CRF biases are closely related to the rainfall biases in the models.Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high,and that the biases and diversity in SWCF are larger than that in LWCF.The annual cycle of simulated CRF over East Asia (0°-50°N,100°-145°E) is also examined.Though many models capture the basic annual cycle in tropics,strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models.As a whole,GFDL-CM2.1,MPI-ECHAM5,UKMO-HadGAM1,and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region,and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP,and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.

  12. Evaluation of MODIS Vegetation Products in Regions of Complex Terrain and Monsoon Climates

    Science.gov (United States)

    Gebremichael, M.; Barros, A. P.

    2004-12-01

    An evaluation of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation products through comparison against independent surface observations is essential to establish quantitative measures of uncertainty and the confidence level of these satellite-based products for use in land-data assimilation models, for land-use change detection and attribution studies, and for process oriented research. Here, we focus specifically on Photosynthesis and Primary Productivity, Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR), Land Surface Temperature and Emissivity, and Evapotranspiration data sets. Our objective is to perform extensive quantitative assessment of the accuracy and statistical properties of these products against independent estimates in tropical mountainous regions at two climatologically distinct sites. The first site, the Sonora river basin in northern Mexico, is a semi-arid region characterized by complex topography and highly heterogeneous vegetation cover, which exhibits dramatic and fast response to rainfall forcing at the onset of the North-American Monsoon. The second site, the Marsyandi river basin in central Nepal, is a humid region characterized by strong ecohydrological gradients on steep orography, which remain generally stable subsequent to the onset of the Indian Monsoon. Atmospheric soundings, flux tower measurements, and raingauge observations are available for both sites. We evaluate the MODIS products in two ways: 1) comparison with tower-based observations, and 2) evaluation of hydrological response and diurnal cycles of surface water and energy budgets prior, during and post monsoon onset as simulated by a 3D hydroecological model with assimilation of MODIS data. Statistical analysis of the scaling behavior of the variables, both in space and time, is also performed to address the scale discrepancy between flux tower observations and the resolution of MODIS data.

  13. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation

    Science.gov (United States)

    Wang, Xisheng; Chu, Guoqiang; Sheng, Mei; Zhang, Shuqin; Li, Jinhua; Chen, Yun; Tang, Ling; Su, Youliang; Pei, Junling; Yang, Zhenyu

    2016-10-01

    Characterizing spatiotemporal variability of the Asian summer monsoon (ASM) is critical for full understanding of its behavior, dynamics, and future impacts. The present knowledge about ASM variations since the last glaciation in South China largely relies on several precisely-dated speleothem stable oxygen isotope (δ18 O) records. Although these speleothem δ18 O signals provide useful evidence for regional past environmental changes, their validity for denoting ASM intensity remains a great controversy. The Huguangyan Maar Lake (HML) provides one of the most complete archives of environmental and climatic changes in the tropical-subtropical South and East Asia since the last glaciation. Here we document a continuous centennial- to millennial-scale ASM record over the past 16 ky BP from the high-sedimentation-rate HML sediments. In contrast with the low-amplitude variations of Chinese speleothem-derived δ18 O signals and the Chinese loess-based monsoon precipitation proxy indexes, our multi-proxy records reveal a pattern of high-amplitude regional climatic fluctuations, including fine-scale oscillations during the Bølling-Allerød warming, the 8.2 ka cooling event, and an abrupt climate shift from 6.5-5.9 ka. The existence of Bond-like cold/dry events indicates a distinct influence of the North Atlantic circulation on low-latitude monsoon changes. The broad comparability between the HML paleo-proxies, Chinese speleothem δ18 O records, and the northern hemisphere summer insolation throughout the Holocene, suggests that solar insolation exerts a profound influence on ASM changes. These findings reinforce a model of combined insolation and glacial forcing of the ASM.

  14. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  15. Analysis on MM5 predictions at Sriharikota during northeast monsoon 2008

    Indian Academy of Sciences (India)

    D Gayatri Vani; S Rambabu; M Rajasekhar; G V Rama; B V Apparao; A K Ghosh

    2011-08-01

    The Indian northeast monsoon is inherently chaotic in nature as the rainfall realised in the peninsular India depends substantially on the formation and movement of low-pressure systems in central and southwest Bay of Bengal and on the convective activity which is mainly due to the moist north-easterlies from Bay of Bengal. The objective of this study is to analyse the performance of the PSU-NCAR Mesoscale Model Version 5 (MM5), for northeast monsoon 2008 that includes tropical cyclones – Rashmi, Khai-Muk and Nisha and convective events over Sriharikota region, the rocket launch centre. The impact of objective analysis system using radiosonde observations, surface observations and Kalpana-1 satellite derived Atmospheric Motion Wind Vectors (AMV) is also studied. The performance of the model is analysed by comparing the predicted parameters like mean sea level pressure (MSLP), intensity, track and rainfall with the observations. The results show that the model simulations could capture MSLP and intensity of all the cyclones reasonably well. The dependence of the movement of the system on the environmental flow is clearly observed in all the three cases. The vector displacement error and percentage of improvement is calculated to study the impact of objective data analysis on the movement and intensity of the cyclone.

  16. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone

    Science.gov (United States)

    Yu, Pengfei; Rosenlof, Karen H.; Liu, Shang; Telg, Hagen; Thornberry, Troy D.; Rollins, Andrew W.; Portmann, Robert W.; Bai, Zhixuan; Ray, Eric A.; Duan, Yunjun; Pan, Laura L.; Toon, Owen B.; Bian, Jianchun; Gao, Ru-Shan

    2017-07-01

    An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (˜15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (˜35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.

  17. The middle Holocene climatic records from Arabia: Reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons

    Science.gov (United States)

    Enzel, Yehouda; Kushnir, Yochanan; Quade, Jay

    2015-06-01

    A dramatic increase in regional summer rainfall amount has been proposed for the Arabian Peninsula during the middle Holocene (ca. 9-5 ka BP) based on lacustrine sediments, inferred lake levels, speleothems, and pollen. This rainfall increase is considered primarily the result of an intensified Indian summer monsoon as part of the insolation-driven, northward shift of the boreal summer position of the Inter-Tropical Convergence Zone (ITCZ) to over the deserts of North Africa, Arabia, and northwest India. We examine the basis for the proposed drastic climate change in Arabia and the shifts in the summer monsoon rains, by reviewing paleohydrologic lacustrine records from Arabia. We evaluate and reinterpret individual lake-basin status regarding their lacustrine-like deposits, physiography, shorelines, fauna and flora, and conclude that these basins were not occupied by lakes, but by shallow marsh environments. Rainfall increase required to support such restricted wetlands is much smaller than needed to form and maintain highly evaporating lakes and we suggest that rainfall changes occurred primarily at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula. These relatively small changes in rainfall amounts and local are also supported by pollen and speleothems from the region. The changes do not require a northward shift of the Northern Hemisphere summer ITCZ and intensification of the Indian monsoon rainfall. We propose that (a) latitudinal and slight inland expansion of the North African summer monsoon rains across the Red Sea, and (b) uplifted moist air of this monsoon to southwestern Arabia highlands, rather than rains associated with intensification of Indian summer monsoon, as proposed before, increased rains in that region; these African monsoon rains produced the modest paleo-wetlands in downstream hyperarid basins. Furthermore, we postulate that as in present-day, the ITCZ in the Indian Ocean remained at or near the equator all

  18. A Continuous Record of Indian Summer Monsoon Variability through the Holocene from Lake Sediments in Yunnan, China

    Science.gov (United States)

    Hillman, A. L.; Abbott, M. B.; Yu, J.

    2015-12-01

    Continuous terrestrial archives of the Indian Summer Monsoon through the Holocene are lacking, yet critical to providing a long-term perspective of hydroclimate variability. Here we present an 8,000 year sediment record from Xing Yun Lake in Yunnan, China that provides a semi-quantitative estimate of lake level change using stable isotopes of authigenic calcite as well as within-lake productivity using stable isotopes of organic matter. Substantial drops in lake level occur at 6,600 years BP, consistent with previous studies of a weaker monsoon system in the mid-Holocene due to declining summer insolation. Lake levels stabilize at 4,700 years BP and remain steady due to the topography surrounding the lake. From 5,600 to 5,100 and from 4,600 to 4,000 years BP, primary productivity decreases and is coincident with significant regional aridity as well as cooler Western Tropical Pacific sea surface temperatures. Variability in the stable isotopes of both calcite and organic matter after 1,500 years BP is primarily controlled by human activities. This study shows broad agreement with previous work on the Tibetan Plateau and provides one of the first continuous records of lake hydrologic balance from a crucial region affected by the Indian Summer Monsoon.

  19. Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region

    Science.gov (United States)

    Jayakumar, A.; Sethunadh, Jisesh; Rakhi, R.; Arulalan, T.; Mohandas, Saji; Iyengar, Gopal R.; Rajagopal, E. N.

    2017-05-01

    National Centre for Medium Range Weather Forecasting high-resolution regional convective-scale Unified Model with latest tropical science settings is used to evaluate vertical structure of cloud and precipitation over two prominent monsoon regions: Western Ghats (WG) and Monsoon Core Zone (MCZ). Model radar reflectivity generated using Cloud Feedback Model Intercomparison Project Observation Simulator Package along with CloudSat profiling radar reflectivity is sampled for an active synoptic situation based on a new method using Budyko's index of turbulence (BT). Regime classification based on BT-precipitation relationship is more predominant during the active monsoon period when convective-scale model's resolution increases from 4 km to 1.5 km. Model predicted precipitation and vertical distribution of hydrometeors are found to be generally in agreement with Global Precipitation Measurement products and BT-based CloudSat observation, respectively. Frequency of occurrence of radar reflectivity from model implies that the low-level clouds below freezing level is underestimated compared to the observations over both regions. In addition, high-level clouds in the model predictions are much lesser over WG than MCZ.

  20. Influence of the North American monsoon on Southern California tropospheric ozone levels during summer in 2013 and 2014

    Science.gov (United States)

    Granados-Muñoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2017-06-01

    The impact of the North American (NA) monsoon on tropospheric ozone variability in Southern California is investigated using lidar measurements at Jet Propulsion Laboratory-Table Mountain Facility, California, and the chemical-transport model GEOS-Chem. Routine lidar observations obtained in July-August 2013-2014 reveal a consistent ozone enhancement of 23 ppbv in the free troposphere (6-9 km), when ozone-rich air is transported along the western edge of the upper level anticyclone associated with the NA monsoon from regions where maximum lightning-induced NOx production occurs. When the high-pressure system shifts to the southeast, a zonal westerly flow of the air parcels reaching the Table Mountain Facility (TMF) occurs, prohibiting the lightning-induced ozone enhanced air to reach TMF. This modulation of tropospheric ozone by the position of the NA monsoon anticyclone could have implications on long-term ozone trends associated with our changing climate, due to the expected widening of the tropical belt affecting the strength and position of the anticyclone.

  1. Effects of monsoon-driven wave action on coral reefs of Guam and implications for coral recruitment

    Science.gov (United States)

    Becerro, Mikel A.; Bonito, Victor; Paul, Valerie J.

    2006-05-01

    Benthic cyanobacteria can respond rapidly to favorable environmental conditions, overgrow a variety of reef organisms, and dominate benthic marine communities; however, little is known about the dynamics and consequences of such cyanobacterial blooms in coral reef ecosystems. In this study, the benthic community was quantified at the time of coral spawnings in Guam to assess the substrate that coral larvae would encounter when attempting settlement. Transects at 9, 18, and 25-m depths were surveyed at two reef sites before and after heavy wave action driven by westerly monsoon winds. Communities differed significantly between sites and depths, but major changes in benthic community structure were associated with wave action driven by monsoon winds. A shift from cyanobacteria to crustose coralline algae (CCA) accounted for 44% of this change. Coral recruitment on Guam may be limited by substrate availability if cyanobacteria cover large areas of the reef at the time of settlement, and consequently recruitment may in part depend upon wave action from annual monsoon winds and tropical storms which remove cyanobacteria, thereby exposing underlying CCA and other substrate suitable for coral settlement.

  2. Linkage between the second uplifting of the Qinghai-Xizang (Tibetan) Plateau and the initiation of the Asian monsoon system

    Institute of Scientific and Technical Information of China (English)

    施雅风; 汤懋苍; 马玉贞

    1999-01-01

    During the period from 25 to 17 Ma BP, when the second plateau uplifting, i.e. the second phase of the Himalaya movement, occurred, the Qinghai-Xizang Plateau reached an altitude high enough to change the situation of the general circulation. Such an effect of the plateau on the atmospheric circulation was accompanied by the warming of the tropical ocean, the enhancement of the cross equatorial current, the enlargement of the marginal sea basins in the cast-southeastern Asia, the westward extending of the Asian continent and the regression of the Paratethys Sea. As a result, the thermal difference was enlarged, and the air currents were enhanced between continents and oceans; finally the Asian monsoon system, mainly the summer monsoon, was initiated. The former planet wind system was then substituted by the monsoon system, and this caused the important environmental changes, such as the large shrinkage of the dry steppe in Central Asia, and the extension of the humid forest zone in East Asia. Those chan

  3. Interdecadal Variability of the East Asian Summer Monsoon and Associated Atmospheric Circulations

    Institute of Scientific and Technical Information of China (English)

    ZENG Gang; SUN Zhaobo; Wei-Chyung WANG; MIN Jinzhong

    2007-01-01

    Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997).In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°-115°E) before returning to low latitudes in the upper troposphere,thus strengthening the EASM.The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be strongly regulated by the velocity potential over the south of Lake Baikal through enhancing and reducing the regional vertical motions.

  4. Interdecadal variation of the West African summer monsoon during 1979-2010 and associated variability

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanlian [Chinese Academy of Sciences, Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Beijing (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Chinese Academy of Sciences, Climate Change Research Center, Beijing (China); Wang, Huijun [Chinese Academy of Sciences, Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Beijing (China); Chinese Academy of Sciences, Climate Change Research Center, Beijing (China); Yin, Yizhou [Tsinghua University, Center for Earth System Science, Beijing (China)

    2012-12-15

    This paper addresses the interdecadal variation of the West African summer monsoon (WASM) along with its background of atmospheric circulation and possible physical mechanism over the past 32 years (1979-2010). It is indicated that the WASM starts to strengthen from 1998 as the rainfall begins to increase over western West Africa on the whole, which shows a new interdecadal variation. In this interdecadal variation, the strengthened ascending motion corresponding to enhanced divergence (convergence) movement on the upper (lower) troposphere is prone to develop the local circulation of the monsoon. Moreover, the strengthened southwestern (eastern) wind on the lower (upper) level leads to more moisture from the Atlantic and the Gulf of Guinea transported to the West African continent. In addition, the summer subtropical high over the north Atlantic and western West Africa is strong and northward, and the tropical east wind is also strong. Statistically, the weaker (stronger) the spring North Atlantic Oscillation (NAO) is, the stronger (weaker) the tropical easterly is, and then the WASM is also stronger. But the effect of the NAO on the decadal variation of the WASM is not so significant from the north Atlantic anomaly sensitivity simulation with a single model. This is also an indication that the relationship between the WASM and NAO is complicated in an interdecadal time scale and is needed further study. In terms of sea surface temperature (SST) variation, the tendency is toward warming in the subtropical north Pacific, the south Pacific and north Atlantic. Numerical simulation experiments and data analysis show that the SST variation in the north Pacific plays an important role in the latest interdecadal strengthening of the WASM during the past 32 years, while the influences of the south Pacific and the north Atlantic SST anomalies are not so significant to the associated atmospheric circulation changes. (orig.)

  5. The Indian summer monsoon as revealed by NCMRWF system

    Indian Academy of Sciences (India)

    P L S Rao; U C Mohanty; P V S Raju; Gopal Iyengar

    2003-03-01

    In this study, we present the mean seasonal features of the Indian summer monsoon circulation in the National Centre for Medium Range Weather Forecasting (NCMRWF) global data assimilation and forecast system. The large-scale budgets of heat and moisture are examined in the analyzed and model atmosphere. The daily operational analyses and forecasts (day 1 through day 5) produced for the summer seasons comprising June, July and August of 1995 and 1993 have been considered for the purpose. The principal aim of the study is two-fold. Primarily, to comprehend the influence of the systematic errors over the Indian summer monsoon, secondarily, to analyze the performance of the model in capturing the interseasonal variability. The heat and moisture balances show reduction in the influx of heat and moisture in the model forecasts compared to the analyzed atmosphere over the monsoon domain. Consequently, the diabatic heating also indicates reducing trend with increase in the forecast period. In effect, the strength of Indian summer monsoon, which essentially depends on these parameters, weakens considerably in the model forecasts. Despite producing feeble monsoon circulation, the model captures interseasonal variability realistically. Although, 1995 and 1993 are fairly normal monsoon seasons, the former received more rainfall compared to the latter in certain pockets of the monsoon domain. This is clearly indicated by the analyzed and model atmosphere in terms of energetics.

  6. Anomalous behaviour of the Indian summer monsoon 2009

    Indian Academy of Sciences (India)

    B Preethi; J V Revadekar; R H Kripalani

    2011-10-01

    The Indian subcontinent witnessed a severe monsoon drought in the year 2009. India as a whole received 77% of its long period average during summer monsoon season (1 June to 30 September) of 2009, which is the third highest deficient all India monsoon season rainfall year during the period 1901–2009. Therefore, an attempt is made in this paper to study the characteristic features of summer monsoon rainfall of 2009 over the country and to investigate some of the possible causes behind the anomalous behaviour of the monsoon. Presence of El Niño like conditions in the Pacific and warming over the equatorial Indian Ocean altered the circulation patterns and produced an anomalous low level convergence and ascending motion over the Indian Ocean region and large scale subsidence over the Indian landmass. Furthermore, the crossequatorial flow was weak, the monsoon was dominated by the slower 30–60 day mode, and the synoptic systems, which formed over the Bay of Bengal and the Arabian Sea, did not move inland. All the above features resulted in less moisture supply over the Indian landmass, resulting in subdued rainfall activity leading to a severe monsoon drought during 2009.

  7. Impacts of East Asian aerosols on the Asian monsoon

    Science.gov (United States)

    Bartlett, Rachel; Bollasina, Massimo; Booth, Ben; Dunstone, Nick; Marenco, Franco

    2016-04-01

    Over recent decades, aerosol emissions from Asia have increased rapidly. Aerosols are able to alter radiative forcing and regional hydroclimate through direct and indirect effects. Large emissions within the geographical region of the Asian monsoon have been found to impact upon this vital system and have been linked to observed drying trends. The interconnected nature of smaller regional monsoon components (e.g. the Indian monsoon and East Asian monsoon) presents the possibility that aerosol sources could have far-reaching impacts. Future aerosol emissions are uncertain and may continue to dominate regional impacts on the Asian monsoon. Standard IPCC future emissions scenarios do not take a broad sample of possible aerosol pathways. We investigate the sensitivity of the Asian monsoon to East Asian aerosol emissions. Experiments carried out with HadGEM2-ES use three time-evolving future anthropogenic aerosol emissions scenarios with similar time-evolving greenhouse gases. We find a wetter summer over southern China and the Indochina Peninsula associated with increased sulfate aerosol over China. The southern-flood-northern-drought pattern seen in observations is reflected in these results. India is found to be drier in the summer overall, although wetter in June. These precipitation changes are linked to the increase in sulfate through the alteration of large scale dynamics. Sub-seasonal changes are also seen, with an earlier withdrawal of the monsoon over East Asia.

