WorldWideScience

Sample records for monoxide-ammonia ices unimolecular

  1. Unimolecular thermal decomposition of dimethoxybenzenes

    Science.gov (United States)

    Robichaud, David J.; Scheer, Adam M.; Mukarakate, Calvin; Ormond, Thomas K.; Buckingham, Grant T.; Ellison, G. Barney; Nimlos, Mark R.

    2014-06-01

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH3O-C6H4-OCH3) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH3O-C6H4-OCH3, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C6H4-CHO) and phenol (C6H5OH). Para-CH3O-C6H4-OCH3 immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C5H4=O). Finally, the m-CH3O-C6H4-OCH3 isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C5H4=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  2. Unimolecular thermal decomposition of dimethoxybenzenes

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, David J., E-mail: david.robichaud@nrel.gov; Mukarakate, Calvin; Nimlos, Mark R. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Scheer, Adam M.; Ormond, Thomas K.; Buckingham, Grant T. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States); Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80309-0215 (United States); Ellison, G. Barney [Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, Colorado 80309-0215 (United States)

    2014-06-21

    The unimolecular thermal decomposition mechanisms of o-, m-, and p-dimethoxybenzene (CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}) have been studied using a high temperature, microtubular (μtubular) SiC reactor with a residence time of 100 μs. Product detection was carried out using single photon ionization (SPI, 10.487 eV) and resonance enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry and matrix infrared absorption spectroscopy from 400 K to 1600 K. The initial pyrolytic step for each isomer is methoxy bond homolysis to eliminate methyl radical. Subsequent thermolysis is unique for each isomer. In the case of o-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3}, intramolecular H-transfer dominates leading to the formation of o-hydroxybenzaldehyde (o-HO-C{sub 6}H{sub 4}-CHO) and phenol (C{sub 6}H{sub 5}OH). Para-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} immediately breaks the second methoxy bond to form p-benzoquinone, which decomposes further to cyclopentadienone (C{sub 5}H{sub 4}=O). Finally, the m-CH{sub 3}O-C{sub 6}H{sub 4}-OCH{sub 3} isomer will predominantly follow a ring-reduction/CO-elimination mechanism to form C{sub 5}H{sub 4}=O. Electronic structure calculations and transition state theory are used to confirm mechanisms and comment on kinetics. Implications for lignin pyrolysis are discussed.

  3. Weak interactions and photoinitiated unimolecular decomposition

    Science.gov (United States)

    Mikhaylichenko, K.; Wittig, C.

    1998-04-01

    Numerical studies have been carried out to examine the applicability of the density of states measured just below dissociation threshold to transition state rate theory. The model system consists of two weakly interacting manifolds of levels, one of which is optically accessible. Both manifolds are coupled to dissociative continua. These studies demonstrate that immediately above reaction threshold, coupling to continua is relatively slow on the time scale of inter-manifold coupling, and it is the mixed manifolds which decay. At higher energies, couplings to continua exceed inter-manifold couplings, and it is the photoexcited bright states which undergo unimolecular decomposition.

  4. Dynamics of unimolecular dissociation of silylene

    Science.gov (United States)

    NoorBatcha, I.; Raff, Lionel M.; Thompson, Donald L.; Viswanathan, R.

    1986-04-01

    The semiempirical valence-bond surface formulated by Viswanathan et al. [J. Phys. Chem. 89, 1428 (1985)] for the unimolecular dissociation of SiH2 has been fitted to an analytical function of the type suggested by Murrell and co-workers [J. Phys. Chem. 88, 4887 (1984)]. The fitted surface accurately represents most of the experimental and CI results. The dynamics of the unimolecular dissociation of SiH2 to form Si and H2 have been investigated by classical trajectory methods on this fitted surface. The effect of describing the initial state of the molecule using normal and local mode approximations has been studied. In spite of the presence of the heavier atom, no bond or mode specificity is observed. The product energy distribution is found to be statistical. Using the RRK model, the high-pressure limiting rate coefficient is found to be k(T,∞)=3.38×1012 exp[-61.6 kcal mol-1/RT] s-1, which is less than the dissociation rate for SiH4. This has been attributed to the higher activation energy for SiH2 and to a statistical factor.

  5. Unimolecular binary half-adders with orthogonal chemical inputs.

    Science.gov (United States)

    Zhang, Lu; Whitfield, Wesley A; Zhu, Lei

    2008-04-28

    Unimolecular half-adders based upon an arylvinyl-bipyridyl fluorophore platform were demonstrated where all the chemical input combinations were fully processed by half-adder molecules to generate the arithmetic results of the entire truth table.

  6. Unimolecular Gas-Phase Thermolysis of Ethyl Acetate

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars

    1983-01-01

    The unimolecular gas-phase thermolysis of ethyl acetate has been investigated by the Flash-Vacuum-Thermolysis/Field-Ionization Mass Spectrometry (FVT/FI-MS) method in combination with Collision Activation (CA) mass spectrometry at 1253K. Two predominant reactions are observed: elimination...

  7. CO product distribution in the unimolecular dissociation of HCO

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The unimolecular dissociation of HCO ground state was investigated with the time-dependent full-quantum symplectic propagation based on the newest potential energy surface of the system. Calculated energy and widths of HCO resonance states agree well with those in the literature. CO product distribution was systematically investigated. A simple model was presented to interpret the rovibrational distributions in HCO dissociation.

  8. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed

    2016-09-20

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  9. Effects of architecture on the stability of thermosensitive unimolecular micelles.

    Science.gov (United States)

    Steinschulte, Alexander A; Schulte, Bjoern; Rütten, Stephan; Eckert, Thomas; Okuda, Jun; Möller, Martin; Schneider, Stefanie; Borisov, Oleg V; Plamper, Felix A

    2014-03-14

    The influence of architecture on polymer interactions is investigated and differences between branched and linear copolymers are found. A comprehensive picture is drawn with the help of a fluorescence approach (using pyrene and 4HP as probe molecules) together with IR or NMR spectroscopy and X-ray/light scattering measurements. Five key aspects are addressed: (1) synergistic intramolecular complexation within miktoarm stars. The proximity of thermoresponsive poly(propylene oxide) (PPO) and poly(dimethylaminoethyl methacrylate) (PDMAEMA) within a miktoarm star leads to complexation between these weakly interacting partners. Consequently, the original properties of the constituents are lost, showing hydrophobic domains even at low temperatures, at which all homopolymers are water soluble. (2) Unimolecular micelles for miktoarm stars. The star does not exhibit intermolecular self-assembly in a large temperature range, showing unimers up to 55 °C. This behavior was traced back to a reduced interfacial tension between the PPO-PDMAEMA complex and water (PDMAEMA acts as a "microsurfactant"). (3) Unimolecular to multimolecular micelle transition for stars. The otherwise stable unimolecular micelles self-assemble above 55 °C. This aggregation is not driven by PPO segregation, but by collapse of residual PDMAEMA. This leads to micrometer-sized multilamellar vesicles stabilized by poly(ethylene oxide) (PEO). (4) Prevention of pronounced complexation within diblock copolymers. In contrast to the star copolymers, PPO and PDMAEMA adapt rather their homopolymer behavior within the diblock copolymers. Then they show their immanent LCST properties, as PDMAEMA turns insoluble at elevated temperatures, whereas PPO becomes hydrophobic below room temperature. (5) Two-step micellization for diblock copolymers. Upon heating of linear copolymers, the dehydration of PPO is followed by self-assembly into spherical micelles. An intermediate prevalence of unimolecular micelles is revealed

  10. MODEL STUDIES OF MODE-SPECIFICITY IN UNIMOLECULAR REACTION DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Waite, Boyd A.; Miller, William H.

    1980-06-01

    Essentially exact quantum mechanical calculations are carried out to determine the energies and lifetimes of the quasi-bound states for a system of two (non~linearly) coupled oscillators (one of which is harmonic, the other being able to dissociate). For weak coupling the system displays mode-specificity, i.e., the unimolecular rate constants are not a monotonic function of the total energy, but increased coupling and frequency degeneracy tends to destroy mode-specificity. A somewhat surprising result is that for a given coupling the degree of modespecificity is roughly independent of the energy, in marked contrast to the fact that there is an energetic threshold for the onset of "stochastic trajectories" of the corresponding classical system; i.e., there seems to be no relation between statistical/mode-specific behavior of the unimolecular rate constants and stochastic/regular classical trajectories. In order to be able to treat more physically relevant models--i.e., those with more than two degrees of freedom--a semiclassical model is constructed and seen to be able to reproduce the accurate quantum mechanical rates reasonably well.

  11. The density of reactive levels in NO2 unimolecular decomposition

    Science.gov (United States)

    Ionov, S. I.; Davis, H. F.; Mikhaylichenko, K.; Valachovic, L.; Beaudet, R. A.; Wittig, C.

    1994-09-01

    Laser induced fluorescence spectra of expansion-cooled NO2/Ne samples (1 and 2 K) are reported for transitions that originate from the lowest rovibronic levels and terminate on levels near D0. At 1 K, nearly all transitions originate from N`=0. With the present resolution of 0.02 cm-1, the 1 K spectra are resolved rather well. The high density of transitions is due to couplings between rovibronic levels with different N and K quantum numbers and with electronic characters that borrow oscillator strength from bright B2 vibronic species of the mixed 2A1/2B2 electronic system. Just above reaction threshold, such rovibronic species comprise the manifold of levels sampled by optically prepared wave packets. However, at higher energies we argue that the density of B2 vibronic species is a more relevant parameter to describe the nature of unimolecular reactions. Nuances of the optical excitation process are discussed.

  12. High-temperature unimolecular decomposition of ethyl propionate

    Science.gov (United States)

    Giri, Binod Raj; AlAbbad, Mohammed; Farooq, Aamir

    2016-11-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976-1300 K and pressures of 825-1875 Torr. The reaction progress was monitored by detecting C2H4 near 10.532 μm using CO2 gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that C2H4 elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  13. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod Raj

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  14. Unimolecular micelles and electrostatic nanoassemblies stemming from hyperbranched polyethyleneimine

    Energy Technology Data Exchange (ETDEWEB)

    Picco, A.; Azzaroni, O.; Ceolin, M. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplic, La Plata, BA (Argentina); Silbestri, G.F. [Universidad Nacional del Sur, Bahia Blanca Bueno (Argentina)

    2012-07-01

    Full text: Hyperbranched polyethyleneimine (HPEI) was used as a building block to construct different self-assembled soft nanomaterials. This was accomplished via covalent linkage of carboxylic acids (CA) of different chain lengths to terminal amino groups of HPEI, thus leading to the formation of reverse unimolecular micelles constituted of a hydrophilic core and a hydrophobic shell. On the other hand, acid base interactions in organic solvents between CAs and peripheral amino groups of HPEI also facilitated the formation of electrostatic assemblies with reverse micellar properties. In this work we describe the formation of both structures as well as their characterization using diverse techniques including SAXS, NMR, IR, and fluorescence spectroscopy, among others. Unimolecular micelles were synthesized through the reaction of HPEI (Mn= 10 KDa) and acyl chlorides with different chain lengths (C8, C10, C12, C14, C16, C18). Depending on the chain length, the solvent and the temperature, a broad variety of supra macromolecular assemblies can be observed by SAXS measurements, including structured aggregation, and gelation. Hyperbranched electrostatic assemblies were simply produced by mixing HPEI with selected carboxylic acids (C8, C10, C12, C14, C16, C18) in an appropriate solvent, which dissolves the CA, or both reactants, i.e. chloroform, toluene or THF. The formation of the assemblies was corroborated using FT-IR by monitoring the appearance of the carboxylate bands. SAXS experiments of electrostatically assembled micelles showed globular, core-shell structures, whose characteristics are similar, in many cases, to their covalent counterparts prepared using the same chain length CA shells. (author)

  15. Correlated product state distributions in the unimolecular reaction of NCNO

    Science.gov (United States)

    Qian, C. X. W.; Ogai, A.; Reisler, H.; Wittig, C.

    1989-01-01

    Following excitation to S1, expansion-cooled NCNO undergoes nonradiative couplings to S0 and predissociates to CN and NO. Doppler profiles of selected CN B 2Σ+←X 2Σ+ rotational lines were recorded using LIF at several excess energies between 0 and 3000 cm-1. This yields NO V,R distributions associated with specific CN(X 2Σ+) rotational states. The profiles can be fit using the statistical PST/SSE model, and the correlated distributions show no evidence of dynamical bias or exit channel barriers. Doppler profiles generated with polarized lasers show little or no spatial anisotropy of recoil velocities, and are fit by anisotropy parameters β˜0, even at excess energies where predicted unimolecular lifetimes are ≤1 ps. Possible causes for the lack of spatial anisotropy are discussed. Analyses of NO fragment LIF spectra obtained at excess energies of 2348 and 2875 cm-1 show a slight preference for the Π(A') Λ-doublet component for J`≥30.5, suggesting planar dissociation. An in-plane orientation of the singly occupied pπ lobe in NO is to be expected for dissociation on the ground (A') electronic potential energy surface.

  16. Predicted thermochemistry and unimolecular kinetics of nitrous sulfide

    DEFF Research Database (Denmark)

    Marshall, Paul; Gao, Yide; Glarborg, Peter

    2011-01-01

    The geometry of N2S was obtained at the CCSD(T)/aug-cc-pV(T + d)Z level of theory and energies with coupled-cluster single double triple (CCSD(T)) and basis sets up to aug-cc-pV(6 + d)Z. After correction for anharmonic zero-point energy, core-valence correlation, correlation up to CCSDT...... crossing point between singlet and triplet potential energy curves is found at r(N-N) approximate to 1.105 angstrom and r(N-S) approximate to 2.232 angstrom, with an energy 72 kJ mol (1) above N-2 + S(P-3). Application of Troe's unimolecular formalism yields the low-pressure-limiting rate constant......(Q) and relativistic effects, D-0 for the N-S bond is estimated as 71.9 kJ mol (1), and the corresponding thermochemistry for N2S is Delta H-f(0)degrees = 205.4 kJ mol(-1) and Delta H-f(298)degrees = 202.6 kJ mol(-1) with an uncertainty of +/- 2.5 kJ mol(-1). Using CCSD(T)/aug-cc-pV(T + d) theory the minimum energy...

  17. A New Formulation of the Lindemann Mechanism of Unimolecular Reactions

    Institute of Scientific and Technical Information of China (English)

    钱人元

    2003-01-01

    A new formulation of the Lindemann mechanism of unimolecular reactions in gaseous phase is presented, without the use of steady state hypothesis. It is hereby shown that the nature of applicability of steady state hypothesis in the regime of high reactant gas pressure is different from that in the regime of low gas pressure. In the former case it is an equilibrium approximation, while in the latter case it is a highly reactive intermediate approximation in no connection with a steady state. Furthermore for the latter case it is shown that in the classical formulation of Lindemann mecbRnism the use of steady state hypothesis is an ad hoc assumption. A highly reactive intermediate in the sense that its concentration is very small during the whole course of reaction is a necessary condition for the applicability of very reactive intermediate approximation. When the two distinctive nature of the applicability of steady state hypothesis is mlxed-up, wrong or useless conclusion may be arrived at. The only possible case of realizing a true steady state in a complex reaction is pointed out.

  18. Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

    Science.gov (United States)

    Macoretta, Danielle; Rabnawaz, Muhammad; Grozea, Claudia M; Liu, Guojun; Wang, Yu; Crumblehulme, Alison; Wyer, Martin

    2014-12-10

    Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer. Investigated is the effect of varying the catalyst amount, polymer amount, as well as block copolymer type and composition on the structure, morphology, and oil- and water-repellency of the coatings. Under optimized conditions, the prepared coatings were optically clear and resistant to writing by a permanent marker. The marker's trace was the faintest on PFPO-b-PIPSMA coatings. In addition, the PFPO-b-PIPSMA coatings were far more wear-resistant than the PIPSMA-b-PFOEMA coatings.

  19. Theoretical study of the unimolecular dissociation of HCO

    Science.gov (United States)

    Whittier, Gregory Scott

    This thesis offers a detailed theoretical study of the unimolecular dissociation of formyl radical, HCO, which is an important intermediate in combustion chemistry. A quantum mechanical treatment of the dissociation of isolated HCO is presented along with a mixed quantum/classical study of the excitation and deexcitation of HCO in collisions of HCO with the bath gas Ar. The results are then used to model the kinetics of the collision-induced dissociation of HCO by Ar. Resonance states of HCO are calculated for total angular momentum J = 0, 1, and 3 using the artificial boundary inhomogeneity (ABI) method of Jang and Light [J. Chem. Phys. 102, 3262 (1995)]. Resonance energies and widths are determined by analyzing the Smith lifetime matrix. A resonance search algorithm and a method for resolving overlapping resonances are described. The accurate prediction of J = 3 resonances from J = 0 and 1 data is tested with good results for excited stretch resonance and less accurate results for bending resonances, demonstrating the degree of separability of vibration from overall rotation for these quasi-bound states. A quantum/classical time-dependent self-consistent field (Q/C TDSCF) approach is used to simulate the dynamics of collisions of Ar with HCO. State-to-state cross sections and thermal rate constants for vibrational transitions are presented. Using this model together with assumptions about the rotational energy transfer and a master equation treatment of the kinetics, the low-pressure thermal rate of collision-induced dissociation was calculated over the 300-4000 K temperature range. Comparison with experiment shows good agreement at high temperatures and poor agreement at low temperatures. The high temperature results were sufficient to obtain an Arrhenius expression for the rate that agrees with all experimental results of which we are aware.

  20. Computational Kinetic Study for the Unimolecular Decomposition Pathways of Cyclohexanone.

    Science.gov (United States)

    Zaras, Aristotelis M; Dagaut, Philippe; Serinyel, Zeynep

    2015-07-16

    There has been evidence lately that several endophytic fungi can convert lignocellulosic biomass into ketones among other oxygenated compounds. Such compounds could prove useful as biofuels for internal combustion engines. Therefore, their combustion properties are of high interest. Cyclohexanone was identified as an interesting second-generation biofuel ( Boot , M. ; et al. Cyclic Oxygenates: A New Class of Second-Generation Biofuels for Diesel Engines? Energy Fuels 2009 , 23 , 1808 - 1817 ; Klein-Douwel , R. J. H. ; et al. Soot and Chemiluminescence in Diesel Combustion of Bio-Derived, Oxygenated and Reference Fuels . Proc. Combust. Inst. 2009 , 32 , 2817 - 2825 ). However, until recently ( Serinyel , Z. ; et al. Kinetics of Oxidation of Cyclohexanone in a Jet- Stirred Reactor: Experimental and Modeling . Proc. Combust. Inst. 2014 ; DOI: 10.1016/j.proci.2014.06.150 ), no previous studies on the kinetics of oxidation of that fuel could be found in the literature. In this work, we present the first theoretical kinetic study of the unimolecular decomposition pathways of cyclohexanone, a cyclic ketone that could demonstrate important fuel potential. Using the quantum composite G3B3 method, we identified six different decomposition pathways for cyclohexanone and computed the corresponding rate constants. The rate constants were calculated using the G3B3 method coupled with Rice-Ramsperger-Kassel-Marcus theory in the temperature range of 800-2000 K. Our calculations show that the kinetically more favorable channel for thermal decomposition is pathway 2 that produces 1,3-butadien-2-ol, which in turn can isomerize easily to methyl vinyl ketone through a small barrier. The results presented here can be used in a future kinetic combustion mechanism.

  1. Predicted thermochemistry and unimolecular kinetics of nitrous sulfide

    Science.gov (United States)

    Marshall, Paul; Gao, Yide; Glarborg, Peter

    2011-09-01

    The geometry of N2S was obtained at the CCSD(T)/aug-cc-pV(T + d)Z level of theory and energies with coupled-cluster single double triple (CCSD(T)) and basis sets up to aug-cc-pV(6 + d)Z. After correction for anharmonic zero-point energy, core-valence correlation, correlation up to CCSDT(Q) and relativistic effects, D0 for the N-S bond is estimated as 71.9 kJ mol-1, and the corresponding thermochemistry for N2S is {Δ }_f H_0° = 205.4 kJ mol^{ - 1} and {Δ }_f H_{298}° = 202.6 kJ mol^{ - 1} with an uncertainty of ±2.5 kJ mol-1. Using CCSD(T)/aug-cc-pV(T + d) theory the minimum energy crossing point between singlet and triplet potential energy curves is found at r(N-N) ≈ 1.105 Å and r(N-S) ≈ 2.232 Å, with an energy 72 kJ mol-1 above N2 + S(3P). Application of Troe's unimolecular formalism yields the low-pressure-limiting rate constant for dissociation of N2S k0 = 7.6 × 10-10 exp(-126 kJ mol-1/RT) cm3 molecule-1 s-1 over 700-2000 K. The estimated uncertainty is a factor of 4 arising from unknown parameters for energy transfer between N2S and Ar or N2 bath gas. The thermochemistry and kinetics were included in a mechanism for CO/H2/H2S oxidation and the conclusion is that little NO is produced via subsequent chemistry of NNS.

  2. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    AlAbbad, Mohammad

    2017-07-08

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  3. A high temperature kinetic study for the thermal unimolecular decomposition of diethyl carbonate

    Science.gov (United States)

    AlAbbad, Mohammed; Giri, Binod Raj; Szőri, Milan; Viskolcz, Béla; Farooq, Aamir

    2017-09-01

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900-1200 K and 1.2-2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl hydrogen carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature-dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  4. The Unimolecular Decomposition and H Abstraction Reactions by HO and HO2 from n-Butanol

    Science.gov (United States)

    Moc, Jerzy; Black, Gráinne; Simmie, John M.; Curran, Henry J.

    2009-08-01

    By using correlated ab initio (MP2, CCSD(T)) and multi-level (G3, CBS-QB3) methods we have studied unimolecular and bimolecular reactions of n-butanol in the gas phase. The specific processes investigated include H2O elimination and hydrogen abstraction by the hydroxy (HO) and hydroperoxy (HO2) radicals from this alcohol.

  5. Unimolecular decomposition of 5-aminotetrazole and its tautomer 5-iminotetrazole: new insight from isopotential searching.

    Science.gov (United States)

    Paul, Kristian W; Hurley, Margaret M; Irikura, Karl K

    2009-03-19

    Aminotetrazole compounds have become attractive ingredients in gas generating compositions, solid rocket propellants, and green pyrotechnics. Therefore, a fundamental understanding of their thermal decomposition mechanisms and thermodynamics is of great interest. In this study, the specular reflection isopotential searching method was used to investigate the unimolecular decomposition mechanisms of 5-iminotetrazole (5-ITZ), 1H-5-aminotetrazole (1H-5-ATZ), and 2H-5-aminotetrazole (2H-5-ATZ). Subsequent thermochemical analysis of the unimolecular decomposition pathways was performed at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G(3df,3pd) level of theory. Based upon the relative reaction barriers predicted in this study, the initial gaseous products of 5-ITZ unimolecular decomposition are HN(3) and NH(2)CN (calculated activation barrier equal to 199.5 kJ/mol). On the other hand, the initial gaseous products of 1H-5-ATZ and 2H-5-ATZ unimolecular decomposition are predicted to be N(2) and metastable CH(3)N(3) (calculated activation barriers equal to 169.2 and 153.7 kJ/mol, respectively). These predicted unimolecular decomposition products and activation barriers are in excellent agreement with thermal decomposition experiments performed by Lesnikovich et al. [Lesnikovich, A. I.; Ivashkevich, O. A.; Levchik, S. V.; Balabanovich, A. I.; Gaponik, P. N.; Kulak, A. A. Thermochim. Acta 2002, 388, 233], in which the apparent activation barriers were measured to be approximately 200 and 150 kJ/mol, respectively, for 5-ITZ and 1H-5-ATZ/2H-5-ATZ.

  6. Preparation and Unimolecular-Micellization Behavior of Homopolymer of Surface-Active Monomer AMC14AB

    Institute of Scientific and Technical Information of China (English)

    Kang-kai Liu; Lei Li

    2008-01-01

    (2-acrylamido) ethyl tetradecyl dimethylammonium bromide (AMC14AB) was polymerized in aqueous solution to form the homopolymer P(AMC14AB). The physicochemical properties of P(AMC14AB) in aqueous solution were mainly studied with fluorescent probe method, surface tension measurement and conductometry. The experimental results show that the aggregation morphology of P(AMC14AB) in aqueous solution is unimolecular micelle as expected. Being different from conventional multimolecular micelle systems, the unimoleculax micelle system of P(AMC14AB) not only shows critical micellar concentration (CMC=0), (i.e.once added to pure water, the surface tension decreases immediately in spite how small the density is), but also the surface tension stays almost the same with the concentration increasing. That is to say, there is no mutational point on the relationship curve between surface tension and concentration. Furthermore, the unimolecular micelle system of P(AMC14AB) has no Krafft temperature, i.e. at any temperature, so long as it is dissolved in water, the unimolecular micelles will form. Besides this, for the solubilization of hydrophobic organic substances, the unimolecular micelle system of P(AMC14AB) is obviously different from the common multimolecular micelle system, having no turning point on the relationship curve between toluene solubilizaion amount and P(AMC14AB) concentration, and the solubilizing ability of the unimolecular-micelle system of P(AMC14AB) for hydrophobic organic substances is much higher than that of the conventional multimolecular micelle solutions of common surfactants, such as centyl trimethyl ammonium bromide.

  7. Fabrication of Unimolecular Double-stranded DNA Microarrays on Solid Surfaces for Probing DNA-Protein/Drug Interactions

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2003-01-01

    Full Text Available We present a novel method for fabricating unimole cular double-stranded DNA microarrays on solid surfaces, which were used to probe sequence-specific DNA/protein interactions. For manufacturing the unimolecular double-stranded DNA microarrays, two kinds of special single-stranded oligonucleotides, constant oligonucleotide and target oligonucleotide, were chemically synthesized. The constant oligonucleotides with internal aminated dT were used to capture and immobilize the target oligonucleotides onto the solid surface, and also to provide a primer for later enzymatic extension reactions, while target oligonucleotides took the role of harbouring DNA-binding sites of DNA-binding proteins. The variant target oligonucleotides were annealed and ligated with the constant oligonucleotides to form the new unimolecular oligonucleotides for microspotting. The prepared unimolecular oligonucleotides were microspotted on aldehyde-derivatized glass slides to make partial-dsDNA microarrays. Finally, the partial-dsDNA microarrays were converted into a unimolecular complete-dsDNA microarray by a DNA polymerase extension reaction. The efficiency and accuracy of the polymerase synthesis were demonstrated by the fluorescent-labeled dUTP incorporation in the enzymatic extension reaction and the restriction endonuclease digestion of the fabricated unimolecular complete-dsDNA microarray. The accessibility and specificity of the sequence-specific DNA-binding proteins binding to the immobilized unimolecular dsDNA probes were demonstrated by the binding of Cy3 labeled NF-?B (p50·p50 to the unimolecular dsDNA microarray. This unimolecular dsDNA microarray provides a general technique for high-throughput DNA-protein or DNA-drugs interactions.

  8. Scalable synthesis of sequence-defined, unimolecular macromolecules by Flow-IEG.

    Science.gov (United States)

    Leibfarth, Frank A; Johnson, Jeremiah A; Jamison, Timothy F

    2015-08-25

    We report a semiautomated synthesis of sequence and architecturally defined, unimolecular macromolecules through a marriage of multistep flow synthesis and iterative exponential growth (Flow-IEG). The Flow-IEG system performs three reactions and an in-line purification in a total residence time of under 10 min, effectively doubling the molecular weight of an oligomeric species in an uninterrupted reaction sequence. Further iterations using the Flow-IEG system enable an exponential increase in molecular weight. Incorporating a variety of monomer structures and branching units provides control over polymer sequence and architecture. The synthesis of a uniform macromolecule with a molecular weight of 4,023 g/mol is demonstrated. The user-friendly nature, scalability, and modularity of Flow-IEG provide a general strategy for the automated synthesis of sequence-defined, unimolecular macromolecules. Flow-IEG is thus an enabling tool for theory validation, structure-property studies, and advanced applications in biotechnology and materials science.

  9. Mode specificity and product energy disposal in unimolecular reactions: insights from the sudden vector projection model.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2014-04-03

    A simple model is proposed to predict mode specificity and product energy disposal in unimolecular dissociation reactions. This so-called Sudden Vector Projection (SVP) model quantifies the coupling of a reactant or product mode with the reaction coordinate at the transition state by projecting the corresponding normal mode vector onto the imaginary frequency mode at the saddle point. Due to the sudden assumption, SVP predictions for mode specificity are expected to be valid only when the reactant molecule has weak intermodal coupling. On the other hand, the sudden limit is generally satisfied for its predictions of product energy disposal in unimolecular reactions with a tight barrier. The SVP model is applied to several prototypical systems and the agreement with available experimental and theoretical results is satisfactory.

  10. Bioreducible unimolecular micelles based on amphiphilic multiarm hyperbranched copolymers for triggered drug release

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel type of bioreducible amphiphilic multiarm hyperbranched copolymer (H40-star-PLA-SS-PEG) based on Boltorn H40 core,poly(L-lactide) (PLA) inner-shell,and poly(ethylene glycol) (PEG) outer-shell with disulfide-linkages between the hydrophobic and hydrophilic moieties was developed as unimolecular micelles for controlled drug release triggered by reduction.The obtained H40-star-PLA-SS-PEG was characterized in detail by nuclear magnetic resonance (NMR),Fourier transform infrared (FTIR),gel permeation chromatography (GPC),differential scanning calorimeter (DSC),and thermal gravimetric analysis (TGA).Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses suggested that H40-star-PLA-SS-PEG formed stable unimolecular micelles in aqueous solution with an average diameter of 19 nm.Interestingly,these micelles aggregated into large particles rapidly in response to 10 mM dithiothreitol (DTT),most likely due to shedding of the hydrophilic PEG outer-shell through reductive cleavage of the disulfide bonds.As a hydrophobic anticancer model drug,doxorubicin (DOX) was encapsulated into these reductive unimolecular micelles.In vitro release studies revealed that under the reduction-stimulus,the detachment of PEG outer-shell in DOX-loaded micelles resulted in a rapid drug release.Flow cytometry and confocal laser scanning microscopy (CLSM) measurements indicated that these DOX-loaded micelles were easily internalized by living cells.Methyl tetrazolium (MTT) assay demonstrated a markedly enhanced drug efficacy of DOX-loaded H40-star-PLA-SS-PEG micelles as compared to free DOX.All of these results show that these bioreducible unimolecular micelles are promising carriers for the triggered intracellular delivery of hydrophobic anticancer drugs.

  11. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans.

    Science.gov (United States)

    Finan, Brian; Ma, Tao; Ottaway, Nickki; Müller, Timo D; Habegger, Kirk M; Heppner, Kristy M; Kirchner, Henriette; Holland, Jenna; Hembree, Jazzminn; Raver, Christine; Lockie, Sarah H; Smiley, David L; Gelfanov, Vasily; Yang, Bin; Hofmann, Susanna; Bruemmer, Dennis; Drucker, Daniel J; Pfluger, Paul T; Perez-Tilve, Diego; Gidda, Jaswant; Vignati, Louis; Zhang, Lianshan; Hauptman, Jonathan B; Lau, Michele; Brecheisen, Mathieu; Uhles, Sabine; Riboulet, William; Hainaut, Emmanuelle; Sebokova, Elena; Conde-Knape, Karin; Konkar, Anish; DiMarchi, Richard D; Tschöp, Matthias H

    2013-10-30

    We report the discovery and translational therapeutic efficacy of a peptide with potent, balanced co-agonism at both of the receptors for the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This unimolecular dual incretin is derived from an intermixed sequence of GLP-1 and GIP, and demonstrated enhanced antihyperglycemic and insulinotropic efficacy relative to selective GLP-1 agonists. Notably, this superior efficacy translated across rodent models of obesity and diabetes, including db/db mice and ZDF rats, to primates (cynomolgus monkeys and humans). Furthermore, this co-agonist exhibited synergism in reducing fat mass in obese rodents, whereas a selective GIP agonist demonstrated negligible weight-lowering efficacy. The unimolecular dual incretins corrected two causal mechanisms of diabesity, adiposity-induced insulin resistance and pancreatic insulin deficiency, more effectively than did selective mono-agonists. The duration of action of the unimolecular dual incretins was refined through site-specific lipidation or PEGylation to support less frequent administration. These peptides provide comparable pharmacology to the native peptides and enhanced efficacy relative to similarly modified selective GLP-1 agonists. The pharmacokinetic enhancement lessened peak drug exposure and, in combination with less dependence on GLP-1-mediated pharmacology, avoided the adverse gastrointestinal effects that typify selective GLP-1-based agonists. This discovery and validation of a balanced and high-potency dual incretin agonist enables a more physiological approach to management of diseases associated with impaired glucose tolerance.

  12. Octreotide-functionalized and resveratrol-loaded unimolecular micelles for targeted neuroendocrine cancer therapy

    Science.gov (United States)

    Xu, Wenjin; Burke, Jocelyn F.; Pilla, Srikanth; Chen, Herbert; Jaskula-Sztul, Renata; Gong, Shaoqin

    2013-09-01

    Medullary thyroid cancer (MTC) is a neuroendocrine tumor (NET) that is often resistant to standard therapies. Resveratrol suppresses MTC growth in vitro, but it has low bioavailability in vivo due to its poor water solubility and rapid metabolic breakdown, as well as lack of tumor-targeting ability. A novel unimolecular micelle based on a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for NET-targeted delivery. The hyperbranched amphiphilic block copolymer consisted of a dendritic Boltorn® H40 core, a hydrophobic poly(l-lactide) (PLA) inner shell, and a hydrophilic poly(ethylene glycol) (PEG) outer shell. Octreotide (OCT), a peptide that shows strong binding affinity to somatostatin receptors, which are overexpressed on NET cells, was used as the targeting ligand. Resveratrol was physically encapsulated by the micelle with a drug loading content of 12.1%. The unimolecular micelles exhibited a uniform size distribution and spherical morphology, which were determined by both transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cellular uptake, cellular proliferation, and Western blot analyses demonstrated that the resveratrol-loaded OCT-targeted micelles suppressed growth more effectively than non-targeted micelles. Moreover, resveratrol-loaded NET-targeted micelles affected MTC cells similarly to free resveratrol in vitro, with equal growth suppression and reduction in NET marker production. These results suggest that the H40-based unimolecular micelle may offer a promising approach for targeted NET therapy.

  13. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products

    Science.gov (United States)

    Fang, Yi; Liu, Fang; Barber, Victoria P.; Klippenstein, Stephen J.; McCoy, Anne B.; Lester, Marsha I.

    2016-02-01

    In the atmosphere, a dominant loss process for carbonyl oxide intermediates produced from alkene ozonolysis is also an important source of hydroxyl radicals. The rate of appearance of OH radicals is revealed through direct time-domain measurements following vibrational activation of prototypical methyl-substituted Criegee intermediates under collision-free conditions. Complementary theoretical calculations predict the unimolecular decay rate for the Criegee intermediates in the vicinity of the barrier for 1,4 hydrogen transfer that leads to OH products. Both experiment and theory yield unimolecular decay rates of ca. 108 and 107 s-1 for syn-CH3CHOO and (CH3)2COO, respectively, at energies near the barrier. Tunneling through the barrier, computed from high level electronic structure theory and experimentally validated, makes a significant contribution to the decay rate. Extension to thermally averaged unimolecular decay of stabilized Criegee intermediates under atmospheric conditions yields rates that are six orders of magnitude slower than those evaluated directly in the barrier region.

  14. Unimolecular Rate Expression for Cyclohexene Decomposition and Its Use in Chemical Thermometry under Shock Tube Conditions.

    Science.gov (United States)

    Tsang, Wing; Rosado-Reyes, Claudette M

    2015-07-16

    The methods used in deriving the rate expressions from comparative rate single-pulse shock tube studies, recent direct shock tube studies, and high-pressure flow experiments bearing on the data for the reverse Diels-Alder decomposition of cyclohexene to form ethylene and 1,3-butadiene are reviewed. This current interest is due to the increasing need for accurate kinetics and physical data (particularly the temperature) for realistic simulations in practical areas such as combustion. The rate constants derived from the direct shock tube studies and high-pressure flow experiments are somewhat larger than those used in comparative rate single-pulse shock tube experiments. For the latter, it is shown that they have been derived from a variety of independent experiments that include rate constants for unimolecular decomposition and isomerization processes that are considered to be well understood. The possibility of non-Arrhenius behavior in the unimolecular rate constants as a consequence of the large range covered in rate constants (as much as 12 orders of magnitude) for the comparative rate experiments has been examined and ruled out as a source of the discrepancy. Our analysis shows that there is the need to consider the possibility of radical-induced decompositions for verifying the correctness of the reaction mechanisms in studying unimolecular reactions. In the case of cyclohexene decomposition, recent experiments demonstrating the presence of residual amounts of H atoms in shock tube experiments suggest that addition to the double bond can also lead to the formation of ethylene and 1,3-butadiene and hence to rate constants larger than the true values. This possibility is even more likely to occur in high-pressure flow experiments. As a result, the internal standard method must be used with care and a radical inhibitor should always be present in sufficiently large quantities to suppress possible chain reactions. The present analysis results have important

  15. Rate coefficients for photoinitiated NO 2 unimolecular decomposition: energy dependence in the threshold regime

    Science.gov (United States)

    Stolyarov, D.; Polyakova, E.; Bezel, I.; Wittig, C.

    2002-05-01

    Rate coefficients k( E) for photoinitiated NO 2 unimolecular decomposition have been obtained by recording the product NO laser-induced fluorescence signal intensity versus the delay between the pump and probe pulses. A 10 ps pump-probe cross-correlation temporal width provides a useful compromise between time and frequency resolution (3 cm-1) . k( E) increases rapidly: from ˜2×10 10 to ⩾1.3×10 11 s-1 within 25 cm-1 of reaction threshold. In this regime, long-range interfragment interactions play an important role. A high level of theory will be needed to reconcile these results.

  16. Ka-mixing in the unimolecular dissociation of NO 2 studied by classical dynamics calculations

    Science.gov (United States)

    Grebenshchikov, S. Yu; Flöthmann, H.; Schinke, R.; Bezel, I.; Wittig, C.; Kato, S.

    1998-03-01

    Coriolis and centrifugal vibration-rotation coupling in the unimolecular dissociation of ground electronic state NO 2 has been examined by using classical trajectories. The time evolution of the projection Ka of the rotational angular momentum N in a body-fixed frame is analyzed. The main result is a relation between the decomposition lifetime and the degree of Ka-mixing. For example, less than 30% of the available Ka space becomes populated for an average lifetime of 5 ps. This is consistent with the conclusions, based on time-resolved experiments, that rotation-vibration transfer is slower than reaction except just above the threshold.

  17. HCO rotational excitation in the photoinitiated unimolecular decomposition of H 2CO

    Science.gov (United States)

    Dulligan, M. J.; Tuchler, M. F.; Zhang, J.; Kolessov, A.; Wittig, C.

    1997-09-01

    The unimolecular decomposition of H 2CO via the H + HCO radical channel has been examined by photoexcitation of the S 1 2 24 3 and 2 34 1 vibrational bands (31500-31855 cm -1). The H-atom translational energy distributions, obtained by using the high-n Rydberg time-of-flight technique, reflect the HCO internal energy distributions and reveal rotational excitation as high as Ka = 6 for ν = 0. Such high- Ka levels are believed to be the result of contributions from the S 0 ground state surface at energies where the S 0 and T 1 radical pathways compete.

  18. Power-law Fokker-Planck equation of unimolecular reaction based on the approximation to master equation

    Science.gov (United States)

    Zhou, Yanjun; Yin, Cangtao

    2016-12-01

    The Fokker-Planck equation (FPE) of the unimolecular reaction with Tsallis distribution is established by means of approximation to the master equation. The memory effect, taken into transition probability, is relevant and important for lots of anomalous phenomena. The Taylor expansion for large volume is applied to derive the power-law FPE. The steady-state solution of FPE and microscopic dynamics Ito-Langevin equation of concentration variables are therefore obtained and discussed. Two unimolecular reactions are taken as examples and the concentration distributions with different power-law parameters are analyzed, which may imply strong memory effect of hopping process.

  19. The anharmonic effect study of coupled Morse oscillators for the unimolecular reaction

    Institute of Scientific and Technical Information of China (English)

    YAO Li; LIN Sheng-Hsien

    2008-01-01

    The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model sys-tems and a real reaction as examples.

  20. The anharmonic effect study of coupled Morse oscillators for the unimolecular reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The importance of anharmonic effect in dissociation of molecular systems especially clusters has been noted. In this paper, we shall study the effect of coupled anharmonic oscillator of the standard bilinear form (SBF) Morse oscillator (MO) potential on unimolecular reaction. We shall use the systematic theoretical approach, YL method, proposed by Yao and Lin (YAO L, et. al. J Phys Chem A, 2007, 111(29): 6722-6729), which can evaluate anharmonic effects on the rate constants based on the transition state theory. In treating the anharmonic effect with the Morse oscillator potential on unimolecular reactions under collision-free conditions by using the RRKM (Rice-Ramsperger-Kassel-Marcus) theory, the in-verse Laplace transformation of the partition functions was used to obtain the total amount of state and density of state by using the first-order and the second-order approximations of the saddle-point method. To demonstrate the anharmonic effect of the SBF Morse model, we choose some model systems and a real reaction as examples.

  1. Unimolecular HO2 Loss from Peroxy Radicals Formed in Autoxidation Is Unlikely under Atmospheric Conditions.

    Science.gov (United States)

    Hyttinen, Noora; Knap, Hasse C; Rissanen, Matti P; Jørgensen, Solvejg; Kjaergaard, Henrik G; Kurtén, Theo

    2016-05-26

    A concerted HO2 loss reaction from a peroxy radical (RO2), formed from the addition of O2 to an alkyl radical, has been proposed as a mechanism to form closed-shell products in the atmospheric oxidation of organic molecules. We investigate this reaction computationally with four progressively oxidized radicals. Potential energy surfaces of the O2 addition and HO2 loss reactions were calculated at ROHF-RCCSD(T)-F12a/VDZ-F12//ωB97xD/aug-cc-pVTZ level of theory and the master equation solver for multienergy well reactions (MESMER) was used to calculate Bartis-Widom phenomenological rate coefficients. The rate coefficients were also compared with the unimolecular rate coefficients of the HO2 loss reaction calculated with transition state theory at atmospheric temperature and pressure. On the basis of our calculations, the unimolecular concerted HO2 loss is unlikely to be a major pathway in the formation of highly oxidized closed-shell molecules in the atmosphere.

  2. Use of Direct Dynamics Simulations to Determine Unimolecular Reaction Paths and Arrhenius Parameters for Large Molecules.

    Science.gov (United States)

    Yang, Li; Sun, Rui; Hase, William L

    2011-11-08

    In a previous study (J. Chem. Phys.2008, 129, 094701) it was shown that for a large molecule, with a total energy much greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical Rice-Ramsperger-Kassel-Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become equivalent. Using this relationship, a molecule's unimolecular rate constants versus temperature may be determined from chemical dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the molecule's unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the thermal decomposition of CH3-NH-CH═CH-CH3, an important constituent in the polymer of cross-linked epoxy resins. Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good agreement with the TST Arrhenius parameters for the MP2/6-31+G* potential energy surface. The simulation method applied here may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be difficult to determine and have structures that are not readily obvious.

