WorldWideScience

Sample records for monoxide hydrogen cyanide

  1. On Estimation of Contamination from Hydrogen Cyanide in Carbon Monoxide Line-intensity Mapping

    Science.gov (United States)

    Chung, Dongwoo T.; Li, Tony Y.; Viero, Marco P.; Church, Sarah E.; Wechsler, Risa H.

    2017-09-01

    Line-intensity mapping surveys probe large-scale structure through spatial variations in molecular line emission from a population of unresolved cosmological sources. Future such surveys of carbon monoxide line emission, specifically the CO(1-0) line, face potential contamination from a disjointed population of sources emitting in a hydrogen cyanide emission line, HCN(1-0). This paper explores the potential range of the strength of HCN emission and its effect on the CO auto power spectrum, using simulations with an empirical model of the CO/HCN–halo connection. We find that effects on the observed CO power spectrum depend on modeling assumptions but are very small for our fiducial model, which is based on current understanding of the galaxy–halo connection. Given the fiducial model, we expect the bias in overall CO detection significance due to HCN to be less than 1%.

  2. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda;

    2010-01-01

    Hydrogen cyanide (HCN) and carbon monoxide (CO) may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN) intoxication results in cytotoxic hypoxia leading to organ dysfunction...... and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood....

  3. [Levels of carbon monoxide and hydrogen cyanide in blood of fire victims in the autopsy material of the Department of Forensic Medicine, Medical University of Białystok].

    Science.gov (United States)

    Wardaszka, Zofia; Niemcunowicz-Janica, Anna; Janica, Jerzy; Koc-Zórawska, Ewa

    2005-01-01

    The authors present the results of toxicological examination of blood of fatal victims of fires in "closed" spaces. Hydrogen cyanide was present in 26 out of 64 postmortem blood samples. COHb was found in 52 cases. The hydrogen cyanide levels ranged from 0.8 to 39.2 microg/l, the COHb levels ranged from 16.0 to 85.0%. The level of hydrogen cyanide was determined by the pyrazolopyridine method modified by Nedoma, and the COHb level was determined by the Wolff method.

  4. 40 CFR 180.130 - Hydrogen Cyanide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Hydrogen Cyanide; tolerances for... § 180.130 Hydrogen Cyanide; tolerances for residues. (a) General. A tolerance for residues of the insecticide hydrogen cyanide from postharvest fumigation as a result of application of sodium cyanide is...

  5. Hydrogen cyanide polymers on comets.

    Science.gov (United States)

    Matthews, C N; Ludicky, R

    1992-01-01

    The original presence on cometary nuclei of frozen volatiles such as methane, ammonia and water makes them ideal sites for the formation and condensed-phase polymerization of hydrogen cyanide. We propose that the non-volatile black crust of comet Halley consists largely of such polymers. Dust emanating from Halley's nucleus, contributing to the coma and tail, would also arise partly from these solids. Indeed, secondary species such as CN have been widely detected, as well as HCN itself and particles consisting only of H, C and N. Our continuing investigations suggest that the yellow-orange-brown-black polymers are of two types: ladder structures with conjugated -C=N- bonds, and polyamidines readily converted by water to polypeptides. These easily formed macromolecules could be major components of the dark matter observed on the giant planets Jupiter and Saturn, as well as on outer solar system bodies such as asteroids, moons and other comets. Implications for prebiotic chemistry are profound. Primitive Earth may have been covered by HCN polymers either through cometary bombardment or by terrestrial happenings of the kind that brought about the black crust of Halley. The resulting proteinaceous matrix could have promoted the molecular interactions leading to the emergence of life.

  6. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Interagency Science Discussion Draft)

    Science.gov (United States)

    EPA is releasing the draft report, Toxicological Review of Hydrogen Cyanide (HCN) and Cyanide Salts, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS As...

  7. IRIS Toxicological Review of Hydrogen Cyanide (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hydrogen cyanide and cyanide salts that will appear on the Integrated Risk Information System (IRIS) database.

  8. IRIS Toxicological Review of Hydrogen Cyanide (External Review Draft)

    Science.gov (United States)

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of hydrogen cyanide and cyanide salts that will appear on the Integrated Risk Information System (IRIS) database.

  9. Analysis of hydrogen cyanide in air in a case of attempted cyanide poisoning.

    Science.gov (United States)

    Magnusson, R; Nyholm, S; Åstot, C

    2012-10-10

    A 32-year-old man attempted to poison his ex-girlfriend with hydrogen cyanide by hiding the pesticide Uragan D2 in her car. During the police investigation, chemical analysis of the air inside the car was performed. Hydrogen cyanide was detected through on-site air analysis using a portable Fourier transform infrared (FTIR) spectroscopy gas analyzer and colorimetric gas detection tubes. Furthermore, impinger air-sampling was performed for off-site sample preparation and analysis by gas chromatography-mass spectrometry (GC-MS). All three independent techniques demonstrated the presence of hydrogen cyanide, at concentrations of 14-20 ppm. Owing to the high volatility of hydrogen cyanide, the temperature and the time since exposure have a substantial effect on the likelihood of detecting hydrogen cyanide at a crime scene. The prevailing conditions (closed space, low temperature) must have supported the preservation of HCN in the car thus enabling the identification even though the analysis was performed several days after the hydrogen cyanide source was removed. This paper demonstrates the applicability of combining on-site FTIR measurements and off-site GC-MS analysis of a crime scene in order to ensure fast detection as well as unambiguous identification for forensic purposes of hydrogen cyanide in air. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Hydrogen Cyanide and Cyanide Salts: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  11. DETOXIFICATION OF CYANIDE IN GOLD PROCESSING WASTEWATER BY HYDROGEN PEROXIDE

    Directory of Open Access Journals (Sweden)

    A. Khodadadi, M. Abdolahi and P. Teimoury

    2005-07-01

    Full Text Available Utilizing cyanide compounds in mining and chemical industry is one of the most important environmental issues due to the acute toxic properties of many cyanide compounds to humans and aquatic life. Cyanide tends to react readily with most other chemical elements, producing a wide variety of toxic, cyanide related compounds. This research was aimed at investigating a feasible and economical technique for the detoxification of cyanide from the tailing effluent of Muteh gold mine in Isfahan, Iran. In this research cyanide detoxification was achieved through the oxidation of cyanide by hydrogen peroxide using various hydrogen peroxide solutions at pH levels between 7-13 and temperatures between 12-65 °C using copper sulfate as a catalyst. The optimum pH and dose of hydrogen peroxide for complete cyanide removal in the presence of 30 mg/L copper sulfate as a catalyst were determined as 9.7 and 9.98 g/L, respectively. At high temperatures > 35°C, cyanide was completely removed perfectly at constant pH = 9.7 which was mainly due to cyanide evaporation in the form of HCN.

  12. Hydrogen cyanide exhaust emissions from in-use motor vehicles.

    Science.gov (United States)

    Baum, Marc M; Moss, John A; Pastel, Stephen H; Poskrebyshev, Gregory A

    2007-02-01

    Motor vehicle exhaust emissions are known to contain hydrogen cyanide (HCN), but emission rate data are scarce and, in the case of idling vehicles, date back over 20 years. For the first time, vehicular HCN exhaust emissions from a modern, in-use fleet at idle have been measured. The 14 tested light duty motor vehicles were operating at idle as these conditions are associated with the highest risk exposure scenarios (i.e., enclosed spaces). Vehicular HCN was detected in 89% of the sampled exhaust streams and did not correlate with instantaneous air-fuel-ratio or with any single, coemitted pollutant. However, a moderate correlation between HCN emissions and the product of carbon monoxide and nitric oxide emissions was observed under cold-start conditions. Fleet average, cold-start, undiluted HCN emissions were 105 +/- 97 ppbV (maximum: 278 ppbV), whereas corresponding emissions from vehicles operating under stabilized conditions were 79 +/- 71 ppbV (maximum: 245 ppbV); mean idle fleet HCN emission rates were 39 +/- 35 and 21 +/- 18 microg-min(-1) for cold-start and stabilized vehicles, respectively. The significance of these results is discussed in terms of HCN emissions inventories in the South Coast Air Basin of California and of health risks due to exposure to vehicular HCN.

  13. Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes

    Science.gov (United States)

    Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa

    2017-04-01

    Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.

  14. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United States...

  15. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed in...

  16. Swedish forensic data 1992-2009 suggest hydrogen cyanide as an important cause of death in fire victims.

    Science.gov (United States)

    Stamyr, Kristin; Thelander, Gunilla; Ernstgård, Lena; Ahlner, Johan; Johanson, Gunnar

    2012-02-01

    Between 60 and 80% of all deaths related to fire are attributed to toxic fumes. Carbon monoxide (CO) is commonly thought to be the major cause. However, hydrogen cyanide (HCN) is also formed. Still, the exact contribution of HCN to fire-related fatalities is unknown. The aim of the study was to investigate the impact of HCN in relation to CO as a cause of death in fire victims. Data on carboxyhemoglobin (COHb) and blood cyanide from deceased fire victims in the period 1992-2009 were collected from two Swedish nationwide forensic databases (ToxBase and RättsBase). The databases contain data on COHb and/or cyanide from 2303 fire victims, whereof 816 on both COHb and cyanide. Nonparametric statistical tests were used. Seventeen percent of the victims had lethal or life-threatening blood cyanide levels (>1 µg/g) and 32% had lethal COHb levels (>50% COHb). Over 31% had cyanide levels above 0.5 µg/g, an indication of significant HCN exposure. The percentages may be underestimates, as cyanide is quickly eliminated in blood also after death. Our results support the notion that HCN contributes more to the cause of death among fire victims than previously thought.

  17. The oxidation of hydrogen cyanide and related chemistry

    DEFF Research Database (Denmark)

    Dagaut, Philippe; Glarborg, Peter; Alzueta, Maria U.

    2008-01-01

    For modeling the formation of nitrogen oxides in combustion via both the prompt-NO and the fuel-NO mechanisms, as well as for modeling the reduction of nitrogen oxides via reburning, a good knowledge of the kinetics of oxidation of hydrogen cyanide (HCN) is required. The formation routes to HCN a...