  8. Summer Asian-Pacific Oscillation and Its Relationship with Atmospheric Circulation and Monsoon Rainfall

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; CHEN Junming; XIAO Dong; NAN Sulan; ZOU Yan; ZHOU Botao

    2008-01-01

    Using the ERA-40 data and numerical simulations, this study investigated the teleconnection over the extratropical Asian-Pacific region and its relationship with the Asian monsoon rainfall and the climatological characteristics of tropical cyclones over the western North Pacific, and analyzed impacts of the Tibetan Plateau (TP) heating and Pacific sea surface temperature (SST) on the teleconnection. The Asian-Pacific oscillation (APO) is defined as a zonal seesaw of the tropospheric temperature in the midlatitudes of the Asian-Pacific region. When the troposphere is cooling in the midlatitudes of the Asian continent, it is warming in the midlatitudes of the central and eastern North Pacific; and vice versa. The APO also appears in the stratosphere, but with a reversed phase. Used as an index of the thermal contrast between Asia and the North Pacific, it provides a new way to explore interactions between the Asian and Pacific atmospheric circulations. The APO index exhibits the interannual and interdecadal variability. It shows a downward trend during 1958-2001, indicating a weakening of the thermal contrast, and shows a 5.5-yr oscillation period. The formation of the APO is associated with the zonal vertical circulation caused by a difference in the solar radiative heating between the Asian continent and the North Pacific. The numerical simulations further reveal that the summer TP heating enhances the local tropospheric temperature and upward motion, and then strengthens downward motion and decreases the tropospheric temperature over the central and eastern North Pacific. This leads to the formation of the APO. The Pacific decadal oscillation and El Nino/La Nina over the tropical eastern Pacific do not exert strong influences on the APO. When there is an anomaly in the summer APO, the South Asian high, the westerly jet over Eurasia, the tropical easterly jet over South Asia, and the subtropical high over the North Pacific change significantly, with anomalous Asian

  9. Book Review: Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-arid Environment Evolution

    Science.gov (United States)

    Clemens, Steven C.

    2015-01-01

    Loess-Paleosol deposits drape >500,000 km2 of eastern China, spanning environments from the humid, monsoon-influenced regions near the coast to the arid, westerlies-dominated regions inland. Sections, up to hundreds of meters thick, are exposed in deeply incised river valleys and can be accessed as well by drilling. Combined, the high sedimentation rates and extensive geographic coverage make these sections unique among global terrestrial sediment archives. The Chinese loess-paleosol sequences, and the arid interior regions to the northwest, record diverse aspects of geologic and environmental change ranging from the tectonic evolution of the Tibetan Plateau (106 year time scale) through glacial-interglacial scale changes in global ice volume and greenhouse gasses (105 year time scale) on down through the orbital (104 years) to millennial and centennial scale events (103-102 year) relevant to the underpinnings of human interactions with changing environmental pressures. 'Late Cenozoic Climate Chang in Asia: Loess, Monsoon and Monsoon-arid Environment Evolution' is a timely contribution that synthesizes findings derived from the extensive work in these areas, places the findings in the broader context of global climate change and helps to define avenues for future research.

  10. Dynamics of Projected Changes in South Asian Summer Monsoon Climate

    Science.gov (United States)

    Kulkarni, A.; Sabade, S.; Kripalani, R.

    2011-12-01

    South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) data set. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices , middle (2031-2050) and end of the 21st century (2081-2100) in the non-mitigated Special Report on Emission Scenarios (SRES) B1, A1B and A2 .There is large inter-model variability in simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of 25 models are able to simulate space-time characteristics of South Asian monsoon precipitation reasonably well. The response of these selected 10 models have been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these 10 models project significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for projected increase in precipitation and for precipitation-wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over north-west India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere which is conducive for enhancement in precipitation over Indian landmass. The increase in precipitation is mainly contributed by the substantial increase in water vapor content in the atmosphere. No notable changes have been projected in the El Nino-Monsoon relationship.

  11. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  12. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  13. Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    LIU YunYun; DING YiHui

    2008-01-01

    Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data,the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM,the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the teleconnection mode which is from the northwest of India via the Tibetan Plateau to northern China. The former mode is defined as the "south" teleconnection of the Asian summer monsoon,forming in the period of ISM onset; while the latter mode is called the "north" teleconnection,mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection's formation,the Asian monsoon circulation has experienced a series of important changes: ISM onset,the northward movement of the south Asia high (SAH),the onset vortex occurrence,the eastward extension of the stronger tropical westerly belt,and the northeastward jump of the western Pacific subtropical high(WPSH),etc. Consequently,since ISM sets up over Kerala,the whole Asian continent is covered by the upper SAH after about two weeks,while in the mid- and lower troposphere,a strong wind belt forms from the Arabian Sea via the southern India,BOB and the South China Sea (SCS),then along the western flank of WPSH,to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams,the upper westerly jet stream and the low level jet have been coupled vertically over east Asia,while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet

  14. Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending

  15. Tropical infections in the ICU.

    Science.gov (United States)

    Kothari, Vatsal M; Karnad, Dilip R; Bichile, Lata S

    2006-04-01

    Certain arthropod-borne infections are common in tropical regions because of favorable climatic conditions. Water-borne infections like leptospirosis are common due to contamination of water especially during the monsoon floods. Infections like malaria, leptospirosis, dengue fever and typhus sometimes cause life threatening organ dysfunction and have several overlapping features. Most patients present with classicial clinical syndromes: fever and thrombocytopenia are common in dengue, malaria and leptospirosis; coagulopathy is frequent in leptospirosis and viral hepatitis. Hepatorenal syndrome is seen in leptospirosis, falciparum malaria and scrub typhus. The pulmonary renal syndrome is caused by falciparium malaria, leptospirosis, Hantavirus infection and scrub typhus. Fever with altered mental status is produced by bacterial meningitis, Japanese B encephalitis, cerebral malarial, typhoid encephalopathy and fulminant hepatic failure due to viral hepatitis. Subtle differences in features of the organ failure exist among these infections. The diagnosis in some of these diseases is made by demonstration of antibodies in serum, and these may be negative in the first week of the illness. Hence empiric therapy for more than one disorder may be justified in a small proportion of cases. In addition to specific anti-infective therapy, management of organ dysfunction includes use of mechanical ventilation, vasopressor drugs, continuous renal replacement therapy and blood products. Timely transfer of these patients to well-equipped ICUs with experience in managing these cases can considerably decrease mortality and morbidity.

  16. Comparison of remote sensing data with in-situ wind observation during the development of the South China Sea monsoon

    Institute of Scientific and Technical Information of China (English)

    LI Jian; WANG Dongxiao; CHEN Ju; YANG Lei

    2012-01-01

    Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009.The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate,except for the extremes of high wind speeds (>13.8 m/s) and very low wind speeds (<1.5 m/s)where direction is poorly predicted.In-situ observations show that the summer monsoon in the northern S CS starts between May 6 and June 1.From March 13,2010 to August 31,2010,comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands,as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT,ASCAT and AMSR-E data are good enough for research.It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements.Remarkable changes were observed in wind,barometric pressure,humidity,outgoing longwave radiation (OLR),air temperature,rainfall and SST during the monsoon onset.The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS.The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt,and then the belt bifurcates in the SCS,with one part moving northeastward into the tropical western North Pacific,and another southward into western Kalimantan.This largely determined the pattern of the SCS summer monsoon.Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer.This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.

  17. A new criterion for identifying breaks in monsoon conditions over the Indian subcontinent

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Dessai, U.R.P.

    of July. The quantum of monsoon rainfall also varies from year to year. The monsoon rainfall is not continuous within the life cycle of a monsoon; there are several spells of active, weak and break in monsoon conditions. The summer monsoon months...? to refer different features such as convection and circulation etc. over different regions. Further, the authors have used different durations to refer the break as well as looked them in different months. [4] By analyzing 80 years (1888...

  18. North Atlantic and orbital controls on North American Monsoon rainfall for the past 25,000 years

    Science.gov (United States)

    Lachniet, M. S.; Bernal-Uruchurtu, J. P.; Asmerom, Y.; Polyak, V.; Vazquez-Selem, L.

    2011-12-01

    The paleoclimate controls on Mexican rainfall remain poorly understood, making it difficult to test hypotheses of late Quaternary climate changes in the North American Monsoon region. A high-resolution and chronologically robust integrative paleoclimate history for central and southwestern Mexico is required to evaluate the climate context associated with the late glacial peopling of Mesoamerica, the Holocene domestication of maize, and climate's influence on several advanced pre-Colombian civilizations. Herein, we combine new and previously published precipitation- and temperature-sensitive proxy records to delineate the paleoclimatic history of the "Mesoamerican Monsoon" region since ca. 25,000 yr BP, from stalagmite, glacial, and lacustrine paleoclimatic data. Our results demonstrate a wet last glacial maximum (23 to 18 ka) in southwestern Mexico at 17.4 degrees N, a region that today is outside the influence of nortes or the westerlies. Wet conditions may be attributed to a moderately strong summer monsoon due to near-modern summer insolation values and a cooler eastern tropical Pacific Ocean akin to a modern La Niña-like state. We also document Heinrich stadial 1 and Younger Dryas monsoon weakening coincident with reduced North Atlantic thermohaline circulation, which implicates reduced onshore moisture flux due to a weaker and more southerly position of the Intertropical Convergence Zone. Mesoamerican rainfall was greatest during the early Holocene, and decreased non-linearly to the present in concert with decreasing local summer insolation. Following a relative mid-Holocene wet period, the last 4.5 ka are characterized by increasingly dry conditions, likely related to decreasing summer insolation and a greater El Niño frequency.

  19. Holocene climate changes in the mid-high-latitude-monsoon margin reflected by the pollen record from Hulun Lake, northeastern Inner Mongolia

    Science.gov (United States)

    Wen, Ruilin; Xiao, Jule; Chang, Zhigang; Zhai, Dayou; Xu, Qinghai; Li, Yuecong; Itoh, Shigeru; Lomtatidze, Zaur

    2010-03-01

    Pollen-assemblage data from a sediment core from Hulun Lake in northeastern Inner Mongolia describe the changes in the vegetation and climate of the East Asian monsoon margin during the Holocene. Dry steppe dominated the lake basin from ca. 11,000 to 8000 cal yr BP, suggesting a warm and dry climate. Grasses and birch forests expanded 8000 to 6400 cal yr BP, implying a remarkable increase in the monsoon precipitation. From 6400 to 4400 cal yr BP, the climate became cooler and drier. Chenopodiaceae dominated the interval from 4400 to 3350 cal yr BP, marking extremely dry condition. Artemisia recovered 3350-2050 cal yr BP, denoting an amelioration of climatic conditions. Both temperature and precipitation decreased 2050 to 1000 cal yr BP as indicated by decreased Artemisia and the development of pine forests. During the last 1000 yr, human activities might have had a significant influence on the environment of the lake region. We suggest that the East Asian summer monsoon did not become intensified until 8000 cal yr BP due to the existence of remnant ice sheets in the Northern Hemisphere. Changes in the monsoon precipitation on millennial to centennial scales would be related to ocean-atmosphere interactions in the tropical Pacific.

  20. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2016-12-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  1. Abrupt climate change of East Asian Monsoon at 130 kaBP inferred from a high resolution stalagmite δ18O record

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiuyang; WANG Yongjin; KONG Xinggong; WU Jiangying; SHAO Xiaohua; XIA Zhifeng; CHENG Hai

    2005-01-01

    230Th ages and oxygen isotope data of a stalagmite from Shanbao Cave in Hubei Province characterize the East Asian Monsoon precipitation from 133 to127 ka. The decadal-scale high-resolution δ18O record reveals a detailed transitional process from the Penultimate Glaciation to the Last Interglaciation. As established with 230Th dates, the age of the Termination II is determined to be 129.5±1.0 kaBP, which supports the Northern Hemisphere insolation as the triggers for the ice-age cycles. In our δ18O record, the glacial/ interglacial fluctuation reaches about 4‰, almost the same level as in other Asian Monsoon cave stalagmite δ18O records. The transition of the glacial/interglacial period in our record can be recognized as four stepwise stages, among which, a rapid rise of monsoon precipitation follows the stage of "Termination II pause". The rapid rise is synchronous with the abrupt change of global methane concentration, which reflects that an increase in both Asian Monsoon precipitation and tropical wetland plays an important role in the global climate changes.

  2. Absolute geostrophic currents in global tropical oceans

    Science.gov (United States)

    Yang, Lina; Yuan, Dongliang

    2016-11-01

    A set of absolute geostrophic current (AGC) data for the period January 2004 to December 2012 are calculated using the P-vector method based on monthly gridded Argo profiles in the world tropical oceans. The AGCs agree well with altimeter geostrophic currents, Ocean Surface Current Analysis-Real time currents, and moored current-meter measurements at 10-m depth, based on which the classical Sverdrup circulation theory is evaluated. Calculations have shown that errors of wind stress calculation, AGC transport, and depth ranges of vertical integration cannot explain non-Sverdrup transport, which is mainly in the subtropical western ocean basins and equatorial currents near the Equator in each ocean basin (except the North Indian Ocean, where the circulation is dominated by monsoons). The identified non-Sverdrup transport is thereby robust and attributed to the joint effect of baroclinicity and relief of the bottom (JEBAR) and mesoscale eddy nonlinearity.

  3. Summer monsoon rainfall prediction for India - Some new ideas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Present methods of forecasting of mean Indian rainfall for summer monsoon season are critically examined. Considering the wide variations in mean seasonal rainfalls (more than 5 to less than 400 cm) and crops in various regions of India...

  4. Transient coupling relationships of the Holocene Australian monsoon

    CERN Document Server

    McRobie, Fiona H; Wyrwoll, Karl-Heinz

    2015-01-01

    The modern-day northwest Australian summer monsoon is dynamically coupled to other regional monsoon systems and inflows from the Indian Ocean, however, the nature of these relationships over longer time scales is uncertain. Previous attempts to evaluate how proxy records from the Indonesian-Australian monsoon region correspond to other records from the Indian and East Asian monsoon regions, as well as to El Ni\\~no-related proxy records, has been qualitative, relying on `curve-fitting' methods. Here, we seek a quantitative approach for identifying coupling relationships between paleoclimate proxy records, employing statistical techniques to compute the interdependence of two paleoclimate time series. We verify the use of complex networks to identify coupling relationships between modern climate indices which correspond to physically-based mechanisms. This method is then extended to a set of paleoclimate proxy records from the Asian, Australasian and South American regions spanning the past 9,000 years. The res...

  5. Air sea interaction during summer monsoon period of 1979

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    The present study highlights the utility of satellite derived parameters like SST, precipitation, CMV winds in the lower troposphere etc. in supplementing the in-situ observations. This information can lead to a better understanding of the monsoon...

  6. Monsoon regime in the Indian Ocean and zooplankton variability

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, V.R.

    The monsoonal effects on zooplankton lead to characteristic zoogeographic patterns in the open ocean and coastal waters. The evaluation of zooplankton variability in the Indian Ocean is presented in three sections: the open ocean, coastal waters...

  7. Piomiosite tropical

    Directory of Open Access Journals (Sweden)

    Márcio José de Araújo Torres

    1978-12-01

    Full Text Available O autor descreve 7 casos de piomiosite tropical, enfatizando a exceção que constituem, quando se considera a extrema raridade da supuração muscular em outras doenças e citando várias idéias existentes quanto à sua patogenia. O quadro clínico dos 7 casos é semelhante à maioria dos já relatados em outros trabalhos, aparecendo entretanto piodermite em 2 doentes, o que não é comum. A freqüência da eosinofilia e a normalidade de enzimas geralmente elevadas em outras miopatias, estão de acordo com as publicações existentes. Embora o tratamento seja basicamente cirúrgico, aceita a possibilidade de cura com antibióticos, cujo uso empírico poderia abortar inúmeros casos, contribuindo para o virtual desconhecimento da doença no meio brasileiro. Considera provável ser grande número de doentes tratado como portadores de abscessos como quaisquer outros, sem se atentar para a já referida resistência dos músculos esqueléticos à supuração. Dá importância ao desconhecimento da doença como causa de demora no diagnóstico, com possíveis repercussões no prognóstico. Esse fato, aliado a semelhanças climáticas de certas regiões brasileiras com zonas africanas onde a incidência é alta, justifica, segundo o autor, maior interesse pela doença.Seven cases of tropical pyomyositis are reported emphasizing the unique character of muscular suppuration, an exceedingly unusual occurrence in other diseases; possible explanations as to the pathogenical mechanismsare reviewed. Clinical aspects are similar to those of previously described cases but for pyodermitis, an unconmmon feature found in two cases. Eosinophila and normal leveis of serum enzymes usually altered in other muscle diseases are also in accordance to previous papers. Surgical drainage is the treatment of choice, but the early administration of antibiotics might abort the evolution of many cases; the empirical use of such drugs modifies clinical course and most patients

  8. Piomiosite tropical

    Directory of Open Access Journals (Sweden)

    Márcio José de Araújo Torres

    1978-12-01

    Full Text Available O autor descreve 7 casos de piomiosite tropical, enfatizando a exceção que constituem, quando se considera a extrema raridade da supuração muscular em outras doenças e citando várias idéias existentes quanto à sua patogenia. O quadro clínico dos 7 casos é semelhante à maioria dos já relatados em outros trabalhos, aparecendo entretanto piodermite em 2 doentes, o que não é comum. A freqüência da eosinofilia e a normalidade de enzimas geralmente elevadas em outras miopatias, estão de acordo com as publicações existentes. Embora o tratamento seja basicamente cirúrgico, aceita a possibilidade de cura com antibióticos, cujo uso empírico poderia abortar inúmeros casos, contribuindo para o virtual desconhecimento da doença no meio brasileiro. Considera provável ser grande número de doentes tratado como portadores de abscessos como quaisquer outros, sem se atentar para a já referida resistência dos músculos esqueléticos à supuração. Dá importância ao desconhecimento da doença como causa de demora no diagnóstico, com possíveis repercussões no prognóstico. Esse fato, aliado a semelhanças climáticas de certas regiões brasileiras com zonas africanas onde a incidência é alta, justifica, segundo o autor, maior interesse pela doença.

  9. Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)

    Science.gov (United States)

    Liu, J.; Wang, B.

