WorldWideScience

Sample records for monoxide synthesis gas

  1. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction

    Directory of Open Access Journals (Sweden)

    Lewinski Nastassja

    2011-01-01

    Full Text Available Abstract An in depth analysis of gold nanoparticle (AuNP synthesis and size tuning, utilizing carbon monoxide (CO gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min.

  2. Synthesis of Nanosized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Jian-Wen Wang

    2013-01-01

    Full Text Available Two nanostructures of cobalt oxyhydroxide (CoOOH and Zinc-(Zn- doped CoOOH (1–4% Zn are prepared from Co(NO32 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co+ of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nanostructure exhibits good sensitivity to carbon monoxide (CO in a temperature range of 40–110°C with maximum sensitivity to CO at around 70–80°C. When CoOOH nanostructure is doped with 1% Zn, its sensitivity and selectivity for CO gas are improved at 70–80°C; further Zn doping to 2% degraded the CO sensing properties of nano-CoOOH. The results of a cross-sensitivity investigation of the sensor to various gases coexisting at early stages of a fire show that the sensitivity of Zn-doped nano-CoOOH is the highest toward CO. Zn-doped nano-CoOOH film exhibits a high sensitivity to CO at room temperature, making it a promising sensor for early-stage fire detection.

  3. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    Science.gov (United States)

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented.

  4. Synthesis Gas Biorefinery.

    Science.gov (United States)

    Dahmen, N; Henrich, E; Henrich, T

    2017-03-23

    Synthesis gas or syngas is an intermediate, which can be produced by gasification from a variety of carbonaceous feedstocks including biomass. Carbon monoxide and hydrogen, the main constituents of syngas, can be subjected to a broad range of chemical and microbial synthesis processes, leading to gaseous and liquid hydrocarbon fuels as well as to platform and fine chemicals. Gasification of solid biomass differs from coal gasification by chemical composition, heating value, ash behavior, and other technical and biomass related issues. By thermochemical pre-treatment of lignocellulose as the most abundant form of biomass, for example, by torrefaction or fast pyrolysis, energy dense fuels for gasification can be obtained, which can be used in the different types of gasifiers available today. A number of pilot and demonstration plants exist, giving evidence of the broad technology portfolio developed so far. Therefore, a syngas biorefinery is highly flexible in regard to feedstock and product options. However, the technology is complex and does not result in competitive production costs today. Added value can be generated by suitable integration of thermochemical, biochemical, and chemical processes.

  5. Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas

    Energy Technology Data Exchange (ETDEWEB)

    Min Chul Lee; Seok Bin Seo; Jae Hwa Chung; Si Moon Kim; Yong Jin Joo; Dal Hong Ahn [Korea Electric Power Corporation, Daejeon (Republic of Korea). Green Growth Laboratory

    2010-07-15

    The development of coal IGCC (Integrated Gasification Combined Cycle) technology has made it possible to exploit electricity generated from coal at a low cost. Furthermore, IGCC is a pre-requisite for the development of CCS (Carbon Capture and Storage) technology and hydrogen generated from coal. To achieve the need to reduce CO{sub 2} emissions, Korea's 300 MW IGCC RDD&D (Research Development, Demonstration and Dissemination) project was launched in December 2006 under the leadership of the Korea Electric Power Corporation (KEPCO), with the support of the Korea Ministry of Knowledge Economy. When a new fuel is adapted to a gas turbine (such as syngas for IGCC), it is necessary to study the gas turbine combustion characteristics of the fuel, because gas turbines are very sensitive to its physical and chemical properties. This experimental study was conducted by investigating the combustion performance of synthetic gas, which is composed chiefly of hydrogen and carbon monoxide. The results of a test on synthetic gas combustion performance were compared with the results of methane combustion, which is a major component of natural gas. The results of the combustion test of both gases were examined in terms of the turbine's inlet temperature, combustion dynamics, emission characteristics, and flame structure. From the results of this experimental study, we were able to understand the combustion characteristics of synthetic gas and anticipate the problems when synthetic gas rather than natural gas is fuelled to a gas turbine. 21 refs., 11 figs., 1 tab.

  6. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  7. Characteristics of Photoacoustic Spectroscopy Detection for Carbon Monoxide Gas Based on DFB Diode Laser

    Institute of Scientific and Technical Information of China (English)

    CHEN Weigen; PENG Xiaojuan; LIU Bingjie; SUN Caixin

    2012-01-01

    The dissolved gas analysis is one of the most effective and convenient methods to diagnose the early discharge faults of transformers. When the fault involves the solid insulation, oil-paper insulation cracks and releases carbon monoxide (CO) gas. Therefore, the detection of CO can forecast the potential inner faults of oil-filled transformers.

  8. Synthesis of Diethyl Oxalate by a Coupling-Regeneration Reaction of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Baowei Wang; Xinbin Ma

    2002-01-01

    This article describes a process for the synthesis of diethyl oxalate by a coupling reaction ofcarbon monoxide, catalyzed by palladium in the presence of ethyl nitrite. The kinetics and mechanism ofthe coupling and regeneration reaction are also discussed. This paper presents the results of a scale-uptest of the catalyst and the process based on an a priori computer simulation.

  9. Synthesis of acetyl coenzyme A by carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila.

    OpenAIRE

    Abbanat, D R; Ferry, J G

    1990-01-01

    The carbon monoxide dehydrogenase (CODH) complex from Methanosarcina thermophila catalyzed the synthesis of acetyl coenzyme A (acetyl-CoA) from CH3I, CO, and coenzyme A (CoA) at a rate of 65 nmol/min/mg at 55 degrees C. The reaction ended after 5 min with the synthesis of 52 nmol of acetyl-CoA per nmol of CODH complex. The optimum temperature for acetyl-CoA synthesis in the assay was between 55 and 60 degrees C; the rate of synthesis at 55 degrees C was not significantly different between pHs...

  10. Terahertz Time Domain Gas-phase Spectroscopy of Carbon Monoxide

    Science.gov (United States)

    Kilcullen, Patrick; Hartley, I. D.; Jensen, E. T.; Reid, M.

    2015-04-01

    Free induction decay signals emitted from Carbon Monoxide (CO) excited by sub-picosecond pulses of Terahertz (THz) radiation are directly measured in the time domain and compared to model calculations using a linear dispersion model to good agreement. Best fitting techniques of the data using the model allow the self-pressure broadening of CO to be measured across a range of absolute pressures, and the rotational constant to be determined. We find B V = 5.770 ± 0.003 × 1010 Hz in agreement with previous measurements. A partial pressure limit of detection for CO of 7900 ppm is estimated at atmosphere through extrapolating the calculated commensurate echo peaks down to low pressures with respect to the RMS noise floor of our THz time domain spectroscopy (THz-TDS) apparatus, which implies a limit of detection in the range of 40 ppm for commercial THz-TDS systems.

  11. Occupational poisoning by carbon monoxide aboard a gas carrier. Report on 8 cases.

    Science.gov (United States)

    Lucas, David; Loddé, Brice; Jegaden, Dominique; Bronstein, Jean-Ariel; Pougnet, Richard; Bell, S; Dewitte, Jean-Dominique

    2010-01-01

    - To determine the accidental factors and the clinical symptoms in eight cases of occupational poisoning of port workers by carbon monoxide. - To consider the primary prevention of this serious pathology occurring at work. - To analyze the circumstances of the exposure to carbon monoxide in the employees in the naval repair sector. - To indicate the systemic failures causing this accidental poisoning, the means for early diagnosis and appropriate treatment, and to discuss the prevention of such accidents. The poisoning occurred in eight mechanics and electricians working without any protective means in a gas carrier tank in dry dock. The employees, unaware of carbon monoxide exposure, stayed for 45 minutes in an atmosphere polluted with carbon monoxide concentrations of over 500 ppm. The main complaints were of headache, muscular weakness, and drowsiness. No post-interval syndrome was found three weeks after poisoning. The levels of carboxyhaemoglobin varied from 1.8 to 31.2%. Early normal pressure oxygen therapy reduced the symptoms. No delayed syndrome was found three weeks after poisoning. The inclusion of poisonous gas in gas-free certification, adherence to maritime harbour regulations, greater respect for working instructions in hazardous environments, and the use of detectors appropriate to the conditions for each ship would avoid exposure and decrease the risk of poisoning.

  12. Polyoxometalate-mediated electron transfer-oxygen transfer oxidation of cellulose and hemicellulose to synthesis gas.

    Science.gov (United States)

    Sarma, Bidyut Bikash; Neumann, Ronny

    2014-08-01

    Terrestrial plants contain ~70% hemicellulose and cellulose that are a significant renewable bioresource with potential as an alternative to petroleum feedstock for carbon-based fuels. The efficient and selective deconstruction of carbohydrates to their basic components, carbon monoxide and hydrogen, so called synthesis gas, is an important key step towards the realization of this potential, because the formation of liquid hydrocarbon fuels from synthesis gas are known technologies. Here we show that by using a polyoxometalate as an electron transfer-oxygen transfer catalyst, carbon monoxide is formed by cleavage of all the carbon-carbon bonds through dehydration of initially formed formic acid. In this oxidation-reduction reaction, the hydrogen atoms are stored on the polyoxometalate as protons and electrons, and can be electrochemically released from the polyoxometalate as hydrogen. Together, synthesis gas is formed. In a hydrogen economy scenario, this method can also be used to convert carbon monoxide to hydrogen.

  13. Synthesis of Diethyl Oxalate by a Coupling—Regeneration Reaction of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    FandongMeng; GenhuiXu; 等

    2002-01-01

    This article describes a process for the synthesis of diethyl oxalate by a copling reaction of carbon monoxide,catalyzed by palladium in the presence of ethyl nitrite ,The kinetics and mechanism of the coupling and regeneration reaction are also discussed ,This paper presents the results of a scale-up test of the catalyst and the process based on an a priori computer simulation.

  14. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost......CO-free performance can be obtained for carbon monoxide concentrations up to 0.5 v/o CO at 130°C, 0.2 v/o CO at 100°C,and 0.1 v/o CO at 80°C, respectively....

  15. Oxygenates vs. synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Richard G. Herman; Alessandra Beretta; Maria A. Burcham; Qun Sun; Yeping Cai; Biswanath Roy

    1999-04-01

    Methanol synthesis from H{sub 2}/CO has been carried out at 7.6 MPa over zirconia-supported copper catalysts. Catalysts with nominal compositions of 10/90 mol% and 30/70 mol% Cu/ZrO{sub 2} were used in this study. Additionally, a 3 mol% cesium-doped 10/90 catalyst was prepared to study the effect of doping with heavy alkali, and this promoter greatly increased the methanol productivity. The effects of CO{sub 2} addition, water injection, reaction temperature, and H{sub 2}/C0 ratio have been investigated. Both CO{sub 2} addition to the synthesis gas and cesium doping of the catalyst promoted methanol synthesis, while inhibiting the synthesis of dimethyl ether. Injection of water, however, was found to slightly suppress methanol and dimethyl ether formation while being converted to CO{sub 2} via the water gas shift reaction over these catalysts. There was no clear correlation between copper surface area and catalyst activity. Surface analysis of the tested samples revealed that copper tended to migrate and enrich the catalyst surface. The concept of employing a double-bed reactor with a pronounced temperature gradient to enhance higher alcohol synthesis was explored, and it was found that utilization of a Cs-promoted Cu/ZnO/Cr{sub 2}O{sub 3} catalyst as a first lower temperature bed and a Cs-promoted ZnO/Cr{sub 2}O{sub 3} catalyst as a second high-temperature bed significantly promoted the productivity of 2-methyl-1-propanol (isobutanol) from H{sub 2}/CO synthesis gas mixtures. While the conversion of CO to C{sub 2+} oxygenates over the double-bed configuration was comparable to that observed over the single Cu-based catalyst, major changes in the product distribution occurred by the coupling to the zinc chromite catalyst; that is, the productivity of the C{sub 1}-C{sub 3} alcohols decreased dramatically, and 2-methyl branched alcohols were selectively formed. The desirable methanol/2-methyl oxygenate molar ratios close to 1 were obtained in the present double

  16. Reactor for producing a carbon monoxide and hydrogen containing gas

    Energy Technology Data Exchange (ETDEWEB)

    Abraamov, E.; Achmatov, I.; Berger, F.

    1982-08-10

    The reactor for the production of CO and H/sub 2/ containing gases by means of a partial oxidation of powdery or liquid high ash fuels in a carburation fluid including free oxygen, at high temperatures and increased pressure, includes a pressure vessel enclosing a gas-tight housing whereby an interspace is formed between the inner wall of the vessel and the outer surface of the housing. Within the housing is arranged a cooling wall enclosing the reaction chamber proper. The cooling wall includes a coil of cooling pipes embedded in a mass of refractory material such as silicium carbide. The pipes are partially supported on web sections projecting from the inner surface of the housing into the refractory lining. The web sections prevent propagation of leaking hot gas from the reaction chamber along the inner surface of the housing.

  17. Biological production of methane from coal synthesis gas under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ko, C.W.; Vega, J.L.; Barik, S.; Clausen, E.C.; Gaddy, J.L.

    1987-01-01

    Carbon monoxide, hydrogen and carbon dioxide, the major components of coal synthesis gas, may be converted to methane by the action of anaerobic bacteria. Both pure and mixed cultures have been developed to carry out the water-gas shift and methanation reactions. Reaction rates are severely limited by mass-transfer of these gaseous substrates. Research studies show that increased pressure results in a proportionate increase in reaction rate. This paper examines the effects of high pressure on the performance of organisms, such as P. productus and Methanothrix, in converting coal gas into methane. The effects of carbon monoxide inhibition and high pressure are presented and discussed.

  18. A carbon monoxide gas sensor using oxygen plasma modified carbon nanotubes

    Science.gov (United States)

    Zhao, Weiyun; Fam, Derrick Wen Hui; Yin, Zongyou; Sun, Ting; Tan, Hui Teng; Liu, Weiling; Iing Yoong Tok, Alfred; Boey, Yin Chiang Freddy; Zhang, Hua; Hng, Huey Hoon; Yan, Qingyu

    2012-10-01

    Carbon monoxide (CO) is a highly toxic gas that can be commonly found in many places. However, it is not easily detected by human olfaction due to its colorless and odorless nature. Therefore, highly sensitive sensors need to be developed for this purpose. Carbon nanotubes (CNTs) have an immense potential in gas sensing. However, CNT-based gas sensors for sensing CO are seldom reported due to the lack of reactivity between CO and CNTs. In this work, O2 plasma modified CNT was used to fabricate a CNT gas sensor. The plasma treated CNTs showed selectively towards CO, with the capability of sensing low concentrations of CO (5 ppm) at room temperature, while the pristine CNTs showed no response. UV spectra and oxygen reduction reaction provided evidence that the difference in sensing property was due to the elimination of metallic CNTs and enhancement of the oxygen reduction property.

  19. Carbon monoxide gas sensing using zinc oxide film deposited by spray pyrolysis

    Science.gov (United States)

    Leano, J. M. G.; Villapando, J. M. L. A.; Balaaldia, A. E.; Gianan, G.; Manalo, F. K. B.; Florido, E. A.

    2017-05-01

    This study was aimed to determine the carbon monoxide (CO) gas sensing ability of zinc oxide (ZnO) film fabricated by spray pyrolysis on glass substrate heated at 3000C using 0.2 M zinc acetate precursor solution. The temperature of the precursor solution was maintained at room temperature. Carbon monoxide gas was synthesized by mixing the required amount of formic acid and excess sulfuric acid in the ratio of 1:6 to produce CO gas concentrations of 100, 200, 300, 400, and 500 parts per million (ppm) v/v. There were five trials for each concentration. The films produced exhibited good sensor characteristics such as high linearity in current voltage relationship and voltage response versus concentration. Electrical characterization using the four-point probe showed a linear relationship between current and voltage with resistivity of 0.49 ohm-cm and R2 value of 0.994 The zinc oxide film exhibited a sensitivity of 0.19 Volt per 100 ppm of CO gas and linearity R2 value of 0.993.

  20. Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO.

    Science.gov (United States)

    Olas, Beata

    2014-10-05

    Carbon monoxide (CO) is an odorless, colorless and non-irritating gas. Even a small amount of CO exposure is possibly associated with specific toxic effects. CO is also produced endogenously in the body as a byproduct of heme degradation catalyzed by heme oxygenase. More recently CO has been identified as a gasotransmitter in various biological systems. However, the biological role and the therapeutic potential of carbon monoxide is not clear. This review summarizes the negative and the positive functions of carbon monoxide in various biological systems, including cardiovascular system.

  1. Multi-objective optimisation in carbon monoxide gas management at TRONOX KXN Sands

    Directory of Open Access Journals (Sweden)

    Stadler, Johan

    2014-08-01

    Full Text Available Carbon monoxide (CO is a by-product of the ilmenite smelting process from which titania slag and pig iron are produced. Prior to this project, the CO at Tronox KZN Sands in South Africa was burnt to get rid of it, producing carbon dioxide (CO2. At this plant, unprocessed materials are pre-heated using methane gas from an external supplier. The price of methane gas has increased significantly; and so this research considers the possibility of recycling CO gas and using it as an energy source to reduce methane gas demand. It is not possible to eliminate the methane gas consumption completely due to the energy demand fluctuation, and sub-plants have been assigned either CO gas or methane gas over time. Switching the gas supply between CO and methane gas involves production downtime to purge supply lines. Minimising the loss of production time while maximising the use of CO arose as a multi-objective optimisation problem (MOP with seven decision variables, and computer simulation was used to evaluate scenarios. We applied computer simulation and the multi-objective optimisation cross-entropy method (MOO CEM to find good solutions while evaluating the minimum number of scenarios. The proposals in this paper, which are in the process of being implemented, could save the company operational expenditure while reducing the carbon footprint of the smelter.

  2. Surveillance for the effects of carbon monoxide on health in a Tianjin gas factory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin-xin [Tianjiin Lab. of Health and Occupational Diseases Prevention and Treatment Hospital, Tianjiin (China); Ma, Xiang-min; Dong, Zi-zhen; Xie, Ping [Sanitation and Diseases Prevention Centre, Tianjin (China); Li, Gang [First Tianjin Gas Factory, Tianjin (China)

    1997-12-31

    This report describes the surveillance over the past 8 years of carbon monoxide (CO) levels in a factory producing gas from coal. Where workers were working in areas of the factory where the air might be polluted by CO we found that measurement of carboxyhaemoglobin (HbCO) levels in their blood was a sufficiently sensitive test of exposure. Measurements on samples taken before and after a shift showed a significant difference. Our measurements of a HbCO blank control in two normal population groups was very close to the biological limit value of that for normal groups in the USA and Germany. (author) 1 fig., 3 tabs., 3 refs.

  3. Carbon monoxide measurement by gas chromatography; Mesure du monoxyde de carbone par chromatographie en phase gazeuse

    Energy Technology Data Exchange (ETDEWEB)

    Gros, V.; Sarda-Esteve, R.; Bonsang, B.; Ramonet, M.

    1998-09-01

    Although carbon monoxide (CO) is present in trace quantities in the atmosphere (0.1 ppm -or parts per million in volume- on average), the study of this gas is important. Indeed, its impact on human can be dangerous at high level of concentration on the hand and it constitutes one of the main precursor of ozone in presence of concentration on the one hand and it constitutes one of the main precursor of ozone in presence of other pollutants on the other hand. Finally, CO affects the levels of several important greenhouse gases, through its reaction with hydroxyl radicals (OH). CO is measured in the atmosphere since the mid 60's by various methods. Among them, gas chromatography has the advantage to combine a low detection limit with a high precision. This report details the improvements made on the measurement analyser which allowed to perform automatic CO measurements in remote areas with low mixing ratios of carbon monoxide. This report describes some quality tests and the results of various applications. (authors)

  4. Colonic insufflation with carbon monoxide gas inhibits the development of intestinal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Takagi Tomohisa

    2012-09-01

    Full Text Available Abstract Background The pathogenesis of inflammatory bowel disease (IBD is complex, and an effective therapeutic strategy has yet to be established. Recently, carbon monoxide (CO has been reported to be capable of reducing inflammation by multiple mechanisms. In this study, we evaluated the role of colonic CO insufflation in acute colitis induced by trinitrobenzene sulfonic acid (TNBS in rats. Methods Acute colitis was induced with TNBS in male Wistar rats. Following TNBS administration, the animals were treated daily with 200 ppm of intrarectal CO gas. The distal colon was removed to evaluate various parameters of inflammation, including thiobarbituric acid (TBA-reactive substances, tissue-associated myeloperoxidase (MPO activity, and the expression of cytokine-induced neutrophil chemoattractant (CINC-1 in colonic mucosa 7 days after TNBS administration. Results The administration of TNBS induced ulceration with surrounding edematous swelling in the colon. In rats treated with CO gas, the colonic ulcer area was smaller than that of air-treated rats 7 days after TNBS administration. The wet colon weight was significantly increased in the TNBS-induced colitis group, which was markedly abrogated by colonic insufflation with CO gas. The increase of MPO activity, TBA-reactive substances, and CINC-1 expression in colonic mucosa were also significantly inhibited by colonic insufflation with CO gas. Conclusions Colonic insufflation with CO gas significantly ameliorated TNBS-induced colitis in rats. Clinical application of CO gas to improve colonic inflammatory conditions such as IBD might be useful.

  5. Influence of Gas Composition on the Resisting Ability of Gunning Material for Blast Furnace to Carbon Monoxide Corrosion

    Institute of Scientific and Technical Information of China (English)

    YANG Lihong; LIU Liu; GUO Yanling; CAO Feng; MENG Qingmin; LONG Shigang

    2002-01-01

    This paper describes the resisting ability of gunning material for blast furnace to carbon monoxide corrosion under the mixed gas condition through inletting hydrogen into pure CO.A standard for testing the resisting ability of refractory to Co corrosion with mixed gas instead of pure CO has also been discussed. The results show:the addition of hydrogen accelerates the CO corrosion on gunning material;the same results has been reached with the CO,200 hours to test the resisting ability of refractory to carbon monoxide corrosion.

  6. Carbon monoxide gas is not inert, but global, in its consequences for bacterial gene expression, iron acquisition and antibiotic resistance

    NARCIS (Netherlands)

    Wareham, L.K.; Begg, R.; Jesse, H.E.; van Beilen, J.W.A.; Ali, S.; Svistunenko, D.; McLean, S.; Hellingwerf, K.J.; Sanguinetti, G.; Poole, R.K.

    2016-01-01

    Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas

  7. Carbon monoxide analysis: a comparison of two co-oximeters and headspace gas chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, A.G.; Park, J.; Caplan, Y.H.

    Three methods (lL-182 Co-Oximeter, lL-282 Co-Oximeter, and headspace gas chromatography) for the analysis of carbon monoxide in postmortem blood were studied and compared using a prepared reference standard, Quantra control materials, and 62 postmortem blood specimens. The methods compared favorably with one another. The linear regression equations for the 62 postmortem blood samples (range = 1.0 to 86% saturation) were: lL-282 vs. lL-182, y = 1.11x - 3.10, r = 0.981; lL-182 vs. GC, y = 0.88x + 2.97, r = 0.973; lL-282 vs. GC, y = 1.00x - 1.24, r = 0.986.

  8. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  9. Autothermal Reforming of Natural Gas to Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Steven F. Rice; David P. Mann

    2007-04-13

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct

  10. Autothermal Reforming of Natural Gas to Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Steven F. Rice; David P. Mann

    2007-04-13

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct

  11. Processes in petroleum chemistry. Technical and economical characteristics Vol. 1. Synthesis gas and derivatives. Main hydrocarbon intermediaries (2 ed. )

    Energy Technology Data Exchange (ETDEWEB)

    Chauvel, A.; Lefebvre, G.; Castex, L.

    1985-01-01

    The aim of this book is to give rudiments for a preliminary study to outline petrochemical operation and cost estimation. Basic operations are examined: Steam reforming or partial oxidation, steam or thermal cracking and catalytic reforming. The main topics examined include: hydrogen purification, hydrogen fabrication from hydrocarbons, carbonaceous materials or water, production of carbon monoxide, ammoniac synthesis methanol synthesis from synthesis gas, preparation of formol, urea, acetylene and monomers for the preparation of plastics.

  12. CARBON MONOXIDE TREATMENT GUIDELINES

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2014-02-01

    Full Text Available Carbon monoxide is the leading cause of unintentional poisoning-related death in Slovenia. It is an odorless, colorless gas that usually remains undetectable until exposures result in injury or death. Exposure to carbon monoxide is most commonly accompanied by headache, nausea, vomiting, dizziness, confusion, drowsiness, fatigue and collapse. Carbon monoxide poisoning management includes normobaric oxygen therapy. Hyperbaric-oxygen treatments reduce the risk of cognitive sequelae after carbon monoxide poisoning. 

  13. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-01-01

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240[degrees]C, 0.5 to 1.5 MPa, H[sub 2]/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R[sub H[sub 2+Co

  14. Zinc Oxide-Multi Walled Carbon Nanotubes Nanocomposites for Carbon Monoxide Gas Sensor Application.

    Science.gov (United States)

    Alharbi, Najlaa D; Ansari, M Shahnawaze; Salah, Numan; Khayyat, Suzan A; Khan, Zishan H

    2016-01-01

    Zinc oxide (ZnO)/multi walled carbon nanotubes (MWCNTs) composites based sensors with different ZnO concentrations were fabricated to improve carbon monoxide (CO) gas sensing properties in comparison to the sensors based on bare MWCNTs. To study the structure, morphology and elemental composition of the resultant products, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDS) were carried out. It has been observed that as the concentration of ZnO is increased more and more ZnO nanoparticles in the form of nodes get attached to MWCNTs resulting the reduction in average diameter of MWCNTs. The typical response of ZnO/MWCNTs composites based gas sensors for different CO concentrations (40, 100, 140 and 200 ppm) was studied by using very advanced sensing setup attached to I-V measurement system. Different sensing parameters such as: resistive response, sensitivity and response time were estimated at room temperature for all the fabricated sensors. The results indicated that the sensor based on nanocomposite which has 30 mg ZnO dispersed on 20 mg MWCNTs showing highest sensitivity and fastest response. All the sensors showed response times ranging from 8 to 23 seconds. The sensing mechanism behind the sensors based on ZnO/MWCNTs nanocomposites for CO gas at room temperature is also discussed in the present report.

  15. Satellite Carbon Monoxide Measurements as Top-Down Constraints on Fire Trace Gas Emissions

    Science.gov (United States)

    Kasibhatla, P.; Randerson, J.; van der Werf, G.; Giglio, L.; Collatz, J.; Defries, R.; Morton, D.

    2008-12-01

    There has been considerable progress in recent years in characterizing trace gas emissions from vegetation fires on a global scale. This progress has been driven by the availability of remotely-sensed vegetation and fire products, combined with the development of global-scale, process-based terrestrial biogeochemistry models that explicitly include fire. Nevertheless, significant uncertainties remain in our understanding of the spatial and temporal variability of trace gas emissions from fires, and in the underlying climatic and human factors that drive this variability. Here, we examine the extent to which remote sensing measurements of atmospheric trace gas concentrations can provide additional constraints of emissions from fires. Specifically, we focus on using the multi-year record of carbon monoxide measurements from the MOPITT instrument on the Terra platform in an inverse modeling framework to elucidate the reduction in uncertainty in fire emissions at regional scales afforded by these measurements. We further examine the sensitivity of our estimates to various aspects of the inverse modeling set-up in an attempt to characterize the robustness of the derived uncertainty estimates, with a specific emphasis on regions with high deforestation rates in South America and Equatorial Asia.

  16. Direct Routes from Synthesis Gas to Ethylene Glycol.

    Science.gov (United States)

    Dombek, B. D.

    1986-01-01

    Discusses the synthesis of ethylene glycol from carbon monoxide and hydrogen using bimetallic catalysts. Although this technology has not been implemented, it illustrates two important future trends, namely, use of bimetallic catalysts and use of coal-derived carbon monoxide and hydrogen as a new feed stock. (JN)

  17. Direct Routes from Synthesis Gas to Ethylene Glycol.

    Science.gov (United States)

    Dombek, B. D.

    1986-01-01

    Discusses the synthesis of ethylene glycol from carbon monoxide and hydrogen using bimetallic catalysts. Although this technology has not been implemented, it illustrates two important future trends, namely, use of bimetallic catalysts and use of coal-derived carbon monoxide and hydrogen as a new feed stock. (JN)

  18. Gas-phase energies of actinide oxides -- an assessment of neutral and cationic monoxides and dioxides from thorium to curium

    Energy Technology Data Exchange (ETDEWEB)

    Marcalo, Joaquim; Gibson, John K.

    2009-08-10

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  19. Preparation of Copper Oxide Nanostructure Thin Film For Carbon Monoxide Gas Sensor

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2016-11-01

    Full Text Available This work reports the synthesis of nanostructure of CuO thin film using dip coating and chemical bath deposition method. Seed layer was deposited by dip coating method using zinc nitrate as a precursor. The CuO nanostructure has successfully grown on CBD process at 95oC for 6 hours. The X Ray Diffraction characterization result shows that the CuO has monoclinic crystallization and good crystallinity. Moreover, the Scanning Electron Microscope characterization results  shows that CuO has nanospike-like shape. The CuO thin film as a gas sensor shows relatively high response on CO gas at the temperature working above 200oC. The highest response is obtained at 350oC of working temperature toward 30 ppm CO gas at 186% of sensor response.

  20. Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Pure and M-doped (M = Pt, Fe, and Zn SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

  1. Synthesis gas method and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie; Kosowski, Lawrence W; Robinson, Charles

    2015-11-06

    A method and apparatus for producing a synthesis gas product having one or more oxygen transport membrane elements thermally coupled to one or more catalytic reactors such that heat generated from the oxygen transport membrane element supplies endothermic heating requirements for steam methane reforming reactions occurring within the catalytic reactor through radiation and convention heat transfer. A hydrogen containing stream containing no more than 20 percent methane is combusted within the oxygen transport membrane element to produce the heat and a heated combustion product stream. The heated combustion product stream is combined with a reactant stream to form a combined stream that is subjected to the reforming within the catalytic reactor. The apparatus may include modules in which tubular membrane elements surround a central reactor tube.

  2. Catalyst for converting synthesis gas to light olefins

    Science.gov (United States)

    Rao, V. Udaya S.; Gormley, Robert J.

    1982-01-01

    A catalyst and process for making same useful in the catalytic hydrogenation of carbon monoxide in which a silicalite support substantially free of aluminum is soaked in an aqueous solution of iron and potassium salts wherein the iron and potassium are present in concentrations such that the dried silicalite has iron present in the range of from about 5 to about 25 percent by weight and has potassium present in an amount not less than about 0.2 percent by weight, and thereafter the silicalite is dried and combined with amorphous silica as a binder for pellets, the catalytic pellets are used to convert synthesis gas to C.sub.2 -C.sub.4 olefins.

  3. Biological conversion of synthesis gas culture development

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Research continues on the conversion of synthesis by shift reactions involving bacteria. Topics discussed here include: biological water gas shift, sulfur gas utilization, experimental screening procedures, water gas shift studies, H{sub 2}S removal studies, COS degradation by selected CO-utilizing bacteria, and indirect COS utilization by Chlorobia. (VC)

  4. Nickel-containing catalysts for methane oxidation to synthesis gas

    Directory of Open Access Journals (Sweden)

    Kusman Dossumov

    2014-12-01

    Full Text Available The partial oxidation of methane to synthesis gas was studied on oxides of metals of variable valence (Mn, La, Cr and Ni, supported on a carrier – ɣ-Al2O3. Among the catalysts studied, the sample of 3% Ni/ɣ-Al2O3 showed the best characteristics by yields of hydrogen and carbon monoxide in the reaction of partial oxidation of methane. The optimal conditions of the process (the reaction temperature of 850 °C, the volume rate of 4500 h-1, and the ratio CH4: O2 = 2:1 cause the increase the concentration of hydrogen and carbon monoxide to 72.2 and 75.3%, respectively. The effect of the heat-treatment temperature and textural characteristics of the Ni/ ɣ-Al2O3 catalyst on its catalytic activity was studied. The NiCe/Al2O3 catalyst developed showed a high stability during 30 hours.

  5. Gas Sensing Properties and Mechanism of Nano-SnO2-Based Sensor for Hydrogen and Carbon Monoxide

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2012-01-01

    Full Text Available Nano-SnO2 powder was prepared by the hydrothermal method in this paper. X-ray powder diffraction (XRD and scanning electron microscopy (SEM were used to characterize the composition of the crystalline phase and the morphology of the prepared gas-sensitive materials, respectively. In particular, the study focused on the sensing behaviors of nano-SnO2-based sensor towards power transformer fault gases such as hydrogen and carbon monoxide. The optimum working temperature for hydrogen and carbon monoxide is about 400∘C and 360∘C, separately. Further investigations into the adsorption process of gas molecule on SnO2 (110 surface based on the first principles were conducted. The calculations indicated that 1σ orbits of H2 split into several new electronic peaks and 5σ orbits of CO almost degenerated completely in the adsorption process, which promoted charge transfer between gas molecule and SnO2 (110 surface. It provides a qualitative explanation for the prepared nano-SnO2-based sensor exhibiting different gas sensing properties towards H2 and CO.

  6. Comparison of carbon monoxide poisonings originated from coal stove and natural gas and the evaluation of Neutrophil/Lymphocyte ratio

    Directory of Open Access Journals (Sweden)

    Yahya Kemal Günaydın

    2015-09-01

    Full Text Available Objective: The aim of our study is to present the epidemiologic, clinical, laboratory and prognosis differences between the coal stove origin poisoning and natural gas leakages. We also aimed to investigate relationship between the severity of clinical picture, prognosis, complications develop in CO poisoning with neutrophil/lymphocyte ratio (NLR at the initial admission. Methods: All the acute carbon monoxide cases who applied to Ankara Training and Research Hospital Emergency Medicine Clinic between October 2009 and April 2010 were included to this prospective study. CO poisoning diagnosis was made by the history of CO poisoning with carboxyl hemoglobin (COHb concentration is over 10%. 100 patients were included to our study. Results: Of the patients, 55(55% were poisoned from the coal-stove and 45(45% from natural gas leakage. The mean COHb level of the natural gas group was significantly high (p=0.01. The mean value of GCS of the natural gas group was significantly lower (p=0.018. The number of patients with indication for HBO therapy were 17 and 6 in the natural gas group and coal-stove group, respectively, being significantly higher in the natural gas group(p=0.001. There was no statistically significant relationship between the value of NLR and values of COHb, troponin, and GCS (p=0.872, p=0.470, and p=0.896, respectively. Conclusions: Carbon monoxide poisoning from natural gas leakage is more toxic than that from the coal-stove. There is no relationship between NLR at the time of presentation and the severity of clinical findings, prognosis and complications.

  7. Highly selective dry etching of polystyrene-poly(methyl methacrylate) block copolymer by gas pulsing carbon monoxide-based plasmas

    Science.gov (United States)

    Miyazoe, Hiroyuki; Jagtiani, Ashish V.; Tsai, Hsin-Yu; Engelmann, Sebastian U.; Joseph, Eric A.

    2017-05-01

    We propose a very selective PMMA removal method from poly(styrene-block-methyl methacrylate) (PS-b-PMMA) copolymer using gas pulsing cyclic etching. Flow ratio of hydrogen (H2) added to carbon monoxide (CO) plasma was periodically changed to control etch and deposition processes on PS. By controlling the process time of each etch and deposition step, full PMMA removal including etching of the neutral layer was demonstrated at 28 nm pitch, while PS thickness remained intact. This is more than 10 times higher etch selectivity than conventional continuous plasma etch processes using standard oxygen (O2), CO-H2 and CO-O2-based chemistries.

  8. Theoretical study on the gas-phase reaction mechanism between palladium monoxide and methane.

    Science.gov (United States)

    Yang, Hua-Qing; Hu, Chang-Wei; Gao, Chao; Yang, Meng-Yao; Li, Fang-Ming; Li, Cai-Qin; Li, Xiang-Yuan

    2011-12-01

    The gas-phase reaction mechanism between palladium monoxide and methane has been theoretically investigated on the singlet and triplet state potential energy surfaces (PESs) at the CCSD(T)/AVTZ//B3LYP/6-311+G(2d, 2p), SDD level. The major reaction channel leads to the products PdCH(2) + H(2)O, whereas the minor channel results in the products Pd + CH(3)OH, CH(2)OPd + H(2), and PdOH + CH(3). The minimum energy reaction pathway for the formation of main products (PdCH(2) + H(2)O), involving one spin inversion, prefers to start at the triplet state PES and afterward proceed along the singlet state PES, where both CH(3)PdOH and CH(3)Pd(O)H are the critical intermediates. Furthermore, the rate-determining step is RS-CH(3) PdOH → RS-2-TS1cb → RS-CH(2)Pd(H)OH with the rate constant of k = 1.48 × 10(12) exp(-93,930/RT). For the first C-H bond cleavage, both the activation strain ΔE(≠)(strain) and the stabilizing interaction ΔE(≠)(int) affect the activation energy ΔE(≠), with ΔE(≠)(int) in favor of the direct oxidative insertion. On the other hand, in the PdCH(2) + H(2) O reaction, the main products are Pd + CH(3)OH, and CH(3)PdOH is the energetically preferred intermediate. In the CH(2)OPd + H(2) reaction, the main products are Pd + CH(3)OH with the energetically preferred intermediate H(2)PdOCH(2). In the Pd + CH(3)OH reaction, the main products are CH(2)OPd + H(2), and H(2)PdOCH(2) is the energetically predominant intermediate. The intermediates, PdCH(2), H(2) PdCO, and t-HPdCHO are energetically preferred in the PdC + H(2), PdCO + H(2), and H(2)Pd + CO reactions, respectively. Besides, PdO toward methane activation exhibits higher reaction efficiency than the atom Pd and its first-row congener NiO.

  9. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  10. Speciality chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.J.; Knifton, J.F. (Shell Development Company, Houston, TX (USA))

    1992-04-01

    Texaco has undertaken research to investigate the use of carbon monoxide and hydrogen as building blocks for the manufacture of amidocarbonylation products. The amidocarbonylation reaction offers a convenient method to construct two functionalities - amido and carboxylate - simultaneously. Texaco has extended this chemistry to make a variety of speciality chemicals by tailoring cobalt catalysts. Products which have been made including: surface active agents such as the C{sub 14} - C{sub 16} alkyl amidoacids; surfactants; intermediates for sweeteners like aspartame; food additives like glutamic acid; and chelating agents such as polyamidoacids. 20 refs., 10 figs., 1 tab.

  11. Biological sulphate reduction with synthesis gas.

    NARCIS (Netherlands)

    Houten, van R.T.

    1996-01-01

    The objectives of this thesis are (1) to study the feasibility of using synthesis gas as electron donor and carbon source for biological sulphate reduction and (2) to develop criteria for design and operation of gas- lift bioreactors for sulphate reduction using immobilized biomass.At appeared that

  12. Nitrogen-monoxide gas-sensing properties of transparent p-type copper-oxide nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soojeong; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-15

    We report the nitrogen-monoxide (NO) gas-sensing properties of transparent p-type copper-oxide (CuO) nanorod arrays synthesized by using the hydrothermal method with a CuO nanoparticle seed layer deposited on a glass substrate via sputtering process. We synthesized polycrystalline CuO nanorods measuring 200 to 300 nm in length and 20 to 30 nm in diameter for three controlled molarity ratios of 1:1, 1:2 and 1:4 between copper nitrate trihydrate [Cu(NO{sub 2}){sub 2}·3H{sub 2}O] and hexamethylenetetramine (C{sub 6}H{sub 12}N{sub 4}). The crystal structures and morphologies of the synthesized CuO nanorod arrays were examined using grazing incidence X-ray diffraction and scanning electron microscopy. The gas-sensing measurements for NO gas in dry air indicated that the CuO nanorodarray-based gas sensors synthesized under hydrothermal condition at a molarity ratio of 1:2 showed the best gas sensing response to NO gas. These CuO nanorod-array gas sensors exhibited a highly sensitive response to NO gas, with a maximum sensitivity of about 650% for 10 ppm NO in dry air at an operating temperature of 100 .deg. C. These transparent p-type CuO nanorod-array gas sensors have shown a reversible and reliable response to NO gas over a range of operating temperatures. These results indicate certain potential use of p-type oxide semiconductor CuO nanorods as sensing materials for several types of gas sensors, including p - n junction gas sensors.

  13. Combustion synthesis of tin dioxide nanocomposites for gas sensing applications

    Science.gov (United States)

    Bakrania, Smitesh Dhirajlal

    The current work focuses on understanding the mechanisms controlling tin dioxide (SnO2) nanoparticle morphology in combustion synthesis systems and how nanoarchitecture affects performance of solid-state gas sensors. A range of analytical methods (including transmission and scanning electron microscopy, x-ray diffraction, nitrogen absorption, and XEDS) were used to characterize the materials properties as a function of the combustion synthesis conditions. A novel method of generating tin dioxide materials was developed which provides a new degree of control over SnO2 morphology; including spherical, nanorod and encapsulated particle architectures. A simplified model for particle formation based on characteristic times was developed to identify the physical and chemical processes affecting the morphologies observed using transmission electron microscope imaging. The SnO2 nanoparticles evolve from primary particles sizes of 7 nm to 14 nm through the synthesis region, and the results indicate interparticle collision and sintering are the dominant mechanisms in determining particle size and morphology for the flame conditions studied. Metal acetates were used to create metal/SnO 2 nanocomposite materials, and the processes controlling gold acetate decomposition in particular were explored. The results of the studies suggest a relationship between the precursor crystallite size and the product nanoparticles. The well-characterized SnO2 particles were evaluated as the active materials for gas-sensing. Sensor sensitivity and time response to carbon monoxide in dry air was used to investigate microstructure-performance links. Excellent sensitivity (3 7, based on the ratio of the resistance of the sensor in air to the resistance in the target gas) and time response (4--20 seconds) were demonstrated for the thin film gas sensors. Fabrication studies demonstrated the sensor performance was a strong function of the film deposition method. A novel method for manufacturing

  14. Bioconversion of coal derived synthesis gas to liquid fuels

    Science.gov (United States)

    Jain, M. K.; Worden, R. M.; Grethlein, A.

    1994-07-01

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H2-CO2; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following: butyrate production was enhanced during H2/CO2 (50/50) batch fermentation; isolation of CO-utilizing anaerobic strains is in progress; pressure (15 psig) fermentation was evaluated as a means of increasing CO availability; polyurethane foam packing material was selected for trickle bed solid support; cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8; trickle bed and gas lift fermentor designs were modified after initial water testing; and pervaporation system was constructed (No alcohol selectivity was shown with the existing membranes during initial start-up).

  15. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-02-03

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  16. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2003-01-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  17. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-01-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  18. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  19. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  20. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-08-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  1. Alternative Fuels and Chemicals from Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1998-12-02

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  2. Alternative Fuels and Chemicals From Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    none

    1998-07-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  3. Generation of synthesis gas by partial oxidation of natural gas in a gas turbine

    NARCIS (Netherlands)

    Cornelissen, R.; Tober, E.; Kok, J.B.W.; Meer, van der T.H.

    2006-01-01

    The application of partial oxidation in a gas turbine (PO-GT) in the production of synthesis gas for methanol production is explored. In PO-GT, methane is compressed, preheated, partial oxidized and expanded. For the methanol synthesis a 12% gain in thermal efficiency has been calculated for the PO-

  4. Generation of synthesis gas by partial oxidation of natural gas in a gas turbine

    NARCIS (Netherlands)

    Cornelissen, R.; Tober, E.; Kok, Jacobus B.W.; van der Meer, Theodorus H.

    2006-01-01

    The application of partial oxidation in a gas turbine (PO-GT) in the production of synthesis gas for methanol production is explored. In PO-GT, methane is compressed, preheated, partial oxidized and expanded. For the methanol synthesis a 12% gain in thermal efficiency has been calculated for the

  5. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.; Bell, C.M.; Chow, P.; Louie, J.; Mohr, J.M.; Peinemann, K.V.; Pinnau, I.; Wijmans, J.G.; Gottschlich, D.E.; Roberts, D.L.

    1990-10-01

    The production of hydrogen from synthesis gas made by gasification of coal is expensive. The separation of hydrogen from synthesis gas is a major cost element in the total process. In this report we describe the results of a program aimed at the development of membranes and membrane modules for the separation and purification of hydrogen from synthesis gas. The performance properties of the developed membranes were used in an economic evaluation of membrane gas separation systems in the coal gasification process. Membranes tested were polyetherimide and a polyamide copolymer. The work began with an examination of the chemical separations required to produce hydrogen from synthesis gas, identification of three specific separations where membranes might be applicable. A range of membrane fabrication techniques and module configurations were investigated to optimize the separation properties of the membrane materials. Parametric data obtained were used to develop the economic comparison of processes incorporating membranes with a base-case system without membranes. The computer calculations for the economic analysis were designed and executed. Finally, we briefly investigated alternative methods of performing the three separations in the production of hydrogen from synthesis gas. The three potential opportunities for membranes in the production of hydrogen from synthesis gas are: (1) separation of hydrogen from nitrogen as the final separation in a air-blown or oxygen-enriched air-blown gasification process, (2) separation of hydrogen from carbon dioxide and hydrogen sulfide to reduce or eliminate the conventional ethanolamine acid gas removal unit, and (3) separation of hydrogen and/or carbon dioxide form carbon monoxide prior to the shift reactor to influence the shift reaction. 28 refs., 54 figs., 40 tabs.

  6. Carbon monoxide gas sensing properties of Ga-doped ZnO film grown by ion plating with DC arc discharge

    OpenAIRE

    Kishimoto, S; Akamatsu, S; Song, H.; Nomoto, J; Makino, H.; Yamamoto, T

    2014-01-01

    The carbon monoxide (CO) gas sensing properties of low-resistance heavily Ga-doped ZnO thin films were evaluated. The ZnO films with a thickness of 50 nm were deposited at 200 °C by ion plating. The electrical properties of the ZnO films were controlled by varying the oxygen assist gas flow rate during deposition. The CO gas sensitivity of ZnO films with Au electrodes was investigated in nitrogen gas at a temperature of 230 to 330 °C. CO gas concentration was varied in the r...

  7. Synthesis gas solubility in Fischer-Tropsch slurry: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.; Lin, H.M.

    1988-01-01

    The objective is to investigate the phase equilibrium behavior of synthesis gases and products in a Fischer-Tropsch slurry reactor. A semi-flow apparatus has been designed and constructed for this purpose. Measurements have been made for hydrogen, cabon monoxide, methane, ethane, ethylene, and carbon dioxide in a heavy n-paraffin at temperatures from 100 to 300)degree)C and pressures 10 to 50 atm. Three n-paraffin waxes: n-eicosane (n-C/sub 20/), n-octacosane )n-C/sub 28/), and n-hexatriacontane (n-C/sub 36/), were studied to model the industrial wax. Solubility of synthesis gas mixtures of H/sub 2/ and CO in n-C/sub 28/ was also determined at two temperatures (200 and 300)degree)C) for each of three gas compositions (40.01, 50.01, and 66.64 mol%) of hydrogen). Measurements were extended to investigate the gas solubility in two industrial Fischer-Tropsch waxes: Mobilwax and SASOL wax. Observed solubility increases in the order: H/sub 2/, CO, CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/, at a given temperature pressure, and in the same solvent. Solubility increases with increasing pressure for all the gases. Lighter gases H/sub 2/ and CO show increased solubility with increasing temperature, while the heavier gases CO/sub 2/, ethane, and ethylene show decreased solubility with increasing temperature. The solubility of methane, the intermediate gas, changes little with temperature, and shows a shallow minimum at about 200)degrees)C or somewhat above. Henry's constant and partial molal volume of the gas solute at infinite dilution are determinedfrom the gas solubility data. A correlation is developed from the experimental data in the form on an equation of state. A computer program has been prepared to implement the correlation. 19 refs., 66 figs., 39 tabs.