  18. Hydrogen cyanide polymers, comets and the origin of life.

    Science.gov (United States)

    Matthews, Clifford N; Minard, Robert D

    2006-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in colour from yellow to orange to brown to black--could be major components of the dark matter observed on many bodies of the outer solar system including asteroids, moons, planets and, especially, comets. The presence on cometary nuclei of frozen volatiles such as methane, ammonia and water subjected to high energy sources makes them attractive sites for the ready formation and condensed-phase polymerization of hydrogen cyanide. This could account for the dark crust observed on Comet Halley in 1986 by the Vega and Giotto missions. Dust emanating from its nucleus would arise partly from HCN polymers as suggested by the Giotto detection of free hydrogen cyanide, CN radicals, solid particles consisting only of H, C and N, or only of H, C, N, O, and nitrogen-containing organic compounds. Further evidence for cometary HCN polymers could be expected from in situ analysis of the ejected material from Comet Tempel 1 after collision with the impactor probe from the two-stage Deep Impact mission on July 4, 2005. Even more revealing will be actual samples of dust collected from the coma of Comet Wild 2 by the Stardust mission, due to return to Earth in January 2006 for analyses which we have predicted will detect these polymers and related compounds. In situ results have already shown that nitriles and polymers of hydrogen cyanide are probable components of the cometary dust that struck the Cometary and Interstellar Dust Analyzer of the Stardust spacecraft as it approached Comet Wild 2 on January 2, 2004. Preliminary evidence (January 2005) obtained by the Huygens probe of the ongoing Cassini-Huygens mission to Saturn and its satellites indicates the presence of nitrogen-containing organic compounds in the refractory organic cores of the aerosols that give rise to the orange haze high in the atmosphere of Titan, Saturn's largest moon. Our continuing investigations suggest that HCN polymers are basically of two types

  19. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...... alternative route of oxidation for cyanides. However, in previous modeling, it has been required to omit the HNC subset partly or fully in the reaction mechanisms to obtain satisfactory predictions. In the present work, we re-examine the chemistry of HNC and its role in combustion nitrogen chemistry. The HNC...

  20. Effect of Hyperbaric Oxygen Therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    Directory of Open Access Journals (Sweden)

    Hilsted Linda

    2010-06-01

    Full Text Available Abstract Background Hydrogen cyanide (HCN and carbon monoxide (CO may be important components of smoke from fire accidents. Accordingly, patients admitted to hospital from fire accidents may have been exposed to both HCN and CO. Cyanide (CN intoxication results in cytotoxic hypoxia leading to organ dysfunction and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure and animal experiments have shown that in rats exposed to CN intoxication, HBO can increase the concentration of CN in whole blood. Objective The purpose of the present study was to determine whole blood CN concentrations in fire victims before and after HBO treatment. Materials and methods The patients included were those admitted to the hospital because of CO intoxication, either as fire victims with smoke inhalation injuries or from other exposures to CO. In thirty-seven of these patients we measured CN concentrations in blood samples, using a Conway/microdiffusion technique, before and after HBO. The blood samples consisted of the remaining 2 mL from the arterial blood gas analysis. CN concentration in blood from fire victims was compared to 12 patients from non-fire accidents but otherwise also exposed to CO intoxication. Results The mean WB-CN concentration before patients received HBO did not differ significantly between the two groups of patients (p = 0.42. The difference between WB-CN before and after HBO did not differ significantly between the two groups of patients (p = 0.7. Lactate in plasma before and after did not differ significantly between the two groups of patients. Twelve of the 25 fire patients and one of the non-fire patients had been given a dose of hydroxycobalamin before HBO. Discussion and Conclusion CN

  1. Hydrogen, carbon monoxide, and methane in the marine environment

    OpenAIRE

    Bullister, John Logan

    1980-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): The horizontal and vertical distribution of three dissolved trace gases, namely molecular hydrogen, carbon monoxide, and methane, was measured in coastal and oceanic areas. Atmospheric concentrations of these gases were measured both at locations influenced by nearby human activity, and in areas far removed from these inputs.

  2. Material processing with hydrogen and carbon monoxide on Mars

    Science.gov (United States)

    Hepp, Aloysius F.; Landis, Geoffrey A.; Linne, Diane L.

    1991-01-01

    Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.

  3. Synthesis of hydrogen cyanide under simulated hydrothermal conditions

    Science.gov (United States)

    Pinedo-González, Paulina

    Nitrogen is a fundamental element for life, where is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g., ATP) and information storage (RNA and DNA) biomolecules. Atmospheric and planetary models suggest that nitrogen was abundant in the early atmospheres of Earth as dinitrogen (N2 ), an inert gas under normal atmospheric conditions. To be available for prebiotic synthesis it must be converted into hydrogen cyanide (HCN), ammonia (NH3 ) and/or nitric oxide (NO), in a process referred to as nitrogen fixation. Due to the strength of the triple bond in N2 , nitrogen fixation, while thermodynamically favored is kinetically restricted. In a reducing atmosphere dominated by CH4 -N2 , thunderstorm lightning efficiently produces HCN and NH3 (Stribling and Miller, 1987). Nevertheless, photochemical and geochemical constraints strongly suggest that the early atmosphere was weakly reducing, dominated by CO2 and N2 with traces of CH4 , CO, and H2 (Kasting, 1993). Under these conditions, HCN is no longer synthesized in the lightning channel and instead NO is formed (Navarro-Gonźlez, et al., 2001). In volcanic plumes, where magmatic gases a were more reducing than in the atmosphere, NO can also be formed by the lava heat (Mather et al., 2004) or volcanic lightning (Navarro-Gonźlez et al., 1998). Surprisingly, dinitrogen can be a reduced to NH3 in hydrothermal systems (Brandes et al., 1998), but the formation of HCN and its derivates were not investigated. The present work explores the possibility of the formation of HCN as well as other nitrile derivatives catalyzed by mineral surfaces in hydrothermal vents. To simulate a hydrothermal atmosphere, the experiments were carried out in a stainless steel Parr R minireactor with a 0.1 M NH4 HCO3 solution (200 ml) with or without a mineral surface exposed at 1 bar at temperatures ranging from 100 to 375° C. Different mineral matrices are been investigated. Our preliminary results

  4. A new detection tube to detect hydrogen cyanide in the air

    Directory of Open Access Journals (Sweden)

    Pitschmann Vladimír

    2014-01-01

    Full Text Available A new simple and sensitive detection tube to detect hydrogen cyanide in the air has been developed. The detection tube is based on the reaction of hydrogen cyanide with 4-nitrobenzil to form a violet colored product. The reaction takes place on the carrier made of a composite material which was prepared by pelletization of a mixture of microcrystalline cellulose and MgO. The detection tube can detect hydrogen cyanide in the air in the range of concentrations 0.1-100 mg.m-3 based on visual evaluation (by naked eye of the change of indication layer coloring and comparison with etalon. The detection limit is 0.05 mg.m-3. The detection tube is highly selective and sufficiently stable during storage.

  5. Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions.

    Science.gov (United States)

    Devi, K Kanchana; Seth, Nidhi; Kothamasi, Shalini; Kothamasi, David

    2007-01-01

    The subterranean termite Odontotermes obesus is an important pest of the Indian subcontinent, causing extensive damage to major agricultural crops and forest plantation trees. Control of termites by strategies employing their parasites has limitations because they have evolved a complex social structure, immune responses, and adaptive behavior toward pathogen-infected individuals. Nonparasitic rhizobacteria that produce harmful metabolites might facilitate the biocontrol of termites. In the present investigation, three different species of hydrogen cyanide-producing rhizobacteria were tested for their potential to kill O. obesus. The three bacterial species were found to be effective in killing the termites under in vitro conditions.

  6. Kinetics of Natural Detoxification of Hydrogen Cyanide Contained In Retted Cassava Roots

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available This work presents the kinetics of natural detoxification of hydrogen cyanide contained in retted cassava roots. Retting is traditional fermentation of cassava, performed to soften the roots. During retting, cyanide diffuses into water used for the retting. The fresh cassava roots (bitter and sweet varieties used for this experiment were separately retted at ambient 0 temperature of 30 C. The cyanide content and pH were monitored daily. From the analysis of the experimental results, a first order consecutive rate equation is an adequate tool for explaining the mechanism of HCN reduction (or decay in retted cassava roots. The detoxification constants for the bound cyanide in the bitter and sweet cassava roots were 0.378/day and 0.438/day respectively, while that of the free hydrogen cyanide were 0.63/day and 0.74/day for the bitter and sweet varieties respectively. Cassava tubers from different species cannot be fermented with the same retting condition unless they have same or close functional properties.

  7. Double hydrogen bond mediating self-assembly structure of cyanides on metal surface

    Science.gov (United States)

    Wang, Zhongping; Xiang, Feifei; Lu, Yan; Wei, Sheng; Li, Chao; Liu, Xiaoqing; Liu, Lacheng; Wang, Li

    2016-10-01

    Cyanides with different numbers of -C≡N, 1,2,4,5-Tetracyanobenzene (TCNB) and 2,3-Dicyanonaphthalene (2,3-DCN) deposited on Ag(111) and Ag(110) surfaces, have been investigated by room temperature scanning tunneling microscopy (RTSTM), respectively. High resolution STM images show double hydrogen bond is the main driving force to form variety of self-assembly structures, indicating the double hydrogen bond affects the electron distribution of cyanides and leads to a more stable structure with lower energy. In addition, the difference between Ag(111) and Ag(110) surfaces in their lattice structure induces a bigger assembly structural change of 2,3-DCN than that of 1,2,4,5-TCNB, which confirms the fact that the opposite double hydrogen bond formation formed by 1,2,4,5-TCNB is more stable than the neighboring double hydrogen bond formation formed by molecule 2,3-DCN.

  8. A gas chromatographic instrument for measurement of hydrogen cyanide in the lower atmosphere

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2012-06-01

    Full Text Available A gas-chromatographic (GC instrument was developed for measuring hydrogen cyanide (HCN in the lower atmosphere. The main features of the instrument are (1 a cryogen-free cooler for sample dehumidification and enrichment, (2 a porous polymer PLOT column for analyte separation, (3 a flame thermionic detector (FTD for sensitive and selective detection, and (4 a dynamic dilution system for calibration. We deployed the instrument for a ∼4 month period from January–June, 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2 in rural Durham, NH. A subset of measurements made during 3–31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10–0.75 ppbv (±5%. The estimated method detection limit (MDL and accuracy were 0.021 ppbv and 15%, respectively. From 3–31 March 2010, ambient HCN mixing ratios ranged from 0.15–1.0 ppbv (±15%, with a mean value of 0.36 ± 0.16 ppbv (1σ. The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS, as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with carbon monoxide (CO, which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that

  9. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    Directory of Open Access Journals (Sweden)

    Rikke Kragh Lauridsen

    2015-09-01

    Full Text Available Lung infections with Pseudomonas aeruginosa (PA is the most common cause of morbidity and mortality in cystic fibrosis (CF patients. Due to its ready adaptation to the dehydrated mucosa of CF airways, PA infections tend to become chronic, eventually killing the patient. Hydrogen cyanide (HCN at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band at ∼2133 cm−1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS substrate can be consistently detected under different experimental conditions and up to 9 days after exposure. For detection of lower cyanide concentrations serial dilution experiments using potassium cyanide (KCN demonstrated cyanide quantification down to 1 μM in solution (corresponding to 18 ppb. Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required range.