    2009-12-01

    understanding the latitudinal differences of the monsoonal responses to external forcings and internal feedback processes. The strength of the forced response depends on latitude. On centennial-millennial time scales, the variation of the extratropical and subtropical rainfall tends to follow the effective solar radiation forcing closely; the tropical rainfall is less sensitive to the effective solar radiation forcing but responds significantly to the modern anthropogenic CO2 forcing. The spatial patterns and structures of the forced response differ from the internal mode (i.e., interannual variability that arises primarily from the internal feedback processes within the climate system). Further, the behavior of the internal mode is effectively modulated by changes in the mean state on the centennial to millennial time scales. These findings have important ramification in understanding the differences and linkages between the forced and internal modes of variability as well as in promoting communication between scientists studying modern- and paleo-monsoon variations.

  10. Orbital- and Millennial-Scale Changes in the Australasian Monsoon Through the Late Pleistocene

    Science.gov (United States)

    Gagan, M. K.; Ayliffe, L. K.; Scroxton, N. G.; Krause, C. E.; Kimbrough, A. K.; Hantoro, W. S.; Drysdale, R.; Hellstrom, J.; Cheng, H.; Edwards, R.; Zhao, J.; Griffiths, M. L.

    2012-12-01

    Speleothem 18O/16O records from China and Borneo have revealed changes in Asian monsoon rainfall over the last ~570,000 years (e.g. Wang et al. 2008, Cheng et al. 2010, Meckler et al. 2012), yet little is known about orbital- and millennial-scale climate change in the 'southern half' of the Australasian monsoon domain. To fill this gap, we aim to build speleothem 18O/16O records for the seasonal monsoon rainfall belt of south-central Indonesia. Between 2006 and 2011, we sampled speleothems in Flores and southwest Sulawesi (latitudes 5-9oS) with U-series ages extending to 92,000 yBP and ~470,000 yBP, respectively. Development of the 18O/16O records for Sulawesi is in progress, but the basal ages of the speleothems (onset of stalagmite growth) are intriguing because they cluster around glacial terminations, when the East Asian monsoon is known to have been weak (Cheng et al. 2010). There is clear antiphasing of the Flores and China speleothem 18O/16O records on precession time-scales over the last ~90,000 years. A distinct maximum in monsoon rainfall in Flores occurred ~21,000 yBP, suggesting the ITCZ moved south during the Last Glacial Maximum in response to the southern hemisphere summer insolation maximum. This finding indicates that ITCZ positioning in tropical Australasia, through its influence on large-scale oceanic-atmospheric circulation, could have played a key role in the rapid rise of atmospheric CO2 and global warming that ultimately led to the demise of the last ice age, as summarised by Denton et al. (2010) and others. The new Flores speleothem 18O/16O records also show that climate change in the North Atlantic region and Australasian monsoon rainfall are inextricably linked on millennial timescales (Griffiths et al. 2009, Lewis et al. 2011). For example, rapid warming in the North Atlantic region during Dansgaard-Oeschger Event 21 (~86,000 yBP) was linked to a synchronous northward shift of the Australasian ITCZ, marking the final demise of MIS 5b. In

  11. Soil moisture initialization effects in the Indian monsoon system

    OpenAIRE

    Asharaf, S.; A. Dobler; Ahrens, B.

    2011-01-01

    Towards the goal to understand the role of land-surface processes over the Indian sub-continent, a series of soil-moisture sensitivity simulations have been performed using a non-hydrostatic regional climate model COSMO-CLM. The experiments were driven by the lateral boundary conditions provided by the ERA-Interim (ECMWF) reanalysis. The simulation results show that the pre-monsoonal soil moisture has a significant influence on the monsoonal precipitation. Both, positive and negative soil-moi...

  12. Early warnings and missed alarms for abrupt monsoon transitions

    Science.gov (United States)

    Thomas, Z. A.; Kwasniok, F.; Boulton, C. A.; Cox, P. M.; Jones, R. T.; Lenton, T. M.; Turney, C. S. M.

    2015-12-01

    Palaeo-records from China demonstrate that the East Asian Summer Monsoon (EASM) is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesized that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them. Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem δ18O records from Sanbao Cave and Hulu Cave, China, spanning the penultimate glacial cycle. We find that although there are increases in both autocorrelation and variance preceding some of the monsoon transitions during this period, it is only immediately prior to the abrupt monsoon shift at the penultimate deglaciation (Termination II) that statistically significant increases are detected. To supplement our data analysis, we produce and analyse multiple model simulations that we derive from these data. We find hysteresis behaviour in our model simulations with transitions directly forced by solar insolation. However, signals of critical slowing down, which occur on the approach to a bifurcation, are only detectable in the model simulations when the change in system stability is sufficiently slow to be detected by the sampling resolution of the data set. This raises the possibility that the early warning "alarms" were missed in the speleothem data over the period 224-150 kyr and it was only at the monsoon termination that the change in the system stability was sufficiently slow to detect early warning signals.

  13. A statistically predictive model for future monsoon failure in India

    Science.gov (United States)

    Schewe, Jacob; Levermann, Anders

    2012-12-01

    Indian monsoon rainfall is vital for a large share of the world’s population. Both reliably projecting India’s future precipitation and unraveling abrupt cessations of monsoon rainfall found in paleorecords require improved understanding of its stability properties. While details of monsoon circulations and the associated rainfall are complex, full-season failure is dominated by large-scale positive feedbacks within the region. Here we find that in a comprehensive climate model, monsoon failure is possible but very rare under pre-industrial conditions, while under future warming it becomes much more frequent. We identify the fundamental intraseasonal feedbacks that are responsible for monsoon failure in the climate model, relate these to observational data, and build a statistically predictive model for such failure. This model provides a simple dynamical explanation for future changes in the frequency distribution of seasonal mean all-Indian rainfall. Forced only by global mean temperature and the strength of the Pacific Walker circulation in spring, it reproduces the trend as well as the multidecadal variability in the mean and skewness of the distribution, as found in the climate model. The approach offers an alternative perspective on large-scale monsoon variability as the result of internal instabilities modulated by pre-seasonal ambient climate conditions.

  14. Causal evidence between monsoon and evolution of rhizomyine rodents

    Science.gov (United States)

    López-Antoñanzas, Raquel; Knoll, Fabien; Wan, Shiming; Flynn, Lawrence J.

    2015-03-01

    The modern Asian monsoonal systems are currently believed to have originated around the end of the Oligocene following a crucial step of uplift of the Tibetan-Himalayan highlands. Although monsoon possibly drove the evolution of many mammal lineages during the Neogene, no evidence thereof has been provided so far. We examined the evolutionary history of a clade of rodents, the Rhizomyinae, in conjunction with our current knowledge of monsoon fluctuations over time. The macroevolutionary dynamics of rhizomyines were analyzed within a well-constrained phylogenetic framework coupled with biogeographic and evolutionary rate studies. The evolutionary novelties developed by these rodents were surveyed in parallel with the fluctuations of the Indian monsoon so as to evaluate synchroneity and postulate causal relationships. We showed the existence of three drops in biodiversity during the evolution of rhizomyines, all of which reflected elevated extinction rates. Our results demonstrated linkage of monsoon variations with the evolution and biogeography of rhizomyines. Paradoxically, the evolution of rhizomyines was accelerated during the phases of weakening of the monsoons, not of strengthening, most probably because at those intervals forest habitats declined, which triggered extinction and progressive specialization toward a burrowing existence.

  15. Aerosol loading impact on Asian monsoon precipitation patterns

    Science.gov (United States)

    Biondi, Riccardo; Cagnazzo, Chiara; Costabile, Francesca; Cairo, Francesco

    2017-04-01

    Solar light absorption by aerosols such as black carbon and dust assume a key role in driving the precipitation patterns in the Indian subcontinent. The aerosols stack up against the foothills of the Himalayas in the pre-monsoon season and several studies have already demonstrated that this can cause precipitation anomalies during summer. Despite its great significance in climate change studies, the link between absorbing aerosols loading and precipitation patterns remains highly uncertain. The main challenge for this kind of studies is to find consistent and reliable datasets. Several aerosol time series are available from satellite and ground based instruments and some precipitation datasets from satellite sensors, but they all have different time/spatial resolution and they use different assumptions for estimating the parameter of interest. We have used the aerosol estimations from the Ozone Monitoring Instrument (OMI), the Along-Track Scanning Radiometer (AATSR) and the MODerate resolution Imaging Spectroradiometer (MODIS) and validated them against the Aerosol Robotic Network (AERONET) measurements in the Indian area. The precipitation has been analyzed by using the Tropical Rainfall Measuring Mission (TRMM) estimations and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2). From our results it is evident the discrepancy between the aerosol loading on the area of interest from the OMI, AATSR, and MODIS, but even between 3 different algorithms applied to the MODIS data. This uncertainty does not allow to clearly distinguishing high aerosol loading years from low aerosol loading years except in a couple of cases where all the estimations agree. Similar issues are also present in the precipitation estimations from TRMM and MERRA-2. However, all the aerosol datasets agree in defining couples of consecutive years with a large gradient of aerosol loading. Based on this assumption we have compared the precipitation anomalies and

  16. Circulation in the western tropical Pacific Ocean and its seasonal variation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140°E and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference.The NECC transport also has a semi-annual fluctuation resuiting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughfiow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.

  17. Intraseasonal variations of the tropical easterly jet during the 1979 northern summer

    Science.gov (United States)

    Chen, Tsing-Chang; Yen, Ming-Cheng

    1991-05-01

    Numerous studies have investigated the intraseasonal oscillation of various elements of the Indian monsoon, but the tropical easterly jet has been neglected. The 1979 summer data generated by the FGG III-b analysis of the European Center for Medium Range Weather Forecasts were used to examine the intraseasonal oscillation of this jet. It was found that the jet possesses a distinctive intraseasonal oscillation south of its core. Previous studies suggested that the temporal fluctuation of this jet may be related through cumulus convection to that of the low-level Indian monsoon circulation. It was demonstrated by a streamfunction budget analysis that the intraseasonal oscillation of the tropical easterly jet south of its core is primarily induced by the eastward-propagating intraseasonal oscillation of the planetary-scale divergent circulation.

  18. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene

    Institute of Scientific and Technical Information of China (English)

    Wan Shiming; Li Anchun; Xu Kehui; Yin Xueming

    2008-01-01

    Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows

  19. Flood moderation by large reservoirs in the humid tropics of Western ghat region of Kerala, India

    Energy Technology Data Exchange (ETDEWEB)

    Abe, George [Centre for Water Resources Development and Management, Sub Centre, Kottayam South P.O, Kottayam-686 039, Kerala (India); James, E.J. [Water Institute and Dean (Research), Karunya University, Coimbatore-641 114, Tamil Nadu (India)

    2013-07-01

    Kerala State located in the humid tropics receives an average rainfall of 2810 mm. On an average 85% of this rainfall is received during the two monsoons spread from June to November. Midland and lowland regions of several of the river basins of Kerala experience severe flood events during the monsoons. Idamalayar hydro-electric project (1987) in Periyar River basin envisages flood control apart from power generation. This paper analyzes the flood moderation by Idamalayar reservoir considering the storage regime (inflow and outflow) which is subjected to a strong inter annual variability. The role of Idamalayar reservoir in controlling the monsoon floods is analyzed using daily data (1987-2010). The results of analysis show that the flood moderation by the reservoir is 92% when water storage is less than 50%. The reduction is 87% when reservoir storage is between 50 to 90% and moderation reduces to 62% when the reservoir storage is above 90%. Non-parametric trend analysis of fifty years of hydrologic data shows a reducing trend in inflow and storage during south-west monsoon which reduced spill and subsequent flood events during north-east monsoon.

  20. Flood moderation by large reservoirs in the humid tropics of Western ghat region of Kerala, India

    Directory of Open Access Journals (Sweden)

    George Abe, E. J. James

    2013-01-01

    Full Text Available Kerala State located in the humid tropics receives an average rainfall of 2810 mm. On an average 85% of this rainfall is received during the two monsoons spread from June to November. Midland and lowland regions of several of the river basins of Kerala experience severe flood events during the monsoons. Idamalayar hydro-electric project (1987 in Periyar River basin envisages flood control apart from power generation. This paper analyzes the flood moderation by Idamalayar reservoir considering the storage regime (inflow and outflow which is subjected to a strong inter annual variability. The role of Idamalayar reservoir in controlling the monsoon floods is analyzed using daily data (1987-2010. The results of analysis show that the flood moderation by the reservoir is 92% when water storage is less than 50%. The reduction is 87% when reservoir storage is between 50 to 90% and moderation reduces to 62 % when the reservoir storage is above 90%. Non-parametric trend analysis of fifty years of hydrologic data shows a reducing trend in inflow and storage during south-west monsoon which reduced spill and subsequent flood events during north-east monsoon.

  1. Factors affecting the environmental carrying capacity of a freshwater tropical lake system.

    Science.gov (United States)

    Mullakkezhil Reghunathan, Vishnuprasad; Joseph, Sabu; Warrier, C Unnikrishnan; Hameed, A Shahul; Albert Moses, Sheela

    2016-11-01

    Environmental carrying capacity is a measure of competence of a lake to accommodate pollution inputs without degrading water quality. In the research reported here, we identified the factors influencing the environmental carrying capacity of Vellayani Lake or VL (a typical tropical freshwater lake), Thiruvananthapuram, Kerala State, India. R-mode factor analysis is used to identify the factors controlling the carrying capacity of the lake, whereas hierarchical cluster analysis (HCA) helped to classify the lake. The carrying capacity of the lake is low with respect to alkalinity, due to ion deficiency, and is potentially reactive to sudden changes in pH. Eutrophic condition exists in the entire lake system. Acidic factor, mineralization factor, fertilizer factor (P & K), evaporation factor and organic pollution factor are the controllers of VL water quality during the pre-monsoon period. The same factors (but not evaporation factor) and an additional runoff factor control the water quality during monsoon. In the post-monsoon, the aforesaid factors (other than runoff, alkalinity) and soil erosion factor influence the water quality. Hence, managers of the lake system need to also focus on combating acidic factor during pre- and post-monsoons and runoff during monsoon. Smaller areal extent and shallow depth of VL, reduced outflow from it, less rainfall, presence of lateritic rock and soil and absence of limestone strata in the catchment are the chief elements affecting the acidic factor of Vellayani Lake.

  2. Possible role of pre-monsoon sea surface warming in driving the summer monsoon onset over the Bay of Bengal

    Science.gov (United States)

    Li, Kuiping; Liu, Yanliang; Yang, Yang; Li, Zhi; Liu, Baochao; Xue, Liang; Yu, Weidong

    2016-08-01

    Sea surface temperature (SST) reaches its annual maximum just before the summer monsoon onset and collapses soon after in the central areas of the Bay of Bengal (BoB). Here, the impact of the peak in the pre-monsoon SST on triggering the earliest monsoon onset in the BoB is investigated, with a focus on the role they play in driving the first-branch northward-propagating intra-seasonal oscillations (FNISOs) over the equatorial Eastern Indian Ocean (EIO). During the calm pre-monsoon period, sea surface warming in the BoB could increase the surface equivalent potential temperature (θe) in several ways. Firstly, warming of the sea surface heats the surface air through sensible heating, which forces the air temperature to follow the SST. The elevated air surface temperature accounts for 30 % of the surface θe growth. Furthermore, the elevated air temperature raises the water vapor capacity of the surface air to accommodate more water vapor. Constrained by the observation that the surface relative humidity is maintained nearly constant during the monsoon transition period, the surface specific humidity exhibits a significant increase, according to the Clausius-Clapeyron relationship. Budget analysis indicates that the additional moisture is primarily obtained from sea surface evaporation, which also exhibits a weak increasing trend due to the sea surface warming. In this way, it contributes about 70 % to the surface θe growth. The rapid SST increase during the pre-monsoon period preconditions the summer monsoon onset over the BoB through its contributions to significantly increase the surface θe, which eventually establishes the meridional asymmetry of the atmospheric convective instability in the EIO. The pre-established greater convective instability leads to the FNISO convections, and the summer monsoon is triggered in the BoB region.

  3. The response of East Asian Summer Monsoon to a Global Warming Scenario

    Science.gov (United States)

    Stan, C.; Jin, Y.

    2016-12-01

    The response of East Asian Summer Monsoon (EASM) to the abrupt quadrupling of atmospheric CO2 concentration is investigated using the Super-Parameterized Community Climate Model, version 4 (SP-CCSM4). The EASM precipitation and circulation intensify in response to global warming and these changes are related to the westward extension of the Western North Pacific Subtropical High (WNPSH). The displacement of WNPSH is caused by two mechanisms: i) the increase of sea surface temperature and ii) the reduction of latent heat flux over the South China Sea and adjacent western Pacific Ocean. The changes in the surface fluxes over the tropics induce a Gill-type anti-cyclonic circulation to the north of the heating anomaly and a Rossy wave train from the tropics into the midlatitude Pacific Ocean. The westerly anomalies on the northern side of the anticyclone strengthen the southwesterly flow on the western edge of WNPSH. This flow further affects the wind anomalies and moisture transport over East Asia.

  4. Has the prediction of the South China Sea summer monsoon improved since the late 1970s?

    Science.gov (United States)

    Fan, Yi; Fan, Ke; Tian, Baoqiang

    2016-12-01

    Based on the evaluation of state-of-the-art coupled ocean-atmosphere general circulation models (CGCMs) from the ENSEMBLES (Ensemble-based Predictions of Climate Changes and Their Impacts) and DEMETER (Development of a European Multimodel Ensemble System for Seasonal to Interannual Prediction) projects, it is found that the prediction of the South China Sea summer monsoon (SCSSM) has improved since the late 1970s. These CGCMs show better skills in prediction of the atmospheric circulation and precipitation within the SCSSM domain during 1979-2005 than that during 1960-1978. Possible reasons for this improvement are investigated. First, the relationship between the SSTs over the tropical Pacific, North Pacific and tropical Indian Ocean, and SCSSM has intensified since the late 1970s. Meanwhile, the SCSSM-related SSTs, with their larger amplitude of interannual variability, have been better predicted. Moreover, the larger amplitude of the interannual variability of the SCSSM and improved initializations for CGCMs after the late 1970s contribute to the better prediction of the SCSSM. In addition, considering that the CGCMs have certain limitations in SCSSM rainfall prediction, we applied the year-to-year increment approach to these CGCMs from the DEMETER and ENSEMBLES projects to improve the prediction of SCSSM rainfall before and after the late 1970s.

  5. Tropical Glaciers: Recorders and Indicators of Climate Change

    Science.gov (United States)

    Thompson, L. G.; Mosley-Thompson, E. S.; Buffen, A.; Urmann, D.; Davis, M. E.; Lin, P.