  8. Techno-economic analysis for the evaluation of three UCG synthesis gas end use approaches

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Burchart-Korol, Dorota; Krawczyk, Piotr; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) enables the utilization of coal reserves that are economically not exploitable because of complex geological boundary conditions. In the present study we investigate UCG as a potential economic approach for conversion of deep-seated coals into a synthesis gas and its application within three different utilization options. Related to geological boundary conditions and the chosen gasification agent, UCG synthesis gas composes of varying methane, hydrogen, nitrogen, carbon monoxide and carbon dioxide amounts. In accordance to its calorific value, the processed UCG synthesis gas can be utilized in different manners, as for electricity generation in a combined cycle power plant or for feedstock production making use of its various chemical components. In the present study we analyze UCG synthesis gas utilization economics in the context of clean electricity generation with an integrated carbon capture and storage process (CCS) as well as synthetic fuel and fertilizer production (Kempka et al., 2010) based on a gas composition achieved during an in situ UCG trial in the Wieczorek Mine. Hereby, we also consider chemical feedstock production in order to mitigate CO2 emissions. Within a sensitivity analysis of UCG synthesis gas calorific value variations, we produce a range of capital and operational expenditure bandwidths that allow for an economic assessment of different synthesis gas end use approaches. To carry out the integrated techno-economic assessment of the coupled systems and the sensitivity analysis, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014). Our techno-economic modeling results demonstrate that the calorific value has a high impact on the economics of UCG synthesis gas utilization. In the underlying study, the synthesis gas is not suitable for an economic competitive electricity generation, due to the relatively low calorific value of 4.5 MJ/Nm³. To be a profitable option for electricity

  9. Synthesis Gas from Pyrolysed Plastics for Combustion Engine

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2015-12-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120%. In terms of burning, synthesis gas has similar properties as natural gas. More significant changes are observed in even burning of fuel in consecutive cycles.

  10. Development and comparisons of efficient gas-cultivation systems for anaerobic carbon monoxide-utilizing microorganisms.

    Science.gov (United States)

    Ford, Jack; Todd French, W; Hernandez, Rafael; Easterling, Emily; Zappi, Mark; Morrison, Christine; Licha, Margarita; Brown, Lewis R

    2008-02-01

    We describe a system for the cultivation of gaseous substrate utilizing microorganisms that overcomes some of the limitations of fixed volume culture vessels and the costs associated with sparging. Cali-5-Bond gas-sampling bag was used as the culture vessel. The bags contain approximately six times more mass of CO than the 40 mL vials at 1 atm of pressure and performed equally to the 40 mL vials in terms of their ability to maintain the composition of the gas over extended incubation times. Experiments using Clostridium ljungdahlii and CO as the sole carbon and energy source in both the gas sampling bag cultivation system and the traditional vial system demonstrated that this culture had a 15x increase in optical density in 24 h of incubation. The gas-sampling bags offer a viable alternative to gas sparging while overcoming the limitations of fixed volume culture vessels.

  11. Numerical simulation of synthesis gas incineration

    Science.gov (United States)

    Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.

    2016-04-01

    The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.

  12. Cobalt--zirconia catalysts for the synthesis of hydrocarbons from carbon monoxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bulanova, T.F.; Lapidus, A.L.

    1972-01-01

    Laboratory and pilot plant experiments were done in order to replace thoria by more readily available and biologically inactive promoters in kieselguhr-supported cobalt and cobalt-magnesia catalysts. Maximum activity, stability, and yields of ceresins boiling above 460/sup 0/C were obtained with a zirconia-cobalt weight ratio of 1:10. The activity of this catalyst remained spectacularly high for five months. The optimum reaction temperature was 190/sup 0/C at 8 to 9 atm pressure of the carbon monoxide-hydrogen mixture. The experimental procedures and the chemical and grain-size composition of five catalysts are given, as well as the yields of methane, C/sub 2-4/fraction, gasoline, oils, and ceresin.

  13. Method and apparatus for producing synthesis gas

    Science.gov (United States)

    Hemmings, John William; Bonnell, Leo; Robinson, Earl T.

    2010-03-03

    A method and apparatus for reacting a hydrocarbon containing feed stream by steam methane reforming reactions to form a synthesis gas. The hydrocarbon containing feed is reacted within a reactor having stages in which the final stage from which a synthesis gas is discharged incorporates expensive high temperature materials such as oxide dispersed strengthened metals while upstream stages operate at a lower temperature allowing the use of more conventional high temperature alloys. Each of the reactor stages incorporate reactor elements having one or more separation zones to separate oxygen from an oxygen containing feed to support combustion of a fuel within adjacent combustion zones, thereby to generate heat to support the endothermic steam methane reforming reactions.

  14. Biological conversion of synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H[sub 2]0 [yields] CO[sub 2] + H[sub 2]. C. thiosulfatophilum is also a H[sub 2]S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25[degree] and 30[degree]C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30[degree], 32[degree] or 34[degree]C. The rate of conversion of COs and H[sub 2]O to CO[sub 2] and H[sub 2]S may be modeled by a first order rate expression. The rate constant at 30[degree]C was found to be 0.243 h[sup [minus]1]. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: [mu] = [sub 351] + I[sub o]/[sup 0.152]I[sub o]. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

  15. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    Science.gov (United States)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  16. Carbon monoxide as a tracer of gas transport in snow and other natural porous media

    NARCIS (Netherlands)

    Huwald, H.; Selker, J.S.; Tyler, S.W.; Calaf, M.; Van de Giesen, N.C.; Parlange, M.B.

    2012-01-01

    The movement of air in natural porous media is complex and challenging to measure. Yet gas transport has important implications, for instance, for the evolution of the seasonal snow cover and for water vapor transport in soil. A novel in situmulti-sensor measurement system providing high-resolution

  17. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas.

    Science.gov (United States)

    Guiot, Serge R; Cimpoia, Ruxandra; Carayon, Gaël

    2011-03-01

    Gasification of biomass produces a mixture of gas (mainly carbon monoxide (CO), carbon dioxide (CO(2)), and hydrogen (H(2))) called synthesis gas, or syngas, by thermal degradation without combustion. Syngas can be used for heat or electricity production by thermochemical processes. This project aims at developing an alternative way to bioupgrade syngas into biogas (mainly methane), via anaerobic fermentation. Nonacclimated industrial granular sludge to be used as reactor inoculum was initially evaluated for mesophilic carboxydotrophic methanogenesis potential in batch tests at 4 and 8 mmol CO/g VSS.d, in the absence and presence of H(2) and CO(2), respectively. Granular sludge was then introduced into a 30 L gas-lift reactor and supplied with CO, to study the production of methane and other metabolites, at different gas dilutions as well as feeding and recirculation rates. A maximal CO conversion efficiency of 75%, which was gas-liquid mass transfer limited, occurred at a CO partial pressure of 0.6 atm combined with a gas recirculation ratio of 20:1. The anaerobic granule potential for methanogenesis from CO was likely hydrogenotrophic, combined with CO-dependent H(2) formation, either under mesophilic or thermophilic conditions. Thermophilic conditions provide the anaerobic granules with a CO-bioconversion potential significantly larger (5-fold) than under mesophilic conditions, so long as the gas-liquid transfer is alleviated.

  18. Autothermal reforming of natural gas to synthesis gas:reference: KBR paper #2031.

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David (KBR, Houston, TX); Rice, Steven, D.

    2007-04-01

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Sued-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO{sub 2} in the burner feed showed that the conditions in the burner allow for the

  19. Autothermal reforming of natural gas to synthesis gas:reference: KBR paper #2031.

    Energy Technology Data Exchange (ETDEWEB)

    Mann, David (KBR, Houston, TX); Rice, Steven, D.

    2007-04-01

    This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Sued-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO{sub 2} in the burner feed showed that the conditions in the burner allow for the

  20. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  1. Gas Sensing Properties of NiSb2O6 Micro- and Nanoparticles in Propane and Carbon Monoxide Atmospheres

    Directory of Open Access Journals (Sweden)

    Verónica-M. Rodríguez-Betancourtt

    2017-01-01

    Full Text Available Micro- and nanoparticles of NiSb2O6 were synthesized by the microwave-assisted colloidal method. Nickel nitrate, antimony chloride, ethylenediamine, and ethyl alcohol were used. The oxide was obtained at 600°C and was analyzed by X-ray diffraction (XRD and Raman spectroscopy, showing a trirutile-type structure with cell parameters a = 4.641 Å, c = 9.223 Å, and a space group P42/mnm (136. Average crystal size was estimated at ~31.19 nm, according to the XRD-peaks. The microstructure was scrutinized by scanning electron microscopy (SEM, observing microrods measuring ~3.32 μm long and ~2.71 μm wide, and microspheres with an average diameter of ~8 μm; the size of the particles shaping the microspheres was measured in the range of ~0.22 to 1.8 μm. Transmission electron microscopy (TEM revealed that nanoparticles were obtained with sizes in the range of 2 to 20 nm (~10.7 nm on average. Pellets made of oxide’s powders were tested in propane (C3H8 and carbon monoxide (CO atmospheres at different concentrations and temperatures. The response of the material increased significantly as the temperature and the concentration of the test gases rose. These results show that NiSb2O6 may be a good candidate for gas sensing applications.

  2. Determination of carbon monoxide with a modified zeolite sorbent and methanization-gas chromatography.

    Science.gov (United States)

    Juntarawijit, C; Poovey, H G; Rando, R J

    2000-01-01

    The purpose of this study was to develop an alternative sorbent sampling technique to concentrate CO from an air sample for subsequent instrumental analysis. Y52 zeolite doped with 9.4 wt % cuprous ions was found to have high capacity, stability to air, and thermal reversibility for CO. The Cu(I)-modified zeolite was packed in glass tubes, preceded by a drying tube containing silica gel. Air was sampled through the tubes at the flow rate of 100 mL/min. Collected CO was thermally desorbed at 300 degrees C and determined by gas chromatography with reduction of CO to methane and flame ionization detection (TD-GC-CH4-FID). Breakthrough capacity of the sorbent was found to be 2.74 mg CO per gram of sorbent. For 2-L air samples containing 12.5 to 100 ppm CO and 50% relative humidity at room temperature, recovery of CO was found to be 96.6% with pooled relative standard deviation of 5.8%. The estimated detection limit for a 2-L sample was 0.2 ppm. Collected CO was stable at room temperature for 1 day and up to 7 days at 4 degrees C if the sorbent tube was flushed with helium before storage. In field testing, the ratio of CO measured by the new technique and by a reference technique was found to be 0.93 with pooled relative standard deviation of 6.3%. This unique new sorbent coupled with TD-GC-CH4-FID shows promise as a sensitive and specific alternative for measurement of CO in air.

  3. Chemical production from waste carbon monoxide: its potential for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Rohrmann, C.A.; Schiefelbein, G.F.; Molton, P.M.; Li, C.T.; Elliott, D.C.; Baker, E.G.

    1977-11-01

    Results of a study of the potential for energy conservation by producing chemicals from by-product or waste carbon monoxide (CO) from industrial sources are summarized. Extensive compilations of both industrial sources and uses for carbon monoxide were developed and included. Reviews of carbon monoxide purification and concentration technology and preliminary economic evaluations of carbon monoxide concentration, pipeline transportation and utilization of CO in the synthesis of ammonia and methanol are included. Preliminary technical and economic feasibility studies were made of producing ammonia and methanol from the by-product CO produced by a typical elemental phosphorus plant. Methanol synthesis appears to be more attractive than ammonia synthesis when using CO feedstock because of reduced water gas shift and carbon dioxide removal requirements. The economic studies indicate that methanol synthesis from CO appears to be competitive with conventional technology when the price of natural gas exceeds $0.82/million Btu, while ammonia synthesis from CO is probably not competitive until the price of natural gas exceeds $1.90/million Btu. It is concluded that there appears to be considerable potential for energy conservation in the chemical industry, by collecting CO rather than flaring it, and using it to make major chemicals such as ammonia and methanol.

  4. Internal Combustion Engine Powered by Synthesis Gas from Pyrolysed Plastics

    Directory of Open Access Journals (Sweden)

    Chríbik Andrej

    2016-07-01

    Full Text Available The article discusses the application of synthesis gas from pyrolysis of plastics in petrol engine. The appropriate experimental measurements were performed on a combustion engine LGW 702 designated for micro-cogeneration unit. The power parameters, economic parameters in term of brake specific fuel consumption, and internal parameters of the engine were compared to the engine running on the reference fuel - natural gas and synthesis gas. Burning synthesis gas leads to decreased performance by about 5% and to increased mass hourly consumption by 120 %. In terms of burning, synthesis gas has similar properties as natural gas. Compared with [5] a more detailed study has been prepared on the effects of angle of spark advance on the engine torque, giving more detailed assessment of engine cycle variability and considering specification of start and end of combustion in the logarithm p-V diagram.

  5. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    Science.gov (United States)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  6. Alternative fuels and chemicals from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1998-12-01

    A DOE/PETC funded study was conducted to examine the use of a liquid phase mixed alcohol synthesis (LPMAS) plant to produce gasoline blending ethers. The LPMAS plant was integrated into three utilization scenarios: a coal fed IGCC power plant, a petroleum refinery using coke as a gasification feedstock, and a standalone natural gas fed partial oxidation plant. The objective of the study was to establish targets for the development of catalysts for the LPMAS reaction. In the IGCC scenario, syngas conversions need only be moderate because unconverted syngas is utilized by the combined cycle system. A once through LPMAS plant achieving syngas conversions in the range of 38--49% was found to be suitable. At a gas hourly space velocity of 5,000 sL/Kg-hr and a methanol:isobutanol selectivity ratio of 1.03, the target catalyst productivity ranges from 370 to 460 g iBuOH/Kg-hr. In the petroleum refinery scenario, high conversions ({approximately}95%) are required to avoid overloading the refinery fuel system with low Btu content unconverted syngas. To achieve these high conversions with the low H{sub 2}/CO ratio syngas, a recycle system was required (because of the limit imposed by methanol equilibrium), steam was injected into the LPMAS reactor, and CO{sub 2} was removed from the recycle loop. At the most economical recycle ratio, the target catalyst productivity is 265 g iBuOH/Kg-hr. In the standalone LPMAS scenario, essentially complete conversions are required to achieve a fuel balanced plant. At the most economical recycle ratio, the target catalyst productivity is 285 g iBuOH/Kg-hr. The economics of this scenario are highly dependent on the cost of the natural gas feedstock and the location of the plant. For all three case scenarios, the economics of a LPMAS plant is marginal at current ether market prices. Large improvements over demonstrated catalyst productivity and alcohol selectivity are required.

  7. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  8. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    Energy Technology Data Exchange (ETDEWEB)

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  9. Advances in the Partial Oxidation of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    Quanli Zhu; Xutao Zhao; Youquan Deng

    2004-01-01

    The conversion and utilization of natural gas is of significant meaning to the national economy,even to the everyday life of people. However, it has not become a popular industrial process as expected due to the technical obstacles. In the past decades, much investigation into the conversion of methane,predominant component of natural gas, has been carried out. Among the possible routes of methane conversion, the partial oxidation of methane to synthesis gas is considered as an effective and economically feasible one. In this article, a brief review of recent studies on the mechanism of the partial oxidation of methane to synthesis gas together with catalyst development is wherein presented.

  10. Plasma reforming of glycerol for synthesis gas production.

    Science.gov (United States)

    Zhu, Xinli; Hoang, Trung; Lobban, Lance L; Mallinson, Richard G

    2009-05-28

    Glycerol can be effectively converted to synthesis gas (selectivity higher than 80%) with small amounts of water or no water using plasmas at low temperature and atmospheric pressure, without external heating.

  11. Transient kinetic modeling of the ethylene and carbon monoxide oxidation over a commercial automotive exhaust gas catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, J.M.A.; Hoebink, J.H.B.J.; Schouten, J.C.

    2000-03-01

    The transient kinetics of ethylene oxidation by oxygen over a commercial Pt/Rh/CeO{sub 2}/{gamma}-Al{sub 2}O{sub 3} three-way catalyst were modeled. Experiments were carried out in a fixed-bed microreactor with two separate inlets, enabling alternate feeding of ethylene and oxygen with frequencies up to {1/4} Hz. The experimental conditions resemble the cold-start period of an Otto engine in a car. Two types of adsorbed ethylene species seem to exist. A selective catalyst deactivation for oxygen adsorption, due to deposition of carbonaceous species, was found. A kinetic model was developed, based on elementary reaction steps, that allows one to describe the experiments quantitatively. Furthermore, this model was combined with the published model for transient carbon monoxide oxidation over the same catalyst, which enables one to predict the results of simultaneous ethylene and carbon monoxide oxidation. Both components react in rather distinct zones, with ethylene being converted only when carbon monoxide oxidation is almost complete.

  12. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  13. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    Directory of Open Access Journals (Sweden)

    Martijn eDiender

    2015-11-01

    Full Text Available Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  14. Integrated electricity and carbon monoxide production

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, J.

    1994-03-23

    In a process for the production of carbon monoxide and electric power in an IGCC with the removal of sulphur compounds, between the outlet of quenched gas from a partial oxidation unit and a fuel inlet to a combined cycle gas turbine there is a permeable membrane unit to separate a non-permeable stream, which is utilised as a source of carbon monoxide, and a permeate stream, which is used as fuel for the gas turbine of the combined cycle unit. (author)

  15. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst. [Quarterly] report, October 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Yates, I.C.; Satterfield, C.N.

    1989-12-31

    The rate of synthesis gas consumption over a cobalt FischerTropsch catalyst was measured in a well-mixed, continuous-flow, slurry reactor at 220 to 240{degrees}C, 0.5 to 1.5 MPa, H{sub 2}/CO feed ratios of 1.5 to 3.5 and conversions of 7 to 68% of hydrogen and 11 to 73% of carbon monoxide. The inhibiting effect of carbon monoxide was determined quantitatively and a Langmuir-Hinshelwood-type equation of the following form was found to best represent the results: -R{sub H{sub 2+Co}} = (a P{sub CO}P{sub H{sub 2}})/(1 + b P{sub CO}){sup 2}. The apparent activation energy was 93 to 95 kJ/mol. Data from previous studies on cobalt-based Fischer-Tropsch catalysts are also well correlated with this rate expression.

  16. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  17. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  18. Multivariable synthesis with transfer functions. [applications to gas turbine engines

    Science.gov (United States)

    Peczkowski, J. L.

    1980-01-01

    A transfer function design theory for multivariable control synthesis is highlighted. The use of unique transfer function matrices and two simple, basic relationships - a synthesis equation and a design equation - are presented and illustrated. This multivariable transfer function approach provides the designer with a capability to specify directly desired dynamic relationships between command variables and controlled or response variables. At the same time, insight and influence over response, simplifications, and internal stability is afforded by the method. A general, comprehensive multivariable synthesis capability is indicated including nonminmum phase and unstable plants. Gas turbine engine examples are used to illustrate the ideas and method.

  19. The economical production of alcohol fuels from coal-derived synthesis gas. Quarterly technical progress report No. 5, October 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Two base case flow sheets have now been prepared. In the first, which was originally presented in TPR4, a Texaco gasifier is used. Natural gas is also burned in sufficient quantity to increase the hydrogen to carbon monoxide ratio of the synthesis gas to the required value of 1. 1 for alcohol synthesis. Acid gas clean up and sulfur removal are accomplished using the Rectisol process followed by the Claus and Beavon processes. About 10% of the synthesis gas is sent to a power generation unit in order to produce electric power, with the remaining 90% used for alcohol synthesis. For this process, the estimated installed cost is $474.2 mm. The estimated annual operating costs are $64.5 MM. At a price of alcohol fuels in the vicinity of $1. 00/gal, the pay back period for construction of this plant is about four years. The details of this case, called Base Case 1, are presented in Appendix 1. The second base case, called Base Case 2, also has a detailed description and explanation in Appendix 1. In Base Case 2, a Lurgi Gasifier is used. The motivation for using a Lurgi Gasifier is that it runs at a lower temperature and pressure and, therefore, produces by-products such as coal liquids which can be sold. Based upon the economics of joint production, discussed in Technical Progress Report 4, this is a necessity. Since synthesis gas from natural gas is always less expensive to produce than from coal, then alcohol fuels will always be less expensive to produce from natural gas than from coal. Therefore, the only way to make coal- derived alcohol fuels economically competitive is to decrease the cost of production of coal-derived synthesis gas. one method for accomplishing this is to sell the by-products from the gasification step. The details of this strategy are discussed in Appendix 3.

  20. Protect Yourself from Carbon Monoxide Poisoning

    Centers for Disease Control (CDC) Podcasts

    2007-11-20

    Learn about carbon monoxide - a colorless, odorless gas - and how to protect yourself and your family.  Created: 11/20/2007 by CDC National Center for Environmental Health.   Date Released: 12/4/2007.

  1. Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors

    Science.gov (United States)

    Nalakath Abubackar, Haris; Veiga, María C.; Kennes, Christian

    2015-01-01

    The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L), EXP2 (pH = 4.75, YE 1 g/L) and EXP3 (pH = 5.75, YE 0.2 g/L). When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L) and products concentrations, i.e., acetic acid (2147.1 mg/L) and ethanol (352.6 mg/L). This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54. PMID:25608591

  2. Bioconversion of coal-derived synthesis gas to liquid fuels. Final report, September 29, 1992--December 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.E.

    1995-01-15

    The proposed research project consists of an integrated, two-stage fermentation and a highly energy-efficient product separation scheme. In the first fermentation, Butyribacterium methylotrophicum converts carbon monoxide (CO) into butyric acid and acetic acids which are then converted into butanol, ethanol, and a small amount of acetone in the second stage fermentation by Clostridium acetobutylicum. An advanced separation system process, based on pervaporation, removes the alcohols from the fermentation broth as they are formed, along with some of the hydrogen sulfide (H{sub 2}S), to minimize possible inhibition of the fermentations. This bioconversion process offers a critical advantage over conventional, catalytic processes for synthesis gas conversion: the microorganisms are several orders of magnitude more sulfur tolerant than metallic catalysts. The catalysts require sulfur removal to the parts per million level, while the microorganisms are unaffected by H{sub 2}S and carbonyl sulfide (COS) at one part per hundred--roughly the composition of sulfur in raw synthesis gas. During the two-year course of this project, the following major objectives have been accomplished: demonstrated long-term cell recycle of continuous fermentation of synthesis gas; demonstrated cell immobilization of Butyribacterium methylotrophicum; identified trickle-bed reactor as a viable alternative fermentation method; modulated metabolic pathways to increase C4 formation during synthesis gas fermentation; recovered carbon and electrons from H{sub 2} and CO{sub 2} with pathway modulation for increased C4 production; developed bacterial strains with improved selectivity for butyrate fermentation; demonstrated two-stage CO to alcohol fermentation; and concentrated alcohol from solventogenic fermentation by pervaporation.

  3. Hyperbaric programs in the United States: Locations and capabilities of treating decompression sickness, arterial gas embolisms, and acute carbon monoxide poisoning: survey results.

    Science.gov (United States)

    Chin, Walter; Jacoby, Laura; Simon, Olivia; Talati, Nisha; Wegrzyn, Gracelene; Jacoby, Rachelle; Proano, Jacob; Sprau, Susan E; Markovitz, Gerald; Hsu, Rita; Joo, Ellie

    2016-01-01

    Hyperbaric oxygen therapy is the primary treatment for arterial gas embolism, decompression sickness and acute carbon monoxide poisoning. Though there has been a proliferation of hyperbaric centers throughout the United States, a scarcity of centers equipped to treat emergency indications makes transport of patients necessary. To locate and characterize hyperbaric chambers capable of treating emergency cases, a survey of centers throughout the entire United States was conducted. Using Google, Yahoo, HyperbaricLink and the UHMS directory, a database for United States chambers was created. Four researchers called clinicians from the database to administer the survey. All centers were contacted for response until four calls went unreturned or a center declined to be included. The survey assessed chamber readiness to respond to high-acuity patients, including staff availability, use of medical equipment such as ventilators and intravenous infusion devices, and responding yes to treating hyperbaric emergencies within a 12-month period. Only 43 (11.9%, N = 361) centers had equipment, intravenous infusion pumps and ventilators, and staff necessary to treat high-acuity patients. Considering that a primary purpose of hyperbaric oxygen therapy is the treatment of arterial gas embolism and decompression sickness, more hyperbaric centers nationwide should be able to accommodate these emergency cases quickly and safely.

  4. Diffusion capacity of the lung for carbon monoxide - A potential marker of impaired gas exchange or of systemic deconditioning in chronic obstructive lung disease?

    Science.gov (United States)

    Weinreich, Ulla Møller; Thomsen, Lars Pilegaard; Brock, Christina; Karbing, Dan Stieper; Rees, Stephen Edward

    2015-11-01

    Gas exchange impairment is primarily caused by ventilation-perfusion mismatch in chronic obstructive pulmonary disease (COPD), where diffusing capacity of the lungs for carbon monoxide (DLCO) remains the clinical measure. This study investigates whether DLCO: (1) can predict respiratory impairment in COPD, that is, changes in oxygen and carbon dioxide (CO2); (2) is associated with combined risk assessment score for COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) score); and (3) is associated with blood glucose and body mass index (BMI). Fifty patients were included retrospectively. DLCO; arterial blood gas at inspired oxygen (FiO2) = 0.21; oxygen saturation (SpO2) at FiO2 = 0.21 (SpO2 (21)) and FiO2 = 0.15 (SpO2 (15)) were registered. Difference between arterial and end-tidal CO2 (ΔCO2) was calculated. COPD severity was stratified according to GOLD score. The association between DLCO, SpO2, ΔCO2, GOLD score, blood glucose, and BMI was investigated. Multiple regression showed association between DLCO and GOLD score, BMI, and glucose level (R (2) = 0.6, p < 0.0001). Linear and multiple regression showed an association between DLCO and SpO2 (21) (R (2) = 0.3, p = 0.001 and p = 0.03, respectively) without contribution from SpO2 (15) or ΔCO2. A stronger association between DLCO and GOLD score than between DLCO and SpO2 could indicate that DLCO is more descriptive of systemic deconditioning than gas exchange in COPD patients. However, further larger studies are needed. A weaker association is seen between DLCO and SpO2 (21) without contribution from SpO2 (15) and ΔCO2. This could indicate that DLCO is more descriptive of systemic deconditioning than gas exchange in COPD patients. However, further larger studies are needed.

  5. Biodesulfurization of flue gases using synthesis gas delivered as microbubbles

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Bredwell, M.D.; Little, M.H.; Kaufman, E.N. [Oak Ridge National Lab., TN (United States). Bioprocessing Research and Development Center

    1997-03-01

    In this study, the authors have focused research on utilizing a gas mixture containing 36% H{sub 2}, 47% CO, 10% CO{sub 2}, 5% CH{sub 4} and a balance of N{sub 2} as a model coal synthesis gas as a low-cost feedstock for sulfate-reducing bacteria cultures. Coal synthesis gas will be readily available in power plants and the biological utilization of syn-gas as a carbon and energy source produces no organic end product that has to be processed prior to its disposal. Coal synthesis gas is, however, sparingly soluble in aqueous phase. This process utilizing SRB with syn-gas feedstock may be mass transfer limited and methods to enhance the mass transport have been investigated. A CSTR with cell recycle and a trickle bed reactor with cells immobilized in BIO-SEP{trademark} polymeric beads were operated with syn-gas feedstock to obtain maximum productivity for SO{sub 2} reduction to H{sub 2}S. The CSTR reactor was then fed with syn-gas as microbubbles in an effort to improve the mass transfer properties. With syn-gas fed as microbubbles, productivity in the CSTR increased from 1.2 to 2.1 mmol/h {center_dot} L in 33 h. This has been observed at the same biomass concentration of 5 g/L. This shows the mass transport limitation in the above process. In the trickle bed reactor, maximum productivity of 8.8 mmol/h {center_dot} L was achieved with less carbon and energy requirements (1 mol H{sub 2} and 1.2 mol CO per mol of SO{sub 2}) indicating better surface to volume ratio with cells immobilized in the pores of polymeric beads.

  6. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  7. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced

  8. Synthesis and deposition of metal nanoparticles by gas condensation process

    Energy Technology Data Exchange (ETDEWEB)

    Maicu, Marina, E-mail: marina.maicu@fep.fraunhofer.de; Glöß, Daniel; Frach, Peter [Fraunhofer Institut für Elektronenstrahl und Plasmatechnik, FEP, Winterbergstraße 28, 01277 Dresden (Germany); Schmittgens, Ralph; Gerlach, Gerald [Institut für Festkörperelektronik, IFE, TU Dresden, Helmholtz Straße 18, 01069 Dresden (Germany); Hecker, Dominic [Fraunhofer Institut für Elektronenstrahl und Plasmatechnik, FEP, Winterbergstraße 28, 01277 Dresden, Germany and Institut für Festkörperelektronik, IFE, TU Dresden, Helmholtz Straße 18, 01069 Dresden (Germany)

    2014-03-15

    In this work, the synthesis of Pt and Ag nanoparticles by means of the inert gas phase condensation of sputtered atomic vapor is presented. The process parameters (power, sputtering time, and gas flow) were varied in order to study the relationship between deposition conditions and properties of the nanoparticles such as their quantity, size, and size distribution. Moreover, the gas phase condensation process can be combined with a plasma enhanced chemical vapor deposition procedure in order to deposit nanocomposite coatings consisting of metallic nanoparticles embedded in a thin film matrix material. Selected examples of application of the generated nanoparticles and nanocomposites are discussed.

  9. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Polyetherimide, cellulose acetate and ethylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  10. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.

    Science.gov (United States)

    Rabe, Stefan; Nachtegaal, Maarten; Vogel, Frédéric

    2007-03-28

    The catalytic partial oxidation of methane to synthesis gas over ruthenium catalysts was investigated by thermogravimetry coupled with infrared spectroscopy (TGA-FTIR) and in situ X-ray absorption spectroscopy (XAS). It was found that the oxidation state of the catalyst influences the product formation. On oxidized ruthenium sites, carbon dioxide was formed. The reduced catalyst yielded carbon monoxide as a product. The influence of the temperature was also investigated. At temperatures below the ignition point of the reaction, the catalyst was in an oxidized state. At temperatures above the ignition point, the catalyst was reduced. This was also confirmed by the in situ XAS spectroscopy. The results indicate that both a direct reaction mechanism as well as a combustion-reforming mechanism can occur. The importance of knowing the oxidation state of the surface is discussed and a method to determine it under reaction conditions is presented.

  11. Scale study of direct synthesis of dimethyl ether from biomass synthesis gas.

    Science.gov (United States)

    Lv, Yongxing; Wang, Tiejun; Wu, Chuangzhi; Ma, Longlong; Zhou, Yi

    2009-01-01

    We investigated the synthesis of dimethyl ether (DME) from biomass synthesis gas using a kind of hybrid catalyst consisting of methanol and HZSM-5 zeolite in a fixed-bed reactor in a 100 ton/year pilot plant. The biomass synthesis gas was produced by oxygen-rich gasification of corn core in a two-stage fixed bed. The results showed that CO conversions reached 82.00% and 73.55%, the selectivities for DME were 73.95% and 69.73%, and the space-time yields were 124.28 kg m(-3) h(-1) and 203.80 kg m(-3) h(-1) when gas hourly space velocities were 650 h(-1) and 1200 h(-1), respectively. Deoxidation and tar removal from biomass synthesis gas was critical to the stable operation of the DME synthesis system. Using single-pass synthesis, the H(2)/CO ratio improved from 0.98-1.17 to 2.12-2.22. The yield of DME would be increased greatly if the exhaust was reused after removal of the CO(2).

  12. Ethanol and Acetic Acid Production from Carbon Monoxide in a Clostridium Strain in Batch and Continuous Gas-Fed Bioreactors

    Directory of Open Access Journals (Sweden)

    Haris Nalakath Abubackar

    2015-01-01

    Full Text Available The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.05 on the product spectrum in such batch assays. In another set of experiments, three bioreactors were operated with continuous CO supply, in order to estimate the effect of running conditions on products and biomass formation. The bioreactors were operated under different conditions, i.e., EXP1 (pH = 5.75, YE 1g/L, EXP2 (pH = 4.75, YE 1 g/L and EXP3 (pH = 5.75, YE 0.2 g/L. When compared to EXP2 and EXP3, it was found that EXP1 yielded the maximum biomass accumulation (302.4 mg/L and products concentrations, i.e., acetic acid (2147.1 mg/L and ethanol (352.6 mg/L. This can be attributed to the fact that the higher pH and higher YE concentration used in EXP1 stimulated cell growth and did, consequently, also enhance metabolite production. However, when ethanol is the desired end-product, as a biofuel, the lower pH used in EXP2 was more favourable for solventogenesis and yielded the highest ethanol/acetic acid ratio, reaching a value of 0.54.

  13. Biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Corder, R.E.; Clausen, E.C.; Gaddy, J.L.

    1987-09-01

    High temperatures and pressures are required, and therefore, high costs incurred during catalytic upgrading of coal synthesis gas to methane. Thus, the feasibility of biological reactions in converting synthesis gas to methane has been demonstrated in mixed and pure cultures. Complete conversion has been achieved in 2 hours with a mixed culture, and 45 minutes to 1.5 hours in pure cultures of P. productus and Methanothrix sp.. Typical sulfur levels involved during the process are found not to inhibit the bacteria and so sulfur does not have to be removed prior to biomethanation. Preliminary economic analyses indicate that coal gas may be biologically methanated for 50-60 cents/million Btu. Further studies with pure culture bacteria and increased pressure are expected to enhance biomethanation economics.

  14. NOVEL REACTOR FOR THE PRODUCTION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Vasilis Papavassiliou; Leo Bonnell; Dion Vlachos

    2004-12-01

    Praxair investigated an advanced technology for producing synthesis gas from natural gas and oxygen This production process combined the use of a short-reaction time catalyst with Praxair's gas mixing technology to provide a novel reactor system. The program achieved all of the milestones contained in the development plan for Phase I. We were able to develop a reactor configuration that was able to operate at high pressures (up to 19atm). This new reactor technology was used as the basis for a new process for the conversion of natural gas to liquid products (Gas to Liquids or GTL). Economic analysis indicated that the new process could provide a 8-10% cost advantage over conventional technology. The economic prediction although favorable was not encouraging enough for a high risk program like this. Praxair decided to terminate development.

  15. Production of biofuels from synthesis gas using microbial catalysts.

    Science.gov (United States)

    Tirado-Acevedo, Oscar; Chinn, Mari S; Grunden, Amy M

    2010-01-01

    World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.

  16. A Novel Gas Sensor Based on MgSb2O6 Nanorods to Indicate Variations in Carbon Monoxide and Propane Concentrations

    Science.gov (United States)

    Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime

    2016-01-01

    Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318

  17. An accurate method for microanalysis of carbon monoxide in putrid postmortem blood by head-space gas chromatography-mass spectrometry (HS/GC/MS).

    Science.gov (United States)

    Hao, Hongxia; Zhou, Hong; Liu, Xiaopei; Zhang, Zhong; Yu, Zhongshan

    2013-06-10

    Carbon monoxide (CO) may be the cause of more than half the fatal poisonings reported in many countries, with some of these cases under-reported or misdiagnosed by medical professionals. Therefore, an accurate and reliable analytical method to measure blood carboxyhemoglobin level (COHb%), in the 1% to lethal range, is essential for correct diagnosis. Herein a method was established, i.e. head-space gas chromatography-mass spectrometry (HS/GC/MS) that has numerous advantages over other techniques, such as UV spectrometry, for determination of COHb%. There was a linear relationship (R(2)=0. 9995) between the peak area for CO and the COHb% in blood. Using a molecular sieve-packed column, CO levels in the air down to 0.01% and COHb% levels in small blood samples down to 0.2% could be quantitated rapidly and accurately. Furthermore, this method showed good reproducibility with a relative standard deviation for COHb% of <1%. Therefore, this technique provides an accurate and reliable method for determining CO and COHb% levels and may prove useful for investigation of deaths potentially related to CO exposure.

  18. Carbon monoxide poisoning

    Science.gov (United States)

    ... and smokers. Carbon monoxide can harm a fetus (unborn baby still in the womb). Symptoms of carbon ... symptoms Outlook (Prognosis) Carbon monoxide poisoning can cause death. For those who survive, recovery is slow. How ...

  19. Synthesis gas production from various biomass feedstocks

    Directory of Open Access Journals (Sweden)

    Juan A. Conesa

    2013-10-01

    Full Text Available The decomposition of five different biomass samples was studied in a horizontal laboratory reactor. The samples consisted of esparto grass, straw, Posidonea Oceanic seaweed, waste from urban and agricultural pruning and waste from forest pruning. Both pyrolysis in inert atmosphere and combustion in the presence of oxygen were studied. Different heating rates were used by varying the input speed. Major gas compounds were analyzed. The experimental results show that the amount of CO formed is lower in less dense species. It is also found that there is an increase of hydrocarbons formed at increasing feeding rates, in particular methane, while there is a decrease in the production of hydrogen.

  20. Biological conversion of synthesis gas. Limiting conditions/scale-up

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of this research is to develop a technically and economically feasible process for biologically producing H(sub 2) from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: 1. Culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; 2. Mass transfer and kinetic studies in which equations necessary for process design are developed; 3. Bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; 4. Evaluation of biological synthetic gas conversion under limiting conditions in preparation for industrial demonstration studies; 5. Process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and 6. Economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses.

  1. Synthesis gas production via hybrid steam reforming of natural gas and bio-liquids

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.

    2013-01-01

    This thesis deals with (catalytic) steam reforming of bio-liquids for the production of synthesis gas. Glycerol, both crude from the biodiesel manufacturing and refined, and pyrolysis oil are tested as bio-based feedstocks. Liquid bio-based feeds could be preferred over inhomogeneous fibrous solid b

  2. Biological conversion of synthesis gas. Topical report: Bioreactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    The purpose of the proposed research is to develop a technically and economically feasible process for biologically producing H{sub 2} from synthesis gas while, at the same time, removing harmful sulfur gas compounds. Six major tasks are being studied: culture development, where the best cultures are selected and conditions optimized for simultaneous hydrogen production and sulfur gas removal; mass transfer and kinetic studies in which equations necessary for process design are developed; bioreactor design studies, where the cultures chosen in Task 1 are utilized in continuous reaction vessels to demonstrate process feasibility and define operating conditions; evaluation of biological synthesis gas conversion under limiting conditions in preparation for industrial demonstration studies; process scale-up where laboratory data are scaled to larger-size units in preparation for process demonstration in a pilot-scale unit; and economic evaluation, where process simulations are used to project process economics and identify high cost areas during sensitivity analyses. The purpose of this report is to present results from bioreactor studies involving H{sub 2} production by water gas shift and H{sub 2}S removal to produce elemental sulfur. Many of the results for H{sub 2} production by Rhodospirillum rubrum have been presented during earlier contracts. Thus, this report concentrates mainly on H{sub 2}S conversion to elemental sulfur by R. rubrum.

  3. ISOBUTANOL-METHANOL MIXTURES FROM SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Enrique Iglesia

    1998-09-01

    Isobutanol is potential as a fuel additive or precursor to methyl tert-butyl ether (MTBE). Alkali-promoted Cu/ZnO/Al{sub 2}O{sub 3} and Cu/MgO/CeO{sub 2} materials have been found to catalyze the formation of isobutanol from CO and H{sub 2} at temperatures (573-623 K) that allow their use in slurry reactors. Our studies focus on the mechanism and structural requirements for selective isobutanol synthesis on these types of catalysts. Alkali promoted Cu/MgO/CeO{sub 2}, Cu/MgO/ZnO, and CuZnAlO{sub x} materials and their individual components Cu/MgO, MgO/CeO{sub 2}, MgO and CeO{sub 2} have been prepared for the use in kinetic studies of alcohol coupling reactions, in identification of reaction intermediates, and in isobutanol synthesis at high pressures. These samples were prepared by coprecipitation of mixed nitrate solutions with an aqueous solution of KOH (2M) and K{sub 2}CO{sub 3} (1M) at 338 K at a constant pH of 9, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at a pH of 7, in a well-stirred thermostated container. The precipitate was filtered, washed thoroughly with dioinized water at 303 K in order to remove residual K ions, and dried at 353 K overnight. Dried samples were calcined at 723 K, except for Cs-Cu/ZnO/Al{sub 2}O{sub 3} at 623 K, for 4 h in order to form the corresponding mixed oxides. Alkali addition (K or Cs) was performed by incipient wetness using K{sub 2}CO{sub 3} (0.25 M) and CH{sub 3}COOCs (0.25 M) aqueous solutions. The crystallinity and phase structures of resulting materials were analyzed by powered X-ray diffraction.

  4. A Converter for Producing a Hydrogen-Containing Synthesis Gas

    Science.gov (United States)

    Malkov, Yu. P.; Molchanov, O. N.; Britov, B. K.; Fedorov, I. A.

    2016-11-01

    A computational thermodynamic and experimental investigation of the characteristics of a model of a converter for producing a hydrogen-containing synthesis gas from a hydrocarbon fuel (kerosene) with its separate delivery to thermal-oxidative and steam conversions has been carried out. It is shown that the optimum conditions of converter operation correspond to the oxidant excess coefficient in the converter's combustion chamber α > 0.5 at a temperature of the heat-transmitting wall (made from a heat-resistant KhN78T alloy (ÉI 435)) of 1200 K in the case of using a nickel corrugated tape catalyst. The content of hydrogen in the synthesis gas attains in this case 60 vol.%, and there is no release of carbon (soot) in the conversion products as well as no need for water cooling of the converter walls.

  5. Proceedings of the DGMK-conference 'Synthesis gas chemistry'. Authors' manuscripts

    Energy Technology Data Exchange (ETDEWEB)

    Hoenicke, D.; Kohlpaintner, C.; Luecke, B.; Reschetilowski, W. [eds.

    2000-07-01

    The main topics of the DGMK-Conference ''Synthesis Gas Chemistry'' were: production of synthesis gas from several educts, new catalysts, Fischer-Tropsch synthesis, hydroformylation, steam reforming and carbonylation.

  6. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... main content Languages 简体中文 English Bahasa Indonesia 한국어 Español ภาษาไทย Tiếng Việt Text Size: Decrease Font Increase ... Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as ...

  7. Combined Gas-Liquid Plasma Source for Nanoparticle Synthesis

    Science.gov (United States)

    Burakov, V. S.; Kiris, V. V.; Nevar, A. A.; Nedelko, M. I.; Tarasenko, N. V.

    2016-09-01

    A gas-liquid plasma source for the synthesis of colloidal nanoparticles by spark erosion of the electrode material was developed and allowed the particle synthesis regime to be varied over a wide range. The source parameters were analyzed in detail for the electrical discharge conditions in water. The temperature, particle concentration, and pressure in the discharge plasma were estimated based on spectroscopic analysis of the plasma. It was found that the plasma parameters did not change signifi cantly if the condenser capacitance was increased from 5 to 20 nF. Purging the electrode gap with argon reduced substantially the pressure and particle concentration. Signifi cant amounts of water decomposition products in addition to electrode elements were found in the plasma in all discharge regimes. This favored the synthesis of oxide nanoparticles.

  8. Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

    Directory of Open Access Journals (Sweden)

    Paul Chesler

    2016-12-01

    Full Text Available A series of SnO2–ZnO composite nanostructured (thin films with different amounts of SnO2 (from 0 to 50 wt % was prepared and deposited on a miniaturized porous alumina transducer using the sol–gel and dip coating method. The transducer, developed by our research group, contains Au interdigital electrodes on one side and a Pt heater on the other side. The sensing films were characterized using SEM and AFM techniques. Highly toxic and flammable gases (CO, CO2, CH4, and C3H8 were tested under lab conditions (carrier gas was dry air using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210–300 °C. It was found that the sensing performance was influenced by the amount of oxide components present in the composite material. Improved sensing performance was achieved for the ZnO (98 wt %–SnO2 (2 wt % composite as compared to the sensors containing only the pristine oxides. The sensor response, cross-response and recovery characteristics of the analyzed materials are reported. The high sensitivity (RS = 1.21 to low amounts of CO (5 ppm was reported for the sensor containing a composite sensitive film with ZnO (98 wt %–SnO2 (2 wt %. This sensor response to CO was five times higher as compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions.

  9. Substrate-free gas-phase synthesis of graphene sheets.

    Science.gov (United States)

    Dato, Albert; Radmilovic, Velimir; Lee, Zonghoon; Phillips, Jonathan; Frenklach, Michael

    2008-07-01

    We present a novel method for synthesizing graphene sheets in the gas phase using a substrate-free, atmospheric-pressure microwave plasma reactor. Graphene sheets were synthesized by passing liquid ethanol droplets into an argon plasma. The graphene sheets were characterized by transmission electron microscopy, electron energy loss spectroscopy, Raman spectroscopy, and electron diffraction. We prove that graphene can be created without three-dimensional materials or substrates and demonstrate a possible avenue to the large-scale synthesis of graphene.

  10. Gas chromatographic separation of nitrogen, oxygen, argon, and carbon monoxide using custom-made porous polymers from high purity divinylbenzene

    Science.gov (United States)

    Pollock, G. E.; Ohara, D.; Hollis, O. L.

    1984-01-01

    Existing porous polymers were surveyed for their ability to separate the subject gases. Certain products that showed more promise than others were synthesized and the existing synthetic procedures studied and modified to produce new polymers with enhanced ability to separate the subject gases. Evaluation of the porous polymers was carried out practically by gas chromatography at ambient temperature. The modified synthetic procedures were somewhat simpler than the originals. The new porous polymers made with high purity divinylbenzene enabled use of shorter columns to obtain the separations desired.

  11. Engineering evidence for carbon monoxide toxicity cases.

    Science.gov (United States)

    Galatsis, Kosmas

    2016-07-01

    Unintentional carbon monoxide poisonings and fatalities lead to many toxicity cases. Given the unusual physical properties of carbon monoxide-in that the gas is odorless and invisible-unorganized and erroneous methods in obtaining engineering evidence as required during the discovery process often occurs. Such evidence gathering spans domains that include building construction, appliance installation, industrial hygiene, mechanical engineering, combustion and physics. In this paper, we attempt to place a systematic framework that is relevant to key aspects in engineering evidence gathering for unintentional carbon monoxide poisoning cases. Such a framework aims to increase awareness of this process and relevant issues to help guide legal counsel and expert witnesses.

  12. Synthesis of hydrogen gas by thermal decomposition of methane gas with carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Castro, A R [Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Manrique, C M [Departamento de Ciencia de los Materiales, GPUSB, Universidad Simon BolIvar, Caracas (Venezuela, Bolivarian Republic of); Castell, R; Ruiz, J [Departamento de Fisica, Universidad Simon BolIvar, Caracas (Venezuela, Bolivarian Republic of)

    2008-10-15

    Hydrogen gas synthesis by the thermal decomposition of methane gas in a non-transferred arc thermal plasma reactor is studied. A thermodynamic study was carried out obtaining free energy minimization plots for the C-H-N and C-H-N-Si systems by using the CSIRO thermo package. Nitrogen gas was used as an ionizing gas and metallic silicon fine powder was injected to promote the in fly silicon carbide nucleation. The effect of current intensity on the thermal decomposition of methane was studied. The degree of methane gas decomposition was in the range 84-97%. The fine solid product collected was characterized using the XRD and MEB-EDAX methods. Elemental carbon particles as well as silicon carbide particles in the nanometric range were identified by the last technique.

  13. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  14. Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography.

    Science.gov (United States)

    Kamiński, Marian; Kartanowicz, Rafal; Jastrzebski, Daniel; Kamiński, Marcin M

    2003-03-14

    This paper illustrates a method for determining trace amounts of CO, CH4 and CO2 with the detection limit of 0.15, 0.15 and 0.20 microg/l, respectively, in refinery hydrogen gases or in air. A simple modification of a gas chromatograph equipped with a flame-ionization detector is presented. A Porapak Q column, additionally connected with a short molecular sieve 5A packed column and a catalytic hydrogenation reactor on the Ni catalyst have been applied. The principle of the analytical method proposed is the separation of CO from O2 before the introduction of CO to the methanizer. The analytical procedure and examples of the results obtained have been presented. The modification applied makes it possible to use the GC instrument for other determinations, requiring utilization of the Porapak Q column and the flame-ionization detector. In such cases, the short molecular sieve 5A column and the methanizer can be by-passed.