  3. A Short Account of RRKM Theory of Unimolecular Reactions and of Marcus Theory of Electron Transfer in a Historical Perspective

    Science.gov (United States)

    Di Giacomo, Francesco

    2015-01-01

    The RRKM Theory of Unimolecular Reactions and Marcus Theory of Electron Transfer are here briefly discussed in a historical perspective. In the final section, after a general discussion on the educational usefulness of teaching chemistry in a historical framework, hints are given on how some characteristics of Marcus' work could be introduced in…

  4. A Short Account of RRKM Theory of Unimolecular Reactions and of Marcus Theory of Electron Transfer in a Historical Perspective

    Science.gov (United States)

    Di Giacomo, Francesco

    2015-01-01

    The RRKM Theory of Unimolecular Reactions and Marcus Theory of Electron Transfer are here briefly discussed in a historical perspective. In the final section, after a general discussion on the educational usefulness of teaching chemistry in a historical framework, hints are given on how some characteristics of Marcus' work could be introduced in…

  5. Picosecond resolution measurements of NO 3 unimolecular decomposition. The NO + O 2 channel

    Science.gov (United States)

    Davis, H. F.; Ionov, P. I.; Ionov, S. I.; Wittig, C.

    1993-11-01

    The title reaction has been studied with picosecond resolution at energies near threshold. Expansion cooled nitrate radicals were photoexcited to admixtures of 2E' and ground state 2A' 2 levels, ensuring a unimolecular decomposition mechanism. NO was monitored by LIF. The dissociation rate is ≈ 1 × 10 9 s -1 just above the 16800 cm -1 NO+O 2 barrier and increases rapidly with energy, reaching 5.5 × 10 9 s -1 at 17040 cm -1. A marked signal decrease at higher energies is attributed to NO 2+O dominating above its thermodynamic threshold. These observations support three-center NO+O 2 formation via 2A' 2.

  6. Communication: Thermal unimolecular decomposition of syn-CH3CHOO: A kinetic study

    Science.gov (United States)

    Nguyen, Thanh Lam; McCaslin, Laura; McCarthy, Michael C.; Stanton, John F.

    2016-10-01

    The thermal decomposition of syn-ethanal-oxide (syn-CH3CHOO) through vinyl hydrogen peroxide (VHP) leading to hydroxyl radical is characterized using a modification of the HEAT thermochemical protocol. The isomerization step of syn-CH3CHOO to VHP via a 1,4 H-shift, which involves a moderate barrier of 72 kJ/mol, is found to be rate determining. A two-dimensional master equation approach, in combination with semi-classical transition state theory, is employed to calculate the time evolution of various species as well as to obtain phenomenological rate coefficients. This work suggests that, under boundary layer conditions in the atmosphere, thermal unimolecular decomposition is the most important sink of syn-CH3CHOO. Thus, the title reaction should be included into atmospheric modeling. The fate of cold VHP, the intermediate stabilized by collisions with a third body, has also been investigated.

  7. Unimolecular half-adders and half-subtractors based on acid-base reaction

    Institute of Scientific and Technical Information of China (English)

    Wei JIANG; Hengyi ZHANG; Yu LIU

    2009-01-01

    According to the structural analysis of reported mole-cular processors with acids and bases as inputs, we proposed a general method for constructing molecular half-adders and/or half-subtractors based on acid-base reaction. The method is preliminarily supported by four molecular processors (8-hydroxyquinoline, 4-hydroxypyridine, 4-aminophenol and 5-amino-1-naphthol) capable of the elementary addition and/or subtraction algebraic operations. Noticeably, 8-hydroxyquinoline can mimic the functions of three logic devices, i.e. half-adder, half-subtractor and digital comparator, by the use of superposition and reconfi-guration. The method described in this paper may be useful not only for designing new unimolecular arithmetical processors with the same inputs and outputs as standard devices for the construction of future molecular computers, but it can also help us disclose the simplest molecules and biomolecules with computational properties concealed around us.

  8. Thermochemistry and Kinetic Analysis of the Unimolecular Oxiranyl Radical Dissociation Reaction: A Theoretical Study.

    Science.gov (United States)

    Wang, Heng; Bozzelli, Joseph W

    2016-07-04

    Oxirane structures are important in organic synthesis, and they are important initial products in the oxidation reactions of alkyl radicals. The thermochemical properties (enthalpy of formation, entropy, and heat capacity) for the reaction steps of the unimolecular oxiranyl radical dissociation reaction are determined and compared with the available literature. The overall ring opening and subsequent steps involve four types of reactions: β-scission ring opening, intramolecular hydrogen transfer, β-scission hydrogen elimination, and β-scission methyl radical elimination. The enthalpies of formation of the transition states are determined and evaluated using six popular Density Functional Theory (DFT) calculation methods (B3LYP, B2PLYP, M06, M06-2X, ωB97X, ωB97XD), each combined with three different basis sets. The DFT enthalpy values are compared with five composite calculation methods (G3, G4, CBS-QB3, CBS-APNO, W1U), and by CCSD(T)/aug-cc-pVTZ. Kinetic parameters are determined versus pressure and temperature for the unimolecular dissociation pathways of an oxiranyl radical, which include the chemical activation reactions of the ring-opened oxiranyl radical relative to the ring-opening barrier. Multifrequency quantum Rice Ramsperger Kassel (QRRK) analysis is used to determine k(E) with master equation analysis for falloff. The major overall reaction pathway at lower combustion temperatures is oxiranyl radical dissociation to a methyl radical and carbon monoxide. Oxiranyl radical dissociation to a ketene and hydrogen atom is the key reaction path above 700 K.

  9. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known...... as Dansgaard-Oeschger (DO) events would add to our knowledge of the climatic system and – hopefully – enable better forecasts. Likewise, to forecast possible future sea level rise it is crucial to correctly model the large ice sheets on Greenland and Antarctica. This project is divided into two parts...

  10. Unimolecular decomposition of NO3: The NO+O2 threshold regime

    Science.gov (United States)

    Mikhaylichenko, K.; Riehn, C.; Valachovic, L.; Sanov, A.; Wittig, C.

    1996-10-01

    The unimolecular decomposition of expansion-cooled NO3 has been investigated in the threshold regime of the NO+O2 channel. Photoexcitation in the region 16 780-17 090 cm-1 (596-585 nm) prepares ensembles of molecular eigenstates, each of which is a mixture of the B 2E' bright state and lower electronic states. The X 2A2' ground state is believed to be the probable terminus of 2E' radiationless decay, though participation of A 2E″ is also possible. For these photon energies, unimolecular decomposition occurs exclusively via the NO+O2 channel, and NO yield spectra and state distributions have been obtained. The yield spectra are independent of the rotational state monitored, as expected for a large reverse barrier. The state distributions are insensitive to the photolysis photon energy and can be rationalized in terms of dynamical bias. The NO yield goes to zero rapidly above the O+NO2 threshold (17 090±20 cm-1). Because of tunneling, the NO+O2 channel does not have a precise threshold; the value 16 780 cm-1 is the smallest photon energy that yielded signals under the present conditions. Very small decomposition rates were obtained via time-domain measurements in which reactive quenching of long-lived NO3 fluorescence was observed. The rates varied from 1×104 at 16 780 cm-1 to 6×107 s-1 at 16 880 cm-1, and their collision free nature was confirmed experimentally. These data were fitted by using a one-dimensional tunneling model for motion along the reaction coordinate combined with the threshold Rice-Ramsperger-Kassel-Marcus (RRKM) rate. The top of the NO+O2 barrier is estimated to lie at 16 900±15 cm-1. Translational energy measurements of specific NO (X 2ΠΩ,v,J) levels showed that O2 is highly excited, with a population inversion extending to energies above the a 1Δg threshold, in agreement with previous work. It is possible that the main O2 product is X 3∑g-, though some participation of a 1Δg cannot be ruled out. Within the experimental uncertainty, b

  11. Probing the NO2 --> NO+O transition state via time resolved unimolecular decomposition

    Science.gov (United States)

    Ionov, S. I.; Brucker, G. A.; Jaques, C.; Chen, Y.; Wittig, C.

    1993-09-01

    Time resolved, subpicosecond resolution measurements of photoinitiated NO2 unimolecular decomposition rates are reported for expansion cooled and room temperature samples. The molecules are excited by 375-402 nm tunable subpicosecond pulses having bandwidths ≥20 cm-1 to levels which are known to be thorough admixtures of the 2B2 electronically excited state and the 2A1 ground electronic state. Subsequent decomposition is probed by a 226 nm subpicosecond pulse that excites laser-induced fluorescence (LIF) in the NO product. When increasing the amount of excitation over the dissociation threshold, an uneven, ``step-like'' increase of the decomposition rate vs energy is observed for expansion cooled samples. The steps are spaced by ˜100 cm-1 and can be assigned ad hoc to bending at the transition state. Relying on experimental estimates for the near threshold density of states, we point out that simple transition state theory predictions give rates that are consistent with these measured values. The rates are sufficiently rapid to question the assumption of rapid intramolecular vibrational redistribution, which is implicit in transition state theories. In contrast to expansion cooled samples, room temperature samples exhibit a smooth variation of the reaction rate vs photon energy. By comparing rates for rotationally cold and room temperature NO2, the ON-O bond is estimated to be ˜40% longer in the transition state than in the parent molecule.

  12. Photoinitiated unimolecular decomposition of NO2: Rotational dependence of the dissociation rate

    Science.gov (United States)

    Bezel, I.; Ionov, P.; Wittig, C.

    1999-11-01

    Photoinitiated unimolecular decomposition rate constants of rotationally excited NO2 molecules have been measured near dissociation threshold (D0) by employing a double resonance technique. Rotational selectivity has been achieved by using narrow-linewidth (0.015 cm-1) infrared excitation to prepare specific rotational levels (N'=1,3,…,15, Ka'=0) of the (1,0,1) vibrational level. The picosecond-resolution pump-probe technique has then been used to photodissociate the molecules thus tagged and to monitor the appearance of the NO product. Data have been obtained for two progressions of average excess energies, -D0: (i) 10 cm-1+E101rot and (ii) 75 cm-1+E101rot, where denotes an average over the pump laser linewidth and E101rot is the rotational energy of the (1,0,1) X˜ 2A1 intermediate vibrational level. The measured rate constants do not display any noticeable dependence on N', which is a reflection of significant rovibronic interaction. Spin-rotation interaction, which has been implicated as the main source of rovibronic coupling for small values of N', is not likely to yield such a result. A model is proposed to describe the influence of rotation on the dissociation rate. The experimental data are consistent with a Coriolis coupling mechanism causing transitions to occur between Ka levels.

  13. Isotope selectivity of infrared laser-driven unimolecular dissociation of a volatile uranyl compound.

    Science.gov (United States)

    Cox, D M; Hall, R B; Horsley, J A; Kramer, G M; Rabinowitz, P; Kaldor, A

    1979-07-27

    Isotope-selective photodissociation of the volatile complex uranyl hexafluoroacetylacetonate . tetrahydrofuran [UO(2)(hfacac)(2) . THF] has been achieved with both a continuous-wave and a pulsed carbon dioxide laser. The photodissociation was carried out in a low-density molecular beam under collisionless conditions. Transitions of the laser are in resonance with the asymmetric O-U-O stretch of the uranyl moiety, a vibrational mode whose frequency is sensitive to the masses of the uranium and oxygen isotopes. Unimolecular dissociation is observed mass spectrometrically at an extremely low energy fluence, with no evidence of an energy fluence or intensity threshold. The dissociation yield increases nearly linearly with increasing energy fluence. At constant fluence the dissociation yield is independent of contact time between the radiation field and the molecule, indicating that the decomposition is driven by laser energy fluence and not laser intensity. The oxygen and uranium isotope selectivities measured in these experiments are nearly those predicted by the ratio of the linear absorption cross sections for the respective isotopes. Thus, essentially complete selectivity is observed for oxygen isotopes, while a selectivity of only about 1.25 is measured for the uranium isotopes. A model presented to describe these results is based on rapid intramolecular vibrational energy flow from the pumped mode into a limited number of closely coupled modes.

  14. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    Science.gov (United States)

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-09-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.

  15. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.

    Science.gov (United States)

    Paul, Amit K; Hase, William L

    2016-01-28

    A zero-point energy (ZPE) constraint model is proposed for classical trajectory simulations of unimolecular decomposition and applied to CH4* → H + CH3 decomposition. With this model trajectories are not allowed to dissociate unless they have ZPE in the CH3 product. If not, they are returned to the CH4* region of phase space and, if necessary, given additional opportunities to dissociate with ZPE. The lifetime for dissociation of an individual trajectory is the time it takes to dissociate with ZPE in CH3, including multiple possible returns to CH4*. With this ZPE constraint the dissociation of CH4* is exponential in time as expected for intrinsic RRKM dynamics and the resulting rate constant is in good agreement with the harmonic quantum value of RRKM theory. In contrast, a model that discards trajectories without ZPE in the reaction products gives a CH4* → H + CH3 rate constant that agrees with the classical and not quantum RRKM value. The rate constant for the purely classical simulation indicates that anharmonicity may be important and the rate constant from the ZPE constrained classical trajectory simulation may not represent the complete anharmonicity of the RRKM quantum dynamics. The ZPE constraint model proposed here is compared with previous models for restricting ZPE flow in intramolecular dynamics, and connecting product and reactant/product quantum energy levels in chemical dynamics simulations.

  16. Unimolecular reaction dynamics of well characterized ionic reactions. Final report, 1993--1997

    Energy Technology Data Exchange (ETDEWEB)

    Baer, T.

    1997-12-31

    The dissociation dynamics of well characterized and energy selected ions have been investigated by photoelectron photoion coincidence (PEPICO) spectrometry. A number of ions have been found which dissociate in competition with isomerization and which thus lead to multi-component decay rates. The dissociation dynamics on such complex potential energy surfaces are common for many free radical reactions, including some of importance to combustion processes. Individual reaction rates for isomerization and dissociation have been extracted from the data. In addition, all rates have been successfully modeled with the RRKM theory in combination with ab initio molecular orbital calculations. The dissociation dynamics of a dimer ion system has been studied on the UNC PEPICO apparatus as well as at the Chemical Dynamics Beam line of the ALS. This proof of principle experiment shows that it is possible to investigate such systems and to determine the heats of formation of free radicals by this approach. Finally, a dissociation involving a loose transition state with no exit barrier has been successfully modeled with a simplified version of the variational transition state theory (VTST). The aim of all of these studies is to develop protocols for modeling moderately complex unimolecular reactions with simple models.

  17. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  18. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  19. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  20. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which

  1. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which res

  2. Unimolecular reaction rate constants of NO{sub 2} just above D{sub 0}

    Energy Technology Data Exchange (ETDEWEB)

    Bezel, I.; Stolyarov, D.; Wittig, C.

    1999-12-09

    Photoinitiated unimolecular decomposition on a barrierless potential energy surface (PES) has been studied for the reaction NO{sub 2} {yields} O({sup 3}P{sub 2}) + NO(X{sup 2}{Pi}{sub 1/2}, {nu} = 0) for excess energies up to approximately 17 cm{sup {minus}1} above the dissociation threshold (i.e., D{sub 0} for nonrotating molecules) by using expansion-cooled samples and the time-resolved pump-probe technique. To examine the threshold region with enough energy resolution to discern abrupt changes in the rate constant, should they occur, a pump-probe cross-correlation temporal width of {approximately}25 ps and a pump line width {le}2 cm{sup {minus}1} has been used. These are the first direct observations of the reaction rate constants in this energy regime. The rate constant was found to increase by an order of magnitude, varying from {approximately}2 x 10{sup 10} s{sup {minus}1} to {ge}10{sup 11} s{sup {minus}1}, the latter being a rough lower bound imposed by the experimental arrangement. The rate constant does not display the energy dependence predicted by using phase space theory, at least in detail. Rather, it appears to reflect the highly complex nature of the levels and the multiple PESs that are believed to be responsible for the anomalously high vibronic level density which has been observed just below D{sub 0}. These results bridge the gap between spectroscopic studies which have been carried out at energies just above D{sub 0} and ultrafast experiments which have measured rate constants in this energy region with pump laser spectral widths of {approximately}30 cm{sup {minus}1}.

  3. Initial mechanisms for the unimolecular decomposition of electronically excited bisfuroxan based energetic materials.

    Science.gov (United States)

    Yuan, Bing; Bernstein, Elliot R

    2017-01-07

    Unimolecular decomposition of energetic molecules, 3,3'-diamino-4,4'-bisfuroxan (labeled as A) and 4,4'-diamino-3,3'-bisfuroxan (labeled as B), has been explored via 226/236 nm single photon laser excitation/decomposition. These two energetic molecules, subsequent to UV excitation, create NO as an initial decomposition product at the nanosecond excitation energies (5.0-5.5 eV) with warm vibrational temperature (1170 ± 50 K for A, 1400 ± 50 K for B) and cold rotational temperature (energetic barrier is that for which the furoxan ring opens on the S1 state via the breaking of the N1-O1 bond. Subsequently, the molecule moves to the ground S0 state through related ring-opening conical intersections, and an NO product is formed on the ground state surface with little rotational excitation at the last NO dissociation step. For the ground state ring opening decomposition mechanism, the N-O bond and C-N bond break together in order to generate dissociated NO. With the MP2 correction for the CASSCF(12,12) surface, the potential energies of molecules with dissociated NO product are in the range from 2.04 to 3.14 eV, close to the theoretical result for the density functional theory (B3LYP) and MP2 methods. The CASMP2(12,12) corrected approach is essential in order to obtain a reasonable potential energy surface that corresponds to the observed decomposition behavior of these molecules. Apparently, highly excited states are essential for an accurate representation of the kinetics and dynamics of excited state decomposition of both of these bisfuroxan energetic molecules. The experimental vibrational temperatures of NO products of A and B are about 800-1000 K lower than previously studied energetic molecules with NO as a decomposition product.

  4. Comparison of unimolecular decomposition pathways for carboxylic acids of relevance to biofuels.

    Science.gov (United States)

    Clark, Jared M; Nimlos, Mark R; Robichaud, David J

    2014-01-09

    Quantum mechanical molecular modeling is used [M06-2X/6-311++G(2df,p)] to compare activation energies and rate constants for unimolecular decomposition pathways of saturated and unsaturated carboxylic acids that are important in the production of biofuels and that are models for plant and algae-derived intermediates. Dehydration and decarboxylation reactions are considered. The barrier heights to decarboxylation and dehydration are similar in magnitude for saturated acids (∼71 kcal mol(-1)), with an approximate 1:1 [H2O]/[CO2] branching ratio over the temperature range studied (500-2000 K). α,β-Unsaturation lowers the barrier to decarboxylation between 2.2 and 12.2 kcal mol(-1) while increasing the barriers to dehydration by ∼3 kcal mol(-1). The branching ratio, as a result, is an order of magnitude smaller, [H2O]/[CO2] = 0.07. For some α,β-unsaturated acids, six-center transition states are available for dehydration, with barrier heights of ∼35.0 kcal mol(-1). The branching ratio for these acids can be as high as 370:1. β,γ-Unsaturation results in a small lowering in the barrier height to decarboxylation (∼70.0 kcal mol(-1)). β,γ-Unsaturation also leads to a lowering in the dehydration pathway from 1.7 to 5.1 kcal mol(-1). These results are discussed with respect to predicted kinetic values for acids of importance in biofuels production.

  5. Multiphoton dissociation and thermal unimolecular reactions induced by infrared lasers. [REAMPA code

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L.

    1981-04-01

    Multiphoton dissociation (MPD) of ethyl chloride was studied using a tunable 3.3 ..mu..m laser to excite CH stretches. The absorbed energy increases almost linearly with fluence, while for 10 ..mu..m excitation there is substantial saturation. Much higher dissociation yields were observed for 3.3 ..mu..m excitation than for 10 ..mu..m excitation, reflecting bottlenecking in the discrete region of 10 ..mu..m excitation. The resonant nature of the excitation allows the rate equations description for transitions in the quasicontinuum and continuum to be extended to the discrete levels. Absorption cross sections are estimated from ordinary ir spectra. A set of cross sections which is constant or slowly decreasing with increasing vibrational excitation gives good fits to both absorption and dissociation yield data. The rate equations model was also used to quantitatively calculate the pressure dependence of the MPD yield of SF/sub 6/ caused by vibrational self-quenching. Between 1000-3000 cm/sup -1/ of energy is removed from SF/sub 6/ excited to approx. > 60 kcal/mole by collision with a cold SF/sub 6/ molecule at gas kinetic rate. Calculation showed the fluence dependence of dissociation varies strongly with the gas pressure. Infrared multiphoton excitation was applied to study thermal unimolecular reactions. With SiF/sub 4/ as absorbing gas for the CO/sub 2/ laser pulse, transient high temperature pulses were generated in a gas mixture. IR fluorescence from the medium reflected the decay of the temperature. The activation energy and the preexponential factor of the reactant dissociation were obtained from a phenomenological model calculation. Results are presented in detail. (WHK)

  6. An experimental investigation of the effect of rotation on the rate of unimolecular decomposition of NO 2

    Science.gov (United States)

    Ionov, P. I.; Bezel, I.; Ionov, S. I.; Wittig, C.

    1997-06-01

    The effect of rotational excitation on the rate of unimolecular decomposition has been examined for a benchmark system. NO 2 molecules having specific excitations were selected by pumping rotational components of the (1,0,1) ← (0,0,0) combination band with the output from a 0.02 cm -1 resolution parametric oscillator, and reaction rates were obtained by applying the picosecond-resolution pump-probe technique to these tagged species. The addition of up to 100 cm -1 of rotational energy ( N ⩽ 15, Ka = 0), with other parameters held fixed, left the rate unaffected. Implications are discussed within the framework of statistical rate theories.

  7. Time-resolved studies of NO 2 photoinitiated unimolecular decomposition: step-like variation of κ uni( E)

    Science.gov (United States)

    Brucker, G. A.; Ionov, S. I.; Chen, Y.; Wittig, C.

    1992-07-01

    Time-resolved, subpicosecond-resolution measurements of NO 2 photoinitiated unimolecular decay rates are reported for jet-cooled samples in the vicinity of the dissociation threshold. The molecules are excited by 385-400 nm tunable subpicosecond pulses to the 2B 2 electronic state which is very strongly mixed with the 2A 1 ground electronic state. Subsequent decomposition is probed by a 226 nm subpicosecond pulse which excites LIF in the NO product. When changing the amount of energy in excess of the dissociation threshold, a step-like increase of the reaction rate versus energy is observed.

  8. Electronic Modulation of the SOMO-HOMO Energy Gap in Iron(III) Complexes towards Unimolecular Current Rectification.

    Science.gov (United States)

    Wickramasinghe, Lanka D; Mazumder, Shivnath; Kpogo, Kenneth K; Staples, Richard J; Schlegel, H Bernhard; Verani, Cláudio N

    2016-07-25

    Amphiphilic five-coordinate iron(III) complexes with {N2 O2 Cl} and {N2 O3 } coordination spheres are studied to elucidate the roles of electronic structure on the mechanisms for current rectification. The presence of an apical chlorido or phenolato ligand plays a crucial role, and the [Fe(III) {N2 O2 Cl}] species supports an asymmetric mechanism while its [Fe(III) {N2 O3 }] counterpart seems to allow for unimolecular mechanism. The effects of electron-donating and electron-withdrawing substituents in the ligand frameworks are also considered.

  9. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.

    Science.gov (United States)

    Drozd, Greg T; Kurtén, Theo; Donahue, Neil M; Lester, Marsha I

    2017-08-17

    We used the steady-state master equation to model unimolecular decay of the Criegee intermediate formed from ozonolysis of 2,3-dimethyl-2-butene (tetramethylethylene, TME). Our results show the relative importance and time scales for both the prompt and thermal unimolecular decay of the dimethyl-substituted Criegee intermediate, (CH3)2COO. Calculated reactive fluxes show the importance of quantum mechanical tunneling for both prompt and thermal decay to OH radical products. We constrained the initial energy distribution of chemically activated (CH3)2COO formed in TME ozonolysis by combining microcanonical rates k(E) measured experimentally under collision-free conditions and modeled using semiclassical transition-state theory (SCTST) with pressure-dependent yields of stabilized Criegee intermediates measured with scavengers in flow-tube experiments. Thermal decay rates under atmospheric conditions k(298 K, 1 atm) increase by more than 1 order of magnitude when tunneling is included. Accounting for tunneling has important consequences for interpreting pressure dependent yields of stabilized Criegee intermediates, particularly with regard to the fraction of Criegee intermediates formed in the zero-pressure limit.

  10. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    The idealised land|water dichotomy is most obviously challenged by ice when ‘land practice’ takes place on ice or when ‘maritime practice’ is obstructed by ice. Both instances represent disparity between the legal codification of space and its social practice. Logically, then, both instances call...... for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...... the interesting conversations during the workshop, however, made me think that much of the concern with the Polar Regions in general, and the presence of ice in particular, reverberates around the question of how to accommodate various geographical presences and practices within the regulatory framework that we...

  11. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  12. Interstellar Ices

    CERN Document Server

    Boogert, A C A

    2003-01-01

    Currently ~36 different absorption bands have been detected in the infrared spectra of cold, dense interstellar and circumstellar environments. These are attributed to the vibrational transitions of ~17 different molecules frozen on dust grains. We review identification issues and summarize the techniques required to extract information on the physical and chemical evolution of these ices. Both laboratory simulations and line of sight studies are essential. Examples are given for ice bands observed toward high mass protostars, fields stars and recent work on ices in disks surrounding low mass protostars. A number of clear trends have emerged in recent years. One prominent ice component consists of an intimate mixture between H2O, CH3OH and CO2 molecules. Apparently a stable balance exists between low temperature hydrogenation and oxidation reactions on grain surfaces. In contrast, an equally prominent ice component, consisting almost entirely of CO, must have accreted directly from the gas phase. Thermal proc...

  13. Microcanonical unimolecular rate theory at surfaces. I. Dissociative chemisorption of methane on Pt(111)

    Science.gov (United States)

    Bukoski, A.; Blumling, D.; Harrison, I.

    2003-01-01

    A model of gas-surface reactivity is developed based on the ideas that (a) adsorbate chemistry is a local phenomenon, (b) the active system energy of an adsorbed molecule and a few immediately adjacent surface atoms suffices to fix microcanonical rate constants for surface kinetic processes such as desorption and dissociation, and (c) energy exchange between the local adsorbate-surface complexes and the surrounding substrate can be modeled via a Master equation to describe the system/heat reservoir coupling. The resulting microcanonical unimolecular rate theory (MURT) for analyzing and predicting both thermal equilibrium and nonequilibrium kinetics for surface reactions is applied to the dissociative chemisorption of methane on Pt(111). Energy exchange due to phonon-mediated energy transfer between the local adsorbate-surface complexes and the surface is explored and estimated to be insignificant for the reactive experimental conditions investigated here. Simulations of experimental molecular beam data indicate that the apparent threshold energy for CH4 dissociative chemisorption on Pt(111) is E0=0.61 eV (over a C-H stretch reaction coordinate), the local adsorbate-surface complex includes three surface oscillators, and the pooled energy from 16 active degrees of freedom is available to help surmount the dissociation barrier. For nonequilibrium molecular beam experiments, predictions are made for the initial methane dissociative sticking coefficient as a function of isotope, normal translational energy, molecular beam nozzle temperature, and surface temperature. MURT analysis of the thermal programmed desorption of CH4 physisorbed on Pt(111) finds the physisorption well depth is 0.16 eV. Thermal equilibrium dissociative sticking coefficients for methane on Pt(111) are predicted for the temperature range from 250-2000 K. Tolman relations for the activation energy under thermal equilibrium conditions and for a variety of "effective activation energies" under

  14. Archimedean Ice

    CERN Document Server

    Eloranta, Kari

    2009-01-01

    The striking boundary dependency (the Arctic Circle phenomenon) exhibited in the ice model on the square lattice extends to other planar set-ups. We present these findings for the triangular and the Kagome lattices. Critical connectivity results guarantee that ice configurations can be generated using the simplest and most efficient local actions. Height functions are utilized throughout the analysis. At the end there is a surprise in store: on the remaining Archimedean lattice for which the ice model can be defined, the 3.4.6.4. lattice, the long range behavior is completely different from the other cases.

  15. A spongy icing model for aircraft icing

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Bai Junqiang; Hua Jun; Wang Kun; Zhang Yang

    2014-01-01

    Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter-ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes:rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  16. A spongy icing model for aircraft icing

    Directory of Open Access Journals (Sweden)

    Li Xin

    2014-02-01

    Full Text Available Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when entering clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  17. Comment on ``State-specific unimolecular reaction of NO2 just above the dissociation threshold'' [J. Chem. Phys. 99, 254 (1993)

    Science.gov (United States)

    Wittig, C.; Ionov, S. I.

    1994-03-01

    Spectroscopic studies of NO2 photoinitiated unimolecular decomposition by Miyawaki et al. indicate a very loose transition state just above threshold. If extrapolated to higher energies, this contradicts our time resolved studies of NO2 photodissociation that demonstrate a tighter transition state. We point out that both sets of data are consistent with variational RRKM theory, which predicts tightening of the transition state with increasing energy.

  18. Molecular beam studies of unimolecular reactions: Cl, F + C/sub 2/H/sub 3/Br. [Angular and velocity distributions, mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Coggiola, M.J.; Lee, Y.T.

    1978-12-01

    Several methods currently used to study unimolecular decomposition in molecular beams are discussed. Experimental product angular and velocity distributions obtained for the reaction of F, Cl with C/sub 2/H/sub 3/Br are presented. The mechanism by which conservation of angular momemtum can cause coupling of the product angular and velocity distributions in dissociation of long-lived complexes is introduced. 14 references.

  19. pH-responsive unimolecular micelles self-assembled from amphiphilic hyperbranched block copolymer for efficient intracellular release of poorly water-soluble anticancer drugs.

    Science.gov (United States)

    Tabatabaei Rezaei, Seyed Jamal; Abandansari, Hamid Sadeghi; Nabid, Mohammad Reza; Niknejad, Hassan

    2014-07-01

    Novel unimolecular micelles from amphiphilic hyperbranched block copolymer H40-poly(ε-caprolactone)-b-poly(acrylic acid)-b'-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate (i.e., H40-PCL-b-PAA-b'-MPEG/PEG-FA (HCAE-FA)) as new multifunctional nanocarriers to pH-induced accelerated release and tumor-targeted delivery of poorly water-soluble anticancer drugs were developed. The hydrophobic core of the unimolecular micelle was hyperbranched polyester (H40-poly(ε-caprolactone) (H40-PCL)). The inner hydrophilic layer was composed of PAA segments, while the outer hydrophilic shell was composed of PEG segments. This copolymer formed unimolecular micelles in the aqueous solution with a mean particle size of 33 nm, as determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). To study the feasibility of micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, paclitaxel (PTX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 10.35 wt.%. In vitro release studies demonstrated that the drug-loaded delivery system is relatively stable at physiologic conditions but susceptible to acidic environments which would trigger the release of encapsulated drugs. Flow cytometry and fluorescent microscope studies revealed that the cellular binding of the FA-conjugated micelles against HeLa cells was higher than that of the neat micelles (without FA). The in vitro cytotoxicity studies showed that the PTX transported by these micelles was higher than that by the commercial PTX formulation Tarvexol®. All of these results show that these unique unimolecular micelles may offer a very promising approach for targeted cancer therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Intramolecular effects on the kinetics of unimolecular reactions of β-HOROO˙ and HOQ˙OOH radicals.

    Science.gov (United States)

    Lizardo-Huerta, J C; Sirjean, B; Bounaceur, R; Fournet, R

    2016-04-28

    A theoretical study describing the influence of intramolecular effects on the energy barriers and rate constants of unimolecular reactions involving β-HOROO˙ and HOQ˙OOH radicals is proposed. The reactions considered are HO2˙ elimination, the Waddington mechanism, H-shift, cyclic ether formation and β-scission. All the calculations are performed at the CBS-QB3 level of theory along with canonical transition state theory and statistical thermodynamics, including a specific treatment of hindered rotors. Several structural parameters are investigated, such as the location of the hydroxyl function in the cyclic transition states or the substitution of H atoms by alkyl groups on carbon atoms involved in the reaction coordinate. It is shown that these molecular systems involve numerous transition states, especially for reactions such as 1,5 or 1,6 H-shift, and that, a priori simplification is not possible. It is also shown that the position of the -OH group in the transition state can largely modify both the barrier heights and the rate constants. However, opposite trends can be observed depending on the competition between energetic and entropic effects. Similar observations are made when H atoms are replaced by methyl or alkyl groups. These results can largely be explained by intramolecular effects such as hydrogen bonds, stabilization effects (from -OH or -CH3 groups), steric influences and by the coupling between them. The last point renders the classic establishment of the structure-reactivity relationship challenging.

  1. Solution-Stable Colloidal Gold Nanoparticles via Surfactant-Free, Hyperbranched Polyglycerol-b-polystyrene Unimolecular Templates.

    Science.gov (United States)

    Iocozzia, James; Lin, Zhiqun

    2016-07-19

    Hyperbranched polyglycerol-block-polystyrene copolymers, denoted HPG-b-PS, are synthesized and employed as a new and effective unimolecular template for synthesizing colloidal gold (Au) nanoparticles. The coordination of noble metal precursors with polyether within the inner HPG core and subsequent in situ reduction enables the formation of well-dispersed and stable PS-capped Au nanoparticles. The inner HPG core is produced via ring opening multibranching polymerization (ROMBP) and subsequently converted into atom transfer radical polymerization (ATRP) macroinitiators for the controlled growth of polystyrene (PS) arms possessing low polydispersity (PDI < 1.31). An initial investigation into the templating parameters of HPG-b-PS was undertaken by producing templates with different arm numbers (98 and 117) and different PS chain lengths (i.e., molecular weight = 3500-13400 g/mol). It was found that the PS chain length and solvent conditions affect the quality of the resulting PS-capped colloidal Au nanoparticles. This work demonstrates, for the first time, a simple, lower-cost approach for templating nonpolar solvent-soluble PS-capped Au nanoparticles on the order of 10-30 nm in diameter.

  2. Molecular beam studies of unimolecular and bimolecular chemical reaction dynamics using VUV synchrotron radiation as a product probe

    Energy Technology Data Exchange (ETDEWEB)

    Blank, David Andrew [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    This dissertation describes the use of a new molecular beam apparatus designed to use tunable VUV synchrotron radiation for photoionization of the products from scattering experiments. The apparatus was built at the recently constructed Advanced Light Source at Lawrence Berkeley National Laboratory, a third generation 1-2 GeV synchrotron radiation source. The new apparatus is applied to investigations of the dynamics of unimolecular reactions, photodissociation experiments, and bimolecular reactions, crossed molecular beam experiments. The first chapter describes the new apparatus and the VUV radiation used for photoionization. This is followed by a number of examples of the many advantages provided by using VUV photoionization in comparison with the traditional technique of electron bombardment ionization. At the end of the chapter there is a discussion of the data analysis employed in these scattering experiments. The remaining four chapters are complete investigations of the dynamics of four chemical systems using the new apparatus and provide numerous additional examples of the advantages provided by VUV photoionizaiton of the products. Chapters 2-4 are photofragment translational spectroscopy studies of the photodissociation dynamics of dimethyl sulfoxide, acrylonitrile, and vinyl chloride following absorption at 193 mn. All of these systems have multiple dissociation channels and provide good examples of the ability of the new apparatus to unravel the complex UV photodissociation dynamics that can arise in small polyatomic molecules.

  3. River Ice Data Instrumentation

    Science.gov (United States)

    1997-06-01

    edge in the field of ice engineering expands. For example, ice concentration and freezeup stage are not considered by the survey respondents to...im- pacts both freezeup and breakup jam formation Table 2. Ice parameters currently monitored, by Divisions (as of 1995). Ice parameters currently...V V V V Date of ice in V V V V Ice concentration V V V V Freezeup stage V V V V V Note: Southwestern Division does not currently monitor ice

  4. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...

  5. Energy- and Time-Dependent Branching to Competing Paths in Coupled Unimolecular Dissociations of Chlorotoluene Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jongcheol; Shin, Seung Koo [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of); Kim, Seung Joon [Hannam Univ., Daejeon (Korea, Republic of)

    2014-03-15

    The energy- and time-dependent branching to the competing dissociation paths are studied by theory for coupled unimolecular dissociations of the o-, m-, and p-chlorotoluene radical cations to C{sub 7}H{sub 7}{sup +} (benzylium and tropylium). There are four different paths to C{sub 7}H{sub 7}{sup +}, three to the benzylium ion and one to the tropylium ion, and all of them are coupled together. The branching to the multiple paths leads to the multiexponential decay of reactant with the branching ratio depending on both internal energy and time. To gain insights into the multipath branching, we study the detailed kinetics as a function of time and internal energy on the basis of ab inito/RRKM calculations. The number of reaction steps to C{sub 7}H{sub 7}{sup +} is counted for each path. Of the three isomers, the meta mostly goes through the coupling, whereas the para proceeds with little or no coupling. In the beginning, some reactants with high internal energy decay fast to the benzylium ion without any coupling and others rearrange to the other isomers. Later on all three isomers dissociate to the products via long-lived intermediates. Thus, the reactant shows a multiexponential decay and the branching ratio varies with time as the average internal energy decreases with time. The reciprocal of the effective lifetime is taken as the rate constant. The resulting rate-energy curves are in line with experiments. The present results suggest that the coupling between the stable isomers is thermodynamically controlled, whereas the branching to the product is kinetically controlled.

  6. Chelating compounds as potential flash rust inhibitors and melamine & aziridine cure of acrylic colloidal unimolecular polymers (CUPs)

    Science.gov (United States)

    Mistry, Jigar Kishorkumar

    Waterborne coatings on ferrous substrates usually show flash rusting which decreases the adhesion of the coating and the corrosion products can form a stain. Chelating compounds were investigated as potential flash rust inhibitors. Compounds being evaluated include amine alcohols, diamines and sulfur containing amines. A new corrosion inhibitor 2,5-bis(thioaceticacid)-1,3,4-thiadiazole (H2ADTZ) was synthesized and its performance characteristics were evaluated. It was noted that the observed structure of 1,3,4-thiadiazolidine-2,5-dithione (also known as 2,5-dimercapto-1,3,4-thiadiazole (DMTD or DMcT)) has been previously reported in three different tautomeric forms including -dithiol and -dithione. The relative stability of each form as well as the synthesis and characterization of the structures of mono- and dialkylated forms of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) were examined. The methods of X-ray crystallography, NMR spectroscopy and ab-initio electronic structure calculations were combined to understand the reactivity and structure of each compound. Polymers were synthesized with a 1:7 or 1:8 ratio of acrylic acid to acrylate monomers to produce an acid rich resin. The polymers were reduced and solvent stripped to produce Colloidal Unimolecular Polymers (CUPs). These particles are typically 3-9 nanometers in diameter depending upon the molecular weight. They were then formulated into a clear coating with either a melamine (bake) or an aziridine (ambient cure) and then cured. The melamine system was solvent free, a near zero VOC and the aziridine system was very low to near zero VOC. The coatings were evaluated for their MEK resistance, adhesion, hardness, gloss, flexibility, wet adhesion, abrasion and impact resistance properties.

  7. Unimolecular decomposition of tetrazine-N-oxide based high nitrogen content energetic materials from excited electronic states

    Science.gov (United States)

    Bhattacharya, A.; Guo, Y. Q.; Bernstein, E. R.

    2009-11-01

    Unimolecular excited electronic state decomposition of novel high nitrogen content energetic molecules, such as 3,3'-azobis(6-amino-1,2,4,5-tetrazine)-mixed N-oxides (DAATO3.5), 3-amino-6-chloro-1,2,4,5-tetrazine-2,4-dioxide (ACTO), and 3,6-diamino-1,2,4,5-tetrazine-1,4-dioxde (DATO), is investigated. Although these molecules are based on N-oxides of a tetrazine aromatic heterocyclic ring, their decomposition behavior distinctly differs from that of bare tetrazine, in which N2 and HCN are produced as decomposition products through a concerted dissociation mechanism. NO is observed to be an initial decomposition product from all tetrazine-N-oxide based molecules from their low lying excited electronic states. The NO product from DAATO3.5 and ACTO is rotationally cold (20 K) and vibrationally hot (1200 K), while the NO product from DATO is rotationally hot (50 K) and vibrationally cold [only the (0-0) vibronic transition of NO is observed]. DAATO3.5 and ACTO primarily differ from DATO with regard to molecular structure, by the relative position of oxygen atom attachment to the tetrazine ring. Therefore, the relative position of oxygen in tetrazine-N-oxides is proposed to play an important role in their energetic behavior. N2O is ruled out as an intermediate precursor of the NO product observed from all three molecules. Theoretical calculations at CASMP2/CASSCF level of theory predict a ring contraction mechanism for generation of the initial NO product from these molecules. The ring contraction occurs through an (S1/S0)CI conical intersection.

  8. A High Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane

    KAUST Repository

    Alquaity, Awad B. S.

    2015-05-15

    Unimolecular dissociation of 1,3,5-trioxane was investigated experimentally and theoretically over a wide range of conditions. Experiments were performed behind reflected shock waves over the temperature range of 775-1082 K and pressures near 900 Torr using a high-repetition rate time of flight mass spectrometer (TOF-MS) coupled to a shock tube (ST). Reaction products were identified directly, and it was found that formaldehyde is the sole product of 1,3,5-trioxane dissociation. Reaction rate coefficients were extracted by the best fit to the experimentally measured concentration-time histories. Additionally, high-level quantum chemical and RRKM calculations were employed to study the falloff behavior of 1,3,5-trioxane dissociation. Molecular geometries and frequencies of all species were obtained at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ levels of theory, whereas the single-point energies of the stationary points were calculated using coupled cluster with single and double excitations including the perturbative treatment of triple excitation (CCSD(T)) level of theory. It was found that the dissociation occurs via a concerted mechanism requiring an energy barrier of 48.3 kcal/mol to be overcome. The new experimental data and theoretical calculations serve as a validation and extension of kinetic data published earlier by other groups. Calculated values for the pressure limiting rate coefficient can be expressed as log10 k (s-1) = [15.84 - (49.54 (kcal/mol)/2.3RT)] (500-1400 K). © 2015 American Chemical Society.

  9. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-02-07

    We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O)n]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O)n-1 + H2O) and the two hydrolysis channels resulting to the loss of hydronium ([MOH(H2O)n-2]+ + H3O+) and Zundel ([MOH(H2O)n-3]+ + H3O+(H2O)) cations. The Potential Energy Curves (PECs) corresponding to those three channels were constructed at the Møller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O)n]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

  10. Co-Delivery of Imiquimod and Plasmid DNA via an Amphiphilic pH-Responsive Star Polymer that Forms Unimolecular Micelles in Water

    Directory of Open Access Journals (Sweden)

    Wenjing Lin

    2016-11-01

    Full Text Available Dual functional unimolecular micelles based on a pH-responsive amphiphilic star polymer β-CD-(PLA-b-PDMAEMA-b-PEtOxMA21 have been developed for the co-delivery of imiquimod and plasmid DNA to dendritic cells. The star polymer with well-defined triblock arms was synthesized by combining activator regenerated by electron-transfer atom-transfer radical polymerization with ring-opening polymerization. Dissipative particle dynamics simulation showed that core-mesophere-shell-type unimolecular micelles could be formed. Imiquimod-loaded micelles had a drug loading of 1.6 wt % and a larger average size (28 nm than blank micelles (19 nm. The release of imiquimod in vitro was accelerated at the mildly acidic endolysosomal pH (5.0 in comparison to physiologic pH (7.4. Compared with blank micelles, a higher N:P ratio was required for imiquimod-loaded micelles to fully condense DNA into micelleplexes averaging 200–400 nm in size. In comparison to blank micelleplexes, imiquimod-loaded micelleplexes of the same N:P ratio displayed similar or slightly higher efficiency of gene transfection in a mouse dendritic cell line (DC2.4 without cytotoxicity. These results suggest that such pH-responsive unimolecular micelles formed by the well-defined amphiphilic star polymer may serve as promising nano-scale carriers for combined delivery of hydrophobic immunostimulatory drugs (such as imiquimod and plasmid DNA with potential application in gene-based immunotherapy.