    2008-12-01

    Tropical climate is dominated on interannual time scales by monsoons and especially by ENSO, which is responsible for meteorological phenomena that directly or indirectly affect most regions on the planet and their populations. Common tropical teleconnections to the extra tropics include a stronger Aleutian low, stronger westerlies, variations in convective activity (flooding and drought), and modulation of tropical storm intensities. New ice core records from the Quelccaya and Coropuna ice caps provide 1700 years of continuous, annually-resolved records of climate and environmental variability expressed in the oxygen and hydrogen isotopic ratios, concentrations of mineral dust and various chemical species and net mass accumulation. These records provide an opportunity to examine the nature of tropical climate variability in greater detail, and to extract new information on ENSO and monsoon-linked climate phenomena. Quelccaya records display a prominent Little Ice Age isotopic depletion from 1520 to 1880 A.D. and a muted Medieval Warming between 1100 and 1300 AD. Drier conditions dominated from 300 to 500 AD, 1190 to 1470 AD and 1710 to 1910 with slightly wetter conditions from 500 to 1190 AD, and much wetter conditions from 1470 to 1710 A.D. and from 1910 A.D. to the present. The major cation and anion concentrations record other environmental changes over the past 1700 years. The longer tropical climate histories from Coropuna and Huascarán (Peru), Sajama (Bolivia), and Kilimanjaro (Tanzania) document abrupt climate disruptions such as the 4.2 ka drought and an extreme cold and wet period centered at 5.2 ka. The well documented ongoing ice loss on Quelccaya and Kilimanjaro paint a grim future for glacier histories from the tropics. The current melting of high-altitude, low-latitude ice fields is consistent with model predictions for a vertical amplification of temperature in the tropics. The ongoing glacier retreat in the Andes, Himalayas and Africa has

  6. Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon

    Science.gov (United States)

    Fiehn, Alina; Quack, Birgit; Hepach, Helmke; Fuhlbrügge, Steffen; Tegtmeier, Susann; Toohey, Matthew; Atlas, Elliot; Krüger, Kirstin

    2017-06-01

    Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I) and for the first time bromoform (CHBr3) and dibromomethane (CH2Br2), in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000-2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m-2 h-1), very strong source for CH2Br2 (930 pmol m-2 h-1), and an average source for CH3I (460 pmol m-2 h-1). The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime), convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2). The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the Asian summer monsoon is lower than from previous

  7. Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon

    Directory of Open Access Journals (Sweden)

    A. Fiehn

    2017-06-01

    Full Text Available Halogenated very short-lived substances (VSLSs are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I and for the first time bromoform (CHBr3 and dibromomethane (CH2Br2, in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000–2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m−2 h−1, very strong source for CH2Br2 (930 pmol m−2 h−1, and an average source for CH3I (460 pmol m−2 h−1. The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime, convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2. The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the

  8. Winter AO/NAO modifies summer ocean heat content and monsoonal circulation over the western Indian Ocean

    Science.gov (United States)

    Gong, Dao-Yi; Guo, Dong; Li, Sang; Kim, Seong-Joong

    2017-02-01

    This paper analyzes the possible influence of boreal winter Arctic Oscillation/North Atlantic Oscillation (AO/ NAO) on the Indian Ocean upper ocean heat content in summer as well as the summer monsoonal circulation. The strong interannual co-variation between winter 1000-hPa geopotential height in the Northern Hemisphere and summer ocean heat content in the uppermost 120 m over the tropical Indian Ocean was investigated by a singular decomposition analysis for the period 1979-2014. The second paired-modes explain 23.8% of the squared covariance, and reveal an AO/NAO pattern over the North Atlantic and a warming upper ocean in the western tropical Indian Ocean. The positive upper ocean heat content enhances evaporation and convection, and results in an anomalous meridional circulation with ascending motion over 5°S-5°N and descending over 15°-25°N. Correspondingly, in the lower troposphere, significantly anomalous northerly winds appear over the western Indian Ocean north of the equator, implying a weaker summer monsoon circulation. The off-equator oceanic Rossby wave plays a key role in linking the AO/NAO and the summer heat content anomalies. In boreal winter, a positive AO/NAO triggers a down-welling Rossby wave in the central tropical Indian Ocean through the atmospheric teleconnection. As the Rossby wave arrives in the western Indian Ocean in summer, it results in anomalous upper ocean heating near the equator mainly through the meridional advection. The AO/NAO-forced Rossby wave and the resultant upper ocean warming are well reproduced by an ocean circulation model. The winter AO/NAO could be a potential season-lead driver of the summer atmospheric circulation over the northwestern Indian Ocean.

  9. Atmospheric polybrominated diphenyl ethers (PBDEs) and Pb isotopes at a remote site in Southwestern China: Implications for monsoon-associated transport

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yue [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Gan, E-mail: zhanggan@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Jun; Liu, Xiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Xiangdong [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2011-10-01

    A 13-month sampling campaign was conducted at a remote site in southwestern China from October, 2005 to December, 2006. An integrated approach with lead isotopes and air back trajectory analysis was used to investigate the monsoon-associated atmospheric transport of PBDEs in tropical/subtropical Asia regions. The air concentration of PBDEs ranged from 1.6 to 57.5 pg m{sup -3} (15.9 {+-} 12.0 pg m{sup -3}), comparable to reported levels at other remote sites in the world. BDE-209, followed by BDE-47 and -99 dominated the PBDE compositions, indicating a mixed deca- and penta-BDE source. Air mass back trajectory analysis revealed that the major potential source regions of BDE-47 and -99 could be southern China and Thailand, while those of BDE-209 are widely distributed in industrialized and urbanized areas in tropical Asia. The different lead isotope compositions of aerosols between trajectory clusters further substantiated the observation that the South Asian monsoon from spring to summer could penetrate deep into southwestern China, and facilitate long-range transport of airborne pollutants from South Asia. - Highlights: {yields}The atmospheric levels of PBDEs and Pb isotopic ratios at a remote site were reported. {yields}Significant high concentrations of BDE-47 and -99 were observed when air masses came from China and Southeast Asia. {yields}High concentrations of BDE-209 and low Pb isotopic ratios were associated with Indian monsoon. {yields}The onset of monsoon could facilitate long-range transport of airborne pollutants from South Asia.

  10. Asian Monsoon Variability from the Monsoon Asia Drought Atlas (MADA) and Links to Indo-Pacific Climate

    Science.gov (United States)

    Ummenhofer, Caroline; D'Arrigo, Rosanne; Anchukaitis, Kevin; Hernandez, Manuel; Buckley, Brendan; Cook, Edward

    2014-05-01

    Drought patterns across monsoon and temperate Asia over the period 1877-2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June-August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Variations in the strength of the South Asian monsoon can also be linked to the Strange Parallels Drought (1756-1768) affecting much of Southeast Asia and the Indian subcontinent in the mid-18th Century. Large-scale climate anomalies across the wider region during years with an anomalously strengthened/weakened South Asian monsoon are discussed with implications for severe droughts prior to the instrumental period. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the

  11. Climatic Variability In Tropical Countries

    Science.gov (United States)

    Seneviratne, L. W.

    2003-04-01

    Introduction Droughts in tropical countries are proved as periodic and its occurrence is shown remarkable in 9.25 year cycles as explained by the author. These cycles exist as soon or late around the central point. In the tropical regions monsoons or trade winds has a definite origin and pattern of advancing towards land mass. Ocean evaporation is the main source of rain clouds, which is drifted on to low vapour pressure zones. In the drought situation low vapour pressure zones are reduced and high vapour pressure zones are increased. Evaporation is reduced and incident solar radiation (insolation) is relatively reduced. Wind effect needed to form a cloud is low. Dry wind is passing along the land mass. Most rainy lands are subjected to prolonged droughts and hence cultivation is affected. Drought impacts create severe losses to irrigation projects. Civilization is affected by lack of food production. Lack of drinking water entirely eliminates the living animals and creatures. Eco system slowly changes to dried jungles and abandoned skeletons. Tropical conditions Sri Lanka experienced drought in 2001. Hambanthota District suffered for entire year 2000 with low rainfall. This area is not in line with monsoons and mountain ranges are not available to form dynamic cooling of air. So as the Puttalam and Mannar Districts Rainfall is very low in these areas. Drought continued for 2001 and half of 2002 in the main land. Hambanthota District is still continuing with low rainfall. The central mountains are well placed to bring monsoon rains. This position is not purely effective to form sufficient precipitation in drought years. The reason is highly stable atmosphere in this region. Due to global warming of 1deg C in 60 years and high carbon dioxide gas creating high density in low atmospheres, evaporation and rainmaking has a general reduction. It is identified by the author that the common plane episode of Moon and Earth, which occurs in 9.25 years is creating stable

  12. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    Science.gov (United States)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat

  13. Experimental real-time multi-model ensemble (MME) prediction of rainfall during Monsoon 2008: Large-scale medium-range aspects

    Indian Academy of Sciences (India)

    A K Mitra; G R Iyengar; V R Durai; J Sanjay; T N Krishnamurti; A Mishra; D R Sikka

    2011-02-01

    Realistic simulation/prediction of the Asian summer monsoon rainfall on various space–time scales is a challenging scientific task. Compared to mid-latitudes, a proportional skill improvement in the prediction of monsoon rainfall in the medium range has not happened in recent years. Global models and data assimilation techniques are being improved for monsoon/tropics. However, multi-model ensemble (MME) forecasting is gaining popularity, as it has the potential to provide more information for practical forecasting in terms of making a consensus forecast and handling model uncertainties. As major centers are exchanging model output in near real-time, MME is a viable inexpensive way of enhancing the forecasting skill and information content. During monsoon 2008, on an experimental basis, an MME forecasting of large-scale monsoon precipitation in the medium range was carried out in real-time at National Centre for Medium Range Weather Forecasting (NCMRWF), India. Simple ensemble mean (EMN) giving equal weight to member models, bias-corrected ensemble mean (BCEMn) and MME forecast, where different weights are given to member models, are the products of the algorithm tested here. In general, the aforementioned products from the multi-model ensemble forecast system have a higher skill than individual model forecasts. The skill score for the Indian domain and other sub-regions indicates that the BCEMn produces the best result, compared to EMN and MME. Giving weights to different models to obtain an MME product helps to improve individual member models only marginally. It is noted that for higher rainfall values, the skill of the global model rainfall forecast decreases rapidly beyond day-3, and hence for day-4 and day-5, the MME products could not bring much improvement over member models. However, up to day-3, the MME products were always better than individual member models.

  14. Modelling Monsoons: Understanding and Predicting Current and Future Behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Turner, A; Sperber, K R; Slingo, J M; Meehl, G A; Mechoso, C R; Kimoto, M; Giannini, A

    2008-09-16

    The global monsoon system is so varied and complex that understanding and predicting its diverse behaviour remains a challenge that will occupy modellers for many years to come. Despite the difficult task ahead, an improved monsoon modelling capability has been realized through the inclusion of more detailed physics of the climate system and higher resolution in our numerical models. Perhaps the most crucial improvement to date has been the development of coupled ocean-atmosphere models. From subseasonal to interdecadal timescales, only through the inclusion of air-sea interaction can the proper phasing and teleconnections of convection be attained with respect to sea surface temperature variations. Even then, the response to slow variations in remote forcings (e.g., El Nino-Southern Oscillation) does not result in a robust solution, as there are a host of competing modes of variability that must be represented, including those that appear to be chaotic. Understanding the links between monsoons and land surface processes is not as mature as that explored regarding air-sea interactions. A land surface forcing signal appears to dominate the onset of wet season rainfall over the North American monsoon region, though the relative role of ocean versus land forcing remains a topic of investigation in all the monsoon systems. Also, improved forecasts have been made during periods in which additional sounding observations are available for data assimilation. Thus, there is untapped predictability that can only be attained through the development of a more comprehensive observing system for all monsoon regions. Additionally, improved parameterizations - for example, of convection, cloud, radiation, and boundary layer schemes as well as land surface processes - are essential to realize the full potential of monsoon predictability. Dynamical considerations require ever increased horizontal resolution (probably to 0.5 degree or higher) in order to resolve many monsoon features

  15. Trace gas transport out of the Indian Summer Monsoon

    Science.gov (United States)

    Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst

    2016-04-01

    The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the

  16. A detailed comparison of Asian Monsoon intensity and Greenland temperature during the Allerød and Younger Dryas events

    Science.gov (United States)

    Liu, Dianbing; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence; Kong, Xinggong; Wang, Xianfeng; Wu, Jiangying; Chen, Shitao

    2008-08-01

    An annual layer-counted and 230Th-dated stalagmite oxygen isotope record from Qingtian Cave in Hubei province, central China, provides an Asian Monsoon (AM) history across the Allerød to Younger Dryas (YD) transition, with an average 2.5-year resolution. Seasonal δ18O profiles indicate that the calcite δ18O is a sensitive proxy for AM changes, and the close similarity between the Qingtian and other cave records from eastern China suggests a large-scale regional coherence of monsoonal precipitation δ18O variations associated with the temperature changes in high-northern latitudes. The annually-resolved chronology with a U-Th age uncertainty of less than 100 yr defines the timing, duration and transition of the early Allerød, the intra-Allerød cold period (IACP), the late Allerød, and the start of the YD. The 160-yr-long IACP, with two brief reversals, is clearly shown in both δ18O and lamina thickness records. The early and late Allerød, separated by the IACP, are characterized by several decadal to centennial cycles of δ18O variations, each punctuated by sub-cycles. These decadal to centennial monsoon variations correlate with the Greenland temperature changes, supporting a model simulation that the decadal North Atlantic Oscillation (NAO) and North Pacific Oscillation (NPO) are coupled via atmospheric circulation under glacial boundary conditions, perhaps affecting tropical/subtropical monsoon changes. However, the monsoon transition between the late Allerød and YD lasted 380 yr, longer than the analogous Greenland temperature shift by at least 130 yr [Stuiver, M., Grootes, P.M., GISP2 oxygen isotope ratios. Quat. Res. 53 (2000) 277-284]. This implicates other links besides the direct link between Greenland and the AM, which is now well documented. One possibility is the influence by Southern Hemisphere climate via cross-equatorial air flow [An, Z.S., The history and variability of the East Asian paleomonsoon climate. Quat. Sci. Rev. 19 (2000) 171-187].

  17. Investigation of summer monsoon rainfall variability in Pakistan

    Science.gov (United States)

    Hussain, Mian Sabir; Lee, Seungho

    2016-08-01

    This study analyzes the inter-annual and intra-seasonal rainfall variability in Pakistan using daily rainfall data during the summer monsoon season (June to September) recorded from 1980 to 2014. The variability in inter-annual monsoon rainfall ranges from 20 % in northeastern regions to 65 % in southwestern regions of Pakistan. The analysis reveals that the transition of the negative and positive anomalies was not uniform in the investigated dataset. In order to acquire broad observations of the intra-seasonal variability, an objective criterion, the pre-active period, active period and post-active periods of the summer monsoon rainfall have demarcated. The analysis also reveals that the rainfall in June has no significant contribution to the increase in intra-seasonal rainfall in Pakistan. The rainfall has, however, been enhanced in the summer monsoon in August. The rainfall of September demonstrates a sharp decrease, resulting in a high variability in the summer monsoon season. A detailed examination of the intra-seasonal rainfall also reveals frequent amplitude from late July to early August. The daily normal rainfall fluctuates significantly with its maximum in the Murree hills and its minimum in the northwestern Baluchistan.

  18. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  19. Comparative Hydrology Over Monsoonal Regions Using Seasonal Distributions of Stable Water Isotopes.

    Science.gov (United States)

    Brown, D. P.; Worden, J.; Noone, D. C.

    2007-12-01

    The hydrologic regimes of monsoonal regions contain complex balances of large-scale advective supply of water, surface exchange and atmospheric condensation, which are important for the regional energy balance and climate. Stable water isotopes are powerful tools for studying such processes, as isotopic fractionations occurring during evaporation and condensation give rise to measurable variations in the isotopic composition that reflects the history of moist processes for each observed air parcel. The HDO/H2O data set from the Tropospheric Emission Spectrometer (TES) on NASA's Aura spacecraft offers a unique global view of the isotopic composition of water vapor. The TES data set, and the analysis here, is complimentary to previous work using isotopic ratios in precipitation; however it need not be that the simple relationships found in the precipitation data hold for the atmospheric vapor case because of the variability induced by atmospheric mixing and convection. Over tropical continents, the intensity of water vapor recycling, precipitation rates and circulation patterns are thought to dominate the seasonal isotopic composition of water vapor and rainfall. By examining and contrasting the isotopic budgets of the Amazon, north Australia, and Asian monsoon regions, we gain insight into these hydrological processes, show which processes are regionally robust, and expose those processes that are regionally unique. To establish the importance of local processes on the regional isotopic composition, we first examine the relationship between the measured isotopic composition and meteorological parameters that capture the strength of the local processes. Secondly, we use the history of condensation, evaporation and air mass mixing during transport from five-day origin locations to the local TES observations, and the isotopic ratios of vapor at both locations, to examine isotopic changes that occur upstream. Using this information, as well as a simple isotopic exchange

  20. Tropical easterly jet located using TOMS data

    Science.gov (United States)

    Bolhofer, William C.

    1987-01-01

    The formative stages of the onset of the 1979 southwest monsoon was marked by a WNW-ESE oriented band of marine convection over the South Arabian Sea. This convection was first observed on June 10, 1979 using satellite cloud imagery. The marine convection appeared during a major acceleration of the upper troposphere easterly wind field. A composite vertical meridional cross-section of upper level winds for June 11, revealed the core of the Tropical Easterly Jet (TEJ) at 115 mb, 9.5 deg N. Time analysis of the upper level wind field over the Tropical Wind Observing Ship (TWOS) polygon show a lowering of both the pressure level of maximum wind and tropopause level with acceleration of the upper level easterlies. The tropopause was as much as 20 mb lower on the equatorial side of the TEJ. Streamline analysis of the maximum observed easterly winds over India did not reveal the horizontal position of the TEJ. Careful analysis of Total Ozone Mapping Spectrometer (TOMS) data for June 11, 1979 showed relatively high values of ozone south of India. It was observed that the latitudinal position of the TEJ on June 11, at approximately 70 deg E coincided with the northern edge of relatively high ozone values. Using this as a reference, the TEJ core was identified as far as NE Bay of Bengal (the limits of the available TOMS data).

  1. Meridional Circulation Cells Observed In The Upper Troposphere Over Suriname During The Monsoon Period

    Science.gov (United States)

    Fortuin, P.; Kelder, H.