  15. Gas-phase production of single-walled carbon nanotubes from carbon monoxide: a review of the hipco process

    Science.gov (United States)

    Nikolaev, Pavel

    2004-01-01

    The latest process for producing large quantities of single-walled carbon nanotubes (SWNTs) to emerge from the Rice University, dubbed HiPco, is living up to its promise. The current production rates approach 450 mg/h (or 10 g/day), and nanotubes typically have no more than 7 mol % of iron impurities. Second-generation HiPco apparatus can run continuously for 7-10 days at a time. In the HiPco process nanotubes grow in high-pressure, high-temperature flowing CO on catalytic clusters of iron. Catalyst is formed in situ by thermal decomposition of iron pentacarbonyl, which is delivered intact within a cold CO flow and then rapidly mixed with hot CO in the reaction zone. Upon heating, the Fe(CO)5 decomposes into atoms that condense into larger clusters. SWNTs nucleate and grow on these particles in the gas phase via CO disproportionation: CO + CO --> CO2 + C (SWNT), catalyzed by the Fe surface. The concentration of CO2 produced in this reaction is equal to that of carbon and can therefore serve as a useful real-time feedback parameter. It was used to study and optimize SWNT production as a function of temperature, pressure, and Fe(CO)5 concentration. The results of the parametric study are in agreement with current understanding of the nanotube formation mechanism.

  16. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.

    1994-05-06

    Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed before isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.

  17. Simultaneous production of methanol and dimethylether from synthesis gas

    OpenAIRE

    Akarmazyan, Siranush

    2015-01-01

    Dimethylether is a non-toxic liquefied gas, which is projected to become one of the fundamental chemical feedstock in the future. Dimethylether can be produced from syngas via a two-step (indirect) process that involves synthesis of methanol by hydrogenation of CO/CO2 over a copper based catalyst and subsequent dehydration of methanol to DME over an acidic catalyst. Alternatively, DME can be produced in an one-step (direct) process using a hybrid (bifunctional) catalyst system that permits bo...

  18. Synthesis, characterization and gas sensing performance of aluminosilicate azide cancrinite

    Indian Academy of Sciences (India)

    A V BORHADE; T A KSHIRSAGAR; S G WAKCHAURE; A G DHOLI

    2016-10-01

    The present investigation deals with synthesis and gas sensing performance of Na$_8$[AlSiO$_4$]$_6$(N$_3$)$_{2.4}$(H$_2$O)$_{4.6}$ cancrinite-based thick film. The product obtained was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear magneticresonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by applying Rietveld refinement. Refinement showed that azide cancrinite crystallize in the space group P6$_3$. Alternate arrangement of Si and Al atoms was confirmed by single intense peak of MAS NMR analysis. For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be highly sensitive and selective toammonia gas.

  19. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas. Task 1, Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen production and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.

  20. Nitric oxide and carbon monoxide diffusing capacity of the lung

    NARCIS (Netherlands)

    Lee, I. van der

    2006-01-01

    The single breath diffusion capacity of the lung for carbon monoxide (DLCO) is measure for gas uptake by the lung, and consists of a membrane and a vascular component. Nitric oxide (NO) binds 400 times faster to hemoglobin than carbon monoxide, thus the uptake of NO by the blood is very large.

  1. Nitric oxide and carbon monoxide diffusing capacity of the lung

    NARCIS (Netherlands)

    Lee, I. van der

    2006-01-01

    The single breath diffusion capacity of the lung for carbon monoxide (DLCO) is measure for gas uptake by the lung, and consists of a membrane and a vascular component. Nitric oxide (NO) binds 400 times faster to hemoglobin than carbon monoxide, thus the uptake of NO by the blood is very large. There

  2. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire Carbon Monoxide from Engine-Driven Generators and ... Engine-Driven Tools, 2004–2014 JANUARY 08, 2015 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2011 Annual Estimates View All ... Inside CPSC Accessibility ...

  3. Production of synthesis gas and clean fuel gas; Synteesikaasun ja puhtaan polttokaasun valmistus

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Simell, P.; McKeough, P.; Kurkela, M.

    2008-05-15

    The main results of the project, Development of Ultra-Clean Gas (UCG) Technologies for Biomass Gasification, are presented in the publication. The UCG project was directed towards the development of innovative biomass gasification and gas-cleaning technologies for the production of ultra-clean synthesis gas. The project was carried out from 2004 to 2007 and it was co-ordinated by VTT Technical Research Centre of Finland. The publication describes how the work progressed from small-scale experiments and process-evaluation studies in the initial stages of the project to the design, construction and operation of a Process Development Unit (PDU) in the latter stages of the project. The 0.5 MW PDU, located at VTT, was taken into operation at the end of 2006. The experimental work focussed on the following sub-processes: pressurized fluidised-bed gasification, catalytic gas reforming and initial gas cleaning. The PDU gasification tests were successful and all components of the PDU-plant operated reliably. The project created a knowledge base upon which subsequent industrial-driven development and demonstration projects have been built. (orig.)

  4. Electricity generation from carbon monoxide and syngas in a microbial fuel cell.

    Science.gov (United States)

    Hussain, Abid; Guiot, Serge R; Mehta, Punita; Raghavan, Vijaya; Tartakovsky, Boris

    2011-05-01

    Electricity generation in microbial fuel cells (MFCs) has been a subject of significant research efforts. MFCs employ the ability of electricigenic bacteria to oxidize organic substrates using an electrode as an electron acceptor. While MFC application for electricity production from a variety of organic sources has been demonstrated, very little research on electricity production from carbon monoxide and synthesis gas (syngas) in an MFC has been reported. Although most of the syngas today is produced from non-renewable sources, syngas production from renewable biomass or poorly degradable organic matter makes energy generation from syngas a sustainable process, which combines energy production with the reprocessing of solid wastes. An MFC-based process of syngas conversion to electricity might offer a number of advantages such as high Coulombic efficiency and biocatalytic activity in the presence of carbon monoxide and sulfur components. This paper presents a discussion on microorganisms and reactor designs that can be used for operating an MFC on syngas.

  5. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    Science.gov (United States)

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  6. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    Science.gov (United States)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  7. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending March 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-31

    The goal of this program is to develop polymer membranes useful in the preparation of hydrogen from coal-derived synthesis gas. During this quarter the first experiment were aimed at developing high performance composite membranes for the separation of hydrogen from nitrogen and carbon monoxide. Three polymers have been selected as materials for these membranes: polyetherimide cellulose acetate and ethylcellulose. This quarter the investigators worked on polyetherimide and cellulose acetate membranes. The overall structure of these membranes is shown schematically in Figure 1. As shown, a microporous support membrane is first coated with a high flux intermediate layer then with an ultrathin permselective layer and finally, if necessary, a thin protective high flux layer. 1 fig., 4 tabs.

  8. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(methyl pentene) and poly(etherimide)

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report summarizes the development of polymer membranes useful in the separation of hydrogen from coal-derived synthesis gas during period 1 October 1985--30 September 1986. During the last year several high performance membranes were developed for the separation of hydrogen from nitrogen and carbon monoxide. The heat resistant resins poly(methyl pentene) (TPX), Mitsui Petrochemical Industries, New York, NY and poly(etherimide) (ULTEM, General Electric, Pittsfield, MA) have been selected as polymers with outstanding properties for membrane preparation. The properties of membranes prepared from these polymers are presented. TPX is an example of a moderately selective and highly permeable membrane; the poly(etherimide) membranes are more selective but have lower fluxes. These membranes will cover the range of properties required in our hydrogen separation program and the bulk of our future work will be on these membranes. A few experiments with palladium/silver membranes are also planned, as described in the Test Plan.

  9. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending September 30, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-31

    This report summarizes the development of polymer membranes useful in the separation of hydrogen from coal-derived synthesis gas during period 1 October 1985--30 September 1986. During the last year several high performance membranes were developed for the separation of hydrogen from nitrogen and carbon monoxide. The heat resistant resins poly(methyl pentene) (TPX), Mitsui Petrochemical Industries, New York, NY and poly(etherimide) (ULTEM, General Electric, Pittsfield, MA) have been selected as polymers with outstanding properties for membrane preparation. The properties of membranes prepared from these polymers are presented. TPX is an example of a moderately selective and highly permeable membrane; the poly(etherimide) membranes are more selective but have lower fluxes. These membranes will cover the range of properties required in our hydrogen separation program and the bulk of our future work will be on these membranes. A few experiments with palladium/silver membranes are also planned, as described in the Test Plan.

  10. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  11. Biological upgrading of coal-derived synthesis gas: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S.; Johnson, E.R.; Ko, C.W.; Clausen, E.C.; Gaddy, J.L.

    1986-10-01

    The technical feasibility of the biological conversion of coal synthesis gas to methane has been demonstrated in the University of Arkansas laboratories. Cultures of microorganisms have been developed which achieve total conversion in the water gas shift and methanation reactions in either mixed or pure cultures. These cultures carry out these conversions at ordinary temperatures and pressures, without sulfur toxicity. Several microorganisms have been identified as having commercial potential for producing methane. These include a mixed culture of unidentified bacteria; P. productus which produces acetate, a methane precursor; and Methanothrix sp., which produces methane from acetate. These cultures have been used in mixed reactors and immobilized cell reactors to achieve total CO and H/sub 2/ conversion in a retention time of less than two hours, quite good for a biological reactor. Preliminary economic projections indicate that a biological methanation plant with a size of 5 x 10/sup 10/ Btu/day can be economically attractive. 42 refs., 26 figs., 86 tabs.

  12. Gas-phase synthesis of semiconductor nanocrystals and its applications

    Science.gov (United States)

    Mandal, Rajib

    Luminescent nanomaterials is a newly emerging field that provides challenges not only to fundamental research but also to innovative technology in several areas such as electronics, photonics, nanotechnology, display, lighting, biomedical engineering and environmental control. These nanomaterials come in various forms, shapes and comprises of semiconductors, metals, oxides, and inorganic and organic polymers. Most importantly, these luminescent nanomaterials can have different properties owing to their size as compared to their bulk counterparts. Here we describe the use of plasmas in synthesis, modification, and deposition of semiconductor nanomaterials for luminescence applications. Nanocrystalline silicon is widely known as an efficient and tunable optical emitter and is attracting great interest for applications in several areas. To date, however, luminescent silicon nanocrystals (NCs) have been used exclusively in traditional rigid devices. For the field to advance towards new and versatile applications for nanocrystal-based devices, there is a need to investigate whether these NCs can be used in flexible and stretchable devices. We show how the optical and structural/morphological properties of plasma-synthesized silicon nanocrystals (Si NCs) change when they are deposited on stretchable substrates made of polydimethylsiloxane (PDMS). Synthesis of these NCs was performed in a nonthermal, low-pressure gas phase plasma reactor. To our knowledge, this is the first demonstration of direct deposition of NCs onto stretchable substrates. Additionally, in order to prevent oxidation and enhance the luminescence properties, a silicon nitride shell was grown around Si NCs. We have demonstrated surface nitridation of Si NCs in a single step process using non?thermal plasma in several schemes including a novel dual-plasma synthesis/shell growth process. These coated NCs exhibit SiNx shells with composition depending on process parameters. While measurements including

  13. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... CONSUMER PRODUCT SAFETY COMMISSION Search CPSC Search Menu Home Recalls Recall List CPSC Recall API Recall Lawsuits ... and Bans Report an Unsafe Product Consumers Businesses Home Safety Education Safety Education Centers Carbon Monoxide Information ...

  14. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ... 2011 Annual Estimates View All CO-Related Injury Statistics and Technical Reports Related Links Recalls Safety Education ...

  15. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide ... Related Links Recalls Safety Education Regulations, Laws & Standards Research & Statistics Business & Manufacturing Small Business Resources OnSafety Blogs ...

  16. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  17. Carbon Monoxide Information Center

    Science.gov (United States)

    ... and Criminal Penalties Federal Court Orders & Decisions Research & Statistics Research & Statistics Technical Reports Injury Statistics NEISS Injury Data ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ...

  18. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 Annual Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire ...

  19. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  20. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Import Safety International Recall Guidance Civil and Criminal Penalties Federal Court Orders & ... 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 ...

  1. Carbon Monoxide Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Carbon Monoxide and have...

  2. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  3. Gasification of coal-derived chars in synthesis gas mixtures under intraparticle mass-transfer-controlled conditions

    NARCIS (Netherlands)

    Bliek, A.; Lont, J.C.; van Swaaij, Willibrordus Petrus Maria

    1986-01-01

    A model has been formulated to describe the quasi-steady-state gasification of coal-derived chars in gas mixtures where both the reactants carbon dioxide and steam, and the gasification products carbon monoxide and hydrogen are present. As such, these conditions reflect the situation found in most

  4. Formation of orthorhombic tin dioxide from mechanically milled monoxide powders

    Science.gov (United States)

    Lamelas, F. J.

    2004-12-01

    X-ray scattering measurements are used to show that the metastable orthorhombic phase of tin dioxide is produced by the oxidation of mechanically milled litharge-phase tin monoxide. After milling to a grain size of approximately 20nm, followed by heating to 575°C, the fraction of the orthorhombic phase is approximately 80%. The orthorhombic phase was originally observed in high-pressure experiments, but more recently, it has been produced in a wide variety of thin-film and nanoparticle samples. The data presented here demonstrate the importance of small-grain-size tin monoxide as a precursor in the ambient-pressure synthesis of the orthorhombic phase. This result has practical importance in the production of tin dioxide gas sensors. A more fundamental observation is that the particle size of a precursor phase can have a marked effect on subsequent phases produced during oxidation. Lastly, a formula for determining the orthorhombic fraction in two-phase tin dioxide samples is developed using the method of standard additions.

  5. Selective removal of ethylene, a deposit precursor, from a "dirty" synthesis gas stream via gas-phase partial oxidation.

    Science.gov (United States)

    Villano, Stephanie M; Hoffmann, Jessica; Carstensen, Hans-Heinrich; Dean, Anthony M

    2010-06-17

    A fundamental issue in the gasification of biomass is that in addition to the desired synthesis gas product (a mixture of H(2) and CO), the gasifier effluent contains other undesirable products that need to be removed before any further downstream processing can occur. This work assesses the potential to selectively remove hydrocarbons from a synthesis gas stream via gas-phase partial oxidation. Specifically, the partial oxidation of methane-doped, ethylene-doped, and methane/ethylene-doped model synthesis gas mixtures has been investigated at ambient pressures over a temperature range of 760-910 degrees C and at residence times ranging from 0.4 to 2.4 s using a tubular flow reactor. For the synthesis gas mixtures that contain either methane or ethylene, the addition of oxygen substantially reduces the hydrocarbon concentration while only a small reduction in the hydrogen concentration is observed. For the synthesis gas mixtures doped with both methane and ethylene, the addition of oxygen preferentially removes ethylene while the concentrations of methane and hydrogen remain relatively unaffected. These results are compared to the predictions of a plug flow model using a reaction mechanism that is designed to describe the pyrolysis and partial oxidation of small hydrocarbon species. The agreement between the experimental observations and the model predictions is quite good, allowing us to explore the underlying chemistry that leads to the hydrocarbon selective oxidation. The implications of these results are briefly discussed in terms of using synthesis gas to produce liquid fuels and electrical power via a solid oxide fuel cell.

  6. Exploring biochemical pathways for mono-ethylene glycol (MEG) synthesis from synthesis gas.

    Science.gov (United States)

    Islam, M Ahsanul; Hadadi, Noushin; Ataman, Meric; Hatzimanikatis, Vassily; Stephanopoulos, Gregory

    2017-05-01

    Mono-ethylene glycol (MEG) is an important petrochemical with widespread use in numerous consumer products. The current industrial MEG-production process relies on non-renewable fossil fuel-based feedstocks, such as petroleum, natural gas, and naphtha; hence, it is useful to explore alternative routes of MEG-synthesis from gases as they might provide a greener and more sustainable alternative to the current production methods. Technologies of synthetic biology and metabolic engineering of microorganisms can be deployed for the expression of new biochemical pathways for MEG-synthesis from gases, provided that such promising alternative routes are first identified. We used the BNICE.ch algorithm to develop novel and previously unknown biological pathways to MEG from synthesis gas by leveraging the Wood-Ljungdahl pathway of carbon fixation of acetogenic bacteria. We developed a set of useful pathway pruning and analysis criteria to systematically assess thousands of pathways generated by BNICE.ch. Published genome-scale models of Moorella thermoacetica and Clostridium ljungdahlii were used to perform the pathway yield calculations and in-depth analyses of seven (7) newly developed biological MEG-producing pathways from gases, including CO2, CO, and H2. These analyses helped identify not only better candidate pathways, but also superior chassis organisms that can be used for metabolic engineering of the candidate pathways. The pathway generation, pruning, and detailed analysis procedures described in this study can also be used to develop biochemical pathways for other commodity chemicals from gaseous substrates. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Synthesis of Nanosized Zinc-Doped Cobalt Oxyhydroxide Parties by a Dropping Method and Their Carbon Monoxide Gas Sensing Properties

    OpenAIRE

    2013-01-01

    Two nanostructures of cobalt oxyhydroxide (CoOOH) and Zinc-(Zn-) doped CoOOH (1–4% Zn) are prepared from Co(NO3)2 solution via microtitration with NaOH and oxidation in air. The X-ray diffraction (XRD) analysis results show that a pure state of nano-CoOOH can be obtained at an alkalinity (OH−/Co+) of 5 with 40°C heat treatment after 6 h. The Zn ions preferentially substitute Co ions in the CoOOH structure, resulting in a decrease of its crystallinity. The disc-like CoOOH nanostructure exhibit...

  8. Final report on COOMET.QM-S1 (COOMET project no 483/RU/09): Supplementary comparison of primary standard gas mixtures: Nitrogen monoxide in nitrogen (50 µmol/mol)

    Science.gov (United States)

    Konopelko, L. A.; Kustikov, Y. A.; Kolobova, A. V.; Shor, N. B.; Efremova, O. V.; Rozhnov, M. S.; Melnyk, D. M.; Kozia, V. G.; Shpilnyi, S. A.; Petryshyn, P. V.; Iakubov, S. E.; Kluchits, A. S.; Ananyin, V. N.; Mironchik, A. M.; Mokhnach, M. V.; Valkova, M.; Stovcik, V.; Walden, J.; Augusto, C. R.; Fioravante, A. L.; Ribeiro, C. C.; Sobrinho, D. C. G.; Oudwater, R. J.; da Cunha, V. S.

    2014-01-01

    Nitrogen monoxide is one of the main contaminants present in the atmospheric air due to emissions of vehicles and power stations. Taking into account the positive experience of VNIIM in the pilot study CCQM-P73 (Nitrogen monoxide gas standards, 30 µmol/mol to 70 µmol/mol), a COOMET project (No 483/RU/09) on the subject was decided and registered in the KCDB as supplementary comparison COOMET.QM-S1. This involved six National Metrology Institutes, aiming to consolidate or support their Calibration and Measurement Capabilities in this field. It was found that most of the results were consistent with the reference (gravimetric) values, with observed differences not exceeding ±1.3% and not exceeding either the appropriate assigned expanded uncertainties. There was, however, one exception: the INMETRO difference from the reference value is slightly higher than the expended uncertainty. The mixtures prepared for this exercise were found to be stable during about one year within the uncertainty of the measurements. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by COOMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Modeling and simulation of tube-shell reactor for dimethyl-ether synthesis from coal-based synthesis gas

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-sheng; ZHANG Hai-tao; YING Wei-yong; FANG Ding-ye

    2011-01-01

    Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifunctional catalyst,which is mixed by methanol synthesis catalyst and dehydration catalyst as 1:1 mass ratio. Methanol synthesis from CO and CO2 and methanol dehydration were selected as three-independent reactions, CO, CO2, and DME as key components to establish the one-dimensional mathematical model of the reactor. The gas concentration and temperature profiles inside the reactor tubes were obtained. The operating conditions affecting DME synthesis were also discussed based on the model. The simulations indicate that higher pressure and lower temperature at the inlet and rich hydrogen in the reactant are favorable in direct DME synthesis in fixed-bed process, and the temperature of boiling water affect the reactor performance seriously.

  10. Gas-Phase Combustion Synthesis of Nonoxide Nanoparticles in Microgravity

    Science.gov (United States)

    Axelbaum, R. L.; Kumfer, B. M.; Sun, Z.; Chao, B. H.

    2001-01-01

    Gas-phase combustion synthesis is a promising process for creating nanoparticles for the growing nanostructure materials industry. The challenges that must be addressed are controlling particle size, preventing hard agglomerates, maintaining purity, and, if nonoxides are synthesized, protecting the particles from oxidation and/or hydrolysis during post-processing. Sodium-halide Flame Encapsulation (SFE) is a unique methodology for producing nonoxide nanoparticles that addresses these challenges. This flame synthesis process incorporates sodium and metal-halide chemistry, resulting in nanoparticles that are encapsulated in salt during the early stages of their growth in the flame. Salt encapsulation has been shown to allow control of particle size and morphology, while serving as an effective protective coating for preserving the purity of the core particles. Metals and compounds that have been produced using this technology include Al, W, Ti, TiB2, AlN, and composites of W-Ti and Al-AlN. Oxygen content in SFE synthesized nano- AlN has been measured by neutron activation analysis to be as low as 0.54wt.%, as compared to over 5wt.% for unprotected AlN of comparable size. The overall objective of this work is to study the SFE process and nano-encapsulation so that they can be used to produce novel and superior materials. SFE experiments in microgravity allow the study of flame and particle dynamics without the influence of buoyancy forces. Spherical sodium-halide flames are produced in microgravity by ejecting the halide from a spherical porous burner into a quiescent atmosphere of sodium vapor and argon. Experiments are performed in the 2.2 sec Drop Tower at the NASA-Glenn Research Center. Numerical models of the flame and particle dynamics were developed and are compared with the experimental results.

  11. Thermodynamic models to predict gas-liquid solubilities in the methanol synthesis, the methanol-higher alcohol synthesis, and the Fischer-Tropsch synthesis via gas-slurry processes

    NARCIS (Netherlands)

    Breman, B.B; Beenackers, A.A C M

    1996-01-01

    Various thermodynamic models were tested concerning their applicability to predict gas-liquid solubilities, relevant for synthesis gas conversion to methanol, higher alcohols, and hydrocarbons via gas-slurry processes. Without any parameter optimization the group contribution equation of state (GCEO

  12. Analysis of carbon monoxide in commercially treated tuna (Thunnus spp.) and mahi-mahi (Coryphaena hippurus) by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Anderson, Collin R; Wu, Wen-Hsin

    2005-09-07

    A simple and confirmative method for quantitative determination of carbon monoxide in tuna and mahi-mahi tissues using GC/MS, following chemical liberation of CO into headspace, is described. Carbon monoxide in recent years has been employed by the fishery industry to preserve fresh appearance in selected species of finfish during frozen storage, particularly in vacuum-packaged products. Indigenous CO contents of fresh Ahi tuna and mahi-mahi were examined using the method described in this study and found to be close to or less than 150 and 100 ng/g, respectively. Commercially CO-treated, vacuum-packaged tuna from multiple sources consistently showed CO level near or greater than 1 mug/g, while CO level in the only CO-treated frozen mahi-mahi sample was in the 500 ng/g range. The difference between untreated and treated specimens was in the range of 1 order of magnitude and thus suggested an easy quantitative and confirmative method of CO using widely available instrumentation that may be potentially useful for regulatory purpose in determining whether a commercially available product has been exposed to CO even if not labeled as such.

  13. Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed

    Institute of Scientific and Technical Information of China (English)

    DAI Xiaoping; YU Changchun; LI Ranjia; WU Qiong; HAO Zhengping

    2008-01-01

    A novel process for synthesis gas production over Circulating Fluidized Bed (CFB) using oxygen storage materials as oxygen carrier was reported. First, oxygen in the air was chemically fixed and converted to lattice oxygen of oxygen storage materials over regenerator, and then methane was selectively oxidized to synthesis gas with lattice oxygen of oxygen storage materials over riser reactor. The results from simulation reaction of CFB by sequential redox reaction on a fixed bed reactor using lanthanum-based perovskite LaFeO3 and La0.8Sr0.2Fe0.9Co0.1O3 oxides prepared by sol-gel, suggested that the depleted oxygen species could be regenerated, and methane could be oxidized to synthesis gas by lattice oxygen with high selectivity. The partial oxidation of methane to synthesis gas over CFB using lattice oxygen of the oxygen storage materials instead of gaseous oxygen should be possibly applicable.

  14. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I., E-mail: esko.kauppinen@aalto.fi [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Susi, T. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Nasibulin, A. G. [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 (Russian Federation); Saint-Petersburg State Polytechnical University, 29 Polytechniheskaya st., St. Petersburg, 195251 (Russian Federation)

    2015-07-06

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  15. Synthesis gas demonstration plant program, Phase I. Site confirmation report

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    With few reservations, the Baskett, Kentucky site exhibits the necessary characteristics to suggest compatibility with the proposed Synthesis Gas Demonstration Plant Project. An evaluation of a broad range of technical disciplinary criteria in consideration of presently available information indicated generally favorable conditions or, at least, conditions which could be feasibly accommodated in project design. The proximity of the Baskett site to market areas and sources of raw materials as well as a variety of transportation facilities suggests an overall favorable impact on Project economic feasibility. Two aspects of environmental engineering, however, have been identified as areas where the completion or continuation of current studies are required before removing all conditions on site suitability. The first aspect involves the current contradictory status of existing land use and planning ordinances in the site area. Additional investigation of the legality of, and local attitudes toward, these present plans is warranted. Secondly, terrestrial and aquatic surveys of plant and animal life species in the site area must be completed on a seasonal basis to confirm the preliminary conclusion that no exclusionary conditions exist.

  16. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Bo; Ho, W S Winston; Figueroa, Jose D; Dutta, Prabir K

    2015-06-23

    Separation and sequestration of CO2 emitted from fossil energy fueled electric generating units and industrial facilities will help in reducing anthropogenic CO2, thereby mitigating its adverse climate change effects. Membrane-based gas separation has the potential to meet the technical challenges of CO2 separation if high selectivity and permeance with low costs for large-scale manufacture are realized. Inorganic zeolite membranes in principle can have selectivity and permeance considerably higher than polymers. This paper presents a strategy for zeolite growth within the pores of a polymer support, with crystallization time of an hour. With a thin coating of 200-300 nm polydimethylsiloxane (PDMS) on the zeolite-polymer composite, transport data for CO2/N2 separation indicate separation factors of 35-45, with CO2 permeance between 1600 and 2200 GPU (1 GPU = 3.35 × 10(-10) mol/(m(2) s Pa)) using dry synthetic mixtures of CO2 and N2 at 25 °C. The synthesis process results in membranes that are highly reproducible toward transport measurements and exhibit long-term stability (3 days). Most importantly, these membranes because of the zeolite growth within the polymer support, as contrasted to conventional zeolite growth on top of a support, are mechanically flexible.

  17. Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters

    NARCIS (Netherlands)

    Houten, van B.H.G.W.

    2006-01-01

    The use of synthesis gas fed sulfate-reducing bioreactors to simultaneously remove both oxidized sulfur compounds and metals shows great potential to treat wastewaters generated as a result of flue gas scrubbing, mining activities and galvanic processes. Detailed information about the phylogenetic a

  18. Microbial hydrogenogenic CO conversions: applications in synthesis gas purification and biodesulfurization

    NARCIS (Netherlands)

    Sipma, J.

    2006-01-01

    Hydrogen gas attracts great interest as a potential clean future fuel and it is an excellent electron donor in biotechnological reductive processes, e.g. in biodesulfurization. Bulk production of H 2 relies on the conversion of organic matter into synthesis gas, a mixture of H 2

  19. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  20. Microbial hydrogenogenic CO conversions: applications in synthesis gas purification and biodesulfurization

    NARCIS (Netherlands)

    Sipma, J.

    2006-01-01

    Hydrogen gas attracts great interest as a potential clean future fuel and it is an excellent electron donor in biotechnological reductive processes, e.g. in biodesulfurization. Bulk production of H 2 relies on the conversion of organic matter into synthesis gas, a mixture of H

  1. Gas-Phase Combustion Synthesis of Aluminum Nitride Powder

    Science.gov (United States)

    Axelbaum, R. L.; Lottes, C. R.; Huertas, J. I.; Rosen, L. J.

    1996-01-01

    Due to its combined properties of high electrical resistivity and high thermal conductivity aluminum nitride (AlN) is a highly desirable material for electronics applications. Methods are being sought for synthesis of unagglomerated, nanometer-sized powders of this material, prepared in such a way that they can be consolidated into solid compacts having minimal oxygen content. A procedure for synthesizing these powders through gas-phase combustion is described. This novel approach involves reacting AlCl3, NH3, and Na vapors. Equilibrium thermodynamic calculations show that 100% yields can be obtained for these reactants with the products being AlN, NaCl, and H2. The NaCl by-product is used to coat the AlN particles in situ. The coating allows for control of AlN agglomeration and protects the powders from hydrolysis during post-flame handling. On the basis of thermodynamic and kinetic considerations, two different approaches were employed to produce the powder, in co-flow diffusion flame configurations. In the first approach, the three reactants were supplied in separate streams. In the second, the AlCl3 and NH3 were premixed with HCl and then reacted with Na vapor. X-ray diffraction (XRD) spectra of as-produced powders show only NaCl for the first case and NaCl and AlN for the second. After annealing at 775 C tinder dynamic vacuum, the salt was removed and XRD spectra of powders from both approaches show only AlN. Aluminum metal was also produced in the co-flow flame by reacting AlCl3 with Na. XRD spectra of as-produced powders show the products to be only NaCl and elemental aluminum.

  2. Incoporating Ammonia Synthesis for an Offshore Gas-to-Liquid Process

    OpenAIRE

    2016-01-01

    The world energy demand is increasing, and so is the demand for fertilizer to sustain an exponential population growth. Currently, with low oil prices, asso- ciated natural gas is flared off or re-injected into oil reservoirs for enhanced oil recovery (EOR). A gas-to-liquid process (GTL) for offshore applications aboard a foating production, storage, and offoading vessel (FPSO) incorpo- rating Fischer-Tropsch Synthesis (FTS) seeks to reform natural gas into more valuable liq...

  3. The influence of tobacco blend composition on carbon monoxide formation in mainstream cigarette smoke

    National Research Council Canada - National Science Library

    Djulančić, Nermina; Radojičić, Vesna; Srbinovska, Marija

    2013-01-01

    ...) in the gas phase of mainstream cigarette smoke. The results showed that the type of tobacco examined had a significant impact on the amount of carbon monoxide production in the gas phase of cigarette smoke...

  4. Noble gas trapping and fractionation during synthesis of carbonaceous matter. [in meteorites

    Science.gov (United States)

    Frick, U.; Mack, R.; Chang, S.

    1979-01-01

    An investigation of noble gas entrapment during synthesis of carbonaceous, macromolecular, and kerogen-like substances is presented. High molecular weight organic matter synthesized in aqueous condensation reactions contained little gas, and the composition was consistent with fractionation due to noble gas solubility in water; however, propane soot produced during a modified Miller-Urey experiment in an aritificial gas mixture contained high concentrations of trapped noble gases that displayed strong elemental fractionation from their reservoirs. It is concluded that theses experiemnts show that processes exist for synthesis of carbonaceous carriers that result in high noble gas concentrations and strong elemental fractionation at temperatures well above those required by absorption to achieve similar effects.

  5. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Reinikainen, M.; Moilanen, A.; Simell, P.; McKeough, P.; Hannula, I. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2008-07-01

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The project will both broaden and deepen the knowledge base and, in particular, will generate new fundamental information about the most critical process steps from the point of view of the realisation of the technology. The results will be exploited in the ongoing industrial-driven development and demonstration projects. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, in particular the reactions of hydrocarbons at gasification temperatures, during hot-gas filtration and on catalytic surfaces, (3) evaluations of alternative process configurations and applications and (4) monitoring of developments elsewhere in the world. In addition VTT itself finances two additions subtopics (5) new analysis techniques and (6) hydrogen from biomass via gasification. (orig.)

  6. Literature Review and Synthesis for the Natural Gas Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Folga, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Talaber, Leah [Argonne National Lab. (ANL), Argonne, IL (United States); McLamore, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Kraucunas, Ian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McPherson, Timothy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parrott, Lori [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Manzanares, Trevor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The efficient and effective movement of natural gas from producing regions to consuming regions requires an extensive and elaborate transportation system. In many instances, natural gas produced from a particular well has to travel a great distance to reach its point of use. The transportation system for natural gas consists of a complex network of pipelines designed to quickly and efficiently transport the gas from its origin to areas of high demand. The transportation of natural gas is closely linked to its storage: If the natural gas being transported is not immediately required, it can be put into storage facilities until it is needed. A description of the natural gas transmission, storage, and distribution (TS&D) sector is provided as follows.

  7. Purification Influence of Synthesis Gas Derived from Methanol Cracking on the Performance of Cobalt Catalyst in Fischer-Tropsch Synthesis

    Institute of Scientific and Technical Information of China (English)

    Wei Zhou; Shengying Liu; Yulan Wang; Kegong Fang; Jiangang Chen; Yuhan Sun

    2005-01-01

    Synthesis gas derived from methanol cracking (SGMC) was applied as simulating feedstock of Fischer-Tropsch synthesis (FTS) in laboratory. With MS and GC detector, a trifle of sulfur compounds,a small amount of oxygenates including H2O, CH3OH, DME and CO2 as well as a few of low carbon alkanes were found in the SGMC. After purification, the sulfur compounds, H2O, CH3OH and DME could be eliminated efficiently from the SGMC while CO2 and the low carbon alkanes were partly removed.When the unpurified SGMC, the desufurized SGMC and the totally purified SGMC were sequentially applied in cobalt-based FTS, the catalytic performance of Co/ZrO2/SiO2 catalyst was gradually improved corresponding to the degree of purification. The untreated SGMC led to the serious deactivation of the cobalt catalyst, the partially treated SGMC slowed down the deactivation rate and the totally purified SGMC resulted in little deactivation of the catalyst, which was similar to what the pure synthesis gas(the mixture of pure H2 and CO) did. The results indicated that the SGMC should be purified and the purification course used in this paper was effective for the SGMC. Furthermore, the totally purified SGMC could substitute for the pure synthesis gas in cobalt FTS.

  8. Production of synthesis gas and ultra clean gas; Synteesikaasun ja ultra-puhtaan polttokaasun valmistustekniikan kehitys (osa 2/3)

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [VTT, Espoo (Finland)

    2006-12-19

    New innovative biomass gasification and gas cleaning technologies are developed for the production of synthesis gas and ultra clean fuel gas. The experimental work is focused on fluidised-bed gasification, followed by catalytic reforming and optimised gas conditioning processes. The main aim of the project is to develop processes which can be applied in producing liquid biofuels from biomass and waste fuels. The project is planned to be realised in 2004-2007 and the aim is to move from smallscale experiments and process evaluation work to Process Development scale in 2006. In addition to experimental R and D work, system studies are carried out in order to define optimal process concepts for producing liquid biofuels in Finnish and Central European conditions. Especially, the integration of syngas technologies to the pulp and paper industries and combined power and heat production are studied. International co-operation with European projects will also be planned. (orig.)

  9. Alternative fuels and chemicals from synthesis gas. Quarterly report, April 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts. The paper reports the progress on the following tasks: engineering and modifications: AFDU shakedown, operations, deactivation and disposal; and research and development on new processes for DME, chemistry and catalyst development, and oxygenates via synthesis gas.

  10. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  11. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-04-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  12. ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS. FINAL QUARTERLY STATUS REPORT NO. 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-11-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  13. Alternative fuels and chemicals from synthesis gas. Fourth quarterly report, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). The program will involve a continuation of the work performed under the Alternative Fuels from Coal-Derived Synthesis Gas Program and will draw upon information and technologies generated in parallel current and future DOE-funded contracts.

  14. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass - UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: matti.reinikainen@vtt.fi; Suominen, T.P. (Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry and Reaction Engineering); Linnekoski, J.; Roenkkoenen, E. (Aalto University, School of Science and Technology, Espoo (Finland). Lab. of Industrial Chemistry.)

    2010-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprises experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project is steered by a wide industrial consortium and the research work is carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. (orig.)

  15. Partial oxidation of methane to synthesis gas in a dual catalyst bed system combining irreducible oxide and metallic catalysts

    NARCIS (Netherlands)

    Zhu, J.J.; Rahuman, M.S.M.M.; Ommen, van J.G.; Lefferts, L.

    2004-01-01

    Operation of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) at very high temperatures (¿900°C) slightly improves the selectivity to synthesis gas, which is caused by some activity of YSZ for steam and dry reforming of methane. LaCoO3 perovskite is not active in

  16. Reactions of synthesis gas on silica supported transition metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Niemelae, M. [VTT Chemical Technology, Espoo (Finland). Lab. of Industrial Chemistry

    1997-12-31

    The effect of catalyst precursor and composition on the activation of CO was investigated using CO hydrogenation as a test reaction. The interrelations of preparation, pretreatment, characteristics and activity were clarified. For Co/SiO{sub 2} catalyst, MgO promotion increased the CO adsorption capacity and the hydrogen uptake, although the extent of reduction for cobalt remained the same or decreased. The conversion per active metallic cobalt site consequently increased in conjunction with MgO promotion, while the effect on overall performance per 1 g of catalyst remained moderate. The precursor affected the performance of Co/SiO{sub 2} considerably. CO was more strongly adsorbed on catalysts of carbonyl origin than on those derived from cobalt nitrate, the activity thus being higher. Although the nitrate derived Co/SiO{sub 2} appeared both to retain its activity and to regain its adsorption capacity better than the catalysts of carbonyl origin, the performance of the latter was superior with time on stream. For tetranuclear cluster based Co-Ru and Co-Rh catalysts, rhodium or ruthenium was in contact with the support and cobalt was enriched on top. On Co-Ru/SiO{sub 2} ruthenium enhanced deactivation, and no benefits in activity or oxygenate selectivity were achieved relative to the monometallic catalysts of cluster origin. The Co-Rh/SiO{sub 2} catalysts were also less active than those derived from monometallic clusters, but they exhibited higher selectivities to oxygenated compounds due to the presence of active sites on the perimeter of the cobalt particles located on rhodium. The highest selectivity to oxygenates was achieved by changing the decomposition atmosphere of Rh{sub 4}(CO){sub 12}/SiO{sub 2} from hydrogen to carbon monoxide. The results also showed two types of active sites to be operative in the formation of oxygenates - one for ethanol and another for aldehydes. (orig.) 69 refs.

  17. Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    NARCIS (Netherlands)

    Kuczynski, M.; Oyevaar, M.H.; Pieters, R.T.; Westerterp, K.R.

    1987-01-01

    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K,

  18. Alternate fuels and chemicals from synthesis gas: Vinyl acetate monomer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Richard D. Colberg; Nick A. Collins; Edwin F. Holcombe; Gerald C. Tustin; Joseph R. Zoeller

    1999-01-01

    There has been a long-standing desire on the part of industry and the U.S. Department of Energy to replace the existing ethylene-based vinyl acetate monomer (VAM) process with an entirely synthesis gas-based process. Although there are a large number of process options for the conversion of synthesis gas to VAM, Eastman Chemical Company undertook an analytical approach, based on known chemical and economic principles, to reduce the potential candidate processes to a select group of eight processes. The critical technologies that would be required for these routes were: (1) the esterification of acetaldehyde (AcH) with ketene to generate VAM, (2) the hydrogenation of ketene to acetaldehyde, (3) the hydrogenation of acetic acid to acetaldehyde, and (4) the reductive carbonylation of methanol to acetaldehyde. This report describes the selection process for the candidate processes, the successful development of the key technologies, and the economic assessments for the preferred routes. In addition, improvements in the conversion of acetic anhydride and acetaldehyde to VAM are discussed. The conclusion from this study is that, with the technology developed in this study, VAM may be produced from synthesis gas, but the cost of production is about 15% higher than the conventional oxidative acetoxylation of ethylene, primarily due to higher capital associated with the synthesis gas-based processes.

  19. Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia

    NARCIS (Netherlands)

    Zhu, J.J.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    The partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) was studied with in situ FTIR and both steady-state and transient experiments. The four major products, CO, H2, CO2, and H2O, are primary products of CPOM over YSZ. Besides these major products and traces of

  20. Environmental Transmission Electron Microscopy (ETEM) Studies of Single Iron Nanoparticle Carburization in Synthesis Gas

    DEFF Research Database (Denmark)

    Liu, Xi; Zhang, Chenghua; Li, Yongwang

    2017-01-01

    Structuralevolution of iron nanoparticles involving the formationand growth of iron carbide nuclei in the iron nanoparticle was directlyvisualized at the atomic level, using environmental transmission electronmicroscopy (TEM) under reactive conditions mimicking Fischer–Tropschsynthesis. Formation...... and electronenergy-loss spectra provides a detailed picture from initial activationto final degradation of iron under synthesis gas....

  1. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; Rossum, van G.; Kersten, S.R.A.; Swaaij, van W.P.M.

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  2. Preliminary assessment of synthesis gas production via hybrid steam reforming of methane and glycerol

    NARCIS (Netherlands)

    Balegedde Ramachandran, P.; van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2012-01-01

    In this article, hybrid steam reforming (HSR) of desulphurized methane, together with crude glycerol, in existing commercial steam reformers to produce synthesis gas is proposed. The proposed concept consists of a gasifier to produce vapors, gases, and char from crude glycerol, which is coupled with

  3. Synthesis of Diacid-Assisted Indium Oxide Nanoparticles and Its CO Gas Sensing Activity.

    Science.gov (United States)

    Lee, Soo-Keun; Chang, Daeic; Yang, Seung Dae; Kim, Sang Wook

    2015-12-01

    Indium oxide (In2O3) is an extreme wide band-gap oxide material with unique electronic and optical properties that is used widely in solar cells, gas sensors and optoelectronic devices. In this study, two types of In2O3 nanostructures were prepared by a simple hydrothermal method using succinic acid (SA) or malonic acid (MA) as the assistant agents. The products were characterized by powder X-ray diffractions and scanning electron microscopy (SEM). SEM of the products showed that the In2O3 nanostructures prepared in the presence of SA have a typical cubic morphology with a length and height of -30 nm, whereas the In2O3 nanostructures synthesized in the presence of MA has an atypical rock shape, length and height of 30 -300 nm. Gas sensitivity measurements suggested that both In2O3 sensors (operated at 350 degrees C) have a good response to carbon monoxide (CO) compared to the commercial In2O3 nanoparticles. The SA-In2O3 sensor showed a shorter response time and stronger response than the MA-In2O3 sensor, suggesting that the improved gas sensing performance can be attributed mainly to the surface area.

  4. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Enrique Iglesia

    2004-09-30

    This project explores the extension of previously discovered Fe-based catalysts with unprecedented Fischer-Tropsch synthesis rate, selectivity, and ability to convert hydrogen-poor synthesis gas streams typical of those produced from coal and biomass sources. Contract negotiations were completed on December 9, 2004. During the first reporting period, we certified a microreactor, installed required analytical equipment, and reproduced synthetic protocols and catalytic performance previously reported. During this second reporting period, we have prepared and tested several Fe-based compositions for Fischer-Tropsch synthesis and tested the effects of product recycle under both subcritical and supercritical conditions. These studies established modest improvements in rates and selectivities with light hydrocarbon recycle without any observed deleterious effects, opening up the opportunities for using of recycle strategies to control temperature profiles in fixed-bed Fe-based Fischer-Tropsch synthesis reactors without any detectable kinetic detriment. In a parallel study, we examined similar effects of recycle for cobalt-based catalysts; marked selectivity improvements were observed as a result of the removal of significant transport restrictions on these catalysts. Finally, we have re-examined some previously unanalyzed data dealing with the mechanism of the Fischer-Tropsch synthesis, specifically kinetic isotope effects on the rate and selectivity of chain growth reactions on Fe-based catalysts.

  5. Synthesis gas regeneration electrotechnology using volume high-voltage pulsed discharges: corona and barrier ones

    Directory of Open Access Journals (Sweden)

    M.I. Boyko

    2014-09-01

    Full Text Available Factory testing of a created high-voltage complex (plant has been conducted. The complex consists of two pulse generators with the repetition rate of up to 50,000 pulses per second and load reactors with pulsed discharges - corona and barrier ones. Transistor (IGBT keys are used as energy switches. The efficient mode of coke gas methane conversion (steam reforming to syngas has been obtained with application of the complex created. A unidirectional action of the pulsed discharges, the gas mixture temperature, and a nickel catalyst has reduced the specific energy consumption for synthesis gas regeneration during the conversion. A feasible mechanism of this conversion is described.

  6. Carbon monoxide may be an important molecule in migraine and other headaches

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik W; Hauge, Mette K

    2014-01-01

    INTRODUCTION: Carbon monoxide was previously considered to just be a toxic gas. A wealth of recent information has, however, shown that it is also an important endogenously produced signalling molecule involved in multiple biological processes. Endogenously produced carbon monoxide may thus play...... an important role in nociceptive processing and in regulation of cerebral arterial tone. DISCUSSION: Carbon monoxide-induced headache shares many characteristics with migraine and other headaches. The mechanisms whereby carbon monoxide causes headache may include hypoxia, nitric oxide signalling and activation...

  7. Conversion of producer gas using NiO/SBA-15 obtained with different synthesis methods

    Institute of Scientific and Technical Information of China (English)

    Baowang Lu; Yiwen Ju; Katsuya Kawamoto

    2014-01-01

    In this study, NiO/SBA-15 was prepared by both direct and post synthesis methods. TEM images revealed that NiO particles aggregated in NiO/SBA-15 obtained with post synthesis method, regardless of NiO loading. However, NiO particles were monodispersed in NiO/SBA-15 with a NiO loading of less than 15 wt% by using the direct synthesis method. In this case, NiO particles aggregated when NiO loading was over 20 wt%. TPR analysis verified that with direct synthesis method the location boundary of NiO particles on outer and pore surface could be observed clearly, whereas that could not observed in the case of post synthesis method. This indicates that the type of synthesis method displays significant effect on the location of NiO particles dispersed into the SBA-15. Producer gas conversion was carried out using NiO/SBA-15 as catalysts, which were synthesized with different synthesis methods. The gas conversion including methanation occurred at low temperature (i.e., 300–400 ?C) and the reverse water gas shift (RWGS) reaction at high temperature (i.e., 400–900 ?C). High temperatures facilitated CO2 conversion to CO with CO selectivity close to 100%, regardless of the synthesis method of the used catalyst. At low temperatures the dispersion type of NiO particles affected the CO2 conversion reaction, i.e., monodispersed NiO particles gave a CO selectivity of close to 100%, similar to that obtained at high temperature. The aggregated NiO particles resulted in a CO selectivity of less than 100%owing to CH4 formation, regardless of synthesis method of catalyst. Therefore, NiO/SBA-15 obtained with direct synthesis method favored RWGS reaction because of high CO selectivity. NiO/SBA-15 obtained with post synthesis method is suited for methanation because of high CH4 selectivity, and the conversion of CO2 to CH4 through methanation increased with increasing NiO loading.