  11. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  12. Teoría y simulación de la dinámica de procesos unimoleculares en disolución

    OpenAIRE

    Muñoz Sanz, Raúl

    2011-01-01

    Las reacciones unimoleculares de isomerización y descomposición han sido objeto de estudio mediante técnicas de simulación por ordenador con las que se pretendía comprender la influencia dinámica del disolvente sobre importantes fenómenos como la transferencia intermolecular de energía o la reactividad. Para ello se eligieron los siguientes sistemas químicos. Las moléculas de metil-isonitrilo y metil-ciclohexano, cuya isomerización fue estudiada por mecánica clásica con un esquema de dinámica...

  13. Ice Crystal Icing Research at NASA

    Science.gov (United States)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  14. Photoinitiated H2CO unimolecular decomposition: Accessing H+HCO products via S0 and T1 pathways

    Science.gov (United States)

    Valachovic, L. R.; Tuchler, M. F.; Dulligan, M.; Droz-Georget, Th.; Zyrianov, M.; Kolessov, A.; Reisler, H.; Wittig, C.

    2000-02-01

    The photoinitiated unimolecular decomposition of formaldehyde via the H+HCO radical channel has been examined at energies where the S0 and T1 pathways both participate. The barrierless S0 pathway has a loose transition state (which tightens somewhat with increasing energy), while the T1 pathway involves a barrier and therefore a tight transition state. The product state distributions which derive from the S0 and T1 pathways differ qualitatively, thereby providing a means of discerning the respective S0 and T1 contributions. Energies in excess of the H+HCO threshold have been examined throughout the range 1103⩽E†⩽2654 cm-1 by using two complementary experimental techniques; ion imaging and high-n Rydberg time-of-flight spectroscopy. It was found that S0 dominates at the low end of the energy range. Here, T1 participation is sporadic, presumably due to poor coupling between zeroth-order S1 levels and T1 reactive resonances. These T1 resonances have small decay widths because they lie below the T1 barrier. Alternatively, at the high end of the energy range, the T1 pathway dominates, though a modest S0 contribution is always present. The transition from S0 dominance to T1 dominance occurs over a broad energy range. The most reliable value for the T1 barrier (1920±210 cm-1) is given by the recent ab initio calculations of Yamaguchi et al. It lies near the center of the region where the transition from S0 dominance to T1 dominance takes place. Thus, the present results are consistent with the best theoretical calculations as well as the earlier study of Chuang et al., which bracketed the T1 barrier energy between 1020 and 2100 cm-1 above the H+HCO threshold. The main contribution of the present work is an experimental demonstration of the transition from S0 to T1 dominance, highlighting the sporadic nature of this competition.

  15. Ice Lithography for Nanodevices

    DEFF Research Database (Denmark)

    Han, Anpan; Kuan, A.; Wang, J.

    Water vapor is condensed onto a cold sample, coating it with a thin-film of ice. The ice is sensitive to electron beam lithography exposure. 10 nm ice patterns are transferred into metals by “melt-off”. Non-planar samples are coated with ice, and we pattern on cantilevers, AFM tips, and suspended...

  16. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  17. Arctic ice islands

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  18. Unimolecular photochemistry of anthracenes

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H.D. (Chalmers Univ. of Technology, Gothenburg (Sweden). Dept. of Organic Chemistry Univ. of Gothenburg, Gothenburg (Sweden). Dept. of Organic Chemistry)

    During the course of his studies on solid hydrocarbons that were obtainable from coal tar by distillation, J. Fritzsche discovered in 1866 that saturated solutions of anthracene upon exposure to sunlight gave a colorless crystalline precipitate which regenerated anthracene upon melting. The dimeric nature of the photoproduct was established in 1891 by molecular weight determination, and the correct structure was proposed before the turn of the century. Mechanism studies on the photochemical formation of dianthracene commenced as early as 1905. In particular, the photophysical aspects and the reversibility of the reaction were studied during the following 50 years. The paper discusses the following: electron spectral properties of anthracenes; photochemistry of nonplanar anthracenes; photolytic transformations of anthracenes; intramolecular energy transfer in substituted anthracene; chemical consequences of intramolecular electron transfer; excited-state reactions of anthry-substituted alkenes, azomethines, and azines; and isomerization of non-conjugatively linked bichromophoric anthracenes. 392 refs.

  19. Top Sounder Ice Penetration

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  20. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  1. Laboratory Studies on the Formation of Formic Acid (HCOOH) in Interstellar and Cometary Ices

    Science.gov (United States)

    Bennett, Chris J.; Hama, Tetsuya; Kim, Yong Seol; Kawasaki, Masahiro; Kaiser, Ralf I.

    2011-01-01

    Mixtures of water (H2O) and carbon monoxide (CO) ices were irradiated at 10 K with energetic electrons to simulate the energy transfer processes that occur in the track of galactic cosmic-ray particles penetrating interstellar ices. We identified formic acid (HCOOH) through new absorption bands in the infrared spectra at 1690 and 1224 cm-1 (5.92 and 8.17 μm, respectively). During the subsequent warm-up of the irradiated samples, formic acid is evident from the mass spectrometer signal at the mass-to-charge ratio, m/z = 46 (HCOOH+) as the ice sublimates. The detection of formic acid was confirmed using isotopically labeled water-d2 with carbon monoxide, leading to formic acid-d2 (DCOOD). The temporal fits of the reactants, reaction intermediates, and products elucidate two reaction pathways to formic acid in carbon monoxide-water ices. The reaction is induced by unimolecular decomposition of water forming atomic hydrogen (H) and the hydroxyl radical (OH). The dominating pathway to formic acid (HCOOH) was found to involve addition of suprathermal hydrogen atoms to carbon monoxide forming the formyl radical (HCO); the latter recombined with neighboring hydroxyl radicals to yield formic acid (HCOOH). To a lesser extent, hydroxyl radicals react with carbon monoxide to yield the hydroxyformyl radical (HOCO), which recombined with atomic hydrogen to produce formic acid. Similar processes are expected to produce formic acid within interstellar ices, cometary ices, and icy satellites, thus providing alternative processes for the generation of formic acid whose abundance in hot cores such as Sgr-B2 cannot be accounted for solely by gas-phase chemistry.

  2. The design and performance of a threshold-photoelectron-photoion coincidence spectrometer for the study of unimolecular decomposition in polyatomic ions

    Energy Technology Data Exchange (ETDEWEB)

    Holland, D.M.P. E-mail: d.m.p.holland@dl.ac.uk; Shaw, D.A.; Sumner, I.; Hayes, M.A.; Mackie, R.A.; Wannberg, B.; Shpinkova, L.G.; Rennie, E.E.; Cooper, L.; Johnson, C.A.F.; Parker, J.E

    2001-08-01

    The design, construction and performance of a threshold-photoelectron-photoion coincidence (TPEPICO) spectrometer for the study of unimolecular decomposition in polyatomic ions is described. The spectrometer incorporates a hemispherical electrostatic energy analyser and a time-of-flight (TOF) mass spectrometer. The entrance lens to the hemispherical analyser has been designed to have a high collection efficiency for low energy electrons but to discriminate strongly against energetic electrons. This arrangement has resulted in a resolution of about 3.5 meV being achieved for the threshold electron peak recorded at the krypton {sup 2}P{sub 3/2} ionisation limit. A pulsed electric field is used to extract the ions from the interaction region and propel them towards the TOF analyser. Computer modelling has been used to trace the electron and ion trajectories through their respective analysers. These simulations have enabled the effective interaction volume to be defined, and this has allowed the transmission efficiency of energetic fragment ions, formed through a process which also yielded a threshold electron, to be quantified. The ion TOF peak shape has been examined as a function of initial kinetic energy and as a function of ion residence time. The contribution of energetic fragments, having specific initial spatial and directional properties, to the TOF peak shape has been determined by tracing the paths of individual ions. The actual performance of the spectrometer is illustrated by a TPEPICO spectrum of the krypton isotopes. Experimental breakdown curves for furan are presented as an example of the use of the apparatus to study unimolecular decomposition in polyatomic ions. By introducing a delay between the detection of the threshold electron and the application of the ion extraction field, breakdown curves can be recorded as a function of ion residence time in the source region. The procedure for analysing the data is described, and the experimental factors

  3. The unimolecular reaction of t-BuNO on singlet and triplet surfaces: Spectroscopy, real-time rate measurements, and NO energy distributions

    Science.gov (United States)

    Noble, M.; Qian, C. X. W.; Reisler, H.; Wittig, C.

    1986-11-01

    The predissociation of jet-cooled (CH3)3CNO (t-BuNO) following laser excitation in the à 1A`←X˜ 1A' system has been studied in both the energy (frequency) and time domains. Unlike the smaller nitroso compounds whose predissociation has been already examined, unimolecular reaction is the rate determining step for predissociation near threshold. Consequently, it has been possible to separately measure radiationless transition rates and unimolecular reaction rates in real time. Dissociation on both the ground state (S0) and the first triplet state (T1) has been identified. At threshold, dissociation proceeds only on S0, with lifetimes >3.5 μs, but for E°≥650 cm-1, fast (<10 ns) predissociation via T1 becomes progressively the dominant dissociative route. Nascent NO photofragments have been characterized in detail using one-photon LIF. The rotational and spin-orbit distributions of NO following dissociation on S0 are statistical, depending only on E°. The NO derived from dissociation on the T1 surface is not at all statistical, consistent with a sizable (˜650 cm-1) exit channel barrier on this surface. Most notably, the [NO(2Π3/2)]/[NO(2Π1/2)] ratios are much smaller, and rotational distributions are colder than predicted by a statistical model. In order that some of the predissociating vibrational states could be assigned, the 1A`←1A' spectrum of t-BuNO has been analyzed and the electronic origin assigned as 13 911 cm-1. The ground state dissociation energy, D0, is found to be 13 930±30 cm-1, i.e., 39.8±0.1 kcal mol-1.

  4. IOMASA SEA ICE DEVELOPMENTS

    DEFF Research Database (Denmark)

    Andersen, Søren; Tonboe, Rasmus; Heygster, Georg

    2005-01-01

    Sensitivity studies show that the radiometer ice concentration estimate can be biased by +10% by anomalous atmospheric emissivity and -20% by anomalous ice surface emissivity. The aim of the sea ice activities in EU 5th FP project IOMASA is to improve sea ice concentration estimates at higher...... spatial resolution. The project is in the process of facilitating an ice concentration observing system through validation and a better understanding of the microwave radiative transfer of the sea ice and overlying snow layers. By use of a novel modelling approach, it is possible to better detect...... and determine the circumstances that may lead to anomalous sea ice concentration retrieval as well as to assess and possibly minimize the sensitivities of the retrieval system. Through an active partnership with the SAF on Ocean and Sea Ice, a prototype system will be implemented as an experimental product...

  5. Dead-ice environments

    DEFF Research Database (Denmark)

    2010-01-01

    Kötlujökull transports considerable amounts of supraglacial debris at its snout because of frontal oscillations with frequent ice advances followed by ice-margin stagnation. Kötlujökull provides suitable conditions of studying dead-ice melting and landscape formation in a debris-charged lowland...... glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...... and conclusions on dead-ice melting and landscape formation from Kötlujökull. Processes and landform-sediment associations are linked to the current climate and glacier–volcano interaction....

  6. IOMASA SEA ICE DEVELOPMENTS

    DEFF Research Database (Denmark)

    Andersen, Søren; Tonboe, Rasmus; Heygster, Georg

    2005-01-01

    Sensitivity studies show that the radiometer ice concentration estimate can be biased by +10% by anomalous atmospheric emissivity and -20% by anomalous ice surface emissivity. The aim of the sea ice activities in EU 5th FP project IOMASA is to improve sea ice concentration estimates at higher...... spatial resolution. The project is in the process of facilitating an ice concentration observing system through validation and a better understanding of the microwave radiative transfer of the sea ice and overlying snow layers. By use of a novel modelling approach, it is possible to better detect...... and determine the circumstances that may lead to anomalous sea ice concentration retrieval as well as to assess and possibly minimize the sensitivities of the retrieval system. Through an active partnership with the SAF on Ocean and Sea Ice, a prototype system will be implemented as an experimental product...

  7. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  8. Current Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Current Icing Product (CIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The CIP algorithm combines...

  9. Ice Adhesion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Uses Evaluate and compare the relative performance of materials and surfcae coating based on their ability to aid in ice removal Test the effectiveness of de-icing...

  10. Ice Cream Headaches

    Science.gov (United States)

    Diseases and Conditions Ice cream headaches By Mayo Clinic Staff Ice cream headaches are brief, stabbing headaches that can happen when you eat, drink or inhale something cold. Digging into an ice cream cone is a common trigger, but eating or ...

  11. Islands in the ice

    DEFF Research Database (Denmark)

    Jørgensen, Tina; Kjær, Kurt H.; Haile, James Seymour

    2012-01-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated ...

  12. Arctic ice management

    Science.gov (United States)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  13. ICE SLURRY APPLICATIONS.

    Science.gov (United States)

    Kauffeld, M; Wang, M J; Goldstein, V; Kasza, K E

    2010-12-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology.

  14. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  15. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    is not shut down for its protection. We also found that there is a a large spread across the various turbines within a wind park, in the amount of icing. This is currently not taken into account by our model. Evaluating and adding these small scale differences to the model will be undertaken as future work....... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine......In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...

  16. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  17. Icing Operations - De-Icing Policy

    Directory of Open Access Journals (Sweden)

    Jaromír Procházka

    2013-07-01

    Full Text Available The accumulation of ice, frost and snow on aircraft surfaces can drastically reduce the climb and maneuvering capabilities of an aircraft. The removal of such contamination prior to take off MUST be strictly adhered to in accordance with regulations and standards. The policy with respect to aircraft icing contamination should be “MAKE IT CLEAN AND KEEP IT CLEAN”. All personnel associated with the dispatch and/or operation of aircraft share the responsibility for ensuring that no aircraft is dispatched unless it is clear of ice, snow or frost.

  18. Land Ice: Greenland & Antarctic ice mass anomaly

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from NASA's Grace satellites show that the land ice sheets in both Antarctica and Greenland are losing mass. The continent of Antarctica (left chart) has been...

  19. Ice Jams in Alaska. Ice Engineering. Number 16, February 1997

    Science.gov (United States)

    1997-02-01

    An ice jam is an accumulation of ice in rivers that restricts flow and can cause destructive floods costly to riv- erine communities. Freezeup jams...and reliable data on past ice jam events. The CRREL Ice Jam Database is such a com- pilation of freezeup and breakup ice jam events in the United

  20. Arctic Sea Ice

    Science.gov (United States)

    Stroeve, J. C.; Fetterer, F.; Knowles, K.; Meier, W.; Serreze, M.; Arbetter, T.

    2004-12-01

    Of all the recent observed changes in the Arctic environment, the reduction of sea ice cover stands out most prominantly. Several independent analysis have established a trend in Arctic ice extent of -3% per decade from the late 1970s to the late 1990s, with a more pronounced trend in summer. The overall downward trend in ice cover is characterized by strong interannual variability, with a low September ice extent in one year typically followed by recovery the next September. Having two extreme minimum years, such as what was observed in 2002 and 2003 is unusual. 2004 marks the third year in a row of substantially below normal sea ice cover in the Arctic. Early summer 2004 appeared unusual in terms of ice extent, with May a record low for the satellite period (1979-present) and June also exhibiting below normal ice extent. August 2004 extent is below that of 2003 and large reductions in ice cover are observed once again off the coasts of Siberia and Alaska and the Greenland Sea. Neither the 2002 or 2003 anomaly appeared to be strongly linked to the positive phase of the Arctic Oscillation (AO) during the preceding winter. Similarly, the AO was negative during winter 2003/2004. In the previous AO framework of Rigor et al (2002), a positive winter AO implied preconditioning of the ice cover to extensive summer decay. In this hypothesis, the AO does not explain all aspects of the recent decline in Arctic ice cover, such as the extreme minima of 2002, 2003 and 2004. New analysis by Rigor and Wallace (2004) suggest that the very positive AO state from 1989-1995 can explain the recent sea ice minima in terms of changes in the Arctic surface wind field associated with the previous high AO state. However, it is also reasonable to expect that a general decrease in ice thickness accompanying warming would manifest itself as greater sensitivity of the ice pack to wind forcings and albedo feedbacks. The decrease in multiyear ice and attendant changes in ice thickness

  1. Picosecond real time study of the bimolecular reaction O(3P)+C2H4 and the unimolecular photodissociation of CH3CHO and H2CO

    Science.gov (United States)

    Abou-Zied, Osama K.; McDonald, J. Douglas

    1998-07-01

    The bimolecular reaction of O(3P) with ethylene and the unimolecular photodissociation of acetaldehyde and formaldehyde have been studied using a picosecond pump/probe technique. The bimolecular reaction was initiated in a van der Waals dimer precursor, C2H4ṡNO2, and the evolution of the vinoxy radical product monitored by laser-induced fluorescence. The NO2 constituent of the complex was photodissociated at 266 nm. The triplet oxygen atom then attacks a carbon atom of C2H4 to form a triplet diradical (CH2CH2O) which subsequently dissociates to vinoxy (CH2CHO) and H. The rise time of vinoxy radical production was measured to be 217 (+75-25) ps. RRKM theory was applied and a late high exit barrier was invoked in order to fit the measured rise time. The structure and binding energy of the van der Waals complex have been modeled using Lennard-Jones type potentials and the results were compared with other systems. The unimolecular side of the potential energy surfaces of this reaction has been investigated by photodissociating acetaldehyde at the same pump energy of 266 nm. The resulting photoproducts, acetyl radical (CH3CO) and formyl radical (HCO), have been monitored by resonance enhanced multiphoton ionization (REMPI) combined with a time-of-flight mass spectrometer. The similarity in the measured evolution times of both radicals indicates the same photodissociation pathway of the parent molecule. The photodissociation rate of acetaldehyde is estimated from RRKM theory to be very fast (3×1012s-1). The T1←S1 intersystem crossing (ISC) rate is found to be the rate determining step to photodissociation and increases with energy. The REMPI mechanism for the production of CH3CO+ is proposed to be the same as that of HCO+(2+1). The HCO product from the photodissociation of formaldehyde at 266 nm reveals a faster T1←S1 ISC rate than in acetaldehyde.

  2. Kagome spin ice

    Science.gov (United States)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  3. An ice lithography instrument

    Science.gov (United States)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  4. Amery ice shelf DEM and its marine ice distribution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICESat altimetry and the AIS-DEM. The ice thickness distribution map is converted from the new DEM, assuming hydrostatic equilibrium. The Amery Ice Shelf marine ice, up to 230 m thick, is concentrated in the northwest of the ice shelf. The volume of the marine ice is 2.38×103 km3 and accounts for about 5.6% of the shelf volume.

  5. Ice Tank Experiments Highlight Changes in Sea Ice Types

    Science.gov (United States)

    Wilkinson, Jeremy P.; DeCarolis, Giacomo; Ehlert, Iris; Notz, Dirk; Evers, Karl-Ulrich; Jochmann, Peter; Gerland, Sebastian; Nicolaus, Marcel; Hughes, Nick; Kern, Stefan; de la Rosa, Sara; Smedsrud, Lars; Sakai, Shigeki; Shen, Hayley; Wadhams, Peter

    2009-03-01

    With the current and likely continuing reduction of summer sea ice extent in the Arctic Ocean, the predominant mechanism of sea ice formation in the Arctic is likely to change in the future. Although substantial new ice formation occurred under preexisting ice in the past, the fraction of sea ice formation in open water likely will increase significantly. In open water, sea ice formation starts with the development of small ice crystals, called frazil ice, which are suspended in the water column [World Meteorological Organization, 1985]. Under quiescent conditions, these crystals accumulate at the surface to form an unbroken ice sheet known in its early stage as nilas. Under turbulent conditions, caused by wind and waves, frazil ice continues to grow and forms into a thick, soupy mixture called grease ice. Eventually the frazil ice will coalesce into small, rounded pieces known as pancake ice, which finally consolidate into an ice sheet with the return of calm conditions. This frazil/pancake/ice sheet cycle is currently frequently observed in the Antarctic [Lange et al., 1989]. The cycle normally occurs in regions that have a significant stretch of open water, because this allows for the formation of larger waves and hence increased turbulence. Given the increase of such open water in the Arctic Ocean caused by retreating summer sea ice, the frazil/pancake/ice sheet cycle may also become the dominant ice formation process during freezeup in the Arctic.

  6. Ice-on-ice impact experiments.

    Science.gov (United States)

    Kato, Manabu; Iijima, Yu-Ichi; Arakawa, Masahiko; Okimura, Yasuyuki; Fujimura, Akio; Maeno, Norikazu; Mizutani, Hitoshi

    1995-02-01

    Impact experiments, cratering and fragmentation, on water ice were performed in order to test the scaling laws previously constructed on rocks and sands for studying the collision process in the planetary history. The installation of a vertical gas gun in a cold room at -18°C (255 K) made it possible to use a projectile of water ice and to get the detailed mass distribution of ice fragments. Experimental results indicated the necessity for large modification of those scaling laws. Material dependence was investigated by using projectiles of ice, aluminum, and polycarbonate. Differences were observed in the morphology and efficiencies of cratering and in the energies required to initiate the fragmentation. Moreover, an abrupt increase of cratering efficiency, suggesting a change of excavation mechanism, was found at a critical diameter of spalled crater. The mass (size) distribution of small ice fragments obeyed a power law with an exponent significantly larger than that in rocks. The exponent was the same as that in Saturn's ring particles estimated from the data by the microwave occultation, which indicates a collisional disruption ring origin.

  7. Small Airframe Manufacturer's Icing Perspective

    Science.gov (United States)

    Hoppins, Jim

    2009-01-01

    This viewgraph presentation describes the icing effects, risk mitigation practices, and icing certifications for various Cessna small aircraft models. NASA's role in the development of simulation tools for icing certifications is also discussed.

  8. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  9. Influence of Surface and Bulk Water Ice on the Reactivity of a Water-forming Reaction

    Science.gov (United States)

    Lamberts, Thanja; Kästner, Johannes

    2017-09-01

    On the surface of icy dust grains in the dense regions of the interstellar medium, a rich chemistry can take place. Due to the low temperature, reactions that proceed via a barrier can only take place through tunneling. The reaction {{H}}+{{{H}}}2{{{O}}}2\\longrightarrow {{{H}}}2{{O}}+{OH} is such a case with a gas-phase barrier of ∼26.5 kJ mol‑1. Still, the reaction is known to be involved in water formation on interstellar grains. Here, we investigate the influence of a water ice surface and of bulk ice on the reaction rate constant. Rate constants are calculated using instanton theory down to 74 K. The ice is taken into account via multiscale modeling, describing the reactants and the direct surrounding at the quantum mechanical level with density functional theory (DFT), while the rest of the ice is modeled on the molecular mechanical level with a force field. We find that H2O2 binding energies cannot be captured by a single value, but rather they depend on the number of hydrogen bonds with surface molecules. In highly amorphous surroundings, the binding site can block the routes of attack and impede the reaction. Furthermore, the activation energies do not correlate with the binding energies of the same sites. The unimolecular rate constants related to the Langmuir–Hinshelwood mechanism increase as the activation energy decreases. Thus, we provide a lower limit for the rate constant and argue that rate constants can have values up to two order of magnitude larger than this limit.

  10. Initial mechanisms for the unimolecular decomposition of electronically excited nitrogen-rich energetic materials with tetrazole rings: 1-DTE, 5-DTE, BTA, and BTH.

    Science.gov (United States)

    Yuan, Bing; Bernstein, Elliot R

    2016-06-21

    Unimolecular decomposition of nitrogen-rich energetic molecules 1,2-bis(1H-tetrazol-1-yl)ethane (1-DTE), 1,2-bis(1H-tetrazol-5-yl)ethane (5-DET), N,N-bis(1H-tetrazol-5-yl)amine (BTA), and 5,5'-bis(tetrazolyl)hydrazine (BTH) has been explored via 283 nm two photon laser excitation. The maximum absorption wavelength in the UV-vis spectra of all four materials is around 186-222 nm. The N2 molecule, with a cold rotational temperature (energetic molecules open at the N1-N2 ring bond with the lowest energy barrier: the C-N bond opening has higher energy barrier than that for any of the N-N ring bonds. Therefore, the tetrazole rings open at their N-N bonds to release N2. The vibrational temperatures of N2 product from all four energetic materials are hot based on theoretical calculations. The different groups (CH2-CH2, NH-NH, and NH) joining the tetrazole rings can cause apparent differences in explosive behavior of 1-DTE, 5-DTE, BTA, and BTH. Conical intersections, non-Born-Oppenheimer interactions, and dynamics are the key features for excited electronic state chemistry of organic molecules, in general, and energetic molecules, in particular.

  11. Suppression of unimolecular decay of laser desorbed peptide and protein ions by entrainment in rarefied supersonic gas jets under weak electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Hieke, Andreas, E-mail: andreas.hieke@stanford.edu [Department of Structural Biology, School of Medicine, Stanford University, 299 Campus Drive West, Fairchild Building, 148, Stanford, California 94305-5126 (United States)

    2014-01-21

    Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined “MALDI-2,” which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.

  12. Meth (Crank, Ice) Facts

    Science.gov (United States)

    ... That People Abuse » Meth (Crank, Ice) Facts Meth (Crank, Ice) Facts Listen Methamphetamine—meth for short—is a white, bitter powder. Sometimes ... clear or white shiny rock (called a crystal). Meth powder can be eaten or snorted up the ...

  13. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  14. Making an Ice Core.

    Science.gov (United States)

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  15. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  16. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  17. Testing The Ice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The country’s fourth scientific expedition tothe North Pole starts OBSERVATION STATIONS:Members of China’s fourth Arctic expedition set up polar bear-proof "apple houses" on the ice surface of the Arctic Ocean on August 8 The Chinese ice breaker Xuelong

  18. Rheology of glacier ice

    Science.gov (United States)

    Jezek, K. C.; Alley, R. B.; Thomas, R. H.

    1985-01-01

    A new method for calculating the stress field in bounded ice shelves is used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. The analysis shows that strain rate (per second) increases as the third power of deviatoric stress (in newtons/sq meter), with a constant of proportionality equal to 2.3 x 10 to the -25th.

  19. Rotating ice blocks

    Science.gov (United States)

    Dorbolo, Stephane; Adami, Nicolas; Grasp Team

    2014-11-01

    The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.

  20. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  1. Stacking disorder in ice I.

    Science.gov (United States)

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-07

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history.

  2. Mechanistical Studies on the Irradiation of Methanol in Extraterrestrial Ices

    Science.gov (United States)

    Bennett, Chris J.; Chen, Shih-Hua; Sun, Bing-Jian; Chang, Agnes H. H.; Kaiser, Ralf I.

    2007-05-01

    Pure ices of amorphous methanol, CH3OH(X1A'), were irradiated at 11 K by 5 keV electrons at 100 nA for 1 hr. These energetic electrons simulate electronic energy transfer processes that occur as interstellar ices, comets, and icy solar system bodies are subjected to irradiation from MeV ions and secondary electrons produced in this process. The results were analyzed quantitatively via absorption-reflection-absorption Fourier transform infrared (FTIR) spectroscopy, with the identification of new species aided by high-level electronic structure calculations. The unimolecular decomposition of methanol was found to proceed via the formation of (1) the hydroxymethyl radical, CH2OH(X2A''), and atomic hydrogen, H(2S1/2), (2) the methoxy radical, CH3O(X2A'), plus atomic hydrogen, (3) formaldehyde, H2CO(X1A1) plus molecular hydrogen, H2(X1Σ+g), and (4) the formation of methane, CH4(X1A1), together with atomic oxygen, O(1D). The accessibility of the last channel indicates that the reverse process, oxygen addition into methane to form methanol, should also be feasible. A kinetic model is presented for the decomposition of methanol into these species, as well as the formyl radical, HCO(X2A'), and carbon monoxide, CO(X1Σ+). During the subsequent warming up of the sample, radicals previously generated within the matrix were mobilized and found to recombine to form methyl formate, CH3OCHO(X1A'), glycolaldehyde, CH2OHCHO(X1A'), and ethylene glycol, HOCH 2CH2OH(X1A). Upper limits for the production of these species by the recombination of neighboring radicals produced during irradiation as well as during the warm-up procedure are presented. The generation of these molecules by irradiation of ices in the solid state and their subsequent sublimation into the gas phase can help explain their high abundances as observed toward hot molecular cores and underlines their importance in astrobiology.

  3. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    simulations of the Greenland ice sheet using ice sheet models offers the possibility of deriving reconstructions of past ice sheet topography, flow and extent, consistent with the dynamics of ice flow and the imposed climate forcing. The large-scale response of the ice sheet modelled by such approaches can...... core derived temperature and precipitation histories have a long history of being used in studies of the past evolution of the Greenland ice sheet, acting as climatic forcing of the ice sheet models. However, the conversion from the isotopic records to past temperatures remain challenging, owing...... to both uncertain processes and depositional histories. Using five different temperature reconstructions derived from isotope records of Greenlandic ice cores, the influence of the paleo records on the simulated ice sheet was investigated using a high-resolution, large-scale ice sheet model (PISM...

  4. The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis

    Science.gov (United States)

    Olsen, Lasse M.; Laney, Samuel R.; Duarte, Pedro; Kauko, Hanna M.; Fernández-Méndez, Mar; Mundy, Christopher J.; Rösel, Anja; Meyer, Amelie; Itkin, Polona; Cohen, Lana; Peeken, Ilka; Tatarek, Agnieszka; Róźańska-Pluta, Magdalena; Wiktor, Józef; Taskjelle, Torbjørn; Pavlov, Alexey K.; Hudson, Stephen R.; Granskog, Mats A.; Hop, Haakon; Assmy, Philipp

    2017-07-01

    During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, first year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida. The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice-free Arctic Ocean.

  5. 趣话ice

    Institute of Scientific and Technical Information of China (English)

    刘奉越

    2002-01-01

    在英语中,ice是一个很普通的词,它的基本含义是“冰,冰块”。如:The sportsman slipped on the ice and one of his legs was broken.(这个运动员在冰上滑倒了,一条腿摔断了。)它还可指“冰淇淋”,相当于ice cream。如.After having two ices I felt uncomfortable.

  6. Stripping with dry ice

    Science.gov (United States)

    Malavallon, Olivier

    1995-04-01

    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  7. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  8. Ice nucleation terminology

    Directory of Open Access Journals (Sweden)

    G. Vali

    2014-08-01

    Full Text Available Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  9. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  10. The unimolecular chemistry of protonated and deprotonated 2,2-dinitroethene-1,1-diamine (FOX-7) studied by tandem mass spectrometry and computational chemistry.

    Science.gov (United States)

    Žabka, Ján; Šimková, Ludmila; Jalový, Zdeněk; Polášek, Miroslav

    2014-01-01

    2,2-Dinitroethene-1,1-diamine (FOX-7) was studied by means of electrospray ionization (ESI) and chemical ionization (CI) mass spectrometry in both positive and negative ion mode. Detailed mechanisms of unimolecular fragmentations of protonated and deprotonated FOX-7 were investigated using high- and low- energy collision-induced dissociation (CID) mass spectrometry, neutral fragment reionization mass spectrometry and quantum chemistry calculations. In deprotonated FOX-7, elimination of the carbodiimide molecule was identified as the energetically most favored fragmentation channel, closely resembling the base hydrolysis of FOX-7. The dinitromethanide ion is formed during this fragmentation as revealed by comparison with CID mass spectra of an isobaric ion prepared by the ESI of authentic sodium dinitromethanide. The proton affinity of FOX-7 was estimated as 855 kJ mo(-1) by high-accuracy quantum chemistry calculations. This value corresponds to protonation at the C-2 position, though the oxygen-protonated tautomer was found to be nearly isoenergetic in the gas phase. In acetonitrile, the nitro group-protonated FOX-7 was found to be significantly less stable then its C-2 tautomer. These theoretical findings are clearly reflected in differences in fragmentations of ESI- and CI-generated [M+H(]+) ions. Interestingly, the consecutive losses of OH∙ and NO2∙ radicals instead of a whole HNO3 molecule were found to account for the most abundant fragment ion in the positive ESI CID mass spectra. In the CI-generated [M+H](+) and [M+D](+) ions, substantial internal energy effects upon the CID were observed.

  11. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  12. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  13. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  14. Melting ice, growing trade?

    National Research Council Canada - National Science Library

    Sami Bensassi; Julienne C. Stroeve; Inmaculada Martínez-Zarzoso; Andrew P. Barrett

    2016-01-01

    Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR...

  15. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  16. Web life: Ice Flows

    Science.gov (United States)

    2016-11-01

    Computer and video gamers of a certain vintage will have fond memories of Lemmings, a game in which players must shepherd pixelated, suicidal rodents around a series of obstacles to reach safety. At first glance, Ice Flows is strikingly similar.

  17. Innovative Control Effectors (ICE)

    Science.gov (United States)

    1996-01-01

    including weight, maneuver performance, signa- ture, hydraulic requirements, demands on the flight control system (FCS) design, and car - rier (CV...applicable to the car - rier-based configurations. Figure 7-36 summarizes an assessment of the ICE series 101 configuration control allocation evaluation. ICE...plain leading edge flaps, all moving horizontal tails, rudder, two airbrakes under fuselage F-15C inner trailing edge plain flap, outer aileron, all

  18. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  19. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  20. Modelling sea ice dynamics

    Science.gov (United States)

    Murawski, Jens; Kleine, Eckhard

    2017-04-01

    Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.

  1. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  2. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2013-09-30

    ice age, and iv) onset dates of melt and freezeup . 4. Assess the magnitude of the contribution from ice-albedo feedback to the observed decrease of...the impact on albedo evolution of ice concentration and melt and freezeup onset dates. This effort will expand on previous work by i) examining...radiation, ice concentration, ice type, and melt and freezeup onset dates on a 25 x 25 km equal area scalable grid. We have daily values of these parameters

  3. Arctic Summer Ice Processes

    Science.gov (United States)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open

  4. Nucleation of Ice

    Science.gov (United States)

    Molinero, Valeria

    2009-03-01

    The freezing of water into ice is a ubiquitous transformation in nature, yet the microscopic mechanism of homogeneous nucleation of ice has not yet been elucidated. One of the reasons is that nucleation happens in time scales that are too fast for an experimental characterization and two slow for a systematic study with atomistic simulations. In this work we use coarse-grained molecular dynamics simulations with the monatomic model of water mW[1] to shed light into the mechanism of homogeneous nucleation of ice and its relationship to the thermodynamics of supercooled water. Cooling of bulk water produces either crystalline ice or low- density amorphous ice (LDA) depending on the quenching rate. We find that ice crystallization occurs faster at temperatures close to the liquid-liquid transition, defined as the point of maximum inflection of the density with respect to the temperature. At the liquid-liquid transition, the time scale of nucleation becomes comparable to the time scale of relaxation within the liquid phase, determining --effectively- the end of the metastable liquid state. Our results imply that no ultraviscous liquid water can exist at temperatures just above the much disputed glass transition of water. We discuss how the scenario is changed when water is in confinement, and the relationship of the mechanism of ice nucleation to that of other liquids that present the same phase behavior, silicon [2] and germanium [3]. [4pt] [1] Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. Journal of Physical Chemistry B (2008). Online at http://pubs.acs.org/cgi- bin/abstract.cgi/jpcbfk/asap/abs/jp805227c.html [0pt] [2] Molinero, V., Sastry, S. & Angell, C. A. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Physical Review Letters 97, 075701 (2006).

  5. Microbial abundance in surface ice on the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    Marek eStibal

    2015-03-01

    Full Text Available Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet, using three enumeration methods: epifluorescence microscopy (EFM, flow cytometry (FCM and quantitative polymerase chain reaction (qPCR. In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (10^2 – 10^7 cells ml-1 and mineral particle (0.1 – 100 mg/ml concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ca 2 x 10^3 to ca 2 x 10^6 cells/ml while dust concentrations ranged from 0.01 to 2 mg/ml. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the Greenland Ice Sheet.

  6. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  7. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...

  8. Data archaeology at ICES

    Science.gov (United States)

    Dooley, Harry D.

    1992-01-01

    This paper provides a brief overview of the function of the International Council for the Exploration of the Sea (ICES), both past and present, in particular in the context of its interest in compiling oceanographic data sets. Details are provided of the procedures it adopted to ensure adequate internationally collaborative marine investigations during the first part of the century, such as how it provided a forum for action by its member states, how it coordinated and published the results of scientific programs, and how it provided a foundation, through scientists employed in the ICES Office, for the establishment of the original oceanographic marine databases and associated products, and the scientific interpretation of the results. The growth and expansion of this area of ICES activity is then traced, taking into account the changing conditions for oceanographic data management resulting from the establishment of the National Data Centres, as well as the World Data Centres for Oceanography, which were created to meet the needs of the International Geophysical Year (IGY). Finally, there is a discussion of the way in which the very existence of ICES has proved to be a valuable source of old data, some of which have not yet been digitized, but which can be readily retrieved because they have been very carefully documented throughout the years. Lessons from this activity are noted, and suggestions are made on how the past experiences of ICES can be utilized to ensure the availability of marine data to present and future generations of scientists.

  9. IDEOLOGICALLY CHALLENGING ENTERTAINMENT (ICE

    Directory of Open Access Journals (Sweden)

    Dana Lori Chalmers

    2015-09-01

    Full Text Available Ideologically Challenging Entertainment (ICE is entertainment that challenges ‘us vs. them’ ideologies associated with radicalization, violent conflict and terrorism. ICE presents multiple perspectives on a conflict through mainstream entertainment. This article introduces the theoretical underpinnings of ICE, the first ICE production and the audience responses to it. The first ICE production was Two Merchants: The Merchant of Venice adapted to challenge ideologies of the Arab-Israeli Conflict. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views. Each performance included two versions of the adaptation: a Jewish dominated society with an Arab Muslim minority, contrasted with an Arab Muslim dominated society and a Jewish minority. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views to become more tolerant of differences away from ideological radicalization. Of audience members who did not initially agree with the premise of the production, 40% reconsidered their ideological views, indicating increased tolerance, greater awareness of and desire to change their own prejudices. In addition, 86% of the audience expressed their intention to discuss the production with others, thereby encouraging critical engagement with, and broader dissemination of the message. These outcomes suggest that high quality entertainment – as defined by audience responses to it - can become a powerful tool in the struggle against radicalised ideologies.

  10. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  11. Seafloor Control on Sea Ice

    Science.gov (United States)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  12. EASE-Grid Sea Ice Age

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides weekly estimates of sea ice age for the Arctic Ocean from remotely sensed sea ice motion and sea ice extent. The ice age data are derived from...

  13. Photoinitiated H{sub 2}CO unimolecular decomposition: Accessing H+HCO products via S{sub 0} and T{sub 1} pathways

    Energy Technology Data Exchange (ETDEWEB)

    Valachovic, L. R. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Tuchler, M. F. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Dulligan, M. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Droz-Georget, Th. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Zyrianov, M. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Kolessov, A. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Reisler, H. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Wittig, C. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2000-02-08

    The photoinitiated unimolecular decomposition of formaldehyde via the H+HCO radical channel has been examined at energies where the S{sub 0} and T{sub 1} pathways both participate. The barrierless S{sub 0} pathway has a loose transition state (which tightens somewhat with increasing energy), while the T{sub 1} pathway involves a barrier and therefore a tight transition state. The product state distributions which derive from the S{sub 0} and T{sub 1} pathways differ qualitatively, thereby providing a means of discerning the respective S{sub 0} and T{sub 1} contributions. Energies in excess of the H+HCO threshold have been examined throughout the range 1103{<=}E{sup {dagger}}{<=}2654 cm{sup -1} by using two complementary experimental techniques; ion imaging and high-n Rydberg time-of-flight spectroscopy. It was found that S{sub 0} dominates at the low end of the energy range. Here, T{sub 1} participation is sporadic, presumably due to poor coupling between zeroth-order S{sub 1} levels and T{sub 1} reactive resonances. These T{sub 1} resonances have small decay widths because they lie below the T{sub 1} barrier. Alternatively, at the high end of the energy range, the T{sub 1} pathway dominates, though a modest S{sub 0} contribution is always present. The transition from S{sub 0} dominance to T{sub 1} dominance occurs over a broad energy range. The most reliable value for the T{sub 1} barrier (1920{+-}210 cm{sup -1}) is given by the recent ab initio calculations of Yamaguchi et al. It lies near the center of the region where the transition from S{sub 0} dominance to T{sub 1} dominance takes place. Thus, the present results are consistent with the best theoretical calculations as well as the earlier study of Chuang et al., which bracketed the T{sub 1} barrier energy between 1020 and 2100 cm-1 above the H+HCO threshold. The main contribution of the present work is an experimental demonstration of the transition from S{sub 0} to T{sub 1} dominance, highlighting the

  14. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M(+) and (ProLeu)M(+) (M = Alkali Metal).

    Science.gov (United States)

    Jami-Alahmadi, Yasaman; Linford, Bryan D; Fridgen, Travis D

    2016-12-29

    The unimolecular chemistries and structures of gas-phase (ProLeu)M(+) and (LeuPro)M(+) complexes when M = Li, Na, Rb, and Cs have been explored using a combination of SORI-CID, IRMPD spectroscopy, and computational methods. CID of both (LeuPro)M(+) and (ProLeu)M(+) showed identical fragmentation pathways and could not be differentiated. Two of the fragmentation routes of both peptides produced ions at the same nominal mass as (Pro)M(+) and (Leu)M(+), respectively. For the litiated peptides, experiments revealed identical IRMPD spectra for each of the m/z 122 and 138 ions coming from both peptides. Comparison with computed IR spectra identified them as the (Pro)Li(+) and (Leu)Li(+), and it is concluded that both zwitterionic and canonical forms of (Pro)Li(+) exist in the ion population from CID of both (ProLeu)Li(+) and (LeuPro)Li(+). The two isomeric peptide complexes could be distinguished using IRMPD spectroscopy in both the fingerprint and the CH/NH/OH regions. The computed IR spectra for the lowest energy structures of each charge solvated complexes are consistent with the IRMPD spectra in both regions for all metal cation complexes. Through comparison between the experimental spectra, it was determined that in lithiated and sodiated ProLeu, metal cation is bound to both carbonyl oxygens and the amine nitrogen. In contrast, the larger metal cations are bound to the two carbonyls, while the amine nitrogen is hydrogen bonded to the amide hydrogen. In the lithiated and sodiated LeuPro complexes, the metal cation is bound to the amide carbonyl and the amine nitrogen while the amine nitrogen is hydrogen bonded to the carboxylic acid carbonyl. However, there is no hydrogen bond in the rubidiated and cesiated complexes; the metal cation is bound to both carbonyl oxygens and the amine nitrogen. Details of the position of the carboxylic acid C═O stretch were especially informative in the spectroscopic confirmation of the lowest energy computed structures.

  15. Palaeoclimate science: Pulsating ice sheet

    Science.gov (United States)

    Vieli, Andreas

    2017-02-01

    During the last ice age, huge numbers of icebergs were episodically discharged from an ice sheet that covered North America. Numerical modelling suggests that these events resulted from a conceptually simple feedback cycle. See Letter p.332

  16. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  17. Ice at Mars lander site

    National Research Council Canada - National Science Library

    Showstack, Randy

    2008-01-01

    Eight dice‐sized bits of ice vanished within 4 days from a trench dug on Mars by the robotic arm on NASA's Phoenix lander, confirming what scientists suspected the material was. “It must be ice...