    Since September 1999, weekly balloon sondes are released at tropical Paramaribo sta- tion (5.8N 55.2W), located at the northern coast of South America. The station lies approximately in the middle of the annual migration range of the ITCZ, and therefore experiences either a northeast or a southeast trade wind regime (ITCZ respectively to the south, north). The wet season corresponds with the period of northeasterly trade winds (December-July) and is normally interrupted by a short dry period (February- March) when the ITCZ lies farthest to the south. During this monsoon period a sys- tematic return flow to higher latitudes can be detected, centered around 12 km (200 hPa), which seems to constitute the upper branch of the Hadley cell. However, this upper branch of the Hadley cell seems to be flanked above and below by southward flow. On closer inspection, these meridional sub-cells persist in a domain of negative potential vorticity, brought about by the horizontal gradient in zonal wind near the Equator as the northern subtropical jet reaches its southern-most point. As predicted by Stevens (1982), this inertially unstable domain responds with vertically sctacked meridional flow cells, in order to restore a minimum horizontal shear in zonal wind near the Equator. These meridional cells continuously exhibit alternating periods of growth and decay, on a time-scale consistent with inertial instability. Their meridional extent is from the Equator to approcimately 10-12 degrees North, such that Paramaribo (at 5.8N) witnesses approximately the maximal merinional wind velocity near the cen- ter of these cells. Due to their persistent recurring nature in the monsoon period, they leave a signature on the water vapor distribution in the upper troposphere, which shows a dry layer sandwithced between wetter layers - with a spatial distribution similar to the sub-cellular flow.

  2. Rocky Mountain hydroclimate: Holocene variability and the role of insolation, ENSO, and the North American Monsoon

    Science.gov (United States)

    Anderson, Lesleigh

    2012-01-01

    Over the period of instrumental records, precipitation maximum in the headwaters of the Colorado Rocky Mountains has been dominated by winter snow, with a substantial degree of interannual variability linked to Pacific ocean–atmosphere dynamics. High-elevation snowpack is an important water storage that is carefully observed in order to meet increasing water demands in the greater semi-arid region. The purpose here is to consider Rocky Mountain water trends during the Holocene when known changes in earth's energy balance were caused by precession-driven insolation variability. Changes in solar insolation are thought to have influenced the variability and intensity of the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North American Monsoon and the seasonal precipitation balance between rain and snow at upper elevations. Holocene records are presented from two high elevation lakes located in northwest Colorado that document decade-to-century scale precipitation seasonality for the past ~ 7000 years. Comparisons with sub-tropical records of ENSO indicate that the snowfall-dominated precipitation maxima developed ~ 3000 and 4000 years ago, coincident with evidence for enhanced ENSO/PDO dynamics. During the early-to-mid Holocene the records suggest a more monsoon affected precipitation regime with reduced snowpack, more rainfall, and net moisture deficits that were more severe than recent droughts. The Holocene perspective of precipitation indicates a far broader range of variability than that of the past century and highlights the non-linear character of hydroclimate in the U.S. west.

  3. An East Asian Subtropical Summer Monsoon Index and Its Relationship to Summer Rainfall in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; ZHOU Zijiang

    2009-01-01

    Using the monthly mean NCEP/NCAR reanalysis data and the monthly rainfall observations at 160 rain gauge stations of China during 1961-1999, and based on major characteristics of the atmospheric circulation over East Asia and the western Pacific, a simple index for the East Asian subtropical summer monsoon (EASSM) is defined. The relationship between this index and summer rainfall in China and associated circulation features are examined. A comparison is made between this index and other monsoon indices. The results indicate that the index defined herein is reflective of variations of both the thermal low pressure centered in Siberia and the subtropical ridge over the western Pacific. It epitomizes the intensity of the EASSM and the variability of summer rainfall along the Yangtze River. Analysis shows that the Siberian low has a greater effect on the rainfall than the subtropical ridge, suggesting that the summer rainfall variability over the eastern parts of China is to a large extent affected by anomalies of the atmospheric circulation and cold air development in the midlatitudes. Taking into account of the effects of both the Siberian low and the subtropical ridge can better capture the summer rainfall anomalies of China. The index exhibits interannual and decadai variabilities, with high-index values occurring mainly in the 1960s and 1970s and low-index values in the 1980s and 1990s. When the EASSM index is low, the Siberian low and the subtropical ridge are weaker, and northerly wind anomalies appear at low levels over the midlatitudes and subtropics of East Asia, whereas southwesterly wind anomalies dominate in the upper troposphere over the tropics and subtropics of Asia and the western Pacific. The northerly wind anomalies bring about frequent cold air disturbances from the midlatitudes of East Asia, strengthening the convergence and ascending motions along the Meiyu front, and result in an increase of summer rainfall over the Yangtze River.

  4. Impact of the Asian Summer Monsoon on the Lower Stratosphere: Results from TACTS/ESMVal 2012

    Science.gov (United States)

    Hoor, Peter; Müller, Stefan; Vogel, Bärbel; Bozem, Heiko; Fischer, Horst; Bönisch, Harald; Engel, Andreas; Keber, Timo; Krämer, Martina; Riese, Martin; Gute, Ellen; Schlager, Hans; Ziereis, Helmut; Zahn, Andreas

    2016-04-01

    We present results from the German research aircraft HALO during the TACTS/ESMVal project (Transport and Composition in the UTLS and Earth System Model Validation). We focus on the distribution of CO, N2O and ozone as well as water vapour. The measurements took place in the extratropical UTLS (upper troposphere/lower stratosphere) region over Europe from August to September 2012. Here, we focus on the northern hemispheric trace gas composition above potential temperatures of 370 K. In this region we could for the first time identify mixing lines, which indicate mixing between stratospheric air masses of different origin. Introducing a new pair of correlation species (N2O-CO) we could identify air masses, which do not involve mixing directly at the tropopause. Based on a case study we show, that the atmospheric region between the extratropical tropopause and potential temperatures up to Θ = 405 K is affected by mixing of 'young' stratospheric air from the monsoon region with aged stratospheric air. Based on the distribution of CO and N2O we show that the lower stratosphere over Europe becomes more tropospheric from August to September with enhanced CO, N2O and water vapour as well as decreasing ozone. Using comprehensive trajectory calculations our results particularly indicate that the Asian summer monoon is the main contributor to this composition change and that mixing from the tropical tropopause layer becomes weaker over time. Therefore we conclude that the monsoon significantly contributes to the flushing of the extratropical UTLS during summer and autumn.

  5. The sensitivity of the Indian summer monsoon to a global warming of 2 C with respect to pre-industrial times

    Energy Technology Data Exchange (ETDEWEB)

    May, Wilhelm [Danish Meteorological Institute, Danish Climate Centre, Copenhagen (Denmark)

    2011-11-15

    In this study the potential future changes in different aspects of the Indian summer monsoon associated with a global warming of 2 C with respect to pre-industrial times are assessed, focussing on the role of the different mechanisms leading to these changes. In addition, these changes as well as the underlying mechanisms are compared to the corresponding changes associated with a markedly stronger global warming exceeding 4.5 C, associated with the widely used SRES A1B scenario. The study is based on two sets of four ensemble simulations with the ECHAM5/MPI-OM coupled climate model, each starting from different initial conditions. In one set of simulations (2020-2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed in such a way that the simulated global warming does not exceed 2 C with respect to pre-industrial times. In the other set of simulations (1860-2200), greenhouse gas concentrations and sulphate aerosol load have been prescribed according to observations until 2000 and according to the SRES A1B scenario after 2000. The study reveals marked changes in the Indian summer monsoon associated with a global warming of 2 C with respect to pre-industrial conditions, namely an intensification of the summer monsoon precipitation despite a weakening of the large-scale monsoon circulation. The increase in the monsoon rainfall is related to a variety of different mechanisms, with the intensification of the atmospheric moisture transport into the Indian region as the most important one. The weakening of the large-scale monsoon circulation is mainly caused by changes in the Walker circulation with large-scale divergence (convergence) in the lower (upper) troposphere over the Indian Ocean in response to enhanced convective activity over the Indian Ocean and the central and eastern Pacific and reduced convective activity over the western tropical Pacific. These changes in the Walker circulation induce westerly (easterly) wind anomalies at

  6. Aerosol meteorology of the Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 1: regional-scale phenomena

    Science.gov (United States)

    Reid, Jeffrey S.; Xian, Peng; Holben, Brent N.; Hyer, Edward J.; Reid, Elizabeth A.; Salinas, Santo V.; Zhang, Jianglong; Campbell, James R.; Chew, Boon Ning; Holz, Robert E.; Kuciauskas, Arunas P.; Lagrosas, Nofel; Posselt, Derek J.; Sampson, Charles R.; Walker, Annette L.; Welton, E. Judd; Zhang, Chidong

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operation period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Included was an enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and field measurements to observe transported smoke and pollution as it left the MC and entered the southwest monsoon trough. Here we describe the nature of the overall 2012 southwest monsoon (SWM) and biomass burning season to give context to the 2012 deployment. The MC in 2012 was in a slightly warm El Niño/Southern Oscillation (ENSO) phase and with spatially typical burning activity. However, overall fire counts for 2012 were 10 % lower than the Reid et al. (2012) baseline, with regions of significant departures from this norm, ranging from southern Sumatra (+30 %) to southern Kalimantan (-42 %). Fire activity and monsoonal flows for the dominant burning regions were modulated by a series of intraseasonal oscillation events (e.g., Madden-Julian Oscillation, or MJO, and boreal summer intraseasonal oscillation, or BSISO). As is typical, fire activity systematically progressed eastward over time, starting with central Sumatran fire activity in June related to a moderately strong MJO event which brought drier air from the Indian Ocean aloft and enhanced monsoonal flow. Further burning in Sumatra and Kalimantan Borneo occurred in a series of significant events from early August to a peak in the first week of October, ending when the monsoon started to migrate back to its wintertime northeastern flow conditions in mid-October. Significant monsoonal enhancements and flow reversals collinear with tropical cyclone (TC) activity and easterly waves were also observed. Islands of the eastern MC, including Sulawesi, Java, and Timor, showed less sensitivity to monsoonal variation, with slowly increasing fire activity that also peaked in early October but lingered into November. Interestingly, even though fire

  7. Indian summer monsoon rainfall variability during 2014 and 2015 and associated Indo-Pacific upper ocean temperature patterns

    Science.gov (United States)

    Kakatkar, Rashmi; Gnanaseelan, C.; Chowdary, J. S.; Parekh, Anant; Deepa, J. S.

    2017-01-01

    In this study, factors responsible for the deficit Indian Summer Monsoon (ISM) rainfall in 2014 and 2015 and the ability of Indian Institute of Tropical Meteorology-Global Ocean Data Assimilation System (IITM-GODAS) in representing the oceanic features are examined. IITM-GODAS has been used to provide initial conditions for seasonal forecast in India during 2014 and 2015. The years 2014 and 2015 witnessed deficit ISM rainfall but were evolved from two entirely different preconditions over Pacific. This raises concern over the present understanding of the role of Pacific Ocean on ISM variability. Analysis reveals that the mechanisms associated with the rainfall deficit over the Indian Subcontinent are different in the two years. It is found that remote forcing in summer of 2015 due to El Niño is mostly responsible for the deficit monsoon rainfall through changes in Walker circulation and large-scale subsidence. In the case of the summer of 2014, both local circulation with anomalous anticyclone over central India and intrusion of mid-latitude dry winds from north have contributed for the deficit rainfall. In addition to the above, Tropical Indian Ocean (TIO) sea surface temperature (SST) and remote forcing from Pacific Ocean also modulated the ISM rainfall. It is observed that Pacific SST warming has extended westward in 2014, making it a basin scale warming unlike the strong El Niño year 2015. The eastern equatorial Indian Ocean is anomalously warmer than west in summer of 2014, and vice versa in 2015. These differences in SST in both tropical Pacific and TIO have considerable impact on ISM rainfall in 2014 and 2015. The study reveals that initializing coupled forecast models with proper upper ocean temperature over the Indo-Pacific is therefore essential for improved model forecast. It is important to note that the IITM-GODAS which assimilates only array for real-time geostrophic oceanography (ARGO) temperature and salinity profiles could capture most of the

  8. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, Y.V.B.; Rao, D.P.; Murty, C.S.

    Influence of the freshwater influx, the wind forcing and the Indian Ocean monsoon drift current on the property distributions and the circulation in the Bay of Bengal during southwest monsoon has been quantified. At the head of the Bay, waters...

  9. High-resolution peat records for Holocene monsoon history in the eastern Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YU; Xuefeng; ZHOU; Weijian; Lars; G.Franzen; XIAN; Feng; CHENG; Peng; A.J.; Tim; Jull

    2006-01-01

    The variations of summer and winter monsoons during the Holocene in the eastern Tibetan Plateau are shown to follow two basic models based on the reliable dating and high-resolution monsoon proxies determinations, one being a synchronous model in that both summer and winter monsoons are strengthening or decreasing, and the other to form a complementary pattern. These two different patterns evenly interact with each other on different time scales and together compose a complicated monsoon climatic model in this region. The climatic condition integrated by winter and summer monsoons is synchronous to the global pattern, which also shows the instability of the Holocene climate on centennial-millennial timescale. The abrupt monsoon event in about 6.2 ka cal.BP is much more severe than that in ca. 8.0 ka cal. BP, which indicates the regional character of the Asian monsoon and that the Asian monsoon climate is indeed a window on the global climate system.

  10. Transport and potential vorticity in the Bay of Bengal during the southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Murty, C.S.; Sarma, Y.V.B.; Rao, D.P.; Sastry, J.S.; Rao, G.R.L.

    In the Bay of Bengal, the water transport and potential vorticity (PV) during the southwest monsoon are examined through the prevailing thermohaline and wind-driven circulation. The Indian Monsoon Current (IMC) and the north flowing Eastern Boundary...

  11. Precipitation Isotopes Reveal Intensified Indonesian Monsoon Circulation During the Dry Last Glacial Maximum

    Science.gov (United States)

    Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.

    2014-12-01

    The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the region have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the late Pleistocene. Many of these proxies reconstruct the oxygen and hydrogen isotopic composition of rainfall (δ18Oprecip, δDprecip), a powerful tool for understanding changes in climate. However, an increasing number of studies from the region have highlighted the tendency for δ18Oprecip and δDprecip to reflect regional and/or remote circulation processes rather than local rainfall amounts, complicating the reconstruction of IPWP hydroclimate. To better understand high- and low-latitude drivers of late Pleistocene hydroclimate in the IPWP, precipitation isotopic reconstructions must be constrained with both modern observations and independent proxies for rainfall amount. We present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Sulawesi, from 60,000 years before present to today. We interpret our proxy record with the aid of a new precipitation isotopic dataset from our study site, with daily rainfall isotope measurements to constrain the processes controlling δDprecip. Our Lake Towuti δDwax record is strikingly similar to a speleothem δ18O record from southern Indonesia (Ayliffe et al., 2013) and shares features with other nearby records spanning the Last Glacial Maximum to present. Together, these records indicate that monsoon circulation was intensified in central and southern Indonesia during the glacial period. However, other independent rainfall proxies from Lake Towuti indicate that dry conditions accompanied the intensified monsoon. Regional-scale isotopic depletion during the dry glacial period may have arisen from dynamical and other fractionating processes that

  12. Environmental status of groundwater affected by chromite ore processing residue (COPR) dumpsites during pre-monsoon and monsoon seasons.

    Science.gov (United States)

    Matern, Katrin; Weigand, Harald; Singh, Abhas; Mansfeldt, Tim

    2017-02-01

    Chromite ore processing residue (COPR) is generated by the roasting of chromite ores for the extraction of chromium. Leaching of carcinogenic hexavalent chromium (Cr(VI)) from COPR dumpsites and contamination of groundwater is a key environmental risk. The objective of the study was to evaluate Cr(VI) contamination in groundwater in the vicinity of three COPR disposal sites in Uttar Pradesh, India, in the pre-monsoon and monsoon seasons. Groundwater samples (n = 57 pre-monsoon, n = 70 monsoon) were taken in 2014 and analyzed for Cr(VI) and relevant hydrochemical parameters. The site-specific ranges of Cr(VI) concentrations in groundwater were <0.005 to 34.8 mg L(-1) (Rania), <0.005 to 115 mg L(-1) (Chhiwali), and <0.005 to 2.0 mg L(-1) (Godhrauli). Maximum levels of Cr(VI) were found close to the COPR dumpsites and significantly exceeded safe drinking water limits (0.05 mg L(-1)). No significant dependence of Cr(VI) concentration on monsoons was observed.

  13. The once and future pulse of Indian monsoonal climate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K.K.; Patwardhan, S.K.; Goswami, B.N. [Indian Institute of Tropical Meteorology, Pune (India); Kamala, K. [Universiti Pierre et Marie Curie, LOCEAN-IPSL, Paris (France); Rajagopalan, Balaji [University of Colorado, Boulder, CO (United States); Hoerling, Martin P.; Eischeid, Jon K. [NOAA/ESRL/PSD, Boulder, CO (United States); Srinivasan, G. [RIMES, Pathunthani (Thailand); Nemani, Ramakrishna [NASA-Ames Research Center, Moffett Field, CA (United States)

    2011-06-15

    We present a comprehensive assessment of the present and expected future pulse of the Indian monsoon climate based on observational and global climate model projections. The analysis supports the view that seasonal Indian monsoon rains in the latter half of the 21th century may not be materially different in abundance to that experienced today although their intensity and duration of wet and dry spells may change appreciably. Such an assessment comes with considerable uncertainty. With regard to temperature, however, we find that the Indian temperatures during the late 21st Century will very likely exceed the highest values experienced in the 130-year instrumental record of Indian data. This assessment comes with higher confidence than for rainfall because of the large spatial scale driving the thermal response of climate to greenhouse gas forcing. We also find that monsoon climate changes, especially temperature, could heighten human and crop mortality posing a socio-economic threat to the Indian subcontinent. (orig.)

  14. An East Asian Monsoon in the Mid-Pliocene

    Institute of Scientific and Technical Information of China (English)

    YAN Qing; ZHANG Zhong-Shi; GAO Yong-Qi

    2012-01-01

    In this study, the authors simulate the East Asian climate changes in the mid-Pliocene (~3.3 to 3.0 Ma BP) with the Community Atmosphere Model version 3.1 (CAM3.1) and compare the simulated East Asian monsoon with paleoclimate data. The simulations show an obvious warming pattern in East Asia in the mid-Pliocene compared with the pre-industrial climate, with surface air temperature increasing by 0.5 4.0°C. In the warm mid-Pliocene simulation, the East Asian Summer Monsoon (EASM) becomes stronger, while the East Asian Winter Monsoon (EAWM) is similar relative to the pre-industrial climate. Compared with the paleoclimate data, our simulations depict the intensified EASM well but cannot reproduce the weakened EAWM. This model-data discrepancy may be attributed to the uncertainty in the reconstructed mid-Pliocene sea surface temperature.