  8. Experimental Studies and Modeling of Synthesis Gas Production and Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, Muhammad Hamid

    2012-07-01

    In this work, an investigation on the production of synthetic fuel from gaseous hydrocarbons (HCs)/bio-HCs and liquid bio-HCs on a small-scale unit has been carried out. The research project consists of two major parts, a modified version of a plasma-assisted catalytic partial oxidation (CPO) gliding arc (GlidArc) reactor and a thermally stable single-tube fixed-bed Fischer-Tropsch (FT) reactor. The potential for the CPO of methane to produce synthesis gas (syngas) was studied experimentally and thermodynamically at a fixed pressure (1 bar) and electric power (0.3 kw). The investigations were performed in a partially adiabatic plasma-assisted (nonthermal) GlidArc reactor, using a Ni-based catalyst. Two cases were studied: in the first, normal air (molar ratio of O2/N2=21/79) was used, whereas enriched air (O2/N2=40/60) was utilized in the second. The individual effect of the O2/CH4 molar ratio, gas hour space velocity (GHSV) and bed exiting temperature (Texit) was studied for both cases. The main trends of the CH4 conversion, the syngas (H2 and CO) yield and the thermal efficiency of the reactor based on the lower heating value (LHV) were analyzed and compared. A numerical investigation of the CPO of methane to syngas using a GlidArc reactor was also studied. A 2D heterogeneous plug-flow model with radial dispersion and no gradients inside the catalyst pellet are used, including the transport equations for the gas and solid phase and reaction rate equations. The governing equations of this model formed a set of stationary differential algebraic equations coupled with the non-linear algebraic equations, and were solved numerically using in-house MATLAB code. Model results of CPO of methane were compared to previous experimental data with the GlidArc reactor found in the literature. A close match between the calculated and experimental results for temperature, reactant (CH4 and O2) conversion, H2 and CO yields and species molefraction were obtained. The developed

  9. Natural synthesis of bioactive greigite by solid-gas reactions

    Science.gov (United States)

    Igarashi, Kensuke; Yamamura, Yasuhisa; Kuwabara, Tomohiko

    2016-10-01

    Greigite, a ferrimagnetic iron sulfide Fe(II)Fe(III)2S4, is thought to have played an essential role in chemical evolution leading to the origin of life. Greigite contains a [4Fe-4S] cluster-like structure and has been synthesized in the laboratory by liquid-state reactions. However, it is unclear how greigite can be synthesized in nature. Herein, we show that greigite is synthesized by the solid-gas reaction of Fe(III)-oxide-hydroxides and H2S. We discovered that the hyperthermophilic hydrogenotrophic methanogen Methanocaldococcus jannaschii reduced elemental sulfur, and the resulting sulfide generated greigite from hematite. The time course and pH dependence of the reaction respectively indicated the involvement of amorphous FeS and H2S as reaction intermediates. An abiotic solid-gas reaction of hematite and H2S (g) under strictly anaerobic conditions was developed. The solid-gas reaction fully converted hematite to greigite/pyrite at 40-120 °C within 12 h and was unaffected by the bulk gas phase. Similar abiotic reactions occurred, but relatively slowly, with aqueous H2S in acidulous liquids using hematite, magnetite, or amorphous FeO(OH) as starting materials, suggesting that greigite was extensively produced in the Hadean Eon as these Fe(III)-oxide-hydroxides were shown to be present or routinely produced during that era. Surprisingly, the obtained greigite induced methanogenesis and growth of hydrogenotrophic methanogens, suggesting that the external greigite crystals enhanced reactions that would otherwise require enzymes, such as [4Fe-4S] cluster-harboring membrane-bound hydrogenases. These data suggested that the greigite produced by the solid-gas and solid-dissolved gas reactions was bioactive.

  10. Advanced studies of the biological conversion of coal synthesis gas to methane

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Vega, J.L.; Ko, C.W.; Kimmel, D.E.; Cowger, J.P.; Barik, S.; Johnson, E.R.; Holmberg, V.L.; Clausen, E.C.; Gaddy, J.L.

    1989-11-01

    The purpose of this report is to present information obtained from experimental studies and computer-generated simulation studies aimed at demonstrating the overall technical and economic feasibility of converting the components of synthesis gas to methane using a biological processes. Many routes to methane from synthesis gas are examined, along with a variety of organisms and reactor types. The effects of important variables in the biological process are examined, including high pressure, substrate and product inhibition and sulfur gas toxicity. Mass transfer and kinetic relationships are shown for the biological systems and the overall process is then demonstrated in a bench-scale trickle bed reactor. Finally, process design and economic evaluations for various reaction schemes and reactor types are presented and discussed. 126 refs., 216 figs., 54 tabs.

  11. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    Energy Technology Data Exchange (ETDEWEB)

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  12. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream

    Science.gov (United States)

    Kromer, Brian R.; Litwin, Michael M.; Kelly, Sean M.

    2016-09-27

    A method and system for generating electrical power in which a high pressure synthesis gas stream generated in a gasifier is partially oxidized in an oxygen transport membrane based reactor, expanded and thereafter, is combusted in an oxygen transport membrane based boiler. A low pressure synthesis gas slip stream is split off downstream of the expanders and used as the source of fuel in the oxygen transport membrane based partial oxidation reactors to allow the oxygen transport membrane to operate at low fuel pressures with high fuel utilization. The combustion within the boiler generates heat to raise steam to in turn generate electricity by a generator coupled to a steam turbine. The resultant flue gas can be purified to produce a carbon dioxide product.

  13. Experimental study of separation of ammonia synthesis vent gas by hydrate formation

    Institute of Scientific and Technical Information of China (English)

    Dong Taibin; Wang Leiyan; Liu Aixian; Guo Xuqiang; Ma Qinglan; Li Guowen; Sun Qiang

    2009-01-01

    Termodynamic data on methane hydrate formation in the presence of ammonia are very important for upgrading of ammonia synthesis vent gas using hydrate formation.This paper is focused on the formation conditions of methane hydrate in the presence of ammonia and the effects of gas-liquid ratio and temperature on the separation of vent gas by hydrate formation.Equilibrium data for methane hydrate within an ammonia mole concentration range from 1% to 5 % were obtained.The experimental results indicated that ammonia has an inhibitive effect on hydrate formation.The higher the ammonia concentration, the higher is the pressure reguired for methane hydrate formation would be.The primary experimental results showed that when volume ratio of gas to liquid was 80:1 and temperature was 283.15 K, total mole fraction of (H2+N2) in gas phase could reach 96.9 %.

  14. Structural and magnetic properties of mechanochemically synthesized nanocrystalline titanium monoxide

    Directory of Open Access Journals (Sweden)

    Barudžija Tanja

    2012-01-01

    Full Text Available Nano-sized titanium monoxide (TiO powder was prepared by mechanochemical synthesis. A mixture of commercial Ti and TiO2 (rutile powders with the molar ratio of 1:1 was milled in a planetary ball mill for 5, 10, 20, 30 and 60 min under argon atmosphere. The final single-phase titanium monoxide sample was characterized by X-ray diffraction (XRD, magnetic measurements using a superconducting quantum interference device magnetometer (SQUID and thermogravimetric analysis (TGA. The temperature dependency of the magnetic susceptibility is characterized by significant contribution of Pauli paramagnetism due to conduction electrons.

  15. Nanocasting synthesis and gas-sensing behavior of hematite nanowires

    Science.gov (United States)

    Li, Danping; Zhang, Y.; Xu, Jingcai; Jin, Hongxiao; Jin, Dingfeng; Hong, Bo; Peng, Xiaoling; Wang, Panfeng; Ge, Hongliang; Wang, Xinqing

    2016-10-01

    The dispersed and uniform hematite nanowires (α-Fe2O3 NWs) with the different diameter were synthesized using SBA-15 as hard templates by the nanocasting method, and the diameter of α-Fe2O3 NWs was about 4, 6 and 8 nm, respectively. The BET surface area of α-Fe2O3 NWs changed a little, while the bandgap decreased from 2.07, 2.03 to 1.91 eV with the increasing diameter according to quantum size effect. Compared all samples, the sensitivity of α-Fe2O3 NWs based gas-sensors increased from 10.64 to 11.43 with the bandgap and BET surface area α-Fe2O3 NWs in 100 ppm ethanol at 300 °C, and the response-recovery time was also improved for the good crystallinity. It's concluded that the surface area greatly affected the gas-sensing performance of α-Fe2O3 NWs based sensors, while the bandgap and crystallinity also influenced the gas-sensing behavior to some extent. The α-Fe2O3 NWs based gas-sensors exhibited the high sensitivity, fast response-recovery and good selectivity to ethanol.

  16. Hematite nanoplates: Controllable synthesis, gas sensing, photocatalytic and magnetic properties.

    Science.gov (United States)

    Hao, Hongying; Sun, Dandan; Xu, Yanyan; Liu, Ping; Zhang, Guoying; Sun, Yaqiu; Gao, Dongzhao

    2016-01-15

    Uniform hematite (α-Fe2O3) nanoplates exposing {001} plane as basal planes have been prepared by a facile solvothermal method under the assistance of sodium acetate. The morphological evolution of the nanoplates was studied by adjusting the reaction parameters including the solvent and the amount of sodium acetate. The results indicated that both the adequate nucleation/growth rate and selective adsorption of alcohol molecules and acetate anions contribute to the formation of the plate-like morphology. In addition, the size of the nanoplates can be adjusted from ca. 180nm to 740nm by changing the reaction parameters. Three nanoplate samples with different size were selected to investigate the gas sensing performance, photocatalytic and magnetic properties. As gas sensing materials, all the α-Fe2O3 nanoplates exhibited high gas sensitivity and stability toward n-butanol. When applied as photocatalyst, the α-Fe2O3 nanoplates show high photodegradation efficiency towards RhB. Both the gas sensing performance and the photocatalytic property of the products exhibit obvious size-dependent effect. Magnetic measurements reveal that the plate-like α-Fe2O3 particles possess good room temperature magnetic properties.

  17. Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing.

    Science.gov (United States)

    Nayral, C; Viala, E; Fau, P; Senocq, F; Jumas, J C; Maisonnat, A; Chaudret, B

    2000-11-17

    Nanocomposite core-shell particles that consist of a Sn0 core surrounded by a thin layer of tin oxides have been prepared by thermolysis of [(Sn(NMe2)2)2] in anisole that contains small, controlled amounts of water. The particles were characterized by means of electronic microscopies (TEM, HRTEM, SEM), X-ray diffraction (XRD) studies, photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. The TEM micrographs show spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of temperature, time, water concentration, and tin precursor concentration. Nanoparticles of 19 nm median size and displaying a narrow size distribution have been obtained with excellent yield in the optimized conditions. HRTEM, XPS, XRD and Mossbauer studies indicate the composite nature of the particles that consist of a well-crystallized tin beta core of approximately equals 11 nm covered with a layer of approximately equals 4 nm of amorphous tin dioxide and which also contain quadratic tin monoxide crystallites. The thermal oxidation of this nanocomposite yields well-crystallized nanoparticles of SnO2* without coalescence or size change. XRD patterns show that the powder consists of a mixture of two phases: the tetragonal cassiterite phase, which is the most abundant, and an orthorhombic phase. In agreement with the small SnO2 particle size, the relative intensity of the adsorbed dioxygen peak observed on the XPS spectrum is remarkable, when compared with that observed in the case of larger SnO2 particles. This is consistent with electrical conductivity measurements, which demonstrate that this material is highly sensitive to the presence of a reducing gas such as carbon monoxide.

  18. Carbon Monoxide (CO)

    Science.gov (United States)

    ... Sources of CO include: unvented kerosene and gas space heaters leaking chimneys and furnaces back-drafting from furnaces, ... gas appliances properly adjusted. Consider purchasing a vented space heater when replacing an unvented one. Use proper fuel ...

  19. High octane ethers from synthesis gas-derived alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; DeTavernier, S.; Johannson, M.; Kieke, M.; Bastian, R.D.

    1991-07-01

    The temperature dependence of ether synthesis, particularly unsymmetric methylisobutylether (MIBE), was carried out over the Nafion-H microsaddles (MS) catalyst. The principal product formed under the rather severe reaction conditions of 1100 psig pressure and temperatures in the range of 123--157{degree}C was the expected MIBE formed directly by coupling the methanol/isobutanol reactants. In addition, significantly larger quantities of the dimethylether (DME) and hydrocarbon products were observed than were obtained under milder reaction conditions. Deactivation of the Nafion-H MS catalyst was determined by periodically testing the catalyst under a given set of reaction conditions for the synthesis of MIBE and MTBE from methanol/isobutanol = 2/1, i.e. 123{degree}C, 1100 psig, and total GHSV = 248 mol/kg cat/hr. After carrying out various tests over a period of 2420 hr, with intermittant periods of standing under nitrogen at ambient conditions, the yields of MIBE and MTBE had decreased by 25% and 41%, respectively. In order to gain insight into the role of the surface acidity in promoting the selective coupling of the alcohols to form the unsymmetric ether, the strengths of the acid sites on the catalysts are still being probed by calorimetric titrations in non-aqueous solutions. 11 refs., 13 figs., 9 tabs.

  20. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  1. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device.

    Science.gov (United States)

    Kaur, N; Comini, E; Zappa, D; Poli, N; Sberveglieri, G

    2016-05-20

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen.

  2. Conversion of glycerol to hydrogen rich gas.

    Science.gov (United States)

    Tran, Nguyen H; Kannangara, G S Kamali

    2013-12-21

    Presently there is a glut of glycerol as the by-product of biofuel production and it will grow as production increases. The conundrum is how we can consume this material and convert it into a more useful product. One potential route is to reform glycerol to hydrogen rich gas including synthesis gas (CO + H2) and hydrogen. However, there is recent literature on various reforming techniques which may have a bearing on the efficiency of such a process. Hence in this review reforming of glycerol at room temperature (normally photo-catalytic), catalysis at moderate and high temperature and a non-catalytic pyrolysis process are presented. The high temperature processes allow the generation of synthesis gas with the hydrogen to carbon monoxide ratios being suitable for synthesis of dimethyl ether, methanol and for the Fischer-Tropsch process using established catalysts. Efficient conversion of synthesis gas to hydrogen involves additional catalysts that assist the water gas shift reaction, or involves in situ capture of carbon dioxide and hydrogen. Reforming at reduced temperatures including photo-reforming offers the opportunity of producing synthesis gas or hydrogen using single catalysts. Together, these processes will assist in overcoming the worldwide glut of glycerol, increasing the competitiveness of the biofuel production and reducing our dependency on the fossil based, hydrogen rich gas.

  3. Synthesis of carbon nanotubes by plasma-enhanced CVD process: gas phase study of synthesis conditions

    OpenAIRE

    Guláš, Michal; Cojocaru, Costel Sorin; Fleaca, Claudiu; Farhat, Samir; Veis, Pavel; Le Normand, Francois

    2008-01-01

    International audience; To support experimental investigations, a model based on ChemkinTM software was used to simulate gas phase and surface chemistry during plasma-enhanced catalytic CVD of carbon nanotubes. According to these calculations, gas phase composition, etching process and growth rates are calculated. The role of several carbon species, hydrocarbon molecules and ions in the growth mechanism of carbon nanotubes is presented in this study. Study of different conditions of gas phase ...

  4. Synthesis of carbon nanbotubes by plasma-enhanced CVD process: gas phase study of synthesis conditions

    Science.gov (United States)

    Guláš, M.; Cojocaru, C. S.; Fleaca, C. T.; Farhat, S.; Veis, P.; Le Normand, F.

    2008-09-01

    To support experimental investigations, a model based on Chemkin^TM software was used to simulate gas phase and surface chemistry during plasma-enhanced catalytic CVD of carbon nanotubes. According to these calculations, gas phase composition, etching process and growth rates are calculated. The role of several carbon species, hydrocarbon molecules and ions in the growth mechanism of carbon nanotubes is presented in this study. Study of different conditions of gas phase activation sources and pressure is performed.

  5. Synthesis gas/H{sub 2} via SCT-CPO. A pilot-plant experience

    Energy Technology Data Exchange (ETDEWEB)

    Basini, L.; Cimino, R.; Guarinoni, A. [Eni S.p.A., Divisione Refining and Marketing, Direzione Ricerca e Sviluppo Tecnologico, San Donato Milanese (Italy); Campanelli, G.; Ficili, C.; Ponzo, R. [Eni S.p.A., Divisione Refining and Marketing, Direzione Ricerca e Sviluppo Tecnologico, San Filippo del Mela (Italy)

    2006-07-01

    Hydrogen and Synthesis Gas have been extensively utilised for more than 70 years in chemical and refinery industries. Their uses are becoming today more complex being influenced by strategic, political, economic and sustainability considerations. Clean fuel production and heavy residues utilisation, Gas To Liquid initiatives and the desired but not yet accomplished Electric Energy production with Fuel Cells, are issues whose development and costs would benefit from innovations in Hydrogen and Synthesis Gas production and utilisation. The existing technological needs will be briefly discussed considering a new H{sub 2}/Synthesis gas production method, the Short Contact Time - Catalytic Partial Oxidation (SCT-CPO). This has been studied since the early '90es by performing an extensive work at lab-scale and in bench scale levels and finally scaling-up the technology. In 2001 Snamprogetti (the engineering company of the ENI group) and Haldor Topsoe A/S successfully operated a first pilot plant in Houston, TX and in 2005 EniTecnologie realised and operated a second multi-purpose plant in Milazzo, Sicily. The multi-purpose plant includes all the main operation units of an industrial realisation and allows a full simulation of real conditions. Moreover it is designed to process a wide class of hydrocarbons (ranging from NG to liquid and heavy fuels). This work reviews its features and capabilities of providing useful information for the development of technological applications. (orig.)

  6. Effect of chloralkanes on the phenyltrichlorosilane synthesis by gas phase condensation

    Institute of Scientific and Technical Information of China (English)

    Tong Liu; Yunlong Huang; Chao Wang; Qiang Tang; Jinfu Wang

    2015-01-01

    To enhance the process of phenyltrichlorosilane synthesis using gas phase condensation, a series of chloralkanes were introduced. The influence of temperature and chloralkane amount on the synthesis was studied based on the product distribution from a tubular reactor. The promoting effect of chloralkane addition was mainly caused by the chloralkane radicals generated by the dissociation of C–Cl bond. The promoting effect of the chloromethane with more chlorine atoms was better than those with less chlorine atoms. Intermediates detected from the reactions with isoprene and bromobenzene demonstrated that both trichlorosilyl radical and dichlorosilylene existed in the reaction system in the presence of chloralkanes. A detailed reaction scheme was proposed.

  7. 基于量子点的正方块状二氧化钛纳米晶的形成分析%Synthesis of titania nanosquare via recrystalization of titanium monoxide nanodots

    Institute of Scientific and Technical Information of China (English)

    丁晓坤

    2012-01-01

    二氧化钛是目前为止较理想的半导体光电材料,多用于光催化及太阳能电池.本文利用水热法合成正方块状锐钛矿结构的纳米二氧化钛单晶颗粒,并利用TEM表征其形成过程.这些纳米颗粒平均尺度为50 nm,暴露出较高比例的(001)高能面.通过实验进一步发现该纳米晶的形成源于液相中均匀分布的一氧化钛量子点,其形成是一个聚集-相变-重结晶的过程,最终在氟离子作用下形成正方块状单晶二氧化钛纳米颗粒.%This paper reported a new synthesis route of anatase nanosquare TiO2 single crystal with exposed (001) facet. The nanocrystals were prepared by solid Titanium Oxy Acetylacetoneate dispersed in mixed solvent of acetylacetone and ethanol, followed by a hydrothermal treatment in NH4F solution with PVP added. After heated at 160℃ in different days, it was found that the nanosquares formed from titanium monoxide nanodots in a process of aggregation, phase transform and recrystallization. The final nanosquare TiO2 was formed under the action of fluorin ions with the size of 30 -50 nm and exposed (001) facet.

  8. SnO2 Nanostructure as Pollutant Gas Sensors: Synthesis, Sensing Performances, and Mechanism

    Directory of Open Access Journals (Sweden)

    Brian Yuliarto

    2015-01-01

    Full Text Available A significant amount of pollutants is produced from factories and motor vehicles in the form of gas. Their negative impact on the environment is well known; therefore detection with effective gas sensors is important as part of pollution prevention efforts. Gas sensors use a metal oxide semiconductor, specifically SnO2 nanostructures. This semiconductor is interesting and worthy of further investigation because of its many uses, for example, as lithium battery electrode, energy storage, catalyst, and transistor, and has potential as a gas sensor. In addition, there has to be a discussion of the use of SnO2 as a pollutant gas sensor especially for waste products such as CO, CO2, SO2, and NOx. In this paper, the development of the fabrication of SnO2 nanostructures synthesis will be described as it relates to the performances as pollutant gas sensors. In addition, the functionalization of SnO2 as a gas sensor is extensively discussed with respect to the theory of gas adsorption, the surface features of SnO2, the band gap theory, and electron transfer.

  9. Hydrothermal synthesis of self-assembled hierarchical tungsten oxides hollow spheres and their gas sensing properties.

    Science.gov (United States)

    Li, Jinwei; Liu, Xin; Cui, Jiashan; Sun, Jianbo

    2015-05-20

    Hierarchical self-assembled hollow spheres (HS) of tungsten oxide nanosheets have been synthesized via a template-free hydrothermal method. Morphology evolution of the products is determined by the amount of H2C2O4 (oxalic acid) which serves as chelating agent. Structural features of the products were characterized by X-ray diffraction (XRD), and morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, the porous structure was analyzed using the Brunauer-Emmett-Teller (BET) approach. The synthesis mechanism of the products with self-assembled hierarchical structures was proposed. The NO2 gas sensing properties of self-assembled hierarchical WO3 HS materials were investigated, the gas sensing properties of WO3 synthesized by a variety of formulations were compared, and the possible gas sensing mechanism was discussed. The obvious enhancement of the gas sensing properties was ascribed to the structure of the hierarchical HS.

  10. Coating synthesis on dielectric substrates assisted by pulsed beams of high-energy gas atoms

    Science.gov (United States)

    Grigoriev, S. N.; Melnik, Yu A.; Metel, A. S.

    2017-05-01

    Titanium nitride and aluminum nitride coatings have been deposited on glass and aluminum oxide substrates in a flow of metal atoms accompanied by high-energy gas atoms. The metal atoms are produced due to sputtering of a flat rectangular magnetron target. The gas atoms with energy up to 25 keV are produced due to charge exchange collisions of ions extracted from the magnetron discharge plasma and accelerated by high-voltage pulses applied to a flat grid parallel to the target. The metal atoms pass through the grid and deposit on the substrate. Conjunction of their trajectories with those of gas atoms bombarding the growing coating enables the coating synthesis on complex-shape dielectric products planetary rotating inside the vacuum chamber. Mixing high-energy gas atoms of the coating and substrate atoms substantially improves the coating adhesion.

  11. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic

    Indian Academy of Sciences (India)

    M P Mahabole; R C Aiyer; C V Ramakrishna; B Sreedhar; R S Khairnar

    2005-10-01

    Hydroxyapatite (HAp) biomaterial ceramic was synthesized by three different processing routes viz. wet chemical process, microwave irradiation process, and hydrothermal technique. The synthesized ceramic powders were characterized by SEM, XRD, FTIR and XPS techniques. The dielectric measurements were carried out as a function of frequency at room temperature and the preliminary study on CO gas sensing property of hydroxyapatite was investigated. The XRD pattern of the hydroxyapatite biomaterial revealed that hydroxyapatite ceramic has hexagonal structure. The average crystallite size was found to be in the range 31–54 nm. Absorption bands corresponding to phosphate and hydroxyl functional groups, which are characteristic of hydroxyapatite, were confirmed by FTIR. The dielectric constant was found to vary in the range 9–13 at room temperature. Hydroxyapatite can be used as CO gas sensor at an optimum temperature near 125°C. X-ray photoelectron spectroscopic studies showed the Ca/P ratio of 1.63 for the HAp sample prepared by chemical process. The microwave irradiation technique yielded calcium rich HAp whereas calcium deficient HAp was obtained by hydrothermal method.

  12. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass (UCGFunda)

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Nasrullah, M.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2009-10-15

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international co-operation. VTT itself finances also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. A lot of data on the reactivity and ash sintering properties of various kinds of biomasses has been obtained in the project and the information will now be formulated into a mathematical model. In addition to catalysis also thermal reactions play an important role in gas cleaning. Both experimental and modelling work on both of the reaction types is being carried out. Three techno-economic evaluations on alternative and competing technologies will be completed in the coming year. International development in syngas technology has been closely monitored in all subtopics as well as by participating in relevant IEA-tasks. New analysis techniques developed in the project have proven very useful and for instance a fast on-line tar analysis method is now well established. (orig.)

  13. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  14. Effect of Oxidizing Medium on Synthesis Gas Content at Solid Fuel Gasification

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander

    2016-01-01

    Full Text Available Solid fuel gasification is promising technology in sphere of clean energy. The synthesis gas content for air-blown fixed bed gasification may be defined using Gibbs free energy minimization procedure. The minimization procedure was realized via steepest descent method. The feed consisted of steam, air and coal at standard conditions. The temperature and gas content were calculated at different ratios of coal/steam/air. It was found that optimal syngas content resulted at component ratio of 1.0/0.5/2.2 with the ambient temperature of 1300 K and syngas heating power of 7.7 kJ/m3.

  15. Process and catalyst for converting synthesis gas to liquid hydrocarbon mixture

    Science.gov (United States)

    Rao, V. Udaya S.; Gormley, Robert J.

    1987-01-01

    Synthesis gas containing CO and H.sub.2 is converted to a high-octane hydrocarbon liquid in the gasoline boiling point range by bringing the gas into contact with a heterogeneous catalyst including, in physical mixture, a zeolite molecular sieve, cobalt at 6-20% by weight, and thoria at 0.5-3.9% by weight. The contacting occurs at a temperature of 250.degree.-300.degree. C., and a pressure of 10-30 atmospheres. The conditions can be selected to form a major portion of the hydrocarbon product in the gasoline boiling range with a research octane of more than 80 and less than 10% by weight aromatics.

  16. Impact of Contaminants Present in Coal-Biomass Derived Synthesis Gas on Water-gas Shift and Fischer-Tropsch Synthesis Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan [TDA Research, Inc., Wheat Ridge, CO (United States)

    2013-02-15

    Co-gasification of biomass and coal in large-scale, Integrated Gasification Combined Cycle (IGCC) plants increases the efficiency and reduces the environmental impact of making synthesis gas ("syngas") that can be used in Coal-Biomass-to-Liquids (CBTL) processes for producing transportation fuels. However, the water-gas shift (WGS) and Fischer-Tropsch synthesis (FTS) catalysts used in these processes may be poisoned by multiple contaminants found in coal-biomass derived syngas; sulfur species, trace toxic metals, halides, nitrogen species, the vapors of alkali metals and their salts (e.g., KCl and NaCl), ammonia, and phosphorous. Thus, it is essential to develop a fundamental understanding of poisoning/inhibition mechanisms before investing in the development of any costly mitigation technologies. We therefore investigated the impact of potential contaminants (H2S, NH3, HCN, AsH3, PH3, HCl, NaCl, KCl, AS3, NH4NO3, NH4OH, KNO3, HBr, HF, and HNO3) on the performance and lifetime of commercially available and generic (prepared in-house) WGS and FT catalysts.

  17. Carbon Monoxide (CO) Poisoning Prevention

    Science.gov (United States)

    ... Recommend on Facebook Tweet Share Compartir When power outages occur after severe weather (such as winter storms, hurricanes or tornadoes), using alternative sources of power can cause carbon monoxide (CO) to build up in a ...

  18. Carbon Monoxide Mixing Ratio System

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) Carbon Monoxide (CO) system provides high-precision atmospheric concentration measurements of CO mixing ratio (ppbv dry air) every 10...

  19. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier

    2006-11-01

    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  20. Harnessing the Power of the Water-Gas Shift Reaction for Organic Synthesis.

    Science.gov (United States)

    Ambrosi, Andrea; Denmark, Scott E

    2016-09-26

    Since its original discovery over a century ago, the water-gas shift reaction (WGSR) has played a crucial role in industrial chemistry, providing a source of H2 to feed fundamental industrial transformations such as the Haber-Bosch synthesis of ammonia. Although the production of hydrogen remains nowadays the major application of the WGSR, the advent of homogeneous catalysis in the 1970s marked the beginning of a synergy between WGSR and organic chemistry. Thus, the reducing power provided by the CO/H2 O couple has been exploited in the synthesis of fine chemicals; not only hydrogenation-type reactions, but also catalytic processes that require a reductive step for the turnover of the catalytic cycle. Despite the potential and unique features of the WGSR, its applications in organic synthesis remain largely underdeveloped. The topic will be critically reviewed herein, with the expectation that an increased awareness may stimulate new, creative work in the area.

  1. Detailed kinetics of methylphenyldichlorosilane synthesis from methyldichlorosilane and chlorobenzene by gas phase condensation

    Institute of Scientific and Technical Information of China (English)

    Tong Liu; Tiefeng Wang; Yunlong Huang; Chao Wang; Jinfu Wang

    2015-01-01

    Methylphenyldichlorosilane (MPDS, CH3C6H5SiCl2) is an important silicone monomer for the synthesis of high-performance polymethylphenylsiloxane polymers. In this work, the mechanism of the synthesis of MPDS from methyldichlorosilane and chlorobenzene by gas phase condensation was studied, and a kinetic model with 35 species and 58 elementary reactions was established. Experiments were carried out in a tubular reactor under a wide range of reaction conditions. The calculated mole fractions of the reactants and products were in a good agreement with the experimental results. A mechanism of the insertion of chloromethylsilylene into the C-Cl bond of chlorobenzene was proposed, which was proved to be the main pathway of MPDS production. The established kinetic model can be used in design and optimization of the industrial reactor for MPDS synthesis.

  2. [Massive poisoning with carbon monoxide: an update from a case].

    Science.gov (United States)

    Díaz, Mariano; Crapanzano, Gabriel; Cabrerizo, Silvia; Aichele, Cristina; Deurtiaga, Alejandra; Vallejos, Yamila

    2017-02-01

    Carbon monoxide is known as the "silent murderer" because it is a colorless and odorless gas. According to these characteristics, toxicity goes unnoticed which makes the diagnosis difficult. In most cases, the cold periods and group poisoning make suspect its presence because inappropriate heat both in home or public environments. Our goal is to inform about a mass carbon monoxide poisoning in a children's parties room using a combustion source installed, not for the purpose of heating, but as a supply of light (generator), emphasizing that it can occur in any time of the year.

  3. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Nathan Robert [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  4. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nathan Robert Classen

    2002-12-31

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.

  5. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    OpenAIRE

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W; Laura Evans; Xu, Jennifer C.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing ...

  6. Production of synthesis gas and ultra clean gas; Synteesikaasun ja ultrapuhtaan polttokaasunvalmistustekniikan kehitys (osa 3/3)

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E. [VTT Technical Research Centre of Finland, Jyvaeskylae (Finland)

    2007-07-01

    New innovative biomass gasification and gas cleaning technologies are developed for the production of synthesis gas and ultra clean fuel gas. The experimental work was focused on fluidised-bed gasification, followed by catalytic reforming and optimised gas conditioning processes. The main aim of the project was to develop processes which can be applied in producing liquid biofuels from biomass and waste fuels. This three-year project, Development of ultra clean gas (UCG) technologies for biomass gasification, was planned to be realised in 2004-2007. The aim was to move from small-scale experiments and process evaluation work to Process Development scale in 2006. In addition to experimental R and D work, system studies have been carried out in order to define optimal process concepts for producing liquid biofuels in Finnish and Central European conditions. Especially, the integration of syngas technologies to the pulp and paper industries and combined power and heat production have been studied. International co-operation within European projects has also been planned. Within the first two years different liquid biofuel production concepts were assessed and a promising method for producing transportation fuels with ca. 50 euro-cents/l has been introduced. This concept is based on biomass gasification at 200-300 MW scale with efficient energy integration to a pulp and paper mill. The 500 kW PDU plant for the new gasification and gas cleaning process has been designed and was taken into operation at the end of 2006 at VTT. Finally, product gas reforming has been developed and tested in laboratory scale and a PDU-scale reformer has been constructed and taken into use. At VTT, this project has been carried out as a co-operation of the gasification and liquid biofuels teams. The gasification team is responsible for the development of gasification and gas cleaning technologies and the liquid biofuels team carries out the feasibility studies and overall process development

  7. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols.

    Science.gov (United States)

    Prieto, Gonzalo; Beijer, Steven; Smith, Miranda L; He, Ming; Au, Yuen; Wang, Zi; Bruce, David A; de Jong, Krijn P; Spivey, James J; de Jongh, Petra E

    2014-06-16

    Combining quantum-mechanical simulations and synthesis tools allows the design of highly efficient CuCo/MoO(x) catalysts for the selective conversion of synthesis gas (CO+H2) into ethanol and higher alcohols, which are of eminent interest for the production of platform chemicals from non-petroleum feedstocks. Density functional theory calculations coupled to microkinetic models identify mixed Cu-Co alloy sites, at Co-enriched surfaces, as ideal for the selective production of long-chain alcohols. Accordingly, a versatile synthesis route is developed based on metal nanoparticle exsolution from a molybdate precursor compound whose crystalline structure isomorphically accommodates Cu(2+) and Co(2+) cations in a wide range of compositions. As revealed by energy-dispersive X-ray nanospectroscopy and temperature-resolved X-ray diffraction, superior mixing of Cu and Co species promotes formation of CuCo alloy nanocrystals after activation, leading to two orders of magnitude higher yield to high alcohols than a benchmark CuCoCr catalyst. Substantiating simulations, the yield to high alcohols is maximized in parallel to the CuCo alloy contribution, for Co-rich surface compositions, for which Cu phase segregation is prevented.

  8. Biological conversion of synthesis gas. Mass transfer/kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}0 {yields} CO{sub 2} + H{sub 2}. C. thiosulfatophilum is also a H{sub 2}S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25{degree} and 30{degree}C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30{degree}, 32{degree} or 34{degree}C. The rate of conversion of COs and H{sub 2}O to CO{sub 2} and H{sub 2}S may be modeled by a first order rate expression. The rate constant at 30{degree}C was found to be 0.243 h{sup {minus}1}. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: {mu} = {sub 351} + I{sub o}/{sup 0.152}I{sub o}. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

  9. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... as CO, is called the "Invisible Killer" because it's a colorless, odorless, poisonous gas. More than 150 ... CPSC does not control this external site or its privacy policy and cannot attest to the accuracy ...

  10. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... as CO, is called the "Invisible Killer" because it's a colorless, odorless, poisonous gas. More than 150 ... Working CO alarms matter. Install one and check its batteries regularly. View Information About CO Alarms Other ...

  11. Carbon Monoxide Poisoning

    Science.gov (United States)

    ... within minutes.** Consumers die when they improperly use gas generators, charcoal grills, and fuel-burning camping heaters and stoves inside their homes or in other enclosed or partially- enclosed spaces during power outages. *** Preparedness Tips 9 Install a ...

  12. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... as CO, is called the "Invisible Killer" because it's a colorless, odorless, poisonous gas. More than 150 ... Working CO alarms matter. Install one and check its batteries regularly. View Information About CO Alarms Other ...

  13. Synthesis and characterization of mixed matrix membranes for gas separation

    Science.gov (United States)

    Zhang, Yanfeng

    2007-12-01

    Mixed-matrix membranes were prepared from Matrimid RTM and mesoporous ZSM-5 nanoparticles containing crystalline ZSM-5. The mesoporous ZSM-5 has both micropores (0.54 nm) and mesopores (2.7 nm), which were confirmed by XRD, nitrogen adsorption, and TEM. The Young's moduli and glass transition temperatures of mixed-matrix membranes are higher than those of pure MatrimidRTM membranes, suggesting that the polymer chains may penetrate into the mesopores. The ideal selectivity for H2/N2 separation increased from 79.6 for pure Matrimid RTM to 143 at 10% loading, while the selectivity of O2/N 2 increased from 6.6 for pure MatrimidRTM to 10.4 at 20% loading. The ideal H2/CH4 separation factor increased from 83.3 to 169 at 20% loading. The results suggest that the mesopores of the ZSM-5 material can provide good interfacial contact between the nanoparticles and the polymer, since the polymer chains can penetrate into the mesopores. The micropores of ZSM-5 crystals can provide size and shape selectivity. A carbon aerogel was prepared by carbonizing a resorcinol-formaldehyde polymer gel at 800°C. Nitrogen adsorption shows the obtained carbon aerogel has both micropores (0.54 nm) and mesopores (2.14 nm). Zeolite A and zeolite Y nanocrystals were grown in the mesopores of the carbon aerogel, resulting in carbon aerogel-zeolite composites. TEM confirmed the existence of nanosize zeolite crystals in the carbon aerogel matrix. Higher selectivity for the CO2/CH4, O2/N2 and H2/N 2 separation were obtained for carbon aerogel-zeolite, carbon aerogel-zeolite-Matrimid RTM membranes. The small pore diameter of zeolite A and the affinity between the CO2 and zeolite crystals make it perfect for CO 2/CH4 separation. Short single-walled carbon nanotubes (SWNT) functionalized with carboxylic acid groups were made and incorporated into MatrimidRTM to form mixed-matrix membranes. SEM images of mixed-matrix membranes cross-sections showed good dispersion and interfacial contact. Pure gas

  14. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    NARCIS (Netherlands)

    Feng, J.; Biskos, G.; Schmidt-Ott, A.

    2015-01-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure nonagglom

  15. Thermodynamic analysis of steam assisted conversions of bio-oil components to synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, Seda; Karakaya, Mustafa; Avci, Ahmet K. [Department of Chemical Engineering, Bogazici University, Bebek 34342, Istanbul (Turkey)

    2009-02-15

    The aim of this study is to investigate the thermodynamics of steam assisted, high-pressure conversions of model components of bio-oil - isopropyl alcohol, lactic acid and phenol - to synthesis gas (H{sub 2} + CO) and to understand the effects of process variables such as temperature and inlet steam-to-fuel ratio on the product distribution. For this purpose, thermodynamic analyses are performed at a pressure of 30 bar and at ranges of temperature and steam-to-fuel ratio of 600-1200 K and 4-9, respectively. The number of moles of each component in the product stream and the product composition at equilibrium are calculated via Gibbs free energy minimization technique. The resulting optimization problems are solved by using the Sequential quadratic programming method. The results showed that all of the model fuels reached near-complete conversions to H{sub 2}, CO, CO{sub 2} and CH{sub 4} within the range of operating conditions. Temperature and steam-to-fuel ratio had positive effects in increasing hydrogen content of the product mixture at different magnitudes. Production of CO increased with temperature, but decreased at high steam-to-fuel ratios. Conversion of model fuels in excess of 1000 K favored molar H{sub 2}/CO ratios around 2, the synthesis gas composition required for Fischer-Tropsch and methanol syntheses. It was also possible to adjust the H{sub 2}/CO ratios and the amounts of CH{sub 4} and CO{sub 2} in synthesis gas by steam-to-fuel ratio, the value depending on temperature and the fuel type. Product distribution trends indicated the presence of water-gas shift and methanation equilibria as major side reactions running in parallel with the steam reforming of the model hydrocarbons. (author)

  16. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    Science.gov (United States)

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  17. CO Gas Sensing Properties of Pure and Cu-Incorporated SnO2 Nanoparticles: A Study of Cu-Induced Modifications

    OpenAIRE

    Tangirala Venkata Krishna Karthik; María de la Luz Olvera; Arturo Maldonado; Heberto Gómez Pozos

    2016-01-01

    Pure and copper (Cu)-incorporated tin oxide (SnO2) pellet gas sensors with characteristics provoking gas sensitivity were fabricated and used for measuring carbon monoxide (CO) atmospheres. Non-spherical pure SnO2 nano-structures were prepared by using urea as the precipitation agent. The resultant SnO2 powders were ball milled and incorporated with a transition metal, Cu, via chemical synthesis method. The incorporation is confirmed by high-resolution transmission electron microscope (HRTEM)...

  18. Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

    Science.gov (United States)

    Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Edwards, Danny J.; Chou, Yeong-Shyung; Cramer, Carolyn N.

    Oxidation-resistant alloys find use as interconnect materials, heat exchangers, and gas supply tubing in solid oxide fuel cell (SOFC) systems, especially when operated at temperatures below ∼800 °C. If fueled with synthesis gas derived from coal or biomass, such metallic components could be exposed to impurities contained in those fuel sources. In this study, coupons of ferritic stainless steels Crofer 22 APU and SS 441, austenitic nickel-chromium superalloy Inconel 600, and an alumina-forming high nickel alloy alumel were exposed to synthesis gas containing ≤2 ppm phosphorus, arsenic and antimony, and reaction products were tested. Crofer 22 APU coupons coated with a (Mn,Co) 3O 4 protective layer were also evaluated. Phosphorus was found to be the most reactive. On Crofer 22 APU, the (Mn,Cr) 3O 4 passivation layer reacted to form an Mn-P-O product, predicted to be manganese phosphate from thermochemical calculations, and Cr 2O 3. On SS 441, reaction of phosphorus with (Mn,Cr) 3O 4 led to the formation of manganese phosphate as well as an Fe-P product, predicted from thermochemical calculations to be Fe 3P. Minimal interactions with antimony or arsenic in synthesis gas were limited to Fe-Sb and Fe-As solid solution formation. Though not intended for use on the anode side, a (Mn,Co) 3O 4 spinel coating on Crofer 22 APU reacted with phosphorus in synthesis gas to produce products consistent with Mn 3(PO 4) 2 and Co 2P. A thin Cr 2O 3 passivation layer on Inconel 600 did not prevent the formation of nickel phosphides and arsenides and of iron phosphides and arsenides, though no reaction with Cr 2O 3 was apparent. On alumel, an Al 2O 3 passivation layer rich in Ni did not prevent the formation of nickel phosphides, arsenides, and antimonides, though no reaction with Al 2O 3 occurred. This work shows that unprotected metallic components of an SOFC stack and system can provide a sink for P, As and Sb impurities that may be present in fuel gases, and thus complicate

  19. Design, Synthesis, and Mechanistic Evaluation of Iron-Based Catalysis for Synthesis Gas Conversion to Fuels and Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Enrique Iglesia; Akio Ishikawa; Manual Ojeda; Nan Yao

    2007-09-30

    A detailed study of the catalyst composition, preparation and activation protocol of Fe-based catalysts for the Fischer-Tropsch Synthesis (FTS) have been carried out in this project. We have studied the effects of different promoters on the catalytic performance of Fe-based catalysts. Specifically, we have focused on how their sequence of addition dramatically influences the performance of these materials in the Fischer-Tropsch synthesis. The resulting procedures have been optimized to improve further upon the already unprecedented rates and C{sub 5+} selectivities of the Fe-based catalysts that we have developed as part of this project. Selectivity to C{sub 5+} hydrocarbon was close to 90 % (CO{sub 2}-free basis) and CO conversion rate was about 6.7 mol h{sup -1} g-at Fe{sup -1} at 2.14 MPa, 508 K and with substoichiometric synthesis gas; these rates were larger than any reported previously for Fe-based FTS catalysts at these conditions. We also tested the stability of Fe-based catalysts during FTS reaction (10 days); as a result, the high hydrocarbon formation rates were maintained during 10 days, though the gradual deactivation was observed. Our investigation has also focused on the evaluation of Fe-based catalysts with hydrogen-poor synthesis gas streams (H{sub 2}/CO=1). We have observed that the Fe-based catalysts prepared in this project display also a high hydrocarbon synthesis rate with substoichiometric synthesis gas (H{sub 2}/CO=1) stream, which is a less desirable reactant mixture than stoichiometric synthesis gas (H{sub 2}/CO=2). We have improved the catalyst preparation protocols and achieved the highest FTS reaction rates and selectivities so far reported at the low temperatures required for selectivity and stability. Also, we have characterized the catalyst structural change and active phases formed, and their catalytic behavior during the activation process to evaluate their influences on FTS reaction. The efforts of this project led to (i

  20. Transformation of methane to synthesis gas over metal oxides without using catalyst

    Institute of Scientific and Technical Information of China (English)

    Reza Alizadeh; Esmail Jamshidi; Guangqing Zhang

    2009-01-01

    This article reviews a new developing method in the field of metal oxide reduction in chemical and metallurgical processes, which uses methane as a reducing agent. Commonly, coal is used as the reducing agent in the reduction of metal oxide and other inorganic materials; Metal producing factories are among the most intensive and concentrated source of greenhouse gases and other pollutants such as heavy metals, sulfur dioxide and fly ash. Thermodynamically, methane has a great reducing capability and can be activated to produce synthesis gas over a metal oxide as an oxygen donor. Metal oxide reduction and methane activation, two concurrent thermochemical processes, can be combined as an efficient and energy-saving process; nowadays this kind of technologies is of great importance. This new reduction process could improve energy efficiencies and significantly decrease greenhouse gas emission compared to the conventional process; furthermore, the produced gases are synthesis gas that is more valuable than methane. In this paper, thermodynamic studies and advantages of this promising method were discussed. The major aim of this article is to introduce methane as a best and environmentally friendly reducing agent at low temperature.

  1. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-01-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797

  2. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  3. Influence of the Feed Gas Composition on the Fischer-Tropsch Synthesis in Commercial Operations

    Institute of Scientific and Technical Information of China (English)

    Yijun Lu; Theo Lee

    2007-01-01

    Key technical challenges relating to the Fischer-Tropsch (F-T) synthesis applied in the commercialization of coal/gas-to-liquids (CTL/GTL) technologies have been reviewed. Based on the experiences accumulated from pilot plant, semi-work test and lab researches, the influences of the H2/CO ratio and the CO2 in the feed gas on the F-T process as well as on CTL/GTL complex in terms of product yields, energy efficiency and carbon utilization efficiency have been studied. Being contrary to the current design schemes for F-T process using the coal derived syngas and the iron-based catalyst, it is suggested to feed the F-T synthesis unit with a syngas having a H2/CO ratio of 0.5 and then adjusting to 1.4 via the recycling process. As a result, the carbon efficiency of the whole plant could be reached to as high as 50%. For the issue of CO2 addition to the feed gas, it is proved that only a diluting role is played under the current commercial slurry phase F-T process.

  4. (Carbon monoxide metabolism by photosynthetic bacteria)

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Research continued on the metabolism of carbon monoxide by Rhodospirillum rubrum. This report discusses progress on the activity, induction, inhibition, and spectroscopic analysis of the enzyme Carbon Monoxide Dehydrogenase. (CBS)

  5. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  6. Photobiological hydrogen production from synthesis gas: carbon sources, K{sub La} and kinetics evaluation

    Energy Technology Data Exchange (ETDEWEB)

    G. Najafpour; H. Younesi; K.S.K. Ismail; A.R. Mohamed; A.H. Kamaruddin [Universiti Sains Malaysia, Penang (Malaysia). School of Chemical Engineering

    2005-07-01

    Photo-evolution of hydrogen from synthesis gas using Rhodospirillum rubrum was studied in batch fermentation. Culture of R. rubrum was initially grown on malate, also with various initial concentrations of acetate and synthesis gas. The synthesis gas was a mixture of H{sub 2}, CO and CO{sub 2}. It was found that the doubling time of bacterium on 2.5 g/l of malate, and 2.5 g/l and 6 g/l of acetate were 8.4, 31.8, and 68.6 h, respectively. The growth of R. rubrum was not significant at high concentration of acetate. The cell density of microbe was 0.3 g/l on 2.5 g/l malate for incubation period of 5 days. The cell concentrations of 1.4 and 0.41 g/l were obtained in 2.5 and 6 g/l of acetate, respectively for duration of 5 days. Inhibition of substrate was clearly observed on cell yield and hydrogen production with high concentration of acetate. Maximum hydrogen production (1.8 mmol/l) was obtained when R. rubrum was grown on 2.5 g/l of acetate. Effect of agitation rate was carried out and it was found that more hydrogen production (1.8 mmol) was achieved at 250 rpm. Mass transfer and kinetic studies were performed on 2.5 g/l of acetate. Maximum specific growth rate and Monod constant (KH) were obtained at 9.8 h{sup -1} and 0.14 atm, respectively. No substrate inhibition occurred at CO concentration of 0.56 atm.

  7. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  8. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Randy L. Vander Wal

    2009-09-01

    Full Text Available A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC, controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

  9. Tin Oxide Nanoparticles Produced by Spark Ablation: Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Alexey Efimov

    2016-12-01

    Full Text Available The synthesis parameters and results of investigation of gas sensing properties of tin oxide nanoparticles produced by spark ablation are presented. The nanoparticles have sizes below 30 nm and their specific surface area is about 40 m2/g. In order to study the gas sensing properties, a special structure comprising heater, barrier layers and contact pads was utilized. The resistance of the sensor fabricated on the basis of this structure was measured at different concentrations of hydrogen in the air (100–500 ppm and different values of relative humidity (30–80%. At working temperature of 450°C, 100 ppm of hydrogen triggers more than 8-times decrease in the sensor resistance within the time interval of about 1 s. At the same time, the humidity variation does not have pronounced effect on the sensor resistance: less than 30% in the humidity range studied.

  10. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  11. Gas-Phase Synthesis of 1-Silacyclopenta-2,4-diene.