  18. Marginal Ice Zone Bibliography.

    Science.gov (United States)

    1985-06-01

    In Russian.) Kryndin, A.N., 1971: Seasonal and yearly variations in the iciness and the position of ice edge in the Black and Azov Seas, which are...p.2057--2063. idreas, E.L., R.M. Williams, C.A. Paulson, 1981: Observatinis of conden- sate profiles over Arctic leads with a hot- film anemometer...A.N., 1971: Seasonal and yearly variations in the iciness and the position of ice edge in the Black and Azov Seas, which are associated with

  19. Antarctica - Ross Ice Shelf

    Science.gov (United States)

    1990-01-01

    This color picture of Antarctica is one part of a mosaic of pictures covering the entire polar continent taken during the hours following Galileo's historic first encounter with its home planet. The view shows the Ross Ice Shelf to the right and its border with the sea. An occasional mountain can be seen poking through the ice near the McMurdo Station. It is late spring in Antarctica, so the sun never sets on the frigid, icy continent. This picture was taken about 6:20 p.m. PST on December 8, 1990. From top to bottom, the frame looks across about half of Antarctica.

  20. Vacancy Concentration in Ice

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Eldrup, Morten Mostgaard

    1977-01-01

    Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10.......Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10....

  1. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  2. Ice crystal ingestion by turbofans

    Science.gov (United States)

    Rios Pabon, Manuel A.

    This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is

  3. The Physics of Ice Sheets

    Science.gov (United States)

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  4. Ice Cream Wars

    Institute of Scientific and Technical Information of China (English)

    TAMMYTANG

    2004-01-01

    In early March, most Chinese can only vaguely sense a trace of warmth in the spring winds. For thecountry's ice cream producers however, the hot season has already arrived as they scramble for a niche position in thecountry's huge and lucrative

  5. Aircraft Icing Handbook. (Update)

    Science.gov (United States)

    1993-01-01

    at the 19th JALC Air Law Symposium, 1985. Sanderson , Janet. I., "Occurrence of Ice in the form of Glaze, Rime, and Hoarfrost with Respect to the...Aerospace Sciences Meeting, Jan. 1992. Brandon , J. M.; Manuel, G. S.; Wright, R. E.; Holmes, B. J., "In-Flight Flow Visualization Using Infrared

  6. Ecology under lake ice

    NARCIS (Netherlands)

    Hampton, Stephanie E.; Galloway, Aaron W. E.; Powers, Stephen M.; Ozersky, Ted; Woo, Kara H.; Batt, Ryan D.; Labou, Stephanie G.; O'Reilly, Catherine M.; Sharma, Sapna; Lottig, Noah R.; Stanley, Emily H.; North, Rebecca L.; Stockwell, Jason D.; Adrian, Rita; Weyhenmeyer, Gesa A.; Arvola, Lauri; Baulch, Helen M.; Bertani, Isabella; Bowman, Larry L., Jr.; Carey, Cayelan C.; Catalan, Jordi; Colom-Montero, William; Domine, Leah M.; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N.; Jolley, Jeff C.; Kahilainen, Kimmo K.; Kaup, Enn; Kehoe, Michael J.; MacIntyre, Sally; Mackay, Anson W.; Mariash, Heather L.; Mckay, Robert M.; Nixdorf, Brigitte; Noges, Peeter; Noges, Tiina; Palmer, Michelle; Pierson, Don C.; Post, David M.; Pruett, Matthew J.; Rautio, Milla; Read, Jordan S.; Roberts, Sarah L.; Ruecker, Jacqueline; Sadro, Steven; Silow, Eugene A.; Smith, Derek E.; Sterner, Robert W.; Swann, George E. A.; Timofeyev, Maxim A.; Toro, Manuel; Twiss, Michael R.; Vogt, Richard J.; Watson, Susan B.; Whiteford, Erika J.; Xenopoulos, Marguerite A.

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experi-ence periods of snow and ice cover. Relatively little is known of winter ecology in these systems,due to a historical research focus on summer ‘growing seasons’. We executed the first global

  7. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  8. Proceedings of ICED'09

    DEFF Research Database (Denmark)

    The 17th International Conference on Engineering Design, ICED'09, was held August 24-27 2009 at Stanford University, California, USA. The Conference is the flagship event of the Design Society, a society dedicated to contributing to a broad and established understanding of development and design....

  9. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, K. K.; Khan, Shfaqat Abbas; Wahr, J.;

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  10. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    the Arctic Ocean and surrounding seas, with particular emphasis on the Chukchi and Beaufort Seas. Some of the largest changes to the sea ice cover are...Changing Arctic Sea Ice Cover Don Perovich ERDC – CRREL 72 Lyme Road Hanover, NH 03755 Phone: 603-646-4255 Email: donald.k.perovich...quantitative understanding of the partitioning of solar radiation by the Arctic sea ice cover and its impact on the heat and mass balance of the ice and upper

  11. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    Arctic sea ice cover and its impact on the heat and mass balance of the ice and upper ocean ... Arctic Ocean and surrounding seas, with particular emphasis on the Chukchi and Beaufort Seas. Some of the largest changes to the sea ice cover are...other parts of the Arctic ice cover appear to now be accelerating. Figure 6. Maps of the linear trend of annual solar heat input to the ocean

  12. Ice particle collisions

    Science.gov (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  13. River ice jams at bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D. [New Brunswick Dept. of Transportation, Fredericton, NB (Canada); Beltaos, S. [National Water Research Institute, Burlington, ON (Canada)

    2000-12-01

    Ice jamming, known to cause high water levels at even moderate river flows, is described as both the main and least understood source of ice-related bridge damages. This paper describes a joint study by the New Brunswick Department of Transportation, the Department of the Environment, local governments, and the National Water Research Institute, designed to address problems associated with the interaction of ice jams and bridges. The study consists of collecting information at each of four sites in New Brunswick including: historical data on ice jam locations, causes, and water levels; channel bathymetry, width and slope within each study centred at the respective bridge; and documentation of ice conditions throughout the ice season, including measurement of ice cover thickness, observation of breakup mechanisms, times, causes, characteristics and possible impacts of ice jam release. Data analysis will include determination of high stages due to ice jams or surges caused by upstream ice jam releases, scour potential of surges, and quantification of the structure's capacity to restrain ice movement and to cause jams. The principal objective of the study is to advance beyond empiricism and to develop rational design criteria for bridges by anticipating the effects of climate changes and by incorporating local meteorological and hydrometric records into bridge design for added safety.

  14. Sensitivity Analysis of Automated Ice Edge Detection

    Science.gov (United States)

    Moen, Mari-Ann N.; Isaksem, Hugo; Debien, Annekatrien

    2016-08-01

    The importance of highly detailed and time sensitive ice charts has increased with the increasing interest in the Arctic for oil and gas, tourism, and shipping. Manual ice charts are prepared by national ice services of several Arctic countries. Methods are also being developed to automate this task. Kongsberg Satellite Services uses a method that detects ice edges within 15 minutes after image acquisition. This paper describes a sensitivity analysis of the ice edge, assessing to which ice concentration class from the manual ice charts it can be compared to. The ice edge is derived using the Ice Tracking from SAR Images (ITSARI) algorithm. RADARSAT-2 images of February 2011 are used, both for the manual ice charts and the automatic ice edges. The results show that the KSAT ice edge lies within ice concentration classes with very low ice concentration or open water.

  15. Using Ice Predictions to Guide Submarines

    Science.gov (United States)

    2016-01-01

    prevented the use of several airfields used for transporting personnel and equipment to the ice camp. The rapidly changing conditions of the ice ...of the ice cover. The age of the sea ice serves as an indicator of its physical properties including surface roughness, melt pond coverage, and...Sailors and members of the Applied Physics Laboratory Ice Station clear ice from the hatch of the submarine USS Connecticut (SSN 22) during Ice

  16. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic...... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...... the cores to GICC05. Furthermore, it has been possible to synchronize the Renland ice core to NGRIP-GICC05 in the glacial period back to 60,000 years b2k (years before A.D. 2000), on the basis of a matching of transitions between stadials and interstadials. This work brings the total number of ice core...

  17. Experimental provocation of 'ice-cream headache' by ice cubes and ice water.

    Science.gov (United States)

    Mages, Stephan; Hensel, Ole; Zierz, Antonia Maria; Kraya, Torsten; Zierz, Stephan

    2017-04-01

    Background There are various studies on experimentally provoked 'ice-cream headache' or 'headache attributed to ingestion or inhalation of a cold stimulus' (HICS) using different provocation protocols. The aim of this study was to compare two provocation protocols. Methods Ice cubes pressed to the palate and fast ingestion of ice water were used to provoke HICS and clinical features were compared. Results The ice-water stimulus provoked HICS significantly more often than the ice-cube stimulus (9/77 vs. 39/77). Ice-water-provoked HICS had a significantly shorter latency (median 15 s, range 4-97 s vs. median 68 s, range 27-96 s). There was no difference in pain localisation. Character after ice-cube stimulation was predominantly described as pressing and after ice-water stimulation as stabbing. A second HICS followed in 10/39 (26%) of the headaches provoked by ice water. Lacrimation occurred significantly more often in volunteers with than in those without HICS. Discussion HICS provoked by ice water was more frequent, had a shorter latency, different pain character and higher pain intensity than HICS provoked by ice cubes. The finding of two subsequent HICS attacks in the same volunteers supports the notion that two types of HICS exist. Lacrimation during HICS indicates involvement of the trigeminal-autonomic reflex.

  18. Image Content Engine (ICE)

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J M

    2007-03-26

    The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

  19. Animals and ICE

    DEFF Research Database (Denmark)

    van Hemmen, J Leo; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2016-01-01

    experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction i......TD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special...... issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source....

  20. City under the Ice

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    military conflicts are taking place. Studying the wealth of public representations of Camp Century, established 1959-60 by the US Army 128 miles east of the Thule Air Base and often referred to as the “City under the Ice”, we find a sharp contrast between the domesticated interior and the superpower...... conflict that gave impetus to the camp’s construction. Presented to the public as a scientific station and a technologically-advanced, under-ice extension of the American way of life, while situated in the titanic struggle between West and East, Camp Century took on a number of closed-world meanings....... However, the military logic of Camp Century was self-referential and closed in the sense that the very idea of constructing the city under ice emerged from Cold War strategy. The closed world of Camp Century established a temporary boundary between, on the one hand, the comfortable space controlled by US...

  1. Novel Ice Mitigation Methods

    Science.gov (United States)

    2008-01-01

    After the loss of Columbia, there was great concern in the Space Shuttle program for the impact of debris against the leading edges of the Orbiter wings. It was quickly recognized that, in addition to impacts by foam, ice that formed on the liquid-oxygen bellows running down the outside of the External Tank could break free during launch and hit this sensitive area. A Center Director s Discretionary Fund (CDDF) project would concentrate on novel ideas that were potentially applicable. The most successful of the new concepts for ice mitigation involved shape memory alloy materials. These materials can be bent into a given shape and, when heated, will return to their original shape.

  2. Ice anaesthesia in procedural dermatology.

    Science.gov (United States)

    Dixit, Shreya; Lowe, Patricia; Fischer, Gayle; Lim, Adrian

    2013-11-01

    This article presents findings from a survey of Australian dermatologists who were questioned about their preferred pain control methods when carrying out injectable procedures. We also present, what is to the best of our knowledge, the first proof-of-concept experiment exploring the relationship between ice-to-skin contact time and skin surface temperature, using both ice wrapped in latex and ice wrapped in aluminium foil. Of 79 dermatologists 32 responded to the survey (41% response rate): 31 (97%) injected botulinum toxin type A (BTA) for dynamic lines, 26 (81%) injected BTA for hyperhidrosis, and 24 (75%) injected skin fillers. Ice anaesthesia was the most common method of pain control (75%) followed by use of topical anaesthesia (50%) such as EMLA, compound agents and lignocaine 4%. Ice wrapped in latex or latex-like material was the most common ice packaging used by those surveyed and the median ice-to-skin contact time was 10 s. The ice experiment results indicated that ice wrapped with aluminium foil was equivalent to ice wrapped in latex for short contact times (skin temperature with longer contact times (> 20 s). These findings will be of relevance to cosmetic and paediatric dermatologists or any area of procedural medicine where effective non-injectable pain control is required.

  3. Ice Nucleation in Deep Convection

    Science.gov (United States)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  4. ICE SLURRY APPLICATIONS

    OpenAIRE

    Kauffeld, M.; Wang, M. J.; Goldstein, V.; Kasza, K. E.

    2010-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers ...

  5. Mercury’s Ice

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The fiery planet Mercury, where the temperature at high noon can exceed 750°F, is not a place that you would expect to find ice. The closestplanet to the sun, this airless, cratered world appears devoid of any wa-ter. frozen or otherwise. But appearances can be deceiving, as proven by ateam of researchers from NASA’s Jet Propulsion Laboratory and the Cali-fornia Institute of Technology.

  6. Helicopter Icing Review.

    Science.gov (United States)

    1980-09-01

    c CD 4- Z~L ~ ~L)~ u)z ~ ~ -4 z 4~ - -Ia. LnCD 9- CD C. Ln -i L.. L. c0 000 - -4 0000 0 0 o 00 CL -4- CD CDC CDUz 9- V) ) -cc C oL CD r 0LiDr- uDI L...protection system involved. o Icing conditions frequently occur in very moist air masses blowing inland from warmer seas, such as the Gulf of Mexico , the

  7. Mars Ice Age, Simulated

    Science.gov (United States)

    2003-01-01

    December 17, 2003This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  8. Ecology under lake ice.

    Science.gov (United States)

    Hampton, Stephanie E; Galloway, Aaron W E; Powers, Stephen M; Ozersky, Ted; Woo, Kara H; Batt, Ryan D; Labou, Stephanie G; O'Reilly, Catherine M; Sharma, Sapna; Lottig, Noah R; Stanley, Emily H; North, Rebecca L; Stockwell, Jason D; Adrian, Rita; Weyhenmeyer, Gesa A; Arvola, Lauri; Baulch, Helen M; Bertani, Isabella; Bowman, Larry L; Carey, Cayelan C; Catalan, Jordi; Colom-Montero, William; Domine, Leah M; Felip, Marisol; Granados, Ignacio; Gries, Corinna; Grossart, Hans-Peter; Haberman, Juta; Haldna, Marina; Hayden, Brian; Higgins, Scott N; Jolley, Jeff C; Kahilainen, Kimmo K; Kaup, Enn; Kehoe, Michael J; MacIntyre, Sally; Mackay, Anson W; Mariash, Heather L; McKay, Robert M; Nixdorf, Brigitte; Nõges, Peeter; Nõges, Tiina; Palmer, Michelle; Pierson, Don C; Post, David M; Pruett, Matthew J; Rautio, Milla; Read, Jordan S; Roberts, Sarah L; Rücker, Jacqueline; Sadro, Steven; Silow, Eugene A; Smith, Derek E; Sterner, Robert W; Swann, George E A; Timofeyev, Maxim A; Toro, Manuel; Twiss, Michael R; Vogt, Richard J; Watson, Susan B; Whiteford, Erika J; Xenopoulos, Marguerite A

    2017-01-01

    Winter conditions are rapidly changing in temperate ecosystems, particularly for those that experience periods of snow and ice cover. Relatively little is known of winter ecology in these systems, due to a historical research focus on summer 'growing seasons'. We executed the first global quantitative synthesis on under-ice lake ecology, including 36 abiotic and biotic variables from 42 research groups and 101 lakes, examining seasonal differences and connections as well as how seasonal differences vary with geophysical factors. Plankton were more abundant under ice than expected; mean winter values were 43.2% of summer values for chlorophyll a, 15.8% of summer phytoplankton biovolume and 25.3% of summer zooplankton density. Dissolved nitrogen concentrations were typically higher during winter, and these differences were exaggerated in smaller lakes. Lake size also influenced winter-summer patterns for dissolved organic carbon (DOC), with higher winter DOC in smaller lakes. At coarse levels of taxonomic aggregation, phytoplankton and zooplankton community composition showed few systematic differences between seasons, although literature suggests that seasonal differences are frequently lake-specific, species-specific, or occur at the level of functional group. Within the subset of lakes that had longer time series, winter influenced the subsequent summer for some nutrient variables and zooplankton biomass. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  9. Planetary Ices Attenuation Properties

    Science.gov (United States)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  10. Fram Strait Spring Ice Export and September Arctic Sea Ice

    Science.gov (United States)

    Smedsrud, Lars H.; Halvorsen, Mari H.; Stroeve, Julienne; Zhang, Rong; Kloster, Kjell

    2016-04-01

    The Arctic Basin exports between 600 000 - 1 million km² of it's sea ice cover southwards through Fram Strait each year, comparing to about 10% of the ice covered area inside the basin. During winter ice export results in growth of new and relatively thin ice inside the basin, while during summer or spring export contributes directly to open water further north. A new updated time series from 1935 to 2014 of Fram Strait sea ice area export shows that the long-term annual mean export is about 880,000 km², with large annual and decadal variability and no long-term trend over the past 80 years. Nevertheless, the last decade has witnessed increased annual ice export, with several years having annual ice export exceed 1 million km². Evaluating the trend onwards from 1979, when satellite based sea ice coverage became more readily available, reveals an increase in annual export of about +6% per decade. This increase is caused by higher southward ice drift speeds due to stronger southward geostrophic winds, largely explained by increasing surface pressure over Greenland. Spring and summer area export increased more (+11% per decade) than in autumn and winter. Contrary to the last decade the 1950 - 1970 period had low export during spring and summer, and mid-September sea ice extent was consistently higher than both before and after these decades. We thus find that export anomalies during spring have a clear influence on the following September sea ice extent in general, and that for the recent decade the export may be partially responsible for the accelerating decline in Arctic sea ice extent.

  11. Floating Ice-Algal Aggregates below melting Arctic Sea Ice

    OpenAIRE

    Philipp Assmy; Jens K. Ehn; Mar Fernández-Méndez; Haakon Hop; Christian Katlein; Arild Sundfjord; Katrin Bluhm; Malin Daase; Anja Engel; Agneta Fransson; Granskog, Mats A.; Hudson, Stephen R.; Svein Kristiansen; Marcel Nicolaus; Ilka Peeken

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1 – 15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layer...

  12. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    Science.gov (United States)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  13. The Spitzer ice legacy: Ice evolution from cores to protostars

    CERN Document Server

    Oberg, Karin I; Pontoppidan, Klaus M; Broek, Saskia van den; van Dishoeck, Ewine F; Bottinelli, Sandrine; Blake, Geoffrey A; Evans, Neal J

    2011-01-01

    Ices regulate much of the chemistry during star formation and account for up to 80% of the available oxygen and carbon. In this paper, we use the Spitzer c2d ice survey, complimented with data sets on ices in cloud cores and high-mass protostars, to determine standard ice abundances and to present a coherent picture of the evolution of ices during low- and high-mass star formation. The median ice composition H2O:CO:CO2:CH3OH:NH3:CH4:XCN is 100:29:29:3:5:5:0.3 and 100:13:13:4:5:2:0.6 toward low- and high-mass protostars, respectively, and 100:31:38:4:-:-:- in cloud cores. In the low-mass sample, the ice abundances with respect to H2O of CH4, NH3, and the component of CO2 mixed with H2O typically vary by <25%, indicative of co-formation with H2O. In contrast, some CO and CO2 ice components, XCN and CH3OH vary by factors 2-10 between the lower and upper quartile. The XCN band correlates with CO, consistent with its OCN- identification. The origin(s) of the different levels of ice abundance variations are cons...

  14. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  15. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K. [Argonne National Lab., IL (United States); Hayashi, Kanetoshi [NKK Corp., Kawasaki (Japan)

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  16. Improved ice loss estimate of the northwestern Greenland ice sheet

    Science.gov (United States)

    Kjeldsen, Kristian K.; Khan, Shfaqat Abbas; Wahr, John; Korsgaard, Niels J.; KjæR, Kurt H.; BjøRk, Anders A.; Hurkmans, Ruud; Broeke, Michiel R.; Bamber, Jonathan L.; Angelen, Jan H.

    2013-02-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003-2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show a significant acceleration in mass loss at elevations above 1200 m. Both the improved mass loss estimate along the ice sheet margin and the acceleration at higher elevations have implications for predictions of the elastic adjustment of the lithosphere caused by present-day ice mass changes. Our study shows that the use of ICESat data alone to predict elastic uplift rates biases the predicted rates by several millimeters per year at GPS locations along the northwestern coast.

  17. Floating ice-algal aggregates below melting arctic sea ice.

    Science.gov (United States)

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  18. Proceedings of the Airframe Icing Workshop

    Science.gov (United States)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  19. A Phase I Study of Unimolecular Pentavalent (Globo-H-GM2-sTn-TF-Tn Immunization of Patients with Epithelial Ovarian, Fallopian Tube, or Peritoneal Cancer in First Remission

    Directory of Open Access Journals (Sweden)

    Roisin E. O’Cearbhaill

    2016-04-01

    Full Text Available We conducted a phase I study in ovarian cancer patients to evaluate the safety and immunogenicity of a synthetic unimolecular pentavalent carbohydrate vaccine (Globo-H, GM2, sTn, TF, and Tn supported on a peptide backbone, conjugated to keyhole limpet haemocyanin (KLH, and mixed with immunological adjuvant QS-21. Twenty-four advanced-stage, poor-risk, first-remission ovarian cancer patients were enrolled from January 2011–Septermber 2013. Three dose levels were planned (25, 50, 100 mcg with three cohorts of six patients each, with an additional 6-patient expansion cohort at the MTD. ELISA serologic IgM and IgG responses for each antigen was defined as positive response if antibody titers were ≥1:80 over the respective patient’s pre-vaccination serum. The study would be considered positive if at least four of 12 patients treated at the MTD showed immune responses for at least three of the five antigens. Twenty-four patients (median age, 54 years [range, 36–68] were included in the safety analysis. Histology was high-grade serous in 22 patients (92%; 18 had stage III and six stage IV disease. The vaccine was well-tolerated at all doses, with no DLTs. At the highest treated dose, IgG and/or IgM responses were recorded against ≥3 antigens in 9/12 patients (75%, ≥4 in 7/12 (58%, and 5 in 3/12 (25%. With a median follow-up of 19 months (range, 2–39, 20 patients (83% recurred and six (25% died. The unimolecular pentavalent vaccine construct was shown to be safe and immunogenic. Such a construct greatly simplifies regulatory requirements and manufacturing, facilitates scalability, and provides adaptability.

  20. Atmospheric Ice Accretion Measurement Techniques

    Directory of Open Access Journals (Sweden)

    M Virk

    2016-09-01

    Full Text Available Atmospheric icing on structures has proven to be an area of concern in many cold climate geographical regions like arctic and alpine. Difficulties encountered by the communication, construction and power industries in these areas are the subject of intense investigations for researchers from decades. Three main methods of investigation are generally employed by researchers to study atmospheric ice accretion on structures: a continuous field measurements, b lab based simulations using icing wind tunnel & c numerical modelling. This paper presents a brief review study of various techniques to understand and measure the atmospheric ice accretion on structures, anti/de icing techniques and important parameters for numerical modelling of atmospheric ice accretion.

  1. Ice cream with additional value

    OpenAIRE

    Melicharová, Barbora

    2016-01-01

    The aim of this bachelor thesis is to summarise current knowledge about production and properties of ice cream with an additional value. Nowadays, incorporation of probiotics is considered as the most intensively studied possibility for functional ice cream manufacture. Their viability depends on the kind of a microorganism, for example bifidobacteria are mostly less stable than lactobacilli in ice cream matrix. Lactobacillus acidophilus AB518, AK414, Lactobacillus agilis AA1773, AC1888 and L...

  2. THE INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    ICE was built during 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring (see 7405430). ICE was a proton and antiproton storage ring, built to verify the validity of stochastic and electron cooling for the antiproton project to be launched in 1978. More on the ICE experimental programme with 7802099. See also 7809081, 7908242.

  3. Ice-driven CO2 feedback on ice volume

    Directory of Open Access Journals (Sweden)

    W. F. Ruddiman

    2006-02-01

    Full Text Available The origin of the major ice-sheet variations during the last 2.7 million years remains a mystery. Neither the dominant 41 000-year cycles in δ18O and ice-volume during the late Pliocene and early Pleistocene nor the late-Pleistocene variations near 100 000 years is a linear (''Milankovitch'' response to summer insolation forcing. Both result from non-linear behavior within the climate system. Greenhouse gases (primarily CO2 are a plausible source of this non-linearity, but confusion has persisted over whether the gases force ice volume or are a positive feedback. During the last several hundred thousand years, CO2 and ice volume (marine δ18O have varied in phase both at the 41 000-year obliquity cycle and within the ~100 000-year eccentricity band. This timing argues against greenhouse-gas forcing of a slow ice response and instead favors ice control of a fast CO2 response. Because the effect of CO2 on temperature is logarithmic, the temperature/CO2 feedback on ice volume is also logarithmic. In the schematic model proposed here, ice sheets were forced by insolation changes at the precession and obliquity cycles prior to 0.9 million years ago and responded in a linear way, but CO2 feedback amplified (roughly doubled the ice response at 41 000 years. After 0.9 million years ago, as polar climates continued to cool, ablation weakened. CO2 feedback continued to amplify ice-sheet growth at 41 000-year intervals, but weaker ablation permitted ice to survive subsequent insolation maxima of low intensity. These longer-lived ice sheets persisted until peaks in northern summer insolation paced abrupt deglaciations every 100 000±15 000 years. Most ice melting during deglaciations was achieved by the same CO2/temperature feedback that had built the ice sheets, but now acting in the opposite direction. Several processes have the northern geographic origin, as well as the requisite orbital tempo and phasing, to have been the mechanisms by which ice sheets

  4. Climatic implications of ice microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Liou, K.N. [Univ. of Utah, Salt Lake City, UT (United States)

    1995-09-01

    Based on aircraft measurements of mid-latitude cirrus clouds, ice crystal size distribution and ice water content (IWC) are shown to be dependent on temperature. This dependence is also evident from the theoretical consideration of ice crystal growth. Using simple models of the diffusion and accretion growth of ice particles, the computed mean ice crystal size and IWC compare reasonably well with the measured mean values. The temperature dependence of ice crystal size and IWC has important climatic implications in that the temperature field perturbed by external radiative forcings, such as greenhouse warming, can alter the composition of ice crystal clouds. Through radiative transfer, ice microphysics can in turn affect the temperature field. Higher IWC would increase cloud solar albedo and infrared emissivity, while for a given IWC, larger crystals would reduce cloud albedo and emissivity. The competing effects produced by greenhouse temperature perturbations via ice micro-physics and radiation interactions and feedbacks are assessed by a one-dimensional radiative-convective climate model that includes an advanced radiation parameterization program. 3 figs.

  5. Fluid dynamics of planetary ices

    CERN Document Server

    Greve, Ralf

    2009-01-01

    The role of water ice in the solar system is reviewed from a fluid-dynamical point of view. On Earth and Mars, water ice forms ice sheets, ice caps and glaciers at the surface, which show glacial flow under their own weight. By contrast, water ice is a major constituent of the bulk volume of the icy satellites in the outer solar system, and ice flow can occur as thermal convection. The rheology of polycrystalline aggregates of ordinary, hexagonal ice Ih is described by a power law, different forms of which are discussed. The temperature dependence of the ice viscosity follows an Arrhenius law. Therefore, the flow of ice in a planetary environment constitutes a thermo-mechanically coupled problem; its model equations are obtained by inserting the flow law and the thermodynamic material equations in the balance laws of mass, momentum and energy. As an example of gravity-driven flow, the polar caps of Mars are discussed. For the north-polar cap, large-scale flow velocities of the order of 0.1...1 mm/a are likely...

  6. Ices in the Solar Nebula

    Science.gov (United States)

    Robinson, Sarah

    2008-05-01

    The centerpiece of this proposal is my hypothesis that other ices besides H2O help build giant planet cores. I propose a theory project on the ice composition of planet-forming regions and a related observing project on ice detection and mineralogy in debris disks. Together, the theory and observing projects will answer two questions: 1. Where are the condensation fronts of abundant volatiles located in relation to giant planet feeding zones? 2. How much does the presence of CHON ices in planetesimals speed up giant planet formation?

  7. Alternating current breakdown voltage of ice electret

    Science.gov (United States)

    Oshika, Y.; Tsuchiya, Y.; Okumura, T.; Muramoto, Y.

    2017-09-01

    Ice has low environmental impact. Our research objectives are to study the availability of ice as a dielectric insulating material at cryogenic temperatures. We focus on ferroelectric ice (iceXI) at cryogenic temperatures. The properties of iceXI, including its formation, are not clear. We attempted to obtain the polarized ice that was similar to iceXI under the applied voltage and cooling to 77 K. The polarized ice have a wide range of engineering applications as electronic materials at cryogenic temperatures. This polarized ice is called ice electret. The structural difference between ice electret and normal ice is only the positions of protons. The effects of the proton arrangement on the breakdown voltage of ice electret were shown because electrical properties are influenced by the structure of ice. We observed an alternating current (ac) breakdown voltage of ice electret and normal ice at 77 K. The mean and minimum ac breakdown voltage values of ice electret were higher than those of normal ice. We considered that the electrically weak part of the normal ice was improved by applied a direct electric field.

  8. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    Science.gov (United States)

    2014-09-30

    Ocean gliders Ahead of ice edge Upper ocean (0-200m) T, S, O2, bio- optics , currents During cruise CU-B UAF Autonomous underwater vehicle (AUV...Under ice, up to 50km transects Ice thickness, floe-size distribution, waves, upper ocean properties ADCP, CTD, camera, multibeam sonar...WBMS broadband multibeam sonar, a Nortek 500 kHz AD2CP, and a hyperspectral radiometer. A Seabird Fastcat-49 CTD will also be added. This ROV will

  9. Delicious ice cream, why does salt thaw ice?

    Science.gov (United States)

    Bagnoli, Franco

    2016-04-01

    During winter, we use to spread salt to thaw ice on the streets. In a physics show, one can be almost sure that after showing this effect, the answer to what happens to temperature will be "it increases". But no! It goes down, in such amount that one can complement the show by producing hand-made ice creams [1].

  10. Eulerian method for ice crystal icing in turbofan engines

    NARCIS (Netherlands)

    Norde, Ellen

    2017-01-01

    The newer generations of high-bypass-ratio engines are susceptible to the ingestion of small ice crystals which may cause engine power loss or damage. The research presented in this thesis focusses on the development of a computational method for in-engine ice crystal accretion. The work has been ca

  11. Improved ice loss estimate of the northwestern Greenland ice sheet

    NARCIS (Netherlands)

    Kjeldsen, K.K.; Khan, S.A.; van den Broeke, M.R.; van Angelen, J.H.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change est

  12. Ice storm `98

    Energy Technology Data Exchange (ETDEWEB)

    Soulard, F.; Trant, D.; Filoso, J.; Van Wesenbeeck, P. [Statistics Canada, Ottawa, ON (Canada). Environment Statistics Program

    1998-12-31

    As much as 100 millimeters of freezing rain fell on central and eastern Canada between January 4 to 10, 1998. This study concentrates on Canada`s St. Lawrence River Valley where total precipitation exceeded 73 mm in Kingston, 85 mm in Ottawa and 100 mm in areas south of Montreal. By comparison, the largest previously recorded ice storms left between 30 and 40 mm of ice. A state of emergency was declared for the affected regions. 56 per cent of Quebec`s population and 11 per cent of Ontario`s population were affected by the storm. Over 1000 power transmission towers collapsed and more than 30,000 wooden utility poles were brought down. In Quebec, nearly 1.4 million customers were left without electricity. In Ontario that number was about 230,000. While some manufacturers benefited directly from the storm, including makers of hydro and telephone poles, batteries and specialized electrical equipment, the overall economic losses for Montreal and Ottawa were high as estimates run to $585 million and $114 million, respectively. Almost 5 million sugar maple taps in Quebec and Ontario were located and suffered some damage in the affected areas. Nearly one-quarter (274,000) of all dairy cows were also located in the affected areas. Since in the absence of electricity they could not be milked, many of them suffered from mastitis. Many succumbed, others that survived may never attain their former level of productivity. As of June 1998, over 600,000 insurance claims totaling one billion dollars had been filed by Canadian households and businesses from the area affected by the ice storm.1 fig.

  13. Albedo evolution of seasonal Arctic sea ice

    Science.gov (United States)

    Perovich, Donald K.; Polashenski, Christopher

    2012-04-01

    There is an ongoing shift in the Arctic sea ice cover from multiyear ice to seasonal ice. Here we examine the impact of this shift on sea ice albedo. Our analysis of observations from four years of field experiments indicates that seasonal ice undergoes an albedo evolution with seven phases; cold snow, melting snow, pond formation, pond drainage, pond evolution, open water, and freezeup. Once surface ice melt begins, seasonal ice albedos are consistently less than albedos for multiyear ice resulting in more solar heat absorbed in the ice and transmitted to the ocean. The shift from a multiyear to seasonal ice cover has significant implications for the heat and mass budget of the ice and for primary productivity in the upper ocean. There will be enhanced melting of the ice cover and an increase in the amount of sunlight available in the upper ocean.

  14. Sea Ice Processes

    Science.gov (United States)

    1988-01-01

    aq pnoiqs suol)0!pOid AixoolQA 00! 191100 (1I ’uoTow poAlosqo aql jo lqlgti 04) ol a~xe juqp suotioaJip 4)!A% parto s~t S stqi pule ’spoods 001 a)tUJT...to provide information as ating characteristics of PIPS. These factors in- to processes and their scales (as ascertained by elude the vertical grid...warranted horizontal compression being compensated by at this time. Further investigation is needed. vertical motion. In the case of ice, upward The space

  15. Arctic Ice Studies

    Science.gov (United States)

    1993-02-01

    jFigure 1. NIfS-7 SWr imagery frou 6 July 1983 portrays variat s i ie con.centra- tion across the experiental area Figure 2. Large floes in the East...and P. T. Shaw. Particle pathways in the and by European Community Commission contract CCE CLI-083 F. Gulf Stream. Bull. Am. Meteorol. Soc.. 66, 1106...New York: Academic Press, 1981. pp. 29-62. ice in the arctic," inProc. 4th Symp. Remote Sensing of En viron., 1281 R. T. Lowry, private communication

  16. Ice-driven CO2 feedback on ice volume

    Directory of Open Access Journals (Sweden)

    W. F. Ruddiman

    2006-01-01

    Full Text Available The origin of the major ice-sheet variations during the last 2.7 million years is a long-standing mystery. Neither the dominant 41 000-year cycles in δ18O/ice-volume during the late Pliocene and early Pleistocene nor the late-Pleistocene oscillations near 100 000 years is a linear ('Milankovitch' response to summer insolation forcing. Both responses must result from non-linear behavior within the climate system. Greenhouse gases (primarily CO2 are a plausible source of the required non-linearity, but confusion has persisted over whether the gases force ice volume or are a positive feedback. During the last several hundred thousand years, CO2 and ice volume (marine δ18O have varied in phase at the 41 000-year obliquity cycle and nearly in phase within the ~100 000-year band. This timing rules out greenhouse-gas forcing of a very slow ice response and instead favors ice control of a fast CO2 response. In the schematic model proposed here, ice sheets responded linearly to insolation forcing at the precession and obliquity cycles prior to 0.9 million years ago, but CO2 feedback amplified the ice response at the 41 000-year period by a factor of approximately two. After 0.9 million years ago, with slow polar cooling, ablation weakened. CO2 feedback continued to amplify ice-sheet growth every 41 000 years, but weaker ablation permitted some ice to survive insolation maxima of low intensity. Step-wise growth of these longer-lived ice sheets continued until peaks in northern summer insolation produced abrupt deglaciations every ~85 000 to ~115 000 years. Most of the deglacial ice melting resulted from the same CO2/temperature feedback that had built the ice sheets. Several processes have the northern geographic origin, as well as the requisite orbital tempo and phasing, to be candidate mechanisms for ice-sheet control of CO2 and their own feedback.

  17. Arctic Sea Ice Predictability and the Sea Ice Prediction Network

    Science.gov (United States)

    Wiggins, H. V.; Stroeve, J. C.

    2014-12-01

    Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data

  18. Climate Impacts of Ice Nucleation

    Science.gov (United States)

    Gettelman, Andrew; Liu, Xiaohong; Barahona, Donifan; Lohmann, Ulrike; Chen, Celia

    2012-01-01

    Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).

  19. Primary spectrum and composition with IceCube/IceTop

    CERN Document Server

    ,

    2016-01-01

    IceCube, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, GeV muons in the periphery of the showers and TeV muons in the deep array of IceCube. The spectrum is measured with high resolution from the knee to the ankle with IceTop. Composition and spectrum are extracted from events seen in coincidence by the surface array and the deep array of IceCube. The muon lateral distribution at the surface is obtained from the data and used to provide a measurement of the muon density at 600 meters from the shower core up to 30 PeV. Results are compared to measurements from other experiments to obtain an overview of the spectrum and composition over an extended range of energy. Consistency of the surface muon measurements with hadronic interaction models and with measurements at higher energy is discussed.

  20. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.

  1. Grease ice in basin-scale sea-ice ocean models

    OpenAIRE

    Lars H. Smedsrud; Martin, Torge

    2015-01-01

    The first stage of sea-ice formation is often grease ice, a mixture of sea water and frazil ice crystals. Over time, grease ice typically congeals first to pancake ice floes and then to a solid sea-ice cover. Grease ice is commonly not explicitly simulated in basin-scale sea-ice ocean models, though it affects oceanic heat loss and ice growth and is expected to play a greater role in a more seasonally icecovered Arctic Ocean. We present an approach to simulate the grease-ice layer with, as ba...

  2. The physics of ice cream

    Science.gov (United States)

    Clarke, Chris

    2003-05-01

    Almost everybody likes ice cream, so it can provide an excellent vehicle for discussing and demonstrating a variety of physical phenomena, such as Newton's law of cooling, Boyle's law and the relationship between microstructure and macroscopic properties (e.g. Young's modulus). Furthermore, a demonstration of freezing point depression can be used to make ice cream in the classroom!

  3. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  4. The IceProd Framework

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2015-01-01

    IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, iden- tify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of compu...... the details of job submission and job management from the framework....

  5. Ice as an Abrading Agent

    Science.gov (United States)

    Blow, R. K.

    1984-01-01

    Grit-blasting method makes unnecessary to disassemble equipment for cleaning. Stream of small, frozen pellets directed at assembly to be cleaned. Pellets consist of deionized-water ice, carbon dioxide ice, or another substance that does not react chemically with parts to be cleaned and leaves no residue. Method suited to cleaning titanium and parts that touch liquid oxygen.

  6. Analytical ice-sheet models

    NARCIS (Netherlands)

    Oerlemans, J.

    2005-01-01

    To model present-day or palaeo-ice sheets in a realistic way requires numerical methods with high spatial resolution and a comprehensive description of the relevant physical processes. Nevertheless, some basic elements of the interaction between ice sheets and climate can be investigated by simple m

  7. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  8. Ices in space

    Science.gov (United States)

    Greenberg, J. Mayo; van de Bult, C. E. P. M.; Allamandola, Louis J.

    The chemical and physical properties of ice grains in interstellar space have been studied in the laboratory and theoretically modeled to compare with astronomical spectra between 2700 and 3700/cm. The observed polarization of starlight in this region clearly indicates that elongated particles are involved. Absorption characteristics for various shaped grains whose radii vary from approximately 0.1 to 1.0 micrometer, containing either pure amorphous H20 or amorphous mixtures of H20 with NH3, have been calculated with the aim of narrowing the range of acceptable grain parameters. By comparing the band shapes for spherical, spheroidal, and cylindrical grains with astronomical spectra we show that elongated particles whose radii are approximately equal to 0.15 micrometer produce an acceptable match and that both spherical and elongated particles whose radii are greater than or equal to 0.5 micrometer are definitely not consistent with observations. Details of the band shape are shown to depend on particle size, shape, and composition. Similar profiles can be produced by using different combinations of particle shape and composition. For example, the NH3 signature at 2.97 micrometer, which is prominent in a spherical grain, is greatly suppressed when in an elongated grain. This is exactly equivalent to reducing the concentration of NH3 in a spherical grain. A morphological grain model is used to explain the large variations in the observed strength of the 3.07 micrometer ice band from one region of space to another.

  9. Advances in Ice Penetrating Radar

    Science.gov (United States)

    Paden, J. D.

    2016-12-01

    Radars have been employed for ice remote sensing since the mid-twentieth century. The original application in radioglaciology was to obtain ice thickness: an essential parameter in ice flux calculations and boundary condition in ice flow models. Later, radars were used to estimate basal conditions and track laterally persistent features in the ice. The Center for Remote Sensing of Ice Sheet's recent hardware advances include multichannel systems and radar suites covering the usable frequency spectrum. These advances coupled with increased interest in the polar regions result in a concomitant exponential growth in data. We focus on a few results that have come from these changes. Multichannel radar systems improved clutter rejection and enabled 3D imaging. Using computer vision algorithms, we have automated the process of extracting the ice bottom surface in 3D imagery for complex topographies including narrow glacier channels where the ice surface and ice bottom merge together within the 3D images. We present results of wide swath imaging which have enabled narrow, 2-3 km wide, glacier channels to be fully imaged in a single pass. When radar data are available across the frequency spectrum, we have the ability to enhance target detection and measure frequency dependent properties. For example, we can couple HF sounder measurements in warmer ice where scattering attenuates and hides the signal of interest with VHF sounder measurements in cooler ice which have much improved resolution from a single flight line. We present examples of improved bed detection with coupled HF and VHF imagery in a temperate to cold ice transition that show the strong frequency dependence of englacial scattering. To handle the increased data rate, we developed a standard processing chain and data product for CReSIS radar systems, including legacy systems. Application specific GIS tools are an essential part and enable us to merge other data products during data analysis. By using imagery

  10. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  11. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden))

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  12. Continuous Chemistry in Ice Cores

    DEFF Research Database (Denmark)

    Kjær, Helle Astrid

    originating from volcanic eruptions, crucial for cross-dating ice cores and relevant for climate interpretations. The method includes a heat bath to minimize the acidifying effect of CO2 both from the laboratory and from the ice itself. While for acidic ice the method finds similar concentrations of H......Ice cores provide high resolution records of past climate and environment. In recent years the use of continuous flow analysis (CFA) systems has increased the measurement throughput, while simultaneously decreasing the risk of contaminating the ice samples. CFA measurements of high temporal...... resolution increase our knowledge on fast climate variations and cover a wide range of proxies informing on a variety of components such as atmospheric transport, volcanic eruptions, forest fires and many more. New CFA methods for the determination of dissolved reactive phosphorus (DRP) and pH are presented...

  13. The IceProd (IceCube Production) Framework

    Science.gov (United States)

    Díaz-Vélez, J. C.

    2014-06-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  14. Jet formation at the sea ice edge

    Science.gov (United States)

    Feltham, D. L.; Heorton, H. D.

    2014-12-01

    The sea ice edge presents a region of many feedback processes between the atmosphere, ocean and sea ice, which are inadequately represented in current climate models. Here we focus on on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines. This sharp change in surface roughness is experienced by the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. We have studied a dynamic sea ice edge responding to atmospheric and oceanic jet formation. The shape and strength of atmospheric and oceanic jets during on-ice flows is calculated from existing studies of the sea ice edge and prescribed to idealised models of the sea ice edge. An idealised analytical model of sea ice drift is developed and compared to a sea ice climate model (the CICE model) run on an idealised domain. The response of the CICE model to jet formation is tested at various resolutions. We find that the formation of atmospheric jets during on-ice winds at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice edge jet. The modelled sea ice edge jet is in agreement with an observed jet although more observations are needed for validation. The increase in ice drift speed is dependent upon the angle between the ice edge and wind and can result in a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation during on-ice currents and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

  15. Dry ice blasting

    Science.gov (United States)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  16. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  17. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  18. Supporting Ice Seismology

    Science.gov (United States)

    Parker, T.; Beaudoin, B. C.; Fowler, J. C.