  15. Characteristics of the Nonoccurrence of Tropical Cyclones in the Western North Pacific in August 2014

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2016-10-01

    Full Text Available This study identified the causes of the nonoccurrence of tropical cyclones (TCs in August 2014 by examining large-scale environments. First, over the previous 30 years, the TC genesis frequency in August showed an overall statistically significant decline. In the tropical and subtropical western Pacific, the outgoing longwave radiation anomaly index also exhibited an overall increase until recently. Regarding precipitable water and precipitation, an analysis was performed on the difference between the mean values for August 2014 and the mean values for August over the previous 30 years. As a result, while convective activities were suppressed in the tropical and subtropical western Pacific, convective activities were strong in the mid-latitudes of East Asia. This indicates that while the western North Pacific summer monsoon was weakened in August 2014, the East Asian summer monsoon was strengthened. The weakening of the western North Pacific summer monsoon may have made it difficult for TCs to occur. An analysis of 850 hPa and 500 hPa stream flows showed the strengthening of anomalous huge anticyclonic circulations in the tropical and subtropical western Pacific, whereas anomalously cyclonic circulations were reinforced in the mid-latitudes of East Asia. This was associated with the result that the western North Pacific subtropical high (WNPSH showed further westward and southward expansion in August 2014 compared to the climatological mean WNPSH. Therefore, TCs were unlikely to occur in the tropical and subtropical western Pacific, but anomalous cold northerlies and anomalous warm southerlies converged in the Japanese Islands after originating in China’s central region and passing the East China Sea. Therefore, a favorable environment for the occurrence of precipitation had been formed.

  16. The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity

    Science.gov (United States)

    Samson, G.; Masson, S.; Lengaigne, M.; Keerthi, M. G.; Vialard, J.; Pous, S.; Madec, G.; Jourdain, N. C.; Jullien, S.; Menkes, C.; Marchesiello, P.

    2014-09-01

    This paper presents the NOW regional coupled ocean-atmosphere model built from the NEMO ocean and WRF atmospheric numerical models. This model is applied to the tropical Indian Ocean, with the oceanic and atmospheric components sharing a common ¼° horizontal grid. Long experiments are performed over the 1990-2009 period using the Betts-Miller-Janjic (BMJ) and Kain-Fritsch (KF) cumulus parameterizations. Both simulations produce a realistic distribution of seasonal rainfall and a realistic northward seasonal migration of monsoon rainfall over the Indian subcontinent. At subseasonal time scales, the model reasonably reproduces summer monsoon active and break phases, although with underestimated rainfall and surface wind signals. Its relatively high resolution results in realistic spatial and seasonal distributions of tropical cyclones, but it fails to reproduce the strongest observed cyclone categories. At interannual time scales, the model reproduces the observed variability associated with the Indian Ocean Dipole (IOD) and the delayed basin-wide warming/cooling induced by the El Niño Southern Oscillation (ENSO). The timing of IOD occurrence in the model generally matches that of the observed events, confirming the influence of ENSO on the IOD development (through the effect of lateral boundary conditions in our simulations). Although the KF and BMJ simulations share a lot in common, KF strongly overestimates rainfall at all time scales. KF also overestimates the number of simulated cyclones by a factor two, while simulating stronger events (up to 55 m s-1) compared to BMJ (up to 40 m s-1). These results could be related to an overly active cumulus parameterization in KF.

  17. Gulf of California Sediment and Proxy SST Records Suggest a Post 6 ka Development of the Arizona Monsoon and Solar Forcing of Cycles

    Science.gov (United States)

    Barron, J. A.; Bukry, D.

    2007-12-01

    Summer monsoonal rains in Arizona and adjacent areas are mainly due to pulses of moisture traveling northward up the Gulf of California (GOC). Modern studies reveal that northern GOC SSTs must exceed 26 deg. C before monsoonal rainfall develops in Arizona and western New Mexico, and over 80 percent of the rainfall in this region occurs after northern GOC SSTs exceed 28.5 deg. C. Warming of GOC occurs progressively from south to north in the late spring, as northwest winds, which dominate in the late fall to early spring, decrease in strength, and tropical waters penetrate northward along the western coast of the GOC. Sediment (CaCO3 and opal) and microfossil (diatom and silicoflagellate) proxies spanning the past 15,000 years from cores in the central GOC suggest that waters of the northern GOC were too cold between ca. 11 and 6 ka to allow development of monsoonal rains in Arizona. Evidence for a post 6 ka intensification of monsoonal rains in Arizona and adjacent areas includes: 1) increased frequency of arroyo cutting in Arizona after ca. 5 ka, 2) increased evidence of paleofloods in Arizona and SW Utah after ca. 6 ka, and 3) the renewal of aggradation of alluvial fans in the Mojave Dessert at ca. 6 ka after a lull in their formation between ca. 11 and 6 ka. Supportive pollen evidence includes : 1) the late Holocene appearance of summer flowering annuals and C-{4} grasses in SE Arizona, and 2) the post 6 ka appearance of a warm, mixed biome in the highlands of northwest Mexico. Other pollen evidence and the scarcity of early and middle Holocene packrat middens in the American southwest, however, have been cited as evidence of increased monsoonal rains during the early and middle parts of the Holocene It is likely that the Gulf of Mexico was the main source of monsoonal moisture in the American southwest prior to ca. 6 ka, especially in the regions east of Arizona. A northward displacement of the Intertropical Convergence Zone in the Caribbean prior to ca. 5.4 ka

  18. Asian Summer Monsoon and its Associated Rainfall Variability in Thailand

    Directory of Open Access Journals (Sweden)

    Atsamon Limsakul

    2010-07-01

    Full Text Available The Asian monsoon is an important component of the Earth's climate. Its associated rainfall variability is a crucial fac¬tor for Thailand's socio-economic development, water resources and agricultural management. An analysis shows that the Thailand rainfall annual cycle is in phase with the Indian summer monsoon (ISM and the western North Pacific summer monsoon (WNPSM. On the basis of the Empirical Orthogonal Function (EOF analysis, the dominant spatial-temporal interannual variability in summer monsoon rainfall (Jun.-Sep. during 1975-2006 could be explained by the first two EOF modes, accounting for 34% of the total variance. The EOF1 was spatially dominated by strong positive signals in the central and east, whereas the EOF2 exhibited dipole variability. The coefficient time series of EOF1 significantly correlated posi¬tively with ISM index, but negatively with WNPSM index. The results suggest that summer monsoon rainfall in Thailand is higher (lower than normal during the strengthening (weakening of ISM. In contrast, rainfall in the north-east (central is surplus (deficit during the strengthening (weakening of WNPSM. These findings imply that, on an interannual time scale, ISM and WNPSM exert their influence to a different extent on summer monsoon rainfall in Thailand. A clear picture of linking mechanisms and interactions with another climate mode in the Indo-Pacific sector needs to be understood. This knowledge is essential for effectively adapting to climate-related hazards and rainfall extremes and for better management of water resource and agriculture in Thailand, especially under current/future warming conditions.

  19. Wastewater Management in Tropical Monsoon Climates:Sanitary and Ecological Implications

    OpenAIRE

    Takeuchi,Juni; Giri,Rabindra Raj

    2012-01-01

    Since Thai people have traditionally used Thai-style toilets, wastewater in Bangkok, Thailand, is characterized by its water quality referred to as greywater without feces contamination. The water tends to be easily decomposed by microorganisms in sewers under hot and stagnant conditions. The contamination with night soil affected microbial fauna and flora of activated sludge formed in sewage works, as being suggested by simulated laboratory experiments. Nitrification was also promoted by the...

  20. Photosynthetic acclimation to light changes in tropical monsoon forest woody species differing in adult stature

    NARCIS (Netherlands)

    Cai, Z.Q.; Rijkers, A.J.M.; Bongers, F.J.J.M.

    2005-01-01

    We studied morphological and physiological leaf and whole-plant features of seedlings of six late-successional woody species common in the Xishuangbanna lowland rain forest in southwest China. Study species differed in adult stature and shade tolerance and included the shrubs Lasianthus attenuatus J

  1. High CO2 emissions from the tropical Godavari estuary (India) associated with monsoon river discharges

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V; Kumar, N.A.; Prasad, V; Venkataramana, V; Appalanaidu, S.; Sridevi, B.; Kumar, B.S.K.; Bharati, M.D.; Subbaiah, C.V; Acharyya, T.; Rao, G.D.; Viswanadham, R.; Gawade, L; Manjary, D.T.; Kumar, P.P.; Rajeev, K.; Reddy, N.P.C.; Sarma, V.V.; Kumar, M.D.; Sadhuram, Y.; Murty, T.V.R.

    . Appalanaidu, B. Sridevi, B.S.K. Kumar, M.D. Bharati, Ch.V. Subbaiah, T. Acharya, G.D. Rao, R. Viswanadham, L. Gawade, D.T. Manjary, P. P. Kumar, K. Rajeev, N.P.C. Reddy, V.V. Sarma, M.D. Kumar, Y. Sadhuram and T.V.R. Murty National Institute...-67. Borges, A.V., B. Delille and M. Frankignoulle (2005), Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 32, No. L14601. Bouillon, S., M. Frankignoulle, F. Dehairs, F. et al.(2003...

  2. Seasonal variations in abundance, biomass and grazing rates of microzooplankton in a tropical monsoonal estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Gauns, M.; Mochemadkar, S.; Patil, S.; Pratihary, A.K.; Naqvi, S.W.A.; Madhupratap, M.

    , 1985; Pierce and Turner, 1992) by consuming 20-100% of the primary production (Riley, 1965; Beers and Stewart, 1970; Heinbokel and Beers 1979; Capriulo and Carpenter, 1983; Frost, 1991; Landry, et al., 1998). Micro zooplankton also directly ingest...): Estimates of average phytoplankton division rates in the open Arabian Sea. Indian J. Mar. Sci., 17, 31-36. Beers, J. R. and G. L. Stewart (1970) Numerical abundance and estimated biomass of microzooplankton. In: Strickland JD (ed.), The ecology...

  3. Daily variations in pathogenic bacterial populations in a monsoon influenced tropical environment

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, L.; Anil, A.C.; Naik, S.D.; Gaonkar, C.C.

    , C.A., 2010.Comparison of the pathogenic potentials of environmental and clinical Vibrio parahaemolyticus strains indicates a role for temperature regulation of virulence. Appl.Environ.Microbiol. 76, 7459–7465 Moss, J.A., Nocker, A., Lepo, J... and the characteristics of the water body change. Bacterial populations, an important component of the microbial loop, influence food web dynamics and ecosystem functioning. The response of the bacterial population to the changing environment is rapid...

  4. Bacterial domination over Archaea in ammonia oxidation in a monsoon-driven tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vipindas, P.V.; Anas, A.; Jasmin, C.; Lallu, K.R.; Fausia, K.H.; Balachandran, K.K.; Muraleedharan, K.R.; Nair, S.

    % polyacrylamide denaturing gradient gel prepared with 35 – 50 % (for AOB) and 30 – 55 % (for AOA) formamide for 17.5 h at 75 V. The bands separated were stained with SYBR green and observed in a gel documentation system (BioRAD, USA). The bands were picked.... This work was done using MMRF facility and is duly acknowledged. This is NIO contribution No: xxxx Reference 1. Mulder A, Van de Graaf AA, Robertson LA, Kuenen J (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor...

  5. Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Gupta, S.N.M.; Babu, P.V.R.; Acharyya, T.; Harikrishnachari, N.; Vishnuvardhan, K.; Rao, N.S.; Reddy, N.P.C.; Sarma, V.V.; Sadhuram, Y.; Murty, T.V.R.; Kumar, M.D.

    , J.F., 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45, 1718- 1730. Cortner, J.B., Johengen, T.J., and Biddanda, B.A., 2000. Intense winter heterotrophic production...

  6. Epibiotic community on the acorn barnacle (Balanus amphitrite) from a monsoon-influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Sahoo, G.; Khandeparker, L.

    limitation in the marine ecosystem makes the hard surfaces of organisms prone to epibiosis (Metri et al. 2002) that acts as a second skin, modulating the host’s biotic and abiotic interaction with the environment (Wahl et al. 2012). In the marine...) The second skin: ecological role of epibiotic biofilms on marine organisms. Frontiers in Microbiology, 3, 292. Wang, Y., J. Lu, J.-C. Mollet, M.R. Gretz, K.D. Hoagland (1997) Extracellular matrix assembly in diatoms (Bacillariophyceae)(II. 2, 6...

  7. Picophytoplankton as tracers of environmental forcing in a tropical monsoonal Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Patil, J.S.; Rajaneesh, K.M.

    station in Dona Paula Bay, India. Eight PP abundance peaks comprising Prochlorococcus-like cells, picoeukaryotes, and three groups of Synechococcus occurred. The chlorophyll biomass and PP abundance were negatively influenced by reduced solar radiation...

  8. Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters - India)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Jyothibabu, R.; Balachandran, K.K.; Honey, U.K.; Martin, G.D.; Vijay, J.G.; Shiyas, C.A.; Gupta, G.V.M.; Achuthankutty, C.T.

    the distribution and abundance of micro- and mesozooplankton. During premonsoon season, the CBW was characterized by warm waters (av. 32.6 ± 0.6 °C) with relatively high salinity (>23; except in the lower estuary). On the other hand, fresh water was found...

  9. Effect of monsoonal perturbations on the occurrence of phytoplankton blooms in a tropical bay

    Digital Repository Service at National Institute of Oceanography (India)

    Patil, J.S.; Anil, A.C.

    dominated by nano- and picophytoplankton, and the intervening blooms by microphytoplankton. All blooms coincided with flood tide or high tide under optimal salinity (>15) and light (depth of light penetration: >50 cm; solar radiation: 30-70 mW cm-2

  10. Seasonal variations in the fouling diatom community structure from a monsoon influenced tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Anil, A.C.

    . In: Evans LV, Hoagland KD, editors. Algal biofouling. Elsevier press. Edyvean RGJ, Rands GA, Moss BL. 1985. A comparison of diatom colonization on natural and artificial substrata in seawater. Estuar Coast Shelf Sci 20:233-238. Edyvean RGJ, Moss... surfaces. Proc Ind Natl Sci Acad 61:231-240. Pyne S, Fletcher RL, Jones EBG. 1986. Diatom communities on non-toxic substrata and two conventional antifouling surfaces immersed in Langstone harbour, south coast of England. In: Algal biofouling, Evans LV...

  11. Air-sea interaction over the tropical Indian Ocean during several contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sastry, J.S.

    stream_size 12 stream_content_type text/plain stream_name Proc_Indian_Acad_Sci_(EPS)_99_393.pdf.txt stream_source_info Proc_Indian_Acad_Sci_(EPS)_99_393.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  12. Diatom community dynamics in a tropical, monsoon-influenced environment: West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    coast of Mumbai. These port areas are characterized as mesotrophic with regard to nitrate concentration. Based on Assessment of Estuarine Trophic Status (ASSETS) model, the present status is poor and the environment is degrading (Sawant et al., 2007... strategies (e.g., low half-saturation constants for uptake that optimize nutrient acquisition under low nutrient conditions). Using resource competition models, Huisman and Weissing (1999) have 9 shown that oscillations and chaotic population...

  13. Western North Pacific Monsoon Depressions: Formation, Structure, and Transition to Tropical Cyclones

    Science.gov (United States)

    2015-09-01

    Fukutomi and Yasunari (2005) documented southerly surges during June through August that penetrated to the Equator and interacted with the Northern...evolution in Figure 4 leading to the MD2 formation. Even though Fukutomi and Yasunari (2005) define these southerly surges as “submonthly,” their case...southerly surges from Fukutomi and Yasunari (2005) also supports the potential role of cross-equatorial flow. As the southerly flow crosses into the

  14. Tidal influence on the diel vertical migration pattern of zooplankton in a tropical monsoonal Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Vineetha, G.; Jyothibabu, R.; Madhu, N.V.; Kusum, K.K.; Sooria, P.M.; Shivaprasad, A.; Reny, P.D.; Deepak, M.P.

    % formaldehyde solution (Harris et al. 2000) and stored for further analyses. Later, various zooplankton groups were sorted, identified, and counted for their abundance, expressed in individuals/cubic meter (ind. m-3). 5    Data analysis In order... 61-72. 14    Hagen W (2000) Biovolume and biomass determinations. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley ME (eds.) ICES Zooplankton Methodology Manual. Academic Press, London, pp. 87–147. Hairston NG (1976) Photoprotection...

  15. Characteristics of Summertime Circulation Patterns for Southern Taiwan's Monsoon Rainfall from July to September

    Directory of Open Access Journals (Sweden)

    Ken-Chung Ko and Yi-Shuan Tzeng

    2013-01-01

    Full Text Available This study documents the circulation features associated with summer monsoon rainfall over southern Taiwan from July through September over the period 1974 - 2001. Four types of monsoon systems, Monsoon I, I-TC, II and II-TC, are identified based on the daily rainfall data of 4 observational stations over southern Taiwan and the daily wind direction data of Lanyu. The total rainfall amount of Monsoon I and I-TC is much greater than that for Monsoon II and II-TC because the former two have more moisture. Monsoon I is characterized by a strong southwesterly flow over southern Taiwan due to the tightening of the pressure gradient between the monsoon trough and subtropical high over the western North Pacific. The Monsoon I-TC pattern exhibits a deep monsoon trough along with an anomalous cyclone near the East China Sea; this pattern drives a large volume of moisture that causes heavy rainfall over southern Taiwan. The circulation patterns of Monsoon I and I-TC resemble the flow pattern during the Mei-Yu or _ _ season from May through mid-July. The Monsoon II pattern reveals a trough south of Taiwan and accompanied by a strong ridge north to it. The convection is located near the southern flank of the monsoon trough. The circulation pattern of Monsoon II-TC yields a deep trough south of the westward protruding subtropical ridge. Additionally, the Monsoon II-TC is less significant because of the wide variety of the TC locations. The Monsoon II and II-TC patterns are similar to the Pacific-Japan (PJ pattern that can affect weather in the East Asian summer monsoon area.

  16. A Holistic View of the Coupled Monsoon System

    Science.gov (United States)

    Webster, P. J.

    2008-12-01

    The basic dynamical constraint on both the atmospheric and oceanic components of the monsoon is the strong cross-equatorial pressure gradient (CEPG). The CEPG is positive and strongest in the lower troposphere during the boreal summer and weakest and negative in the boreal winter. Counter gradients exist at higher elevations. The CEPG is a slowly varying field set up by land-sea differences, convective heating and the seasonal cycle of sea-surface temperature. The dynamic response to this evolving CEPG creates the seasonal structure of the ocean and the atmosphere and determines how the monsoon system will respond to forcing from outside the system. It determines the mode of interannual variability of the system. The CEPG drives a cross-equatorial flow that gains moisture through evaporation. Strong latent heat release occurs in littoral seas and land areas during the summer and to the south of the equator during winter creating net cross-equatorial heat fluxes from the winter to summer hemispheres. However, the cross- equatorial wind fields, so generated, cause an Ekman heat transport from the winter to the summer hemisphere. The net flux is large with a seasonal amplitude of about 2 PW. This almost matches the net atmospheric heat transport, but with reversed sign. For example, the oceanic heat flux is sufficient to reduce the north Indian Ocean upper temperature by 1-2C during summer and warm it by a comparable amount during winter. The net effect is to reduce the vigor of the atmospheric monsoon. To a large degree, the couple ocean-atmosphere system is self-regulated and closed system. Occasional outside influences (ENSO, anomalous springtime snow cover etc.) influence the monsoon. For example there is evidence that El Nino (La Nina) is associated with a weak (strong) monsoon. But a strong (weak) monsoon creates a stronger (weaker) cross-equatorial flow and an enhanced (reduced) oceanic heat flux to the winter hemisphere. In this manner, the system returns to

  17. Hydrography of the eastern Arabian Sea during summer monsoon 2002

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Shenoi, S.S.C.; Nayak, R.K.; Vinayachandran, P.N.; Nampoothiri, G.S.; Almeida, A.M.; Michael, G.S.; RameshKumar, M.R.; Sundar, D.; Sreejith, O.P.