    Science.gov (United States)

    Yang, Tao; Dangi, Beni B; Thomas, Aaron M; Sun, Bing-Jian; Chou, Tzu-Jung; Chang, Agnes H H; Kaiser, Ralf I

    2016-07-01

    Silole (1-silacyclopenta-2,4-diene) was synthesized for the first time by the bimolecular reaction of the simplest silicon-bearing radical, silylidyne (SiH), with 1,3-butadiene (C4 H6 ) in the gas phase under single-collision conditions. The absence of consecutive collisions of the primary reaction product prevents successive reactions of the silole by Diels-Alder dimerization, thus enabling the clean gas-phase synthesis of this hitherto elusive cyclic species from acyclic precursors in a single-collision event. Our method opens up a versatile and unconventional path to access a previously rather obscure class of organosilicon molecules (substituted siloles), which have been difficult to access through classical synthetic methods.

  12. Carbon monoxide formation in tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Gladon, R.J.; Staby, G.L.

    1979-01-01

    Carbon monoxide (CO) is not emanated to any large extent from tomato fruits (Lycopersicon esculentum, Mill. cvs. Rutgers and Ohio MR-13), but is retained within the internal atmosphere. CO is found during all stages of fruit development, but no set pattern of CO concentration is evident.

  13. MOPITT Carbon Monoxide Over India

    Science.gov (United States)

    2002-01-01

    MOPITT observed high levels of carbon monoxide (red and yellow pixels) over the Indian sub-continent during March. These values are associated with industrial activity in the region just south of the Himalayan Mountains. Notice that to the north, the Himalayas are characterized by low values (blue pixels).

  14. A crossed molecular beam and ab initio investigation of the exclusive methyl loss pathway in the gas phase reaction of boron monoxide (BO; X2Σ+) with dimethylacetylene (CH3CCCH3; X1A(1g)).

    Science.gov (United States)

    Kaiser, Ralf I; Maity, Surajit; Dangi, Beni B; Su, Yuan-Siang; Sun, B J; Chang, Agnes H H

    2014-01-21

    The crossed molecular beam reaction of boron monoxide ((11)BO; X(2)Σ(+)) with dimethylacetylene (CH3CCCH3; X(1)A(1g)) was investigated at a collision energy of 23.9 ± 1.5 kJ mol(-1). The scattering dynamics were suggested to be indirect (complex forming reaction) and were initiated by the addition of (11)BO(X(2)Σ(+)) with the radical center located at the boron atom to the π electron density at the acetylenic carbon-carbon triple bond without entrance barrier leading to cis-trans(11)BOC4H6 doublet radical intermediates. cis-(11)BOC4H6 underwent cis-trans isomerization followed by unimolecular decomposition via a methyl group (CH3) loss forming 1-propynyl boron monoxide (CH3CC(11)BO) in an overall exoergic reaction (experimental: -91 ± 22 kJ mol(-1); theoretical: -105 ± 9 kJ mol(-1); NIST: -104 ± 12 kJ mol(-1)) via a tight exit transition state; trans-(11)BOC4H6 was found to lose a methyl group instantaneously. Neither atomic nor molecular hydrogen loss pathways were detectable. The experimental finding of an exclusive methyl loss pathway gains full support from our computational study predicting a methyl group versus atomic hydrogen loss branching ratio of 99.99% to 0.01% forming 1-propynyl boron monoxide (CH3CC(11)BO) and 1-methyl-propadienyl boron monoxide (CH3((11)BO)CCCH2), respectively.

  15. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor.

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  16. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  17. Single-step gas phase synthesis of stable iron aluminide nanoparticles with soft magnetic properties

    Directory of Open Access Journals (Sweden)

    Jerome Vernieres

    2014-11-01

    Full Text Available Soft magnetic alloys at the nanoscale level have long generated a vivid interest as candidate materials for technological and biomedical purposes. Consequently, controlling the structure of bimetallic nanoparticles in order to optimize their magnetic properties, such as high magnetization and low coercivity, can significantly boost their potential for related applications. However, traditional synthesis methods stumble upon the long standing challenge of developing true nanoalloys with effective control over morphology and stability against oxidation. Herein, we report on a single-step approach to the gas phase synthesis of soft magnetic bimetallic iron aluminide nanoparticles, using a versatile co-sputter inert gas condensation technique. This method allowed for precise morphological control of the particles; they consisted of an alloy iron aluminide crystalline core (DO3 phase and an alumina shell, which reduced inter-particle interactions and also prevented further oxidation and segregation of the bimetallic core. Remarkably, the as-deposited alloy nanoparticles show interesting soft magnetic properties, in that they combine a high saturation magnetization (170 emu/g and low coercivity (less than 20 Oe at room temperature. Additional functionality is tenable by modifying the surface of the particles with a polymer, to ensure their good colloidal dispersion in aqueous environments.

  18. Pressurised gasification of wet ethanol fermentation residue for synthesis gas production.

    Science.gov (United States)

    Koido, Kenji; Hanaoka, Toshiaki; Sakanishi, Kinya

    2013-03-01

    Pressurised steam gasification of wet biomass in a fixed-bed downdraft gasifier was implemented to identify reaction conditions yielding the highest synthesis gas concentration and efficiency, and to examine the generation of sulphur compounds. The gasification of lignin-rich fermentation residue derived from a bench-plant for bioethanol production from woody biomass was investigated at p=0.99MPa and T=750-900°C for steam to biomass ratios (S/B) of 3.4-17 and equivalence ratios (φ) of 3.3-∞. The results showed that the highest concentration of around 70mol% was obtained at T⩾850°C, φ=13 and S/B=3.4, the highest efficiency of 0.26 was obtained at T=900°C, φ=3.3 and S/B=3.4, and sulphur compounds were H2S and COS. For the production of BTL synthesis gas, pressurised gasification has the potential to convert the wet residue below 77.3wt.% moisture contents.

  19. Gas phase microreaction: nanomaterials synthesis via plasma exposure of liquid droplets

    Science.gov (United States)

    Maguire, Paul; Mahony, Charles; Kelsey, Colin; Hamilton, Neil; Askari, Sadegh; Macias-Montero, Manuel; Diver, Declan; Mariotti, Davide

    2015-09-01

    Plasma-liquid interactions are complex but offer considerable scope for use in nanomaterials synthesis. The introduction of individual picolitre micro-droplets into a steady-state low temperature plasma at atmospheric pressure, offers opportunities for enhanced scope and control of plasma-liquid chemistry and material properties. The gas-phase micro-reactor is similar in concept to liquid bubble microfluidics currently under intense research but with enhanced opportunities for scale-up. For nanomaterials and quantum dot synthesis, the addition of a liquid phase within the plasma expands considerably the scope for core-shell and alloy formation. The synthesis and encapsulation within a liquid droplet allows continuous delivery of nanoparticles to remote sites for plasma medicine, device fabrication or surface coating. We have synthesized Au nanoparticles in flight using AuHCl4 droplets with plasma flight times <0.1 ms. Also, Ag nanoparticles have been synthesized downstream via the delivery of plasma exposed water droplets onto AgNO3 laden substrates. Funding from EPSRC acknowledged (Grants EP/K006088/1 and EP/K006142/1).

  20. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khodagholi

    2013-01-01

    Full Text Available Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w. The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for conversion of methane to more valued products have been addressed. It was found that in presence or absence of a catalyst in gas discharge reactor, the rate of methane and oxygen conversion increased upon higher input power supplied to the reactor. The effect of Fe–ZSM5 catalyst combined with gas discharge plasma yields C2 hydrocarbons up to 21.9%, which is the highest productions of C2 hydrocarbons in this work. The effect of combined Ni–ZSM5 and gas discharge plasma was mainly production of synthesis gas. The advantage of introducing ZSM5 to the plasma zone was increase in synthesis gas and acetylene production. The highest energy efficiency was 0.22 mmol/kJ, which belongs to lower rate of energy injection to the reactor.

  1. Hexamethylenetetramine carboxyborane: synthesis, structural characterization and CO releasing properties.

    Science.gov (United States)

    Ayudhya, T I; Raymond, C C; Dingra, N N

    2017-01-17

    Carbon monoxide, although widely known as a toxic gas, has received great attention in the past few decades due to its promising role as a medical gas. Several classes of carbon monoxide releasing molecules (CORMs) have been synthesised with many of them having pharmacological activities under physiological conditions. Herein, we report the synthesis and structural characterization of the first example of amine carboxyborane that releases CO under physiological conditions without the aid of inducers. A representative compound hexamethylenetetramine carboxyborane (HMTA-CB) described here has a half-life of 2.7 days and gradually releases CO with the rate constant of 3.0 × 10(-6) s(-1). Its ability to promote cell growth shows the beneficial effect of slow CO release to supplement CO in small amounts over time.

  2. Range Measurements of keV Hydrogen Ions in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Andersen, H.H.

    1984-01-01

    Ranges of 1.3–3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen....... The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees...

  3. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  4. Multiobjective optimization scheme for industrial synthesis gas sweetening plant in GTL process

    Institute of Scientific and Technical Information of China (English)

    Alireza Behroozsarand; Akbar Zamaniyan

    2011-01-01

    In industrial amine plants the optimized operating conditions are obtained from the conclusion of occurred events and challenges that are normal in the working units.For the sake of reducing the costs, time consuming, and preventing unsuitable accidents, the optimization could be performed by a computer program.In this paper, simulation and parameter analysis of amine plant is performed at first.The optimization of this unit is studied using Non-Dominated Sorting Genetic Algorithm-II in order to produce sweet gas with C02 mole percentage less than 2.0%and H2S concentration less than 10 ppm for application in Fischer-Tropsch synthesis.The simulation of the plant in HYSYS v.3.1 software has been linked with MATLAB code for real-parameter NSGA-II to simulate and optimize the amine process.Three scenarios are selected to cover the effect of (DEA/MDEA) mass composition percent ratio at amine solution on objective functions.Results show that sour gas temperature and pressure of 33.98 ℃ and 14.96 bar, DEA/C02 molar flow ratio of 12.58, regeneration gas temperature and pressure of 94.92 ℃ and 3.0 bar,regenerator pressure of 1.53 bar, and ratio of DEA/MDEA= 20%/10% are the best values for minimizing plant energy consumption, amine circulation rate, and carbon dioxide recovery.

  5. Controlled synthesis of layered Sn3O4 nanobelts by carbothermal reduction method and their gas sensor properties.

    Science.gov (United States)

    Suman, P H; Longo, E; Varela, J A; Orlandi, M O

    2014-09-01

    This paper reports both the controlled synthesis of Sn3O4 nanobelts by carbothermal reduction method and the gas sensor properties of these nanostructures. The synthesized material was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and gas sensor measurements. The results showed that the Sn3O4 nanobelts grow in a layered way and the careful control of experimental parameters is fundamental for stabilization of the correct phase. From the gas sensor measurements using oxygen as analyte gas, it was observed that the Sn3O4 nanobelts exhibit n-type behavior and both the sensitivity and the response time are dependent on the oxygen concentration. A model based on molecules adsorption was proposed to illustrate the mechanism of gas detection of these nanostructures. In summary, these results indicate that Sn3O4 nanobelts synthesized by carbothermal reduction method are promising to be applied as gas sensors.

  6. Carbon Monoxide Emissions in Middle Aged Debris Disks

    Science.gov (United States)

    Henderson, Morgan; Gorti, Uma; Hales, Antonio; Carpenter, John M.; Hughes, A. Meredith

    2017-01-01

    Circumstellar disks greater than 10 Myr old, referred to as debris disks, are expected to be gas poor. The original gas and dust in these disks is thought to be accreted onto the host stars, used up in the formation of planets and other bodies, or blown out of the disks via stellar radiation. However, recent ALMA observations at millimeter wavelengths have led to the detection of carbon monoxide (J=2-1) emission in a few debris disks, prompting further investigation.Using ALMA data, two separate models of gas genesis were tested against observations of the CO emissions in the disks around HIP 73145, HIP 76310, and HIP 84881 in the Upper Sco association. One of these models was built on the hypothesis that the gas in these debris disks is left over from stellar formation and has persisted over uncommonly long periods of time. The other model is built on the hypothesis that this gas is of secondary nature, produced by collisions between planetary bodies in the debris disks. Model emissions were calculated using the Line Modeling Engine (LIME) radiative transfer code and were compared with observational data to infer gas masses under both production scenarios. The implications of the masses of carbon monoxide in the disks suggested by each of the two models are discussed.

  7. Gas-phase synthesis of hexagonal and cubic phases of aluminum nitride: A method and its advantages

    Science.gov (United States)

    Kudyakova, V. S.; Bannikov, V. V.; Elagin, A. A.; Shishkin, R. A.; Baranov, M. V.; Beketov, A. R.

    2016-03-01

    Experimental results obtained in AlN synthesis by the high-temperature gas-phase method and analysis of reaction products phase composition are briefly described. It is demonstrated for the first time that dispersed aluminum nitride can be synthesized by this method from AlF3 in both hexagonal and cubic modifications.

  8. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas.

    NARCIS (Netherlands)

    Zhu, Jianjun; Ommen, van Jan G.; Knoester, A.; Lefferts, Leon

    2005-01-01

    Catalytic partial oxidation of methane to synthesis gas (CPOM) over yttrium-stabilized zirconia (YSZ) was studied within a wide temperature window (500¿1100 °C). The catalysts were characterized by X-ray fluorescence (XRF) and low-energy ion scattering (LEIS). The influence of calcination temperatur

  9. Aperture Synthesis Observations of Molecular Gas in the Wolf-Rayet Galaxy He 2-10

    Science.gov (United States)

    Kobulnicky, Chip; Sargent, Anneila; Conti, Peter; Hogg, David; Dickey, John

    1994-05-01

    We present aperture synthesis observations of the prototype Wolf-Rayet galaxy He 2-10 in the line of (12) CO(1-0). These observations represent one of the first aperture synthesis maps of molecular gas in a blue compact dwarf galaxy. He 2-10 contains two starburst regions, A and B, separated by 8 arcsec which corresponds to 350 pc at at distance of 9 Mpc. Optical spectroscopy of region A indicates the presence of some 300 Wolf-Rayet and 4000 O-type stars, consistent with a very young starburst (Vacca & Conti, 1992, ApJ 401, 543). From a line integral of of 165+/-8 K km s(-1) we derive a total molecular gas mass of 1.8 times 10(8) M_sun based on (12) CO(1-0) spectra from the 12m NRAO telescope. The ratio of molecular to atomic gas mass, M(H_2)/M(HI)=0.54, is among the highest of any late type or blue compact dwarf galaxy. (12) CO(1-0) maps made with the Owens valley interferometer show two dynamical systems, suggesting an interaction-triggered starburst. While the CO peak is not conincident with either optical maximum, the CO is more nearly centered on the brighter and younger of the two starburst regions, A. There is no visible concentration of molecular gas near starburst region B which contains only a few hundred O-type stars. A significant fraction of the CO lies well outside the bright optical core, and is thus unaffiliated with the site of active star formation. We find a lower limit to the dynamical mass in the central 70 pc of 3.0times 10(6) M_sun inferred from the CO rotation curve. Conti & Vacca (1994, ref) estimate the combined mass of nine blue starburst knots revealed by HST UV imaging to be 4.5times 10(6) M_sun. Even if the inclination of He 2-10 is as low as 30(deg) , the young clusters, termed proto-globular clusters by Conti & Vacca, comprise at least 75% of the dynamical mass in the inner 70 pc!

  10. High octane ethers from synthesis gas-derived alcohols. Final technical report, September 25, 1990--December 24, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.

    1994-05-01

    The objective of the research was to develop the methodology for the catalytic synthesis of ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from alcohol mixtures that are rich in methanol and 2-methyl-1-propanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. The last stage of the synthesis involves direct coupling of synthesis gas-derived methanol and isobutanol that has been previously demonstrated by us to occur over superacid catalysts to yield MIBE and smaller amounts of MTBE at moderate pressures and a mixture of methanol and isobutene at low pressures. A wide range of organic resin catalysts and inorganic oxide and zeolite catalysts have been investigated for activity and selectivity in directly coupling alcohols, principally methanol and isobutanol, to form ethers and in the dehydration of isobutanol to isobutene in the presence of methanol. All of these catalysts are strong acids, and it was found that the organic and inorganic catalysts operate in different, but overlapping, temperature ranges, i.e. mainly 60--120{degrees}C for the organic resins and 90--175{degrees}C for the inorganic catalysts. For both types of catalysts, the presence of strong acid centers is required for catalytic activity, as was demonstrated by lack of activity of fully K{sup +} ion exchanged Nafion resin and zirconia prior to being sulfated by treatment with sulfuric acid.

  11. Direct gas-phase synthesis of single-phase {beta}-FeSi{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bywalez, Robert, E-mail: robert.bywalez@uni-due.de; Orthner, Hans; Mehmedovic, Ervin [University of Duisburg-Essen, IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids (Germany); Imlau, Robert; Kovacs, Andras; Luysberg, Martina [Forschungszentrum Juelich, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Gruenberg Institute 5 (Germany); Wiggers, Hartmut [University of Duisburg-Essen, IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids (Germany)

    2013-09-15

    For the first time, phase-pure {beta}-FeSi{sub 2} nanoparticles were successfully produced by gas-phase synthesis. We present a method to fabricate larger quantities of semiconducting {beta}-FeSi{sub 2} nanoparticles, with crystallite sizes between 10 and 30 nm, for solar and thermoelectric applications utilizing a hot-wall reactor. A general outline for the production of those particles by thermal decomposition of silane and iron pentacarbonyl is provided based on kinetic data. The synthesized particles are investigated by X-ray diffraction and transmission electron microscopy, providing evidence that the as-prepared materials are indeed {beta}-FeSi{sub 2}, while revealing morphological characteristics inherent to the nanoparticles created.

  12. Synthesis of superheavy elements at the Dubna gas-filled recoil separator

    Energy Technology Data Exchange (ETDEWEB)

    Voinov, A. A., E-mail: voinov@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Collaboration: JINR (Dubna), LLNL (Livermore), ORNL (Oak Ridge), University of Tennessee (Knoxville), Vanderbilt University (Nashville), Research Institute of Atomic Reactors (Dimitrovgrad) Collaboration

    2016-12-15

    A survey of experiments at the Dubna gas-filled recoil separator (Laboratory of Nuclear Reactions, JINR, Dubna) aimed at the detection and study of the “island of stability” of superheavy nuclei produced in complete fusion reactions of {sup 48}Ca ions and {sup 238}U–{sup 249}Cf target nuclei is given. The problems of synthesis of superheavy nuclei, methods for their identification, and investigation of their decay properties, including the results of recent experiments at other separators (SHIP, BGS, TASCA) and chemical setups, are discussed. The studied properties of the new nuclei, the isotopes of elements 112–118, as well as the properties of their decay products, indicate substantial growth of stability of the heaviest nuclei with increasing number of neutrons in the nucleus as the magic number of neutrons N = 184 is approached.

  13. Synthesis and Magnetic Properties of Ni and Carbon Coated Ni by Levitational Gas Condensation (LGC

    Directory of Open Access Journals (Sweden)

    Young Rang Uhm

    2013-01-01

    Full Text Available The nickel (Ni, and carbon coated nickel (Ni@C nanoparticles were synthesized by levitaional gas condensation (LGC methods using a micron powder feeding (MPF system. Both metal and carbon coated metal nano powders include a magnetic ordered phase. The synthesis by LGC yields spherical particles with a large coercivity. The abnormal initial magnetization curve for Ni indicates a non-collinear magnetic structure between the core and surface layer of the particles. The carbon coated particles had a core structure diameter at and below 10 nm and were covered by 2-3 nm thin carbon layers. The hysteresis loop of the as-prepared Ni@Cs materials with unsaturated magnetization shows a superparamagnetic state at room temperature.

  14. Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas

    Science.gov (United States)

    Wei, Lin; Chen, Yunlin; Zhang, Baoping; Zu, Zhinan

    2013-02-01

    Shangdong fly ash (SFA), Fangshan fly ash (FFA) and Heilongjiang fly ash (HFA) were selected as the raw materials to be used for synthesis of highly selective zeolite topology molecular sieve. Twice foaming method was studied in terms of synthetic zeolite. The experimental products were characterized by means of X-ray fluorescence (XRF), scanning electron microscope (SEM), X-ray diffraction (XRD), and automated surface area & pore size analyser. The results indicated that 10 M NaOH was chosen as modification experiment condition to process SFA. Crystallization temperature and time were 140 °C and 8 h, respectively. Zeolite topology molecular sieve was prepared with Si/Al molar ratio of 7.9, and its adsorption ratio of benzene gas was up to 66.51%.

  15. Luminescence study of nanosized Al2O3:Tb3+ obtained by gas-dispersed synthesis

    Science.gov (United States)

    Berezovskaya, I. V.; Poletaev, N. I.; Khlebnikova, M. E.; Zatovsky, I. V.; Bychkov, K. L.; Efryushina, N. P.; Khomenko, O. V.; Dotsenko, V. P.

    2016-09-01

    Terbium-doped Al2O3 samples were obtained by gas-dispersed synthesis. It was shown that the resulting powders, with particle sizes of 10-70 nm, consist of a mixture of transition aluminas, among which the δ *-polymorph is dominant. The luminescence properties of Al2O3:Tb3+ have been studied upon excitation in the UV-visible range of the spectrum. It was found that Tb3+ ions cause several groups of inhomogeneously broadened emission bands in the range of 470-640 nm, which are characteristic for disordered materials. In addition, the emission spectra contain a broad band at about 450 nm and several narrower ones in the 680-720 nm region. These features are attributed to surface defects and impurity Cr3+ ions occupying Al3+ octahedral positions, respectively.

  16. Carbonyl Diisocyanate CO(NCO)2: Synthesis and Structures in Solid State and Gas Phase.

    Science.gov (United States)

    Klapötke, Thomas M; Krumm, Burkhard; Rest, Sebastian; Scharf, Regina; Schwabedissen, Jan; Stammler, Hans-Georg; Mitzel, Norbert W

    2016-07-01

    A modified synthesis for carbonyl diisocyanate, CO(NCO)2, starting from trichloroisocyanuric acid and diphosgene is described. In addition to the previously reported (13)C NMR resonances, the (15)N NMR shift is determined for the first time. The structure in the solid state was determined by X-ray diffraction (XRD) on in situ grown crystals, that in the gas phase was experimentally determined by electron diffraction (GED) and for single molecules theoretically by quantum-chemical calculations. The structures are compared and discussed with related systems. Quantum-chemical calculations as well as GED and XRD prove syn-syn to be the conformation of lowest energy. In quantum-chemical calculations and GED the presence of a syn-anti conformer was confirmed and the structure of this conformer was determined.

  17. Microwave-assisted hydrothermal synthesis and gas sensitivity of nanostructured SnO2

    Institute of Scientific and Technical Information of China (English)

    Liying Man; Jun Zhang; Jieqiang wang; Hongyan Xu; Bingqiang Cao

    2013-01-01

    Precursors for nanostructured SnO2 were synthesized via a microwave-assisted hydrothermal method under different conditions,using SnCl2·2H2O,urea and citric acid as reactants.After calcination of the precursors at 700 ℃ for 2 h.nanostructured SnO2 with different morphologies were obtained,and were then characterized using X-ray powder diffraction (XRD),and field-emission scanning electron microscopy (FESEM).The results show that synthesis temperature and time play an important role in the formation of the 3D hierarchical morphology of the nanostructured SnO2.Gas sensing experiments demonstrate that the synthesized SnO2 materials,especially those with a 3D network structure,exhibit superb sensitivity to alcohol vapors at 240 ℃.

  18. Carbon monoxide exposure in households in Ciudad Juárez, México.

    Science.gov (United States)

    Montoya, Teresa; Gurian, Patrick L; Velázquez-Angulo, Gilberto; Corella-Barud, Verónica; Rojo, Analila; Graham, Jay P

    2008-03-01

    This study assessed exposure to carbon monoxide from gas and wood heater emissions in a sample of 64 households in peri-urban residential areas in Ciudad Juárez, Chihuahua, México. Indoor and outdoor carbon monoxide concentrations and temperatures were monitored for a continuous period of 1 week at 1 and 6-min intervals, respectively. The moving average carbon monoxide concentrations were compared to the World Health Organization (WHO) standards for carbon monoxide. Sixty-seven percent of households with gas heaters and 60% of households with wood heaters exceeded a health-based standard at some point during the monitoring. The difference between indoor and outdoor temperatures was modestly correlated with average carbon monoxide exposure (r=0.35, p-value <0.01). Heater type may be a stronger determinant of exposure, as households with a particular heater model (the El Sol FM-210) were significantly more likely to be among the more highly exposed households (odds ratio of 4.8, p-value of 0.02). A variety of health effects were pooled and found at elevated frequency in the households that exceeded the 8-h standard of 9ppm (odds ratio=5.1, p-value=0.031). These results highlight the need for further efforts to identify and mitigate potentially hazardous carbon monoxide exposures, particularly in moderate-income countries with cooler climates.

  19. Carbon monoxide kinetics following simulated cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, A.S. (Wayne State Univ., Detroit, MI); Coin, E.J.

    1980-05-01

    Carbon monoxide kinetics were measured in the blood (% carboxyhemoglobin) and alveolar phase (ppM carbon monoxide) after simulated cigarette smoking. Cigarette smoking was siumlated using the same amount of carbon monoxide that 2R1F cigarettes manufactured by the Tobacco Research Institute would contain. Ten boluses of air containing carbon monoxide equivalent to smoking one cigarette were inhaled by six healthy nonsmoker volunteers. Carbon monoxide in the air phase was measured by an Ecolyzer and carboxyhemoglobin was measured by a CO-Oximeter. The mean rise in alveolar carbon monoxide immediately and 20 min after inhaling the last bolus was 3.3 and 3.1 ppM, respectively (p<.005). The mean rise in carboxyhemoglobin immediately and 20 min after inhalation of the last bolus was 0.8 and 0.5% respectively (P<.005). The changes in carboxyhemoglobin were found to be similar to changes that occur when one cigarette is actually smoked.

  20. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    Science.gov (United States)

    Pickett, Derek Kyle

    Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.

  1. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization.

    NARCIS (Netherlands)

    Sipma, J.; Henstra, A.M.; Parshina, S.N.; Lens, P.N.L.; Lettinga, G.; Stams, A.J.M.

    2006-01-01

    Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological. processes for production of bulk and fine chemicals or in biological treatment of waste

  2. Microbial CO conversions with applications in synthesis gas purification and bio-desulfurization.

    NARCIS (Netherlands)

    Sipma, J.; Henstra, A.M.; Parshina, S.N.; Lens, P.N.L.; Lettinga, G.; Stams, A.J.M.

    2006-01-01

    Recent advances in the field of microbial physiology demonstrate that carbon monoxide is a readily used substrate by a wide variety of anaerobic micro-organisms, and may be employed in novel biotechnological. processes for production of bulk and fine chemicals or in biological treatment of waste str

  3. Niobium carbide synthesis by solid-gas reaction using a rotating cylinder reactor

    Directory of Open Access Journals (Sweden)

    Fontes F. A. O.

    2004-01-01

    Full Text Available A rotating cylinder reactor was designed for the synthesis of niobium carbide powders at 1173 K. Niobium carbide, NbC, was prepared by carbothermal reduction starting from commercial niobium pentoxide powders. The reactor was heated using a custom-made, two-part, hinged, electric furnace with programmable temperature control. The design and operational details of the reactor are presented. The longitudinal temperature gradient inside the reactor was determined. Total reaction time was monitored by a gas chromatograph equipped with an FID detector for determination of methane concentrations. The results show that time of reaction depended on rotation speed. NbC was also prepared in a static-bed alumina reactor using the same conditions as in the previous case. The niobium carbide powders were characterized by X-ray diffraction and compared with commercially available products. Morphological, particle size distribution and surface area analyses were obtained using SEM, LDPS and BET, respectively. Therefore, the present study offers a significant technological contribution to the synthesis of NbC powders in a rotating cylinder reactor.

  4. Niobium carbide synthesis by solid-gas reaction using a rotating cylinder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, F.A.O.; Gomes, K.K.P.; Oliveira, S.A.; Souza, C.P.; Sousa, J.F. [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Engenharia Quimica; Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Engenharia Mecanica, Rio Grande do f Natal, RN (Brazil). Programa de Pos-graduacao de Engenharia Quimica]. E-mail: franciscofontes@uol.com.br

    2004-09-01

    A rotating cylinder reactor was designed for the synthesis of niobium carbide powders at 1173 K. Niobium carbide, NbC, was prepared by carbothermal reduction starting from commercial niobium pentoxide powders. The reactor was heated using a custom-made, two-part, hinged, electric furnace with programmable temperature control. The design and operational details of the reactor are presented. The longitudinal temperature gradient inside the reactor was determined. Total reaction time was monitored by a gas chromatograph equipped with an FID detector for determination of methane concentrations. The results show that time of reaction depended on rotation speed. NbC was also prepared in a static-bed alumina reactor using the same conditions as in the previous case. The niobium carbide powders were characterized by X-ray diffraction and compared with commercially available products. Morphological, particle size distribution and surface area analyses were obtained using SEM, LDPS and BET, respectively. Therefore, the present study offers a significant technological contribution to the synthesis of NbC powders in a rotating cylinder reactor. (author)

  5. Layer-modulated synthesis of uniform tungsten disulfide nanosheet using gas-phase precursors.

    Science.gov (United States)

    Park, Jusang; Lee, Wonseon; Choi, Taejin; Hwang, Sung-Hwan; Myoung, Jae Min; Jung, Jae-Hoon; Kim, Soo-Hyun; Kim, Hyungjun

    2015-01-28

    The synthesis of layered transition-metal-disulfide (MS2, M = Mo, W) nanosheets with layer controllability and large-area uniformity is an essential requirement for their application in electronic and optical devices. In this report, we describe a synthesis process of WS2 nanosheets with layer controllability and high uniformity using chemical vapor deposition (CVD) and WCl6 and H2S as gas-phase precursors. Through this process, we can systematically modulate the thickness of WS2 nanosheets by controlling the duration of the reaction between WCl6 and H2S. The CVD-grown WS2 nanosheets exhibit good stoichiometry as well as dependencies of a clear Raman shift and bandgap on the number of layers. These properties are confirmed by X-ray photoemission spectroscopy, Raman spectroscopy, and photoluminescence measurements. The number of layers of WS2 nanosheets is confirmed by atomic force microscopy. Finally, we demonstrate the fabrication and performance of a photodetector based on a hybrid structure consisting of graphene and a WS2 nanosheet.

  6. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use.

    Science.gov (United States)

    Martirosyan, K S; Wang, L; Vicent, A; Luss, D

    2009-10-01

    Our experiments showed that the combustion of an Al-Bi2O3 nanoparticle mixture generated the highest pressure pulse among common nanothermite reactions and can potentially be used as a nanoenergetic gas generator. The combustion front propagation velocity and rate of energy release increased by up to three orders of magnitude when the particle size was reduced to a nanosize range for both the aluminum and the oxidizer. We developed a novel one-step (metal nitrate-glycine) combustion synthesis of nanostructured amorphous-like and highly crystalline bismuth trioxide nanoparticles. The combustion synthesis was conducted using a solution of molten bismuth nitrate as an oxidizer and glycine as a fuel. The glycine was completely combusted during the thermal decomposition of the bismuth nitrate pentahydrate and generated a temperature front that propagated through the sample. Increasing the fuel concentration increased the maximum combustion temperature from 280 to 1200 degrees C and the Bi2O3 particle size from 20 to 100 nm. The oxidizer/fuel ratio had a strong impact on the bismuth trioxide particle crystallinity. At low temperature (280 degrees C), amorphous-like bismuth trioxide nanoparticles formed, while at T > or =370 degrees C the structures were crystalline. A peak pressure of approximately 12 MPa and a thermal front propagating velocity of approximately 2500 m s(-1) were achieved during the combustion of an Al-Bi2O3 mixture containing 80 wt% of the synthesized Bi2O3 crystalline nanoparticles (size: 40-50 nm).

  7. The study of dehumidifying of carbon monoxide and ammonia adsorption by Iranian natural clinoptilolite zeolite

    Science.gov (United States)

    Tehrani, R. M. A.; Salari, A. A.

    2005-10-01

    The natural zeolite (clinoptilolite type) was obtained from the Neibagh region of Mianeh, the city in the west of Iran. The raw zeolite was tested for quality and quantity measurements including surface area and volumetric characteristics as well as thermogravimetry analysis. The acid activation process was used to increase the adsorption rate of zeolite and in order to obtain the optimum conditions: the effect of acid concentration, reaction time and the temperature were studied. A surface area measurement test was performed in each stage to get the best results. Thus, efficient condition was selected according to the produced highest surface area. The reaction was first obtained with hydrochloric acid, and then a comparison was made using the sulfuric acid. The hydrochloric reaction proved to be better. The result of activation was 2.5 times the increase in the surface area in relation to the raw sample. The result of elemental analysis conducted once again on the activated sample showed an increase in the ratio of Si/Al (approximately 0.6). Then, using CO, NH 3 and steam, the gas adsorption capacity of both the raw and activated samples was measured and compared. Since CO was not adsorbed at ambient temperature, but steam was adsorbed relatively well, the natural clinoptilolite zeolite of Iran was suggested as a suitable material for adsorbing humidity form carbon monoxide as well as synthesis gas (H 2 and CO mixture).

  8. Oxalyl chloride as a practical carbon monoxide source for carbonylation reactions

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2015-01-01

    A method for generation of high-quality carbon monoxide by decomposition of oxalyl chloride in an aqueous hydroxide solution is described. The usefulness of the method is demonstrated in the synthesis of heterocycles and for hydroxy-, alkoxy-, amino-, and reductive carbonylation reactions...

  9. Economic evaluation of the solar thermal co-production of zinc, synthesis gas, and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spiewak, I. [EC Joint Research Centre (Spain)

    1999-08-01

    The use of concentrated solar energy for co-producing Zn and synthesis gas from Zn O and natural gas upgrades the calorific value of the initial reactants by 39% and, when compared to the traditional carbothermic reduction of Zn O, has the potential of reducing CO{sub 2} emissions by up to 78%. An economic assessment for an industrial thermochemical plant, 30 to 51 MW solar input, indicates that the cost of solar production of zinc ranges between 89-133 $/t (excluding the cost of Zn O feed and credit for pollution abatement), and thus might be competitive with conventional fossil-fuel-based processes at current fuel prices. The cost of solar H{sub 2}, produced by splitting water with zinc, is estimated to be in the range 0.10-0.14 $/kWh, and it is a favorable long term prospect once the cost of energy will account for the environmental externalities from fossil fuel burning such as the costs for CO{sub 2} mitigation and pollution abatement. (author) 1 fig., 2 tabs., 5 refs.

  10. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  11. Simulation of gas-solid fluidized bed reactor for F-T synthesis

    Institute of Scientific and Technical Information of China (English)

    CAI Jin; LI Tao; SUN Qi-wen; YING Wei-yong; FANG Ding-ye

    2009-01-01

    Using the lumping method, OH4, O3H8, O10H22, and C22H44 were chosen as the model products, and CO as the key component. The mathematical model of a gas-solid fluidized bed reactor was established based on some hypotheses. The consumption kinetic model of CO was investigated, and the parameters were estimated by Universal Global Optimization with the Marquardt method. Residual error distribution and a statistical test show that the intrinsic kinetic models are reliable and acceptable. A model of carbon chain growth probability was established in terms of experiments. Coupled with the Ander-son- Schulz-Flory (ASF) distribution, the amount of specific product could be obtained. Large- scale cold model experiments were conducted to investigate the distribution of the gas (solid) phase and determine the function of the voidage with the location of the catalytic bed. The change tendencies of the components in the catalytic bed at different temperatures were computed and figured out. The calculated value computed by the model established for the Fe-based F-T synthesis catalyst fit the experimental value very well under the same operating conditions, and all the absolute values of the relative deviations are less than 5%.

  12. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.

    Science.gov (United States)

    Sipma, J; Meulepas, R J W; Parshina, S N; Stams, A J M; Lettinga, G; Lens, P N L

    2004-04-01

    The conversion routes of carbon monoxide (CO) at 55 degrees C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population and that its products, i.e. hydrogen and CO2, were subsequently used by methanogens, homo-acetogens or sulfate reducers depending on the sludge source and inhibitors supplied. Direct methanogenic CO conversion occurred only at low CO concentrations [partial pressure of CO (PCO) paper mill sludge. The presence of hydrogen decreased the CO conversion rates, but did not prevent the depletion of CO to undetectable levels (sludges showed interesting potential for hydrogen production from CO, especially since after 30 min exposure to 95 degrees C, the production of CH4 at 55 degrees C was negligible. The paper mill sludge was capable of sulfate reduction with hydrogen, tolerating and using high CO concentrations (PCO>1.6 bar), indicating that CO-rich synthesis gas can be used efficiently as an electron donor for biological sulfate reduction.

  13. Synthesis and gas adsorption study of porous metal-organic framework materials

    Science.gov (United States)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  14. CH{sub 4} Production from Biomass-derived Synthesis Gas: Effect of the Feed Composition on the Activity of Ni-Based Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Raimondi, F.; Seemann, M.; Biollaz, S.; Wambach, J.; Wokaun, A.

    2004-03-01

    The chemical and structural modifications of a commercial Ni/Al{sub 2}O{sub 3}-based catalyst during the production of methane from synthesis gas were investigated by post-reaction X-ray photoelectron spectroscopy (XPS). The effect of the composition of the synthesis gas on the structural properties of the catalyst surface and on its catalytic activity under methanation conditions was studied. The organic compounds present as contaminants in typical biomass-derived synthesis gas were found to promote strongly the reduction of Ni in the catalyst to the metallic state and the formation of elemental carbon on the catalyst surface. (author)

  15. Facile synthesis of α-Fe{sub 2}O{sub 3} nanoparticles for high-performance CO gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Cuong, Nguyen Duc, E-mail: nguyenduccuong@hueuni.edu.vn [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Faculty of Hospitality and Tourism, Hue University, 22 Lam Hoang, Vy Da Ward, Hue City (Viet Nam); Khieu, Dinh Quang; Hoa, Tran Thai [College of Sciences, Hue University, 77 Nguyen Hue, Phu Nhuan Ward, Hue City (Viet Nam); Quang, Duong Tuan [College of Education, Hue University, 34 Le Loi, Hue City (Viet Nam); Viet, Pham Hung [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Lam, Tran Dai [Graduate University of Science and Technology, Vietnamese Academy of Science and Technology, Hanoi (Viet Nam); Hoa, Nguyen Duc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet, Hanoi (Viet Nam)

    2015-08-15

    Highlights: • We have demonstrated a facile method to prepare Fe{sub 2}O{sub 3} nanoparticles. • The gas sensing properties of α-Fe{sub 2}O{sub 3} have been invested. • The results show potential application of α-Fe{sub 2}O{sub 3} NPs for CO sensors in environmental monitoring. - Abstract: Iron oxide nanoparticles (NPs) were prepared via a simple hydrothermal method for high performance CO gas sensor. The synthesized α-Fe{sub 2}O{sub 3} NPs were characterized by X-ray diffraction, nitrogen adsorption/desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SEM, TEM results revealed that obtained α-Fe{sub 2}O{sub 3} particles had a peanut-like geometry with hemispherical ends. The response of the α-Fe{sub 2}O{sub 3} NPs based sensor to carbon monoxide (CO) and various concentrations of other gases were measured at different temperatures. It found that the sensor based on the peanut-like α-Fe{sub 2}O{sub 3} NPs exhibited high response, fast response–recovery, and good selectivity to CO at 300 °C. The experimental results clearly demonstrated the potential application of α-Fe{sub 2}O{sub 3} NPs as a good sensing material in the fabrication of CO sensor.

  16. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  17. Synthesis Gas Purification Purification des gaz de synthèse

    Directory of Open Access Journals (Sweden)

    Chiche D.

    2013-10-01

    Full Text Available Fischer-Tropsch (FT based B-XTL processes are attractive alternatives for future energy production. These processes aim at converting lignocellulosic biomass possibly in co-processing with petcoke, coal, or vacuum residues into synthetic biofuels. A gasification step converts the feed into a synthesis gas (CO and H2 mixture , which undergoes the Fischer-Tropsch reaction after H2/CO ratio adjustment and CO2 removal. However synthesis gas also contains various impurities that must be removed in order to prevent Fischer-Tropsch catalyst poisoning. Due to the large feedstocks variety that can be processed, significant variations of the composition of the synthesis gas are expected. Especially, this affects the nature of the impurities that are present (element, speciation, as well as their relative contents. Moreover, due to high FT catalyst sensitivity, severe syngas specifications regarding its purity are required. For these reasons, synthesis gas purification constitutes a major challenge for the development of B-XTL processes. In this article, we focus on these major hurdles that have to be overcome. The different kinds of syngas impurities are presented. The influence of the nature of feedstocks, gasification technology and operating conditions on the type and content of impurities is discussed. Highlight is given on the fate of sulfur compounds, nitrogen compounds, halides, transition and heavy metals. Main synthesis gas purification technologies (based on adsorption, absorption, catalytic reactions, etc. are finally described, as well as the related challenges. Les procédés de synthèse de biocarburants par voie Fischer-Tropsch (FT, voies B-XTL, représentent des alternatives prometteuses pour la production d’énergie. Ces procédés permettent la conversion en carburants de synthèse de biomasse lignocellulosique, éventuellement mise en oeuvre en mélange avec des charges fossiles telles que petcoke, charbons ou résidus sous vide. Pour

  18. A novel thermobaric analyser: in situ measurement of gas pressure during synthesis in sealed quartz tube at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, A.G.; Orlando, M.T.D. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150-Urca, 22290-180 Rio de Janeiro (Brazil); Sin, A.; Granados, X.; Calleja, A.; Pinol, S.; Obradors, X. [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, Bellaterra E-08193, Barcelona (Spain); Emmerich, F.G. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150-Urca, 22290-180 Rio de Janeiro (Brazil)

    2000-11-01

    We have developed a novel technique (thermobaric analysis or TBA) to measure, in situ up to 900 deg. C, the pressure of gases such as Hg and O{sub 2} in sealed quartz tubes. The pressure determination in closed systems enables us to obtain information on the synthesis of compounds which involve solid-gas reactions. The concept of the TBA set-up is described, including the calibration method and the verification with HgO decomposition. The technique is applied to the optimized synthesis of the ceramic Hg, Re-1223 superconductor. (author)

  19. Carbon monoxide conversion by anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Stams, A.J.M.; Lens, P.N.L.; Lettinga, G.

    2003-01-01

    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and 55degreesC
    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and

  20. High octane ethers from synthesis gas-derived alcohols. Quarterly technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Feeley, O.C.; Johansson, M.A.

    1993-11-01

    The objective of the proposed research is to synthesize oxygenated fuel ethers, primarily methyl isobutyl ether (MIBE) and methyl tertiary butyl ether (MTBE), directly from coal-derived H{sub 2}/CO/CO{sub 2} synthesis via alcohol mixtures that are rich in methanol and 2-methyl-1-proanol (isobutanol). The overall scheme involves gasification of coal, purification and shifting of the synthesis gas, higher alcohol synthesis, and direct synthesis of ethers. Both organic and inorganic catalysts will be investigated, and the better catalysts will be subjected to long term performance studies. The project is divided into the following three tasks: (1) synthesis of high octane ethers from alcohol mixtures containing predominantly methanol and 2-methyl-1-propanol over superacid resins, (2) inorganic catalysts for the synthesis of high octane ethers form alcohols, and (3) long term performance and reaction engineering for scale-up of the alcohols-to-ether process. A summary of technical progress is provided in this report.

  1. Surfactant assisted solid-state synthesis and gas sensor application of a SWCNT/SnO2 nanocomposite material.

    Science.gov (United States)

    Lu, Jun; Ma, Anson; Yang, Shihe; Ng, Ka Ming

    2007-01-01

    Although tin oxide has been the most widely investigated metal oxide material for gas detection, it suffers from the large resistance and high operating temperature. This could be overcome by hybridization with nanostructured carbon. In this work, tin oxide nanoparticles with ultrasmall sizes of 1-3 nm have been uniformly coated onto bundles of single-walled carbon nanotubes by a surfactant assisted solid state synthesis approach for the first time. Gas sensor properties of the as-synthesized nanocomposite material toward NO2 (from 5 to 60 ppm) are measured at 150 degrees C. Compared to the pure carbon tubes gas sensors, the nanocomposite gas sensor responds to NO2 in low concentrations with good linearity, high sensitivity, and fast recovery, while working at a relatively low temperature.

  2. Effects of hydrogen sulfide in fuel gas on SOFC stack performance with nickel containing anodes

    Energy Technology Data Exchange (ETDEWEB)

    Kavurucu Schubert, Sena

    2012-07-01

    Solid oxide fuel cells (SOFC) can use wide varieties of fuels such as hydrogen, carbon monoxide, hydrocarbons, alcohols as well as synthesis gases from natural gas, biogas and petroleum. Using such a wide range of fuels introduces the risk of unwanted impurities, which can affect the function of the SOFC. One of the known impurities is sulfur which is a well known catalyst poison. This work deals with the effect of H{sub 2}S containing fuel gas on SOFC stack performance as well as regeneration processes and their underlying mechanisms.

  3. Untangling the Energetics and Dynamics of Boron Monoxide Radical Reactions (11BO; X2Sigma+)

    Science.gov (United States)

    2015-04-15

    energy-density molecules and builds up on our previously successful synthesis of higher carbon oxides COx (x=3-6). Higher-order carbon sulfides - carbon...3.1. Crossed Beam Reactions of Boron Monoxide with Acetylene anmd Ethylene (P1, P8) The reaction dynamics of boron monoxide (BO; X2Σ...with acetylene (C2H2; X1Σg+) and with ethylene (C2H4; X1Ag) were investigated under single collision conditions at collision energy of 12 to 13 kJ mol

  4. Synthesis of Hierarchical Dorsal Spine Ag2S Structures by a Solid-Vapor Reaction: The Effect of Reagent Gas Composition

    Directory of Open Access Journals (Sweden)

    J. A. Muñiz-Lerma

    2012-01-01

    Full Text Available Silver sulfide hierarchical structures with unique dorsal spine morphology were successfully synthesized on mechanically deformed silver substrates by simple solid-vapor reactions. It has been found that it is possible to change the structures morphology by changing the reagent gas composition. The carbon monoxide (CO presence in a reactive sulfur atmosphere was found to be the key for growing the dorsal spine structures. In all cases, the Ag2S structures grew on the edge of the silver substrates where high plastic deformation occurred.

  5. Germanium-silicon alloy and core-shell nanocrystals by gas phase synthesis.

    Science.gov (United States)

    Mehringer, Christian; Kloner, Christian; Butz, Benjamin; Winter, Benjamin; Spiecker, Erdmann; Peukert, Wolfgang

    2015-03-12

    In this work we present a novel route to synthesize well defined germanium-silicon alloy (GexSi1-x) and core-shell nanocrystals (NCs) employing monosilane (SiH4) and monogermane (GeH4) as precursors in a continuously operated two-stage hot-wall aerosol reactor setup. The first hot-wall reactor stage (HWR I) is used to produce silicon (Si) seed particles from SiH4 pyrolysis in Argon (Ar). The resulting seeding aerosol is fed into the second reactor stage (HWR II) and a mixture of SiH4 and GeH4 is added. The ratio of the precursors in the feed, their partial pressures, the synthesis temperature in HWR II and the overall pressure are varied depending on the desired morphology and composition. Alloy particle production is achieved in the heterogeneous surface reaction regime, meaning that germanium (Ge) and Si are deposited on the seed surface simultaneously. The NCs can be synthesized with any desired composition, whilst maintaining a mean diameter around 30 nm with a geometric standard deviation (GSD) around 1.25. The absorption behavior and the related fundamental optical band gap energy in dependence on the alloy composition are exemplarily presented. They prove the possibility to tailor NC properties for electronical and opto-electronical applications. In the homogeneous gas phase reaction regime facetted Ge-Si core-shell structures are accessible. The Ge deposition on the seeds precedes the Si deposition due to different gas phase reaction kinetics of the precursors. The Si layer grows epitaxially on the Ge core and is around 5 nm thick.