    2010-12-01

    Climate change research, and glaciology in particular, has increasingly embraced seismology in recent years. The NSF supported IRIS/PASSCAL Instrument Center is working with researchers to develop the unique instruments and techniques for collecting data in this challenging environment. Global concern with sea level change along with strategic interests of the US government and other nations is driving a large investment in glaciological climate research. A number of groups have demonstrated new seismologically-derived constraints on glaciological conditions and processes. Environmental challenges include remote and precarious locations, necessitating robust yet quickly deployable seismic stations and long periods of autonomous operation. Temperature extremes and the possibility of immersion from large annual snow loads, resulting in a deployment surface that can vary from 50 feet of snow cover to bare ice with large melt pools in a single season are additional major challenges. There is also an urgency created by studies indicating that the high latitude continental ice sheets are metastable and that behavior is changing now. Scientists are presently commonly utilizing adaptations of available instrumentation designed for low latitude and milder field conditions as appropriate, but seek better, more capable, and more flexible solutions, including integration of environmental sensors and real-time data telemetry and station control as some of these experiments evolve into a monitoring effort. Seismic instrumentation is only produced by a small number of companies and, innovation for new instruments takes time and requires substantial investment. While pursuing longer-term innovation funding strategies, we are also adapting current instrumentation paradigms to glaciological use (e.g., by leveraging the cold instrument development for research in Antarctica during the IPY). We are also encouraging industrial partners to respond to these demands and challenges with

  19. IceTop: The surface component of IceCube

    CERN Document Server

    Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Caballero-Mora, K S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Elliott, C; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Klepser, S; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McDermott, A; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nießen, P; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Roth, J; Rothmaier, F; Rott, C; Roucelle, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Shulman, L; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Stoyanov, S; Strahler, E A; Ström, R; Sulanke, K-H; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.

  20. Rewritable artificial magnetic charge ice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. -L.; Xiao, Z. -L.; Snezhko, A.; Xu, J.; Ocola, L. E.; Divan, R.; Pearson, J. E.; Crabtree, G. W.; Kwok, W. -K.

    2016-05-19

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  1. Whillans Ice Plain Stick Slip

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2015-12-01

    Concern about future sea level rise motivates the study of fast flowing ice. The Whillans Ice Plain (WIP) region of the West Antarctic Ice Sheet is notable for decelerating from previously fast motion during the instrumental record. Since most ice flux in Antarctica occurs through ice streams, understanding the conditions that cause ice stream stagnation is of basic importance in understanding the continent's contribution to future sea level rise. Although recent progress has been made in understanding the relationship between basal conditions and ice stream motion, direct observation of the temporal variation in subglacial conditions during ice stream stagnation has remained elusive. The Whillans Ice Plain flows to the sea mostly by way of stick-slip motion. We present numerical simulations of this stick-slip motion that capture the inertial dynamics, seismic waves, and the evolution of sliding with rate- and state-dependent basal friction. Large scale stick-slip behavior is tidally modulated and encompasses the entire WIP. Sliding initiates within one of several locked regions and then propagates outward with low average rupture velocity (~ 200 m/s). Sliding accelerates over a period of 200 s attain values as large as 65 m/d. From Newton's second law, this acceleration is ~ T / (rho H) for average shear stress drop T, ice thickness H, and ice density rho. This implies a 3 Pa stress drop that must be reconciled with the final stress drop of 300 Pa inferred from the total slip and fault dimensions. A possible explanation of this apparent discrepancy is that deceleration of the ice is associated with a substantial decrease in traction within rate-strengthening regions of the bed. During these large-scale sliding events, m-scale patches at the bed produce rapid (20 Hz) stick-slip motion. Each small event occurs over ~ 1/100 s, produces ~ 40 microns of slip, and gives rise to a spectacular form of seismic tremor. Variation between successive tremor episodes allows us

  2. Ultrasonic guided wave tomography for ice detection.

    Science.gov (United States)

    Zhao, Xiang; Rose, Joseph L

    2016-04-01

    Of great concern for many structures, particularly critical sections of rotary and fixed wing aircrafts, is the ability to detect ice either on grounded or in-flight vehicles. As a consequence, some work is reported here that could be useful for a variety of different industries where ice formation is an important problem. This paper presents experimental validations of a probability-based reconstruction algorithm (PRA) on ice detection of plate-like structures. The ice detection tests are performed for three different specimens: a single layer aluminum plate with a circular ice sensing array, a titanium plate with a sparse rectangular ice sensing array, and a carbon-fiber-reinforced titanium plate with an embedded ice sensing array mounted on a carbon fiber back plate. Cases from the simple to the more challenging exemplify that special modes can be used to differentiate ice from water, a sparse rectangular array could also be used for ice detection, and an ice sensing array could be further used to detect the ice on the sensor free side, a very useful application of ice sensing for aircraft wings, for example. Ice detection images for the respective cases are reconstructed to investigate the feasibility of ice sensing with ultrasonic guided wave tomography technology. The results show that the PRA based ultrasonic guided wave tomography method successfully detected and showed ice spots correctly for all three cases. This corroborates the fact that ultrasonic guided wave imaging technology could be a potential useful ice sensing tool in plate-like structures.

  3. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  4. Salmon River Ice Jam Control Studies

    Science.gov (United States)

    1990-04-01

    Deadrnan low stream depths often allows ice to pass beneath the Anchor /boom. But during freezeup , when the quantity of frazil ice is large, an ice...report. US Army Engineer District, Walla LITERATURE CITED Walla. Zufelt, J.E. (1987) Salmon River ice control study, Axelson, K.D. (1990) Freezeup

  5. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  6. Global dynamics of the Antarctic ice sheet

    NARCIS (Netherlands)

    Oerlemans, J.

    2002-01-01

    The total mass budget of the Antarctic ice sheet is studied with a simple axi-symmetrical model. The ice-sheet has a parabolic profile resting on a bed that slopes linearly downwards from the centre of the ice sheet into the ocean. The mean ice velocity at the grounding line is assumed to be proport

  7. Antarctic ice rises and rumples : Their properties and significance for ice-sheet dynamics and evolution

    NARCIS (Netherlands)

    Matsuoka, Kenichi; Hindmarsh, Richard C A; Moholdt, Geir; Bentley, Michael J.; Pritchard, Hamish D.; Brown, Joel; Conway, Howard; Drews, Reinhard; Durand, Gaël; Goldberg, Daniel; Hattermann, Tore; Kingslake, Jonathan; Lenaerts, Jan T M; Martín, Carlos; Mulvaney, Robert; Nicholls, Keith W.; Pattyn, Frank; Ross, Neil; Scambos, Ted; Whitehouse, Pippa L.

    2015-01-01

    Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around

  8. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km acros

  9. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.;

    2013-01-01

    ice-flow rates were more significant than today. A plausible range of near-basal ice temperatures and ice-flow enhancement factors can generate the characteristic geometry of an ice mass that has been shaped by flow over reasonable volume-response timescales. All plausible ice-flow scenarios require...

  10. Antarctic ice rises and rumples : Their properties and significance for ice-sheet dynamics and evolution

    NARCIS (Netherlands)

    Matsuoka, Kenichi; Hindmarsh, Richard C A; Moholdt, Geir; Bentley, Michael J.; Pritchard, Hamish D.; Brown, Joel; Conway, Howard; Drews, Reinhard; Durand, Gaël; Goldberg, Daniel; Hattermann, Tore; Kingslake, Jonathan; Lenaerts, Jan T M|info:eu-repo/dai/nl/314850163; Martín, Carlos; Mulvaney, Robert; Nicholls, Keith W.; Pattyn, Frank; Ross, Neil; Scambos, Ted; Whitehouse, Pippa L.

    2015-01-01

    Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around

  11. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    release; distribution is unlimited. DRI TECHNICAL PROGRAM: Emerging Dynamics Of The Marginal Ice Zone Ice, Ocean and Atmosphere Interactions in the... Arctic Marginal Ice Zone Year 4 Annual Report Jeremy Wilkinson British Antarctic Survey phone: 44 (0)1223 221489 fax: 44 (0) 1223...global) scientific team in order to better understand the ocean , sea ice and atmosphere interaction within the marginal ice zone

  12. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km acros

  13. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km

  14. Uncertainty in Ice Crystal Orientation Distributions in Ice Sheets

    Science.gov (United States)

    Hay, Michael; Waddington, Edwin

    2016-04-01

    Crystal-orientation fabrics in polar ice sheets have a strong influence on ice flow due to the plastic anisotropy of ice. Crystal orientations evolve primarily in response to applied strain, but are also affected by temperature, impurities, interactions with neighbors, and other factors. While the evolution of each ice crystal is physically deterministic, in limited samples, such as those from ice-core thin sections, measured samples are stochastic due to sampling error. Even in continuum representations from models, crystal orientation distribution functions (ODFs) can be treated as stochastic due to uncertainties in how they developed. Here, we present results on the statistics of crystal orientation fabrics. We show a first-order estimate of the sampling distribution of fabric eigenvalues and fabric eigenvectors from ice-core thin sections. We also analyze uncertainty in electron backscatter diffraction measurements. In addition to sampling error, the strain histories of fabrics are generally poorly constrained, and may have varied in unknown ways through time. Nearby layers in ice sheets can also experience different strain histories due to inherent variabilities such as transient flow, or differences in impurities. This means that the continuum ODF itself can be treated as stochastic, because it depends on an effectively-stochastic unknown strain-history. To explore this, we analyze the effects of strain and vorticity variability on the evolution of the continuum ice-crystal ODF. We recast Jeffery's equation for the evolution of the ODF as a stochastic differential equation, with vorticity and strain perturbed by Gaussian processes. From this, we run a Monte-Carlo ensemble to determine likely bounds of true continuum ODF variability in response to random perturbations of strain and vorticity.

  15. Icing in the Cake: Evidence for Ground Ice in Ceres

    Science.gov (United States)

    Schmidt, Britney E.; Chilton, Heather; Hughson, Kynan Horace; Scully, Jennifer E. C.; Sizemore, Hanna G.; Nathues, Andreas; Platz, Thomas; Byrne, Shane; Bland, Michael T.; Schorghofer, Norbert; O'Brien, David P.; Marchi, Simone; Hiesinger, Harald; Jaumann, Ralf; Russell, Christopher T.; Raymond, Carol; Dawn Science and Operations Team

    2016-10-01

    Without surface deposits of ice readily visible and few spectral detections of ice, the task of understanding ice on Ceres falls to other investigations. Several decades of thermal models suggest that subsurface ice on Ceres is stable for the lifetime of the solar system. Here, we report geomorphological evidence of silicate-ice mixtures, which we refer to as "ground ice", from careful analysis of the behavior of surface features on Ceres. In particular, we have focused on trends in mass wasting features. Mass wasting on Ceres is pervasive--in over 20% of craters above 10km in size, often with provocative rounded termini. We have identified three "endmember" classes of lobate mass wasting morphologies: tongue-shaped, furrowed flows hundreds of meters thick on steep slopes, tens of meter thick spatulate-sheeted flows on shallow slopes, and cuspate-sheeted flows, also tens of meters thick, but with morphology that indicates fluidization. These features on Ceres are distinct from those on dry Vesta, which shares a similar impactor population and velocity distribution due to their similar locations in the main belt. Thus, differing material properties are implied between the two bodies. Morphologically, each of these feature types possess an analog found in glaciated regions on Earth and Mars or on the surfaces of the icy satellites that help describe how down slope mass motion may be created. In particular, we identify several spectacular features that share commonatlity with rock glaciers and lahars. Moreover, these abundant features increase in number and aerial coverage towards the poles, and show progressively more fluidization towards the low latitudes. We conclude that the geomorphology of these features are evidence that Ceres' subsurface contains significant ground ice and that the ice is most abundant near the poles.

  16. A Chemical Activation Study of the Unimolecular Reactions of CD3CD2CHCl2 and CHCl2CHCl2 with Analysis of the 1,1-HCl Elimination Pathway.

    Science.gov (United States)

    Larkin, Allie C; Nestler, Matthew J; Smith, Caleb A; Heard, George L; Setser, Donald W; Holmes, Bert E

    2016-10-03

    Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD=CHCl and CD3CD=CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD=CDCl under the conditions of the experiments. The experimental rate constants were 2.7 x107 and 0.47 x107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈ 66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 x 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. Based upon the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2Cl-CHCl2 molecules with 86 kcal mol-1 of energy in order to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.

  17. Ice-crust and ice-film; Miaraban

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, M. [Mechanical Engineering Lab., Tokyo (Japan)

    1999-11-01

    Snow on the road is converted into packed snow after being repeatedly trodden by automobile tires and pedestrians. During this compaction process, a phenomenon named sintering occurs inside the snow. Snow crystals at a temperature below the melting point are transformed into roundish ice grains with the passage of time, and bondage develops between the grains for the formation of a pack of snow which is very hard (hard-packed snow). This prepares the base for ice-film or ice-crust formation. What is called 'mirror-bahn' is an ice film which is 1mm thick or less. It is a mirror-like ice surface, generally termed the 'slippery packed snow or slippery road surface.' With studded tires repeatedly travelling on the hard-packed snow surface, friction heat is generated due to microscopic slips occurring between the tires in rotation and the ground and due to braking or driving, and the heat melts the very thin surface layer of the hard-packed snow. The surface freezes again for the formation of an ice film presenting a mirror-like surface. Such a slippery road surface is formed under complicatedly variable conditions with the parameters involving weather conditions and traffic density. The primary measure against the slippery road surface is the surface control by use of antifreezing agents. (NEDO)

  18. Arctic ice cover, ice thickness and tipping points.

    Science.gov (United States)

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  19. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  20. Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice core site

    Science.gov (United States)

    Koutnik, Michelle R.; Fudge, T. J.; Conway, Howard; Waddington, Edwin D.; Neumann, Thomas A.; Cuffey, Kurt M.; Buizert, Christo; Taylor, Kendrick C.

    2016-05-01

    The West Antarctic Ice Sheet Divide Core (WDC) provided a high-resolution climate record from near the Ross-Amundsen Divide in Central West Antarctica. In addition, radar-detected internal layers in the vicinity of the WDC site have been dated directly from the ice core to provide spatial variations in the age structure of the region. Using these two data sets together, we first infer a high-resolution Holocene accumulation-rate history from 9.2 kyr of the ice-core timescale and then confirm that this climate history is consistent with internal layers upstream of the core site. Even though the WDC was drilled only 24 km from the modern ice divide, advection of ice from upstream must be taken into account. We evaluate histories of accumulation rate by using a flowband model to generate internal layers that we compare to observed layers. Results show that the centennially averaged accumulation rate was over 20% lower than modern at 9.2 kyr before present (B.P.), increased by 40% from 9.2 to 2.3 kyr B.P., and decreased by at least 10% over the past 2 kyr B.P. to the modern values; these Holocene accumulation-rate changes in Central West Antarctica are larger than changes inferred from East Antarctic ice-core records. Despite significant changes in accumulation rate, throughout the Holocene the regional accumulation pattern has likely remained similar to today, and the ice-divide position has likely remained on average within 5 km of its modern position. Continent-scale ice-sheet models used for reconstructions of West Antarctic ice volume should incorporate this accumulation history.

  1. Thin-ice Arctic Acoustic Window (THAAW)

    Science.gov (United States)

    2014-09-30

    STATEMENT A. Approved for public release; distribution is unlimited. Thin- ice Arctic Acoustic Window (THAAW) Peter F. Worcester Scripps Institution of...of the ice cover and extensive warming of the intermediate layers. The multiyear ice is melting . Ice keels are getting smaller. With more open water...determine the fundamental limits to signal processing in the Arctic imposed by ocean and ice processes. The hope is that these first few new steps will

  2. A study of ice response spectra

    Institute of Scientific and Technical Information of China (English)

    LIU Chunguang; JIA Lingling

    2009-01-01

    Some problems concerning the ice forces and ice response spectra are studied from both theoretical and practical points of view. On the basis of structural analysis,the analysis method of ice response spectra is proposed, since it plays an important role in the prediction of maximum structural response in cold regions. And it is illustrated that it is easy to study the structural response to ice using the ice response spectra.

  3. Ice thickness measurements by Raman scattering

    CERN Document Server

    Pershin, Sergey M; Klinkov, Vladimir K; Yulmetov, Renat N; Bunkin, Alexey F

    2014-01-01

    A compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice-water interface while elastic scattering was used for air-ice surface detection. This approach yields an error of only 2 mm for an 80-mm-thick ice sample, indicating that it is promising express noncontact thickness measurements technique in field experiments.

  4. Ice Jams, Winter 1996-1997

    Science.gov (United States)

    1998-06-01

    Engineers® Rivers, streams, and lakes in cold regions freeze during winter months. Ice jams may form during initial ice cover formation ( freezeup jams) or...when ice cover breaks up (breakup jams). Both freezeup and breakup jams cause backwater flooding and damage to low-lying areas and municipal...Laboratory (CRREL) Ice Jam Database is a compilation of freezeup and breakup ice jam events in the United States (White 1996). Currently, there are more

  5. THE AIRPORT DE-ICING OF AIRCRAFTS

    Directory of Open Access Journals (Sweden)

    Robert KONIECZKA

    2015-03-01

    Full Text Available This article provides a summary of the issues involved in de-icing several kinds of aircrafts before flight. The basic risks of an iced aircraft and the factors that can influence its intensity are stated. It discusses the methods for de-icing and protecting against ice formation on small aircrafts, helicopters, and large aircrafts. It also classifies the fluids and other methods used for these de-icing operations, and explains the characteristics and limitations of their use.

  6. Sticking properties of ice grains

    Directory of Open Access Journals (Sweden)

    Jongmanns M.

    2017-01-01

    Full Text Available We study the size dependence of pull-off forces of water ice in laboratory experiments and numerical simulations. To determine the pull-off force in our laboratory experiments, we use a liquid nitrogen cooled centrifuge. Depending on its rotation frequency, spherical ice grains detach due to the centrifugal force which is related to the adhesive properties. Numerical simulations are conducted by means of molecular dynamics simulations of hexagonal ice using a standard coarse-grained water potential. The pull-off force of a single contact between two spherical ice grains is measured due to strain controlled simulations. Both, the experimental study and the simulations reveal a dependence between the pull-off force and the (reduced particle radii, which differ significantly from the linear dependence of common contact theories.

  7. Melting of Ice under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schwegler, E; Sharma, M; Gygi, F; Galli, G

    2008-07-31

    The melting of ice under pressure is investigated with a series of first principles molecular dynamics simulations. In particular, a two-phase approach is used to determine the melting temperature of the ice-VII phase in the range of 10 to 50 GPa. Our computed melting temperatures are consistent with existing diamond anvil cell experiments. We find that for pressures between 10 to 40 GPa, ice melts as a molecular solid. For pressures above {approx}45 GPa there is a sharp increase in the slope of the melting curve due to the presence of molecular dissociation and proton diffusion in the solid, prior to melting. The onset of significant proton diffusion in ice-VII as a function of increasing temperature is found to be gradual and bears many similarities to that of a type-II superionic solid.

  8. Let's Make Metric Ice Cream

    Science.gov (United States)

    Zimmerman, Marianna

    1975-01-01

    Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)

  9. USGS Sea Ice Email Script

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Daily sea ice imagery and charting benefits logistics and navigational planning in the Alaskan Arctic waters, yet access to these data often requires high bandwidth...

  10. Radiative properties of ice clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.L.; Koracin, D.; Carter, E. [Desert Research Institute, Reno, NV (United States)

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  11. Let's Make Metric Ice Cream

    Science.gov (United States)

    Zimmerman, Marianna

    1975-01-01

    Describes a classroom activity which involved sixth grade students in a learning situation including making ice cream, safety procedures in a science laboratory, calibrating a thermometer, using metric units of volume and mass. (EB)

  12. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  13. On the nature of the dirty ice at the bottom of the GISP2 ice core

    Science.gov (United States)

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-01-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053m depth. We also present data for the abundance and isotopic composition of O2 and N2, and abundance of Ar, in the basal dirty ice. The Ar/N2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  14. On the nature of the dirty ice at the bottom of the GISP2 ice core

    Science.gov (United States)

    Bender, Michael L.; Burgess, Edward; Alley, Richard B.; Barnett, Bruce; Clow, Gary D.

    2010-11-01

    We present data on the triple Ar isotope composition in trapped gas from clean, stratigraphically disturbed ice between 2800 and 3040 m depth in the GISP2 ice core, and from basal dirty ice from 3040 to 3053 m depth. We also present data for the abundance and isotopic composition of O 2 and N 2, and abundance of Ar, in the basal dirty ice. The Ar/N 2 ratio of dirty basal ice, the heavy isotope enrichment (reflecting gravitational fractionation), and the total gas content all indicate that the gases in basal dirty ice originate from the assimilation of clean ice of the overlying glacier, which comprises most of the ice in the dirty bottom layer. O 2 is partly to completely depleted in basal ice, reflecting active metabolism. The gravitationally corrected ratio of 40Ar/ 38Ar, which decreases with age in the global atmosphere, is compatible with an age of 100-250 ka for clean disturbed ice. In basal ice, 40Ar is present in excess due to injection of radiogenic 40Ar produced in the underlying continental crust. The weak depth gradient of 40Ar in the dirty basal ice, and the distribution of dirt, indicate mixing within the basal ice, while various published lines of evidence indicate mixing within the overlying clean, disturbed ice. Excess CH 4, which reaches thousands of ppm in basal dirty ice at GRIP, is virtually absent in overlying clean disturbed ice, demonstrating that mixing of dirty basal ice into the overlying clean ice, if it occurs at all, is very slow. Order-of-magnitude estimates indicate that the mixing rate of clean ice into dirty ice is sufficient to maintain a steady thickness of dirty ice against thinning from the mean ice flow. The dirty ice appears to consist of two or more basal components in addition to clean glacial ice. A small amount of soil or permafrost, plus preglacial snow, lake or ground ice could explain the observations.

  15. Earth - Ross Ice Shelf, Antarctica

    Science.gov (United States)

    1991-01-01

    This color picture of Antarctica is one part of a mosaic of pictures covering the entire Antarctic continent taken during the hours following Galileo's historic first encounter with its home planet. The view shows the Ross Ice Shelf. An occasional mountain can be seen poking through the ice. It is late spring in Antarctica, so the sun never sets on the frigid, icy continent. This picture was taken on December 8, 1990.

  16. Potassium chloride-bearing ice VII and ice planet dynamics

    Science.gov (United States)

    Frank, Mark R.; Scott, Henry P.; Aarestad, Elizabeth; Prakapenka, Vitali B.

    2016-02-01

    Accurate modeling of planetary interiors requires that the pressure-volume-temperature (PVT) properties of phases present within the body be well understood. The high-pressure polymorphs of H2O have been studied extensively due to the abundance of ice phases in icy moons and, likely, vast number of extra-solar planetary bodies, with only select studies evaluating impurity-laden ices. In this study, ice formed from a 1.6 mol percent KCl-bearing aqueous solution was studied up to 32.89 ± 0.19 GPa and 625 K, and the incorporation of K+ and Cl- ionic impurities into the ice VII structure was documented. The compression data at 295 K were fit with a third order Birch-Murnaghan equation of state and yielded a bulk modulus (KT0), its pressure derivative (KT0‧), and zero pressure volume (V0) of 24.7 ± 0.9 GPa, 4.44 ± 0.09, and 39.2 ± 0.2 Å3, respectively. The impurity-laden ice was found to be 6-8% denser than ice VII formed from pure H2O. Thermal expansion coefficients were also determined for several isothermal compression curves at elevated temperatures, and a PVT equation of state was obtained. The melting curve of ice VII with incorporated K+ and Cl- was estimated by fitting experimental data up to 10.2 ± 0.4 GPa, where melting occurred at 625 K, to the Simon-Glatzel equation. The melting curve of this impurity-laden ice is systematically depressed relative to that of pure H2O by approximately 45 K and 80 K at 4 and 11 GPa, respectively. A portion of the K+ and Cl- contained within the ice VII structure was observed to exsolve with increasing temperature. This suggests that an internal differentiating process could concentrate a K-rich phase deep within H2O-rich planets, and we speculate that this could supply an additional source of heat through the radioactive decay of 40K. Our data illustrate ice VII can incorporate significant concentrations of K+ and Cl- and increasing the possibility of deep-sourced and solute-rich plumes in moderate to large sized H2O

  17. Extraction of Ice Sheet Layers from Two Intersected Radar Echograms Near Neem Ice Core in Greenland

    Science.gov (United States)

    Xiong, S.; Muller, J.-P.

    2016-06-01

    Accumulation of snow and ice over time result in ice sheet layers. These can be remotely sensed where there is a contrast in electromagnetic properties, which reflect variations of the ice density, acidity and fabric orientation. Internal ice layers are assumed to be isochronous, deep beneath the ice surface, and parallel to the direction of ice flow. The distribution of internal layers is related to ice sheet dynamics, such as the basal melt rate, basal elevation variation and changes in ice flow mode, which are important parameters to model the ice sheet. Radar echo sounder is an effective instrument used to study the sedimentology of the Earth and planets. Ice Penetrating Radar (IPR) is specific kind of radar echo sounder, which extends studies of ice sheets from surface to subsurface to deep internal ice sheets depending on the frequency utilised. In this study, we examine a study site where folded ice occurs in the internal ice sheet south of the North Greenland Eemian ice drilling (NEEM) station, where two intersected radar echograms acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) employed in the NASA's Operation IceBridge (OIB) mission imaged this folded ice. We propose a slice processing flow based on a Radon Transform to trace and extract these two sets of curved ice sheet layers, which can then be viewed in 3-D, demonstrating the 3-D structure of the ice folds.

  18. Better constraints on the sea-ice state using global sea-ice data assimilation

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2012-06-01

    Full Text Available Short-term and decadal sea-ice prediction systems need a realistic initial state, generally obtained using ice-ocean model simulations with data assimilation. However, only sea-ice concentration and velocity data are currently assimilated. In this work, an Ensemble Kalman Filter system is used to assimilate observed ice concentration and freeboard (i.e. thickness of emerged sea ice data into a global coupled ocean–sea-ice model. The impact and effectiveness of our data assimilation system is assessed in two steps: firstly, through the assimilation of synthetic data (i.e., model-generated data and, secondly, through the assimilation of satellite data. While ice concentrations are available daily, freeboard data used in this study are only available during six one-month periods spread over 2005–2007. Our results show that the simulated Arctic and Antarctic sea-ice extents are improved by the assimilation of synthetic ice concentration data. Assimilation of synthetic ice freeboard data improves the simulated sea-ice thickness field. Using real ice concentration data enhances the model realism in both hemispheres. Assimilation of ice concentration data significantly improves the total hemispheric sea-ice extent all year long, especially in summer. Combining the assimilation of ice freeboard and concentration data leads to better ice thickness, but does not further improve the ice extent. Moreover, the improvements in sea-ice thickness due to the assimilation of ice freeboard remain visible well beyond the assimilation periods.

  19. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  20. Global Sea Ice Charting at the National Ice Center

    Science.gov (United States)

    Clemente-Colon, P.

    2006-12-01

    The National Ice Center (NIC) is a U.S. government tri-agency operational center comprised of components from the United States Navy, the National Oceanic and Atmospheric Administration (NOAA), and the U. S. Coast Guard (USCG). The mission of the NIC is to provide the highest quality strategic and tactical ice services tailored to meet operational requirements of U.S. national interests. This includes broad responsibilities to monitor all frozen ocean regions of the world in support of coastal and marine sea ice operations and research. Sea ice conditions are routinely monitored and mapped using satellite imagery along with ancillary model and in-situ data. Active microwave images from Synthetic Aperture Radar (SAR) sensors are the data of choice for NIC analysts because of their high spatial resolution (~100 m). SAR is in fact the primary data source for ice analysis when available. The high spatial resolution of available SAR data and the reliability shown by the RADARSAT- 1 mission in particular have made the use of these data critical for vessels operating in or near the ice. Limited data from the ESA Envisat Advanced SAR (ASAR) are also used in the analyses when available. Preparations for the use of the Phased Array type L-band SAR (PALSAR) aboard the soon to be launched Japanese ALOS satellite are also underway. Scatterometer backscatter imagery from QuikSCAT is also routinely used for basin-scale and circumpolar ice edge mapping. Automated algorithms for ice type and melt ponds detection as well as the synergy between these observations and the QuikSCAT wind vectors off the marginal ice zone (MIZ) are been explored. ESA Envisat Advanced SAR (ASAR) Global Monitoring Mode (GMM) mosaics of the Arctic and Antarctic regions are becoming an important tool for sea ice edge delineation too. Although SAR observations are the choice for NIC analysts to produce high spatial resolution products gear toward tactical support, passive microwave data such as those from the

  1. The IceCube Neutrino Observatory VI: Neutrino Oscillations, Supernova Searches, Ice Properties

    OpenAIRE

    The IceCube Collaboration

    2011-01-01

    Atmospheric neutrino oscillations with DeepCore; Supernova detection with IceCube and beyond; Study of South Pole ice transparency with IceCube flashers; Submitted papers to the 32nd International Cosmic Ray Conference, Beijing 2011.

  2. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  3. Comparison between Greenland Ice-Margin an Ice-Core Oxygen-18 Records

    DEFF Research Database (Denmark)

    Reeh, Niels; Oerter, H.; Thomsen, H. Højmark

    2002-01-01

    or more records were obtained along closely spaced parallel sampling profiles, showing good reproducibility of the records. We present ice-margin delta(18)O records reaching back to the Pleistocene. Many of the characteristic delta(18)O variations known from Greenland deep ice cores can be recognized......Old ice for palaeoenvironmental studies retrieved by deep core drilling in the central regions of the large ice sheets can also be retrieved from the ice-sheet margins. The delta(18)O content of the surface ice was studied at 15 different Greenland ice-margin locations. At some locations, two...... at locations near the central ice divide. This is in accordance with deep ice-core results. We conclude that delta(18)O records measured on ice from the Greenland ice-sheet margin provide useful information about past climate and dynamics of the ice sheet, and thus are important (and cheap) supplements to deep...

  4. Predicting pressure-dependent unimolecular rate constants using variational transition state theory with multidimensional tunneling combined with system-specific quantum RRK theory: a definitive test for fluoroform dissociation.

    Science.gov (United States)

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-06-22

    Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe.

  5. Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing

    Science.gov (United States)

    Tsao, Jen-Ching

    2017-01-01

    Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.

  6. Response of passive microwave sea ice concentration algorithms to thin ice

    DEFF Research Database (Denmark)

    Heygster, Georg; Huntemann, Marcus; Ivanova, Natalia;

    2014-01-01

    The influence of sea ice thickness brightness temperatures and ice concentrations retrieved from passive microwave observations is quantified, using horizontally homogeneous sea ice thickness retrievals from ESA's SMOS sensor observations at high incidence angles. Brightness temperatures are infl......The influence of sea ice thickness brightness temperatures and ice concentrations retrieved from passive microwave observations is quantified, using horizontally homogeneous sea ice thickness retrievals from ESA's SMOS sensor observations at high incidence angles. Brightness temperatures...

  7. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    Science.gov (United States)

    2015-09-30

    Ocean Heat: In the new Arctic summer ice regime, with extended open water periods in areas previously covered with sea ice, ocean heat, received...additional buoy with an 80m temperature chain for monitoring the upper ocean evolution has been built at WHOI to replace the loss of one of the UpTempo...addition was made to the Sea State field program through separate funding to Luc Rainville of APL, who will provide an underway temperature and salinity

  8. Ice core evidence for extensive melting of the greenland ice sheet in the last interglacial.

    Science.gov (United States)

    Koerner, R M

    1989-05-26

    Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.

  9. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    Science.gov (United States)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  10. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    Science.gov (United States)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  11. Sea ice thickness and recent Arctic warming

    Science.gov (United States)

    Lang, Andreas; Yang, Shuting; Kaas, Eigil

    2017-01-01

    The climatic impact of increased Arctic sea ice loss has received growing attention in the last years. However, little focus has been set on the role of sea ice thickness, although it strongly determines surface heat fluxes. Here ensembles of simulations using the EC-Earth atmospheric model (Integrated Forecast System) are performed and analyzed to quantify the atmospheric impacts of Arctic sea ice thickness change since 1982 as revealed by the sea ice model assimilation Global Ice-Ocean Modeling and Assimilation System. Results show that the recent sea ice thinning has significantly affected the Arctic climate, while remote atmospheric responses are less pronounced owing to a high internal atmospheric variability. Locally, the sea ice thinning results in enhancement of near-surface warming of about 1°C per decade in winter, which is most pronounced over marginal sea ice areas with thin ice. This leads to an increase of the Arctic amplification factor by 37%.

  12. Modified PIC Method for Sea Ice Dynamics

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-xue; JI Shun-ying; SHEN Hung-tao; YUE Qian-jin

    2005-01-01

    The sea ice cover displays various dynamical characteristics such as breakup, rafting, and ridging under external forces. To model the ice dynamic process accurately, the effective numerical modeling method should be established. In this paper, a modified particle-in-cell (PIC) method for sea ice dynamics is developed coupling the finite difference (FD) method and smoothed particle hydrodynamics (SPH). In this method, the ice cover is first discretized into a series of Lagrangian ice particles which have their own sizes, thicknesses, concentrations and velocities. The ice thickness and concentration at Eulerian grid positions are obtained by interpolation with the Gaussian function from their surrounding ice particles. The momentum of ice cover is solved with FD approach to obtain the Eulerian cell velocity, which is used to estimate the ice particle velocity with the Gaussian function also. The thickness and concentration of ice particles are adjusted with particle mass density and smooth length, which are adjusted with the redistribution of ice particles. With the above modified PIC method, numerical simulations for ice motion in an idealized rectangular basin and the ice dynamics in the Bohai Sea are carried out. These simulations show that this modified PIC method is applicable to sea ice dynamics simulation.

  13. Ice nucleation activity of polysaccharides

    Science.gov (United States)

    Bichler, Magdalena; Felgitsch, Laura; Haeusler, Thomas; Seidl-Seiboth, Verena; Grothe, Hinrich

    2015-04-01

    Heterogeneous ice nucleation is an important process in the atmosphere. It shows direct impact on our climate by triggering ice cloud formation and therefore it has much influence on the radiation balance of our planet (Lohmann et al. 2002; Mishchenko et al. 1996). The process itself is not completely understood so far and many questions remain open. Different substances have been found to exhibit ice nucleation activity (INA). Due to their vast differences in chemistry and morphology it is difficult to predict what substance will make good ice nuclei and which will not. Hence simple model substances must be found and be tested regarding INA. Our work aims at gaining to a deeper understanding of heterogeneous ice nucleation. We intend to find some reference standards with defined chemistry, which may explain the mechanisms of heterogeneous ice nucleation. A particular focus lies on biological carbohydrates in regards to their INA. Biological carbohydrates are widely distributed in all kingdoms of life. Mostly they are specific for certain organisms and have well defined purposes, e.g. structural polysaccharides like chitin (in fungi and insects) and pectin (in plants), which has also water-binding properties. Since they are widely distributed throughout our biosphere and mostly safe to use for nutrition purposes, they are well studied and easily accessible, rendering them ideal candidates as proxies. In our experiments we examined various carbohydrates, like the already mentioned chitin and pectin, as well as their chemical modifications. Lohmann U.; A Glaciation Indirect Aerosol Effect Caused by Soot Aerosols; J. Geoph. Res.; Vol. 24 No.4; pp 11-1 - 11-4; 2002 Mishchenko M.I., Rossow W.B., Macke A., Lacis A. A.; Sensitivity of Cirrus Cloud Albedo, Bidirectional Reflectance and Optical Thickness Retrieval Accuracy to Ice Particle Shape, J. Geoph. Res.; Vol. 101, No D12; pp. 16,973 - 16,985; 1996

  14. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    Science.gov (United States)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  15. Greenland Ice Shelves and Ice Tongues

    DEFF Research Database (Denmark)

    Reeh, Niels

    2017-01-01

    literature and physical properties are reviewed. There exists a difference between: (1) Floating glaciers in northern Greenland (>77°N) which experience bottom melting as their dominant ablation mechanism and calve relatively thin, but large (km-sized) tabular icebergs (‘ice islands’), and (2) Grounded......This chapter focuses on a review of the glaciers on north and northeast Greenland that terminate in fiords with long glacier tongues and floating, ice-shelf-like margins. There is some debate as to whether these glacier tongues can be classified as a traditional ice shelf, so the relevant...... glaciers further south (melting estimated at up to 10 m year−1 for locations...

  16. The Greenland Ice Mapping Project

    Science.gov (United States)

    Joughin, I.; Smith, B.; Howat, I. M.; Moon, T. A.; Scambos, T. A.

    2015-12-01

    Numerous glaciers in Greenland have sped up rapidly and unpredictably during the first part of the 21st Century. We started the Greenland Ice Mapping Project (GIMP) to produce time series of ice velocity for Greenland's major outlet glaciers. We are also producing image time series to document the advance and retreat of glacier calving fronts and other changes in ice-sheet geometry (e.g., shrinking ice caps and ice shelves). When the project began, there was no digital elevation model (DEM) with sufficient accuracy and resolution to terrain-correct the SAR-derived products. Thus, we also produced the 30-m GIMP DEM, which, aside from improving our processing, is an important product in its own right. Although GIMP focuses on time series, complete spatial coverage for initializing ice sheet models also is important. There are insufficient data, however, to map the full ice sheet in any year. There is good RADARSAT coverage for many years in the north, but the C-band data decorrelate too quickly to measure velocity in the high accumulation regions of the southeast. For such regions, ALOS data usually correlate well, but speckle-tracking estimates at L-band are subject to large ionospheric artifacts. Interferometric phase data are far less sensitive to the effect of the ionosphere, but velocity estimates require results from crossing orbits. Thus, to produce a nearly complete mosaic we used data from multiple sensors, beginning with ERS-1/2 data from the mid 1990s. By using a primarily phase-only solution for much of the interior, we have reduced the velocity errors to ~1-3 m/yr. For the faster moving ice-sheet margin where phase data cannot be unwrapped, we used speckle-tracking data. In particular, we have relied on TerraSAR-X for many fast-moving glaciers because the ionosphere far less affects X-band data. This pan-Greenland velocity map as well as many of the time series would not have been possible without an extensive archive of data collected using six

  17. Sea Ice Concentration and Extent

    Science.gov (United States)

    Comiso, Josefino C.

    2014-01-01

    Among the most seasonal and most dynamic parameters on the surface of the Earth is sea ice which at any one time covers about 3-6% of the planet. In the Northern Hemisphere, sea ice grows in extent from about 6 x 10(exp 6) sq km to 16 x 10(exp 6) sq km, while in the Southern Hemisphere, it grows from about 3 x 10(exp 6) sq km to about 19 x 10(exp 6) sq km (Comiso, 2010; Gloersen et al., 1992). Sea ice is up to about 2-3 m thick in the Northern Hemisphere and about 1 m thick in the Southern Hemisphere (Wadhams, 2002), and compared to the average ocean depth of about 3 km, it is a relatively thin, fragile sheet that can break due to waves and winds or melt due to upwelling of warm water. Being constantly advected by winds, waves, and currents, sea ice is very dynamic and usually follows the directions of the many gyres in the polar regions. Despite its vast expanse, the sea ice cover was previously left largely unstudied and it was only in recent years that we have understood its true impact and significance as related to the Earths climate, the oceans, and marine life.

  18. Sea Ice Concentration and Extent

    Science.gov (United States)

    Comiso, Josefino C.

    2014-01-01

    Among the most seasonal and most dynamic parameters on the surface of the Earth is sea ice which at any one time covers about 3-6% of the planet. In the Northern Hemisphere, sea ice grows in extent from about 6 x 10(exp 6) sq km to 16 x 10(exp 6) sq km, while in the Southern Hemisphere, it grows from about 3 x 10(exp 6) sq km to about 19 x 10(exp 6) sq km (Comiso, 2010; Gloersen et al., 1992). Sea ice is up to about 2-3 m thick in the Northern Hemisphere and about 1 m thick in the Southern Hemisphere (Wadhams, 2002), and compared to the average ocean depth of about 3 km, it is a relatively thin, fragile sheet that can break due to waves and winds or melt due to upwelling of warm water. Being constantly advected by winds, waves, and currents, sea ice is very dynamic and usually follows the directions of the many gyres in the polar regions. Despite its vast expanse, the sea ice cover was previously left largely unstudied and it was only in recent years that we have understood its true impact and significance as related to the Earths climate, the oceans, and marine life.

  19. Using Sea Ice Age as a Proxy for Sea Ice Thickness

    Science.gov (United States)

    Stroeve, J. C.; Tschudi, M. A.; Maslanik, J. A.

    2014-12-01

    Since the beginning of the modern satellite record starting in October 1978, the Arctic sea ice cover has been shrinking, with the largest changes observed at the end of the melt season in September. Through 2013, the September ice extent has declined at a rate of -14.0% dec-1, or -895,300 km2 dec-1. The seven lowest September extents in the satellite record have all occurred in the past seven years. This reduction in ice extent is accompanied by large reductions in winter ice thicknesses that are primarily explained by changes in the ocean's coverage of multiyear ice (MYI). Using the University of Colorado ice age product developed by J. Maslanik and C. Fowler, and currently produced by M. Tschudi we present recent changes in the distribution of ice age from the mid 1980s to present. The CU ice age product is based on (1) the use of ice motion to track areas of sea ice and thus estimate how long the ice survives within the Arctic, and (2) satellite imagery of sea ice concentration to determine when the ice disappears. Age is assigned on a yearly basis, with the age incremented by one year if the ice survives summer melt and stays within the Arctic domain. Age is counted from 1 to 10 years, with all ice older than 10 years assigned to the "10+" age category. The position of the ice is calculated on weekly time steps on NSIDC's 12.5-km EASE-grid. In the mid-1980s, MYI accounted for 70% of total winter ice extent, whereas by the end of 2012 it had dropped to less than 20%. This reflects not only a change in ice type, but also a general thinning of the ice pack, as older ice tends to be thicker ice. Thus, with older ice being replaced by thinner first-year ice, the ice pack is more susceptible to melting out than it was in 1980's. It has been suggested that ice age may be a useful proxy for long-term changes in ice thickness. To assess the relationship between ice age and thickness, and how this may be changing over time, we compare the ice age fields to several

  20. Characterization of an IceTop tank for the IceCube surface extension IceVeto

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Julian; Auffenberg, Jan; Hansmann, Bengt; Rongen, Martin; Stahlberg, Martin; Wiebusch, Christopher [III. Physikalisches Institut B, RWTH Aachen University (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceTop is an air-shower detector located at the South Pole on the surface above the IceCube detector. It consists of 81 detector stations with two Cherenkov tanks each. The tanks are filled with clear ice and instrumented with two photomultipliers. IceTop detects cosmic-ray induced air-showers above an energy threshold of ∝300 TeV. Muons and neutrinos from these air-showers are the main background for astrophysical neutrino searches with IceCube. The usage of IceTop to veto air-showers largely reduces this background in the field of view. To enlarge the field of view an extension of the surface detector, IceVeto, is planned. Therefore, we investigate the properties of an original IceTop tank as a laboratory reference for the development of new detection module designs. First results of these measurements are presented.

  1. Characterizing "Rotten" Ice: Changes in first-year Arctic sea ice during advanced summer melt

    Science.gov (United States)

    Frantz, C. M.; Junge, K.; Light, B.; Orellana, M. V.; Carpenter, S.; Farley, S. M.; Crump, B. C.; Lieb-Lappen, R.; Courville, Z.