  10. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    Science.gov (United States)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru

    2016-04-01

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.

  11. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2013-09-01

    Full Text Available A chemical ionisation mass spectrometer (CIMS was developed for measuring hydrogen cyanide (HCN from biomass burning events in Canada using I− reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere. A strong correlation between the HCN, carbon monoxide (CO and acetonitrile (CH3CN was observed, indicating the potential of HCN as a biomass burning (BB marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume-defining techniques employing CO and CH3CN measurements. The 6-sigma technique produced the highest R2 values for correlations with CO. A normalised excess mixing ratio (NEMR of 3.68 ± 0.149 pptv ppbv−1 was calculated, which is within the range quoted in previous research (Hornbrook et al., 2011. The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work, the emission total for HCN from BB was 0.92 Tg (N yr−1.

  12. Airborne hydrogen cyanide measurements using a chemical ionisation mass spectrometer for the plume identification of biomass burning forest fires

    Directory of Open Access Journals (Sweden)

    M. Le Breton

    2013-02-01

    Full Text Available A Chemical Ionisation Mass Spectrometer (CIMS was developed for measuring hydrogen cyanide (HCN from biomass burning events in Canada using I reagent ions on board the FAAM BAe-146 research aircraft during the BORTAS campaign in 2011. The ionisation scheme enabled highly sensitive measurements at 1 Hz frequency through biomass burning plumes in the troposphere.

    A strong correlation between the HCN, carbon monoxide (CO and acetonitrile (CH3CN was observed, indicating the potential of HCN as a biomass burning (BB marker. A plume was defined as being 6 standard deviations above background for the flights. This method was compared with a number of alternative plume defining techniques employing CO and CH3CN measurements. The 6 sigma technique produced the highest R2 values for correlations with CO. A Normalised Excess Mixing Ratio (NEMR of 3.76 ± 0.022 pptv ppbv−1 was calculated which is within the range quoted in previous research (Hornbrook et al., 2011. The global tropospheric model STOCHEM-CRI incorporated both the observed ratio and extreme ratios derived from other studies to generate global emission totals of HCN via biomass burning. Using the ratio derived from this work the emission total for HCN from BB was 0.92 Tg (N yr−1.

  13. Hydrogen cyanide polymers from the impact of comet P/Shoemaker-Levy 9 on Jupiter.

    Science.gov (United States)

    Matthews, C N

    1997-01-01

    Hydrogen cyanide polymers--heterogeneous solids ranging in color from yellow to orange to brown to black--may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orange-brown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to alpha-amino acids. Other polymers and multimers with ladder structures derived from HCN would also be present and might well be the source of the many nitrogen heterocycles, adenine included, detected by thermochemolytic analysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter could therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized from freshly formed HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.

  14. Limitations of the removal of cyanide from coking wastewater by ozonation and by the hydrogen peroxide-ozone process.

    Science.gov (United States)

    Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P

    2016-01-01

    The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.

  15. Characterization of Fe-Co-Mn catalysts after carbon monoxide hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, S.L.; Serbia, M.A.; Baechler, R.; Orozco, J. [Laboratorio de Cinetica y Catalisis, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101A (Venezuela); e-mail: goncor@ula.ve

    2003-07-01

    An Fe-Co-Mn catalysts series after hydrogenation of carbon monoxide has been characterized. The XRD analysis shows the magnetite as main crystalline phase after reaction, in addition of carbon and carbide phases. All these phases lead to hydrogen consumption and oxidation rate changes on Fe-Co-Mn catalysts. A phase transformation superficial diagram is analysed. (Author)

  16. Range Measurements of keV Hydrogen Ions in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Schou, Jørgen; Sørensen, H.; Andersen, H.H.

    1984-01-01

    Ranges of 1.3–3.5 keV/atom hydrogen and deuterium molecular ions have been measured by a thin-film reflection method. The technique, used here for range measurements in solid oxygen and carbon monoxide targets, is identical to the one used previously for range measurements in hydrogen and nitrogen....... The main aim was to look for phase-effects, i.e. gas-solid differences in the stopping processes. While measured ranges in solid oxygen were in agreement with known gas data, the ranges in solid carbon monoxide were up to 50% larger than those calculated from gas-stopping data. The latter result agrees...

  17. Separation of hydrogen from carbon monoxide using a hollow fiber polyimide membrane: experimental and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Peer, M.; Mehdi Kamali, S.; Mahdeyarfar, M.; Mohammadi, T. [Research Laboratory for Separation Processes, Chemical Engineering Department, Tehran (Iran)

    2007-10-15

    The separation of hydrogen from carbon monoxide (syngas ratio adjustment) with polymeric membranes was investigated in this work. A polyimide hollow fiber membrane module was used for hydrogen separation. This polymer has shown large permeability and selectivity for hydrogen separation (selectivity of ca. 30). Permeation tests were carried out at different feed conditions. Feed flow rates were varied between 150-300 mL/min, temperature was varied in the range of 20-80 C and feed pressure was varied between 5-9 bar. Mixtures containing 0-50 % carbon monoxide were used when carrying out experiments. Measured membrane permeances for hydrogen and carbon monoxide were about 70-100 GPU (gas permeation units) and 3-5.5 GPU, respectively. In addition, a mathematical model for simulation of gas separation in hollow fiber membrane modules with all flow patterns (crossflow, countercurrent and cocurrent) was presented. This model can be used for calculation of membrane performance or its required surface area for a specific separation. Experimental results have shown good correlation with simulation results. Plasticization, competitive sorption and concentration polarization effect of carbon monoxide on membrane performance is shown with experimental results. This effect reduced hydrogen permeances in mixed gas experiments. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue

    Science.gov (United States)

    Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas

    2015-08-01

    Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace—gas chromatography with mass spectrometric detection (DHS—GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC—ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm2 skin.

  19. Formation of highly toxic hydrogen cyanide upon ruby laser irradiation of the tattoo pigment phthalocyanine blue.

    Science.gov (United States)

    Schreiver, Ines; Hutzler, Christoph; Laux, Peter; Berlien, Hans-Peter; Luch, Andreas

    2015-08-05

    Since laser treatment of tattoos is the favored method for the removing of no longer wanted permanent skin paintings, analytical, biokinetics and toxicological data on the fragmentation pattern of commonly used pigments are urgently required for health safety reasons. Applying dynamic headspace-gas chromatography with mass spectrometric detection (DHS-GC/MS) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCxGC-ToF-MS), we identified 1,2-benzene dicarbonitrile, benzonitrile, benzene, and the poisonous gas hydrogen cyanide (HCN) as main fragmentation products emerging dose-dependently upon ruby laser irradiation of the popular blue pigment copper phthalocyanine in suspension. Skin cell viability was found to be significantly compromised at cyanide levels of ≥1 mM liberated during ruby laser irradiation of >1.5 mg/ml phthalocyanine blue. Further, for the first time we introduce pyrolysis-GC/MS as method suitable to simulate pigment fragmentation that may occur spontaneously or during laser removal of organic pigments in the living skin of tattooed people. According to the literature such regular tattoos hold up to 9 mg pigment/cm(2) skin.

  20. Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers

    Indian Academy of Sciences (India)

    Damanjit Kaur; Shweta Khanna

    2014-11-01

    Ab initio and DFT methods have been employed to study the hydrogen bonding ability of formamide, urea, urea monoxide, thioformamide, thiourea and thiourea monoxide with one water molecule and the homodimers of the selected molecules. The stabilization energies associated with themonohydrated adducts and homodimers’ formation were evaluated at B3LYP/6-311++G** and MP2/6-311++G∗∗ levels. The energies were corrected for zero-point vibrational energies and basis set superposition error using counterpoise method. Atoms in molecules study has been carried out in order to characterize the hydrogen bonds through the changes in electron density and laplacian of electron density. A natural energy decomposition and natural bond orbital analysis was performed to understand the nature of hydrogen bonding.

  1. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Madsen Sommer, Lea Mette; Johansen, Helle Krogh

    2017-01-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage....... The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm-1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After...... long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children...

  2. Purity analysis of hydrogen cyanide, cyanogen chloride and phosgene by quantitative (13)C NMR spectroscopy.

    Science.gov (United States)

    Henderson, Terry J; Cullinan, David B

    2007-11-01

    Hydrogen cyanide, cyanogen chloride and phosgene are produced in tremendously large quantities today by the chemical industry. The compounds are also particularly attractive to foreign states and terrorists seeking an inexpensive mass-destruction capability. Along with contemporary warfare agents, therefore, the US Army evaluates protective equipment used by warfighters and domestic emergency responders against the compounds, and requires their certification at > or = 95 carbon atom % before use. We have investigated the (13)C spin-lattice relaxation behavior of the compounds to develop a quantitative NMR method for characterizing chemical lots supplied to the Army. Behavior was assessed at 75 and 126 MHz for temperatures between 5 and 15 degrees C to hold the compounds in their liquid states, dramatically improving detection sensitivity. T(1) values for cyanogen chloride and phosgene were somewhat comparable, ranging between 20 and 31 s. Hydrogen cyanide values were significantly shorter at 10-18 s, most likely because of a (1)H--(13)C dipolar contribution to relaxation not possible for the other compounds. The T(1) measurements were used to derive relaxation delays for collecting the quantitative (13)C data sets. At 126 MHz, only a single data acquisition with a cryogenic probehead gave a signal-to-noise ratio exceeding that necessary for certifying the compounds at > or = 95 carbon atom % and 99% confidence. Data acquired at 75 MHz with a conventional probehead, however, required > or = 5 acquisitions to reach this certifying signal-to-noise ratio for phosgene, and >/= 12 acquisitions were required for the other compounds under these same conditions. In terms of accuracy and execution time, the NMR method rivals typical chromatographic methods.

  3. Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Zhenhua Li; Pa Du

    2002-01-01

    The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence.