  6. Partial Oxidation of Methane to Synthesis Gas over Hexaaluminates LaMAl11O19-δ catalysts

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of M-substituted hexaaluminates LaMAl11O19-δ (M=Fe, Co, Ni, Mn, and Cu)were prepared and characterized by XRD, XPS, TPR and TGA techniques, respectively. They exhibited different reducibility and catalytic activity for partial oxidation of methane (POM) to synthesis gas. Among the LaMAl11O19-δ samples, LaNiAl11O19-δ showed the best catalytic activity for the topic reaction and selectivity for synthesis gas at 780 ℃ for 2 h. The conversion of CH4 was over 99.2%, and the product selectivity for both CO and H2 was above 90.3%.

  7. Simultaneous assessment of cholesterol absorption and synthesis in humans using on-line gas chromatography/ combustion and gas chromatography/pyrolysis/isotope-ratio mass spectrometry.

    Science.gov (United States)

    Gremaud, G; Piguet, C; Baumgartner, M; Pouteau, E; Decarli, B; Berger, A; Fay, L B

    2001-01-01

    A number of dietary components and drugs are known to inhibit the absorption of dietary and biliary cholesterol, but at the same time can compensate by increasing cholesterol synthesis. It is, therefore, necessary to have a convenient and accurate method to assess both parameters simultaneously. Hence, we validated such a method in humans using on-line gas chromatography(GC)/combustion and GC/pyrolysis/isotope-ratio mass spectrometry (IRMS). Cholesterol absorption was measured using the ratio of [(13)C]cholesterol (injected intravenously) to [(18)O]cholesterol (administered orally). Simultaneously, cholesterol synthesis was measured using the deuterium incorporation method. Our methodology was applied to 12 mildly hypercholesterolemic men that were given a diet providing 2685 +/- 178 Kcal/day (mean +/- SD) and 255 +/- 8 mg cholesterol per day. Cholesterol fractional synthesis rates ranged from 5.0 to 10.5% pool/day and averaged 7.36% +/- 1.78% pool/day (668 +/- 133 mg/day). Cholesterol absorption ranged from 36.5-79.9% with an average value of 50.8 +/- 15.4%. These values are in agreement with already known data obtained with mildly hypercholesterolemic Caucasian males placed on a diet similar to the one used for this study. However, our combined IRMS method has the advantage over existing methods that it enables simultaneous measurement of cholesterol absorption and synthesis in humans, and is therefore an important research tool for studying the impact of dietary treatments on cholesterol parameters.

  8. Synthesis of Dimethyl Ether from CO Hydrogenation: a Thermodynamic Analysis of the Influence of Water Gas Shift Reaction

    Institute of Scientific and Technical Information of China (English)

    Guangxin Jia; Yisheng Tan; Yizhuo Han

    2005-01-01

    Three reactions involved in dimethyl ether (DME) synthesis from CO hydrogenation: methanol synthesis reaction (MSR), methanol dehydration reaction (MDR) and water gas shift reaction (WGSR) are studied by thermodynamic calculation. For demonstrating this process in detail, three models, MSR,MSR+MDR, MSR+MDR+WGSR, are used. Their basic characteristics can be obtained by varying widely the ratios of H2 to CO in the feed (no CO2). Through thermodynamic analysis a chemical synergic effect obviously exists in the second and third models. By comparison between two models it is found that WGSR plays a special role in dimethyl ether synthesis. It is possible for the two models to shift one to the other by regulating CO2 concentration in feed. For Model 2, the selectivity for DME in oxygenates (DME+methanol) does not change with the ratio of H2 to CO.

  9. Solar Thermal Conversion of Biomass to Synthesis Gas: Cooperative Research and Development Final Report, CRADA Number CRD-09-00335

    Energy Technology Data Exchange (ETDEWEB)

    Netter, J.

    2013-08-01

    The CRADA is established to facilitate the development of solar thermal technology to efficiently and economically convert biomass into useful products (synthesis gas and derivatives) that can replace fossil fuels. NREL's High Flux Solar Furnace will be utilized to validate system modeling, evaluate candidate reactor materials, conduct on-sun testing of the process, and assist in the development of solar process control system. This work is part of a DOE-USDA 3-year, $1M grant.

  10. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianqing, E-mail: lxq@gxu.edu.cn [College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Zhong, Jun [Jiangsu Key Laboratory for Carbon-Based Functional Material and Devices, Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou 215123 (China); Shi, Yalin; Guo, Jin; Huang, Guolong [College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Hong, Caihao; Zhao, Yidong [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-01-15

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications.

  11. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum

    Institute of Scientific and Technical Information of China (English)

    Chengjun Liu; Qing Zhao; Yeguang Wang; Peiyang Shi; Maofa Jiang

    2016-01-01

    Plenty of flue gas desulfurization (FGD) gypsum generated from coal-fired power plants for sulfur dioxide se-questration caused many environmental issues. Preparing calcium sulfate whisker (CSW) from FGD gypsum by hydrothermal synthesis is considered to be a promising approach to solve this troublesome problem and uti-lize calcium sulfate in a high-value-added way. The effects of particle size of FGD gypsum, slurry concentration, and additives on CSW were investigated in this work. The results indicated that fine particle size of FGD gypsum and moderately high slurry concentration were beneficial for crystal nucleation and growth. Three additives of magnesium chloride, citric acid, and sodium dodecyl benzene sulfonate (SDBS) were employed in this study. It was found that mean length and aspect ratio of CSW were both decreased by the usage of magnesium chloride, while a small quantity of citric acid or SDBS could improve the CSW morphology. When multi-additives of citric acid-SDBS were employed, the mean length and aspect ratio increased more than 20%. Moreover, surface morphology of CSW went better, and the particle size and crystal shape became more uniform.

  12. Reforming of biogas to synthesis gas by a rotating arc plasma at atmospheric pressure

    Science.gov (United States)

    Chung, Woo-Jae; Park, Hyun-Woo; Liu, Jing-Lin; Park, Dong-Wha

    2015-09-01

    In order to produce synthesis gas, reforming of biogas composed with 60 percent for CH4 and 40 percent for CO2 was performed by a novel rotating arc plasma process. The effect of O2/CH4 ratio on the conversion, syngas composition and energy cost was investigated to evaluate the performance of proposed system compared with conventional gliding arc plasma process. When the O2/CH4 ratio was increased from 0.4 to 0.9, the conversions of CH4 and O2 increased up to 97.5 percent and 98.8 percent, respectively, while CO2 conversion was almost constant to be 38.6 percent. This is due to more enhance the partial oxidation of CH4 to CO and H2 than that of dry reforming by increasing the O2/CH4 ratio. In this work, energy cost of 32 kJ/mol was achieved with high syngas composition of 71 percent using pure O2 as oxidant reactant. These are lower than those of different arc plasma processes (energy cost of 122 - 1870 kJ/mol) such as spark, spark-shade and gliding arc plasma. Because, this rotating arc plasma can remain in a long arc length and a large volume of plasma with constant arc length mode.

  13. Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas

    Institute of Scientific and Technical Information of China (English)

    LI Kongzhai; WANG Hua; WEI Yonggang; LIU Mingchun

    2008-01-01

    The cerium iron complex oxides oxygen carder was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carrier could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carriers were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carder: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction con-dition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.

  14. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  15. Computational fluid dynamics analysis of a synthesis gas turbulent combustion in a round jet burner

    Science.gov (United States)

    Mansourian, Mohammad; Kamali, Reza

    2017-05-01

    In this study, the RNG-Large Eddy Simulation (RNG-LES) methodology of a synthesis gas turbulent combustion in a round jet burner is investigated, using OpenFoam package. In this regard, the extended EDC extinction model of Aminian et al. for coupling the reaction and turbulent flow along with various reaction kinetics mechanisms such as Skeletal and GRI-MECH 3.0 have been utilized. To estimate precision and error accumulation, we used the Smirinov's method and the results are compared with the available experimental data under the same conditions. As a result, it was found that the GRI-3.0 reaction mechanism has the least computational error and therefore, was considered as a reference reaction mechanism. Afterwards, we investigated the influence of various working parameters including the inlet flow temperature and inlet velocity on the behavior of combustion. The results show that the maximum burner temperature and pollutant emission are affected by changing the inlet flow temperature and velocity.

  16. Kinetic Studies on Fermentative Production of Biofuel from Synthesis Gas Using Clostridium ljungdahlii

    Directory of Open Access Journals (Sweden)

    Maedeh Mohammadi

    2014-01-01

    Full Text Available The intrinsic growth, substrate uptake, and product formation biokinetic parameters were obtained for the anaerobic bacterium, Clostridium ljungdahlii, grown on synthesis gas in various pressurized batch bioreactors. A dual-substrate growth kinetic model using Luong for CO and Monod for H2 was used to describe the growth kinetics of the bacterium on these substrates. The maximum specific growth rate (μmax = 0.195 h−1 and Monod constants for CO (Ks,CO = 0.855 atm and H2 (Ks,H2 = 0.412 atm were obtained. This model also accommodated the CO inhibitory effects on cell growth at high CO partial pressures, where no growth was apparent at high dissolved CO tensions (PCO∗>0.743 atm. The Volterra model, Andrews, and modified Gompertz were, respectively, adopted to describe the cell growth, substrate uptake rate, and product formation. The maximum specific CO uptake rate (qmax = 34.364 mmol/gcell/h, CO inhibition constant (KI = 0.601 atm, and maximum rate of ethanol (Rmax = 0.172 mmol/L/h at PCO = 0.598 atm and acetate (Rmax = 0.096 mmol/L/h at PCO = 0.539 atm production were determined from the applied models.

  17. Synthesis of Ce-doped SnO2 nanoparticles and their acetone gas sensing properties

    Science.gov (United States)

    Lian, Xiaoxue; Li, Yan; Tong, Xiaoqiang; Zou, Yunling; Liu, Xiulin; An, Dongmin; Wang, Qiong

    2017-06-01

    Hydrothermal method was generally used to synthesis nanoparticles, which was used to fabricate pure and Ce-doped (3 wt%, 5 wt%, 7 wt%) SnO2 nanoparticles in this experiment. The as-prepared products were characterized by X-ray diffraction (XRD), energy dispersive spectrum (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET). The results clearly indicated that the nanoparticles were composed of SnO2 nanoparticles and Ce ions were successfully doped into the SnO2 lattice, and 5 wt% SnO2:Ce has a higher specific surface area (173.53 m2/g). Importantly, SnO2:Ce sensor had obviously improved performance compared to pure SnO2 and exhibited the highest response values (50.5 for 50 ppm) and a well selectivity to acetone at 270 °C. It could detect acetone gas in a wide concentration range with very high response, good long-term stability and repeatability of response. The possible sensing mechanism was discussed in this paper.

  18. Gas-phase synthesis of the benzyl radical (C(6)H(5)CH(2)).

    Science.gov (United States)

    Dangi, Beni B; Parker, Dorian S N; Yang, Tao; Kaiser, Ralf I; Mebel, Alexander M

    2014-04-25

    Dicarbon (C2 ), the simplest bare carbon molecule, is ubiquitous in the interstellar medium and in combustion flames. A gas-phase synthesis is presented of the benzyl radical (C6 H5 CH2 ) by the crossed molecular beam reaction of dicarbon, C2 (X(1) Σg (+) , a(3) Πu ), with 2-methyl-1,3-butadiene (isoprene; C5 H8 ; X(1) A') accessing the triplet and singlet C7 H8 potential energy surfaces (PESs) under single collision conditions. The experimental data combined with ab initio and statistical calculations reveal the underlying reaction mechanism and chemical dynamics. On the singlet and triplet surfaces, the reactions involve indirect scattering dynamics and are initiated by the barrierless addition of dicarbon to the carbon-carbon double bond of the 2-methyl-1,3-butadiene molecule. These initial addition complexes rearrange via multiple isomerization steps, leading eventually to the formation of C7 H7 radical species through atomic hydrogen elimination. The benzyl radical (C6 H5 CH2 ), the thermodynamically most stable C7 H7 isomer, is determined as the major product.

  19. The Carbon Monoxide Tape Recorder

    Science.gov (United States)

    Schoeberl, M. R.; Duncan, B. N.; Douglass, A. R.; Waters, J.; Livesey, N.; Read, W.; Filipiak, M.

    2006-01-01

    Using Aura MLS data we have identified the stratospheric tape recorder in carbon monoxide (CO). Unlike the water vapor tape recorder, which is controlled by upper troposphere processes, the CO tape recorder is linked to seasonal biomass burning. Since CO has a lifetime of only a few months, the CO tape recorder barely extends above 20 km. The tape head for CO appears to be close to 360K near the same location as the water vapor tape head [Read et al, 20041. Both tape heads are below the equatorial cold point tropopause but above the base of the tropical tropopause layer. The tape recorder signal becomes more distinct from 360K to 380K suggesting that convective detrainment of plays a decreasingly important role with altitude. The Global Modeling Initiative chemical transport model forced by the climatology of biomass burning reproduces the CO tape recorder.

  20. Bioconversion of coal-derived synthesis gas to liquid fuels. Annual report, September 29, 1992--September 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.E.

    1993-10-21

    The overall objective of the project is to develop and optimize a two-stage fermentation process for the conversion of coal derived synthesis gas in an mixture of alcohols. The goals include the development of superior strains with high product tolerance and productivity, optimization of process conditions for high volumetric productivity and product concentrations, integration and optimization of two stage syngas fermentation, evaluation of bioreactor configurations for enhanced mass transfer, evaluation of syngas conversion by a culture of Butyribacterium methyltrophicum and Clostridium acetobutylicum, development of a membrane based pervaporation system for in situ removal of alcohols, and development of a process for reduction of carbon and electron loss. The specific goals for year one (September 1992 - September 1993) were (1) development of a project work plan, (2) development of superior CO-utilizing strains, (3) optimization of process conditions for conversion of synthesis gas to a mixture of acids in a continuously stirred reactor (CSTR), (4) evaluation of different bioreactor configurations for maximization of mass transfer of synthesis gas, (5) development of a membrane based pervaporation system, and (6) reduction of carbon and electron loss via H{sub 2}CO{sub 2} fermentation. Experimentation and progress toward these goals are described in this report.

  1. Studies relevant to the catalytic activation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Ford, P.C.

    1992-06-04

    Research activity during the 1991--1992 funding period has been concerned with the following topics relevant to carbon monoxide activation. (1) Exploratory studies of water gas shift catalysts heterogenized on polystyrene based polymers. (2) Mechanistic investigation of the nucleophilic activation of CO in metal carbonyl clusters. (3) Application of fast reaction techniques to prepare and to investigate reactive organometallic intermediates relevant to the activation of hydrocarbons toward carbonylation and to the formation of carbon-carbon bonds via the migratory insertion of CO into metal alkyl bonds.

  2. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Wood Feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for treatment of wood-derived syngas for use in the synthesis of liquid fuels. Two different 2,000 metric tonne per day gasification schemes, a low-pressure, indirect system using the gasifier, and a high-pressure, direct system using gasification technology were evaluated. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  3. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    Science.gov (United States)

    Sen, Ayusman; Jiang, Zhaozhong

    1996-01-01

    The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

  4. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  5. Delayed encephalopathy after acute carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Mehmet İbrahim Turan

    2014-03-01

    Full Text Available Carbon monoxide poisoning is a major cause of death following attempted suicide and accidental exposures. Although clinical presentation depends on the duration and the intensity of exposure, the assessment of the severity of intoxication is difficult. A small percentage of patients who show complete initial recovery may develop delayed neurological deficits. Delayed encephalopathy after acute carbon monoxide poisoning is a rare and poor prognosis neurologic disorders and there is no specific treatment. We present a case with early onset of delayed encephalopathy after acute carbon monoxide poisoning with typical cranial imaging findings in a child with atypical history and clinical presentation.

  6. Membrane technologies for hydrogen and carbon monoxide recovery from residual gas streams. Tecnologías de membranas para la recuperación de hidrógeno y monóxido de carbono de gases residuales

    OpenAIRE

    David, Oana Cristina

    2012-01-01

    ABSTRACT: This PhD thesis work is aimed to the separation and recovery of valuable gases from industrial residual gas streams by means of membrane technology. In this thesis, a case of study is defined as the tail gas generated in the manufacturing of carbon black. It is envisaged that membrane technology will allow to obtain H2 enriched permeate stream when polymeric membranes are used and CO can be obtained as permeate gas stream when facilitated transport - supported liquid membranes are u...

  7. [Determination of low-carbon alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis by gas chromatography].

    Science.gov (United States)

    Gai, Qingqing; Wu, Peng; Shi, Yulin; Bai, Yu; Long, Yinhua

    2015-01-01

    A method for the determination of low-carbon (C1-C8) alcohols, aldehydes and ketones in aqueous products of Fischer-Tropsch synthesis was developed by gas chromatography. It included the optimization of separation conditions, the precision and accuracy of determination, and the use of correction factors of the analytes to ethanol for quantification. The aqueous products showed that the correlation coefficients for ethanol in different content ranges were above 0.99, which means it had good linear correlations. The spiked recoveries in the aqueous samples of Fischer-Tropsch synthesis were from 93.4% to 109.6%. The accuracy of the method can satisfy the requirement for the analysis of the aqueous samples of Fischer-Tropsch synthesis. The results showed that the total mass fractions of the major low-carbon alcohols, aldehydes, ketones in aqueous products of Fischer-Tropsch synthesis were about 3%-12%, and the contents of ethanol were the highest (about 1.7%-7.3%). The largest share of the total proportion was n-alcohols, followed by isomeric alcohols, aldehydes and ketones were the lowest. This method is simple, fast, and has great significance for the analysis of important components in aqueous products of Fischer-Tropsch synthesis.

  8. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass-UCGFunda

    Energy Technology Data Exchange (ETDEWEB)

    Reinikainen, M.; Moilanen, A.; Simell, P.; Hannula, I.; Kurkela, E. (VTT Technical Research Centre of Finland, Espoo (Finland)), e-mail: matti.reinikainen@vtt.fi; Suominen, T. P. (Aabo Akademi, Turku (Finland), Teknisk Kemi och Reaktionsteknik), e-mail: timo.suominen@abo.fi; Linnekoski, J. (Aalto Univ., School of Science and Technology, Espoo (Finland), Lab. of Industrial Chemistry)

    2011-11-15

    The research was directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The subtopics of the research project were (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, (3) evaluations of alternative process configurations and applications and (4) international cooperation. VTT itself financed also two additional subtopics: (5) new analysis techniques and (6) hydrogen from biomass via gasification. The project comprised experimental work, modelling, techno-economic evaluations as well as studies based on literature. The project was steered by a wide industrial consortium and the research work was carried out by VTT, Aalto University and Aabo Akademi. International development in syngas technology was closely monitored in all subtopics as well as by participating in relevant IEA-tasks. More information on the project can be found on project webpage http://www.vtt.fi/proj/ucgfunda/ (orig.)

  9. Study on the synthesis of Indium Tinoxide (ITO) nanomaterial using sol gel process and its potential for CO gas detection

    Science.gov (United States)

    Wiranto, Goib; Idayanti, Novrita; Retnaningsih, Lilis

    2016-11-01

    This paper described the synthesis of doped and undoped nanomaterial Indium Tinoxide (ITO) using sol-gel process with the base materials from Indium Nitride (In(NO3)) and Tin Chloride (SnCl4). Doping was done using Palladium Chloride (PdCl), with the molar ratio of 90:10 and 70:30, respectively. Physical characteristics of the nanocrystallites were examined using SEM, EDS, XRD, and FTIR, whereas its resistivity was tested agaist CO gas. The result showed that the ITO powders have a crystal size smaller than 100 nm, with a cubic crystal structure (byxbite type), and having strong molecular bonds for In-O-In and Sn-O-Sn. The response to CO gases showed a decreasing resistivity with increasing CO gas concentration, showing its potential for gas sensor application.

  10. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  11. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  12. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  13. Occurence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater

    NARCIS (Netherlands)

    Houten, van B.H.G.W.; Roest, C.; Tzeneva, V.A.; Dijkman, H.; Smidt, H.; Stams, A.J.M.

    2006-01-01

    The start-up of a full-scale synthesis gas-fed gas-lift reactor treating metal and sulfate-rich wastewater was investigated. Sludge from a pilot-scale reactor was used to seed the full-scale reactor. The main difference in design between the pilot- and full-scale reactor was that metal precipitation

  14. Testosterone delays vascular smooth muscle cell senescence and inhibits collagen synthesis via the Gas6/Axl signaling pathway.

    Science.gov (United States)

    Chen, Yan-qing; Zhao, Jing; Jin, Cheng-wei; Li, Yi-hui; Tang, Meng-xiong; Wang, Zhi-hao; Zhang, Wei; Zhang, Yun; Li, Li; Zhong, Ming

    2016-06-01

    Testosterone deficiency is associated with a higher incidence of cardiovascular diseases in men. However, its effect on cell senescence, which plays a causal role in vascular aging, remains unclear. Here, we tested the hypothesis that testosterone alleviated vascular smooth muscle cell (VSMC) senescence and collagen synthesis via growth arrest-specific protein 6 (Gas6)/Axl- and Akt/FoxO1a-dependent pathways. Testosterone significantly ameliorated angiotensin II-induced VSMC senescence and collagen overexpression. In addition, testosterone inhibited angiotensin II-induced matrix metalloproteinase-2 (MMP-2) activity, which played a pivotal role in facilitating age-related collagen deposition. Testosterone increased the expression of tissue inhibitor of metalloproteinase-2 but decreased the expression of MMP-2 and membrane type-1 metalloproteinase which contributed to increase MMP-2 activity. The effects on VSMCs senescence and collagen synthesis were mediated by restoration of angiotensin II-induced downregulation of Gas6 and Axl expression and a subsequent reduction of Akt and FoxO1a phosphorylation. The effects of testosterone were reversed by a Gas6 blocker, Axl-Fc, and a specific inhibitor of Axl, R428. Treatment of VSMCs with PI3K inhibitor LY294002 abrogated the downregulating effect of testosterone on MMP-2 activity. Furthermore, when FoxO1a expression was silenced by using a specific siRNA, the inhibitory effect of testosterone on MMP-2 activity was revered as well, that indicated this process was Akt/FoxO1a dependence. Taken together, Gas6/Axl and Akt/FoxO1a were involved in protective effects of testosterone on VSMCs senescence and collagen synthesis. Our results provide a novel mechanism underlying the protective effect of testosterone on vascular aging and may serve as a theoretical basis for testosterone replacement therapy.

  15. Cyclic process for producing methane from carbon monoxide with heat removal

    Science.gov (United States)

    Frost, Albert C.; Yang, Chang-lee

    1982-01-01

    Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

  16. Hearing Loss due to Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Amir Houshang Mehrparvar

    2013-01-01

    Full Text Available Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker after an acute exposure to carbon monoxide. This complication was diagnosed by pure-tone audiometry and confirmed by transient evoked otoacoustic emissions. Hearing loss has not improved after 3 months of followup.

  17. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties.

    Science.gov (United States)

    Kim, Hyunuk; Das, Sunirban; Kim, Min Gyu; Dybtsev, Danil N; Kim, Yonghwi; Kim, Kimoon

    2011-04-18

    For the first time, phase-pure interpenetrated MOF-5 (1) has been synthesized and its gas sorption properties have been investigated. The phase purity of the material was confirmed by both single-crystal and powder X-ray diffraction studies and TGA analysis. A systematic study revealed that controlling the pH of the reaction medium is critical to the synthesis of phase-pure 1, and the optimum apparent pH (pH*) for the formation of 1 is 4.0-4.5. At higher or lower pH*, [Zn(2)(BDC)(2)(DMF)(2)] (2) or [Zn(5)(OH)(4)(BDC)(3)] (3), respectively, was predominantly formed. The pore size distribution obtained from Ar sorption experiments at 87 K showed only one peak, at ~6.7 Å, which is consistent with the average pore size of 1 revealed by single crystal X-ray crystallography. Compared to MOF-5, 1 exhibited higher stability toward heat and moisture. Although its surface area is much smaller than that of MOF-5 due to interpenetration, 1 showed a significantly higher hydrogen capacity (both gravimetric and volumetric) than MOF-5 at 77 K and 1 atm, presumably because of its higher enthalpy of adsorption, which may correlate with its higher volumetric hydrogen uptake compared to MOF-5 at room temperature, up to 100 bar. However, at high pressures and 77 K, where the saturated H(2) uptake mostly depends on the surface area of a porous material, the total hydrogen uptake of 1 is notably lower than that of MOF-5.

  18. Study of Ni catalysts on different supports to obtain synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Pompeo, Francisco; Nichio, Nora N.; Ferretti, Osmar A. [CINDECA, Fac. Ciencias Exactas, UNLP -CONICET, 47 257, 1900 La Plata (Argentina); Resasco, Daniel [School of Chemical Engineering and Materials Science, University of Oklahoma, 100 E. Boyd Street, Norman, OK 73019 (United States)

    2005-11-01

    Ni catalysts supported on {alpha}-Al{sub 2}O{sub 3}, ZrO{sub 2} and {alpha}-Al{sub 2}O{sub 3}-ZrO{sub 2} were studied in the synthesis gas reactions (partial oxidation, dry reforming and mixed reforming). The Ni/{alpha}-Al{sub 2}O{sub 3}-ZrO{sub 2} catalyst showed a very good performance in relation to the initial activity and selectivity, comparable to that of the Ni/{alpha}-Al{sub 2}O{sub 3} catalyst. Concerning the deactivation, the modification of the {alpha}-Al{sub 2}O{sub 3} supported with ZrO{sub 2} leads to a higher stability, due to the strong inhibition of the carbon formation during the reaction. These results suggest that ZrO{sub 2} promotes the gasification of adsorbed intermediates, which are precursors of carbon formation. Temperature programmed oxidation, transmission electron microscopy and Raman spectroscopy experiments showed that on Ni/{alpha}-Al{sub 2}O{sub 3} catalyst high amounts of graphitic carbon (whisker-like) are deposited during CO{sub 2} reforming reaction, while on Ni/{alpha}-Al{sub 2}O{sub 3}-ZrO{sub 2} lesser amounts of deposited carbon were observed (about one order lower); a fraction of this carbon is of the same nature as that observed on Ni/{alpha}-Al{sub 2}O{sub 3} catalyst, while the other fraction is composed of carbon nanotubes, both of single wall and multi wall. (author)

  19. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  20. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  1. Ethanol synthesis and water gas shift over bifunctional sulfide catalysts. Final technical progress report, September 12, 1991--December 11, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Klier, K.; Herman, R.G.; Deemer, M.; Richards-Babb, M.; Carr, T.

    1995-07-01

    The objective of this research was to investigate sulfur-resistant catalysts for the conversion of synthesis gas having H{sub 2}/CO {le} 1 into C{sub 1}--C{sub 4} alcohols, especially ethanol, by a highly selective and efficient pathway, while also promoting the water gas shift reaction (WGSR). The catalysts chosen are bifunctional, base-hydrogenation, sulfur-tolerant transition metal sulfides with heavy alkali, e.g. Cs{sup +}, promoter dispersed on their surfaces. The modes of activation of H{sub 2} and CO on MoS{sub 2} and alkali-doped MoS{sub 2} were considered, and computational analyses of the thermodynamic stability of transition metal sulfides and of the electronic structure of these sulfide catalysts were carried out. In the preparation of the cesium-promoted MoS{sub 2} catalysts, a variety of preparation methods using CsOOCH were examined. In all cases, doping with CsOOCH led to a lost of surface area. The undoped molybdenum disulfide catalyst only produced hydrocarbons. Cs-doped MoS{sub 2} catalysts all produced linear alcohols, along with smaller amounts of hydrocarbons. With a 20 wt% CsOOCH/MoS{sub 2} catalyst, temperature, pressure, and flow rate dependences of the synthesis reactions were investigated in the presence and absence of H{sub 2}S in the H{sub 2}/CO = 1/1 synthesis gas during short term testing experiments. It was shown that with a carefully prepared 10 wt% CsOOCH/MoS{sub 2} catalyst, reproducible and high alcohol synthesis activity could be obtained. For example, at 295 C with H{sub 2}/CO = 1 synthesis gas at 8.3 MPa and with GHSV = 7,760 l/kg cat/hr, the total alcohol space time yield was ca 300 g/kg cat/hr (accompanied with a hydrocarbon space time yield of ca 60 g/kg cat/hr). Over a testing period of ca 130 hr, no net deactivation of the catalyst was observed. 90 refs., 82 figs., 14 tabs.

  2. Synthesis of dimethyl ether and alternative fuels in the liquid phase from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, R.P.

    1993-01-01

    As part of the DOE-sponsored contract Synthesis of Dimethyl Ether and Alternative Fuels in the Liquid Phase from Coal-Derived Syngas'' experimental evaluations of the one-step synthesis of alternative fuels were carried out. The objective of this work was to develop novel processes for converting coal-derived syngas to fuels or fuel additives. Building on a technology base acquired during the development of the Liquid Phase Methanol (LPMEOH) process, this work focused on the development of slurry reactor based processes. The experimental investigations, which involved bench-scale reactor studies, focused primarily on three areas: (1) One-step, slurry-phase syngas conversion to hydrocarbons or methanol/hydrocarbon mixtures using a mixture of methanol synthesis catalyst and methanol conversion catalyst in the same slurry reactor. (2) Slurry-phase conversion of syngas to mixed alcohols using various catalysts. (3) One-step, slurry-phase syngas conversion to mixed ethers using a mixture of mixed alcohols synthesis catalyst and dehydration catalyst in the same slurry reactor. The experimental results indicate that, of the three types of processes investigated, slurry phase conversion of syngas to mixed alcohols shows the most promise for further process development. Evaluations of various mixed alcohols catalysts show that a cesium-promoted Cu/ZnO/Al[sub 2]O[sub 3] methanol synthesis catalyst, developed in Air Products' laboratories, has the highest performance in terms of rate and selectivity for C[sub 2+]-alcohols. In fact, once-through conversion at industrially practical reaction conditions yielded a mixed alcohols product potentially suitable for direct gasoline blending. Moreover, an additional attractive aspect of this catalyst is its high selectivity for branched alcohols, potential precursors to iso-olefins for use in etherification.

  3. 不同氧疗方式对急性一氧化碳中毒大鼠血气的影响%Effect of different oxygen therapy on blood gas in rats following acute carbon monoxide poisoning

    Institute of Scientific and Technical Information of China (English)

    马琳琳; 葛环; 高春锦; 宋鸿雁; 刘福佳; 侯晓敏

    2010-01-01

    目的 观察不同氧疗方式对急性一氧化碳中毒(acute carbon monoxide poisoning,ACOP)大鼠血气的影响.方法 将70只雄性Wistar大鼠随机分成健康对照组10只;染毒即刻组12只;余48只CO染毒后再分为4组,分别为空气组、鼻导管组、面罩组、HBO组各12只.制备ACOP动物模型,给予3种不同方式的氧疗,自腹主动脉取血行血气分析.结果 pH值:染毒即刻即出现明显下降(P0.05).PaO2及PaCO2:染毒后各组差异无统计学意义(P>0.05).乳酸及COHb%:染毒即刻即出现明显升高(P0.05).HCO3-:染毒后各组均明显低于正常(P0.05); PaO2 and PaCO2: no statistical significance in PaO2 or PaCO2 could be seen between the groups after ACOP(P >0.05); Lactic acid and COHb%: levels of lactic acid and COHb% in the COST group increased significantly, when compared with those of the control group (P 0.05); Bicarbonate (HCO3 -):statistical differences in HCO3 - between the groups could be noted after ACOP (P < 0. 05). Conclusions Various types of oxygen therapy could rectify hypoxia and metabolic acidosis in rats following ACOP. Compared with other two types of therapy, HBO could remove carboxyhemoglobin (COHb) from the body most significantly.

  4. Separation of hydrogen from carbon monoxide using a hollow fiber polyimide membrane: experimental and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peer, M.; Mehdi Kamali, S.; Mahdeyarfar, M.; Mohammadi, T. [Research Laboratory for Separation Processes, Chemical Engineering Department, Tehran (Iran)

    2007-10-15

    The separation of hydrogen from carbon monoxide (syngas ratio adjustment) with polymeric membranes was investigated in this work. A polyimide hollow fiber membrane module was used for hydrogen separation. This polymer has shown large permeability and selectivity for hydrogen separation (selectivity of ca. 30). Permeation tests were carried out at different feed conditions. Feed flow rates were varied between 150-300 mL/min, temperature was varied in the range of 20-80 C and feed pressure was varied between 5-9 bar. Mixtures containing 0-50 % carbon monoxide were used when carrying out experiments. Measured membrane permeances for hydrogen and carbon monoxide were about 70-100 GPU (gas permeation units) and 3-5.5 GPU, respectively. In addition, a mathematical model for simulation of gas separation in hollow fiber membrane modules with all flow patterns (crossflow, countercurrent and cocurrent) was presented. This model can be used for calculation of membrane performance or its required surface area for a specific separation. Experimental results have shown good correlation with simulation results. Plasticization, competitive sorption and concentration polarization effect of carbon monoxide on membrane performance is shown with experimental results. This effect reduced hydrogen permeances in mixed gas experiments. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  6. Modelling of Carbon Monoxide Air Pollution in Larg Cities by Evaluetion of Spectral LANDSAT8 Images

    Science.gov (United States)

    Hamzelo, M.; Gharagozlou, A.; Sadeghian, S.; Baikpour, S. H.; Rajabi, A.

    2015-12-01

    Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS ), spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  7. Effect of carbon monoxide inhibition on the growth of an aquatic streptomycete

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, D.E.; Silvey, J.K.G.

    1971-01-01

    A recent investigation has shown that the primary mycelium of aquatic streptomycetes is facultatively aerobic while the secondary mycelium is obligately aerobic. The nature of the differences in aerobic metabolism of various morphological phases in the life history was determined by carbon monoxide inhibition. A slide culture chamber technique which allowed continuous microscopic observation of the growing organism while in various gas environments was used. Two distinct patterns of inhibition were observed. The development of early stages of the life history was inhibited by carbon monoxide in the light and the dark. The site of this inhibition could not be determined. The later stages were inhibited only by carbon monoxide in the dark. This suggested a dependence of the secondary mycelium on the activity of cytochrome oxidase. Thus, the primary and secondary mycelial stages were found to be physiologically distinct.

  8. Influence of the Total Gas Flow at Different Reaction Times for CVD-Graphene Synthesis on Polycrystalline Nickel

    Directory of Open Access Journals (Sweden)

    M. P. Lavin-Lopez

    2016-01-01

    Full Text Available Optimization of the total gas flow (CH4+H2 during the reaction step for different reaction times for CVD-graphene synthesis on polycrystalline nickel foil using an atmospheric pressure set-up is reported. A thickness value related to number of graphene layers in each of the synthesized samples was determined using an Excel-VBA application. This method assigned a thickness value between 1 and 1000 and provided information on the percentage of each type of graphene (monolayer, bilayer, and multilayer deposited onto the polycrystalline nickel sheet. The influence of the total gas flow during the reaction step and the reaction time was studied in detail. Optical microscopy showed that samples were covered with different types of graphene, such as multilayer, few-layer, bilayer, and monolayer graphene. The synthesis variables were optimized according to the thickness value and the results were verified by Raman spectroscopy. The best conditions were obtained with a reaction temperature of 980°C, a CH4/H2 flow rate ratio of 0.07 v/v, a reaction time of 1 minute, and a total gas flow of 80 NmL/min. In the sample obtained under the optimized conditions, 80% of the area was covered with monolayer graphene and less than 1% with multilayer graphene.

  9. Oscillations during partial oxidation of methane to synthesis gas over Ru/Al_2O_3 catalyst

    Institute of Scientific and Technical Information of China (English)

    Meiliu Wang; Weizheng Weng; Haozhuan Zheng; Xiaodong Yi; Chuanjing Huang; Huilin Wan

    2009-01-01

    Oscillations in temperatures of catalyst bed as well as concentrations of gas phase species at the exit of reactor were observed during the partial oxidation of methane to synthesis gas over Ru/Al_2O_3 in the temperature range of 600 to 850 ℃. XRD,H_2-TPR and in situ Raman techniques was used to characterize the catalyst. Two types of ruthenium species,i.e. the rutbenium species weakly interacted with Al_2O_3 and that strongly interacted with the support,were identified by H2-TPR experiment. These species are responsible for two types of oscillation profiles observed during the reaction. The oscillations were the result of these ruthenium species switching cyclically between the oxidized state and the reduced state under the reaction condition. These cyclic transformations,in turn,were the result of temperature variations caused by the varying levels of the strongly exothermic CH_4 combustion and the highly endothermic CH4 reforming (with H_2O and CO_2) reactions (or the less exothermic direct partial oxidation of methane to CO and H_2),which were favored by the oxidized and the metallic sites,respectively. The major pathway of synthesis gas formation over the catalyst was via the combustion-reforming mechanism.

  10. Conductive Polymer Synthesis with Single-Crystallinity via a Novel Plasma Polymerization Technique for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Choon-Sang Park

    2016-09-01

    Full Text Available This study proposes a new nanostructured conductive polymer synthesis method that can grow the single-crystalline high-density plasma-polymerized nanoparticle structures by enhancing the sufficient nucleation and fragmentation of the pyrrole monomer using a novel atmospheric pressure plasma jet (APPJ technique. Transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and field emission scanning electron microscopy (FE-SEM results show that the plasma-polymerized pyrrole (pPPy nanoparticles have a fast deposition rate of 0.93 µm·min−1 under a room-temperature process and have single-crystalline characteristics with porous properties. In addition, the single-crystalline high-density pPPy nanoparticle structures were successfully synthesized on the glass, plastic, and interdigitated gas sensor electrode substrates using a novel plasma polymerization technique at room temperature. To check the suitability of the active layer for the fabrication of electrochemical toxic gas sensors, the resistance variations of the pPPy nanoparticles grown on the interdigitated gas sensor electrodes were examined by doping with iodine. As a result, the proposed APPJ device could obtain the high-density and ultra-fast single-crystalline pPPy thin films for various gas sensor applications. This work will contribute to the design of highly sensitive gas sensors adopting the novel plasma-polymerized conductive polymer as new active layer.

  11. A Fire Department Community Health Intervention to Prevent Carbon Monoxide Poisoning Following a Hurricane

    Science.gov (United States)

    Levy, Matthew; Jenkins, J Lee; Seaman, Kevin

    2014-01-01

    Portable generators are commonly used during electrical service interruptions that occur following large storms such as hurricanes. Nearly all portable generators use carbon based fuels and produce deadly carbon monoxide gas. Despite universal warnings to operate these generators outside only, the improper placement of generators makes these devices the leading cause of engine related carbon monoxide deaths in the United States. The medical literature reports many cases of Carbon Monoxide (CO) toxicity associated with generator use following hurricanes and other weather events. This paper describes how Howard County, Maryland Fire and Rescue (HCFR) Services implemented a public education program that focused on prevention of Carbon Monoxide poisoning from portable generator use in the wake of events where electrical service interruptions occurred or had the potential to occur. A major challenge faced was communication with those members of the population who were almost completely dependent upon electronic and wireless technologies and were without redundancies. HCFR utilized several tactics to overcome this challenge including helicopter based surveillance and the use of geocoded information from the electrical service provider to identify outage areas. Once outage areas were identified, HCFR personnel conducted a door-to-door canvasing of effected communities, assessing for hazards and distributing information flyers about the dangers of generator use. This effort represents one of the first reported examples of a community-based endeavor by a fire department to provide proactive interventions designed to prevent carbon monoxide illness. PMID:24596660

  12. Correlation of computed tomography, magnetic resonance imaging and clinical outcome in acute carbon monoxide poisoning.

    Science.gov (United States)

    Ozcan, Namik; Ozcam, Giray; Kosar, Pinar; Ozcan, Ayse; Basar, Hulya; Kaymak, Cetin

    2016-01-01

    Carbon monoxide is a toxic gas for humans and is still a silent killer in both developed and developing countries. The aim of this case series was to evaluate early radiological images as a predictor of subsequent neuropsychological sequelae, following carbon monoxide poisoning. After carbon monoxide exposure, early computed tomography scans and magnetic resonance imaging findings of a 52-year-old woman showed bilateral lesions in the globus pallidus. This patient was discharged and followed for 90 days. The patient recovered without any neurological sequela. In a 58-year-old woman exposed to carbon monoxide, computed tomography showed lesions in bilateral globus pallidus and periventricular white matter. Early magnetic resonance imaging revealed changes similar to that like in early tomography images. The patient recovered and was discharged from hospital. On the 27th day of exposure, the patient developed disorientation and memory impairment. Late magnetic resonance imaging showed diffuse hyperintensity in the cerebral white matter. White matter lesions which progress to demyelination and end up in neuropsychological sequelae cannot always be diagnosed by early computed tomography and magnetic resonance imaging in carbon monoxide poisoning. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    Science.gov (United States)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  14. Correlation of computed tomography, magnetic resonance imaging and clinical outcome in acute carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Namik Ozcan

    Full Text Available Abstract Background and objectives: Carbon monoxide is a toxic gas for humans and is still a silent killer in both developed and developing countries. The aim of this case series was to evaluate early radiological images as a predictor of subsequent neuropsychological sequelae, following carbon monoxide poisoning. Case 1: After carbon monoxide exposure, early computed tomography scans and magnetic resonance imaging findings of a 52-year-old woman showed bilateral lesions in the globus pallidus. This patient was discharged and followed for 90 days. The patient recovered without any neurological sequela. Case 2: In a 58-year-old woman exposed to carbon monoxide, computed tomography showed lesions in bilateral globus pallidus and periventricular white matter. Early magnetic resonance imaging revealed changes similar to that like in early tomography images. The patient recovered and was discharged from hospital. On the 27th day of exposure, the patient developed disorientation and memory impairment. Late magnetic resonance imaging showed diffuse hyperintensity in the cerebral white matter. Conclusion: White matter lesions which progress to demyelination and end up in neuropsychological sequelae cannot always be diagnosed by early computed tomography and magnetic resonance imaging in carbon monoxide poisoning.

  15. Continuous gas/liquid–liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination

    Directory of Open Access Journals (Sweden)

    Jessica R. Breen

    2011-08-01

    Full Text Available 4-Fluoropyrazole systems may be prepared by a single, sequential telescoped two-step continuous gas/liquid–liquid/liquid flow process from diketone, fluorine gas and hydrazine starting materials.

  16. Microwave-heating Synthesis and Gas Separation Performance of NaA Zeolite Membrane

    Institute of Scientific and Technical Information of China (English)

    程志林; 刘赞; 万惠霖

    2005-01-01

    The paper presented novel synthesis of NaA zeolite membrane with good performance using microwave heating. The method involved two steps, prior seeding 120 nm of LTA crystals on substrate and then employing a secondary hydrothermal synthesis. Effects of seeding times, synthesis time and synthesis times were investigated in this work. The quality evaluation of membranes respectively used single component gases (HE and N2) and H2/N2 (equivalent volume) mixture. The ideal H2,/N2 selectivity increased from 1.90 of the substrate to 6.37 of the three-stage synthesized membrane, which was distinctly higher than the corresponding Knudsen diffusion selectivity of 3.74. However, the real H2/N2 selectivity of the three-stage synthesis was much lower than the corresponding ideal selectivity and close to the corresponding Knudsen diffusion selectivity of 3.74.

  17. kinetics of the coupled gas-iron reactions involving silicon and carbon

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... and a gas phase consisting carbon monoxide, silicon monoxide and carbon dioxide. ... limited by oxygen in the metal boundary layer at the slag- ... the furnace into the reaction chamber the carbon monoxide acting as both a ...

  18. Alternative fuels and chemicals from synthesis gas. Quarterly status report number 2, 1 January--31 March 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The overall objectives of this program are to investigate potential technologies for the conversion of synthesis gas to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at DOE`s LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit. Results are discussed for the following tasks: liquid phase hydrodynamic run; catalyst activation with CO; new processes for DME (dehydration catalyst screening runs, and experiments using Robinson-Mahoney basket internal and pelletized catalysts); new fuels from DME; and new processes for alcohols and oxygenated fuel additives.

  19. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  20. Mixing ratios of carbon monoxide in the troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, P.C.; Steele, L.P. (Univ. of Colorado, Boulder (United States)); Tans, P.P. (NOAA, Boulder, CO (United States))

    1992-12-20

    Carbon monoxide (CO) mixing ratios were measured in air samples collected weekly at eight locations. The air was collected as part of the CMDL/NOAA cooperative flask sampling program (Climate Monitoring and Diagnostics Laboratory, formerly Geophysical Monitoring for Climatic Change, Air Resources Laboratory/National Oceanic and Atmospheric Administration) at Point Barrow, Alaska, Niwot Ridge, Colorado, Mauna Loa and Cape Kumakahi, Hawaii, Guam, Marianas Islands, Christmas Island, Ascension Island and American Samoa. Half-liter or 3-L glass flasks fitted with glass piston stopcocks holding teflon O rings were used for sample collection. CO levels were determined within several weeks of collection using gas chromatography followed by mercuric oxide reduction detection, and mixing ratios were referenced against the CMDL/NOAA carbon monoxide standard scale. During the period of study (mid-1988 through December 1990) CO levels were greatest in the high latitudes of the northern hemisphere (mean mixing ratio from January 1989 to December 1990 at Point Barrow was approximately 154 ppb) and decreased towards the south (mean mixing ratio at Samoa over a similar period was 65 ppb). Mixing ratios varied seasonally, the amplitude of the seasonal cycle was greatest in the north and decreased to the south. Carbon monoxide levels were affected by both local and regional scale processes. The difference in CO levels between northern and southern latitudes also varied seasonally. The greatest difference in CO mixing ratios between Barrow and Samoa was observed during the northern winter (about 150 ppb). The smallest difference, 40 ppb, occurred during the austral winter. The annually averaged CO difference between 71[degrees]N and 14[degrees]S was approximately 90 ppb in both 1989 and 1990; the annually averaged interhemispheric gradient from 71[degrees]N to 41[degrees]S is estimated as approximately 95 ppb. 66 refs., 5 figs., 5 tabs.

  1. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2: Gas Cleanup Design and Cost Estimates -- Black Liquor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    As part of Task 2, Gas Cleanup and Cost Estimates, Nexant investigated the appropriate process scheme for removal of acid gases from black liquor-derived syngas for use in both power and liquid fuels synthesis. Two 3,200 metric tonne per day gasification schemes, both low-temperature/low-pressure (1100 deg F, 40 psi) and high-temperature/high-pressure (1800 deg F, 500 psi) were used for syngas production. Initial syngas conditions from each of the gasifiers was provided to the team by the National Renewable Energy Laboratory and Princeton University. Nexant was the prime contractor and principal investigator during this task; technical assistance was provided by both GTI and Emery Energy.

  2. Structures and performance of Rh—Mo—K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas

    Institute of Scientific and Technical Information of China (English)

    Zhong-ruiLi; Yi-luFu; 等

    1999-01-01

    A series of rhodium-modified Mo-K/Al2O3 catalyst samples was prepared by varying the rhodium loading between 0 and 1.0 wt% and maintaining molybdenum and potassium contents as constants.The structures of the samples were charaterized by techniques of XRD.LRS.TPR,XPS and EXAFS and correlated to the catalytic properties of the samples for alcohol synthesis from synthesis gas,It was found that.in the oxidic rhodium-modified samples.a strong interaction of the rhodium modifier with the supported K-Mo-O species occurs.This interaction facilitates the sulfidation and reduction of the supported oxo-molybdenum and leads to a decrease in the size of the molybdenum species and stabilization of the cationic rhodium species on the samples during sulfidation.Upon sulfidation.The sulfided molybdenum species in the rhodium-free sample is manly present as large pateches of MoS2-like slabs with their basal sulfur planes interacting with the support surface.With the modirication of rhodium to the samples.The supported MoS2-like species becomes highly dispersed.as revealed by the decrease in the average size of the sulfided molybdenum species.The interaction of the rhodium species with the molybdenum somponent may cause the basal planes of the MoS2-like species to become oriented perpendicular to the support surface due to favorable bonding of the MoS2edge planes to the support through Mo-O-Al bonds.In comparison with the sulfided sample free of rhodium.the properties of the rhodium-modified samples for alcohol synthesis from synthesis gas are much improved.It most probably results from the synergic interaction of the rhodium with the molybdenum species that gives rise to the appearance of the catalytically active surfaces of sites.The co-existence of cationic and metallic rhodium stabilized by this interaction may be responsible for the increased selectivity for the formation of C2+ alcohols.