    2016-12-01

    Arctic melt seasons are lengthening; as this happens, more Arctic sea ice will undergo advanced stages of melt, becoming so-called "rotten" ice. However, very little is known about this increasingly important ice type. Here, we present results of a physical, optical, chemical, and biological characterization of rotten Arctic sea ice. Sea ice core samples and measurements were collected from landfast sea ice and summer ice floes near Barrow, Alaska during May-July of 2015. We captured a normal progression of ice warming and freshening from May-June which contrasted sharply to physical properties and biological composition of the "rotten" ice targeted in July. Rotten ice is approximately isothermal and highly permeable, a consequence of its characteristic multi-cm-scale brine channels, resulting in an ice that is largely drained of brine and flushed with seawater. 3D micro-CT images of the ice allow us to quantify the evolution of factors related to ice porosity and channel connectivity in May-June vs. rotten ice. Patterns in measured chemistry show an environment in rotten ice that is distinct from May-June ice as well as from the seawater that underlies and permeates the ice. The physical and chemical parameters taken together represent an entirely different microbial habitat than the saline ice of May and June. Correspondingly, the sea ice microbial community also changes significantly over the course of melt. The ice-bottom algal community that dominates the biomass of the cores in May and June was lost by July, yet in July samples some algae appear to remain embedded in or attached to the ice throughout the full core depth. In addition, bacterial counts in upper horizons of rotten ice were dramatically higher than those observed in May-June. Pending results from SSU rRNA amplicon sequencing and exopolymer/gel analyses will also be presented.

  2. Heavy Metal Presence in Two Different Types of Ice Cream: Artisanal Ice Cream (Italian Gelato) and Industrial Ice Cream.

    Science.gov (United States)

    Conficoni, D; Alberghini, L; Bissacco, E; Ferioli, M; Giaccone, V

    2017-03-01

    Ice cream, a popular product worldwide, is usually a milk-based product with other types of ingredients (fruit, eggs, cocoa, dried fruit, additives, and others). Different materials are used to obtain the desired taste, texture, consistency, and appearance of the final product. This study surveyed ice cream products available in Italy for heavy metals (lead, cadmium, chromium, tin, and arsenic). The differences between artisanal and industrial ice cream were also investigated because of the importance in the Italian diet and the diffusion of this ready-to-eat food. Ice cream sampling was performed between October 2010 and February 2011 in the northeast of Italy. A total of 100 samples were randomly collected from different sources: 50 industrial samples produced by 19 different brands were collected in coffee bars and supermarkets; 50 artisanal ice cream samples were gathered at nine different artisanal ice cream shops. Ten wooden sticks of industrial ice cream were analyzed in parallel to the ice cream. All samples were negative for arsenic and mercury. None of the artisanal ice cream samples were positive for lead and tin; 18% of the industrial ice cream samples were positive. All positive lead samples were higher than the legal limit stated for milk (0.02 mg/kg). All industrial ice cream samples were negative for cadmium, but cadmium was present in 10% of the artisanal ice cream samples. Chromium was found in 26% of the artisanal and in 58% of the industrial ice cream samples. The heavy metals found in the wooden sticks were different from the corresponding ice cream, pointing out the lack of cross-contamination between the products. Considering the results and the amount of ice cream consumed during the year, contamination through ice cream is a low risk for the Italian population, even though there is need for further analysis.

  3. Atmospheric Methane in Ice Cores

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The reconstruction of air trapped in ice cores provides us the most direct information about atmospheric CH4 variations in the past history. Ice core records from the "Three Poles (Antarctica, Greenland and Tibetan Plateau)" reveal the detailed fluctuations of atmospheric CH4 concentration with time and are allowed to quantify the CH4 differences among latitudes. These data are indispensably in the farther study of the relationship between greenhouse gases and climatic change, and of the past changes in terrestrial CH4 emissions. Ice cores reconstruction indicates that atmospheric CH4 concentration has increased quickly since industrialization, and the present day's level of atmospheric CH4 (1800 ppbv) is unprecedented during the past Glacial-Interglacial climate cycles.

  4. PU-ICE Summary Information.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    The Generator Knowledge Report for the Plutonium Isentropic Compression Experiment Containment Systems (GK Report) provides information for the Plutonium Isentropic Compression Experiment (Pu- ICE) program to support waste management and characterization efforts. Attachment 3-18 presents generator knowledge (GK) information specific to the eighteenth Pu-ICE conducted in August 2015, also known as ‘Shot 18 (Aug 2015) and Pu-ICE Z-2841 (1).’ Shot 18 (Aug 2015) was generated on August 28, 2015 (1). Calculations based on the isotopic content of Shot 18 (Aug 2015) and the measured mass of the containment system demonstrate the post-shot containment system is low-level waste (LLW). Therefore, this containment system will be managed at Sandia National Laboratory/New Mexico (SNL/NM) as LLW. Attachment 3-18 provides documentation of the TRU concentration and documents the concentration of any hazardous constituents.

  5. Improved method for sea ice age computation based on combination of sea ice drift and concentration

    Science.gov (United States)

    Korosov, Anton; Rampal, Pierre; Lavergne, Thomas; Aaboe, Signe

    2017-04-01

    Sea Ice Age is one of the components of the Sea Ice ECV as defined by the Global Climate Observing System (GCOS) [WMO, 2015]. It is an important climate indicator describing the sea ice state in addition to sea ice concentration (SIC) and thickness (SIT). The amount of old/thick ice in the Arctic Ocean has been decreasing dramatically [Perovich et al. 2015]. Kwok et al. [2009] reported significant decline in the MYI share and consequent loss of thickness and therefore volume. Today, there is only one acknowledged sea ice age climate data record [Tschudi, et al. 2015], based on Maslanik et al. [2011] provided by National Snow and Ice Data Center (NSIDC) [http://nsidc.org/data/docs/daac/nsidc0611-sea-ice-age/]. The sea ice age algorithm [Fowler et al., 2004] is using satellite-derived ice drift for Lagrangian tracking of individual ice parcels (12-km grid cells) defined by areas of sea ice concentration > 15% [Maslanik et al., 2011], i.e. sea ice extent, according to the NASA Team algorithm [Cavalieri et al., 1984]. This approach has several drawbacks. (1) Using sea ice extent instead of sea ice concentration leads to overestimation of the amount of older ice. (2) The individual ice parcels are not advected uniformly over (long) time. This leads to undersampling in areas of consistent ice divergence. (3) The end product grid cells are assigned the age of the oldest ice parcel within that cell, and the frequency distribution of the ice age is not taken into account. In addition, the base sea ice drift product (https://nsidc.org/data/docs/daac/nsidc0116_icemotion.gd.html) is known to exhibit greatly reduced accuracy during the summer season [Sumata et al 2014, Szanyi, 2016] as it only relies on a combination of sea ice drifter trajectories and wind-driven "free-drift" motion during summer. This results in a significant overestimate of old-ice content, incorrect shape of the old-ice pack, and lack of information about the ice age distribution within the grid cells. We

  6. RIDES: Raman Icing Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Inflight icing of engines and airframe presents a significant hazard to air transport, especially at lower flight elevations during take-off or on approach. Ice...

  7. Lobster Tail Ice Formation on Aerosurface

    Science.gov (United States)

    1999-01-01

    Glace Ice formation commonly refered to as 'Lobster Tail' by scientists and engineers, is caused to form on the leading edge of a aircraft tail section in the icing research tunnel at the NASA Glenn Research Center, Cleveland, Ohio.

  8. Climatic change and river ice breakup

    Energy Technology Data Exchange (ETDEWEB)

    Beltaos, S. [Environment Canada, National Water Research Institute, Burlington, ON (Canada); Burrell, B. C. [New Brunswick Dept. of the Environment and Local Government, Sciences and Planning Division, Fredericton, NB (Canada)

    2003-07-01

    An overview of climatic factors and impact relative to river ice engineering and science is presented. An explanation of the fundamentals of climatic change is followed by a review of direct and indirect climatic influences that govern river ice breakup and related trends. Known responses of river ice to climatic change and potential future changes to ice breakup processes are described along with the probable ecological and socio-economic consequences of these changes. Changes in engineering approaches to accommodate the present ice regime and predicted changes in climatic variables that affect river ice processes and reduce the vulnerability of infrastructure and ecosystems to climatic change are examined. Future research on the links between river ice and stream ecology is suggested to identify ecological concerns that may result from changes in river ice regimes induced by climatic change. 60 refs., 3 figs.

  9. Ice nucleation properties of agricultural soil dusts

    Science.gov (United States)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  10. Arctic Landfast Sea Ice 1953-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The files in this data set contain landfast sea ice data (monthly means) gathered from both Russian Arctic and Antarctic Research Institute (AARI) and Canadian Ice...

  11. Southern Hemisphere Ice Limits, 1973-1978

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weekly Southern Ocean ice limits, have been digitized from U.S. Navy Fleet Weather Facility ice charts, at the Max-Planck Institut fur Meteorologie, Hamburg....

  12. Monthly snow/ice averages (ISCCP)

    Data.gov (United States)

    National Aeronautics and Space Administration — September Arctic sea ice is now declining at a rate of 11.5 percent per decade, relative to the 1979 to 2000 average. Data from NASA show that the land ice sheets in...

  13. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  14. ROV dives under Great Lakes ice

    Science.gov (United States)

    Bolsenga, S.J.; Gannon, John E.; Kennedy, Gregory; Norton, D.C.; Herdendorf, Charles E.

    1989-01-01

    Observations of the underside of ice have a wide variety of applications. Severe under-ice roughness can affect ice movements, rough under-ice surfaces can scour the bottom disturbing biota and man-made structures such as pipelines, and the flow rate of rivers is often affected by under-ice roughness. A few reported observations of the underside of an ice cover have been made, usually by cutting a large block of ice and overturning it, by extensive boring, or by remote sensing. Such operations are extremely labor-intensive and, in some cases, prone to inaccuracies. Remotely operated vehicles (ROV) can partially solve these problems. In this note, we describe the use, performance in a hostile environment, and results of a study in which a ROV was deployed under the ice in Lake Erie (North American Great Lakes).

  15. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  16. Global Lake and River Ice Phenology Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Lake and River Ice Phenology Database contains freeze and thaw/breakup dates as well as other descriptive ice cover data for 865 lakes and rivers in the...

  17. Continuous Chemistry in Ice Cores

    DEFF Research Database (Denmark)

    Kjær, Helle Astrid

    on parameters involved in the study of photolysis as a source of in situ CO2. The concentration of organic substances in Greenland ice is poorly known due to their low levels and the fact that only a few studies evaluate the concentrations of specific organic compounds. Light does not penetrate deep...... depth was found as a function of wavelength. Further, by computational chemistry hybrid density functional methods (DFT), the four most common conformers of pyruvic acid were investigated in both gas, water and ice using the DFT model CAM-B3LYP with dielectric medium methods. A de rease of the energy...

  18. Electromelting of Confined Monolayer Ice

    CERN Document Server

    Qiu, Hu

    2013-01-01

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to field-induced disruption of the water-wall interaction induced well-ordered network of hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  19. Microwave sensor for ice detection

    Science.gov (United States)

    Arndt, G. D.; Chu, A.; Stolarczyk, L. G.; Stolarczyk, G. L.

    1994-01-01

    A microwave technique has been developed for detecting ice build-up on the wing surfaces of commercial airliners and highway bridges. A microstrip patch antenna serves as the sensor, with changes in the resonant frequency and impedance being dependent upon the overlying layers of ice, water and glycol mixtures. The antenna sensor is conformably mounted on the wing. The depth and dielectric constants of the layers are measured by comparing the complex resonant admittance with a calibrated standard. An initial breadboard unit has been built and tested. Additional development is now underway. Another commercial application is in the robotics field of remote sensing of coal seam thickness.

  20. Mechanical sea-ice strength parameterized as a function of ice temperature

    Science.gov (United States)

    Hata, Yukie; Tremblay, Bruno

    2016-04-01

    Mechanical sea-ice strength is key for a better simulation of the timing of landlock ice onset and break-up in the Canadian Arctic Archipelago (CAA). We estimate the mechanical strength of sea ice in the CAA by analyzing the position record measured by the several buoys deployed in the CAA between 2008 and 2013, and wind data from the Canadian Meteorological Centre's Global Deterministic Prediction System (CMC_GDPS) REforecasts (CGRF). First, we calculate the total force acting on the ice using the wind data. Next, we estimate upper (lower) bounds on the sea-ice strength by identifying cases when the sea ice deforms (does not deform) under the action of a given total force. Results from this analysis show that the ice strength of landlock sea ice in the CAA is approximately 40 kN/m on the landfast ice onset (in ice growth season). Additionally, it becomes approximately 10 kN/m on the landfast ice break-up (in melting season). The ice strength decreases with ice temperature increase, which is in accord with results from Johnston [2006]. We also include this new parametrization of sea-ice strength as a function of ice temperature in a coupled slab ocean sea ice model. The results from the model with and without the new parametrization are compared with the buoy data from the International Arctic Buoy Program (IABP).

  1. Contributing factors to an enhanced ice albedo feedback in Arctic sea ice

    Science.gov (United States)

    Perovich, D. K.; Jones, K. F.; Light, B.; Holland, M. M.

    2012-12-01

    The Arctic sea ice cover is in decline. In recent years there has been a decrease in summer ice area; a thinning of the ice cover; an increase in the amount of seasonal ice; an earlier onset of summer melt; and a later start of fall freeze up. Decreases in ice concentration substantially increase solar heat input to the ocean. Earlier dates of melt onset reduce ice albedo during a period when incident solar irradiance is large increasing solar heat input to the ice. Seasonal sea ice typically has a smaller albedo than perennial ice throughout the melt season. Thus, the observed shift to a seasonal ice cover causes greater solar heat input to the ice and more melting thereby accelerating ice decay. Thinner ice results in greater transmission of solar heat to the upper ocean, where it contributes to bottom melting, lateral melting, and warming of the water. All of these changes enhance the amount of solar energy deposited in the ice ocean system, and increasing ice melt. We will examine the relative magnitude of each of these changes individually as well as their collective contribution to the ice albedo feedback.

  2. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  3. IceCube: physics, status, and future

    OpenAIRE

    Hultqvist, Klas; collaboration, for the IceCube

    2010-01-01

    The IceCube observatory is the first cubic kilometre scale instrument in the field of high-energy neutrino astronomy and cosmic rays. In 2009, following five successful deployment seasons, IceCube consisted of 59 strings of optical modules in the South Pole ice, together with 118 air shower detectors in the IceTop surface array. The range of physics topics includes neutrino signals from astrophysical sources, dark matter, exotic particle physics, cosmic rays, and atmospheric neutrinos. The cu...

  4. Enhancing calculation of thin sea ice growth

    Science.gov (United States)

    Appel, Igor

    2016-12-01

    The goal of the present study is to develop, generate, and integrate into operational practice a new model of ice growth. The development of this Sea Ice Growth Model for Arctic (SIGMA), a description of the theoretical foundation, the model advantages and analysis of its results are considered in the paper. The enhanced model includes two principal modifications. Surface temperature of snow on ice is defined as internal model parameter maintaining rigorous consistency between processes of atmosphere-ice thermodynamic interaction and ice growth. The snow depth on ice is naturally defined as a function of a local snowfall rate and linearly depends on time rather than ice thickness. The model was initially outlined in the Visible Infrared Radiometer Suite (VIIRS) Sea Ice Characterization Algorithm Theoretical Basis Document (Appel et al., 2005) that included two different approaches to retrieve sea ice age: reflectance analysis for daytime and derivation of ice thickness using energy balance for nighttime. Only the latter method is considered in this paper. The improved account for the influence of surface temperature and snow depth increases the reliability of ice thickness calculations and is used to develop an analytical Snow Depth/Ice Thickness Look up table suitable to the VIIRS observations as well as to other instruments. The applicability of SIGMA to retrieve ice thickness from the VIIRS satellite observations and the comparison of its results with the One-dimensional Thermodynamic Ice Model (OTIM) are also considered. The comparison of the two models demonstrating the difference between their assessments of heat fluxes and radical distinction between the influences of snow depth uncertainty on errors of ice thickness calculations is of great significance to further improve the retrieval of ice thickness from satellite observations.

  5. Arctic Freshwater Ice and Its Climatic Role

    OpenAIRE

    Prowse, Terry; Alfredsen, Knut; Beltaos, Spyros; Bonsal, Barrie; Duguay, Claude; Korhola, Atte; McNamara, Jim; Vincent, Warwick F.; Vuglinsky, Valery; Weyhenmeyer, Gesa A.

    2011-01-01

    Freshwater ice dominates the Arctic terrestrial environment and significantly impacts bio-physical and socio-economic systems. Unlike other major cryospheric components that either blanket large expanses (e.g., snow, permafrost, sea ice) or are concentrated in specific locations, lake and river ice are interwoven into the terrestrial landscape through major flow and storage networks. For instance, the headwaters of large ice-covered rivers extend well beyond the Arctic while many northern lak...

  6. Ancient ice streams and their megalineated beds

    Science.gov (United States)

    Eyles, Nick; Ross, Martin

    2016-06-01

    Ice streams are corridors of fast-flowing (~ 800 m yr- 1) ice inset within otherwise sluggish-moving ice sheets. According to reported estimates, as much as 90% of the total discharge of the Antarctic Ice Sheet, for example, occurs through such corridors. Recognition of ice stream records in paleo-ice sheet research has profoundly changed the discipline of glacial geology. The key has been identification of the distinctive corrugated or 'megalineated' geomorphology of their beds, consisting of elongate ridges that are parallel to ice flow direction and often transitional to drumlins. Access to new satellite imagery has enabled mapping of megascale glacial lineations (MSGLs) over large swaths of terrain and the recognition of regional-scale ice stream flow paths and origins. At the peak of the last ice age, just after 20,000 years ago, there were more than 100 ice streams within the Laurentide Ice Sheet. Only now are we beginning to fully appreciate the fundamental role that such streams (which have been called the 'arteries' of ice sheets) have had on glaciated landscapes, by moving enormous volumes of sediment and releasing armadas of floating ice to the Arctic and Atlantic oceans. There is also a growing awareness of the erosional role of ice streams in overdeepening of lakes, fiords and other troughs along coastlines. Much remains to be learnt and new discoveries surely await. The picture of past ice sheets, like the Laurentide and Fennoscandian Ice Sheets, that is emerging today is very different from that of 20 years ago.

  7. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    Science.gov (United States)

    2016-06-13

    the ocean temperature is cooled to prevent the ice from immediately melting . Conversely, if ice is removed from a grid cell that had ice , the ocean...of moist snow, wet ice surfaces and melt ponds. By confusing water atop sea ice with open ocean, passive microwave products tend to underestimate the... ice concentration and adjusts other fields (e.g., volume and energy of melting for both ice and snow) for consistency. However, in ACNFS, we only use

  8. An Ice Protection and Detection Systems Manufacturer's Perspective

    Science.gov (United States)

    Sweet, Dave

    2009-01-01

    Accomplishments include: World Class Aircraft Icing Research Center and Facility. Primary Sponsor/Partner - Aircraft Icing Consortia/Meetings. Icing Research Tunnel. Icing Test Aircraft. Icing Codes - LEWICE/Scaling, et al. Development of New Technologies (SBIR, STTR, et al). Example: Look Ahead Ice Detection. Pilot Training Materials. Full Cooperation with Academia, Government and Industry.

  9. Evidence for basal marine ice in the Filchner-Ronne ice shelf

    OpenAIRE

    Oerter, Hans; kipfstuhl, J.; Determann, Jürgen; Miller, Heinrich; Wagenbach, D.; Minikin, A; Graf, W.

    1992-01-01

    The Filchner-Ronne ice shelf, which drains most of the marine-based portions of the West Antarctic ice sheet, is the largest ice shelf on Earth by volume. The origin and properties of the ice that constitutes this shelf are poorly understood, because a strong reflecting interface within the ice and the diffuse nature of the ice-ocean interface make seismic and radio echo sounding data difficult to interpret(1,2). Ice in the upper part of the shelf is of meteoric origin, but it has been propos...

  10. Research destruction ice under dynamic loading. Part 1. Modeling explosive ice cover into account the temperature

    Directory of Open Access Journals (Sweden)

    Bogomolov Gennady N.

    2017-01-01

    Full Text Available In the research, the behavior of ice under shock and explosive loads is analyzed. Full-scale experiments were carried out. It is established that the results of 2013 practically coincide with the results of 2017, which is explained by the temperature of the formation of river ice. Two research objects are considered, including freshwater ice and river ice cover. The Taylor test was simulated numerically. The results of the Taylor test are presented. Ice is described by an elastoplastic model of continuum mechanics. The process of explosive loading of ice by emulsion explosives is numerically simulated. The destruction of the ice cover under detonation products is analyzed in detail.

  11. Influence of sea ice on ocean water vapor isotopes and Greenland ice core records

    Science.gov (United States)

    Klein, Eric S.; Welker, Jeffrey M.

    2016-12-01

    A warming climate results in sea ice loss and impacts to the Arctic water cycle. The water isotope parameter deuterium excess, a moisture source proxy, can serve as a tracer to help understand hydrological changes due to sea ice loss. However, unlocking the sea ice change signal of isotopes from ice cores requires understanding how sea ice changes impact deuterium excess, which is unknown. Here we present the first isotope data linking a gradient of sea ice extents to oceanic water vapor deuterium excess values. Initial loss of sea ice extent leads to lower deuterium excess moisture sources, and then values progressively increase with further ice loss. Our new process-based interpretation suggests that past rapid (1-3 years) Greenland ice core changes in deuterium excess during warming might not be the result of abrupt atmospheric circulation shifts, but rather gradual loss of sea ice extent at northern latitude moisture sources.

  12. On the origin of the ice ages

    NARCIS (Netherlands)

    Oerlemans, J.

    1984-01-01

    Ice sheet dynamics provide a possible explanation for the 100 kyr power in climatic records. Some numerical experiments presented here show that even the transition from an essentially ice-free earth to a glacial can be produced by a northern hemisphere ice-sheet model, provided that a slow general

  13. CICE, The Los Alamos Sea Ice Model

    Energy Technology Data Exchange (ETDEWEB)

    2017-05-12

    The Los Alamos sea ice model (CICE) is the result of an effort to develop a computationally efficient sea ice component for a fully coupled atmosphere–land–ocean–ice global climate model. It was originally designed to be compatible with the Parallel Ocean Program (POP), an ocean circulation model developed at Los Alamos National Laboratory for use on massively parallel computers. CICE has several interacting components: a vertical thermodynamic model that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along with snowfall; an elastic-viscous-plastic model of ice dynamics, which predicts the velocity field of the ice pack based on a model of the material strength of the ice; an incremental remapping transport model that describes horizontal advection of the areal concentration, ice and snow volume and other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic balances and rates of strain. It also includes a biogeochemical model that describes evolution of the ice ecosystem. The CICE sea ice model is used for climate research as one component of complex global earth system models that include atmosphere, land, ocean and biogeochemistry components. It is also used for operational sea ice forecasting in the polar regions and in numerical weather prediction models.

  14. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf...

  15. Viewing Ice Crystals Using Polarized Light.

    Science.gov (United States)

    Kinsman, E. M.

    1992-01-01

    Describes a method for identifying and examining single ice crystals by photographing a thin sheet of ice placed between two inexpensive polarizing filters. Suggests various natural and prepared sources for ice that promote students' insight into crystal structures, and yield colorful optical displays. Includes directions, precautions, and sample…

  16. Uranium-series dating of antarctic ice

    Energy Technology Data Exchange (ETDEWEB)

    Fireman, E.L.

    1986-01-01

    It is very interesting to date polar ice radiometrically. Bands of dust imbedded in ice are frequently observed in antarctic ice fields. This work focuses on dating ice samples with high dust contents by the uranium-series method. The author obtained uranium-series ages of 325 thousand (+/- 75) and 100 thousand (+/- 20) years for dusty ice samples from two sites in the main Allan Hills ice field. The dust-banded ice was collected from 50- to 100-centimeter depth at two sites, called Cul de Sac 100 and Cul de Sac 150. The particles in these samples were examined with an optical microscope and found to consist essentially (more than 95% of the particulates) of fine volcanic glass shards full of vesicles and microvesicles. Evidently the fine volcanic glass shards were deposited on snow, became incorporated in the ice, and moved with the ice to the Allan Hills sites. Ice samples with other types of particulates, such as terrestrial morraine, may also be amenable to uranium-series dating; however, it is difficult to date ice with less than 0.03 gram of fine particulates per kilogram of ice with their present technique. The uranium-series method can cover the age range from 10,000 to 600,000 years.

  17. The Winter Olympics--On Ice.

    Science.gov (United States)

    Hoover, Barbara G.

    1998-01-01

    Describes several science activities designed around the upcoming Winter Olympics ice skating events which demonstrate the scientific principles behind the sport. Students learn that increasing the pressure on ice will lead to the ice melting, the principle involved in the spinning swing, and the technology of skates and skating outfits. (PVD)

  18. The Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  19. Glacial Cycles and ice-sheet modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    An attempt is made to simulate the Pleistocene glacial cycles with a numerical model of the Northern Hemisphere ice sheets. This model treats the vertically-integrated ice flow along a meridian, including computation of bedrock adjustment and temperature distribution in the ice. Basal melt water is

  20. A model of the Antarctic Ice Sheet

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    Numerical modelling of ice sheets and glaciers has become a useful tool in glaciological research. A model described here deals with the vertical mean ice velocity, is time dependent, computes bedrock adjustment and uses an empirical diagnostic relationship to derive the distribution of ice thicknes

  1. Anti-icing performance of superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, S.; Farzaneh, M. [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada); Kulinich, S.A., E-mail: skulinic@uqac.ca [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada)

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size {approx}80 {mu}m) in a wind tunnel at subzero temperature (-10 deg. C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  2. Deuterium isotopic effects connected with unimolecular and concerted mechanisms. The case of 1-deutero-2-chloro alcohols; Effets isotopiques du deuterium attaches a des mecanismes unimoleculaires et concertes. Cas des deutero-1-chloro-2 alcools

    Energy Technology Data Exchange (ETDEWEB)

    Jambon, C

    1962-07-01

    After a bibliographic analysis of the probable causes of isotopic effects and their comparison, with the simplifications provided by the athermal model, a discussion of the isotopic effect of deuterium in organic molecules in terms of structural influences is presented, showing the important role of the C-D bond length which is shorter than the C-H bond length, and of the D atom's Van der Waals radius, shorter than that of the H atom. Kinetic measurements were carried out on some reactions involving the mechanisms proposed: unimolecular ionizations and halogen concentrates. The structural models chosen are: 2-chloro-cyclo-hexanols cis and trans 1-H and 2-D; 2-chloro-cyclo-pentanols cis trans 1-H and 1-D; 1-phenyl-l-chloro-2-propanol threo 2-H and 2-D. (author) [French] Apres une analyse bibliographique des causes probables d'effets isotopiques et leur comparaison, avec les simplifications qu'apporte le modele athermique, on a entrepris l'etude de la discussion isotopique du deuterium dans des molecules organiques en termes d'influences structurelles, cherchant a degager le role important de la longueur de la liaison C-D plus courte que C-H, et du rayon de Van der Waals de l'atome de D plus petit que celui de H. On a effectue des mesures cinetiques sur quelques reactions invoquant les mecanismes envisages: ionisations unimoleculaires et concentrees d'halogenes. Les modeles structuraux choisis sont: chloro 2 - cyclohexanols cis et trans H 1 et D 1; chloro 2 - cyclopentanols cis et trans H 1 et D 1; phenyl 1 - chloro 1 - propanol 2 threo H 2 et D 2. (auteur)

  3. Performance Survey of Inflatable Dams in Ice-Affected Waters. Ice Engineering. Number 30, October 2001

    Science.gov (United States)

    2001-10-01

    67 Village of Swanton, VT Hydro (9.8 MW) Highest inflatable dam in the world. Excellent per- formance in ice. Eliminated freezeup and breakup ice...frazil production and subsequent freezeup or breakup ice jam flooding. The airbags would rest deflated on the riverbed when unneeded, allowing fish...For example, frazil ice that once collected behind the dam might move downstream to form a freezeup ice jam and flooding at an undesirable location

  4. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-01-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  5. Radar for Mapping Sea Ice

    Science.gov (United States)

    Barath, F. T.; Jordan, R. L.

    1983-01-01

    X-band system has 100-m2 resolution. Wide swath imaging radar of synthetic aperature type transmits signal to ground station for subsequent processing into imagery. Concept meets functional requirements for continuously mapping sea ice in north and south polar regions.

  6. Ice & Exercise for Injury Management.

    Science.gov (United States)

    Suspenski, Thomas J.

    Utilization of ice and exercise conjunctively decreases recovery time of muscle tendon injury considerably. In the healing process, collagen (a major element of scar formation) is laid down. If heat and rest are used as treatment, healing takes place; however, collagen is laid down in a haphazard arrangement increasing the likelihood of reinjury.…

  7. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  8. Women of Ice and Fire

    DEFF Research Database (Denmark)

    The anthology offers 11 original contributions about the women in GoT, the transmedial universe of George R.R. Martin's book series A Song of Ice and Fire, the HBO TV series Game of Thrones, computer games and online fan activities. The anthology examines the representation of women, and activity...

  9. Aircraft Natural/Artificial Icing

    Science.gov (United States)

    2009-02-12

    axial vibration is caused by an oscillator driving a coil in the probe to create a magnetostrictive force. A sensing coil within the probe senses the...Consequence TOP 7-3-537 12 February 2009 C-1 APPENDIX C. ICING TEST SITE SELECTION 1. INTRODUCTION Unlike large fixed-wing aircraft, helicopters

  10. The Sea Ice Board Game

    Science.gov (United States)

    Bertram, Kathryn Berry

    2008-01-01

    The National Science Foundation-funded Arctic Climate Modeling Program (ACMP) provides "curriculum resource-based professional development" materials that combine current science information with practical classroom instruction embedded with "best practice" techniques for teaching science to diverse students. The Sea Ice Board…

  11. The Sea Ice Board Game

    Science.gov (United States)

    Bertram, Kathryn Berry

    2008-01-01

    The National Science Foundation-funded Arctic Climate Modeling Program (ACMP) provides "curriculum resource-based professional development" materials that combine current science information with practical classroom instruction embedded with "best practice" techniques for teaching science to diverse students. The Sea Ice Board…

  12. Ice-Free Arctic Ocean?

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different…

  13. Snow on Antarctic sea ice

    Science.gov (United States)

    Massom, Robert A.; Eicken, Hajo; Hass, Christian; Jeffries, Martin O.; Drinkwater, Mark R.; Sturm, Matthew; Worby, Anthony P.; Wu, Xingren; Lytle, Victoria I.; Ushio, Shuki; Morris, Kim; Reid, Phillip A.; Warren, Stephen G.; Allison, Ian

    2001-08-01

    Snow on Antarctic sea ice plays a complex and highly variable role in air-sea-ice interaction processes and the Earth's climate system. Using data collected mostly during the past 10 years, this paper reviews the following topics: snow thickness and snow type and their geographical and seasonal variations; snow grain size, density, and salinity; frequency of occurrence of slush; thermal conductivity, snow surface temperature, and temperature gradients within snow; and the effect of snow thickness on albedo. Major findings include large regional and seasonal differences in snow properties and thicknesses; the consequences of thicker snow and thinner ice in the Antarctic relative to the Arctic (e.g., the importance of flooding and snow-ice formation); the potential impact of increasing snowfall resulting from global climate change; lower observed values of snow thermal conductivity than those typically used in models; periodic large-scale melt in winter; and the contrast in summer melt processes between the Arctic and the Antarctic. Both climate modeling and remote sensing would benefit by taking account of the differences between the two polar regions.

  14. Microwave emissivity of fresh water ice--Lake ice and Antarctic ice pack--Radiative transfer simulations versus satellite radiances

    CERN Document Server

    Mills, Peter

    2012-01-01

    Microwave emissivity models of sea ice are poorly validated empirically. Typical validation studies involve using averaged or stereotyped profiles of ice parameters against averaged radiance measurements. Measurement sites are rarely matched and even less often point-by-point. Because of saline content, complex permittivity of sea ice is highly variable and difficult to predict. Therefore, to check the validity of a typical, plane-parallel, radiative-transfer-based ice emissivity model, we apply it to fresh water ice instead of salt-water ice. Radiance simulations for lake ice are compared with measurements over Lake Superior from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E). AMSR-E measurements are also collected over Antarctic icepack. For each pixel, a thermodynamic model is driven by four years of European Center for Medium Range Weather Forecasts (ECMWF) reanalysis data and the resulting temperature profiles used to drive the emissivity model. The results suggest that the relatively simple ...

  15. ISSM: Ice Sheet System Model

    Science.gov (United States)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  16. Facility for testing ice drills

    Science.gov (United States)

    Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.

    2017-05-01

    The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.

  17. DC ice-melting model for wet-growth icing conductor and its experimental investigation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Icicles are often formed under the downside surface of conductor in the wet growth icing of overhead power line. When the ice deposit around overhead power line is molten by Joule heat produced by current, the pattern of heat transfer of ice deposit with icicles is dissimilar to that without icicle, so the ice-melting model for the columnar icing conductor cannot be applied to icicle-shaped icing conductor. According to the heat-transfer characteristic of the icicle-shaped icing conductor, this paper puts forward a DC ice-melting model for the icicle-shaped icing conductor. Because this full model includes three-dimensional heat-transfer and interface movement, which cannot be solved in closed form, a finite element scheme in space-domain and a finite difference scheme in time-domain are employed to discretize the governing equations. Firstly the whole ice-melting process on the icicle-shaped icing conductor is simulated by this model. Then the simulated results are validated by ice-melting experiments in the artificial chamber. The study from the model and the experiments shows that the size and length of icicle as well as the space between the adjacent icicles are factors to affect ice-melting. With the shorter icicle space, the bigger icicle size and the longer icicle-length, the surface of ice layer is enlarged and then more heat is taken away by the convection and radiation, so the ice melting time will get longer.

  18. Initiation and growth of martian ice lenses

    Science.gov (United States)

    Sizemore, Hanna G.; Zent, Aaron P.; Rempel, Alan W.

    2015-05-01

    Water ice in the upper meters of the martian regolith is a major volatile reservoir. Although the geographic extent, burial depth, and thermal stability of this shallow ice are well understood, its origin, history, and stratigraphy are not. Over the past decade, a growing body of observational evidence has indicated that shallow ground ice exceeds the pore volume of its host soil over large regions of both martian hemispheres. This is confounding, given that (1) the physical theory that accurately predicts the location of ground ice also assumes that ice should be pore-filling in the upper meter of regolith, and (2) the Phoenix spacecraft uncovered far more pore-filling ice than excess ice at its landing site in the northern hemisphere. The development of ice lenses by low-temperature in situ segregation - analogous to the processes that generate frost heave on Earth - has been hypothesized to explain shallow excess ice on Mars. We have developed a numerical model of ice lens initiation and growth in the martian environment, and used it to test this hypothesis for the first time. We carried out a large suite of numerical simulations in order to place quantitative constraints on the timing and location of ice lens initiation, and on the magnitude of ice lens growth in a variety of host soils. We find that ice lens initiation is a ubiquitous process in the martian high latitudes, but the ultimate magnitude of lens growth, or frost heave, is sensitive to the properties of the host soil. Depending on the specific properties of martian soils, in situ segregation may be a very slow process sufficient to explain the excess ice observed in the Dodo-Goldilocks trench at the Phoenix landing site, but without regionally significant effects. Alternatively, if clay-sized particles or perchlorate salts are present, in situ segregation may be a vigorous process that has significantly affected the stratigraphy of ground ice in the upper meter of regolith throughout the high

  19. EXPERIMENTS OF SEA ICE SIMULATION

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ying; ZHANG Xue-hong; YU Ru-cong; LIU Hai-long; YU Yong-qiang

    2005-01-01

    As a substitute for the original displaced pole grids, a simple rotated spherical coordinate system was introduced into the Community Sea Ice Model version 4(CSIM4), which is a component of the Community Climate System Model(CCSM) of the American National Center of Atmospheric Research(NCAR), to deal with the "pole problems".In the new coordinates, both the geographical North Pole and South Pole lie in the model equator and grid sizes near the polar region are more uniform.With reanalysis dataset of American National Centers for Environment Prediction(NCEP) and Levitus dataset without considering sub-mixed layer heat flux, the model was integrated for 100 years with thermodynamics process involved only in the former 49 years and both dynamic and thermodynamic processes involved in the left time.Inner consistency of model results was checked with no contradiction found.The results of last 10 years' model output were analyzed and it is shown that the simulated sea ice seasonal variation is rational whereas sea ice extent in the Barents Sea in winter is larger than that of observation.Numerical experiment on influence of sub-mixed layer heat flux was also carried out and it is shown that the sub-mixed layer heat flux can modulate seasonal variation of sea ice greatly.As a model component, the sea ice model with rotated spherical coordinates was coupled with other models (the oceanic general circulation model is the LASG/IAP Climate System Ocean Model(LICOM) with reduced grid, other models are components of NCAR CCSM2) forming a climate system model and its preliminary results were also given briefly.

  20. Sedimentary record of ice divide migration and ice streams in the Keewatin core region of the Laurentide Ice Sheet

    Science.gov (United States)

    Hodder, Tyler J.; Ross, Martin; Menzies, John

    2016-06-01

    The Aberdeen Lake region of central mainland Nunavut is a former core region of the Laurentide Ice Sheet that is characterized by streamlined glacial landforms classified into multiple crosscutting flow sets and near continuous till blanket. The presence of widespread till near the centre of the Keewatin Ice Dome raises questions about its origin. Detailed drillcore logging revealed a complex stratigraphy consisting of at least 6 till units, variably preserved across the study area. Till provenance analysis indicates deposition by near opposite-trending ice flow phases, interpreted as evidence of reconfiguration of the Keewatin Ice Divide. At the surface, large north-northwesterly aligned landforms are present across the study area. The till stratigraphy within these landforms indicates the same NNW ice flow phase is responsible for considerable till production. This ice flow phase is also correlated to a long regional dispersal train of erratics toward the Gulf of Boothia. The production of an extensive, thick (~ 12 m), till sheet during the NNW-trending ice flow phase occurred far from the ice margin at a time of extensive ice cover of mainland Nunavut, likely from an east-west oriented ice divide. A deglacial westerly trending ice flow phase formed small drumlins atop the larger NNW streamlined till ridges and deposited a surficial till unit that is too thin to mask the NNW flow set across the study area. It is proposed that the Boothia paleo-ice stream catchment area propagated deep into the Laurentide Ice Sheet and contributed to significant till production in this core region of the Keewatin Sector prior to the westerly ice flow shift. The apparent relationship between till thickness and the size of the associated or correlated drumlins, flow sets, and dispersal trains indicates complex erosion/deposition interplay is involved in the formation of streamlined subglacial landforms.

  1. Massive phytoplankton blooms under Arctic sea ice.

    Science.gov (United States)

    Arrigo, Kevin R; Perovich, Donald K; Pickart, Robert S; Brown, Zachary W; van Dijken, Gert L; Lowry, Kate E; Mills, Matthew M; Palmer, Molly A; Balch, William M; Bahr, Frank; Bates, Nicholas R; Benitez-Nelson, Claudia; Bowler, Bruce; Brownlee, Emily; Ehn, Jens K; Frey, Karen E; Garley, Rebecca; Laney, Samuel R; Lubelczyk, Laura; Mathis, Jeremy; Matsuoka, Atsushi; Mitchell, B Greg; Moore, G W K; Ortega-Retuerta, Eva; Pal, Sharmila; Polashenski, Chris M; Reynolds, Rick A; Schieber, Brian; Sosik, Heidi M; Stephens, Michael; Swift, James H

    2012-06-15

    Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.

  2. Dynamic ice loads on conical structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Two series of model tests were performed to observe the dynamic ice loads on conical structures.The variable testing parameters include the water line diameter of the model cone and ice parameters.During small water line diameter tests,two-time breaking is found to be the typical failure of ice on steep conical structure,and also be controlled by other factors,such as ice speed and the cone angle.During big water line diameter tests,the ice sheet failed nonsimultaneously around the cone.Several independe...

  3. Ecological consequences of sea-ice decline.

    Science.gov (United States)

    Post, Eric; Bhatt, Uma S; Bitz, Cecilia M; Brodie, Jedediah F; Fulton, Tara L; Hebblewhite, Mark; Kerby, Jeffrey; Kutz, Susan J; Stirling, Ian; Walker, Donald A

    2013-08-02

    After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.

  4. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    Science.gov (United States)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a

  5. Sea Ice Mapping using Unmanned Aerial Systems

    Science.gov (United States)

    Solbø, S.; Storvold, R.

    2011-12-01

    Mapping of sea ice extent and sea ice features is an important task in climate research. Since the arctic coastal and oceanic areas have a high probability of cloud coverage, aerial platforms are superior to satellite measurements for high-resolution optical measurements. However, routine observations of sea ice conditions present a variety of problems using conventional piloted aircrafts. Specially, the availability of suitable aircrafts for lease does not cover the demand in major parts of the arctic. With the recent advances in unmanned aerial systems (UAS), there is a high possibility of establishing routine, cost effective aerial observations of sea ice conditions in the near future. Unmanned aerial systems can carry a wide variety of sensors useful for characterizing sea-ice features. For instance, the CryoWing UAS, a system initially designed for measurements of the cryosphere, can be equipped with digital cameras, surface thermometers and laser altimeters for measuring freeboard of ice flows. In this work we will present results from recent CryoWing sea ice flights on Svalbard, Norway. The emphasis will be on data processing for stitching together images acquired with the non-stabilized camera payload, to form high-resolution mosaics covering large spatial areas. These data are being employed to map ice conditions; including ice and lead features and melt ponds. These high-resolution mosaics are also well suited for sea-ice mechanics, classification studies and for validation of satellite sea-ice products.

  6. Icing Impacts on Wind Energy Production

    DEFF Research Database (Denmark)

    Davis, Neil

    and the turbine power loss. The model took the shape of a hierarchal model that combined a decision tree model, based on the existence of ice on the turbine blade, and two Generalized Additive Models (GAM). The GAM for periods where icing was forecast was found to include the terms wind speed, total ice mass...... forecasts. This thesis explores the impact of icing on produced power through observational analysis and numerical modeling. I begin by investigating the impact of icing on power production through observations. Since there are no direct observations of ice growth on the turbine blades, a methodology...... was developed for the identification of icing periods from the turbine power data and the nacelle wind speeds. This method was based on the spread of power production observations at cold temperatures that was not seen during warmer periods. Using the insights gained through the observational analysis...

  7. The Friction of Saline Ice on Aluminium

    Directory of Open Access Journals (Sweden)

    Christopher Wallen-Russell

    2016-01-01

    Full Text Available The friction of ice on other materials controls loading on offshore structures and vessels in the Arctic. However, ice friction is complicated, because ice in nature exists near to its melting point. Frictional heating can cause local softening and perhaps melting and lubrication, thus affecting the friction and creating a feedback loop. Ice friction is therefore likely to depend on sliding speed and sliding history, as well as bulk temperature. The roughness of the sliding materials may also affect the friction. Here we present results of a series of laboratory experiments, sliding saline ice on aluminium, and controlling for roughness and temperature. We find that the friction of saline ice on aluminium μice-al=0.1 typically, but that this value varies with sliding conditions. We propose physical models which explain the variations in sliding friction.

  8. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...... crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed...... as a strong ice wave. The ice cap leads to low transmission of energy into the crust such that charges need be larger than in conventional onshore experiments to obtain reliable seismic signals. The strong reflection coefficient at the base of the ice generates strong multiples which may mask for secondary...

  9. Ice Accretion on Wind Turbine Blades

    DEFF Research Database (Denmark)

    Hudecz, Adriána; Koss, Holger; Hansen, Martin Otto Laver

    2013-01-01

    In this paper, both experimental and numerical simulations of the effects of ice accretion on a NACA 64-618 airfoil section with 7° angle of attack are presented. The wind tunnel tests were conducted in a closed-circuit climatic wind tunnel at Force Technology in Denmark. The changes of aerodynamic...... forces were monitored as ice was building up on the airfoil for glaze, rime and mixed ice. In the first part of the numerical analysis, the resulted ice profiles of the wind tunnel tests were compared to profiles estimated by using the 2D ice accretion code TURBICE. In the second part, Ansys Fluent...... of the rime iced ice profile follows the streamlines quite well, disturbing the flow the least. The TURBICE analysis agrees fairly with the profiles produced during the wind tunnel testing....