  4. Acute Lethality of Inhaled Hydrogen Cyanide in the Laboratory Rat: Impact of Concentration x Time Profile and Evaluation of the Predictivity of Toxic Load Models

    Science.gov (United States)

    2013-05-03

    Naval Medical Research Unit Dayton Acute Lethality of Inhaled Hydrogen Cyanide in the Laboratory Rat : Impact of Concentration × Time Profile and...Cyanide in the Laboratory Rat : Impact of Concentration x Time Profile and Evaluation of the Predictivity of “Toxic Load” Models. 5a. Contract

  5. In Vitro Absorption of Atmospheric Carbon Monoxide and Hydrogen Cyanide in Undisturbed Pooled Blood

    Science.gov (United States)

    2012-09-01

    publications Web site: www.faa.gov/go/oamtechreports i Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s...Air. transport. cabin. mockup . fire. ex- periments ..Atlantic.City,.NJ:.U .S ..Department.of. Transportation,.Federal.Aviation.Administration

  6. [The role of ethanol in complex poisonings with carbon monoxide and hydrogen cyanide in fire victims].

    Science.gov (United States)

    Grabowska, Teresa; Nowicka, Joanna; Olszowy, Zofia

    2006-01-01

    A total of 230 cases of deaths in burning spaces dating from the years 1995-2003 were investigated in Forensic Medicine Department, Silesian University of Medicine, Katowice. HbCO and HCN found in 177 blood samples ranged from 4-95 % (mean, 31,5 %) and 0,5-40,3 microg/ml (mean, 9,98 microg/ml), respectively. Moreover, ethanol was found in 122 blood samples. Its concentration ranged from 0,89-5,0 per thousand (mean, 1,45 per thousand). A comparative analysis of HbCO and HCN levels in the groups with and without ethanol showed that the range and the mean concentration of both these xenobiotics were higher in the group with no alcohol. It was also shown that the increased ethanol caused a drop in HbCO and HCN levels. To evaluate HbCO and HCN levels, the regression and correlation analysis was used.

  7. Acute Cyanide Poisoning from Jewelry Cleaning Solutions

    Directory of Open Access Journals (Sweden)

    Ines Bel Waer

    2015-05-01

    Full Text Available Cyanide is one of the most lethal and devastating poisons. It causes acute toxicity through smoke inhalation simultaneously with carbon monoxide, or by ingestion of cyanide salts that are commonly used in metallurgy and in jewelry or textile industries. Cyanide intoxication is an extremely rare event; in the present study, we report a case of cyanide poisoning involving a 25-year-old jeweler, who ingested a jewelry cleaning solution containing potassium cyanide in a suicide attempt.

  8. The use of tristimulus colorimetry for the determination of hydrogen cyanide in air by a modified König method

    Directory of Open Access Journals (Sweden)

    VLADIMÍR PITSCHMANN

    2010-06-01

    Full Text Available A simple visual and tristimulus colorimetric method (three-dimensional system CIE-L*a*b* for the determination of trace amounts of hydrogen cyanide in air has been developed. The method is based on the suction of hydrogen cyanide through a chlorinating cartridge where cyanogen chloride is formed, which is further driven to an indicator disc made of a modified cotton fabric. This indicator disc is placed into an adapter. Prior to analysis, the disc is saturated with a chromogenic reagent, a solution of 5,5-dimethyl-1,3-cyclohexanedione (dimedone and 4-benzylpyridine in ethanol. In the presence of hydrogen cyanide (cyanogen chloride, a pink coloration emerges on the indicator disc, the intensity of which is evaluated either visually or by use of a tristimulus colorimeter. The detection limit is 0.1 mg m-3. The method is mainly suitable for mobile field analyses. It was applied for the CHP-5 chemical agent detector introduced into the equipment of the Czech Army corps.

  9. A global enhancement of hydrogen cyanide in the lower stratosphere throughout 2016

    Science.gov (United States)

    Sheese, Patrick E.; Walker, Kaley A.; Boone, Chris D.

    2017-06-01

    In September-October 2015, El Niño-driven weather conditions led to one of the most intense Indonesian peatland burning events in recent history. Consequently, an unprecedented amount of hydrogen cyanide (HCN) was emitted from Southeast Asia and transported into the upper troposphere and lower stratosphere, which was then transported by the general circulation from the tropics to polar latitudes. By early 2016, the daily mean concentrations of HCN in the lower stratosphere at all latitudes, as measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument, were the largest on record for the region, on the order of 40-90% greater than the climatological mean and 40% greater than the 2007 El Niño-driven values. By December 2016, levels of polar HCN in the lower stratosphere were still on the order 10-20% greater than the climatological mean. These ACE-FTS measurements are thus vital for interpreting ground-based and nadir satellite measurements of HCN made during 2016 and could be used to help validate tropospheric-stratospheric exchange in climate models.

  10. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    Science.gov (United States)

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-03-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm-1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device.

  11. Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide.

    Science.gov (United States)

    Sweeney, Lisa M; Sommerville, Douglas R; Channel, Stephen R

    2014-03-01

    The ten Berge model, also known as the toxic load model, is an empirical approach in hazard assessment modeling for estimating the relationship between the inhalation toxicity of a chemical and the exposure duration. The toxic load (TL) is normally expressed as a function of vapor concentration (C) and duration (t), with TL equaling C(n) × t being a typical form. Hypothetically, any combination of concentration and time that yields the same "toxic load" will give a constant biological response. These formulas have been developed and tested using controlled, constant concentration animal studies, but the validity of applying these assumptions to time-varying concentration profiles has not been tested. Experiments were designed to test the validity of the model under conditions of non-constant acute exposure. Male Sprague-Dawley rats inhaled constant or pulsed concentrations of hydrogen cyanide (HCN) generated in a nose-only exposure system for 5, 15, or 30 min. The observed lethality of HCN for the 11 different C versus t profiles was used to evaluate the ability of the model to adequately describe the lethality of HCN under the conditions of non-constant inhalation exposure. The model was found to be applicable under the tested conditions, with the exception of the median lethality of very brief, high concentration, discontinuous exposures.

  12. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles

    Science.gov (United States)

    Moussa, Samar G.; Leithead, Amy; Li, Shao-Meng; Chan, Tak W.; Wentzell, Jeremy J. B.; Stroud, Craig; Zhang, Junhua; Lee, Patrick; Lu, Gang; Brook, Jeffery R.; Hayden, Katherine; Narayan, Julie; Liggio, John

    2016-04-01

    Hydrogen cyanide (HCN) is considered a marker for biomass burning emissions and is a component of vehicle exhaust. Despite its potential health impacts, vehicular HCN emissions estimates and their contribution to regional budgets are highly uncertain. In the current study, Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure HCN emission factors from the exhaust of individual diesel, biodiesel and gasoline vehicles. Laboratory emissions data as a function of fuel type and driving mode were combined with ambient measurement data and model predictions. The results indicate that gasoline vehicles have the highest emissions of HCN (relative to diesel fuel) and that biodiesel fuel has the potential to significantly reduce HCN emissions even at realistic 5% blend levels. The data further demonstrate that gasoline direct injection (GDI) engines emit more HCN than their port fuel injection (PFI) counterparts, suggesting that the expected full transition of vehicle fleets to GDI will increase HCN emissions. Ambient measurements of HCN in a traffic dominated area of Toronto, Canada were strongly correlated to vehicle emission markers and consistent with regional air quality model predictions of ambient air HCN, indicating that vehicle emissions of HCN are the dominant source of exposure in urban areas. The results further indicate that additional work is required to quantify HCN emissions from the modern vehicle fleet, particularly in light of continuously changing engine, fuel and after-treatment technologies.

  13. Hydrogen Oxidation on Gas Diffusion Electrodes for Phosphoric Acid Fuel Cells in the Presence of Carbon Monoxide and Oxygen

    DEFF Research Database (Denmark)

    Gang, Xiao; Li, Qingfeng; Hjuler, Hans Aage

    1995-01-01

    Hydrogen oxidation has been studied on a carbon-supported platinum gas diffusion electrode in a phosphoric acidelectrolyte in the presence of carbon monoxide and oxygen in the feed gas. The poisoning effect of carbon monoxide presentin the feed gas was measured in the temperature range from 80...... to 150°C. It was found that throughout the temperaturerange, the potential loss due to the CO poisoning can be reduced to a great extent by the injection of small amounts ofgaseous oxygen into the hydrogen gas containing carbon monoxide. By adding 5 volume percent (v/o) oxygen, an almost......CO-free performance can be obtained for carbon monoxide concentrations up to 0.5 v/o CO at 130°C, 0.2 v/o CO at 100°C,and 0.1 v/o CO at 80°C, respectively....

  14. Selective methanation of carbon monoxide in hydrogen rich stream over Ni/CeO2 nanocatalysts

    Institute of Scientific and Technical Information of China (English)

    Behzad Nematollahi; Mehran Rezaei; Ebrahim Nemati Lay

    2015-01-01

    In the present work, selective methanation of carbon monoxide in hydrogen rich stream was investigated over Ni/CeO2 nanocatalysts. The obtained results revealed that increasing in nickel loading decreased the BET surface area, pore volume and nickel dispersion. The 25%Ni/CeO2 with a NiO crystal size of 12 nm exhibited the highest activity in CO methanation reaction and reached to maximum CO conversion and CH4 selectivity at temperatures above 230 ºC. The catalytic results revealed that CO selective methanation well progressed at lower temperatures while CO2 methanation was completely suppressed until CO conversion reached to maximum value.

  15. Atomic hydrogen and diatomic titanium-monoxide molecular spectroscopy in laser-induced plasma

    Science.gov (United States)

    Parigger, Christian G.; Woods, Alexander C.

    2017-03-01

    This article gives a brief review of experimental studies of hydrogen Balmer series emission spectra. Ongoing research aims to evaluate early plasma evolution following optical breakdown in laboratory air. Of interest is as well laser ablation of metallic titanium and characterization of plasma evolution. Emission of titanium monoxide is discussed together with modeling of diatomic spectra to infer temperature. The behavior of titanium particles in plasma draws research interests ranging from the modeling of stellar atmospheres to the enhancement of thin film production via pulsed laser deposition.

  16. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul

    2012-06-01

    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  17. Assessment of carboxyhemoglobin, hydrogen cyanide and methemoglobin in fire victims: a novel approach.