    (figure 10), unlike in the Lakshadweep Sea before the onset of the summer monsoon (Durand et al 2004; Shenoi et al 2004, 2005a; Shankar et al 2004). The 10 cm rain event during SK-179 caused but a 0.2openbulletCfallintemper- ature, comparable... in the Lakshadweep Sea before the onset of the summer monsoon (Durand et al 2004; Shenoi et al 2004, 2005a). Variability in the salinity field was not confined to the surface layers, but was evident throughout the depth range of the observations. The high- salinity...

  18. Tropical pulmonary diseases.

    Science.gov (United States)

    Bovornkitti, S

    1996-03-01

    The term 'tropical' refers to the region of the Earth lying between the Tropic of Cancer and the Tropic of Capricorn. Located between these equatorial parallels demarcating the Torrid Zone are several underdeveloped and developing countries: Thailand, the Philippines, Malaysia, Singapore, Indonesia, southern India, Sri Lanka, Brazil, Cuba, Ethiopia, Sudan and Nigeria, to name but a few considered to be 'tropical'. The climate in most of these countries is characterized by high temperatures and high humidity. The tropical climate and general state of socio-economic underdevelopment in such countries provide an ideal environment for pathogenic organisms, their vectors and intermediate hosts to flourish. Furthermore, the cultural habits and educational background of the people living in such countries expose them to pathogens and, when these people become infected, they readily become reservoirs for, or carriers of, those organisms. Ultimately, the adverse socioeconomic conditions of underdeveloped countries impede attempts to eradicate or control tropical diseases.

  19. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors......A new book that is particularly relevant as tropical countries experience increased pressure on land resources to improve agricultural production. To ensure sustainable land use, the potentials and limitations of different kinds of tropical soils must be known in relation to crop production...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  20. Late quaternary variability of the Arabian Sea monsoon and oxygen minimum zone

    NARCIS (Netherlands)

    Reichart, Gert-Jan

    1997-01-01

    The Monsoon Among the first Europeans observing the Asiatic monsoon was Alexander the Great during his campaign to the mouth of the Indus (325 B.C.). The oldest known records of the Arabian Sea monsoonal climate, however, are shipping documents, dated about 2300 B.C., which refer to the use of the s

  1. Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth

    NARCIS (Netherlands)

    Ao, H.; Roberts, A.P.; Dekkers, M.J.|info:eu-repo/dai/nl/073463744; Liu, X.; Rohling, E.J.; Shi, Z.; An, Z.; Zhao, X.

    2016-01-01

    Environmental conditions in one of Earth's most densely populated regions, East Asia, are dominated by the monsoon. While Quaternary monsoon variability is reasonably well understood, pre-Quaternary monsoon variability and dynamics remain enigmatic. In particular, little is known about potential rel

  2. Lead time for medium range prediction of the dry spell of monsoon using multi-models

    Indian Academy of Sciences (India)

    A Jayakumar; Vinay Kumar; T N Krishnamurti

    2013-08-01

    The purpose of this study is to address prediction of the start date and the duration of breaks in the summer monsoon rains using multi-model superensemble. The availability of datasets from the ‘observing system research and predictability experiment (THORPEX)’ initiated a forecast data archive, called THORPEX interactive grand global ensemble (TIGGE), makes it possible to use forecasts from a suite of individual ensemble prediction systems (member models) and to construct multi-model superensemble forecasts that are designed to remove the collective bias errors of the suite of models. Precipitation datasets are important for this study, we have used high resolution daily gridded rainfall dataset of India Meteorological Department (IMD), in addition to rainfall estimates from tropical rainfall microwave mission (TRMM) satellite and the CPC morphing technique (CMORPH). The scientific approach of this study entails the use of a multi-model superensemble for forecast and to verify against the rainfall information during a training phase, as well as during a forecast phase. We examine the results of forecasts out to day-10 and ask how well do forecast strings of day-1 through day-10 handle the prediction of the onset and duration of the breaks in the summer monsoon rains. Our results confirm that it is possible to predict the onset of a dry spell, around week in advance from the use of the multi-model superensemble and a suite of TIGGE models.We also examine trajectories of the parcels arriving in India in such forecasts from member models and from the multi-model superensemble to validate the arrival of descending dry desert air from the Arabian region during the dry spells and its mode of transition from wet spell. Some phenological features such as a shift in the latitude of the tropical easterly jet and changes in its intensity during break periods are additional observed features that are validated from the history of multi-model superensemble forecasts

  3. Revisiting the Indian summer monsoon-ENSO links in the IPCC AR4 projections: A cautionary outlook

    Science.gov (United States)

    Roxy, Mathew; Patil, Nitin; Aparna, K.; Ashok, Karumuri

    2013-05-01

    The climate change experiments under the fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC), namely the twentieth century simulations (20C3M) and Special Report on Emissions Scenarios (SRES) A1B, are revisited to study whether these models can reproduce the ENSO and ENSO Modoki patterns as the two important modes from statistical linear analysis as observed. The capability of the models in simulating realistic ENSO/ENSO Modoki teleconnections with the Indian summer monsoon, and also the implications for the future are also explored. Results from the study indicate that only ~ 1/4th of the models from 20C3M capture either ENSO or ENSO Modoki pattern in JJAS. Of this 1/4th, only two models simulate both ENSO and ENSO Modoki as important modes. Again, out of these two, only one model simulates both ENSO and ENSO Modoki as important modes during both summer and winter. It is also shown that the two models that demonstrate ENSO Modoki as well as ENSO associated variance in both 20C3M and SRESA1B represent the links of the ISMR with ENSO reasonably in 20C3M, but indicate opposite type of impacts in SREA1B. With the limited skills of the models in reproducing the monsoon, the ENSO and ENSO Modoki, it is difficult to reconcile that the teleconnections of a tropical driver can change like that. All these indicate the challenges associated with the limitations of the models in reproducing the variability of the monsoons and ENSO flavors, not to speak of failing in capturing the potential impacts of global warming as they are expected to. More research in improving the current day simulations, improving model capacity to simulate better by improving the Green House Gases (GHG) and aerosols in the models are some of the important and immediate steps that are necessary.

  4. The 20th century transitions in basic and extreme monsoon rainfall indices in India: Comparison of the ETCCDI indices

    Science.gov (United States)

    Panda, Dileep K.; Panigrahi, P.; Mohanty, S.; Mohanty, R. K.; Sethi, R. R.

    2016-11-01

    The mean and extreme matrices of the monsoon rainfall in India not only play an important role in depicting the global monsoon climate, but also their spatiotemporal patterns influence the socio-economic profile of a major proportion of the country's huge population. Given the reported conflicting trends at the global and national scales, the present study investigates the 20th century (1901-2004) changes in monsoon rainfall of India, particularly focusing the indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) to facilitate a global comparison. Result of this comprehensive analysis, which includes the response of fifteen indices over two study periods (i.e., 1901-1940 and 1961-2004), indicates clear signals of change with respect to the period and region of study and the choice of the ETCCDI indices. While wet day frequency, low-to-moderate events and consecutive wet days (CWD) exhibit a prominent transition from a pre-1940 wetting to a post-1960 drying tendency over a large part of the central-north India (CNI), both the wet and dry extremes have occurred in a spatially less consistent manner during the recent decades. For consecutive dry days (CDD), the reported less clear global signals could be related to the timescale of analysis, as our sub-seasonal scale results display consistent changes compared to that of the seasonal and annual scales. The Palmer Drought Severity Index (PDSI) provides clear indications of a post-1960 non-stationarity, showing changes in the mean as well as variance. Based on the partial Mann-Kendall test (PMK), some of the identified rainfall trends during 1961-2004 are found to be influenced more by the tropical Indian Ocean sea surface temperatures than the El Niño-Southern Oscillation index. These results have important implications for formulating the water resource management strategy, particularly over the drying central and northern parts of the country.

  5. The role of the Indian monsoon onset in the West African monsoon onset: observations and AGCM nudged simulations

    Energy Technology Data Exchange (ETDEWEB)

    Flaounas, Emmanouil [LATMOS/IPSL, Universite Pierre et Marie Curie, Paris cedex 05 (France); Janicot, Serge [LOCEAN/IPSL, IRD, Universite Pierre et Marie Curie, Paris (France); Bastin, Sophie [LATMOS/IPSL, CNRS, Universite Pierre et Marie Curie, Paris (France); Roca, Remy [LMD/IPSL, CNRS, Universite Pierre et Marie Curie, Paris (France); Mohino, Elsa [LOCEAN/IPSL, CNRS, Universite Pierre et Marie Curie, Paris (France); Universidad de Sevilla, Sevilla (Spain)

    2012-03-15

    In spring the inland penetration of the West African Monsoon (WAM) is weak and the associated rainband is located over the Guinean coast. Then within a few days deep convection weakens considerably and the rainband reappears about 20 days after over the Sahel, where it remains until late September signalling the summer rainy season. Over the period 1989-2008 a teleconnection induced by the Indian monsoon onset is shown to have a significant impact on the WAM onset, by performing composite analyses on both observational data sets and atmospheric general circulation model simulations ensembles where the model is nudged to observations over the Indian monsoon sector. The initiation of convective activity over the Indian subcontinent north of 15 N at the time of the Indian monsoon onset results in a westward propagating Rossby wave establishing over North Africa 7-15 days after. A back-trajectory analysis shows that during this period, dry air originating from the westerly subtropical jet entrance is driven to subside and move southward over West Africa inhibiting convection there. At the same time the low-level pressure field over West Africa reinforces the moisture transport inland. After the passage of the wave, the dry air intrusions weaken drastically. Hence 20 days after the Indian monsoon onset, convection is released over the Sahel where thermodynamic conditions are more favourable. This scenario is very similar in the observations and in the nudged simulations, meaning that the Indian monsoon onset is instrumental in the WAM onset and its predictability at intraseasonal scale. (orig.)

  6. Rainfall analysis for Indian monsoon region using the merged rain gauge observations and satellite estimates: Evaluation of monsoon rainfall features

    Indian Academy of Sciences (India)

    S K Roy Bhowmik; Ananda K Das

    2007-06-01

    Objective analysis of daily rainfall at the resolution of 1° grid for the Indian monsoon region has been carried out merging dense land rainfall observations and INSAT derived precipitation estimates. This daily analysis, being based on high dense rain gauge observations was found to be very realistic and able to reproduce detailed features of Indian summer monsoon. The inter-comparison with the observations suggests that the new analysis could distinctly capture characteristic features of the summer monsoon such as north–south oriented belt of heavy rainfall along the Western Ghats with sharp gradient of rainfall between the west coast heavy rain region and the rain shadow region to the east, pockets of heavy rainfall along the location of monsoon trough/low, over the east central parts of the country, over north–east India, along the foothills of Himalayas and over the north Bay of Bengal. When this product was used to assess the quality of other available standard climate products (CMAP and ECMWF reanalysis) at the grid resolution of 2.5°, it was found that the orographic heavy rainfall along Western Ghats of India was poorly identified by them. However, the GPCC analysis (gauge only) at the resolution of 1° grid closely discerns the new analysis. This suggests that there is a need for a higher resolution analysis with adequate rain gauge observations to retain important aspects of the summer monsoon over India. The case studies illustrated show that the daily analysis is able to capture large-scale as well as mesoscale features of monsoon precipitation systems. This study with data of two seasons (2001 and 2003) has shown sufficiently promising results for operational application, particularly for the validation of NWP models.

  7. Stable isotopes of summer monsoonal precipitation in southern China and the moisture sources evidence from δ18O signature%中国南部夏季季风降水水汽来源的稳定同位素证据

    Institute of Scientific and Technical Information of China (English)

    柳鉴容; 宋献方; 袁国富; 孙晓敏; 刘鑫; 王仕琴; 王志民

    2008-01-01

    Summer monsoons (South Asian monsoon, South China Sea monsoon and Sub-tropical monsoon) are prominent features of summertime climate over southern China. Dif-ferent monsoons carry different inflow moisture into China and control the temporal and spa-tial distributions of precipitation. Analyses of meteorological data, particularly wind, tempera-ture and pressure anomalies are traditional methods of characterizing moisture sources and transport patterns. Here, we try to utilize the evidence from stable isotopes signatures to trace summer monsoons over southern China. Based on seven CHNIP (Chinese Network of Iso-topes in Precipitation) observatory stations located in southern China, monthly composite precipitation samples have been collected and analyzed for the composition of δ18O during July, 2005. The results indicated that the spatial distributions of δ18O in precipitation could properly portray the moisture sources together with their transport pathways. Moreover, the amount effect, altitude effect, temperature effect and the correlation between δ18O vs. relative humidity were discussed.

  8. Aerosol meteorology and Philippine receptor observations of Maritime Continent aerosol emissions for the 2012 7SEAS southwest monsoon intensive study

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Lynch, Peng; Posselt, Derek J; Simpas, James B; Uy, Sherdon N; Zaiger, Kimo; Blake, Donald R; Bucholtz, Anthony; Campbell, James A.; Chew, Boon Ning; Cliff, Steven; Holben, Brent N; Holz, Robert E.; Hyer, Edward J.; Ogren, John A.; Kriedendweiss, Sonia; Kuciaskas, Arunas; Lolli, Simone; Oo, Min; Perry, Kevin; Salinas, Santo V.; Sessions, Walter; Smirnov, Alexander; Walker, Annette; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-15

    Since 2007 the 7 Southeast Asian Studies (7SEAS) program has been collecting in situ data and analyzing satellite and model fields for aerosol phenomenon throughout Southeast Asia. The most significant intensive operations period associated with the boreal summertime southwest monsoon biomass burning season across the Maritime Continent occurred in August-September 2012, with enhanced deployment of Aerosol Robotic Network (AERONET) sun photometers, multiple lidars, and a Singapore supersite. These deployments were largely within or near pollution and biomass burning aerosol source regions. Simultaneously, a ship was dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012 to observe transported smoke and pollution as it entered the southwest monsoon monsoonal trough. In this paper we describe the nature of the overall 2012 southwest monsoon biomass burning season, but focus on the findings of the research cruise and the aerosol meteorology that explains the measured variability in marine boundary layer aerosol characteristics in this convectively active region. This 2012 cruise was a follow-on to a 2 week cruise in 2011, and was in part consistent with the findings of that cruise and previous conceptual models of how smoke emission and transport relates to monsoonal flows, the propagation of the Madden Julian Oscillation (MJO), tropical cyclones, and covariance between smoke transport events and the atmosphere’s thermodynamic structure. High-resolution observations in the 2011 cruise also highlighted the importance of squall lines and cold pools as they propagate across the South China Sea scavenging aerosol particles in their path. For 2012, the research cruise experienced some different environments. While ENSO was on a borderline positive phase and enhanced emissions were observed over climatologically average years, the MJO was weak and stalled over the Maritime Continent during the cruise. The monsoonal flow direction was

  9. Measurements of carbon dioxide and heat fluxes during monsoon-2011 season over rural site of India by eddy covariance technique

    Indian Academy of Sciences (India)

    M N Patil; T Dharmaraj; R T Waghmare; T V Prabha; J R Kulkarni

    2014-02-01

    An increase in carbon dioxide (CO2) concentrations in the atmosphere due to anthropogenic activities is responsible for global warming and hence in recent years, CO2 measurement network has expanded globally. In the monsoon season (July–September) of year 2011, we carried out measurements of CO2 and water vapour (H2O) concentrations along with wind and air temperature over a tropical site in southeast India having rural topography. To collect these observations, the instrumentations used were the sonic anemometer for wind and temperature, and the open path H2O/CO2 infrared gas analyzer for CO2 and H2O concentrations. Using these observations, we explored the diurnal variability of CO2 flux along with sensible and latent heat. The CO2 flux was positive during night-time and negative during daytime and in phase with convective instability. The CO2 flux relationships with the meteorological parameters such as wind speed, temperature and heat fluxes have been analysed. The seasonal (monsoon) half hour mean of CO2 flux which was −3.55 mol m−2 s−1 indicated the experimental site as a CO2 sink region (net seasonal uptake). An increase in CO2 concentrations during weekends was not observed due to unavailability of heavy vehicular traffic.

  10. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall.

    Science.gov (United States)

    Lekshmy, P R; Midhun, M; Ramesh, R; Jani, R A

    2014-07-11

    Oxygen isotopic variations in rainfall proxies such as tree rings and cave calcites from South and East Asia have been used to reconstruct past monsoon variability, mainly through the amount effect: the observed (18)O depletion of rain with increasing amount, manifested as a negative correlation of the monthly amount of tropical rain with its δ(18)O, both measured at the same station. This relation exhibits a significant spatial variability, and at some sites (especially North-East and peninsular India), the rainfall proxies are not interpretable by this effect. We show here that relatively higher (18)O-depletion in monsoon rain is not related necessarily to its amount, but rather, to large scale organized convection. Presenting δ(18)O analyses of ~654 samples of daily rain collected during summer 2012 across 9 stations in Kerala, southern India, we demonstrate that although the cross correlations between the amounts of rainfall in different stations is insignificant, the δ(18)O values of rain exhibit highly coherent variations (significant at P = 0.05). Significantly more (18)O-depletion in the rain is caused by clouds only during events with a large spatial extent of clouds observable over in the south eastern Arabian Sea.