  3. Seventy-two-hour preservation, resuscitation, and transplantation of an isolated rat heart with high partial pressure carbon monoxide gas (PCO = 400 hPa) and high partial pressure carbon dioxide (PCO(2) = 100 hPa).

    Science.gov (United States)

    Hatayama, Naoyuki; Yoshida, Yu; Seki, Kunihiro

    2010-01-01

    The cardiac cavity of an isolated rat heart was filled with a Krebs-Henseleit (KH) solution, and the heart was hung in a high-pressure chamber. After the high-pressure chamber had been filled with a mixed gas (PCO = 400 hPa, PCO(2) = 100 hPa, PO(2) = 900 hPa, PHe = 5600 hPa) and preserved for 72 h, we performed a cervical ectopic heart transplantation on a recipient rat and resuscitated the preserved heart. This is the first incidence in the world of a mammalian organ having been successfully preserved and resuscitated after 72 h via a desiccation method.

  4. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    Science.gov (United States)

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  5. Anaesthetic properties of carbon monoxide and other gases in relation to plants, insects, and centipedes

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, P.W.

    1935-01-01

    The anaesthetic effect of carbon monoxide, carbon dioxide, propylene, butylene, ethylene, and acetylene, when mixed with oxygen, was tested on ten different species of insects and centipedes. The lowest concentrations found to cause anaesthesia are given in per cent by volume as follows: propylene, for centipede, 30; katydid, 75; rose chafer, 60. Carbon monoxide, for centipede, 81.5; katydid, 89, rose chafer, 85. Butylene, for centipede, 5; katydid, 10; rose chafer, 40. Ethylene or acetylene, for centipede, katydid, and rose chafer, 100. Carbon dioxide, for rose chafer, 30. Ethylene was the most effective plant anaesthetic, 0.0005 per cent stopping growth movements of tomato and sunflower plants as shown by motion pictures; 0.001 per cent stopped elongation of sweet pea seedlings, while 0.00001 per cent retarded elongation nearly 50 per cent. The degree of retardation in growth from ethylene gas varied with the concentration and the plant species. Acetylene and propylene were about equally effective as plant anaesthetics. Both were approximately 10 times as effective as carbon monoxide. Mimosa pudica lost its capacity to respond to external stimuli while being exposed to 0.25 per cent of carbon monoxide, but became normal again upon being removed from the gas. 3 references, 4 tables.

  6. Applied reaction dynamics: Efficient synthesis gas production via single collision partial oxidation of methane to CO on Rh(111)

    Science.gov (United States)

    Gibson, K. D.; Viste, M.; Sibener, S. J.

    2006-10-01

    Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh(111) catalytic substrate, CH4+(1/2)O2→CO +2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than ˜1.3eV. Comparison with a simplified model of the methane-Rh(111) reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO +2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions.

  7. Mechanochemical synthesis in the Li-Mg-N-D system under deuterium gas: a neutron diffraction study.

    Science.gov (United States)

    Li, Z; Zhang, J; Latroche, M; Wang, S; Jiang, L; Du, J; Cuevas, F

    2016-09-14

    The Mg(NH2)2/2LiH mixture is considered as one of the most valuable reversible hydrogen storage systems for feeding PEM fuel cells. In this paper, we investigate the mechanochemical synthesis in the Li-Mg-N-H system under deuterium gas, using Li3N and Mg as reactants, and the structural and sorption properties of the intermediate and final products mainly by means of neutron powder diffraction. Mechanochemistry leads to the end formation of amorphous Mg(ND2)2, which crystallizes upon heating above 425 K. During synthesis, a novel cation-mixed nitride/imide phase of simplified composition Li3MgN2D has been unveiled as the intermediate phase. It crystallizes in the cubic disordered anti-fluorite type structure (S.G. Fm3[combining macron]m) with a lattice parameter of 4.996 Å at room temperature. Deuterium absorption in this compound occurs through an original solid solution type mechanism ending with the imide compound β-Li2MgN2D2. The conjoint use of mechanochemistry under deuterium gas and in situ neutron diffraction techniques offers new avenues for better characterization of the efficient hydrogen storage materials. In particular, this work highlights the unexpected role of intermediate nitride/imide phases in the Li-Mg-N-H system.

  8. Catalyst and process development for synthesis gas conversion to isobutylene. Final report, September 1, 1990--January 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, R.G.; Akgerman, A.; Philip, C.V.; Erkey, C.; Feng, Z.; Postula, W.S.; Wang, J.

    1995-03-01

    This project was initiated because the supply of isobutylene had been identified as a limitation on the production of methyl-t-butyl ether, a gasoline additive. Prior research on isobutylene synthesis had been at low conversion (less than 5%) or extremely high pressures (greater than 300 bars). The purpose of this research was to optimize the synthesis of a zirconia based catalyst, determine process conditions for producing isobutylene at pressures less than 100 bars, develop kinetic and reactor models, and simulate the performance of fixed bed, trickle bed and slurry flow reactors. A catalyst, reactor models and optimum operating conditions have been developed for producing isobutylene from coal derived synthesis gas. The operating conditions are much less severe than the reaction conditions developed by the Germans during and prior to WWII. The low conversion, i.e. CO conversion less than 15%, have been perceived to be undesirable for a commercial process. However, the exothermic nature of the reaction and the ability to remove heat from the reactor could limit the extent of conversion for a fixed bed reactor. Long residence times for trickle or slurry (bubble column) reactors could result in high CO conversion at the expense of reduced selectivities to iso C{sub 4} compounds. Economic studies based on a preliminary design, and a specific location will be required to determine the commercial feasibility of the process.

  9. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  10. A carbon monoxide passive sampler: Research and development needs

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W.; Apte, M.G.; Diamond, R.C.; Woods, A.L.

    1991-11-01

    In rare instances, carbon monoxide (CO) levels in houses can reach dangerously high concentrations, causing adverse health effects ranging from mild headaches to, under extreme conditions, death. Hundreds of fatal accidental carbon monoxide poisonings occur each year primarily due to the indoor operation of motor vehicles, the indoor use of charcoal for cooking, the operation of malfunctioning vented and unvented combustion appliances, and the misuse combustion appliances. Because there is a lack of simple, inexpensive, and accurate field sampling instrumentation, it is difficult for gas utilities and researchers to conduct field research studies designed to quantify the concentrations of CO in residences. Determining the concentration of CO in residences is the first step towards identifying the high risk appliances and high-CO environments which pose health risks. Thus, there exists an urgent need to develop and field-validate a CO-quantifying technique suitable for affordable field research. A CO passive sampler, if developed, could fulfill these requirements. Existing CO monitoring techniques are discussed as well as three potential CO-detection methods for use in a CO passive sampler. Laboratory and field research needed for the development and validation of an effective and cost-efficient CO passive sampler are also discussed.

  11. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    Science.gov (United States)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  12. Pulmonary edema in acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Chang, Kee Hyun; Lee, Myung Uk [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Acute carbon monoxide poisoning has frequently occurred in Korean, because of the coal briquette being widely used as fuel in Korean residences. Carbon monoxide poisoning has been extensively studied, but it has been sparsely reported that pulmonary edema may develop in acute CO poisoning. We have noticed nine cases of pulmonary edema in acute CO poisoning last year. Other possible causes of pulmonary edema could be exclude in all cases but one. The purpose of this paper is to describe nine cases of pulmonary edema complicated in acute CO poisoning and discuss the pathogenesis and the prognosis.

  13. 40 CFR 60.103 - Standard for carbon monoxide.

    Science.gov (United States)

    2010-07-01

    ... Refineries § 60.103 Standard for carbon monoxide. Each owner or operator of any fluid catalytic cracking unit... regenerator any gases that contain carbon monoxide (CO) in excess of 500 ppm by volume (dry basis)....

  14. [Carbon monoxide metabolism by photosynthetic bacteria]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    Research continued on the metabolism of carbon monoxide by Rhodospirillum rubrum. This report discusses progress on the activity, induction, inhibition, and spectroscopic analysis of the enzyme Carbon Monoxide Dehydrogenase. (CBS)

  15. Carbon Monoxide Hazards from Small Gasoline Powered Engines

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH CARBON MONOXIDE Recommend on Facebook Tweet Share Compartir On this Page Recommendations NIOSH Publications Worker Notification Program Carbon Monoxide Hazards from Small Gasoline Powered Engines Many ...

  16. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 9: Mixed Alcohols From Syngas -- State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is for Task 9, Mixed Alcohols from Syngas: State of Technology, as part of National Renewable Energy Laboratory (NREL) Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Task 9 supplements the work previously done by NREL in the mixed alcohols section of the 2003 technical report Preliminary Screening--Technical and Economic Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for Biomass-Derived Syngas.

  17. An Integrated Process of a Two-Stage Fixed Bed Syngas Production and F-T Synthesis for GTL in Remote Gas Field

    Institute of Scientific and Technical Information of China (English)

    代小平; 余长春; 等

    2003-01-01

    A novel process for catalytic oxidation of methane to synthesis gas (syngas),which consists of two consecutive fixed-bed reactors with air introduced into the reactors,integrated Fischer-Tropsch synthesis,was investigated.At the Same time,a catalytic combustion technology has been investigated for utilizing the F-T offgas to generate heat or powr energy.The results show that the two-stage fixed reactor process keep away from explosion of CH4/O2.The integrated process is fitted to produce diesel oil and lubricating oil in remote gas field.

  18. Characterization and catalytic performance of CeO2-Co/SiO2 catalyst for Fischer-Tropsch synthesis using nitrogen-diluted synthesis gas over a laboratory scale fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Dai; Changchun Yu

    2008-01-01

    The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.

  19. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    Science.gov (United States)

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature.

  20. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb...

  1. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  2. Water and methanol in low-mass protostellar outflows: gas-phase synthesis, ice sputtering and destruction

    CERN Document Server

    Suutarinen, Aleksi N; Mottram, Joseph C; Fraser, Helen J; van Dishoeck, Ewine F

    2014-01-01

    Water in outflows from protostars originates either as a result of gas-phase synthesis from atomic oxygen at T > 200 K, or from sputtered ice mantles containing water ice. We aim to quantify the contribution of the two mechanisms that lead to water in outflows, by comparing observations of gas-phase water to methanol (a grain surface product) towards three low-mass protostars in NGC1333. In doing so, we also quantify the amount of methanol destroyed in outflows. To do this, we make use of JCMT and Herschel-HIFI data of H2O, CH3OH and CO emission lines and compare them to RADEX non-LTE excitation simulations. We find up to one order of magnitude decrease in the column density ratio of CH3OH over H2O as the velocity increases in the line wings up to ~15 km/s. An independent decrease in X(CH3OH) with respect to CO of up to one order of magnitude is also found in these objects. We conclude that gas-phase formation of H2O must be active at high velocities (above 10 km/s, relative to the source velocity) to re-form...

  3. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker...

  4. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    Science.gov (United States)

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs.

  5. Prevention of carbon monoxide exposure in general and recreational aviation.

    Science.gov (United States)

    Zelnick, Sanford D; Lischak, Michael W; Young, David G; Massa, Thomas V

    2002-08-01

    Carbon monoxide exposure is an important public health issue that poses a significant, albeit uncommon risk in aviation. Exposure is most common in single engine piston-driven aircraft where air is passed over the exhaust manifold to serve as cabin heat. Effective primary prevention of this exposure is the regular inspection and maintenance of aircraft exhaust systems, as required by law. For situations at special risk should exposure occur, and where there is concern for the public safety, installation of active warning devices for CO intrusion into cockpits may improve secondary prevention. Modern studies should be performed of occupation-specific abilities to support the 50 ppm FAA CO exposure standard and 50-70 ppm FAA Technical Standard Order (TSO) for CO monitors alerting pilots to the possibility of exhaust gas intrusion into their cockpits.

  6. An Unusual Cause of Supraventricular Tachycardia: Acute Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Suat Zengin

    2014-03-01

    Full Text Available      Carbon monoxide (CO is a toxic gas produced by the incomplete combustion of carbon-containing compounds. Exposure to high concentrations of CO can be letha and is the most common cause of death from poisoning worldwide. Cardiac manifestations after exposure to CO, including myocardial ischemia, heart failure, and arrhythmias, have been reported. A 28-year-old a patient was admitted to our emergency department with altered consciousness as a consequence of acute domestic exposure to CO from a stove. His carboxyhemoglobin level was 39%. The oxygen treatment was started promptly, and therapeutic red cell exchange was performed. An electrocardiogram revealed supraventricular tachycardia (SVT, and an echocardiographic examination demonstrated normal cardiac functions. To the best of our knowledge, this study is the second to report a case of SVT attack due to acute CO intoxication. This paper discusses the management of this complication in patients poisoned with CO.

  7. Unique case of fatal carbon monoxide poisoning in the absence of a combustible fossil fuel.

    Science.gov (United States)

    Morgan, D R; Poon, P; Titley, J; Jagger, S F; Rutty, G N

    2001-09-01

    A 37-year-old man died as a result of exposure to carbon monoxide within an apartment. An investigation of the apartment showed no gas appliances or gas supply to the apartment and no evidence of any combustion event to any part of the apartment or roof space. Inhalation of dichloromethane was excluded. Heating to the apartment was found to be via an electrical storage heater, the examination of which revealed that the cast-iron core and insulating material showed evidence of heat damage with significant areas devoid of carbon. This electric storage heater is hypothesized to be the source of carbon for the fatal production of carbon monoxide within the apartment.

  8. Gas-Phase Plasma Synthesis of Free-Standing Silicon Nanoparticles for Future Energy Applications

    NARCIS (Netherlands)

    Dogan, I.; van de Sanden, M. C. M.

    2016-01-01

    Silicon nanoparticles (Si-NPs) are considered as possible candidates for a wide spectrum of future technological applications. Research in the last decades has shown that plasmas are one of the most suitable environments for the synthesis of Si-NPs. This review discusses the unique size-dependent

  9. Gas-Phase Plasma Synthesis of Free-Standing Silicon Nanoparticles for Future Energy Applications

    NARCIS (Netherlands)

    Dogan, I.; van de Sanden, M. C. M.

    2016-01-01

    Silicon nanoparticles (Si-NPs) are considered as possible candidates for a wide spectrum of future technological applications. Research in the last decades has shown that plasmas are one of the most suitable environments for the synthesis of Si-NPs. This review discusses the unique size-dependent fe

  10. Dependence of Nanoparticles Synthesis Energy Consumption in the Gas Spark Discharge on Circuit Parameters

    Directory of Open Access Journals (Sweden)

    D.A. Mylnikov

    2016-10-01

    Full Text Available In this paper, we study the specific energy of titanium dioxide nanoparticles synthesis in a spark discharge in the air by varying the parameters of a discharge circuit. The dependence shows a maximum at a capacitor voltage of about 2 kV and a monotonic decrease with increasing voltage.

  11. Integrated Biorefinery for Conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gerson [Abengoa Bioenergy, Hugoton, KS (United States)

    2017-06-20

    Goal of the project was to Design, build and operate a commercial scale bioethanol facility that uses sustainable biomass feedstock, drastically reduces greenhouse gas (GHG) emissions while achieving output production, yield and cost targets.

  12. Controlled Synthesis of Hierarchically Assembled Porous ZnO Microspheres with Enhanced Gas-Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shengsheng You

    2015-01-01

    Full Text Available The ZnO microspheres constructed by porous nanosheets were successfully synthesized by calcinating zinc hydroxide carbonate (ZHC microspheres obtained by a sample hydrothermal method. The samples were characterized in detail with scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and thermogravimetric and differential scanning calorimetry (TG-DSC. The results indicated that the prepared ZnO microspheres were well crystalline with wurtzite hexagonal phase. The effects of reaction time, temperature, the amount of trisodium citrate, and urea on the morphology of ZnO microspheres were studied. The formation mechanism of porous ZnO microspheres was discussed. Furthermore, the gas-sensing properties for detection of organic gas of the prepared porous ZnO microspheres were investigated. The results indicated that the prepared porous ZnO microspheres exhibited high gas-sensing properties for detection of ethanol gas.

  13. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  14. Recovery of energy metabolism in rat brain after carbon monoxide hypoxia.

    OpenAIRE

    Brown, S D; Piantadosi, C. A.

    1992-01-01

    Carbon monoxide (CO) may inhibit mitochondrial electron transport in the brain and increase the toxic effects of the gas. This hypothesis was investigated in anesthetized rats during CO exposure and recovery at either normobaric or hyperbaric O2 concentrations. During exposure and recovery, we measured the oxidation level of cerebrocortical cytochrome c oxidase by differential spectroscopy and biochemical metabolites known to reflect aerobic energy provision in the brain. CO exposure (HbCO = ...

  15. Activation of O2 and CH4 on yttrium-stabilized zircoma for the partial oxidation of methane to synthesis gas.

    NARCIS (Netherlands)

    Zhu, Jianjun; Ommen, van Jan G.; Bouwmeester, Henny J.M.; Lefferts, Leon

    2005-01-01

    The isotopic exchange reaction on ZrO2 and yttrium-stabilized ZrO2 (YSZ) during catalytic partial oxidation of methane to synthesis gas (CPOM) was studied with transient pulse experiments. The results reveal, surprisingly, that CPOM over both oxides proceeds via a Mars¿van Krevelen mechanism. Despit

  16. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  17. Tungsten Promoted Ni/Al2O3 Catalysts for Carbon Dioxide Reforming of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    XIAO Tian-cun; Thomas Suhartanto; Andrew P. E. York; Malcolm L. H. Green

    2004-01-01

    A series of tungsten promoted alumina supported nickel catalysts has been prepared for the carbon dioxide reforming of methane to synthesis gas. The catalysts have been characterized by means of XRD, TEM,and Laser Raman spectroscopy. It is shown that the addition of tungsten to the nickel catalyst can stabilize the catalyst and increase the resistance to carbon deposition. Adding a suitable amount of tungsten can also increase the catalyst activity to be close to that of supported noble metal catalysts. The carburisation of the tungsten modified nickel catalyst decreases the catalyst activity at lower reaction temperatures(<1123K),but has no effect on the catalyst performance at higher reaction temperatures. The alumina supported nickel catalyst modified by 0. 67 % (mass fraction)WOs has the equivalent equilibrium constant of the dry reforming reaction to that of alumina supported 5% (mass fraction) Ru at 873 K, and also has a lower activation energy for dry reforming than the latter.

  18. Trimethyl(phenylsilane — a precursor for gas phase processes of SiCx:H film deposition: Synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Evgeniya N. Ermakova

    2015-12-01

    Full Text Available The technique of synthesis and purification of trimethyl(phenylsilane PhSiMe3, allowing to obtain the product with high yield. Individuality of the product was confirmed by elemental analysis for C, H, Si was developed. IR, UV and 1H NMR-spectroscopic studies were used to define its spectral characteristics. Complex thermal analysis and thermogravimetry defined thermoanalytical behavior of PhSiMe3 in an inert atmosphere. Tensimetric studies have shown that the compound has sufficient volatility and thermal stability for use as a precursor in the process of chemical vapor deposition (CVD. The composition and temperature limits of the possible crystalline phase complexes in equilibrium with the gas phase of different composition has been determined by method of thermodynamic modeling. Calculated CVD diagrams allow us to select the optimal conditions of film deposition. The possibility of using trimethyl(phenylsilane in CVD processes for producing dielectric films of hydrogenated silicon carbide has been demonstrated.

  19. Engineering high-performance Pd core-MgO porous shell nanocatalysts via heterogeneous gas-phase synthesis.

    Science.gov (United States)

    Singh, Vidyadhar; Cassidy, Cathal; Abild-Pedersen, Frank; Kim, Jeong-Hwan; Aranishi, Kengo; Kumar, Sushant; Lal, Chhagan; Gspan, Christian; Grogger, Werner; Sowwan, Mukhles

    2015-08-28

    We report on the design and synthesis of high performance catalytic nanoparticles with a robust geometry via magnetron-sputter inert-gas condensation. Sputtering of Pd and Mg from two independent neighbouring targets enabled heterogeneous condensation and growth of nanoparticles with controlled Pd core-MgO porous shell structure. The thickness of the shell and the number of cores within each nanoparticle could be tailored by adjusting the respective sputtering powers. The nanoparticles were directly deposited on glassy carbon electrodes, and their catalytic activity towards methanol oxidation was examined by cyclic voltammetry. The measurements indicated that the catalytic activity was superior to conventional bare Pd nanoparticles. As confirmed by electron microscopy imaging and supported by density-functional theory (DFT) calculations, we attribute the improved catalytic performance primarily to inhibition of Pd core sintering during the catalytic process by the metal-oxide shell.

  20. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 2.3: Sulfur Primer

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is Subtask 2.3 of Task 2, Gas Cleanup Design and Cost Estimates, of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 2.3 builds upon the sulfur removal information first presented in Subtask 2.1, Gas Cleanup Technologies for Biomass Gasification by adding additional information on the commercial applications, manufacturers, environmental footprint, and technical specifications for sulfur removal technologies. The data was obtained from Nexant's experience, input from GTI and other vendors, past and current facility data, and existing literature.

  1. CO Emissions from Gas Engines Operating on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Jensen, T. K.; Henriksen, Ulrik Birk

    2004-01-01

    High carbon monoxide (CO) emission from gas engines fueled by producer gas is a concerning problem in the struggle to make biomass gasification for heat and power production a success. CO emissions from engines operating on biomass producer gases are high, especially at very lean conditions where...

  2. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  3. Accidental carbon monoxide poisoning presenting without a history of exposure: A case report

    Directory of Open Access Journals (Sweden)

    Bennetto Luke

    2008-04-01

    Full Text Available Abstract Introduction Carbon monoxide poisoning is easy to diagnose when there is a history of exposure. When the exposure history is absent, or delayed, the diagnosis is more difficult and relies on recognising the importance of multi-system disease. We present a case of accidental carbon monoxide poisoning. Case presentation A middle-aged man, who lived alone in his mobile home was found by friends in a confused, incontinent state. Initial signs included respiratory failure, cardiac ischaemia, hypotension, encephalopathy and a rash, whilst subsequent features included rhabdomyolysis, renal failure, amnesia, dysarthria, parkinsonism, peripheral neuropathy, supranuclear gaze palsy and cerebral haemorrhage. Despite numerous investigations including magnetic resonance cerebral imaging, lumbar puncture, skin biopsy, muscle biopsy and electroencephalogram a diagnosis remained elusive. Several weeks after admission, diagnostic breakthrough was achieved when the gradual resolution of the patient's amnesia, encephalopathy and dysarthria allowed an accurate history to be taken for the first time. The patient's last recollection was turning on his gas heating for the first time since the spring. A gas heating engineer found the patient's gas boiler to be in a dangerous state of disrepair and it was immediately decommissioned. Conclusion This case highlights several important issues: the bewildering myriad of clinical features of carbon monoxide poisoning, the importance of making the diagnosis even at a late stage and preventing the patient's return to a potentially fatal toxic environment, and the paramount importance of the history in the diagnostic method.

  4. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei.

    Science.gov (United States)

    Saxena, Jyotisna; Tanner, Ralph S

    2012-04-01

    Fermentation of biomass derived synthesis gas to ethanol is a sustainable approach that can provide more usable energy and environmental benefits than food-based biofuels. The effects of various medium components on ethanol production by Clostridium ragsdalei utilizing syngas components (CO:CO(2)) were investigated, and corn steep liquor (CSL) was used as an inexpensive nutrient source for ethanol production by C. ragsdalei. Elimination of Mg(2+), NH(4) (+) and PO(4) (3-) decreased ethanol production from 38 to 3.7, 23 and 5.93 mM, respectively. Eliminating Na(+), Ca(2+), and K(+) or increasing Ca(2+), Mg(2+), K(+), NH(4) (+) and PO(4) (3-) concentrations had no effect on ethanol production. However, increased Na(+) concentration (171 mM) inhibited growth and ethanol production. Yeast extract (0.5 g l(-1)) and trace metals were necessary for growth of C. ragsdalei. CSL alone did not support growth and ethanol production. Nutrients limiting in CSL were trace metals, NH(4) (+) and reducing agent (Cys: cysteine sulfide). Supplementation of trace metals, NH(4) (+) and CyS to CSL (20 g l(-1), wet weight basis) yielded better growth and similar ethanol production as compared to control medium. Using 10 g l(-1), the nutritional limitation led to reduced ethanol production. Higher concentrations of CSL (50 and 100 g l(-1)) were inhibitory for cell growth and ethanol production. The CSL could replace yeast extract, vitamins and minerals (excluding NH(4) (+)). The optimized CSL medium produced 120 and 50 mM of ethanol and acetate, respectively. The CSL could provide as an inexpensive source of most of the nutrients required for the syngas fermentation, and thus could improve the economics of ethanol production from biomass derived synthesis gas by C. ragsdalei.

  5. Economics of Undiscovered Oil and Gas in the North Slope of Alaska: Economic Update and Synthesis

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2009-01-01

    The U.S. Geological Survey (USGS) has published assessments by geologists of undiscovered conventional oil and gas accumulations in the North Slope of Alaska; these assessments contain a set of scientifically based estimates of undiscovered, technically recoverable quantities of oil and gas in discrete oil and gas accumulations that can be produced with conventional recovery technology. The assessments do not incorporate economic factors such as recovery costs and product prices. The assessors considered undiscovered conventional oil and gas resources in four areas of the North Slope: (1) the central North Slope, (2) the National Petroleum Reserve in Alaska (NPRA), (3) the 1002 Area of the Arctic National Wildlife Refuge (ANWR), and (4) the area west of the NPRA, called in this report the 'western North Slope'. These analyses were prepared at different times with various minimum assessed oil and gas accumulation sizes and with slightly different assumptions. Results of these past studies were recently supplemented with information by the assessment geologists that allowed adjustments for uniform minimum assessed accumulation sizes and a consistent set of assumptions. The effort permitted the statistical aggregation of the assessments of the four areas composing the study area. This economic analysis is based on undiscovered assessed accumulation distributions represented by the four-area aggregation and incorporates updates of costs and technological and fiscal assumptions used in the initial economic analysis that accompanied the geologic assessment of each study area.

  6. Synthesis and characterization of nano crystalline nickel zinc ferrite for chlorine gas sensor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, C. S., E-mail: charudutta-p@yahoo.com [Material Science and Thin Film Research Laboratory, Department of Physics,Shankarrao Mohite Mahavidyalaya, Akluj India (India); Gujar, M. P. [Shri. Shivaji Junior College, Bawada, Dist: Pune (India); Mathe, V. L. [Department of Physics, University of Pune, Pune – 411 007 India (India)

    2015-06-24

    Nano crystalline Nickel Zinc ferrite (Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4}) thin films were synthesized by Sol Gel method for gas response. The phase and microstructure of the obtained Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). The nanostructured Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film shows single spinel phase. Magnetic study was obtained with the help of VSM. The effects of working temperature on the gas response were studied. The results reveal that the Ni{sub 0.25}Zn{sub 0.75}Fe{sub 2}O{sub 4} thin film gas sensor shows good selectivity to chlorine gas at room temperature. The sensor shows highest sensitivity (∼50%) at room temperature, indicating its application in detecting chlorine gas at room temperature in the future.

  7. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang

    2011-09-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  8. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    Science.gov (United States)

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  9. Synthesis of ZnO Nanostructures for Low Temperature CO and UV Sensing

    Directory of Open Access Journals (Sweden)

    Nazar Abbas Shah

    2012-10-01

    Full Text Available In this paper, synthesis and results of the low temperature sensing of carbon monoxide (CO gas and room temperature UV sensors using one dimensional (1-D ZnO nanostructures are presented. Comb-like structures, belts and rods, and needle-shaped nanobelts were synthesized by varying synthesis temperature using a vapor transport method. Needle-like ZnO nanobelts are unique as, according to our knowledge, there is no evidence of such morphology in previous literature. The structural, morphological and optical characterization was carried out using X-ray diffraction, scanning electron microscopy and diffused reflectance spectroscopy techniques. It was observed that the sensing response of comb-like structures for UV light was greater as compared to the other grown structures. Comb-like structure based gas sensors successfully detect CO at 75 °C while other structures did not show any response.

  10. Synthesis of metallic and zeolite nanoparticles for catalysis and gas separation

    Directory of Open Access Journals (Sweden)

    S. Domínguez Domínguez

    2013-01-01

    Full Text Available A novel methodology has been developed for the direct incorporation of metallic nanoparticles inside mesoporous matrices, which we have named “simultaneous synthesis”. The prepared catalysts have shown excellent activity and selectivity in a selective hydrogenation reaction (phenylacetylene semihydrogenation. Catalysts prepared following the simultaneous synthesis protocol showed the highest activity values (expressed as TOF for all the analyzed samples, which clearly reveals the importance of not only the support, but also the catalyst preparation method.

  11. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  12. Synthesis of ZnO nanosheet arrays with exposed (100) facets for gas sensing applications.

    Science.gov (United States)

    Xiao, Chuanhai; Yang, Tianye; Chuai, Mingyan; Xiao, Bingxin; Zhang, Mingzhe

    2016-01-01

    ZnO nanosheet (NS) arrays have been synthesized by a facile ultrathin liquid layer electrodeposition method. The ion concentration and electrode potential play important roles in the formation of ZnO NS arrays. Studies on the structural information indicate that the NSs are exposed with (100) facets. The results of Raman and PL spectra indicate that there existed a large amount of oxygen vacancies in the NSs. The gas sensing performances of the ZnO NS arrays are investigated: the ZnO NS arrays exhibited high gas selectivity and quick response/recovery for detecting NO2 at a low working temperature. High binding energies between NO2 molecules and exposed ZnO(100) facets lead to large surface reconstructions, which is responsible for the intrinsic NO2 sensing properties. In addition, the highly exposed surface and a large amount of oxygen vacancies existing in the NSs also make a great contribution to the gas sensing performance.

  13. In-utero carbon monoxide poisoning and multiple fetal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Hennequin, Y.; Blum, D.; Vamos, E.; Steppe, M.; Goedseels, J.; Cavatorta, E. (Free Univ. of Brussels (Belgium). Queen Fabiola Children' s Hospital)

    1993-01-23

    Carbon monoxide (CO) poisoning during pregnancy can lead to feto-maternal fatalities and stillbirths. Teratogenic effects have been reported. The authors strongly suspected an association between mild but chronic CO poisoning of the mother and major multiple malformations in the baby. Retrospective interviews of the mother disclosed that at 10 weeks' gestation, she had complained of headache and dizziness. At the same time, her 16-month-old daughter had an episode of unconsciousness. A faulty kitchen gas water-heater was suspected but the family did not have it repaired. The mother continued to have headaches regularly. During the 7th month of pregnancy, the daughter was found comatose. In the emergency ward, carboxyhemoglobins levels were 27.5% for the child and 14% for the pregnant mother. Both were treated with hyperbaric oxygen. Investigations by the gas company revealed a highly abnormal CO production from the kitchen and bathroom gas-water heaters: 120 and 100 parts per million, respectively, after 2 minutes of use.

  14. A Wireless and Batteryless Intelligent Carbon Monoxide Sensor.

    Science.gov (United States)

    Chen, Chen-Chia; Sung, Gang-Neng; Chen, Wen-Ching; Kuo, Chih-Ting; Chue, Jin-Ju; Wu, Chieh-Ming; Huang, Chun-Ming

    2016-09-23

    Carbon monoxide (CO) poisoning from natural gas water heaters is a common household accident in Taiwan. We propose a wireless and batteryless intelligent CO sensor for improving the safety of operating natural gas water heaters. A micro-hydropower generator supplies power to a CO sensor without battery (COSWOB) (2.5 W at a flow rate of 4.2 L/min), and the power consumption of the COSWOB is only ~13 mW. The COSWOB monitors the CO concentration in ambient conditions around natural gas water heaters and transmits it to an intelligent gateway. When the CO level reaches a dangerous level, the COSWOB alarm sounds loudly. Meanwhile, the intelligent gateway also sends a trigger to activate Wi-Fi alarms and sends notifications to the mobile device through the Internet. Our strategy can warn people indoors and outdoors, thereby reducing CO poisoning accidents. We also believe that our technique not only can be used for home security but also can be used in industrial applications (for example, to monitor leak occurrence in a pipeline).

  15. A Wireless and Batteryless Intelligent Carbon Monoxide Sensor

    Directory of Open Access Journals (Sweden)

    Chen-Chia Chen

    2016-09-01

    Full Text Available Carbon monoxide (CO poisoning from natural gas water heaters is a common household accident in Taiwan. We propose a wireless and batteryless intelligent CO sensor for improving the safety of operating natural gas water heaters. A micro-hydropower generator supplies power to a CO sensor without battery (COSWOB (2.5 W at a flow rate of 4.2 L/min, and the power consumption of the COSWOB is only ~13 mW. The COSWOB monitors the CO concentration in ambient conditions around natural gas water heaters and transmits it to an intelligent gateway. When the CO level reaches a dangerous level, the COSWOB alarm sounds loudly. Meanwhile, the intelligent gateway also sends a trigger to activate Wi-Fi alarms and sends notifications to the mobile device through the Internet. Our strategy can warn people indoors and outdoors, thereby reducing CO poisoning accidents. We also believe that our technique not only can be used for home security but also can be used in industrial applications (for example, to monitor leak occurrence in a pipeline.

  16. Gas and pressure effects on the synthesis of amorphous carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tingkai; LIU Yongning; ZHU Jiewu

    2004-01-01

    The effects of gas, pressure and temperature on the production of amorphous carbon nanotubes were investigated using an arc discharging furnace at controlled temperature. Co/Ni alloy powder was used as catalyst.The discharge current was 80 A and voltage was 32 V. The optimal parameters were obtained: 600℃ temperature, hydrogen gas and 500 torr pressure. The productivity and purity of amorphous carbon nanotubes are 6.5 gram per hour and 80%, respectively. The diameter of the amorphous carbon nanotubes is about 7-20 nm.

  17. Synthesis of preliminary system designs for offshore oil and gas production

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sin, Gürkan; Elmegaard, Brian

    2016-01-01

    The present work deals with the design of oil and gas platforms, with a particular focus on the developmentof integrated and intensified petroleum processing plants. It builds on a superstructure based approach that includes all the process steps, transformations and interconnections of relevance...... the platform, (ii) the oil and gas recoveries are markedly impacted by the number of separation stages and heat exchangers, and (iii) disregarding the interactions between the several plant sections lead to sub-optimum solutions. The application of this framework proves to be useful for eliminating inadequate...

  18. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    Science.gov (United States)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  19. Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2015-05-01

    Full Text Available Ag@α-Fe2O3 nanocomposite having a core–shell structure was synthesized by a two-step reduction-sol gel approach, including Ag nanoparticles synthesis by sodium borohydride as the reducing agent in a first step and the subsequent mixing with a Fe+3 sol for α-Fe2O3 coating. The synthesized Ag@α-Fe2O3 nanocomposite has been characterized by various techniques, such as SEM, TEM and UV-Vis spectroscopy. The electrical and gas sensing properties of the synthesized composite towards low concentrations of ethanol have been evaluated. The Ag@α-Fe2O3 nanocomposite showed better sensing characteristics than the pure α-Fe2O3. The peculiar hierarchical nano-architecture and the chemical and electronic sensitization effect of Ag nanoparticles in Ag@α-Fe2O3 sensors were postulated to play a key role in modulating gas-sensing properties in comparison to pristine α-Fe2O3 sensors.

  20. Catalyst-Free Synthesis of ZnO Nanowires on Oxidized Silicon Substrate for Gas Sensing Applications.

    Science.gov (United States)

    Behera, B; Chandra, S

    2015-06-01

    In the present work, we report the synthesis of nanostructured ZnO by oxidation of zinc film without using a seed or catalyst layer. The zinc films were deposited on oxidized Si substrates by RF magnetron sputtering process. These were oxidized in dry and wet air/oxygen ambient. The optimized process yielded long nanowires of ZnO having diameter of around 60-70 nm and spread uniformly over the surface. The effect of oxidation temperature, time, Zn film thickness and the ambient has strong influence on the morphology of resulting nanostruxctured ZnO film. The films were characterized by scanning electron microscopy for morphological studies and X-ray diffraction (XRD) analysis to study the phase of the nanostructured ZnO. Room temperature photoluminescence (PL) measurements of the nanowires show UV and green emission. A sensor was designed and fabricated using nanostructured ZnO film, incorporating inter-digital-electrode (IDE) for the measurement of resistance of the sensing layer. The gas sensing properties were investigated from the measurement of change in resistance when exposed to vapours of different volatile organic compound (VOC) such as acetone, ethanol, methanol and 2-propanol. The results suggest that ZnO nanowires fabricated by this method have potential application in gas sensors.

  1. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process.

    Science.gov (United States)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-29

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated "singlet" nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  2. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation

    Directory of Open Access Journals (Sweden)

    Alessio Fuoco

    2017-02-01

    Full Text Available Metal-organic frameworks (MOFs were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1. Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8 and Copper benzene tricarboxylate ((HKUST-1, were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H2, O2, N2, CH4, CO2 were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

  3. Tungsten sulfide nanoflakes. Synthesis by electrospinning and their gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ke; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Feng, Wen-Lin [Chongqing Univ. of Technology, Chongqing (China). Dept. of Physics and Energy; Chongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing (China).

    2017-07-01

    Tungsten sulfide (WS{sub 2}) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS{sub 2} (Ag-WS{sub 2}) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS{sub 2} has a graphene-like structure with P{sub 63/mmc} space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS{sub 2} and Ag-WS{sub 2} nanomaterials. The sensing responses of WS{sub 2} and Ag-WS{sub 2} on the ammonia (NH{sub 3}), ethanol (C{sub 2}H{sub 5}OH), and acetone (C{sub 3}H{sub 6}O) were investigated at about 220 C. The results indicate that gas sensor based on WS{sub 2} and Ag-WS{sub 2} nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS{sub 2} and Ag-WS{sub 2} gas sensors is surface control via charge transfer.

  4. Tungsten Sulfide Nanoflakes: Synthesis by Electrospinning and Their Gas Sensing Properties

    Science.gov (United States)

    Wang, Ke; Feng, Wen-Lin; Qin, Xiang; Deng, Da-Shen; Feng, Xu; Zhang, Chao

    2017-04-01

    Tungsten sulfide (WS2) nanoflakes were successfully prepared via electrospinning with polyvinylpyrrolidone (PVP) as organic solvent. In addition, Ag-deposited WS2 (Ag-WS2) was obtained by chemical blending/calcination method. The structure and morphology of as-prepared materials were characterised by powder X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The XRD result shows that the prepared WS2 has a graphene-like structure with P63/mmc space group symmetry. The SEM illuminates that the sensing samples have nanoflake appearance. Furthermore, heater-type gas sensors were fabricated based on WS2 and Ag-WS2 nanomaterials. The sensing responses of WS2 and Ag-WS2 on the ammonia (NH3), ethanol (C2H5OH), and acetone (C3H6O) were investigated at about 220°C. The results indicate that gas sensor based on WS2 and Ag-WS2 nanoflakes has 60 ppm sensing threshold value for ammonia. One possible gas sensing mechanism of WS2 and Ag-WS2 gas sensors is surface control via charge transfer.

  5. Optical Characterization of Diamond Synthesis Using CH3OH-H2 Gas Mixtures

    Institute of Scientific and Technical Information of China (English)

    Man Weidong; Wang Jianhua; Li Lei; Zhang Baohua; Bai Yuming

    2005-01-01

    Diamond films with high infrared transmittance have been successfully deposited using CH3OH-H2 gas mixtures through microwave plasma enhanced chemical vapor deposition (MWCVD). The primary purpose of this study is to determine the effect of the deposition conditions on the optical properties of MWCVD diamond films using CH3OH-H2 gas mixtures. Room temperature optical properties of freestanding diamond films were studied by Fourier transform IR spectroscopy. Experimental results indicated that under appropriate deposition temperature (620 ℃) and methanol concentration (5.7%), the refractive index of CVD diamond films (2.33)was comparable with that of natural diamond (2.417). The average infrared transmittance was above 65% in the middle infrared region (500 cm-1 ~ 4000 cm-1), approaching to the theoretical value of diamond (71.4%). The mechanism of growing high IR transmittance diamond films by utilizing CH3OH-H2 gas system is that the high methanol concentration used in this study makes the surface roughness of diamond films decreased by increasing the secondary nucleation density and the high O/C ratio in CH3OH-H2 gas system, improved the quality of diamond films and therefore decreased the absorption of non-diamond carbon in the films.

  6. Synthesis, characterization and gas sensitivity of MoO3 nanoparticles

    Indian Academy of Sciences (India)

    Arnab Ganguly; Raji George

    2007-04-01

    Nanoparticles of molybdenum oxide were synthesized using the citrate sol–gel method and characterized using scanning electron microscopy and X-ray diffraction techniques. The sensitivity of the material to the presence of various gases was analysed and the particles showed higher sensitivity towards NO2 gas.

  7. Synthesis and Transport Properties of Novel MOF/PIM-1/MOF Sandwich Membranes for Gas Separation.

    Science.gov (United States)

    Fuoco, Alessio; Khdhayyer, Muhanned R; Attfield, Martin P; Esposito, Elisa; Jansen, Johannes C; Budd, Peter M

    2017-02-11

    Metal-organic frameworks (MOFs) were supported on polymer membrane substrates for the fabrication of composite polymer membranes based on unmodified and modified polymer of intrinsic microporosity (PIM-1). Layers of two different MOFs, zeolitic imidazolate framework-8 (ZIF-8) and Copper benzene tricarboxylate ((HKUST-1), were grown onto neat PIM-1, amide surface-modified PIM-1 and hexamethylenediamine (HMDA) -modified PIM-1. The surface-grown crystalline MOFs were characterized by a combination of several techniques, including powder X-ray diffraction, infrared spectroscopy and scanning electron microscopy to investigate the film morphology on the neat and modified PIM-1 membranes. The pure gas permeabilities of He, H₂, O₂, N₂, CH₄, CO₂ were studied to understand the effect of the surface modification on the basic transport properties and evaluate the potential use of these membranes for industrially relevant gas separations. The pure gas transport was discussed in terms of permeability and selectivity, highlighting the effect of the MOF growth on the diffusion coefficients of the gas in the new composite polymer membranes. The results confirm that the growth of MOFs on polymer membranes can enhance the selectivity of the appropriately functionalized PIM-1, without a dramatic decrease of the permeability.

  8. Photosynthetic carbon monoxide metabolism by sugarcane leaves

    Energy Technology Data Exchange (ETDEWEB)

    Kortschak, H.P.; Nickell, L.G.

    1973-01-01

    The photosynthetic carbon monoxide metabolism by sugarcane was studied to determine whether substantial quantities of CO are removed from the air by fields in Hawaii. Leaves metabolized low CO concentrations photosynthetically, with sucrose as an end product. Rates of uptake were of the order of 10/sup -4/ power mg/d sq m/hr. This was to low to be significant in removing CO from the atmosphere.

  9. Sensorineural Hearing Loss following Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2012-01-01

    Full Text Available A case study is presented of a 17-year-old male who sustained an anoxic brain injury and sensorineural hearing loss secondary to carbon monoxide poisoning. Audiological data is presented showing a slightly asymmetrical hearing loss of sensorineural origin and mild-to-severe degree for both ears. Word recognition performance was fair to poor bilaterally for speech presented at normal conversational levels in quiet. Management considerations of the hearing loss are discussed.

  10. Hydrothermal synthesis of h-MoO{sub 3} microrods and their gas sensing properties to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yueli; Yang, Shuang; Lu, Yu [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Podval’naya, Natal’ya V. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Science, Ekaterinburg 620990 (Russian Federation); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Zakharova, Galina S., E-mail: volkov@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Science, Ekaterinburg 620990 (Russian Federation)

    2015-12-30

    Highlights: • A simple hydrothermal acid-free method for the synthesis of h-MoO{sub 3} microrods with the hexagonal cross-section is reported. • The h-MoO{sub 3} phase is transformed to α-MoO{sub 3} at 439 °C. • The h-MoO{sub 3} microrods were employed to fabricate gas sensors to detect ethanol. • Sensor showed highest response with a sensitivity of 8.24–500 ppm C{sub 2}H{sub 5}OH at operating temperature of 332 °C. - Abstract: Hexagonal molybdenum trioxide (h-MoO{sub 3}) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH{sub 4}Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC–TG) were used to characterize the product. The gas sensing test indicates that h-MoO{sub 3} microrods have a good response to 5–500 ppm ethanol in the range of 273–380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO{sub 3} microrods to ethanol was also discussed.

  11. Isobutanol-methanol mixtures from synthesis gas. Quarterly technical progress report, 1 January--31 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-20

    A series of CuMgCeO{sub x} catalysts have been prepared. Range of Cu dispersion, determined by N{sub 2}O titration, was 19-48% and are among the highest reported in the literature for Cu-based methanol and higher alcohol synthesis catalysts. Kinetics of MeOH and EtOH coupling reactions on Cu/ZnO and K-Cu/MgO/CeO{sub 2} catalysts indicate that Cu promotes alcohol dehydrogenation. Acetaldehyde is a reactive intermediate. High-pressure isobutanol synthesis studies have been carried out on K- and Cs-promoted Cu/MgO/CeO{sub 2} catalysts. The K promoter is more active than Cs for CO conversion, but the Cs promoter activates the C{sub 1} to C{sub 2} step more effectively. Catalysts with high alkali loading resulted in low conversions. Temperature programmed surface reaction studies of MeOH, EtOH, and acetaldehyde on MgO/CeO{sub 2}-based Cu catalysts show evolution of acetone, crotonaldehyde, methyl ethyl ketone, H2, carbon oxides. Neither EtOH nor acetaldehyde produces propionaldehyde or 1- propanol, suggesting that these C{sub 3} species can only form via reactions involving C{sub 1} and C{sub 2} oxygenate species.

  12. Multi-metallic oxides as catalysts for light alcohols and hydrocarbons from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Miguel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Diaz, L; Galindo, H de J; Dominguez, J. M; Salmon, Manuel [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    1999-08-01

    A series of Cu-Co-Cr oxides doped with alkaline metals (M), were prepared by the coprecipitation method with metal nitrates (Cu{sup I}I, CO{sup I}I, CR{sup I}II) and (M{sub 2})CO{sub 3} in aqueous solution. The calcined products were used as catalysts for the Fisher-Tropsch synthesis in a stainless-steel fixed bed microreactor. The material was characterized by x-ray diffraction, and the specific surface area, pore size and nitrogen adsorption-desorption properties were also determined. The alkaline metals favored the methanol synthesis and prevent the dehydration reactions whereas the hydrocarbon formation is independent to these metals. [Spanish] Una serie de oxidos Cu-Co-Cr soportados con metales alcalinos (M), fueron preparados por el metodo con nitratos metalicos (Cu{sup I}I, CO{sup I}I, CR{sup I}II) y (M{sub 2})CO{sub 3} en soluciones acuosas. Los productos calcinados fueron usados como catalizadores para la sintesis de Fisher-tropsch en la superficie fija de un microreactor de acero inoxidable. El material fue caracterizado por difraccion de rayos X y el area de superficie especifica, el tamano de poro y propiedades de absorcion-desorcion de nitrogeno fueron determinadas. Los metales alcalinos favorecieron la sintesis de metanol y previnieron las reacciones de deshidratacion, mientras que la formacion de hidrocarburos es independiente de estos metales.

  13. Synthesis gas production through redox cycles of bimetallic oxides and methane

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I.S.; Vigil, M.D.D.; Gutierrez, J.S.; Collins-Martinez, V.; Ortiz, A.L. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    High-purity hydrogen is required by fuel cells to produce electricity with high efficiency and reduced emissions. Therefore, new and cost effective technologies must be developed that can produce hydrogen to supply the increased demand of the current world market. These new technologies have to overcome several challenges such as large size, weight and cost, high temperature requirements for the process and other associated obstacles such as slow start-ups, storage and transportation issues. Hydrogen production through the partial oxidation of methane (POX) is a well known technology at industrial scale. This paper examined the synthesis, characterization and evaluation of iron (Fe) cerium (Ce) zirconium (Zr) with different Fe to CeZr ratios as oxygen carrier to produce syngas through the partial oxidation of methane. The paper also examined the effect of adding nickel (Ni) to FeCeZr as a catalyst to promote the partial oxidation and the proper assessment of the carbon formation within the reaction system. The paper described the experiment with particular reference to synthesis, characterization and reaction evaluation. The results were presented using X-ray diffraction; crystallite size and BET surface area; reaction evaluation by TGA; and evaluation of the partial oxidation of methane. Experimental values showed a clear trend towards the partial oxidation of methane reaction with samples containing Ni. 28 tabs., 4 tabs., 2 figs.