    Science.gov (United States)

    Ferrari, Luis A; Giannuzzi, Leda

    2015-11-01

    To establish the cause of death, carboxyhemoglobin (COHb), total hemoglobin (tHb), methemoglobin (MetHb), and hydrogen cyanide (HCN) were quantified in the blood of fire victims. We analyzed 32 out of 33 blood samples from forensic autopsy cases in a disastrous polyurethane mattress fire, which caused the deaths of 33 inmates at a prison in Argentina in 2006. The cadaveric blood samples were collected by femoral vein puncture. These samples were analyzed using the IL80 CO-oximeter system for tHb, MetHb, and COHb levels and by microdiffusion for HCN and COHb levels. Blood alcohol (ethanol) and drugs were examined by headspace gas chromatography-flame ionization detection (HS-GC-FID) and GC-mass spectrometry (MS), respectively. Polyurethane mattress samples were analyzed according to the California 117 protocol. The saturation of COHb ranged from 10% to 43%, tHb from 2% to 19.7%, MetHb from 0.10% to 35.7%, and HCN from 0.24 to 15mg/L. These HCN values are higher than the lethal levels reported in the literature. Other toxic components routinely measured (ethanol, methanol, aldehydes, and other volatile compounds) gave negative results in the 32 cases. Neither drugs of abuse nor psychotropic drugs were detected. The results indicate that death in the 32 fire victims was probably caused in part by HCN, generated during the extensive polyurethane decomposition stimulated by a rapid increase in temperature. We also considered the influence of oxygen depletion and the formation of other volatile compounds such as NOx in this disaster, as well as pathological evidence demonstrating that heat was not the cause of death in all victims. Furthermore, statistical analysis showed that the percentage values of COHb and MetHb in the blood were not independent variables, with χ(2)=11.12 (theoretical χ(2)=4.09, degrees of freedom=12, and α=0.05). However, no correlation was found between HCN and MetHb in the blood of the victims. This is the first report to assess the

  18. Effect of harvesting frequency, variety and leaf maturity on nutrient composition, hydrogen cyanide content and cassava foliage yield.

    Science.gov (United States)

    Hue, Khuc Thi; Thanh Van, Do Thi; Ledin, Inger; Wredle, Ewa; Spörndly, Eva

    2012-12-01

    The experiment studied the effect of harvesting frequencies and varieties on yield, chemical composition and hydrogen cyanide content in cassava foliage. Foliage from three cassava varieties, K94 (very bitter), K98-7 (medium bitter) and a local (sweet), were harvested in three different cutting cycles, at 3, 6 and 9 months; 6 and 9 months and 9 months after planting, in a 2-yr experiment carried out in Hanoi, Vietnam. Increasing the harvesting frequency increased dry matter (DM) and crude protein (CP) production in cassava foliage. The K94 variety produced higher foliage yields than the other two varieties. Dry matter, neutral detergent fibre (NDF), acid detergent fibre (ADF) and total tannin content increased with months to the first harvest, whereas CP content decreased. Hydrogen cyanide (HCN) content was lower at the first harvest than at later harvests for all cutting cycles. At subsequent harvests the content of total tannins tended to decline, while HCN content increased (p<0.05). Chemical composition differed somewhat across varieties except for total tannins and ash. Dry matter, NDF, ADF and total tannins were higher in fully matured leaves, while CP and HCN were lower in developing leaves.

  19. Beneficial effects of diminished production of hydrogen sulfide or carbon monoxide on hypertension and renal injury induced by NO withdrawal

    NARCIS (Netherlands)

    Wesseling, Sebastiaan; Fledderus, Joost O.; Verhaar, Marianne C.; Joles, Jaap A.

    2015-01-01

    Background and Purpose Whether NO, carbon monoxide (CO) and hydrogen sulfide (H2S) compensate for each other when one or more is depleted is unclear. Inhibiting NOS causes hypertension and kidney injury. Both global depletion of H2S by cystathionine γ-lyase (CSE) gene deletion

  20. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren;

    2015-01-01

    ) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...

  1. Cobalt--zirconia catalysts for the synthesis of hydrocarbons from carbon monoxide and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Bulanova, T.F.; Lapidus, A.L.

    1972-01-01

    Laboratory and pilot plant experiments were done in order to replace thoria by more readily available and biologically inactive promoters in kieselguhr-supported cobalt and cobalt-magnesia catalysts. Maximum activity, stability, and yields of ceresins boiling above 460/sup 0/C were obtained with a zirconia-cobalt weight ratio of 1:10. The activity of this catalyst remained spectacularly high for five months. The optimum reaction temperature was 190/sup 0/C at 8 to 9 atm pressure of the carbon monoxide-hydrogen mixture. The experimental procedures and the chemical and grain-size composition of five catalysts are given, as well as the yields of methane, C/sub 2-4/fraction, gasoline, oils, and ceresin.

  2. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases

    Directory of Open Access Journals (Sweden)

    A. Mishra

    2011-05-01

    Full Text Available In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC. It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for COPROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 BCREC UNDIP. All rights reserved(Received: 22nd October 2010, Revised: 12nd January 2011, Accepted: 19th January 2011[How to Cite: A. Mishra, R. Prasad. (2011. A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (1: 1-14. doi:10.9767/bcrec.6.1.191.1-14][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.191.1-14 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/191] | View in 

  3. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, Johan; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  4. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(αMe)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, Ron; Broxterman, Quirinus B.; Kamphuis, Johan; Formaggio, Fernando; Crisma, Marco; Toniolo, Claudio; Kellogg, Richard M.

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (αMe)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented.

  5. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, J; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  6. Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas

    Energy Technology Data Exchange (ETDEWEB)

    Min Chul Lee; Seok Bin Seo; Jae Hwa Chung; Si Moon Kim; Yong Jin Joo; Dal Hong Ahn [Korea Electric Power Corporation, Daejeon (Republic of Korea). Green Growth Laboratory

    2010-07-15

    The development of coal IGCC (Integrated Gasification Combined Cycle) technology has made it possible to exploit electricity generated from coal at a low cost. Furthermore, IGCC is a pre-requisite for the development of CCS (Carbon Capture and Storage) technology and hydrogen generated from coal. To achieve the need to reduce CO{sub 2} emissions, Korea's 300 MW IGCC RDD&D (Research Development, Demonstration and Dissemination) project was launched in December 2006 under the leadership of the Korea Electric Power Corporation (KEPCO), with the support of the Korea Ministry of Knowledge Economy. When a new fuel is adapted to a gas turbine (such as syngas for IGCC), it is necessary to study the gas turbine combustion characteristics of the fuel, because gas turbines are very sensitive to its physical and chemical properties. This experimental study was conducted by investigating the combustion performance of synthetic gas, which is composed chiefly of hydrogen and carbon monoxide. The results of a test on synthetic gas combustion performance were compared with the results of methane combustion, which is a major component of natural gas. The results of the combustion test of both gases were examined in terms of the turbine's inlet temperature, combustion dynamics, emission characteristics, and flame structure. From the results of this experimental study, we were able to understand the combustion characteristics of synthetic gas and anticipate the problems when synthetic gas rather than natural gas is fuelled to a gas turbine. 21 refs., 11 figs., 1 tab.

  7. Oral administration of lactulose: a novel therapy for acute carbon monoxide poisoning via increasing intestinal hydrogen production.

    Science.gov (United States)

    Fan, Dan-Feng; Hu, Hui-Jun; Sun, Xue-Jun; Meng, Xiang-En; Zhang, Yu; Pan, Shu-Yi

    2016-01-01

    It has been known that the pathophysiology of carbon monoxide (CO) poisoning is related to hypoxia, the increased production of reactive oxygen species (ROS) and oxidative stress. Studies have shown that the novel, safe and effective free radical scavenger, hydrogen, has neuroprotective effects in both acute CO poisoning and delayed neuropsychological sequelae in CO poisoning. Orally administered lactulose, which may be used by some intestinal bacteria as a food source to produce endogenous hydrogen, can ameliorate oxidative stress. Based on the available findings, we hypothesize that oral administration of lactulose may be a novel therapy for acute CO poisoning via increasing intestinal hydrogen production.

  8. A kinetic study on the adsorption and reaction of hydrogen over silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    VanderWiel, D.P.

    1999-02-12

    Although the catalytic hydrogenation of carbon monoxide has been a subject of considerable investigation for many years, its increasing economical attractiveness as an industrial source of hydrocarbons has recently led to a search for more active and selective catalysts. A fundamental problem in the development of such catalysts is an incomplete knowledge of the operative surface processes, due in large part to the inability to accurately measure surface concentrations of reactant species during reaction. Specifically, the concentration of surface hydrogen proves difficult to estimate using normally revealing techniques such as transient isotopic exchange due to kinetic isotope effects. Knowledge of such concentrations is essential to the determination of the mechanisms of adsorption and reaction, since many kinetic parameters are concentration dependent. It is the aim of this research to investigate the mechanism and kinetics of the adsorption and reaction of hydrogen on silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide. By preadsorbing carbon monoxide onto the surface of ruthenium and silver-ruthenium catalysts, the kinetics of hydrogen adsorption and reaction can be monitored upon exposure of this surface to ambient hydrogen gas. This is accomplished by conducting identical experiments on two separate systems. First, the formation of methane is monitored using mass spectroscopy, and specific reaction rates and apparent activation energies are measured. Next, in situ {sup 1}H-NMR is used to monitor the amount of hydrogen present on the catalyst surface during adsorption and reaction. The results for these two sets of experiments are then combined to show a correlation between the rate of reaction and the surface hydrogen concentration. Finally, transition state theory is applied to this system and is used to explain the observed change in the apparent activation energy. The structure sensitivity of hydrogen

  9. A kinetic study on the adsorption and reaction of hydrogen over silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    VanderWiel, David P. [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Although the catalytic hydrogenation of carbon monoxide has been a subject of considerable investigation for many years, its increasing economical attractiveness as an industrial source of hydrocarbons has recently led to a search for more active and selective catalysts. A fundamental problem in the development of such catalysts is an incomplete knowledge of the operative surface processes, due in large part to the inability to accurately measure surface concentrations of reactant species during reaction. Specifically, the concentration of surface hydrogen proves difficult to estimate using normally revealing techniques such as transient isotopic exchange due to kinetic isotope effects. Knowledge of such concentrations is essential to the determination of the mechanisms of adsorption and reaction, since many kinetic parameters are concentration dependent. It is the aim of this research to investigate the mechanism and kinetics of the adsorption and reaction of hydrogen on silica-supported ruthenium and silver-ruthenium catalysts during the hydrogenation of carbon monoxide. By preadsorbing carbon monoxide onto the surface of ruthenium and silver-ruthenium catalysts, the kinetics of hydrogen adsorption and reaction can be monitored upon exposure of this surface to ambient hydrogen gas. This is accomplished by conducting identical experiments on two separate systems. First, the formation of methane is monitored using mass spectroscopy, and specific reaction rates and apparent activation energies are measured. Next, in situ 1H-NMR is used to monitor the amount of hydrogen present on the catalyst surface during adsorption and reaction. The results for these two sets of experiments are then combined to show a correlation between the rate of reaction and the surface hydrogen concentration. Finally, transition state theory is applied to this system and is used to explain the observed change in the apparent activation energy. The structure sensitivity of hydrogen