  10. Sea ice, climate, and multiscale composites

    Science.gov (United States)

    Golden, Kenneth

    2014-03-01

    In September of 2012, the area of the Arctic Ocean covered by sea ice reached its lowest level ever recorded in more than three decades of satellite measurements. In fact, compared to the 1980's and 1990's, this represents a loss of more than half of the summer Arctic sea ice pack. While global climate models generally predict sea ice declines over the 21st century, the precipitous losses observed so far have significantly outpaced most projections. I will discuss how mathematical models of composite materials and statistical physics are being used to study key sea ice processes and advance how sea ice is represented in climate models. This work is helping to improve projections of the fate of Earth's ice packs, and the response of polar ecosystems. A brief video of a recent Antarctic expedition where sea ice properties were measured will be shown. Supported by NSF and ONR.

  11. Predictability of the Arctic sea ice edge

    Science.gov (United States)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  12. Record Arctic Sea Ice Loss in 2007

    Science.gov (United States)

    2007-01-01

    This image of the Arctic was produced from sea ice observations collected by the Advanced Microwave Scanning Radiometer (AMSR-E) Instrument on NASA's Aqua satellite on September 16, overlaid on the NASA Blue Marble. The image captures ice conditions at the end of the melt season. Sea ice (white, image center) stretches across the Arctic Ocean from Greenland to Russia, but large areas of open water were apparent as well. In addition to record melt, the summer of 2007 brought an ice-free opening though the Northwest Passage that lasted several weeks. The Northeast Passage did not open during the summer of 2007, however, as a substantial tongue of ice remained in place north of the Russian coast. According to the National Snow and Ice Data Center (NSIDC), on September 16, 2007, sea ice extent dropped to 4.13 million square kilometers (1.59 million square miles)--38 percent below average and 24 percent below the 2005 record.

  13. A toy model of sea ice growth

    Science.gov (United States)

    Thorndike, Alan S.

    1992-01-01

    My purpose here is to present a simplified treatment of the growth of sea ice. By ignoring many details, it is possible to obtain several results that help to clarify the ways in which the sea ice cover will respond to climate change. Three models are discussed. The first deals with the growth of sea ice during the cold season. The second describes the cycle of growth and melting for perennial ice. The third model extends the second to account for the possibility that the ice melts away entirely in the summer. In each case, the objective is to understand what physical processes are most important, what ice properties determine the ice behavior, and to which climate variables the system is most sensitive.

  14. Deicing and Anti-Icing Unite

    Science.gov (United States)

    2002-01-01

    With funding from Glenn's Small Business Innovation Research (SBIR) program, Cox & Company, Inc., built an ice protection system that combines thermal anti-icing and mechanical deicing to keep airfoils (wings and other lifting surfaces) clear of ice. Cox's concept was to combine an anti-icing system with NASA's Electro-Mechanical Expulsion Deicing System, a mechanical deicer. The anti-icing element of this hybrid would reduce the aerodynamic losses associated with deicing systems. The Cox Low Power Ice Protection System is the first new aircraft ice protection system that has been approved by the Federal Aviation Administration for use on a business jet in 40 years. While the system is currently sized for Premier class aircraft, there are no apparent constraints prohibiting its use on aircraft of any size. The company is investigating further applications, such as adapting the system for unmanned aerial vehicles and other military aircraft.

  15. Models for polythermal ice sheets and glaciers

    Science.gov (United States)

    Hewitt, Ian J.; Schoof, Christian

    2017-02-01

    Polythermal ice sheets and glaciers contain both cold ice and temperate ice. We present two new models to describe the temperature and water content of such ice masses, accounting for the possibility of gravity- and pressure-driven water drainage according to Darcy's law. Both models are based on the principle of energy conservation; one additionally invokes the theory of viscous compaction to calculate pore water pressure, and the other involves a modification of existing enthalpy gradient methods to include gravity-driven drainage. The models self-consistently predict the evolution of temperature in cold ice and of water content in temperate ice. Numerical solutions are described, and a number of illustrative test problems are presented, allowing comparison with existing methods. The suggested models are simple enough to be incorporated in existing ice-sheet models with little modification.

  16. The consolidation of rafted sea ice

    Science.gov (United States)

    Bailey, E.; Feltham, D.; Sammonds, P.

    2009-04-01

    Rafting is an important process in the deformation of sea ice that occurs when two ice sheets collide. This process is particularly common in the North Caspian Sea, where ice floes override one another multiple times to produce thick sea ice features. To date, rafting has received little attention in the literature perhaps because in most regions pressure ridges produce the greatest loads on offshore structures. In the North Caspian Sea the shallow waters constrain the size to which pressure ridges can grow and the low salinity seems to favor rafting over ridging. Therefore it is likely that multiply-rafted sea ice may be the governing design feature for ice loads in the Caspian Sea. Here we present a one-dimensional, thermal-consolidation model for rafted sea ice. This is of interest because the degree of consolidation will affect the strength of a rafted structure, and therefore may be of value for modeling rafted ice loads. Results show that the thickness of the liquid layers reduces asymptotically with time, such that there always remains a thin liquid layer. We propose that when the liquid layer is equal to the surface roughness the adjacent layers can be considered consolidated. Using parameters specific to the North Caspian Sea, calculations show that it took 1hr, 14mins for the ice sheets to consolidate. To test the accuracy of the model concurrent experiments were carried out in the HSVA ice basin. During an experiment, equally sized portions of level ice were manually piled on top of one another to produce a rafted section. The rate of consolidation or bonding of the layers was then monitored by coring and using thermistors that were frozen into the level ice prior to rafting. Once consolidated, strength tests were carried out on the rafted ice and compared with those of level ice.

  17. Observed ices in the Solar System

    Science.gov (United States)

    Clark, Roger N.; Grundy, Will; Carlson, Robert R.; Noll, Keith; Gudipati, Murthy; Castillo-Rogez, Julie C.

    2013-01-01

    Ices have been detected and mapped on the Earth and all planets and/or their satellites further from the sun. Water ice is the most common frozen volatile observed and is also unambiguously detected or inferred in every planet and/or their moon(s) except Venus. Carbon dioxide is also extensively found in all systems beyond the Earth except Pluto although it sometimes appears to be trapped rather than as an ice on some objects. The largest deposits of carbon dioxide ice is on Mars. Sulfur dioxide ice is found in the Jupiter system. Nitrogen and methane ices are common beyond the Uranian system. Saturn’s moon Titan probably has the most complex active chemistry involving ices, with benzene (C6H6) and many tentative or inferred compounds including ices of Cyanoacetylene (HC3N), Toluene (C7H8), Cyanogen (C2N2), Acetonitrile (CH3CN), H2O, CO2, and NH3. Confirming compounds on Titan is hampered by its thick smoggy atmosphere. Ammonia was predicted on many icy moons but is notably absent among the definitively detected ices with the possible exception of Enceladus. Comets, storehouses of many compounds that could exist as ices in their nuclei, have only had small amounts of water ice definitively detected on their surfaces. Only one asteroid has had a direct detection of surface water ice, although its presence can be inferred in others. This chapter reviews some of the properties of ices that lead to their detection, and surveys the ices that have been observed on solid surfaces throughout the Solar System.

  18. Rock glacier ice as a microbial habitat

    Science.gov (United States)

    Florentine, C. E.; Skidmore, M. L.; Montross, S. N.

    2010-12-01

    Rock glaciers are ubiquitous geomorphic features in alpine environments, recognizable by a talus mantle, steep-toe, lobate shape and that flow due to the inferred presence of internal ice. Rock glaciers consist of both ice and debris, and are abundant in mountain ranges such as the Rocky Mountains, the Andes and the European Alps. Rock glacier ice has not previously been considered as a microbial habitat. However, given recent research showing debris-rich basal layers in glaciers harbor viable microbes, the debris-rich ice in a rock glacier has potential as a microbial habitat. The glacier research has demonstrated increased cell numbers in the debris rich basal ice relative to the clean glacier ice, and the finely-ground debris is considered to be a source of nutrients for the microbes. In August 2009 3 m of surface talus was excavated from the Lone Peak rock glacier, one of ~ 380 in Southwest Montana, to expose the underlying rock glacier ice. The ice contained numerous large rocks making sampling difficult, but 25 cm thick blocks with layers of clean and amber (~ 0.01% debris) ice were sampled. The isotopic, microbiological, and geochemical composition of the clean and amber ice was analyzed. The isotopic data provides some relative age dating for the ice and the geochemical data information on nutrient availability. Differences were observed between the microbial communities in the clean and amber ice by both cell counts and culturing techniques suggesting that as in glacier ice the debris-rich (amber) ice is a more amenable habitat for microbes.

  19. Multiyear ice transport and small scale sea ice deformation near the Alaska coast measured by air-deployable Ice Trackers

    Science.gov (United States)

    Mahoney, A. R.; Kasper, J.; Winsor, P.

    2015-12-01

    Highly complex patterns of ice motion and deformation were captured by fifteen satellite-telemetered GPS buoys (known as Ice Trackers) deployed near Barrow, Alaska, in spring 2015. Two pentagonal clusters of buoys were deployed on pack ice by helicopter in the Beaufort Sea between 20 and 80 km offshore. During deployment, ice motion in the study region was effectively zero, but two days later the buoys captured a rapid transport event in which multiyear ice from the Beaufort Sea was flushed into the Chukchi Sea. During this event, westward ice motion began in the Chukchi Sea and propagated eastward. This created new openings in the ice and led to rapid elongation of the clusters as the westernmost buoys accelerated away from their neighbors to the east. The buoys tracked ice velocities of over 1.5 ms-1, with fastest motion occurring closest to the coast indicating strong current shear. Three days later, ice motion reversed and the two clusters became intermingled, rendering divergence calculations based on the area enclosed by clusters invalid. The data show no detectable difference in velocity between first year and multiyear ice floes, but Lagrangian timeseries of SAR imagery centered on each buoy show that first year ice underwent significant small-scale deformation during the event. The five remaining buoys were deployed by local residents on prominent ridges embedded in the landfast ice within 16 km of Barrow in order to track the fate of such features after they detached from the coast. Break-up of the landfast ice took place over a period of several days and, although the buoys each initially followed a similar eastward trajectory around Point Barrow into the Beaufort Sea, they rapidly dispersed over an area more than 50 km across. With rapid environmental and socio-economic change in the Arctic, understanding the complexity of nearshore ice motion is increasingly important for predict future changes in the ice and the tracking ice-related hazards

  20. The Elementary Marine Ice Sheet Model (EMISM)

    Science.gov (United States)

    Pattyn, Frank

    2015-04-01

    Ice sheet models become more and more components of global climate system modelling instead of stand-alone features to study cryospheric processes. Full coupling of ice sheet models to atmospheric and ocean models requires a standard for ice sheet models, and more precisely for marine ice sheet models, where complex feedbacks between ice and ocean, such as marine ice sheet instability, and the atmosphere, such as the elevation-mass balance feedback, operate at different time scales. Recent model intercomparisons (e.g., SeaRISE, MISMIP) have shown that basic requirements for marine ice sheet models are still lacking and that the complexity of many ice sheet models is focused on processes that are either not well captured numerically (spatial resolution issue) or are of secondary importance compared to the essential features of marine ice sheet dynamics. Here, we propose a new and fast computing ice sheet model, devoid of most complexity, but capturing the essential feedbacks when coupled to ocean or atmospheric models. Its computational efficiency guarantees to easily tests its advantages as well as limits through ensemble modelling. EMISM (Elementary Marine Ice Sheet Model) is a vertically integrated ice sheet model based on the Shallow-Ice Approximation extended a Weertman sliding law. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, enhanced with strain heating. The marine boundary is represented by a parameterized flux condition similar to Pollard & Deconto (2012), based on Schoof (2007). A simplified ice shelf is added to account for buttressing of ice shelves in this parameterization. The ice sheet model is solved on a finite difference grid and special care is taken to its numerical efficiency and stability. While such model has a series of (known) deficiencies with respect to short time effects, its overall

  1. EBSD in Antarctic and Greenland Ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain

  2. Life in Ice: Implications to Astrobiology

    Science.gov (United States)

    Hoover, Richard B.

    2009-01-01

    During the 2008 Tawani International Expedition Schirmacher Oasis/Lake Untersee Antarctica Expedition, living and instantly motile bacteria were found in freshly thawed meltwater from ice of the Schirmacher Oasis Lakes, the Anuchin Glacier ice and samples of the that perennial ice sheet above Lake Untersee. This phenomenon of living bacteria encased in ice had previously been observed in the 32,000 year old ice of the Fox Tunnel. The bacteria found in this ice included the strain FTR1T which was isolated and published as valid new species (Carnobacterium pleistocenium) the first validly published living Pleistocene organism still alive today. Living bacteria were also extracted from ancient ice cores from Vostok, Antarctica. The discovery that many strains of bacteria are able to survive and remain alive while frozen in ice sheets for long periods of time may have direct relevance to Astrobiology. The abundance of viable bacteria in the ice sheets of Antarctica suggests that the presence of live bacteria in ice is common, rather than an isolated phenomenon. This paper will discuss the results of recent studies at NSSTC of bacteria cryopreserved in ice. This paper advances the hypothesis that cryopreserved cells, and perhaps even viable bacterial cells, may exist today--frozen in the water-ice of lunar craters, the Polar Caps or craters of Mars; or in the permafrost of Mars; ice and rocks of comets or water bearing asteroids; or in the frozen crusts of the icy moons of Jupiter and Saturn. The existence of bacterial life in ice suggests that it may not be necessary to drill through a thick ice crust to reach liquid water seas deep beneath the icy crusts of Europa, Ganymede and Enceladus. The presence of viable bacteria in the ice of the Earth s Polar Caps suggests that the possibility that cryo-panspermia (i.e., the trans-planetary transfer of microbial life by impact ejection/spallation of bacteria-rich polar ice masses) deserves serious consideration and study as a

  3. A technique for generating consistent ice sheet initial conditions for coupled ice-sheet/climate models

    Directory of Open Access Journals (Sweden)

    J. G. Fyke

    2013-04-01

    Full Text Available A new technique for generating ice sheet preindustrial 1850 initial conditions for coupled ice-sheet/climate models is developed and demonstrated over the Greenland Ice Sheet using the Community Earth System Model (CESM. Paleoclimate end-member simulations and ice core data are used to derive continuous surface mass balance fields which are used to force a long transient ice sheet model simulation. The procedure accounts for the evolution of climate through the last glacial period and converges to a simulated preindustrial 1850 ice sheet that is geometrically and thermodynamically consistent with the 1850 preindustrial simulated CESM state, yet contains a transient memory of past climate that compares well to observations and independent model studies. This allows future coupled ice-sheet/climate projections of climate change that include ice sheets to integrate the effect of past climate conditions on the state of the Greenland Ice Sheet, while maintaining system-wide continuity between past and future climate simulations.

  4. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    Science.gov (United States)

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-06-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ~10 °C warmer and ~170 kg m-3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades.

  5. Ice stratigraphy at the Pakitsoq ice margin, West Greenland, derived from gas records

    DEFF Research Database (Denmark)

    Schaefer, H.; Petrenko, V. V.; Brook, E. J.;

    2009-01-01

    Horizontal ice-core sites, where ancient ice is exposed at the glacier surface, offer unique opportunities for paleo-studies of trace components requiring large sample volumes. Following previous work at the Pakitsoq ice margin in West Greenland, we use a combination of geochemical parameters...... measured in the ice matrix (delta O-18(ice)) and air occlusions (delta O-18(atm), delta N-15 of N-2 and methane concentration) to date ice layers from specific climatic intervals. The data presented here expand our understanding of the stratigraphy and three-dimensional structure of ice layers outcropping...... at Pakitsoq. Sections containing ice from every distinct climatic interval during Termination I, including Last Glacial Maximum, Bolling/Allerod, Younger Dryas and the early Holocene, are identified. In the early Holocene, we find evidence for climatic fluctuations similar to signals found in deep ice cores...

  6. SMOS sea ice product: Operational application and validation in the Barents Sea marginal ice zone

    DEFF Research Database (Denmark)

    Kaleschke, Lars; Tian-Kunze, Xiangshan; Maaß, Nina

    2016-01-01

    Brightness temperatures at 1.4. GHz (L-band) measured by the Soil Moisture and Ocean Salinity (SMOS) Mission have been used to derive the thickness of sea ice. The retrieval method is applicable only for relatively thin ice and not during the melting period. Hitherto, the availability of ground...... truth sea ice thickness measurements for validation of SMOS sea ice products was mainly limited to relatively thick ice. The situation has improved with an extensive field campaign in the Barents Sea during an anomalous ice edge retreat and subsequent freeze-up event in March 2014. A sea ice forecast...... system for ship route optimisation has been developed and was tested during this field campaign with the ice-strengthened research vessel RV Lance. The ship cruise was complemented with coordinated measurements from a helicopter and the research aircraft Polar 5. Sea ice thickness was measured using...

  7. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  8. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine

    Science.gov (United States)

    Maselli, Olivia J.; Chellman, Nathan J.; Grieman, Mackenzie; Layman, Lawrence; McConnell, Joseph R.; Pasteris, Daniel; Rhodes, Rachael H.; Saltzman, Eric; Sigl, Michael

    2017-01-01

    Reconstruction of past changes in Arctic sea ice extent may be critical for understanding its future evolution. Methanesulfonate (MSA) and bromine concentrations preserved in ice cores have both been proposed as indicators of past sea ice conditions. In this study, two ice cores from central and north-eastern Greenland were analysed at sub-annual resolution for MSA (CH3SO3H) and bromine, covering the time period 1750-2010. We examine correlations between ice core MSA and the HadISST1 ICE sea ice dataset and consult back trajectories to infer the likely source regions. A strong correlation between the low-frequency MSA and bromine records during pre-industrial times indicates that both chemical species are likely linked to processes occurring on or near sea ice in the same source regions. The positive correlation between ice core MSA and bromine persists until the mid-20th century, when the acidity of Greenland ice begins to increase markedly due to increased fossil fuel emissions. After that time, MSA levels decrease as a result of declining sea ice extent but bromine levels increase. We consider several possible explanations and ultimately suggest that increased acidity, specifically nitric acid, of snow on sea ice stimulates the release of reactive Br from sea ice, resulting in increased transport and deposition on the Greenland ice sheet.

  9. New ice rules for nanoconfined monolayer ice from first principles

    CERN Document Server

    Corsetti, Fabiano; Artacho, Emilio

    2016-01-01

    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. Here we investigate the properties of ice confined to a quasi-2D monolayer by a featureless, chemically neutral potential, using density-functional theory simulations with a non-local van der Waals density functional. An ab initio random structure search reveals all the energetically competitive monolayer configurations to belong to only two of the previously-identified families, characterized by a square or honeycomb hydrogen-bonding network, respectively. From an in-depth analysis we show that the well-known ice rules for bulk ice need to be revised for the monolayer, with distinct new rules appearing for the two networks. All identified stable phases for both are found to be non-polar (but with a topologically non-trivial texture for the square) and, hence, non-ferroelectric, in contrast to the predictions of empirical f...

  10. The impact of under-ice melt ponds on Arctic sea ice volume

    Science.gov (United States)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2016-04-01

    A one-dimensional, thermodynamic model of Arctic sea ice [Flocco et al, 2015] has been adapted to study the evolution of under-ice melt ponds, pools of fresh water that are found below the Arctic sea ice, and false bottoms, sheets of ice that form at the boundary between the under-ice melt pond and the oceanic mixed layer. Over time, either the under-ice melt pond freezes or the false bottom is completely ablated. We have been investigating the impact that these features have on the growth or ablation of sea ice during the time that they are present. The sensitivity of our model to a range of parameters has been tested, revealing some interesting effects of the thermodynamic processes taking place during the life-cycle of these phenomena. For example, the under-ice melt pond and its associated false bottom can insulate the sea ice layer from ocean, increasing the thickness of sea ice present at the end of the time frame considered. A comparison of the results of the model of under-ice melt pond evolution with that of sea ice with a bare base has been used to estimate the impact of under-ice melt ponds on sea ice volume towards the end of the melt season. We find that the under-ice melt ponds could have a significant impact on the mass balance of the sea ice, suggesting that it could be desirable to include a parameterisation of the effects of under-ice melt pond in the sea ice components of climate models.

  11. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris.

    Science.gov (United States)

    Stickley, Catherine E; St John, Kristen; Koç, Nalân; Jordan, Richard W; Passchier, Sandra; Pearce, Richard B; Kearns, Lance E

    2009-07-16

    Oceanic sediments from long cores drilled on the Lomonosov ridge, in the central Arctic, contain ice-rafted debris (IRD) back to the middle Eocene epoch, prompting recent suggestions that ice appeared in the Arctic about 46 million years (Myr) ago. However, because IRD can be transported by icebergs (derived from land-based ice) and also by sea ice, IRD records are restricted to providing a history of general ice-rafting only. It is critical to differentiate sea ice from glacial (land-based) ice as climate feedback mechanisms vary and global impacts differ between these systems: sea ice directly affects ocean-atmosphere exchanges, whereas land-based ice affects sea level and consequently ocean acidity. An earlier report assumed that sea ice was prevalent in the middle Eocene Arctic on the basis of IRD, and although somewhat preliminary supportive evidence exists, these data are neither comprehensive nor quantified. Here we show the presence of middle Eocene Arctic sea ice from an extraordinary abundance of a group of sea-ice-dependent fossil diatoms (Synedropsis spp.). Analysis of quartz grain textural characteristics further supports sea ice as the dominant transporter of IRD at this time. Together with new information on cosmopolitan diatoms and existing IRD records, our data strongly suggest a two-phase establishment of sea ice: initial episodic formation in marginal shelf areas approximately 47.5 Myr ago, followed approximately 0.5 Myr later by the onset of seasonally paced sea-ice formation in offshore areas of the central Arctic. Our data establish a 2-Myr record of sea ice, documenting the transition from a warm, ice-free environment to one dominated by winter sea ice at the start of the middle Eocene climatic cooling phase.

  12. Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview

    Science.gov (United States)

    Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.

    2015-12-01

    Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be

  13. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo;

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  14. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    Science.gov (United States)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  15. The role of ice stream dynamics in deglaciation

    Science.gov (United States)

    Robel, Alexander A.; Tziperman, Eli

    2016-08-01

    Since the mid-Pleistocene transition, deglaciation has occurred only after ice sheets have grown large while experiencing several precession and obliquity cycles, indicating that large ice sheets are more sensitive to Milankovitch forcing than small ice sheets are. Observations and model simulations suggest that the development of ice streams in the Laurentide Ice Sheet played an as yet unknown role in deglaciations. In this study, we propose a mechanism by which ice streams may enhance deglaciation and render large ice sheets more sensitive to Milankovitch forcing. We use an idealized configuration of the Parallel Ice Sheet Model that permits the formation of ice streams. When the ice sheet is large and ice streams are sufficiently developed, an upward shift in equilibrium line altitude, commensurate with Milankovitch forcing, results in rapid deglaciation, while the same shift applied to an ice sheet without fully formed ice streams results in continued ice sheet growth or slower deglaciation. Rapid deglaciation in ice sheets with significant streaming behavior is caused by ice stream acceleration and the attendant enhancement of calving and surface melting at low elevations. Ice stream acceleration is ultimately the result of steepening of the ice surface and increased driving stresses in ice stream onset zones, which come about due to the dependence of surface mass balance on elevation. These ice sheet simulations match the broad features of geomorphological observations and add ice stream dynamics that are missing from previous model studies of deglaciation.

  16. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  17. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  18. Correlated Energy Exchange in Drifting Sea Ice

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2011-01-01

    Full Text Available The ice floe speed variations were monitored at the research camp North Pole 35 established on the Arctic ice pack in 2008. A three-month time series of measured speed values was used for determining changes in the kinetic energy of the drifting ice floe. The constructed energy distributions were analyzed by methods of nonextensive statistical mechanics based on the Tsallis statistics for open nonequilibrium systems, such as tectonic formations and drifting sea ice. The nonextensivity means the nonadditivity of externally induced energy changes in multicomponent systems due to dynamic interrelation of components having no structural links. The Tsallis formalism gives one an opportunity to assess the correlation between ice floe motions through a specific parameter, the so-called parameter of nonextensivity. This formalistic assessment of the actual state of drifting pack allows one to forecast some important trends in sea ice behavior, because the level of correlated dynamics determines conditions for extended mechanical perturbations in ice pack. In this work, we revealed temporal fluctuations of the parameter of nonextensivity and observed its maximum value before a large-scale sea ice fragmentation (faulting of consolidated sea ice. The correlation was not detected in fragmented sea ice where long-range interactions are weakened.

  19. Estimating ice encasement tolerance of herbage plants.

    Science.gov (United States)

    Gudleifsson, Bjarni E; Bjarnadottir, Brynhildur

    2014-01-01

    One of the key stresses acting on herbage plants during winter is ice encasement, when plants are enclosed in compact ice and turn from aerobic to anaerobic respiration. The cause of cell death is related to the accumulation of metabolites to toxic levels during winter and perhaps also to production of reactive oxygen species (ROS) when plants escape from long-lasting ice cover. The process of ice encasement damage has been studied by sampling studies, indirect measurements of ice tolerance, field tests and provocation methods by increasing stress in the field artificially, thus increasing the ice stress. Here we describe a laboratory method to measure ice encasement tolerance. This is the most common and effective way to measure ice encasement tolerance of large plant material. Plants are raised from seeds (or taken from the field), cold acclimated, usually at +2 °C under short day conditions, in a greenhouse or growth chamber (or in the field during fall). Plants are submerged in cold water in beakers and frozen encased in ice, usually at -2 °C. Plants are kept enclosed in ice at this temperature. Samples are taken at intervals, depending on species and tolerance of plant material, and put smoothly to regrowth. Damage is then evaluated after a suitable time of regeneration.

  20. Quantification of ikaite in Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Fischer

    2012-02-01

    Full Text Available Calcium carbonate precipitation in sea ice can increase pCO2 during precipitation in winter and decrease pCO2 during dissolution in spring. CaCO3 precipitation in sea ice is thought to potentially drive significant CO2 uptake by the ocean. However, little is known about the quantitative spatial and temporal distribution of CaCO3 within sea ice. This is the first quantitative study of hydrous calcium carbonate, as ikaite, in sea ice and discusses its potential significance for the carbon cycle in polar oceans. Ice cores and brine samples were collected from pack and land fast sea ice between September and December 2007 during an expedition in the East Antarctic and another off Terre Adélie, Antarctica. Samples were analysed for CaCO3, Salinity, DOC, DON, Phosphate, and total alkalinity. A relationship between the measured parameters and CaCO3 precipitation could not be observed. We found calcium carbonate, as ikaite, mostly in the top layer of sea ice with values up to 126 mg ikaite per liter melted sea ice. This potentially represents a contribution between 0.12 and 9 Tg C to the annual carbon flux in polar oceans. The horizontal distribution of ikaite in sea ice was heterogenous. We also found the precipitate in the snow on top of the sea ice.

  1. Equivalency of Artificial and Natural Icing

    Institute of Scientific and Technical Information of China (English)

    wgI Xiao-xing; XU Zhi-hai; LI Zhi-ning; SU Hua-feng; JIA Zhi-dong; GUAN Zhi-cheng

    2011-01-01

    Climate room is an important instrument to study the icing problems in power networks, and the accuracy of the data from the climate room is under debate. There are many climate rooms in the world, but no standards about the parameters of the climate room such as the room's temperature, the velocity of the wind, and the particle diameters of the water droplets etc. These parameters will influence the icing processes on the lines and insulators. This paper gave a summary of the process and the feature of atmospheric icing of power networks. The speed of the icing on a cylinder rod as a new characteristic quantity was proposed to study the de-icing problems in this paper. For the purpose to analyze the equivalence between atmospheric icing and icing in climate room, a finite element model was made based on a small climate room located in the Graduate School at Shenzhen, Tsinghua University. Through the simulation analysis for the heat transfer and flow issues, the result showed that precooling droplets were cooled into supercooled ones soon after they came into the climate room. Based on the most serious icing-speed in Hengshan, Hunan and a series of experiments, the values of some parameters in studying icing problems were proposed to better simulate the atmospheric icing in climate room.

  2. RADARSAT-2 Polarimetry for Lake Ice Mapping

    Science.gov (United States)

    Pan, Feng; Kang, Kyung-Kuk; Duguay, Claude

    2016-04-01

    Changes in the ice regime of lakes can be employed to assess long-term climate trends and variability in high latitude regions. Lake ice cover observations are not only useful for climate monitoring, but also for improving ice and weather forecasts using numerical prediction models. In recent years, satellite remote sensing has assumed a greater role in observing lake ice cover for both purposes. Radar remote sensing has become an essential tool for mapping lake ice at high latitudes where cloud cover and polar darkness severely limits ice observations from optical systems. In Canada, there is an emerging interest by government agencies to evaluate the potential of fully polarimetric synthetic aperture radar (SAR) data from RADARSAT-2 (C-band) for lake ice monitoring. In this study, we processed and analyzed the polarization states and scattering mechanisms of fully polarimetric RADARSAT-2 data obtained over Great Bear Lake, Canada, to identify open water and different ice types during the freeze-up and break-up periods. Polarimetric decompositions were employed to separate polarimetric measurements into basic scattering mechanisms. Entropy, anisotropy, and alpha angle were derived to characterize the scattering heterogeneity and mechanisms. Ice classes were then determined based on entropy and alpha angle using the unsupervised Wishart classifier and results evaluated against Landsat 8 imagery. Preliminary results suggest that the RADARSAT-2 polarimetric data offer a strong capability for identifying open water and different lake ice types.

  3. Kinetic Friction Coefficient of Ice,

    Science.gov (United States)

    1985-03-01

    For the hardest ice tested (xi = 0.33 described by Rabinowicz (1965), where To is inter- mm, H, = 1525 kPa), the calculated values of a preted as...material with a low elastic pressures. The frictional force was measured at modulus ( Rabinowicz 1965). It has been observed the application point of...tion 10, pp. 8-16. Barnes, P. and D. Tabor (1966) Plastic flow and Rabinowicz , E. (1965) Friction and Wear of Mate- pressure melting in the deformation

  4. Ice storm 1998 : lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    McCready, J. [Eastern Ontario Model Forest, Kemptville, ON (Canada)

    2006-07-01

    This paper presented details of a partnership formed in response to the ice storm of 1998, which caused extensive damage to trees in woodlots and urban settings in eastern Ontario and western Quebec. The aim of the Ice Storm Forest Recovery Group was to assist in the recovery of eastern forests, collect information on the extent of the damage to trees as well as contribute to the development of assistance programs for woodlot owners and municipalities. In response to the group's request, an initial aerial survey was conducted by the Ontario Ministry of Natural Resources to map the extent of the damage in eastern Ontario, which was followed by a more scientific survey with the Canadian Forest Service through the development of a flying grid pattern to observe the status of trees, followed by extensive ground checks. Damage was variable, depending on tree species, stand age and composition, management practices, wind direction, topography and ice deposition patterns. A summary of the severity of damage indicated that conifers suffered less than hardwoods. Consultants were hired to prepare news releases and extension notes to the public in order to provide information for the caring of trees. Various educational workshops were held which attracted large numbers of landowners and homeowners. A literature review was undertaken to produce a summary of current published knowledge covering the effects of storms and ice damage to trees and forests. Science efforts were published in a series of papers, and financial assistance programs were then organized by governmental agencies. It was concluded that cooperation between all agencies, groups and levels of government is needed in order to coordinate effective emergency strategies. 7 refs., 1 tab., 1 fig.

  5. Ice Jams the Ob River

    Science.gov (United States)

    2007-01-01

    Russia's Ob River flows from south to north, and each summer, it thaws in the same direction. The result is that an ice jam sits downstream from thawed portions of the river, which is laden with heavy runoff from melted snow. On June 29, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) flying on NASA's Terra satellite captured this image of the almost completely thawed Ob River. The scene is typical for early summer. South of the ice jam, the Gulf of Ob is swollen with pent-up run-off, and upstream from that, the river is widened as well. Unable to carve through frozen land, the river has little choice but to overflow its banks. For a comparison of early summer and autumn conditions, see Flooding on the Ob River in the Earth Observatory's Natural Hazards section. Besides the annual overflow, this image captures other circumstances of early summer. Sea ice is retreating from the Kara Sea. A lingering line of snow cover snakes its way along the Ob River, to the west. And while the land is lush and green in the south, it appears barren and brown in the north. Near the mouth of the river and the Kara Sea, the land is cold-adapted tundra, with diminutive plants and a short growing season. Just as the ice plugging the river had yet to thaw in the Far North's short summer, the tundra had not yet to greened up either. In this image it still appears lifeless beige. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center

  6. Solar ice; Sonne und Eis

    Energy Technology Data Exchange (ETDEWEB)

    Rolland, Simon

    2012-07-01

    Fishing and fish marketing are the major sources of income at Santo Antao, the biggest of the Cape Verde Islands off Africa's west coast. In the coastal village of Monte Trigo, ice for keeping the fish fresh is now produced by a photovoltaic plant. As the Alliance for Rural Electrification recently reported, the community now gets its power from a 27.3 kW local power grid.

  7. National Icing Facilities Requirements Investigation.

    Science.gov (United States)

    1981-06-01

    82177 ;ooirions of 3ubpart E of this ,, ’, , /! nd,’ntcd or provided for determining o;., ’rmwlt’o of i,- o ritioa(l parto of vhe rotorcraft. ,,o re-ti...common with little turbulence (stratiform type cloud formation), while clear ice predominates when turbulence and vertical velocities are present...The advantages of this type of aircraft lies in its ability to operate from confined or unimproved areas in its vertical takeoff and land- ing

  8. Evidence for biological shaping of hair ice

    Directory of Open Access Journals (Sweden)

    D. Hofmann

    2015-04-01

    Full Text Available An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918 by reproducing hair ice on wood samples. Treatment by heat and fungicide, respectively, suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice carrying wood. One species, Exidiopsis effusa (Ee, has been present on all investigated samples. Both hair-ice producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity and that ice segregation is the common mechanism of ice growth at the wood surface. The fungus plays the role of shaping the ice hairs and to prevent them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S-compounds similar to fulvic acids in dissolved organic matter (DOM. The evaluation reveals decomposed lignin as the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

  9. Evidence for biological shaping of hair ice

    Science.gov (United States)

    Hofmann, D.; Preuss, G.; Mätzler, C.

    2015-07-01

    An unusual ice type, called hair ice, grows on the surface of dead wood of broad-leaf trees at temperatures slightly below 0 °C. We describe this phenomenon and present physical, chemical, and biological investigations to gain insight in the properties and processes related to hair ice. Tests revealed that the biological activity of a winter-active fungus is required in the wood for enabling the growth of hair ice. We confirmed the fungus hypothesis originally suggested by Wegener (1918) by reproducing hair ice on wood samples. Treatment by heat and fungicide suppresses the formation of hair ice. Fruiting bodies of Asco- and Basidiomycota are identified on hair-ice-carrying wood. One species, Exidiopsis effusa (Ee), was present on all investigated samples. Both hair-ice-producing wood samples and those with killed fungus show essentially the same temperature variation, indicating that the heat produced by fungal metabolism is very small, that the freezing rate is not influenced by the fungus activity, and that ice segregation is the common mechanism of ice growth on the wood surface. The fungus plays the role of shaping the ice hairs and preventing them from recrystallisation. Melted hair ice indicates the presence of organic matter. Chemical analyses show a complex mixture of several thousand CHO(N,S) compounds similar to fulvic acids in dissolved organic matter (DOM). The evaluation reveals decomposed lignin as being the main constituent. Further work is needed to clarify its role in hair-ice growth and to identify the recrystallisation inhibitor.

  10. ICE-DIP kicks off

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Last month, Marie Curie Actions* added a new member to its ranks: ICE-DIP (the Intel-CERN European Doctorate Industrial Program). The programme held its kick-off meeting on 18-19 February in Leixlip near Dublin, Ireland, at Intel’s premises.   Building on CERN’s long-standing relationship with Intel in the CERN openlab project, ICE-DIP brings together CERN and industrial partners, Intel and Xena Networks, to train five Early Stage ICT Researchers. These researchers will be funded by the European Commission and granted a CERN Fellow contract while enrolled in the doctoral programmes at partner universities Dublin City University and National University of Ireland Maynooth. The researchers will go on extended secondments to Intel Labs Europe locations across Europe during their three-year training programme. The primary focus of the ICE-DIP researchers will be the development of techniques for acquiring and processing data that are relevant for the trigger a...

  11. Environmentally friendly anti-icing

    Science.gov (United States)

    Lockyer, Robert T. (Inventor); Zuk, John (Inventor); Haslim, Leonard A. (Inventor)

    1998-01-01

    The present invention describes an aqueous, non-electrolytic, non-toxic, biodegradable, continuous single phase liquid anti-icing or deicing composition for use on the surfaces of, for example, aircraft, airport pavements, roadways, walkways, bridges, entrances, structures, canals, locks, components, vessels, nautical components, railroad switches, and motor vehicles. The anti-icing or deicing composition comprises: (a) water; (b) a non-toxic freezing point depressant selected from the group consisting of monohydric alcohols having from 2 to 6 carbon atoms, polyhydric alcohols having from 3 to 12 carbon atoms, monomethyl or ethyl ethers of polyhydric alcohols having from 3 to 12 atoms or mixtures thereof, wherein the freezing point depressant present is between about 14 to 60 percent by weight; (c) a thickener which is present in between about 0.01 and 10 percent by weight; and (d) optionally a corrosion inhibitor which is present in between about 0.01 and 0.1 percent by weight of the total composition. In one embodiment, the deicing composition further includes (e) a monohydric primary aliphatic unbranched alcohol as a means of forming a thin layer of the composition on the surface of the structure to be given ice protection, and/or as means of forming a homogenized foam with xanthan thickener; which alcohol is selected from the group consisting of alcohols having between 8 to 24 carbon atoms, preferably, 1-dodecanol. Compositions of water, propylene glycol, and/or propanol and xanthan are preferred.

  12. The formation of ice sails

    Science.gov (United States)

    Fowler, Andrew; Mayer, Christoph

    2017-04-01

    Ice sails are prominent pyramid-like ice forms which are found on certain debris-covered glaciers in the Karakoram, for example on Baltoro Glacier. Two questions immediately arise concerning their existence: what causes their formation (and their subsequent eventual disappearance), and why are they not found more widely? The answer to both of these questions can be provided by a mathematical model of glacier surface melting which takes account of the effect of debris cover on the melt rate. In particular, the effect noted by Östrem that very thin debris cover causes an increase in melt rate allows for instability in a uniform debris cover, and numerical solutions of the model show that sails of the correct dimensions and shape grow and subsequently decay as the debris cover thickens downglacier. The apparent distinguishing feature which promotes sail growth is a low relative humidity, which allows the bare ice melt rate to be significantly lower than the peak debris-covered value.

  13. Hidden force opposing ice compression

    CERN Document Server

    Sun, Chang Q; Zheng, Weitao

    2012-01-01

    Coulomb repulsion between the unevenly-bound bonding and nonbonding electron pairs in the O:H-O hydrogen-bond is shown to originate the anomalies of ice under compression. Consistency between experimental observations, density functional theory and molecular dynamics calculations confirmed that the resultant force of the compression, the repulsion, and the recovery of electron-pair dislocations differentiates ice from other materials in response to pressure. The compression shortens and strengthens the longer-and-softer intermolecular O:H lone-pair virtual-bond; the repulsion pushes the bonding electron pair away from the H+/p and hence lengthens and weakens the intramolecular H-O real-bond. The virtual-bond compression and the real-bond elongation symmetrize the O:H-O as observed at ~60 GPa and result in the abnormally low compressibility of ice. The virtual-bond stretching phonons ( 3000 cm-1) softened upon compression. The cohesive energy of the real-bond dominates and its loss lowers the critical temperat...

  14. Summer sea ice characteristics of the Chukchi Sea

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    During August 1999, we investigated sea ice characteristics; its distribution, surface feature, thickness, ice floe movement, and the temperature field around inter-borders of air/ice/seawater in the Chukchi Sea. Thirteen ice cores were drilled at 11 floe stations in the area of 72°24′ 77°18′N, 153°34′ 163°28′W and the ice core structure was observed. From field observation, three melting processes of ice were observed; surface layer melting, surface and bottom layers melting, and all of ice melting. The observation of temperature fields around sea ice floes showed that the bottom melting under the ice floes were important process. As ice floes and open water areas were alternately distributed in summer Arctic Ocean; the water under ice was colder than the open water by 0.4 2.8℃. The sun radiation heated seawater in open sea areas so that the warmer water went to the bottom when the ice floes move to those areas. This causes ice melting to start at the bottom of the ice floes. This process can balance effectively the temperature fluctuating in the sea in summer. From the crystalline structure of sea ice observed from the cores, it was concluded that the ice was composed of ice crystals and brine-ice films. During the sea ice melting, the brine-ice films between ice crystals melted firstly; then the ice crystals were encircled by brine films; the sea ice became the mixture of ice and liquid brine. At the end of melting, the ice crystals would be separated each other, the bond between ice crystals weakens and this leads to the collapse of the ice sheet.

  15. On the Predictability of Sea Ice

    Science.gov (United States)

    Blanchard-Wrigglesworth, Edward

    We investigate the persistence and predictability of sea ice in numerical models and observations. We first use the 3rd generation Community Climate System Model (CCSM3) General Circulation Model (GCM) to investigate the inherent persistence of sea-ice area and thickness. We find that sea-ice area anomalies have a seasonal decay timescale, exhibiting an initial decorrelation similar to a first order auto-regressive (AR1, or red noise) process. Beyond this initial loss of memory, there is a re-emergence of memory at certain times of the year. There are two distinct modes of re-emergence in the model, one driven by the seasonal coupling of area and thickness anomalies in the summer, the other by the persistence of upper ocean temperature anomalies that originate from ice anomalies in the melt season and then influence ice anomalies in the growth season. Comparison with satellite observations where available indicate these processes appear in nature. We then use the 4th generation CCSM (CCSM4) to investigate the partition of Arctic sea-ice predictability into its initial-value and boundary forced components under present day forcing conditions. We find that initial-value predictability lasts for 1-2 years for sea-ice area, and 3-4 years for sea-ice volume. Forced predictability arises after just 4-5 years for both area and volume. Initial-value predictability of sea-ice area during the summer hinges on the coupling between thickness and area anomalies during that season. We find that the loss of initial-value predictability with time is not uniform --- there is a rapid loss of predictability of sea-ice volume during the late spring early summer associated with snow melt and albedo feedbacks. At the same time, loss of predictability is not uniform across different regions. Given the usefulness of ice thickness as a predictor of summer sea-ice area, we obtain a hindcast of September sea-ice area initializing the GCM on May 1with an estimate of observed sea-ice thickness

  16. The internal structure of the Brunt Ice Shelf, Antarctica from ice-penetrating radar

    Science.gov (United States)

    King, Edward; De Rydt, Jan; Gudmundsson, Hilmar

    2016-04-01

    The Brunt Ice Shelf is a small feature on the Coats Land Coast of the Weddell Sea, Antarctica. It is unusual among Antarctic ice shelves because the ice crossing the grounding line from the ice sheet retains no structural integrity, so the ice shelf comprises icebergs of continental ice cemented together by sea ice, with the whole blanketed by in-situ snowfall. The size and distribution of the icebergs is governed by the thickness profile along the grounding line. Where bedrock troughs discharge thick ice to the ice shelf, the icebergs are large and remain close together with little intervening sea ice. Where bedrock ridges mean the ice crossing the grounding line is thin, the icebergs are small and widely-scattered with large areas of sea ice between them. To better understand the internal structure of the Brunt Ice Shelf and how this might affect the flow dynamics we conducted ice-penetrating radar surveys during December 2015 and January 2016. Three different ground-based radar systems were used, operating at centre frequencies of 400, 50 and 10 MHz respectively. The 400 MHz system gave detailed firn structure and accumulation profiles as well as time-lapse profiles of the active propagation of a crevasse. The 50 MHz system provided intermediate-level detail of iceberg distribution and thickness as well as information on the degree of salt water infiltration into the accumulating snow pack. The 10 MHz system used a high-power transmitter in an attempt to measure ice thickness beneath salt-impregnated ice. In this poster we will present example data from each of the three radar systems which will demonstrate the variability of the internal structure of the ice shelf. We will also present preliminary correlations between the internal structure and the surface topography from satellite data.