  14. Zigzag GaN/Ga2O3 heterogeneous nanowires: Synthesis, optical and gas sensing properties

    Directory of Open Access Journals (Sweden)

    Li-Wei Chang

    2011-09-01

    Full Text Available Zigzag GaN/Ga2O3 heterogeneous nanowires (NWs were fabricated, and the optical properties and NO gas sensing ability of the NWs were investigated. We find that NWs are most effective at 850 °C at a switching process once every 10 min (on/off = 10 min per each with a mixture flow of NH3 and Ar. The red shift of the optical bandgap (0.66 eV is observed from the UV-vis spectrum as the GaN phase forms. The gas sensing characteristics of the developed sensor are significantly replaced to those of other types of NO sensors reported in literature.

  15. Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: chemical synthesis and full characterization.

    Science.gov (United States)

    González-Álvarez, Jaime; Blanco-Gomis, Domingo; Arias-Abrodo, Pilar; Díaz-Llorente, Daniel; Ríos-Lombardía, Nicolás; Busto, Eduardo; Gotor-Fernández, Vicente; Gutiérrez-Álvarez, María Dolores

    2012-04-06

    Seven new functionalized polymerizable ionic liquids were chemically prepared, and later applied for the preparation of polymeric stationary phases in gas chromatography. These coated GC columns, which exhibited good thermal stabilities (240-300°C) and very high efficiencies (3120-4200 plates/m), have been characterized using the Abraham solvation parameter model. The chromatographic behavior of these polymeric IL columns has been deeply studied observing excellent selectivities in the separation of many organic substances such as alkanes, ketones, alcohols, amines or esters in mixtures of polar and non polar solvents or fragrances. Remarkably, the challenging separation of xylene isomers has been possible using a bis(trifluoromethylsulfonyl)amide based imidazolium IL coated column as a gas chromatography stationary phase.

  16. Microporous Polymers from a Carbazole-Based Triptycene Monomer: Synthesis and Their Applications for Gas Uptake.

    Science.gov (United States)

    Zhai, Tian-Long; Tan, Liangxiao; Luo, Yi; Liu, Jun-Min; Tan, Bien; Yang, Xiang-Liang; Xu, Hui-Bi; Zhang, Chun

    2016-01-01

    Two kinds of novel organic microporous polymers TCPs (TCP-A and TCP-B) were prepared by two cost-effective synthetic strategies from the monomer of tricarbazolyltriptycene (TCT). Their structure and properties were characterized by FT-IR, solid (13) C NMR, powder XRD, SEM, TEM, and gas absorption measurements. TCP-B displayed a high surface area (1469 m(2)  g(-1) ) and excellent H2 storage (1.70 wt % at 1 bar/77 K) and CO2 uptake abilities (16.1 wt % at 1 bar/273 K), which makes it a promising material for potential application in gas storage.

  17. Synthesis of preliminary system designs for offshore oil and gas production

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Sin, Gürkan; Elmegaard, Brian

    2016-01-01

    The present work deals with the design of oil and gas platforms, with a particular focus on the developmentof integrated and intensified petroleum processing plants. It builds on a superstructure based approach that includes all the process steps, transformations and interconnections of relevance...... the platform, (ii) the oil and gas recoveries are markedly impacted by the number of separation stages and heat exchangers, and (iii) disregarding the interactions between the several plant sections lead to sub-optimum solutions. The application of this framework proves to be useful for eliminating inadequate......, to generate and compare a large number of alternatives. The superstructure is formulated based on engineering knowledge and is coupled to process models developed in Aspen and Matlab,together with multi-objective optimisation routines and uncertainty assessments. It takes actual measurements from North Sea...

  18. Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing

    Science.gov (United States)

    Musarrat, Jabeen; Muhammad Azhar, Iqbal; R Vasant, Kumar; Mansoor, Ahmed; Muhammad Tayyeb, Javed

    2014-01-01

    Zinc oxide (ZnO) nanorods are prepared using equimolar solution of zinc nitrate ((Zn(NO3)2) and hexamethylenetetramine (C6H12N4) by the hydrothermal technique at 80 °C for 12 h. Epitaxial growth is explored by X-ray diffraction (XRD) patterns, revealing that the ZnO nanorods have a hexagonal (wurtzite) structure. Absorption spectra of ZnO are measured by UV—visible spectrometer. The surface morphology is investigated by field emission scanning electron microscopy (FESEM). The synthesized ZnO nanorods are used for detecting the 150 °C hydrogen gas with a concentration over 1000 ppm. The obtained results show a reversible response. The influence of operating temperature on hydrogen gas detecting characteristic of ZnO nanorods is also investigated.

  19. Evidence for horizontal gene transfer of anaerobic carbon monoxide dehydrogenases

    Directory of Open Access Journals (Sweden)

    Stephen eTechtmann

    2012-04-01

    Full Text Available Carbon monoxide (CO is commonly known as a toxic gas, yet it is used by both aerobic and anaerobic bacteria and many archaea. In this study, we determined the prevalence of anaerobic carbon monoxide dehydrogenases (anaerobic CODHs, or [Ni,Fe]-CODHs in currently available genomic sequence databases. More than 6% (185 genomes out of 2887 bacterial and archaeal genome sequences in the IMG database possess at least one gene encoding [Ni,Fe]-CODH, the key enzyme for anaerobic CO utilization. The phylogenetic study of this extended protein family revealed nine distinct clades of [Ni,Fe]-CODHs. These clades consisted of [Ni,Fe]-CODHs that, while apparently monophyletic within the clades, were encoded by microorganisms of disparate phylogeny, based on 16S rRNA sequences, and widely ranging physiology. Following this discovery, it was therefore of interest to examine the extent and possible routes of horizontal gene transfer (HGT affecting [Ni,Fe]-CODH genes and gene clusters that include [Ni,Fe]-CODHs.The genome sequence of the extreme thermophile Thermosinus carboxydivorans was used as a case study for HGT. The [Ni,Fe]-CODH operon of T. carboxydivorans differs from its whole genome in its G+C content by 8.2 mol%. Here, we apply statistical methods to establish acquisition by T. carboxydivorans of the gene cluster including [Ni,Fe]-CODH via HGT. Analysis of tetranucleotide frequency and codon usage with application of the Kullback-Leibler divergence metric showed that the [Ni,Fe]-CODH-1 operon of T. carboxidyvorans is quite dissimilar to the whole genome. Using the same metrics, the T. carboxydivorans [Ni,Fe]-CODH-1 operon is highly similar to the genome of the phylogenetically distant anaerobic carboxydotroph Carboxydothermus hydrogenoformans. These results allow to assume recent HTG of the gene cluster from a relative of C. hydrogenoformans to T. carboxydivorans or a more ancient transfer from a C. hydrogenoformans ancestor to a T. carboxydivorans

  20. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  1. Synthesis and application of a hydrophobic hypercrosslinked polymeric resin for removing VOCs from humid gas stream

    Institute of Scientific and Technical Information of China (English)

    Peng Liu; Chao Long; Hong Ming Qian; Ying Lia; Ai Min Li; Quan Xing Zhanga

    2009-01-01

    A hydrophobic hypercrosslinked polymeric resin LC-1 was prepared and characterized.The properties of LC-1 resin were compared with those of a commercial hypercrosslinked polymer NDA-201 resin.In addition,the dynamic adsorption of trichloroethylene(TCE)onto LC.1 under dry and humid conditions at 303 K was investigated,the result shows that LC-1possesses high hydrophobic property and can remove TCE from gas stream without effect of high humidity efficiently.

  2. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  3. Facile synthesis of porous ZnO microbelts and analysis of their gas-sensing property

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiarui, E-mail: jrhuang@mail.anhu.edu.cn; Shi, Chengcheng; Fu, Guijun; Sun, Pingping; Wang, Xinyue; Gu, Cuiping, E-mail: cpgu2008@mail.ahnu.edu.cn

    2014-04-01

    Porous ZnO microbelts were achieved using a facile chemical solution method combined with subsequent calcination. The micro-nanostructures were characterized through X-ray diffraction, field emission scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer–Emmett–Teller N{sub 2} adsorption-desorption analyses, among others. The BET surface area of the porous ZnO microbelts was calculated at 23.0 m² g{sup −1}. Furthermore, the gas sensing properties of the as-prepared porous ZnO microbelts were investigated using volatile organic compounds. Compared with ZnO microflowers, the porous ZnO microbelts exhibited higher response with certain organic vapors, such as formaldehyde, acetone, and ethanol. The responses to 100 ppm formaldehyde, acetone, and ethanol were 45.7, 40.6, and 38.4, respectively, at a working temperature of 300 °C. The results showed that the porous ZnO microbelts are highly promising candidates for gas sensing applications. - Highlights: • Zinc glycinate monohydrate microwires were obtained by a chemical solution method. • Porous ZnO microbelts were achieved after calcinations. • The porous ZnO microbelts exhibit superior gas-sensing property.

  4. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  5. The immunomodulatory role of carbon monoxide during transplantation

    Directory of Open Access Journals (Sweden)

    Amano Mariane

    2013-01-01

    Full Text Available Abstract The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.

  6. Simonkolleite nano-platelets: Synthesis and temperature effect on hydrogen gas sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Sithole, J. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Ngom, B.D., E-mail: bdngom@tlabs.ac.za [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa) and African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Laboratoire de Photonique et de Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux, Departement de Physique Facultes des Sciences et Technique Universite Cheikh Anta Diop de Dakar, Dakar (Senegal); Khamlich, S. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa); African Laser Centre, CSIR campus, P.O. Box 395, Pretoria (South Africa); Manikanadan, E. [National Centre for Nano-Structured Materials (NCNSM), Council for Scientific and Industrial Research, Pretoria (South Africa); Manyala, N. [Department of Physics, SARCHI Chair in Carbon Technology and Materials, Institute of Applied Materials, University of Pretoria, Pretoria 0028 (South Africa); Saboungi, M.L. [Centre de Recherche sur la Matiere Divisee, CNRS-Orleans, Orleans (France); Knoessen, D. [Dept. of Physics, University of Western Cape, Private Bag X 17, Belleville (South Africa); Nemutudi, R.; Maaza, M. [NANOAFNET, MRD-iThemba LABS, National Research Foundation,1 Old Faure road, Somerset West 7129 (South Africa)

    2012-08-01

    In this work, the new refined mineral platelets-like morphology of simonkolleite based particles described by Shemetzer et al. (1985) were synthesized in zinc nitrate aqueous solution by a moderate solution process. The morphological and structural properties of the platelets-like Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O were characterized by scanning electron microscope energy dispersed X-ray spectroscopy, transmission electron microscope, powder X-ray diffraction and selected area electron diffraction as well as attenuated total reflection infrared spectroscopy. The morphology as well as the size in both basal and transversal directions of the simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano/micro crystals was found to be significantly depending on the specific concentration of 0.1 M of Zn{sup 2+}/Cl{sup -} ions in the precursor solution. The simonkolleite Zn{sub 5}(OH){sub 8}Cl{sub 2}{center_dot}H{sub 2}O nano-platelets revealed a significant and singular H{sub 2} gas sensing characteristics. The operating temperature was found to play a key role on the sensing properties of simonkolleite. The effect of temperature on the simonkolleite sample as a hydrogen gas sensor was studied by recording the change in resistivity of the film in presence of the test gas. The results on the sensitivity and response time as per comparison to earlier reported ZnO based sensors are indicated and discussed.

  7. Organometallic synthesis of ZnO nanoparticles for gas sensing: towards selectivity through nanoparticles morphology

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhikov, Andrey; Jońca, Justyna; Kahn, Myrtil; Fajerwerg, Katia [Laboratoire de Chimie de Coordination (LCC), CNRS (France); Chaudret, Bruno [Laboratoire de Physique et de Chimie de Nano-objets (LPCNO), INSA, UPS, CNRS (France); Chapelle, Audrey [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Ménini, Philippe [Université Toulouse III, Paul Sabatier (France); Shim, Chang Hyun [Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS), CNRS (France); Gaudon, Alain [Alpha M.O.S. SA (France); Fau, Pierre, E-mail: pierre.fau@lcc-toulouse.fr [Laboratoire de Chimie de Coordination (LCC), CNRS (France)

    2015-07-15

    ZnO nanoparticles (NP) with different morphologies such as nanorods (NR), isotropic NP, and cloud-like (CL) structures have been synthesized by an organometallic route. The prepared ZnO nanostructures have been deposited on miniaturized silicon gas sensor substrates by an inkjet method, and their responses to CO, C{sub 3}H{sub 8}, and NH{sub 3} gases have been studied at different operating temperatures (340–500 °C) and relative humidity of 50 %. It is noteworthy that the morphology of the nanostructure of the sensitive layer is maintained after thermal treatment. The morphology of ZnO NP significantly influences the sensor response level and their selectivity properties to reducing gases. Among the three different ZnO types, sensors prepared with NR show the highest response to both CO and C{sub 3}H{sub 8}. Sensors made of isotropic NP and CL structures show a lower but similar response to CO. From all investigated nanostructures, sensors made of CL structures show the weakest response to C{sub 3}H{sub 8}. With NH{sub 3} gas, no effect of the morphology of the ZnO sensitive layer has been evidenced. These different responses highlight the important role of the nanostructure of the ZnO sensitive layer and the nature of the target gas on the detection properties of the sensors. Graphical Abstract: Three different ZnO nanoparticles morphologies (cloud-like, dots, rods) have been employed as sensitive layers in chemoresistive sensors for the selective detection of CO, C{sub 3}H{sub 8} and NH{sub 3}.

  8. A porous Cu(II) metal-organic framework: Synthesis, crystal structure and gas adsorption properties

    Science.gov (United States)

    Li, Wu-Wu; Guo, Ying; Zhang, Wei-Hong

    2017-09-01

    Presented here is a new porous Cu(II) metal-organic framework, namely [Cu(tdc)(H2O)]n·n(DMA) (1 H2tdc = thiophene-2,5-dicarboxylic acid, DMA = N,N‧-dimethylacetamide), which was obtained by the self-assembly reaction of CuCl2 and H2tdc under solvothermal conditions. Single crystal X-ray diffraction analysis revealed that compound 1 features a 3D porous framework based on 1D chain structure subunits, and the 1D rhombohedral channels are occupied by the lattice DMA molecules. Gas adsorption studies reveal that this desolvated sample exhibit high uptake capacity for light hydrocarbons.

  9. Synthesis Gas Demonstration Plant Program, Phase I. Commercial plant conceptual design and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This volume contains the trade-off study optimizing operating pressure (1200 psig was chosen), gas purification alternatives (Rectisol and Selexol processes were chosen). Coal preparation (wet grinding in a rod mill with trommel screen removal of oversize was recommended), air quality control (a 99.65% efficiency electrostatic precipitator and Wellman-Lord sulfur dioxide removal process were recommended), and for cooling tower optimization, a cooled water temperature of 83/sup 0/F was the optimum economic choice, with a hot water entering temperature of 118/sup 0/F. (LTN)

  10. Large-scale synthesis of the controlled-geometry carbon coils by the manipulation of the SF6 gas flow injection time.

    Science.gov (United States)

    Eum, Jun-Ho; Kim, Sung-Hoon; Yi, Soung Soo; Jang, Kiwan

    2012-05-01

    Carbon coils could be synthesized using C2H2/H2 as source gases and SF6 as an incorporated additive gas under thermal chemical vapor deposition system. Nickel catalyst layer deposition and then hydrogen plasma pretreatment were performed prior to the carbon coils deposition reaction. According to the different reaction processes, the injection time of SF6 gas flow was varied. The characteristics (formation density, morphology, and geometry) of the deposited carbon coils on the substrates were investigated according to the different reaction processes. Finally, the large-scale synthesis of carbon coils and their geometry control could be achieved merely by manipulating SF6 gas flow injection time. Three cases growth aspects were proposed according to SF6 gas flow injection time in association with the fluorine's characteristics for etching the materials or enhancing the nucleation sites.

  11. Compact Instrument for Measurement of Atmospheric Carbon Monoxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposed the development of a rugged, compact, and automated instrument for the high sensitivity measurement of tropospheric carbon monoxide...

  12. Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Larentis, A.L.; De Resende, N.S.; Salim, V.M.M.; Pinto, J.C. [Programa de Engenharia Quimica/COPPE/Universidade Federal do Rio de Janeiro, Cidade Universitaria, CP 68502, RJ, 21945-970 Rio de Janeiro (Brazil)

    2001-07-13

    The optimization of the combined carbon dioxide reforming and partial methane oxidation over a 1% Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was studied in order to produce synthesis gas with hydrogen/carbon monoxide ratio close to 1, for applications in metallurgical and polycarbonates processes and for production of oxygenated compounds and hydrocarbons. The study was performed with the help of experimental design and two mathematical modeling approaches: empirical and phenomenological. Empirical polynomial models were employed to analyze the effects of the process variables on the response factors and the final correlation coefficients obtained were above 95%. The phenomenological model was obtained from individual mass balances and the obtained correlation coefficients were above 95% for CH{sub 4} and N{sub 2}, 90% for CO{sub 2} and H{sub 2}O and near 70% for H{sub 2} and CO. The empirical modeling approach was found to be more efficient, simpler and led to better results than those obtained with the phenomenological model approach. Therefore, the empirical modeling was used for optimization of the process operation conditions. At an oxygen/methane ratio of 0.55gmol/gmol and temperature of 950C, optimized process conditions were obtained with complete methane conversion, maximum carbon monoxide selectivity of 43% and minimum hydrogen/carbon monoxide ratio of 1.3, in absence of water.

  13. Biological conversion of synthesis gas. Final report, August 31, 1990--September 3, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Basu, R.; Klasson, K.T.; Johnson, E.R.; Takriff, M.; Clausen, E.C.; Gaddy, J.L.

    1993-09-01

    Based upon the results of this culture screening study, Rhodospirillum rubrum is recommended for biocatalysis of the water gas shift reaction and Chlorobium thiosulfatophilum is recommended for H{sub 2}S conversion to elemental sulfur. Both bacteria require tungsten light for growth and can be co-cultured together if H{sub 2}S conversion is not complete (required concentration of at least 1 ppM), thereby presenting H{sub 2} uptake by Chlorobium thiosulfatophilum. COS degradation may be accomplished by utilizing various CO-utilizing bacteria or by indirectly converting COS to elemental sulfur after the COS first undergoes reaction to H{sub 2} in water. The second alternative is probably preferred due to the low expected concentration of COS relative to H{sub 2}S. Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. Rhodospirillum rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H{sub 2}O {yields} CO{sub 2} + H{sub 2}. Chlorobium thiosulfatophilum is also a photosynthetic anaerobic bacteria, and converts H{sub 2}S and COS to elemental sulfur.

  14. Prediction of vapour-liquid equilibria for the kinetic study of processes based on synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Di Serio, M.; Tesser, R.; Cozzolino, M.; Santacesaria, E. [Naples Univ., Napoli (Italy). Dept. of Chemistry

    2006-07-01

    Syngas is normally used in the production of a broad range of chemicals and fuels. In many of these processes multiphase reactors, gas-liquid or gas-liquid-solid are used. Kinetic studies in multiphase systems are often complicated by the non-ideal behaviour of reagents and/or products that are consistently partitioned between the liquid and the vapour phase. Moreover, as often kinetic data are collected in batch conditions for the liquid phase, activity coefficients of the partitioned components can consistently change during the time as a consequence of changing the composition of the reaction mixture. Therefore, it is necessary, in these cases, to known the vapor-liquid equilibria (VLE) in order to collect and to interpret correctly the kinetic data. The description of phase equilibria, at high pressures, is usually performed by means of an EOS (Equation of State) allowing the calculation of fugacity coefficients, for each component, in both phases and determining the partition coefficients but the EOS approach involves the experimental determination of the interaction parameters for all the possible binary system of the mixture. For multicomponent mixtures a complete experimental determination of vapourliquid equilibria is very hard, also considering the high pressure and temperatures used. Some predictive group contribution methods have been recently developed. In this paper, we will describe in detail the application of these methods to the methanol homologation, as an example, with the scope of determining more reliable kinetic parameters for this reaction. (orig.)

  15. Synthesis, characterization, and applications of zinc oxide nanoparticles and nanorods in acetone gas detection

    Science.gov (United States)

    Nauman Ali, Rai; Diao, Kaidi; Naz, Hina; Cui, Xudong; Xiang, Bin

    2017-09-01

    In this paper, we report an enhanced gas sensing performance of ZnO by changing the ZnO configuration from one dimension (1D) to zero dimension (0D). The structural and optical properties of the as-synthesized samples have been investigated by transmission electron microscopy (TEM), x-ray diffraction (XRD), UV–visible near infrared and photoluminescence spectroscopies (PL). TEM results confirm the non-agglomerated crystalline morphology of 0D ZnO nanoparticles as well as the 1D nanorods. All the representative peaks observed in the XRD spectrum confirm the hexagonal wurtzite structure. The UV–visible absorption and PL emission spectra for 0D ZnO nanoparticles indicate an obvious blue shift compared to the 1D nanorods because of its lower dimension size. Our dynamic response-recovery characterizations reveal that the 0D ZnO exhibits better acetone-gas sensing performance compared to 1D ZnO under an optimum operating temperature of 250 °C.

  16. Synthesis and characterization of Cu doped cobalt oxide nanocrystals as methane gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhi Mehrabadi, Z; Ahmadpour, A [Nanotechnology Research Center, Department of Chemical Engineering, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Shahtahmasebi, N [Nanotechnology Research Center, Department of Physics, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Bagheri Mohagheghi, M M, E-mail: m_mohagheghee@yahoo.co.uk [School of Physics, Damghan University, Damghan (Iran, Islamic Republic of)

    2011-07-01

    In this paper, nanoparticles of copper-cobalt compound oxide have been prepared by the sol-gel technique with different mole ratios of Cu/Co (ranging from 0.05 to 0.15) for the detection of methane gas, which is chemically a very stable hydrocarbon. The structural properties and morphology of the powders were studied by x-ray diffraction (XRD), Fourier transform infrared spectroscopy and transmission electron microscopy (TEM). By XRD analysis, we confirm that Co{sub 3}O{sub 4} and (CuO{sub 0.3}CoO{sub 0.7}) Co{sub 2}O{sub 4} phases are formed and mean grain size is decreased with increasing Cu doping (from 28 to 24 nm). On the basis of TEM images, it is found that these particles possess a cubic structure with nearly uniform distribution. Also, gas-sensing measurements reveal that the optimal operating temperature is 300 {sup 0}C, that the use of Cu as a dopant improved the sensing properties of cobalt oxide and that the sensitivity increased considerably with Cu concentration. The best sensitivity properties of nanosensors have been found at the mole ratios of Cu/Co of 0.125 and 0.15.

  17. Synthesis and analysis of novel polymers with high permselectivity and permeability in gas separation applications

    Energy Technology Data Exchange (ETDEWEB)

    Koros, W.J.; Paul, D.R.

    1991-12-31

    Significant progress was made toward developing advanced materials for gas separation membrane applications and rationalizing molecular structure and efficacy: Synthesized and tested polyarylates based on terephthalic or isophthalic acid or a tertiary butyl derivative of the isophthalic acid with different diols to illustrate the effects of: opening'' the matrix by incorporation of bulky packing inhibiting groups such as the tertiary butyl moiety inhibition of backbone motion via meta connected backbone connections and tightening'' of the matrix by incorporation of polar halogens. Completed high temperature characterization of sorption and transport properties for novel materials. Continued studies of the phenyl-substituted polymers aimed at producing super stable high temperature useful polymers for gas separations. Synthesized a polyarylate based on the spirobiindane diol and bibenzoyl acid chloride to incorporate long flat packable bibenzoyl units between packing disruptive spirobiindane units in an attempt to control the segmental level morphology to produce highly selective bottleneck'' regions between highly open regions.

  18. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Matthias, E-mail: matthias.stein@uni-due.de; Kiesler, Dennis; Kruis, Frank Einar [University of Duisburg-Essen, Institute for Nanostructures and Technology (NST) and Center for Nanointegration Duisburg-Essen (CENIDE) (Germany)

    2013-01-15

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  19. Facile Solvothermal Synthesis and Gas Sensitivity of Graphene/WO3 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yanghai Gui

    2014-06-01

    Full Text Available Graphene has attracted enormous attention owing to its extraordinary properties, while graphene-based nanocomposites hold promise for many applications. In this paper, we present a two-step exploitation method for preparation of graphene oxides and a facile solvothermal route for preparation of few-layer graphene nanosheets and graphene/WO3 nanocomposites in an ethanol-distilled water medium. The as-synthesized samples were characterized by using field emission scanning electron microscopy (FE-SEM, high-resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, Raman spectroscopy, X-ray diffraction (XRD, thermogravimetric-differential thermal analysis (TG-DTA and gas-sensing test. The resistivity of the thick-film gas sensors based on sandwich-like graphene/WO3 nanocomposites can be controlled by varying the amount of graphene in the composites. Graphene/WO3 nanocomposites with graphene content higher than 1% show fast response, high selectivity and fine sensitivity to NOx.

  20. Slurry phase Fischer-Tropsch synthesis: Cobalt plus a water-gas shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chanenchuk, C.A.; Yates, I.C.; Satterfield, C.N.

    1990-01-01

    A Co/MgO/SiO[sub 2] Fischer-Tropsch catalyst was operated simultaneously with a Cu/ZnO/Al[sub 2]O[sub 3] water-gas-shift catalyst in a slurry reactor for over 400 hours. The process conditions were held constant at a temperature of 240[degrees]C, a pressure of 0.79 MPa, and a 1.1 H[sub 2]/CO feed of 0.065 Nl/min-g.cat. The Fischer-Tropsch activity remained constant at the level predicted by the operation of the Co/MgO/SiO[sub 2] catalyst alone. The water-gas-shift reaction was near equilibrium. The hydrocarbon product distribution of the combined catalyst system was stable and matched that of the CO/MgO/SiO[sub 2] operating alone under similar conditions. The combined catalyst system exhibited a high selectivity to n-alkanes. Neither catalysts's operation appeared to have a detrimental effect on that of the other, showing promise for future option.

  1. Synthesis, characterization and gas sensing properties of novel homo and hetero dinuclear ball-type phthalocyanines.

    Science.gov (United States)

    Kakı, Esra; Altındal, Ahmet; Salih, Bekir; Bekaroğlu, Özer

    2015-05-01

    New ball-type homodinuclear Co(ii)-Co(ii) phthalocyanine () and ball-type heterodinuclear Co(ii)-Fe(ii) phthalocyanine () were synthesized from the corresponding [2,10,16,24-tetrakis{4,4'-cyclohexylidenebis(2-cyclohexyphenoxyphthalonitrile)}phthalocyaninatocobalt(ii)] (). The novel compounds have been characterized by elemental analysis, IR, UV-Vis and MALDI-TOF mass spectroscopy. Gas sensing capability of the spin coated film of and were studied using amperometric technique at various temperatures. For a better understanding of the interaction of and films with organic compounds, two different groups of compounds (aromatics and alcohols) were selected as test analytes. It was observed that the operating temperature had a considerable effect on the gas sensing performance of the sensors investigated. The experimental results show that film offers a promising perspective as a sensing material for the detection of relatively low aromatic vapours even at room temperature. This suggests that aromatics might be distinguished from alcohols. The obtained data were analysed using two different adsorption kinetic models: the pseudo first order equation and Elovich equation to determine the best fit equation for the adsorption of toluene vapor onto and films. The first-order equation was the best of the various kinetic models studied to describe the adsorption kinetic of toluene on Pc films at higher concentrations, as evidenced by the highest correlation coefficients. In addition, it was observed that Elovich equation generates a straight line that best fit to the data of adsorption of lower concentrations of toluene.

  2. One-Pot Synthesis of GeAs Ultrafine Particles from Coal Fly Ash by Vacuum Dynamic Flash Reduction and Inert Gas Condensation.

    Science.gov (United States)

    Zhang, Lingen; Xu, Zhenming

    2017-06-16

    Ge-monopnictides (GeAs) plays critical role in high-tech industry, especially in the field of advanced optical devices and infrared. As a secondary material, coal fly ash could be further recycled to retrieve germanium and prepare GeAs material with high added values. Hence, the aim of this paper is to propose a one-pot synthesis that uses vacuum flash reduction and inert-gas consolidation method to prepare GeAs ultrafine particles. Germanium in coal fly ash can be successfully recycled; simultaneously, GeAs ultrafine particles were prepared. Separation principle and feasibility of this process was discussed. Temperature, carrier gas flow rate and system pressure were the major factors on formation, morphology and distribution of particle size of GeAs ultrafine particles. A three steps synthetic mechanism was clarified, namely, thermal rupture of coal fly ash and release of GeO2 and As2O3, the gas-solid phase reaction of GeO2, As2O3 and coke to generate metallic Ge and As in vacuum flash reduction. Meantime, GeAs were produced in the gas phase reaction. Finally, GeAs ultrafine particles were obtained by carrier gas condensation. In short, this research developed a practical and environment-friendly one-pot synthesis to recycle germanium in coal fly ash and prepare GeAs ultrafine particles with high added values.

  3. Improved sensitivity and selectivity of pristine zinc oxide nanostructures to H2S gas: Detailed study on the synthesis reaction time

    Science.gov (United States)

    Motaung, David E.; Mhlongo, Gugu H.; Bolokang, Amogelang S.; Dhonge, Baban P.; Swart, Hendrik C.; Sinha Ray, Suprakas

    2016-11-01

    The gas sensing properties of ZnO nanostructures synthesized at various reaction times are reported in this study. The response of ZnO nanostructures to H2, NH3, H2S and NO2 gases was investigated at different operating temperatures and gas concentrations. Surface morphology analyses showed that the geometry of the nanostructures transforms with the synthesis reaction time. Topography analyses demonstrated a surface roughness of approximately 68.25, 70.31, 74.75 nm for the samples synthesized for 24, 48 and 72 h, respectively. The dependence of the morphology on the H2, NH3, NO2 and H2S gas sensing performance was observed. The alteration of the nanostructures diameter/geometry demonstrated a change in both the magnitude and temperature of the maximum sensor response. The 72 h ZnO sensing material revealed improved response and higher sensitivity and selectivity to H2S gas, while the 24 h sensing material revealed enhanced response and selectivity to NO2 gas at 300 °C. Moreover, the 72 h sensing material exhibited a higher sensitivity of 144.22 ppm-1 at 300 °C. These findings disclosed that by varying the synthesis reaction time, the sensing properties, such as the response, sensitivity and selectivity of the ZnO nanostructures could be tuned.

  4. An innovative catalyst system for slurry-phase Fischer-Tropsch synthesis: Cobalt plus a water-gas-shift catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Satterfield, C.N.; Yates, I.C.; Chanenchuk, C.

    1991-07-01

    The feasibility of using a mechanical mixture of a Co/MgO/SiO{sub 2} Fischer-Tropsch catalyst and a Cu-ZnO/Al{sub 2}O{sub 3} water-gas-shift (WGS) catalyst for hydrocarbon synthesis in a slurry reactor has been established. Such a mixture can combine the superior product distribution from cobalt with the high activity for the WGS reaction characteristic of iron. Weight ratios of Co/MgO/SiO{sub 2} to Cu-ZnO/Al{sub 2}O{sub 3} of 0.27 and 0.51 for the two catalysts were studied at 240{degrees}C, 0.79 MPa, and in situ H{sub 2}/CO ratios between 0.8 and 3.0. Each catalyst mixture showed stable Fischer-Tropsch activity for about 400 hours-on-stream at a level comparable to the cobalt catalyst operating alone. The Cu-ZnO/Al{sub 2}O{sub 3} catalyst exhibited a very slow loss of activity under these conditions, but when operated alone it was stable in a slurry reactor at 200--220{degrees}C, 0.79--1.48 MPa, and H{sub 2}/CO in situ ratios between 1.0 and 2.0. The presence of the water-gas-shift catalyst did not affect the long-term stability of the primary Fischer-Tropsch selectivity, but did increase the extent of secondary reactions, such as l-alkene hydrogenation and isomerization.

  5. Methane Oxidation to Synthesis Gas Using Lattice Oxygen of La1-xSrxMO3-λ(M = Fe, Mn) Perovskite Oxides Instead of Molecular Oxygen

    Institute of Scientific and Technical Information of China (English)

    LiRanjia; YuChangchun; ZhuGuangrong; ShenShikong

    2005-01-01

    In this paper, the partial oxidation of methane to synthesis gas using lattice oxygen of La1-xSrxMO3-λ(M=Fe,Mn) perovskite oxides instead of molecular oxygen was investigated. The redox circulation between 11% O2/Ar flow and 11% CH4/He flow at 900℃ shows that methane can be oxidized to CO and H2, with a selectivity of over 90.7% using the lattice oxygen of La1-xSrxFeO3-λ(x≤0.2) perovskite oxides in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of La1-xSrxFeO3-λ(x≤0.2) perovskite oxides instead of molecular oxygen to react with methane to synthesis gas in the redox mode.

  6. Isobutanol-methanol mixtures from synthesis gas. Quarterly report, July 1 - September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, E.

    1996-12-01

    A series of CuMgCeO{sub x} catalysts have been prepared by coprecipitating the corresponding metal nitrates with a mixed solution of potassium carbonate and potassium hydroxide. The bulk composition of the catalyst has been measured by atomic absorption (AA) analysis and the Cu dispersion has been determined by N{sub 2}O titration at 90 {degrees}C. CeO{sub x} does not contribute to the measured copper dispersion in K-CuO{sub 0.5}Mg{sub 5}CeO{sub x} samples and the high dispersion value indeed reflects the presence of Cu metal small crystallites. Kinetic studies of methanol and propionaldehyde coupling reactions on K-Cu/MgO/CeO{sub 2} and MgO/CeO{sub 2} catalysts indicate that Cu enhances the rates of alcohol dehydrogenation. High-pressure isobutanol synthesis from CO/H{sub 2} has been studied on CuO{sub 0.5}Mg{sub 5}O{sub x} catalysts at 593 K and 4.5 MPa. CuO{sub 0.5}Mg{sub 5}O{sub x} catalysts show high hydrocarbon and low isobutanol selectivities compared to K-CuO{sub 0.5}Mg{sub 5}CeO{sub x}, suggesting the presence of residual acidity in CuO{sub 0.5}Mg{sub 5}O{sub x}.

  7. Design of Gas-phase Synthesis of Core-Shell Particles by Computational Fluid - Aerosol Dynamics.

    Science.gov (United States)

    Buesser, B; Pratsinis, S E

    2011-11-01

    Core-shell particles preserve the bulk properties (e.g. magnetic, optical) of the core while its surface is modified by a shell material. Continuous aerosol coating of core TiO2 nanoparticles with nanothin silicon dioxide shells by jet injection of hexamethyldisiloxane precursor vapor downstream of titania particle formation is elucidated by combining computational fluid and aerosol dynamics. The effect of inlet coating vapor concentration and mixing intensity on product shell thickness distribution is presented. Rapid mixing of the core aerosol with the shell precursor vapor facilitates efficient synthesis of hermetically coated core-shell nanoparticles. The predicted extent of hermetic coating shells is compared to the measured photocatalytic oxidation of isopropanol by such particles as hermetic SiO2 shells prevent the photocatalytic activity of titania. Finally the performance of a simpler, plug-flow coating model is assessed by comparisons to the present detailed CFD model in terms of coating efficiency and silica average shell thickness and texture.

  8. Synthesis of tetrakis (hydroxymethyl) phosphonium chloride by high-concentration phosphine in industrial off-gas.

    Science.gov (United States)

    Huang, Xiaofeng; Wei, Yanfu; Zhou, Tao; Qin, Yangsong; Gao, Kunyang; Ding, Xinyue

    2013-01-01

    With increasing consumption of phosphate rock and acceleration of global phosphate production, the shortage of phosphate resources is increasing with the development and utilization of phosphate. China's Ministry of Land and Resources has classified phosphate as a mineral that cannot meet China's growing demand for phosphate rock in 2010. The phosphorus chemical industry is one of the important economic pillars for Yunnan province. Yellow phosphorus production in enterprises has led to a significant increase in the amount of phosphorus sludge. This paper focuses on phosphine generation in the process of phosphoric sludge utilization, where the flame retardant tetrakis (hydroxymethyl) phosphonium chloride (THPC) is synthesized by high concentrations of phosphine. The optimum conditions are determined at a space velocity of 150 h(-1), a reaction temperature of 60 °C, 0.75 g of catalyst, and a ratio of raw materials of 4:1. Because of the catalytic oxidation of copper chloride (CuCl2), the synthesis of THPC was accelerated significantly. In conclusion, THPC can be efficiently synthesized under optimal conditions and with CuCl2 as a catalyst.

  9. Analysis of Carbon Monoxide in Blood

    Science.gov (United States)

    Huddle, Benjamin P.; Stephens, Joseph C.

    2003-04-01

    Forensic tests used to perform the qualitative and quantitative analyses of carbon monoxide in blood are described. The qualitative test uses the diffusion of CO, which is released from blood by reaction with H2SO4, into a PdCl2 solution in a Conway cell and the resultant formation of a palladium mirror. The quantitative analysis is based on the absorption of visible light by carboxyhemoglobin at 541 nm and reduced hemoglobin at 555 nm. Both procedures are suitable for undergraduate chemistry experiments.

  10. Synthesis of carbon nanotubes by CCVD of natural gas using hydrotreating catalysts

    Directory of Open Access Journals (Sweden)

    Ahmed E. Awadallah

    2012-12-01

    Full Text Available Carbon nanotubes have been successfully synthesized using the catalytic chemical vapor deposition (CCVD technique over typical refining hydrotreating catalysts (hydrodesulfurization and hydrodenitrogenation containing Ni–Mo and Co–Mo supported on Al2O3 catalysts at 700°C in a fixed bed horizontal reactor using natural gas as a carbon source. The catalysts and the as-grown CNTs were characterized by transmission electron microscopy, HRTEM, X-ray diffraction patterns, EDX and TGA–DTG. The obtained data clarified that the Ni–Mo catalyst gives higher yield, higher purity and selectivity for CNTs compared to Co–Mo catalyst. XRD, TEM and TGA reveal also that the Ni–Mo catalyst produces mostly CNTs with different diameters whereas the Co–Mo catalyst produces largely amorphous carbon.

  11. Gas phase synthesis of core-shell Fe@FeO x magnetic nanoparticles into fluids

    Science.gov (United States)

    Aktas, Sitki; Thornton, Stuart C.; Binns, Chris; Denby, Phil

    2016-12-01

    Sorbitol, short chain molecules, have been used to stabilise of Fe@FeO x nanoparticles produced in the gas phase under the ultra-high vacuum (UHV) conditions. The sorbitol coated Fe@FeO x nanoparticles produced by our method have a narrow size distribution with a hydrodynamic diameter of 35 nm after NaOH is added to the solution. Magnetisation measurement shows that the magnetic nanoparticles are superparamagnetic at 100 K and demonstrate hysteresis at 5 K with an anisotropy constant of 5.31 × 104 J/m3 (similar to bulk iron). Also, it is shown that sorbitol is only suitable for stabilising the Fe@FeO x suspensions, and it does not prevent further oxidation of the metallic Fe core. According to MRI measurement, the nanoparticles have a high transverse relaxation rate of 425 mM-1 s-1.

  12. Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations.

    Science.gov (United States)

    Yasin, Muhammad; Jeong, Yeseul; Park, Shinyoung; Jeong, Jiyeong; Lee, Eun Yeol; Lovitt, Robert W; Kim, Byung Hong; Lee, Jinwon; Chang, In Seop

    2015-02-01

    Microbial conversion of syngas to energy-dense biofuels and valuable chemicals is a potential technology for the efficient utilization of fossils (e.g., coal) and renewable resources (e.g., lignocellulosic biomass) in an environmentally friendly manner. However, gas-liquid mass transfer and kinetic limitations are still major constraints that limit the widespread adoption and successful commercialization of the technology. This review paper provides rationales for syngas bioconversion and summarizes the reaction limited conditions along with the possible strategies to overcome these challenges. Mass transfer and economic performances of various reactor configurations are compared, and an ideal case for optimum bioreactor operation is presented. Overall, the challenges with the bioprocessing steps are highlighted, and potential solutions are suggested. Future research directions are provided and a conceptual design for a membrane-based syngas biorefinery is proposed.

  13. The Effects of the Location of Au Additives on Combustion-generated SnO2 Nanopowders for CO Gas Sensing

    OpenAIRE

    Bakrania, Smitesh D.; Margaret S. Wooldridge

    2010-01-01

    The current work presents the results of an experimental study of the effects of the location of gold additives on the performance of combustion-generated tin dioxide (SnO2) nanopowders in solid state gas sensors. The time response and sensor response to 500 ppm carbon monoxide is reported for a range of gold additive/SnO2 film architectures including the use of colloidal, sputtered, and combustion-generated Au additives. The opportunities afforded by combustion synthesis to affect the SnO2/a...

  14. Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/steam-mixed reforming and Fe-based Fischer-Tropsch synthesis.

    Science.gov (United States)

    Zhang, Chundong; Jun, Ki-Won; Ha, Kyoung-Su; Lee, Yun-Jo; Kang, Seok Chang

    2014-07-15

    Two process models for carbon dioxide utilized gas-to-liquids (GTL) process (CUGP) mainly producing light olefins and Fischer-Tropsch (F-T) synthetic oils were developed by Aspen Plus software. Both models are mainly composed of a reforming unit, an F-T synthesis unit and a recycle unit, while the main difference is the feeding point of fresh CO2. In the reforming unit, CO2 reforming and steam reforming of methane are combined together to produce syngas in flexible composition. Meanwhile, CO2 hydrogenation is conducted via reverse water gas shift on the Fe-based catalysts in the F-T synthesis unit to produce hydrocarbons. After F-T synthesis, the unreacted syngas is recycled to F-T synthesis and reforming units to enhance process efficiency. From the simulation results, it was found that the carbon efficiencies of both CUGP options were successfully improved, and total CO2 emissions were significantly reduced, compared with the conventional GTL processes. The process efficiency was sensitive to recycle ratio and more recycle seemed to be beneficial for improving process efficiency and reducing CO2 emission. However, the process efficiency was rather insensitive to split ratio (recycle to reforming unit/total recycle), and the optimum split ratio was determined to be zero.

  15. Novel Approaches to the Production of Higher Alcohols From Synthesis Gas. Quarterly report, January 1 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, George W

    1997-02-13

    Effort during this quarter was devoted to three areas: 1) analyzing the data from earlier runs with "zinc chromite"catalyst and three different slurry liquids: decahydronaphthalene (Decalin®, DHN), tetrahydronaphthalene (tetralin, THN) and tetrahydroquinoline (THQ); 2) analyzing newly-obtained data from earlier thermal stability tests on DHN and THN, and 3) carrying out a thermal stability test on THQ. Both the activity and selectivity of "zinc chromite" catalyst depended on the slurry liquid that was used. The catalyst activity for methanol synthesis was in the order: THQ > DHN > THN. Despite the basic nature of THQ, it exhibited the highest dimethyl ether (DME) production rates of the three liquids. Gas chromatography/mass spectroscopy (GC/MS) analyses of samples of THN and DHN were taken at the end of standard thermal stability tests at 375°C. With both liquids, the only measurable compositional change was a minor amount of isomerization. Analysis of a sample of THN after a thermal stability test at 425°C showed a small reduction in molecular weight, and a significant amount of opening of the naphthenic ring. Preliminary data from the tehrmal stability test of THQ showed that this molecule is more stable than DHN, but less stable than THN.

  16. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope.

    Science.gov (United States)

    Wu, H M; Stern, L A; Chen, J H; Huth, M; Schwalb, C H; Winhold, M; Porrati, F; Gonzalez, C M; Timilsina, R; Rack, P D

    2013-05-03

    The ion beam induced nanoscale synthesis of platinum nanowires using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated using helium and neon ion beams in the gas field ion microscope. The He(+) beam induced deposition resembles material deposited by electron beam induced deposition with very small platinum nanocrystallites suspended in a carbonaceous matrix. The He(+) deposited material composition was estimated to be 16% Pt in a matrix of amorphous carbon with a large room-temperature resistivity (∼3.5 × 10(4)-2.2 × 10(5) μΩ cm) and temperature-dependent transport behavior consistent with a granular material in the weak intergrain tunnel coupling regime. The Ne(+) deposited material has comparable composition (17%), however a much lower room-temperature resistivity (∼600-3.0 × 10(3) μΩ cm) and temperature-dependent electrical behavior representative of strong intergrain coupling. The Ne(+) deposited nanostructure has larger platinum nanoparticles and is rationalized via Monte Carlo ion-solid simulations which show that the neon energy density deposited during growth is much larger due to the smaller ion range and is dominated by nuclear stopping relative to helium which has a larger range and is dominated by electronic stopping.

  17. Lanthanum oxide promoted rhodium/titania and rhodium-platinum/titania catalysts for alcohol formation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Bond, G.C.; Richards, D.G.

    1986-12-15

    TiO/sub 2/-supported Rh and Rh-Pt catalysts have been studied for the selective formation of oxygenates from synthesis gas. The addition of La/sub 2/O/sub 3/ as a promoter significantly increased the C/sub 2/H/sub 5/OH selectivities and formation rates. Pt addition increased the overall activity and in combination with La/sub 2/O/sub 3/ led to higher alcohol selectivities of 25% compared with 6% for an unpromoted Rh catalyst. A pronounced induction period was observed for CH/sub 3/OH and C/sub 2/H/sub 5/OH formation, attributed to changes in the nature of the catalytically active sites. A simple theoretical model is used to illustrate the parallel trends in C/sub 2/H/sub 5/OH and hydrocarbon formation after the induction period. Temperature-programmed reduction showed that the La/sub 2/O/sub 3/ increased the stability of Rh oxide. The main role of La/sub 2/O/sub 3/ appears to be promotion of the formation of the C/sub 2/H/sub 5/OH precursor, while Pt increased the rate of hydrogenation. 26 refs., 8 figs., 3 tabs.

  18. Solvothermal, chloroalkoxide-based synthesis of monoclinic WO(3) quantum dots and gas-sensing enhancement by surface oxygen vacancies.

    Science.gov (United States)

    Epifani, Mauro; Comini, Elisabetta; Díaz, Raül; Andreu, Teresa; Genç, Aziz; Arbiol, Jordi; Siciliano, Pietro; Faglia, Guido; Morante, Joan R

    2014-10-01

    We report for the first time the synthesis of monoclinic WO3 quantum dots. A solvothermal processing at 250 °C in oleic acid of W chloroalkoxide solutions was employed. It was shown that the bulk monoclinic crystallographic phase is the stable one even for the nanosized regime (mean size 4 nm). The nanocrystals were characterized by X-ray diffraction, High resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-vis, Fourier transform infrared and Raman spectroscopy. It was concluded that they were constituted by a core of monoclinic WO3, surface covered by unstable W(V) species, slowly oxidized upon standing in room conditions. The WO3 nanocrystals could be easily processed to prepare gas-sensing devices, without any phase transition up to at least 500 °C. The devices displayed remarkable response to both oxidizing (nitrogen dioxide) and reducing (ethanol) gases in concentrations ranging from 1 to 5 ppm and from 100 to 500 ppm, at low operating temperatures of 100 and 200 °C, respectively. The analysis of the electrical data showed that the nanocrystals were characterized by reduced surfaces, which enhanced both nitrogen dioxide adsorption and oxygen ionosorption, the latter resulting in enhanced ethanol decomposition kinetics.

  19. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis.

    Science.gov (United States)

    Pavlíková, Daniela; Pavlík, Milan; Procházková, Dagmar; Zemanová, Veronika; Hnilička, František; Wilhelmová, Naďa

    2014-04-15

    Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence.

  20. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    Science.gov (United States)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).