  10. Hydroxocobalamin in cyanide poisoning.

    Science.gov (United States)

    Thompson, John P; Marrs, Timothy C

    2012-12-01

    On theoretical grounds, hydroxocobalamin is an attractive antidote for cyanide poisoning as cobalt compounds have the ability to bind and detoxify cyanide. This paper reviews the pharmacokinetic and pharmacodynamic aspects of hydroxocobalamin, its efficacy in human cyanide poisoning and its adverse effects. PubMed was searched for the period 1952 to April 2012. A total of 71 papers were identified in this way; and none was excluded. PHARMACOKINETICS AND PHARMACODYNAMICS: Pharmacokinetic studies in dogs and humans suggest a two-compartment model, with first order elimination kinetics. Pharmacodynamic studies in animals suggest that hydroxocobalamin would be a satisfactory antidote for human cyanide poisoning. EFFICACY IN HUMAN POISONING: There is limited evidence that hydroxocobalamin alone is effective in severe poisoning by cyanide salts. The evidence for the efficacy of hydroxocobalamin in smoke inhalation is complicated by lack of evidence for the importance of cyanide exposure in fires and the effects of other chemicals as well as confounding effects of other therapeutic measures, including hyperbaric oxygen. Evidence that hydroxocobalamin is effective in poisoning due to hydrogen cyanide alone is lacking; extrapolation of efficacy from poisoning by ingested cyanide salts may not be valid. The rate of absorption may be greater with inhaled hydrogen cyanide and the recommended slow intravenous administration of hydroxocobalamin may severely limit its clinical effectiveness in these circumstances. Both animal and human data suggest that hydroxocobalamin is lacking in clinically significant adverse effects. However, in one human volunteer study, delayed but prolonged rashes were observed in one-sixth of subjects, appearing 7 to 25 days after administration of 5 g or more of hydroxocobalamin. Rare adverse effects have included dyspnoea, facial oedema, and urticaria. Limited data on human poisonings with cyanide salts suggest that hydroxocobalamin is an effective

  11. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55 degrees C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges.

    Science.gov (United States)

    Sipma, J; Meulepas, R J W; Parshina, S N; Stams, A J M; Lettinga, G; Lens, P N L

    2004-04-01

    The conversion routes of carbon monoxide (CO) at 55 degrees C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population and that its products, i.e. hydrogen and CO2, were subsequently used by methanogens, homo-acetogens or sulfate reducers depending on the sludge source and inhibitors supplied. Direct methanogenic CO conversion occurred only at low CO concentrations [partial pressure of CO (PCO) paper mill sludge. The presence of hydrogen decreased the CO conversion rates, but did not prevent the depletion of CO to undetectable levels (sludges showed interesting potential for hydrogen production from CO, especially since after 30 min exposure to 95 degrees C, the production of CH4 at 55 degrees C was negligible. The paper mill sludge was capable of sulfate reduction with hydrogen, tolerating and using high CO concentrations (PCO>1.6 bar), indicating that CO-rich synthesis gas can be used efficiently as an electron donor for biological sulfate reduction.

  12. Pediatric cyanide poisoning by fire smoke inhalation: a European expert consensus. Toxicology Surveillance System of the Intoxications Working Group of the Spanish Society of Paediatric Emergencies.

    Science.gov (United States)

    Mintegi, Santiago; Clerigue, Nuria; Tipo, Vincenzo; Ponticiello, Eduardo; Lonati, Davide; Burillo-Putze, Guillermo; Delvau, Nicolas; Anseeuw, Kurt

    2013-11-01

    Most fire-related deaths are attributable to smoke inhalation rather than burns. The inhalation of fire smoke, which contains not only carbon monoxide but also a complex mixture of gases, seems to be the major cause of morbidity and mortality in fire victims, mainly in enclosed spaces. Cyanide gas exposure is quite common during smoke inhalation, and cyanide is present in the blood of fire victims in most cases and may play an important role in death by smoke inhalation. Cyanide poisoning may, however, be difficult to diagnose and treat. In these children, hydrogen cyanide seems to be a major source of concern, and the rapid administration of the antidote, hydroxocobalamin, may be critical for these children.European experts recently met to formulate an algorithm for prehospital and hospital management of adult patients with acute cyanide poisoning. Subsequently, a group of European pediatric experts met to evaluate and adopt that algorithm for use in the pediatric population.

  13. Towards quantitative SERS detection of hydrogen cyanide at ppb level for human breath analysis

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Rindzevicius, Tomas; Molin, Søren

    2015-01-01

    ) at ppb level has been reported to be a PA biomarker. For early PA detection in CF children not yet chronically lung infected a non-invasive Surface-Enhanced Raman Spectroscopy (SERS)-based breath nanosensor is being developed. The triple bond between C and N in cyanide, with its characteristic band...... at ∼2133 cm-1, is an excellent case for the SERS-based detection due to the infrequent occurrence of triple bonds in nature. For demonstration of direct HCN detection in the gas phase, a gold-coated silicon nanopillar substrate was exposed to 5 ppm HCN in N2. Results showed that HCN adsorbed on the SERS......). Lower KCN concentrations of 10 and 100 nM (corresponding to 0.18 and 1.8 ppb) produced SERS intensities that were relatively similar to the reference signal. Since HCN concentration in the breath of PA colonized CF children is reported to be ∼13.5 ppb, the detection of cyanide is within the required...

  14. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    Science.gov (United States)

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  15. Use of carbon monoxide and hydrogen by a bacteria-animal symbiosis from seagrass sediments.

    Science.gov (United States)

    Kleiner, Manuel; Wentrup, Cecilia; Holler, Thomas; Lavik, Gaute; Harder, Jens; Lott, Christian; Littmann, Sten; Kuypers, Marcel M M; Dubilier, Nicole

    2015-12-01

    The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.

  16. Tropospheric carbon monoxide and hydrogen measurements over Kalimantan in Indonesia and northern Australia during October, 1997

    Science.gov (United States)

    Sawa, Yousuke; Matsueda, Hidekazu; Tsutsumi, Yukitomo; Jensen, Jørgen B.; Inoue, Hisayuki Y.; Makino, Yukio

    During the PACE-5 campaign over Australia and Indonesia in October 1997, we used an aircraft to measure carbon monoxide (CO) and hydrogen (H2). Latitudinal distributions of CO and H2 clearly showed a large increase from northern Australia to Kalimantan in Indonesia. Elevated CO levels over northern Australia were observed only in the smoke plumes of savanna fires. A thick smoke haze from forest fires over Kalimantan contained very high CO mixing ratios of 3 to 9 ppm. These enhanced CO mixing ratios correlated well with increased concentrations of H2, nitrogen oxides (NOx), and aerosols. Emission ratios from biomass burning in Kalimantan ranged 0.06 0.1 for H2/CO (ppb/ppb), 0.0002 to 0.0005 for NOx/CO (ppb/ppb), and 0.43 to 1.0 for number of aerosols/CO (cm-3/ppb). These values were much lower than emission ratios in northern Australia. This difference suggests that the biomass burning in Indonesia was intense and that, due to a strong El Niño event, an unique composition of trace gases was formed in the smoke haze.

  17. STUDY OF MnOx-PROMOTED Cu/γ-Al203 CATALYSTS FOR HYDROGENATION OF CARBON MONOXIDE

    Institute of Scientific and Technical Information of China (English)

    Qi Gongxin; Fei Jinhua; Hou Zhaoyin; Zheng Xiaoming

    2001-01-01

    γ-Alumina-supported copper-manganese oxide was prepared by impregnation and used for carbon monoxide hydrogenation. The Cu-MnOx/γ-Al2O3 catalysts exhibit high catalytic activity in CO hydrogenation, showing markedly enhanced catalytic activities due to the synergistic interaction between the copper and manganese oxide. The results of XRD indicated that the addition of manganese enhances the dispersion of CuO, retards the reduction of CuO and enhances the ability of H2-adsorption, which contribute to the activity of DME synthesis from syngas.

  18. Shape and optical properties of aerosols formed by photolysis of acetylene, ethylene, and hydrogen cyanide

    Science.gov (United States)

    Bar-Nun, A.; Kleinfeld, I.; Ganor, E.

    1988-07-01

    The shapes and sizes of photochemically produced aerosol particles of polyacetylene, polyethylene, and polyhydrogen cyanide were studied experimentally. All of the single particles were found to be perfectly spherical and semiliquid. However, they aggregate readily, with a sticking coefficient near unity, to form nonspherical particles, which could give rise to the observed polarization from Titan's and Jupiter's upper haze layers. The absorbance of polyacetylene was remeasured and corrected, and it is now much closer to that of polyethylene. The measured real and imaginary indices of refraction of the two materials make them both suitable material for Titan's and Jupiter's upper haze layers. However, the larger abundance and higher rate of polymerization of acetylene would make it the dominant aerosol-forming material in both atmospheres.

  19. Selective hydrogenation of benzyl cyanide to 2-phenylethylamine over a Pd/Al2O3 catalyst promoted by synergistic effects of CO2 and water

    OpenAIRE

    2015-01-01

    The selective hydrogenation of benzyl cyanide (BC) to the primary amine of 2-phenylethylamine (PEA) was investigated with a Pd/Al2O3 catalyst in different multiphase reaction media including n-hexane, water, and/or CO2. In neat n-hexane, the hydrogenation of BC occurs at a large rate but no PEA was formed and the secondary amine of N, N-bis(2-phenylethyl) amine (BPEA) was produced as the main product. The pressurization of n-hexane with CO2 decreased the rate of hydrogenation and the main pro...

  20. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders.

    Science.gov (United States)

    King, Caitlin E; King, Gary M

    2012-08-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14-25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H(2)) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H(2) uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H(2) uptake was less sensitive than Bare H(2) uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H(2) uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material.