  11. The role of the intra-daily SST variability in the Indian monsoon variability and monsoon-ENSO-IOD relationships in a global coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Terray, Pascal; Kamala, Kakitha; Masson, Sebastien; Madec, Gurvan [Universite Pierre et Marie Curie, LOCEAN/IPSL, CNRS/IRD/UPMC/MNHN, Paris Cedex 05 (France); Sahai, A.K. [Indian Institute of Tropical Meteorology, Pune (India); Luo, Jing-Jia; Yamagata, Toshio [RIGC, Yokohama (Japan)

    2012-08-15

    The impact of diurnal SST coupling and vertical oceanic resolution on the simulation of the Indian Summer Monsoon (ISM) and its relationships with El Nino-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events are studied through the analysis of four integrations of a high resolution Coupled General Circulation Model (CGCM), but with different configurations. The only differences between the four integrations are the frequency of coupling between the ocean and atmosphere for the Sea Surface Temperature (SST) parameter (2 vs. 24 h coupling) and/or the vertical oceanic resolution (31 vs. 301 levels) in the CGCM. Although the summer mean tropical climate is reasonably well captured with all the configurations of the CGCM and is not significantly modified by changing the frequency of SST coupling from once to twelve per day, the ISM-ENSO teleconnections are rather poorly simulated in the two simulations in which SST is exchanged only once per day, independently of the vertical oceanic resolution used in the CGCM. Surprisingly, when 2 h SST coupling is implemented in the CGCM, the ISM-ENSO teleconnection is better simulated, particularly, the complex lead-lag relationships between the two phenomena, in which a weak ISM occurs during the developing phase of an El Nino event in the Pacific, are closely resembling the observed ones. Evidence is presented to show that these improvements are related to changes in the characteristics of the model's El Nino which has a more realistic evolution in its developing and decaying phases, a stronger amplitude and a shift to lower frequencies when a 2-hourly SST coupling strategy is implemented without any significant changes in the basic state of the CGCM. As a consequence of these improvements in ENSO variability, the lead relationships between Indo-Pacific SSTs and ISM rainfall resemble the observed patterns more closely, the ISM-ENSO teleconnection is strengthened during boreal summer and ISM rainfall power spectrum

  12. Lidar observation of aerosol stratification in the lower troposphere over Pune during pre-monsoon season of 2006

    Indian Academy of Sciences (India)

    P Ernest Raj; S K Saha; S M Sonbawne; S M Deshpande; P C S Devara; Y Jaya Rao; K K Dani; G Pandithurai

    2008-07-01

    Lidar observations of aerosol vertical distributions in the lower troposphere along with observations of horizontal and vertical winds from collocated UHF radar (Wind Profiler) over a tropical Indian station, Pune during the pre-monsoon season (March–May) of 2006 as part of an ISRO-GBP national campaign (ICARB) have been examined. Lidar vertical profiles showed high aerosol concentrations in the surface layers and a subsequent gradual decrease with height. Results showed the presence of an elevated stratified aerosol layer around 2000–3500m height which persisted throughout the months of March and April. Observed strong vertical gradients in both horizontal and vertical winds in the lower troposphere seem to be a possible cause for the formation of elevated aerosol layers. Further, high daytime temperatures accompanied by dry conditions at the surface help to enhance the aerosol loading in the lower layers over this location.

  13. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  14. Evidence of Upwelling along Peninsular Malaysia during Southwest Monsoon

    DEFF Research Database (Denmark)

    Daryabor, Farshid

    2015-01-01

    Upwelling off the east coast of Peninsular Malaysia (PM) was detected from recent cruise data collected during the southwest monsoon. Thermocline lifting was observed at 104˚E from a number of parallel transects. To confirm the presence of upwelling, satellite remote sensing data were used...

  15. Sensitivity of the Indian Monsoon to Human Activities

    Institute of Scientific and Technical Information of China (English)

    B. KNOPF; K. ZICKFELD; M. FLECHSIG; V. PETOUKHOV

    2008-01-01

    In this paper the authors perform an extensive sensitivity analysis of the Indian summer monsoon rainfall to changes in parameters and boundary conditions which are influenced by human activities. For this study, the authors use a box model of the Indian monsoon which reproduces key features of the observed monsoon dynamics such as the annual course of precipitation and the transitions between winter and summer regimes. Because of its transparency and computational efficiency, this model is highly suitable for exploring the effects of anthropogenic perturbations such as emissions of greenhouse gases and sulfur dioxide, and land cover changes, on the Indian monsoon. Results of a systematic sensitivity analysis indicate that changes in those parameters which are related to emissions of greenhouse gases lead to an increase in Indian summer rainfall. In contrast, all parameters related to higher atmospheric aerosol concentrations lead to a decrease in Indian rainfall. Similarly, changes in parameters which can be related to forest conversion or desertification, act to decrease the summer precipitation. The results indicate that the sign of precipitation changes over India will be dependent on the direction and relative magnitude of different human perturbations.

  16. Characteristics of monsoon waves off Uran, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, B.U.; Chandramohan, P.; Mandal, S.

    's and the spectral methods for determining various wave parameters. Monsoon wave climate was stronger with the occurrence of the highest significant wave height of 2.45 m and the corresponding maximum wave height of 3.9 m in July. Significant wave height varied from...

  17. Spatial monsoon variability with respect to NAO and SO

    Indian Academy of Sciences (India)

    S B Kakade; S S Dugam

    2006-10-01

    In this paper, the simultaneous effect of North Atlantic Oscillation (NAO) and Southern Oscillation (SO) on monsoon rainfall over different homogeneous regions/subdivisions of India is studied. The simultaneous effect of both NAO and SO on Indian summer monsoon rainfall (ISMR) is more important than their individual impact because both the oscillations exist simultaneously throughout the year. To represent the simultaneous impact of NAO and SO, an index called effective strength index (ESI) has been defined on the basis of monthly NAO and SO indices. The variation in the tendency of ESI from January through April has been analyzed and reveals that when this tendency is decreasing, then the ESI value throughout the monsoon season (June-September) of the year remains negative and vice versa. This study further suggests that during the negative phase of ESI tendency, almost all subdivisions of India show above-normal rainfall and vice versa. The correlation analysis indicates that the ESI-tendency is showing an inverse and statistically significant relationship with rainfall over 14 subdivisions of India. Area wise, about 50% of the total area of India shows statistically significant association. Moreover, the ESI-tendency shows a significant relationship with rainfall over north west India, west central India, central north east India, peninsular India and India as a whole. Thus, ESI-tendency can be used as a precursor for the prediction of Indian summer monsoon rainfall on a smaller spatial scale.

  18. Hydrography of the Wadge bank - premonsoon and monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RamaRaju, V.S.; Rao, T.V.N.; RameshBabu, V.; Anto, A.F.

    and central parts of the region during pre-monsoon. The low saline Bay of Bengal waters are present in the southeastern part of the Wadge Bank and high saline waters of Arabian Sea intrude from northwest indicating the withdrawal of the North Equatorial...

  19. Is an onset vortex important for monsoon onset over Kerala?

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sankar, S.; Reason, C.

    Inter-annual variability in the formation of the mini warm pool [sea-surface temperature (SST) more than 30 degrees C] over the south eastern Arabian Sea (SEAS) and its role in the formation of the monsoon onset vortex (MOV) has been examined using...

  20. Increased particle flux to the deep ocean related to monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Ittekkot, V.; Manganini, S.J.; Ramaswamy, V.; Haake, B.; Degens, E.T.; Desai, B.N.; Honjo, S.

    . To assess the impact of monsoon-driven processes on the downward particle flux variations in the open ocean we deployed three moored arrays consisting of six time-series sediment traps at selected locations in the western, central and eastern parts...

  1. Surface temperature pattern of the Indian Ocean before summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.; Rao, D.P.

    , suggests that the position of the warmer areas in the Bay of Bengal in May is an indicator of the subsequent summer rainfall over India. The statistical method adopted for the long range forcasting of the Indian summer monsoon gives very little...

  2. Early warnings and missed alarms for abrupt monsoon transitions

    Directory of Open Access Journals (Sweden)

    Z. A. Thomas

    2015-04-01

    Full Text Available Palaeo-records from China (Cheng et al., 2009; Wang et al., 2008, 2001 demonstrate the East Asian Summer Monsoon (EASM is dominated by abrupt and large magnitude monsoon shifts on millennial timescales, switching between periods of high and weak monsoon rains. It has been hypothesised that over these timescales, the EASM exhibits two stable states with bifurcation-type tipping points between them (Schewe et al., 2012. Here we test this hypothesis by looking for early warning signals of past bifurcations in speleothem records from Sanbao Cave and Hulu Cave, China (Wang et al., 2008, 2001, spanning the penultimate glacial cycle, and in multiple model simulations derived from the data. We find hysteresis behaviour in our model simulations with transitions directly forced by solar insolation. We detect critical slowing down prior to an abrupt monsoon shift during the penultimate deglaciation consistent with long-term orbital forcing. However, such signals are only detectable when the change in system stability is sufficiently slow to be detected by the sampling resolution of the dataset, raising the possibility that the alarm was missed and a similar forcing drove earlier EASM shifts.

  3. Moisture source for summer monsoon rainfall over India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Rao, D.P.

    Southwest monsoon plays a vital role in India's economy as the major income comes from agriculture. What could be the moisture source for this copious amount of rainfall over the Indian sub-continent?. This has been studied in detail and noticed...

  4. Testing the efficiency of temperate benthic biotic indices in assessing the ecological status of a tropical ecosystem.

    Science.gov (United States)

    Sivadas, Sanitha K; Nagesh, Rahul; Gupta, G V M; Gaonkar, Udaykumar; Mukherjee, Indranil; Ramteke, Darwin; Ingole, Baban S

    2016-05-15

    The objectives of the present study were to evaluate the ecological status of tropical coastal waters using the temperate benthic indices and examine the effect of seasonal variability on the performance of benthic indices. Macrobenthic samples were collected from northwest to southeast coast of India during 2003-2012 and we tested different univariate indices, ecological strategies, indicator species and multimetric indices. AMBI and multimetric indices performed satisfactorily in evaluating the ecological status. Seasonal variability on the biotic indices was observed during the southwest monsoon and fall intermonsoon period due to recruitment. Therefore, we recommended the non-monsoon period (January-May) as a suitable time of the year to use the indices for effective assessment of the Indian coastal waters. Results show that, the temperate benthic indices are efficient in assessing the tropical environmental status. However, complementary use of different indices is suggested for accurate assessment of the environmental status.

  5. An exceptionally strengthened East Asian summer monsoon event between 19.9 and 17.1 ka BP recorded in a Hulu stalagmite

    Institute of Scientific and Technical Information of China (English)

    L.; R.; EDWARDS

    2009-01-01

    A stalagmite-based isotope record (No. H82) from Nanjing Hulu Cave, spanning from 16.5 to 10.3 ka BP, provided strong evidence for a coherence relation between the East Asian summer monsoon (EASM) and the North Atlantic climates on millennial time scales. Here we extend the high-resolution δ 18O time series back to 22.1 ka BP with additional 7 230Th dates and 573 stable isotope measurements on the lower part of that sample. The new record with a decadal resolution, piecing together with the previous data, provides a detailed, complete Last Glacial Maximum (LGM)/deglacial history of the EASM. Two centennial-scale weak monsoon events are detected within the analogue H1 event, and can be corre- lated to corresponding Greenland temperature shifts. This suggests a rapid re-organization of atmos- pheric and oceanic circulations during the ice-rafted debris (IRD) event in North Atlantic. A strength- ened EASM event spanning from 19.9 to 17.1 ka BP, firstly reported here, reaches on average a half of the monsoon intensity of B?lling warming with its peak close to the full level. Taking all available evi- dence from continental and oceanic sediments into consideration, we suggest that a forcing mecha- nism behind the event would be a positive feedback of the tropical Pacific Super-ENSO cycles in re- sponse to precessional changes in solar irradiation.

  6. An exceptionally strensthened East Asian summer monsoon event between 19.9 and 1 7.1 ka BP recorded in a Hulu stalagmite

    Institute of Scientific and Technical Information of China (English)

    WU JiangYing; WANG YongJin; CHENG Hai; L.R.EDWARDS

    2009-01-01

    A stalagmite-based isotope record (No.H82)from Nanjing Hulu Cave,spanning from 16.5 to 10.3 ka BP,provided strong evidence for a coherence relation between the East Asian summer monsoon (EASM) and the North Atlantic climates on millennial time scales.Here we extend the high-resolution δ18O time series back to 22.1 ka BP with additional 7 230 Th dates and 573 stable isotope measurements on the lower part of that sample.The new record with a decadal resolution,piecing together with the previous data,provides a detailed,complete Last Glacial Maximum (LGM)/deglacial history of the EASM.Two centennial-scale weak monsoon events are detected within the analogue H1 event,and can be correlated to corresponding Greenland temperature shifts.This suggests a rapid re-organization of atmospheric and oceanic circulations during the ice-rafted debris (IRD) event in North Atlantic.A strengthened EASM event spanning from 19.9 to 17.1 ka BP,firstly reported here,reaches on average a half of the monsoon intensity of B(Φ)iling warming with its peak close to the full level.Taking all available evidence from continental and oceanic sediments into consideration,we suggest that a forcing mechanism behind the event would be a positive feedback of the tropical Pacific Super-ENSO cycles in response to precessional changes in solar irradiation.

  7. The influence of dynamic vegetation on the present-day simulation and future projections of the South Asian summer monsoon in the HadGEM2 family

    Science.gov (United States)

    Martin, G. M.; Levine, R. C.

    2012-11-01

    Various studies have shown the importance of Earth System feedbacks in the climate system and the necessity of including these in models used for making climate change projections. The HadGEM2 family of Met Office Unified Model configurations combines model components which facilitate the representation of many different processes within the climate system, including atmosphere, ocean and sea ice, and Earth System components including the terrestrial and oceanic carbon cycle and tropospheric chemistry. We examine the climatology of the Asian summer monsoon in present-day simulations and in idealised climate change experiments. Members of the HadGEM2 family are used, with a common physical framework (one of which includes tropospheric chemistry and an interactive terrestrial and oceanic carbon cycle), to investigate whether such components affect the way in which the monsoon changes. We focus particularly on the role of interactive vegetation in the simulations from these model configurations. Using an atmosphere-only HadGEM2 configuration, we investigate how the changes in land cover which result from the interaction between the dynamic vegetation and the model systematic rainfall biases affect the Asian summer monsoon, both in the present-day and in future climate projections. We demonstrate that the response of the dynamic vegetation to biases in regional climate, such as lack of rainfall over tropical dust-producing regions, can affect both the present-day simulation and the response to climate change forcing scenarios.

  8. Reply to 'Influence of cosmic ray variability on the monsoon rainfall and temperature': a false-positive in the field of solar-terrestrial research

    CERN Document Server

    Laken, Benjamin A

    2015-01-01

    A litany of research has been published claiming strong solar influences on the Earth's weather and climate. Much of this work includes documented errors and false-positives, yet is still frequently used to substantiate arguments of global warming denial. This manuscript reports on a recent study by Badruddin & Aslam (2014), hereafter BA14, which claimed a highly significant ($p=1.4\\times10^{-5}$) relationship between extremes in the intensity of the Indian monsoon and the cosmic ray flux. They further speculated that the relationship they observed may apply across the entire tropical and sub-tropical belt, and be of global importance. However, their statistical analysis---and consequently their conclusions---were wrong. Specifically, their error resulted from an assumption that their data's underlying distribution was Gaussian. But, as demonstrated in this work, their data closely follow an ergodic chaotic distribution biased towards extreme values. From a probability density function, calculated using a...

  9. An Assessment of Monsoon Triggered Landslides in Western Nepal

    Science.gov (United States)

    Sudan Acharya, Madhu

    2010-05-01

    Due to heavy monsoon rain, rugged topography and very young mountains, frequent slope failures and soil erosion are very common in Nepal but in most of cases the natural slopes are disturbed by men to construct a road through it and the situation further aggravated by the Monsoon rain. Summer usually tests the disaster response capacity of Nepal, when the monsoons trigger water induced disasters. This year Nepal's Western regions were most severely affected by floods and landslides. Every year, sadly, it is the same story of mostly poor people living in remote villages succumbing to landslides and flooding and those who survive facing hardships brought on by the disaster. The tail end of the monsoon in October has triggered flood and landslides in Nepal which affected a total of 14 districts in the mid and far-west regions, of which Kailali, Bardiya, Banke, Dadeldhura, Accham and Kanchapur district are most affected. The affected areas are geographically scattered and remote, and are therefore difficult to access. In this year (2009), flood and landslides have claimed 62 lives, affecting more than 152,000 individuals from 27,000 families. More than 4,000 families are displaced and are taking shelter in schools, open space and forest areas with no protection from the external elements. In the above context the prevention and mitigation measures for landslides is a great challenge for Nepal. Nepal has been investing its huge amount of resources to stabilize landslides and roadside slope failures, still then it has become unmanageable during Monsoon time. Considering the above facts, an assessment of landslides which were occurred during the Monsoon (July-October 2009), along Khodpe - Jhota - Chainpur road in far western region of Nepal has been carried out based on the field observation of various landslides. The paper presents the causes and mechanisms of failures of different landslides which are mostly triggered by Monsoon rain. It also suggests some low cost

  10. The Plio-Pleistocene Evolution of the Indian Ocean Monsoonal System: Evidence from the Arabian Sea and East Africa

    Science.gov (United States)

    Wilson, K. E.; Maslin, M. A.; Mackay, A. W.; Leng, M. J.; Kingston, J.; Deino, A.

    2011-12-01

    It is important to identify the teleconnections between high latitude forcing and tropical monsoonal circulation in order to understand climate change in East Africa during the Plio-Pleistocene. Here we present a record of aeolian dust transport to the Arabian Sea between approximately 2.9 and 2.3 million years ago (Ma), constructed from the high-resolution XRF scanning of sediment cores from ODP Sites 721 and 722. Variations in the delivery of aeolian dust to the Arabian Sea, reflected in normalised flux of titanium, show that monsoonal circulation prior to 2.6 Ma, and after 2.5 Ma, was highly variable and primarily driven by orbitally-forced changes in tropical summer insolation, strongly modulated by the 400,000 year cycle of orbital eccentricity. This is confirmed by the presence of lakes in the East African Rift Valley during key eccentricity maxima. The dust record is coupled with the analysis of a well-dated series of diatomite units from the Baringo-Bogoria Basin which document the rhythmic cycling of large, precessionally-driven freshwater lakes which periodically occupied the Central Kenyan Rift Valley between 2.7 and 2.58 Ma. Analysis of one of these lake sequences using stable oxygen isotope measurements of diatom silica, combined with the XRF analysis of whole-sample geochemistry, reveals that the deep lake phase was characterised by fluctuations in rainfall and lake depth over cycles lasting, on average, 1,400 years. The presence of these millennial-scale fluctuations is confirmed by evidence of abrupt climate cycles in the oceanic dust record from the Arabian Sea.

  11. A limited area model (LAM) intercomparison study of a TWP-ICE active monsoon mesoscale convective event

    Science.gov (United States)

    Zhu, Ping; Dudhia, Jim; Field, Paul R.; Wapler, Kathrin; Fridlind, Ann; Varble, Adam; Zipser, Ed; Petch, Jon; Chen, Ming; Zhu, Zhenduo

    2012-06-01

    A limited area model (LAM) intercomparison study is conducted based on a tropical monsoonal deep convection case observed during the Tropical Warm Pool - International Cloud Experiment (TWP-ICE). The LA