  17. Arctic sea ice thickness changes in terms of sea ice age

    Institute of Scientific and Technical Information of China (English)

    BI Haibo; FU Min; SUN Ke; LIU Yilin; XU Xiuli; HUANG Haijun

    2016-01-01

    In this study, changes in Arctic sea ice thickness for each ice age category were examined based on satellite observations and modelled results. Interannual changes obtained from Ice, Cloud, and Land Elevation Satellite (ICESat)-based results show a thickness reduction over perennial sea ice (ice that survives at least one melt season with an age of no less than 2 year) up to approximately 0.5–1.0 m and 0.6–0.8 m (depending on ice age) during the investigated winter and autumn ICESat periods, respectively. Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)-based results provide a view of a continued thickness reduction over the past four decades. Compared to 1980s, there is a clear thickness drop of roughly 0.50 m in 2010s for perennial ice. This overall decrease in sea ice thickness can be in part attributed to the amplified warming climate in north latitudes. Besides, we figure out that strongly anomalous southerly summer surface winds may play an important role in prompting the thickness decline in perennial ice zone through transporting heat deposited in open water (primarily via albedo feedback) in Eurasian sector deep into a broader sea ice regime in central Arctic Ocean. This heat source is responsible for enhanced ice bottom melting, leading to further reduction in ice thickness.

  18. Estimation of ice sheet attenuation by using radar sounder and ice core data

    Science.gov (United States)

    Ilisei, Ana-Maria; Li, Jilu; Gogineni, Sivaprasad; Bruzzone, Lorenzo

    2016-10-01

    Due to their great impact on the environment and society, the study of the ice sheets has become a major concern of the scientific community. In particular, the estimation of the ice attenuation is crucial since it enables a more precise characterization of the ice and basal conditions. Although such problem has been often addressed in the literature, the assessment of the ice attenuation is subject to several hypotheses and uncertainties, resulting in a wide range of possible interpretations of the properties of the ice. In this paper, we propose a method for constraining the ice attenuation profiles in the vicinity of an ice core by jointly using coincident radar sounder (RS) data (radargrams) and dielectric profile (DEP) data. Radargrams contain measurements of radar reflected power from ice subsurface dielectric discontinuities (layers) on wide areas. DEP data contain ice dielectric permittivity measurements collected at an ice core. The method relies on the detection of ice layers in the radargrams, the estimation of their depth and reflectivity from the DEP data, and the use of the radar equation for the estimation of ice attenuation through the whole ice column and locally at each layer position. The method has been applied to RS and DEP data acquired at the NEEM core site in Greenland. Experimental results confirm the effectiveness of the proposed method.

  19. Air-ice carbon pathways inferred from a sea ice tank experiment

    Directory of Open Access Journals (Sweden)

    Marie Kotovitch

    2016-06-01

    Full Text Available Abstract Given rapid sea ice changes in the Arctic Ocean in the context of climate warming, better constraints on the role of sea ice in CO2 cycling are needed to assess the capacity of polar oceans to buffer the rise of atmospheric CO2 concentration. Air-ice CO2 fluxes were measured continuously using automated chambers from the initial freezing of a sea ice cover until its decay during the INTERICE V experiment at the Hamburg Ship Model Basin. Cooling seawater prior to sea ice formation acted as a sink for atmospheric CO2, but as soon as the first ice crystals started to form, sea ice turned to a source of CO2, which lasted throughout the whole ice growth phase. Once ice decay was initiated by warming the atmosphere, the sea ice shifted back again to a sink of CO2. Direct measurements of outward ice-atmosphere CO2 fluxes were consistent with the depletion of dissolved inorganic carbon in the upper half of sea ice. Combining measured air-ice CO2 fluxes with the partial pressure of CO2 in sea ice, we determined strongly different gas transfer coefficients of CO2 at the air-ice interface between the growth and the decay phases (from 2.5 to 0.4 mol m−2 d−1 atm−1. A 1D sea ice carbon cycle model including gas physics and carbon biogeochemistry was used in various configurations in order to interpret the observations. All model simulations correctly predicted the sign of the air-ice flux. By contrast, the amplitude of the flux was much more variable between the different simulations. In none of the simulations was the dissolved gas pathway strong enough to explain the large fluxes during ice growth. This pathway weakness is due to an intrinsic limitation of ice-air fluxes of dissolved CO2 by the slow transport of dissolved inorganic carbon in the ice. The best means we found to explain the high air-ice carbon fluxes during ice growth is an intense yet uncertain gas bubble efflux, requiring sufficient bubble nucleation and upwards rise. We

  20. IcePod: Imaging Ice-Ocean Process from Top to Bottom

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Zappa, C. J.; Tinto, K. J.; Das, I.; Dhakal, T.; Bertinato, C.; Dong, L.; Brown, S.; Le Bel, D. A.

    2014-12-01

    Resolving the future of the ice in the polar regions requires understanding of the changing ice from top to bottom from the center of the ice sheets to the margin where ice interacts with the polar oceans. The IcePod is an imaging system developed to study the ice sheets and polar oceans in a comprehensive fashion from an LC-130. The system has been developed for initial deployment on the New York National Guard's ski-equipped LC-130s. The IcePod can resolve high resolution surface elevation with a scanning laser and visual cameras, the temperature of the surface with an infrared camera, the thickness and layering of the shallow snow and ice with a high frequency radar and the thickness of the ice sheet with an ice penetrating radar. The IcePod can be moved between aircraft in less than four hours and can be operated on aircraft on routine cargo missions to skiways. Here we present IcePod ice-ocean imaging from the top to the bottom of several major outlet glaciers in western Greenland. The data, acquired in July 2014, demonstrates the broad capabilities of the IcePod instrumentation suite. The IcePod resolved the structure of the ice sheet from the accumulation zone to the calving front of Eqip Glacier and 4 adjacent outlet glacier systems. High resolution mapping of the calving front and the upwelling meltwater plumes provides new insights into the structure and dynamics of the turbulent mixing at the ice-ocean interface. Mapping of the ice sheet margin provides insights into the connections between the surface meltwater and the fate of the subglacial water at the ice sheet base. The Greenland data includes airport passes in every flight for calibration of both the lidar and camera systems. An expanded IcePod instrumentation suite will include a gravity meter and a magnetometer. The gravity meter can be used to determine the bathymetry beneath ice shelves. Together the gravimeter and the magnetometer can be used to constrain the regional tectonic frameworks. In

  1. Ice cream structural elements that affect melting rate and hardness.

    Science.gov (United States)

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  2. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  3. The lowest-lying electronic singlet and triplet potential energy surfaces for the HNO-NOH system: energetics, unimolecular rate constants, tunneling and kinetic isotope effects for the isomerization and dissociation reactions.

    Science.gov (United States)

    Bozkaya, Uğur; Turney, Justin M; Yamaguchi, Yukio; Schaefer, Henry F

    2012-04-28

    The lowest-lying electronic singlet and triplet potential energy surfaces (PES) for the HNO-NOH system have been investigated employing high level ab initio quantum chemical methods. The reaction energies and barriers have been predicted for two isomerization and four dissociation reactions. Total energies are extrapolated to the complete basis set limit applying focal point analyses. Anharmonic zero-point vibrational energies, diagonal Born-Oppenheimer corrections, relativistic effects, and core correlation corrections are also taken into account. On the singlet PES, the (1)HNO → (1)NOH endothermicity including all corrections is predicted to be 42.23 ± 0.2 kcal mol(-1). For the barrierless decomposition of (1)HNO to H + NO, the dissociation energy is estimated to be 47.48 ± 0.2 kcal mol(-1). For (1)NOH → H + NO, the reaction endothermicity and barrier are 5.25 ± 0.2 and 7.88 ± 0.2 kcal mol(-1). On the triplet PES the reaction energy and barrier including all corrections are predicted to be 7.73 ± 0.2 and 39.31 ± 0.2 kcal mol(-1) for the isomerization reaction (3)HNO → (3)NOH. For the triplet dissociation reaction (to H + NO) the corresponding results are 29.03 ± 0.2 and 32.41 ± 0.2 kcal mol(-1). Analogous results are 21.30 ± 0.2 and 33.67 ± 0.2 kcal mol(-1) for the dissociation reaction of (3)NOH (to H + NO). Unimolecular rate constants for the isomerization and dissociation reactions were obtained utilizing kinetic modeling methods. The tunneling and kinetic isotope effects are also investigated for these reactions. The adiabatic singlet-triplet energy splittings are predicted to be 18.45 ± 0.2 and 16.05 ± 0.2 kcal mol(-1) for HNO and NOH, respectively. Kinetic analyses based on solution of simultaneous first-order ordinary-differential rate equations demonstrate that the singlet NOH molecule will be difficult to prepare at room temperature, while the triplet NOH molecule is viable with respect to isomerization and dissociation reactions up to

  4. Some Recent Advances on Ice Related Problems in Offshore Engineering

    Institute of Scientific and Technical Information of China (English)

    段梦兰; 刘杰鸣; 樊晓东; 朱守铭; 赵秀菊

    2000-01-01

    This paper deals with several hot topics in ice related problems. In recent years, advances have been made on ice breaking modes, dynamic ice loads on offshore structures, ice-induced structural vibrations, fatigue and fracture by ice-structure interaction, and design of jackets in the Bohai Gulf.

  5. A numerical study of cyclic behaviour of polar ice sheets

    NARCIS (Netherlands)

    Oerlemans, J.

    1983-01-01

    Possible cyclic behaviour of polar ice sheets is studied with a numerical ice-flow model. The model includes a calculation of bedrock adjustment and temperature field in the ice sheet. Basal water is traced and affects ice-mass discharge. Relaxation oscillations occur only for low ice-accumulation r

  6. A numerical study of cyclic behaviour of polar ice sheets

    NARCIS (Netherlands)

    Oerlemans, J.

    1983-01-01

    Possible cyclic behaviour of polar ice sheets is studied with a numerical ice-flow model. The model includes a calculation of bedrock adjustment and temperature field in the ice sheet. Basal water is traced and affects ice-mass discharge. Relaxation oscillations occur only for low ice-accumulation r

  7. A simulated Antarctic fast ice ecosystem

    Science.gov (United States)

    Arrigo, Kevin R.; Kremer, James N.; Sullivan, Cornelius W.

    1993-01-01

    A 2D numerical ecosystem model of Antarctic land fast ice is developed to elucidate the primary production with the Antarctic sea ice zone. The physical component employs atmospheric data to simulate congelation ice growth, initial brine entrapment, desalination, and nutrient flux. The biological component is based on the concept of a maximum temperature-dependent algal growth rate which is reduced by limitations imposed from insufficient light or nutrients, as well as suboptimal salinity. Preliminary simulations indicate that, during a bloom, microalgae are able to maintain their vertical position relative to the lower congelation ice margin and are not incorporated into the crystal matrix as the ice sheet thickens. It is inferred that land fast sea ice contains numerous microhabitats that are functionally distinct based upon the unique set of processes that control microalgal growth and accumulation within each.

  8. Road icing forecasting and detecting system

    Science.gov (United States)

    Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai

    2017-05-01

    Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.

  9. Freezing phenomena in ice-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Akyurt, M.; Zaki, G.; Habeebullah, B. [Fakieh Center for Applied Research, Makkah Al-Mukarramah (Saudi Arabia); King Abdulaziz University, Jeddah (Saudi Arabia). Dept. of Mechanical Engineering

    2002-09-01

    The characteristics of solidification and melting are reviewed. The properties of water and ice and the phase diagram of water are discussed with special emphasis on ice density. A concise account of the freezing process and the Stefan problem is presented. To this end, the four stages of freezing are identified, supercooling, nucleation and the formation of dendritic ice, the growth of concentric rings of solid ice at 0{sup o}C and the final cooling of the solid ice are treated in some detail. The subject of bursting of pipes is given particular emphasis. Attention is drawn to a common misconception on pipe bursting and to misleading relationships for the computation of freezing time for ice blockage. Several current applications of melting and freezing systems are outlined. (author)

  10. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-07-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69, p Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter ‘ocean-effect’ snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  11. Measurement of South Pole ice transparency with the IceCube LED calibration system

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clark, K; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Goodman, J A; Góra, D; Grant, D; Groß, A; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zilles, A; Zoll, M

    2013-01-01

    The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube data with simulations based on the new model is shown.

  12. Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales

    Science.gov (United States)

    Guemas, V.; Chevallier, M.; Déqué, M.; Bellprat, O.; Doblas-Reyes, F.

    2016-04-01

    We present a robust assessment of the impact of sea ice initialization from reconstructions of the real state on the sea ice and atmosphere prediction skill. We ran two ensemble seasonal prediction experiments from 1979 to 2012 : one using realistic sea ice initial conditions and another where sea ice is initialized from a climatology, with two forecast systems. During the melting season in the Arctic Ocean, sea ice forecasts become skilful with sea ice initialization until 3-5 months ahead, thanks to the memory held by sea ice thickness. During the freezing season in both the Arctic and Antarctic Oceans, sea ice forecasts are skilful for 7 and 2 months, respectively, with negligible differences between the two experiments, the memory being held by the ocean heat content. A weak impact on the atmosphere prediction skill is obtained.

  13. National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. National Ice Center (NIC) is an inter-agency sea ice analysis and forecasting center comprised of the Department of Commerce/NOAA, the Department of...

  14. Cook Inlet and Kenai Peninsula, Alaska ESI: ICE (Ice Extent Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains locations of ice extent in Cook Inlet, Alaska. Vector lines in the data set represent 50 percent ice coverage. Location-specific type and...

  15. Multiscale Models of Melting Arctic Sea Ice

    Science.gov (United States)

    2014-09-30

    1 Multiscale Models of Melting Arctic Sea Ice Kenneth M. Golden University of Utah, Department of Mathematics phone: (801) 581-6851...feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding the evolution of melt ponds and sea...Models of Melting Arctic Sea Ice 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER

  16. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    measurements , assesses the merits of au- tonomous surveys relative to manual ones, and describes potential future applications. DISCLAIMER: The contents...estimated that, compared with borehole measurements , their errors averaged 0.05 m for 2 m of level sea ice. They attributed most of the...average errors of 6% or 0.12 m for 2 m of ice, although their measurements included deformed and ridged ice that probably increased average errors

  17. Rapid Formation of Ice Giant Planets

    CERN Document Server

    Boss, A P; Haghighipour, N; Boss, Alan P.; Wetherill, George W.; Haghighipour, Nader

    2002-01-01

    The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice/rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.

  18. Radar Backscatter Study of Sea Ice.

    Science.gov (United States)

    1980-02-01

    in controlling the "state" of the ice ( temperatura and salinity) are shown in Figure 4.3-79. The salinity profile is a typical irregular c-shaped...the University of Kansas to provide well- controlled systematic studies to relate radar backscatter return to sea ice and to pin down some of the...34..,. : . - " ... ,. -.. .... .. .. ... ,,, ... ... _ ., ’.. . . , 72. Profiles of the parameters most important in controlling the "state" of the ice (temperature and salinity

  19. Stream discharge measurements under ice cover

    Science.gov (United States)

    Noland, K. Michael; Jacobson, Nathan D.

    2000-01-01

    This training presentation shows procedures used by the U.S. Geological Survey to measure streamflow when streams are covered by ice. Although 'Ice Measurements' are generally more difficult to make than open-water measurements and are often made under uncomfortable conditions it is very important that ice measurements be made regularly during the winter. This is because a large part of many winter discharge records depend on such measurements.

  20. Elevator deflections on the icing process

    Science.gov (United States)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  1. Dust ice nuclei effects on cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Kuebbeler

    2013-04-01

    Full Text Available In order to study aerosol-cloud interactions in cirrus clouds we apply a new multiple-mode ice microphysical scheme to the general circulation model ECHAM5-HAM. The multiple-mode ice microphysical scheme allows to analyse the competition between homogeneous freezing of solution droplets, deposition nucleation of pure dust particles, immersion freezing of coated dust particles and pre-existing ice. We base the freezing efficiencies of coated and pure dust particles on most recent laboratory data. The effect of pre-existing ice, which was neglected in previous ice nucleation parameterizations, is to deplete water vapour by depositional growth and thus prevent homogeneous and heterogeneous freezing from occurring. In a first step, we extensively tested the model and validated the results against in-situ measurements from various aircraft campaigns. The results compare well with observations; properties like ice crystal size and number concentration as well as supersaturation are predicted within the observational spread. We find that heterogeneous nucleation on mineral dust particles and the consideration of pre-existing ice in the nucleation process may lead to significant effects: globally, ice crystal number and mass are reduced by 10% and 5%, whereas the ice crystals size is increased by 3%. The reductions in ice crystal number are most pronounced in the tropics and mid-latitudes on the Northern Hemisphere. While changes in the microphysical and radiative properties of cirrus clouds in the tropics are mostly driven by considering pre-existing ice, changes in the northern hemispheric mid-latitudes mainly result from heterogeneous nucleation. The so called negative Twomey-effect in cirrus clouds is represented in ECHAM5-HAM. The net change in the radiation budget is −0.94 W m−2, implying that both, heterogeneous nucleation on dust and pre-existing ice have the potential to modulate cirrus properties in climate simulations and thus should be

  2. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss

    OpenAIRE

    Notz, Dirk

    2009-01-01

    We discuss the existence of cryospheric “tipping points” in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice–albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, w...

  3. Diversity of cultured bacteria from the perennial ice block of Scarisoara Ice Cave, Romania

    Directory of Open Access Journals (Sweden)

    Corina Iţcuş

    2016-01-01

    Full Text Available Cave ice ecosystems represent a poorly investigated glacial environment. Diversity of cave ice bacteria and their distribution in perennial ice deposits of this underground glacial habitat could constitute a proxy for microbial response to climatic and environmental changes. Scarisoara Ice Cave (Romania hosts one of the oldest and largest cave ice blocks worldwide. Here we report on cultured microbial diversity of recent, 400, and 900 years-old perennial ice from this cave, representing the first characterization of a chronological distribution of cave-ice bacteria. Total cell density measured by SYBR Green I epifluorescence microscopy varied in the 2.4 x 104 – 2.9 x 105 cells mL-1 range. The abundance of cultured bacteria (5 x 102 – 8 x 104 CFU mL-1 representing 0.3-52% of the total cell number decreased exponentially with the ice age, and was higher in organic rich ice sediments. Cultivation at 4˚C and 15˚C using BIOLOG EcoPlates revealed a higher functional diversity of cold-active bacteria, dependent on the age, sediment content and physicochemical properties of the ice. The composition dissimilarity of ice microbiota across the ice block was confirmed by growth parameter variations when cultivated in different liquid media at low and high temperatures. PCR-DGGE and sequencing of bacterial 16S rRNA gene fragments from the cultured ice samples led to the identification of 77 bacterial amplicons belonging to Gammaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, showing variation in distribution across the ice layers. Several identified OTUs were homologous to those identified in other glacial and karst environments and showed partial conservation across the ice block. Moreover, our survey provided a glimpse on the cave-ice hosted bacteria as putative biomarkers for past climate and environmental changes.

  4. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead

    Science.gov (United States)

    Kauko, Hanna M.; Taskjelle, Torbjørn; Assmy, Philipp; Pavlov, Alexey K.; Mundy, C. J.; Duarte, Pedro; Fernández-Méndez, Mar; Olsen, Lasse M.; Hudson, Stephen R.; Johnsen, Geir; Elliott, Ashley; Wang, Feiyue; Granskog, Mats A.

    2017-06-01

    The Arctic Ocean is rapidly changing from thicker multiyear to thinner first-year ice cover, with significant consequences for radiative transfer through the ice pack and light availability for algal growth. A thinner, more dynamic ice cover will possibly result in more frequent leads, covered by newly formed ice with little snow cover. We studied a refrozen lead (≤0.27 m ice) in drifting pack ice north of Svalbard (80.5-81.8°N) in May-June 2015 during the Norwegian young sea ICE expedition (N-ICE2015). We measured downwelling incident and ice-transmitted spectral irradiance, and colored dissolved organic matter (CDOM), particle absorption, ultraviolet (UV)-protecting mycosporine-like amino acids (MAAs), and chlorophyll a (Chl a) in melted sea ice samples. We found occasionally very high MAA concentrations (up to 39 mg m-3, mean 4.5 ± 7.8 mg m-3) and MAA to Chl a ratios (up to 6.3, mean 1.2 ± 1.3). Disagreement in modeled and observed transmittance in the UV range let us conclude that MAA signatures in CDOM absorption spectra may be artifacts due to osmotic shock during ice melting. Although observed PAR (photosynthetically active radiation) transmittance through the thin ice was significantly higher than that of the adjacent thicker ice with deep snow cover, ice algal standing stocks were low (≤2.31 mg Chl a m-2) and similar to the adjacent ice. Ice algal accumulation in the lead was possibly delayed by the low inoculum and the time needed for photoacclimation to the high-light environment. However, leads are important for phytoplankton growth by acting like windows into the water column.

  5. Level-Ice Melt Ponds in the Los Alamos Sea Ice Model, CICE

    Science.gov (United States)

    2012-12-06

    physical features such as snow topography and hydraulic meltwater transport rates both laterally and vertically. Departing from the cellular automaton...parameterizations before, or are mod- eled here in a different manner from prior work. When meltwater forms with snow still on the ice, the water is...thickest ice, near Greenland and the Canadian Arctic. A larger fraction of this thicker sea ice is ridged, less level ice is available for ponding, and

  6. Icing Branch Current Research Activities in Icing Physics

    Science.gov (United States)

    Vargas, Mario

    2009-01-01

    Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.

  7. Penicillium mycobiota in Arctic subglacial ice

    DEFF Research Database (Denmark)

    Sonjak, S.; Frisvad, Jens Christian; Gunde-Cimerman, N.

    2006-01-01

    to be inhabited exclusively by heterotrophic bacteria. In this study we report on the very high occurrence (up to 9000 CFU L-1) and diversity of filamentous Penicillium spp. in the sediment-rich subglacial ice of three different polythermal Arctic glaciers (Svalbard, Norway). The dominant species was P. crustosum......Fungi have been only rarely isolated from glacial ice in extremely cold polar regions and were in these cases considered as random, long-term preserved Aeolian deposits. Fungal presence has so far not been investigated in polar subglacial ice, a recently discovered extreme habitat reported......-rich ice....

  8. RIDES: Raman Icing Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation proposes to develop an integrated LIDAR instrument capable of identifying icing conditions while also providing air data sensing...

  9. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  10. Journey to the centre of the ice

    DEFF Research Database (Denmark)

    Hvenegård-Lassen, Kirsten

    2016-01-01

    On the remote icecap in northwest Greenland, an international team of glaciologists led by scientists from Copenhagen University recently drilled a 2537.36 m long ice core, finally reaching bedrock in July 2010. The ice core charts a climate history that reaches back more than 115,000 years...... to the Eemian period. This time travel ultimately aims at predicting the climate of the future. While the heroic polar expeditions of the past ventured into unknown spaces horizontally, the secrets of the frontier are now vertically stored in the ice cores. In Secrets of the Ice, five videos produced for public...

  11. Ice measurements by Geosat radar altimetry

    Science.gov (United States)

    Zwally, H. Jay; Bindschadler, Robert A.; Major, Judy A.; Brenner, Anita C.

    1987-01-01

    Radar altimetry for ice-covered ocean and land is more complex and variable than open ocean radar altimetry; attention is presently given to Geosat ice-sheet topography for the Greenland and Antarctic ice sheets between 72 deg N and 72 deg S which owes its excellent accuracy to the well separated spacing of the orbital tracks and an 18-month geodetic mission duration. A surface elevation map of southern Greenland, produced from 110 days of retracked Geosat data, is presented in color-coded three-dimensional perspective. Comparisons are made between Seasat and Geosat data for ice mass elevations in Greenland.

  12. Modeling interfacial liquid layers on environmental ices

    Directory of Open Access Journals (Sweden)

    M. H. Kuo

    2011-09-01

    Full Text Available Interfacial layers on ice significantly influence air-ice chemical interactions. In solute-containing aqueous systems, a liquid brine may form upon freezing due to the exclusion of impurities from the ice crystal lattice coupled with freezing point depression in the concentrated brine. The brine may be segregated to the air-ice interface where it creates a surface layer, in micropockets, or at grain boundaries or triple junctions.

    We present a model for brines and their associated liquid layers in environmental ice systems that is valid over a wide range of temperatures and solute concentrations. The model is derived from fundamental equlibrium thermodynamics and takes into account nonideal solution behavior in the brine, partitioning of the solute into the ice matrix, and equilibration between the brine and the gas phase for volatile solutes. We find that these phenomena are important to consider when modeling brines in environmental ices, especially at low temperatures. We demonstrate its application for environmentally important volatile and nonvolatile solutes including NaCl, HCl, and HNO3. The model is compared to existing models and experimental data from literature where available. We also identify environmentally relevant regimes where brine is not predicted to exist, but the QLL may significantly impact air-ice chemical interactions. This model can be used to improve the representation of air-ice chemical interactions in polar atmospheric chemistry models.

  13. Linking scales in sea ice mechanics

    Science.gov (United States)

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.

  14. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  15. CFD Modeling of Mixed-Phase Icing

    Science.gov (United States)

    Zhang, Lifen; Liu, Zhenxia; Zhang, Fei

    2016-12-01

    Ice crystal ingestion at high altitude has been reported to be a threat for safe operation of aero-engine in recently. Ice crystals do not accrete on external surface because of cold environment. But when they enter the core flow of aero-engine, ice crystals melt partially into droplets due to higher temperature. Air-droplets-ice crystal is the mixed-phase, which will give rise to ice accretion on static and rotating components in compressor. Subsequently, compressor surge and engine shutdowns may occur. To provide a numerical tool to analyze this in detail, a numerical method was developed in this study. The mixed phase flow was solved using Eulerian-Lagrangian method. The dispersed phase was represented by one-way coupling. A thermodynamic model that considers mass and energy balance with ice crystals and droplets was presented as well. The icing code was implemented by the user-defined function of Fluent. The method of ice accretion under mixed-phase conditions was validated by comparing the results simulated on a cylinder with experimental data derived from literature. The predicted ice shape and mass agree with these data, thereby confirming the validity of the numerical method developed in this research for mixed-phase conditions.

  16. Dynamics of laterally confined marine ice sheets

    OpenAIRE

    Kowal, Katarzyna N.; Pegler, Samuel S.; Worster, M. Grae

    2016-01-01

    This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.37 We present an experimental and theoretical study of the dynamics of laterally confined marine ice sheets in the natural limit in which the long, narrow channel into which they flow is wider than the depth of the ice. A marine ice sheet comprises a grounded ice sheet in contact with bedrock that floats away from the bedrock at a ‘grounding line’ t...

  17. Glacier surge after ice shelf collapse.

    Science.gov (United States)

    De Angelis, Hernán; Skvarca, Pedro

    2003-03-07

    The possibility that the West Antarctic Ice Sheet will collapse as a consequence of ice shelf disintegration has been debated for many years. This matter is of concern because such an event would imply a sudden increase in sea level. Evidence is presented here showing drastic dynamic perturbations on former tributary glaciers that fed sections of the Larsen Ice Shelf on the Antarctic Peninsula before its collapse in 1995. Satellite images and airborne surveys allowed unambiguous identification of active surging phases of Boydell, Sjögren, Edgeworth, Bombardier, and Drygalski glaciers. This discovery calls for a reconsideration of former hypotheses about the stabilizing role of ice shelves.

  18. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    Science.gov (United States)

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  19. Antarctic ice volume for the last 740 ka calculated with a simple ice sheet model

    NARCIS (Netherlands)

    Oerlemans, J.

    2005-01-01

    Fluctuations in the volume of the Antarctic ice sheet for the last 740 ka are calculated by forcing a simple ice sheet model with a sea-level history (from a composite deep sea δ18O record) and a temperature history (from the Dome C deuterium record). Antarctic ice volume reaches maximum values of a

  20. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    Science.gov (United States)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A.; Dahl-Jensen, Dorthe

    2016-09-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  1. The Eemian ice from the new Greenland ice core at NEEM

    Science.gov (United States)

    Dahl-Jensen, D.

    2010-12-01

    Bedrock has been reached Tuesday July 27 2010 at the deep ice core drilling site, NEEM, on the Greenland Ice Sheet at the depth 2537.36 m. The NEEM scientists from the 14 nations participating in NEEM project are very excited and happy. The goals of 5 years work are reached and we have got what we came for. Ice from the warm interglacial Eemian period 130.000 to 115.000 years before present and even older ice found under the Eemian ice. The last 2 m of ice before the bedrock is full of material from the bedrock under the ice. We find stones from bedrock, conglomerates and mud and expect the ice to be rich in traces of DNA and pollen that can tell us how about the vegetation before the site was covered with ice and hopefully we will be able to determine how old these traces are. A flow model will be presented based on ice core data and internal radio echo sounding data discussing the origin of the ice from the Eemian climate period and the path of flow it has followed. A very important question to answer is how far back in time and at what depth we expect to have an undisturbed climate record and how what the record can tell us about the evolution of the Greenland ice sheet.

  2. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  3. Assimilation of ice and water observations from SAR imagery to improve estimates of sea ice concentration

    Directory of Open Access Journals (Sweden)

    K. Andrea Scott

    2015-09-01

    Full Text Available In this paper, the assimilation of binary observations calculated from synthetic aperture radar (SAR images of sea ice is investigated. Ice and water observations are obtained from a set of SAR images by thresholding ice and water probabilities calculated using a supervised maximum likelihood estimator (MLE. These ice and water observations are then assimilated in combination with ice concentration from passive microwave imagery for the purpose of estimating sea ice concentration. Due to the fact that the observations are binary, consisting of zeros and ones, while the state vector is a continuous variable (ice concentration, the forward model used to map the state vector to the observation space requires special consideration. Both linear and non-linear forward models were investigated. In both cases, the assimilation of SAR data was able to produce ice concentration analyses in closer agreement with image analysis charts than when assimilating passive microwave data only. When both passive microwave and SAR data are assimilated, the bias between the ice concentration analyses and the ice concentration from ice charts is 19.78%, as compared to 26.72% when only passive microwave data are assimilated. The method presented here for the assimilation of SAR data could be applied to other binary observations, such as ice/water information from visual/infrared sensors.

  4. Ocean-ice interactions with possible implications for Arctic ice shelves

    Science.gov (United States)

    Alley, R. B.

    2015-12-01

    Confined ice shelves restrain flow of non-floating ice, allowing ice sheets to grow larger than they otherwise would. Ice shelves lead a precarious existence, subject to fragmentation if sufficient meltwater fills crevasses, and very sensitive to even slight warming of water beneath. Ice shelves tend to exist in the coldest waters in the world ocean, often overlying warmer, more-saline waters. Changes in water temperature or circulation generally shrink existing ice shelves and raise sea level by unbuttressing the non-floating ice, and this is likely the most important control on marine-ending parts of land ice, exceeding the influence of sea-level or accumulation-rate changes. Advance of an ice-shelf grounding line into warmer, deeper water will increase melting rates, reduce buttressing, and tend to stabilize the grounding line near or above the upper limit of that warmer water. This physical understanding indicates that the oceanographic state, and its interaction with tributary ice streams, must have been central in the extent of Arctic ice shelves once sufficient cooling occurred to allow extensive advance of land ice into the ocean.

  5. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core.

    Science.gov (United States)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Dahl-Jensen, Dorthe

    2016-09-21

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called "bromine explosions" and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement.

  6. Ice Events in the St. Louis District. Ice Engineering, Number 20, February 1999

    Science.gov (United States)

    1999-02-01

    primarily breakup ice events, no events within the District are specifically identified as breakup events, while 29 are classified freezeup jams. The...75 ice events listed as being “closure” events (when the ice cover freezes at St. Louis) are thought to be primarily due to freezeup pro- cesses. The

  7. Ice Jams, Winter 2000-2001. Ice Engineering. Number 12, December 2001

    Science.gov (United States)

    2001-12-01

    flow ( freezeup jam), and also form when the ice cover breaks up and clogs the river downstream (breakup jam). When the river becomes jammed with ice... freezeup and breakup ice jam events in the United States (White 1996). There are currently more than 12,500 entries in the database, the earliest

  8. A vertically integrated treatment of ice stream and ice shelf thermodynamics

    Science.gov (United States)

    Sergienko, O. V.

    2014-04-01

    The extremely small vertical shear in ice stream and ice shelf flow simplifies the equations, which govern their thermodynamic evolution. Complemented by the widely used shallow shelf approximation used to simplify the ice flow momentum balance, a vertically integrated formulation of heat transfer presented here reduces the dimensionality of the thermodynamic problem from three to two (plan view) dimensions and thus significantly reduces the computational cost of treating ice stream and ice shelf thermodynamics in models. For realistic conditions, errors in ice stiffness parameter, ice thickness, and speed caused by the vertically integrated treatment of heat transfer are less than 5% of magnitudes of these values compared to the standard three-dimensional thermomechanical computations. In addition, for the specific case of ice shelves with strong bottom melting, the governing equation describing evolution of the vertically integrated ice stiffness parameter is derived, which further reduces computational cost. The presented error analysis and formulations of ice stream and ice shelf thermodynamics in terms of the vertically integrated temperature allow the thermodynamic effects on ice deformation to be easily incorporated into studies that traditionally disregard them.

  9. An ice sheet model validation framework for the Greenland ice sheet

    NARCIS (Netherlands)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; Van Den Broeke, Michiel R.; Nowicki, Sophie M J

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic

  10. Canadian Arctic sea ice reconstructed from bromine in the Greenland NEEM ice core

    Science.gov (United States)

    Spolaor, Andrea; Vallelonga, Paul; Turetta, Clara; Maffezzoli, Niccolò; Cozzi, Giulio; Gabrieli, Jacopo; Barbante, Carlo; Goto-Azuma, Kumiko; Saiz-Lopez, Alfonso; Cuevas, Carlos A.; Dahl-Jensen, Dorthe

    2016-01-01

    Reconstructing the past variability of Arctic sea ice provides an essential context for recent multi-year sea ice decline, although few quantitative reconstructions cover the Holocene period prior to the earliest historical records 1,200 years ago. Photochemical recycling of bromine is observed over first-year, or seasonal, sea ice in so-called “bromine explosions” and we employ a 1-D chemistry transport model to quantify processes of bromine enrichment over first-year sea ice and depositional transport over multi-year sea ice and land ice. We report bromine enrichment in the Northwest Greenland Eemian NEEM ice core since the end of the Eemian interglacial 120,000 years ago, finding the maximum extension of first-year sea ice occurred approximately 9,000 years ago during the Holocene climate optimum, when Greenland temperatures were 2 to 3 °C above present values. First-year sea ice extent was lowest during the glacial stadials suggesting complete coverage of the Arctic Ocean by multi-year sea ice. These findings demonstrate a clear relationship between temperature and first-year sea ice extent in the Arctic and suggest multi-year sea ice will continue to decline as polar amplification drives Arctic temperatures beyond the 2 °C global average warming target of the recent COP21 Paris climate agreement. PMID:27650478

  11. Mapping and Assessing Variability in the Antarctic Marginal Ice Zone, the Pack Ice and Coastal Polynyas

    Science.gov (United States)

    Stroeve, Julienne; Jenouvrier, Stephanie

    2016-04-01

    Sea ice variability within the marginal ice zone (MIZ) and polynyas plays an important role for phytoplankton productivity and krill abundance. Therefore mapping their spatial extent, seasonal and interannual variability is essential for understanding how current and future changes in these biological active regions may impact the Antarctic marine ecosystem. Knowledge of the distribution of different ice types to the total Antarctic sea ice cover may also help to shed light on the factors contributing towards recent expansion of the Antarctic ice cover in some regions and contraction in others. The long-term passive microwave satellite data record provides the longest and most consistent data record for assessing different ice types. However, estimates of the amount of MIZ, consolidated pack ice and polynyas depends strongly on what sea ice algorithm is used. This study uses two popular passive microwave sea ice algorithms, the NASA Team and Bootstrap to evaluate the distribution and variability in the MIZ, the consolidated pack ice and coastal polynyas. Results reveal the NASA Team algorithm has on average twice the MIZ and half the consolidated pack ice area as the Bootstrap algorithm. Polynya area is also larger in the NASA Team algorithm, and the timing of maximum polynya area may differ by as much as 5 months between algorithms. These differences lead to different relationships between sea ice characteristics and biological processes, as illustrated here with the breeding success of an Antarctic seabird.

  12. Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data

    Science.gov (United States)

    Lee, Sam; Camello, Stephanie

    2015-01-01

    There is a collaborative research program by NASA, FAA, ONERA, and university partners to improve the fidelity of experimental and computational simulation methods for swept-wing ice accretion formulations and resultant aerodynamic effects on large transport aircraft. This research utilizes a 65 scale Common Research Model as the baseline configuration. In order to generate the ice shapes for the aerodynamic testing, ice-accretion testing will be conducted in the NASA Icing Research Tunnel utilizing hybrid model from the 20, 64, and 83 spanwise locations. The models will have full-scale leading edges with truncated chord in order to fit the IRT test section. The ice shapes from the IRT tests will be digitized using a commercially available articulated-arm 3D laser scanning system. The methodology to acquire 3D ice shapes using a laser scanner was developed and validated in a previous research effort. Each of these models will yield a 1.5ft span of ice than can be used. However, a full-span ice accretion will require 75 ft span of ice. This means there will be large gaps between these spanwise ice sections that must be filled, while maintaining all of the important aerodynamic features. A method was developed to generate a full-span ice shape from the three 1.5 ft span ice shapes from the three models.

  13. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p sea ice affects lakes, we conducted model experiments to simulate winters with years of high (1991/92) and low (2007/08) sea ice extent for which we also had field measurements and satellite imagery characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  14. Multisensor Analyzed Sea Ice Extent - Northern Hemisphere (MASIE-NH)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Multisensor Analyzed Sea Ice Extent Northern Hemisphere (MASIE-NH) products provide measurements of daily sea ice extent and sea ice edge boundary for the...

  15. Sensitivity of ocean circulation and sea-ice conditions to loss of West Antarctic ice shelves and ice sheet

    Science.gov (United States)

    Bougamont, Marion; Hunke, Elizabeth C.; Tulaczyk, Slawek

    We use a global coupled ocean-sea ice model to test the hypothesis that the disintegration of the West Antarctic ice sheet (WAIS), or just its ice shelves, may modify ocean circulation and sea-ice conditions in the Southern Ocean. We compare the results of three model runs: (1) a control run with a standard (modern) configuration of landmask in West Antarctica, (2) a no-shelves run with West Antarctic ice shelves removed and (3) a no-WAIS run. In the latter two runs, up to a few million square kilometres of new sea surface area opens to sea-ice formation, causing the volume and extent of Antarctic sea-ice cover to increase compared with the control run. In general, near-surface waters are cooler around Antarctica in the no-shelves and no-WAIS model runs than in the control run, while warm intermediate and deep waters penetrate further south, increasing poleward heat transport. Varying regional responses to the imposed changes in landmask configuration are determined by the fact that Antarctic polynyas and fast ice develop in different parts of the model domain in each run. Model results suggest that changes in the extent of WAIS may modify oceanographic conditions in the Southern Ocean.

  16. 2006 Program of Study: Ice

    Science.gov (United States)

    2007-03-01

    July 14 Monday, July 10 10:30 AM Lam Hui, Columbia University Strings , ice and cosmology Tuesday, July I I 10:00 AM Smith Conference Room...then the conservation of heat for an element of height 6z requires that p5 [7ra 2 5zHl + 7r(R 2 - a2 )zH,] = [q(z) - q(z + 6z)]7rR 2, (44) where q = -kOT...it is appropriate to seek an averaged description of the mushy layer. We consider some arbitrary control volume containing representative elements of

  17. Results from IceCube

    Directory of Open Access Journals (Sweden)

    DeYoung Tyce

    2016-01-01

    Full Text Available Data from the IceCube Neutrino Observatory have revealed the existence of a flux of high energy neutrinos of extraterrestrial origin, which is observed in a number of analyses spanning different energy ranges, fields of view, and neutrino flavors. The current data are consistent with an isotropic, equal-flavor flux described by a simple power law spectrum, but deviations from this simple model cannot yet be constrained with high precision. The existing observations in this area are reviewed, along with recent results on dark matter searches and observations of cosmic rays.

  18. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  19. Storm-induced sea-ice breakup and the implications for ice extent

    Science.gov (United States)

    Kohout, A. L.; Williams, M. J. M.; Dean, S. M.; Meylan, M. H.

    2014-05-01

    The propagation of large, storm-generated waves through sea ice has so far not been measured, limiting our understanding of how ocean waves break sea ice. Without improved knowledge of ice breakup, we are unable to understand recent changes, or predict future changes, in Arctic and Antarctic sea ice. Here we show that storm-generated ocean waves propagating through Antarctic sea ice are able to transport enough energy to break sea ice hundreds of kilometres from the ice edge. Our results, which are based on concurrent observations at multiple locations, establish that large waves break sea ice much farther from the ice edge than would be predicted by the commonly assumed exponential decay. We observed the wave height decay to be almost linear for large waves--those with a significant wave height greater than three metres--and to be exponential only for small waves. This implies a more prominent role for large ocean waves in sea-ice breakup and retreat than previously thought. We examine the wider relevance of this by comparing observed Antarctic sea-ice edge positions with changes in modelled significant wave heights for the Southern Ocean between 1997 and 2009, and find that the retreat and expansion of the sea-ice edge correlate with mean significant wave height increases and decreases, respectively. This includes capturing the spatial variability in sea-ice trends found in the Ross and Amundsen-Bellingshausen seas. Climate models fail to capture recent changes in sea ice in both polar regions. Our results suggest that the incorporation of explicit or parameterized interactions between ocean waves and sea ice may resolve this problem.

  20. Ice, Ice, Baby: A Program for Sustained, Classroom-Based K-8 Teacher Professional Development

    Science.gov (United States)

    Hamilton, C.

    2009-12-01

    Ice, Ice, Baby is a K-8 science program created by the education team at the Center for the Remote Sensing of Ice Sheets (CReSIS), an NSF-funded science and technology center headquartered at the University of Kansas. The twenty-four hands-on activities, which constitute the Ice, Ice, Baby curriculum, were developed to help students understand the role of polar ice sheets in sea level rise. These activities, presented in classrooms by CReSIS' Educational Outreach Coordinator, demonstrate many of the scientific properties of ice, including displacement and density. Student journals are utilized with each lesson as a strategy for improving students' science process skills. Journals also help the instructor identify misconceptions, assess comprehension, and provide students with a year-long science reference log. Pre- and post- assessments are given to both teachers and students before and after the program, providing data for evaluation and improvement of the Ice, Ice, Baby program. While students are actively engaged in hands-on learning about the unusual topics of ice sheets, glaciers, icebergs and sea ice, the CReSIS' Educational Coordinator is able to model best practices in science education, such as questioning and inquiry-based methods of instruction. In this way, the Ice, Ice, Baby program also serves as ongoing, in-class, professional development for teachers. Teachers are also provided supplemental activities to do with their classes between CReSIS' visits to encourage additional science lessons, reinforce concepts taught in the Ice, Ice, Baby program, and to foster teachers' progression toward more reform-based science instruction.