  1. Temperature responses of carbon monoxide and hydrogen uptake by vegetated and unvegetated volcanic cinders

    Science.gov (United States)

    King, Caitlin E; King, Gary M

    2012-01-01

    Ecosystem succession on a large deposit of volcanic cinders emplaced on Kilauea Volcano in 1959 has resulted in a mosaic of closed-canopy forested patches and contiguous unvegetated patches. Unvegetated and unshaded surface cinders (Bare) experience substantial diurnal temperature oscillations ranging from moderate (16 °C) to extreme (55 °C) conditions. The surface material of adjacent vegetated patches (Canopy) experiences much smaller fluctuations (14–25 °C) due to shading. To determine whether surface material from these sites showed adaptations by carbon monoxide (CO) and hydrogen (H2) consumption to changes in ambient temperature regimes accompanying succession, we measured responses of CO and H2 uptake to short-term variations in temperature and long-term incubations at elevated temperature. Based on its broader temperature optimum and lower activation energy, Canopy H2 uptake was less sensitive than Bare H2 uptake to temperature changes. In contrast, Bare and Canopy CO uptake responded similarly to temperature during short-term incubations, indicating no differences in temperature sensitivity. However, during extended incubations at 55 °C, CO uptake increased for Canopy but not Bare material, which indicated that the former was capable of thermal adaptation. H2 uptake for material from both sites was completely inhibited at 55 °C throughout extended incubations. These results indicated that plant development during succession did not elicit differences in short-term temperature responses for Bare and Canopy CO uptake, in spite of previously reported differences in CO oxidizer community composition, and differences in average daily and extreme temperatures. Differences associated with vegetation due to succession did, however, lead to a notable capacity for thermophilic CO uptake by Canopy but not Bare material. PMID:22258097

  2. Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin

    Directory of Open Access Journals (Sweden)

    Duke Martin G

    2011-04-01

    Full Text Available Abstract Background Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion®CR20 with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde in mainstream cigarette smoke. Results Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and 15N NMR. Diaion®CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion®CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase independent of a range of flow rates. Substantial removal of HCN (>80% and acetaldehyde (>60% was also observed. The performance of Diaion®CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order

  3. [Study of hydrogen cyanide activity in various working environment in gold-mining industry].

    Science.gov (United States)

    Dedkova, L A; Dorogova, V B; Petrov, V F

    2008-01-01

    The study concerned an influence of saline content of liquid phase of crushed ore and presence or absence of solution blending on the process of cyanic hydrogen release in air of working area gold-mining industry.

  4. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    Directory of Open Access Journals (Sweden)

    Anne M. Henstra

    2011-01-01

    Full Text Available Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently low levels of CO are reached. Here we study CO conversion and final CO levels in cultures of C. hydrogenoformans grown in batch cultures that were started with a 100% CO gas phase with and without removal of formed CO2. Final CO levels were 117 ppm without CO2 removal and below 2 ppm with CO2 removal. The Gibbs free energy change calculated with measured end concentrations and the detection of acetate suggest that C. hydrogenoformans shifted from a hydrogenogenic to an acetogenic metabolism.

  5. Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate

    Directory of Open Access Journals (Sweden)

    Tomaž Rijavec

    2016-11-01

    Full Text Available Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g. chelation of metals, indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts.

  6. Measurements of hydrogen cyanide (HCN and acetylene (C2H2 from the Infrared Atmospheric Sounding Interferometer (IASI

    Directory of Open Access Journals (Sweden)

    C. Clerbaux

    2012-10-01

    Full Text Available Hydrogen cyanide (HCN and acetylene (C2H2 are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q-branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S; 55° E and Jungfraujoch (46° N; 8° E in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI. These are compared with local ground-based Fourier Transform InfraRed (FTIR measurements and we demonstrate that the seasonality is well captured, except for HCN at Jungfraujoch. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.

  7. Measurements of hydrogen cyanide (HCN and acetylene (C2H2 from the Infrared Atmospheric Sounding Interferometer (IASI

    Directory of Open Access Journals (Sweden)

    V. Duflot

    2013-04-01

    Full Text Available Hydrogen cyanide (HCN and acetylene (C2H2 are ubiquitous atmospheric trace gases with medium lifetime, which are frequently used as indicators of combustion sources and as tracers for atmospheric transport and chemistry. Because of their weak infrared absorption, overlapped by the CO2 Q branch near 720 cm−1, nadir sounders have up to now failed to measure these gases routinely. Taking into account CO2 line mixing, we provide for the first time extensive measurements of HCN and C2H2 total columns at Reunion Island (21° S, 55° E and Jungfraujoch (46° N, 8° E in 2009–2010 using observations from the Infrared Atmospheric Sounding Interferometer (IASI. A first order comparison with local ground-based Fourier transform infraRed (FTIR measurements has been carried out allowing tests of seasonal consistency which is reasonably captured, except for HCN at Jungfraujoch. The IASI data shows a greater tendency to high C2H2 values. We also examine a nonspecific biomass burning plume over austral Africa and show that the emission ratios with respect to CO agree with previously reported values.

  8. High-frequency urban measurements of molecular hydrogen and carbon monoxide in the United Kingdom

    Directory of Open Access Journals (Sweden)

    A. Grant

    2010-05-01

    Full Text Available High-frequency measurements of atmospheric molecular hydrogen (H2 and carbon monoxide (CO were made at an urban site in the United Kingdom (UK from mid-December, 2008 until early March, 2009. Very few measurements of H2 exist in the urban environment, particularly within the UK, but are an essential component in the assessment of anthropogenic emissions of H2 and to a certain extent CO. These data provide detailed information on urban time-series, diurnal cycles as well as sources and sinks of both H2 and CO at urban locations. High-frequency data were found to be strongly influenced by local meteorological conditions of wind speed and temperature. Diurnal cycles were found to follow transport frequency very closely due to the sites proximity to major carriageways, consequently a strong correlation was found between H2 and CO mole fractions. Background subtracted mean and rush hour molar H2/CO emission ratios of 0.53±0.08 and 0.57±0.06 respectively, were calculated from linear fitting of data. The scatter plot of all H2 and CO data displayed an unusual two population pattern, thought to be associated with a large industrial area 85 km to the west of the site. However, the definitive source of this two branch pattern could not be fully elucidated. H2 emissions from transport in the UK were estimated to be 188±39 Gg H2/yr, with 8.1±2.3 Tg/yr of H2 produced from vehicle emissions globally. H2 and CO deposition velocities were calculated during stable night-time inversion events when a clear decay of both species was observed. CO was found to have a much higher deposition velocity than H2, 1.3±0.8×10−3 and 2.2±1.5×10−4 m s−1 (1σ respectively, going against the law of molecular diffusivity. The source of this unusual result was investigated, however no conclusive

  9. Vasoactivity of the gasotransmitters hydrogen sulfide and carbon monoxide in the chicken ductus arteriosus.

    Science.gov (United States)

    van der Sterren, Saskia; Kleikers, Pamela; Zimmermann, Luc J I; Villamor, Eduardo

    2011-10-01

    Besides nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H(2)S) is a third gaseous messenger that may play a role in controlling vascular tone and has been proposed to serve as an O(2) sensor. However, whether H(2)S is vasoactive in the ductus arteriosus (DA) has not yet been studied. We investigated, using wire myography, the mechanical responses induced by Na(2)S (1 μM-1 mM), which forms H(2)S and HS(-) in solution, and by authentic CO (0.1 μM-0.1 mM) in DA rings from 19-day chicken embryos. Na(2)S elicited a 100% relaxation (pD(2) 4.02) of 21% O(2)-contracted and a 50.3% relaxation of 62.5 mM KCl-contracted DA rings. Na(2)S-induced relaxation was not affected by presence of the NO synthase inhibitor l-NAME, the soluble guanylate cyclase (sGC) inhibitor ODQ, or the K(+) channel inhibitors tetraethylammonium (TEA; nonselective), 4-aminopyridine (4-AP, K(V)), glibenclamide (K(ATP)), iberiotoxin (BK(Ca)), TRAM-34 (IK(Ca)), and apamin (SK(Ca)). CO also relaxed O(2)-contracted (60.8% relaxation) and KCl-contracted (18.6% relaxation) DA rings. CO-induced relaxation was impaired by ODQ, TEA, and 4-AP (but not by L-NAME, glibenclamide, iberiotoxin, TRAM-34 or apamin), suggesting the involvement of sGC and K(V) channel stimulation. The presence of inhibitors of H(2)S or CO synthesis as well as the H(2)S precursor L-cysteine or the CO precursor hemin did not significantly affect the response of the DA to changes in O(2) tension. Endothelium-dependent and -independent relaxations were also unaffected. In conclusion, our results indicate that the gasotransmitters H(2)S and CO are vasoactive in the chicken DA but they do not suggest an important role for endogenous H(2)S or CO in the control of chicken ductal reactivity.

  10. Gas Sensing Properties and Mechanism of Nano-SnO2-Based Sensor for Hydrogen and Carbon Monoxide

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2012-01-01

    Full Text Available Nano-SnO2 powder was prepared by the hydrothermal method in this paper. X-ray powder diffraction (XRD and scanning electron microscopy (SEM were used to characterize the composition of the crystalline phase and the morphology of the prepared gas-sensitive materials, respectively. In particular, the study focused on the sensing behaviors of nano-SnO2-based sensor towards power transformer fault gases such as hydrogen and carbon monoxide. The optimum working temperature for hydrogen and carbon monoxide is about 400∘C and 360∘C, separately. Further investigations into the adsorption process of gas molecule on SnO2 (110 surface based on the first principles were conducted. The calculations indicated that 1σ orbits of H2 split into several new electronic peaks and 5σ orbits of CO almost degenerated completely in the adsorption process, which promoted charge transfer between gas molecule and SnO2 (110 surface. It provides a qualitative explanation for the prepared nano-SnO2-based sensor exhibiting different gas sensing properties towards H2 and CO.

  11. Acetylene (C2H2) and hydrogen cyanide (HCN) from IASI satellite observations: global distributions, validation, and comparison with model

    Science.gov (United States)

    Duflot, V.; Wespes, C.; Clarisse, L.; Hurtmans, D.; Ngadi, Y.; Jones, N.; Paton-Walsh, C.; Hadji-Lazaro, J.; Vigouroux, C.; De Mazière, M.; Metzger, J.-M.; Mahieu, E.; Servais, C.; Hase, F.; Schneider, M.; Clerbaux, C.; Coheur, P.-F.

    2015-09-01

    We present global distributions of C2H2 and hydrogen cyanide (HCN) total columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) for the years 2008-2010. These distributions are obtained with a fast method allowing to retrieve C2H2 abundance globally with a 5 % precision and HCN abundance in the tropical (subtropical) belt with a 10 % (25 %) precision. IASI data are compared for validation purposes with ground-based Fourier transform infrared (FTIR) spectrometer measurements at four selected stations. We show that there is an overall agreement between the ground-based and space measurements with correlation coefficients for daily mean measurements ranging from 0.28 to 0.81, depending on the site. Global C2H2 and subtropical HCN abundances retrieved from IASI spectra show the expected seasonality linked to variations in the anthropogenic emissions and seasonal biomass burning activity, as well as exceptional events, and are in good agreement with previous spaceborne studies. Total columns simulated by the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4) are compared to the ground-based FTIR measurements at the four selected stations. The model is able to capture the seasonality in the two species in most of the cases, with correlation coefficients for daily mean measurements ranging from 0.50 to 0.86, depending on the site. IASI measurements are also compared to the distributions from MOZART-4. Seasonal cycles observed from satellite data are reasonably well reproduced by the model with correlation coefficients ranging from -0.31 to 0.93 for C2H2 daily means, and from 0.09 to 0.86 for HCN daily means, depending on the considered region. However, the anthropogenic (biomass burning) emissions used in the model seem to be overestimated (underestimated), and a negative global mean bias of 1 % (16 %) of the model relative to the satellite observations was found for C2H2 (HCN).

  12. Connecting the evolution of thermally pulsing asymptotic giant branch stars to the chemistry in their circumstellar envelopes - I. Hydrogen cyanide

    Science.gov (United States)

    Marigo, Paola; Ripamonti, Emanuele; Nanni, Ambra; Bressan, Alessandro; Girardi, Léo

    2016-02-01

    We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius rs,0 and the effective adiabatic index γ _ad^eff) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, which traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications for the physical properties of the pulsation-induced shocks: (i) the first shock should emerge very close to the photosphere (rs,0 ≃ 1R), and (ii) shocks are expected to have a dominant isothermal character (γ _ad^eff˜eq 1) in the denser region close to the star (within ˜3-4R), implying that radiative processes should be quite efficient. Our analysis also suggests that the HCN concentrations in the inner circumstellar envelopes are critically affected by the H-H2 chemistry during the post-shock relaxation stages. Given the notable sensitiveness of the results to stellar parameters, this paper shows that such chemo-dynamic analyses may indeed provide a significant contribution to the broader goal of attaining a comprehensive calibration of the TP-AGB evolutionary phase.

  13. Concentrations of carbonyl sulfide and hydrogen cyanide in the free upper troposphere and lower stratosphere deduced from ATMOS/Spacelab 3 infrared solar occultation spectra

    Science.gov (United States)

    Zander, R.; Rinsland, C. P.; Russell, J. M., III; Farmer, C. B.; Norton, R. H.

    1988-01-01

    This paper presents the results on the volume mixing ratio profiles of carbonyl sulfide and hydrogen cyanide, deduced from the spectroscopic analysis of IR solar absorption spectra obtained in the occultation mode with the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during its mission aboard Spacelab 3. A comparison of the ATMOS measurements for both northern and southern latitudes with previous field investigations at low midlatitudes shows a relatively good agreement. Southern Hemisphere volume mixing ratio profiles for both molecules were obtained for the first time, as were the profiles for the Northern Hemisphere covering the upper troposphere and the lower stratosphere simultaneously.

  14. Pyrrolnitrin and Hydrogen Cyanide Production by Pseudomonas chlororaphis Strain PA23 Exhibits Nematicidal and Repellent Activity against Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Munmun Nandi

    Full Text Available Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN, phenazine (PHZ, hydrogen cyanide (HCN, and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA, and the Phz quorum-sensing system. Beyond pathogen-suppression, the success of a biocontrol agent is dependent upon its ability to establish itself in the environment where predation by bacterivorous organisms, including nematodes, may threaten persistence. The focus of this study was to investigate whether PA23 is able to resist grazing by Caenorhabditis elegans and to define the role played by exoproducts in the bacterial-nematode interaction. We discovered that both PRN and HCN contribute to fast- and slow-killing of C. elegans. HCN is well-established as having lethal effects on C. elegans; however, PRN has not been reported to be nematicidal. Exposure of L4 stage nematodes to purified PRN reduced nematode viability in a dose-dependent fashion and led to reduced hatching of eggs laid by gravid adults. Because bacterial metabolites can act as chemoattractants or repellents, we analyzed whether PA23 exhibited attractant or repulsive properties towards C. elegans. Both PRN and HCN were found to be potent repellents. Next we investigated whether the presence of C. elegans would elicit changes in PA23 gene activity. Co-culturing the two organisms increased expression of a number of genes associated with biocontrol, including phzA, hcnA, phzR, phzI, rpoS and gacS. Exoproduct analysis showed that PHZ and autoinducer signals were upregulated, consistent with the gene expression profiles. Collectively, these findings indicate that PA23 is able to sense the presence of C. elegans and it is able to both repel and kill the nematodes, which

  15. Hydrogen Cyanide in the Upper Troposphere: GEM-AQ Simulation and Comparison with ACE-FTS Observations

    Science.gov (United States)

    Lupu, A.; Kaminski, J. W.; Neary, L.; McConnell, J. C.; Toyota, K.; Rinsland, C. P.; Bernath, P. F.; Walker, K. A.; Boone, C. D.; Nagahama, Y.; hide

    2009-01-01

    We investigate the spatial and temporal distribution of hydrogen cyanide (HCN) in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ), which is based on the threedimensional Gobal multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004-2006 on a 1.5deg x 1.5deg global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED) version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May-July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ perform7s well globally for all seasons, except at northern hi gh and middle latitudes in surnmer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to

  16. Hydrogen cyanide in the upper troposphere: GEM-AQ simulation and comparison with ACE-FTS observations

    Directory of Open Access Journals (Sweden)

    A. Lupu

    2009-07-01

    Full Text Available We investigate the spatial and temporal distribution of hydrogen cyanide (HCN in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ, which is based on the three-dimensional global multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004–2006 on a 1.5°×1.5° global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May–July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. The comparison with the satellite data shows that in the upper troposphere GEM-AQ performs well globally for all seasons, except at northern high and middle latitudes in summer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model

  17. Hydrogen cyanide in the upper troposphere: GEM-AQ simulation and comparison with ACE-FTS observations

    Directory of Open Access Journals (Sweden)

    A. Lupu

    2009-01-01

    Full Text Available We investigate the spatial and temporal distribution of hydrogen cyanide (HCN in the upper troposphere through numerical simulations and comparison with observations from a space-based instrument. To perform the simulations, we used the Global Environmental Multiscale Air Quality model (GEM-AQ, which is based on the three-dimensional global multiscale model developed by the Meteorological Service of Canada for operational weather forecasting. The model was run for the period 2004–2006 on a 1.5°×1.5° global grid with 28 hybrid vertical levels from the surface up to 10 hPa. Objective analysis data from the Canadian Meteorological Centre were used to update the meteorological fields every 24 h. Fire emission fluxes of gas species were generated by using year-specific inventories of carbon emissions with 8-day temporal resolution from the Global Fire Emission Database (GFED version 2. The model output is compared with HCN profiles measured by the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS instrument onboard the Canadian SCISAT-1 satellite. High values of up to a few ppbv are observed in the tropics in the Southern Hemisphere; the enhancement in HCN volume mixing ratios in the upper troposphere is most prominent in October. Low upper-tropospheric mixing ratios of less than 100 pptv are mostly recorded at middle and high latitudes in the Southern Hemisphere in May–July. Mixing ratios in Northern Hemisphere peak in the boreal summer. The amplitude of the seasonal variation is less pronounced than in the Southern Hemisphere. Our model results show that in the upper troposphere GEM-AQ performs well globally for all seasons, except at Northern high and middle latitudes in summer, where the model has a large negative bias, and in the tropics in winter and spring, where it exhibits large positive bias. This may reflect inaccurate emissions or possible inaccuracies in the emission profile. The model is able to explain

  18. Effect of carbon monoxide, hydrogen and sulfate on thermophilic (55°C) hydrogenogenic carbon monoxide conversion in two anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Meulepas, R.J.W.; Stams, A.J.M.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The conversion routes of carbon monoxide (CO) at 55°C by full-scale grown anaerobic sludges treating paper mill and distillery wastewater were elucidated. Inhibition experiments with 2-bromoethanesulfonate (BES) and vancomycin showed that CO conversion was performed by a hydrogenogenic population an

  19. Electroactivity of high performance unsupported Pt-Ru nanoparticles in the presence of hydrogen and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Palenzuela, Amado; Cabot, Pere-Lluis; Centellas, Francesc; Garrido, Jose Antonio; Arias, Conchita; Rodriguez, Rosa Maria; Brillas, Enric [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-10-15

    The electrochemical activity of high performance unsupported (1:1) Pt-Ru electrocatalyst in the presence of hydrogen and carbon monoxide has been studied using the thin-film rotating disk electrode (RDE) technique. The kinetic parameters of these reactions were determined in H{sub 2}- and CO-saturated 0.5 M H{sub 2}SO{sub 4} solutions by means of cyclic voltammetry, including CO stripping, and RDE voltammetry. Pt-Ru/Nafion inks were prepared in one step with different Nafion mass fractions, allowing determining the ionomer influence in electrocatalytic response and obtaining the kinetic current density in absence of mass-transfer effects, being 41 and 12 mA cm{sup 2} (geometrical area), for H{sub 2} and CO oxidation, respectively. These values correspond to mass activities of 1.37 and 0.40 A mg{sub Pt}{sup 1} and to specific activities of 1.52 and 0.44 mA cm{sub Pt}{sup 2}. The Tafel analysis confirmed that hydrogen oxidation was a two-electron reversible reaction, while CO oxidation exhibited an irreversible behavior with a charge-transfer coefficient of 0.42. The kinetic results for CO oxidation are in agreement with the bifunctional theory, in which the reaction between Pt-CO and Ru-OH is the rate-determining step. The exchange current density for hydrogen reaction was 0.28 mA cm{sup 2} (active surface area), thus showing similar kinetics to those found for carbon-supported Pt and Pt-Ru electrocatalyst nanoparticles. (author)

  20. Mechanisms involved in the inhibition of glycolysis by cyanide and antimycin A in Candida albicans and its reversal by hydrogen peroxide. A common feature in Candida species.

    Science.gov (United States)

    Peña, Antonio; Sánchez, Norma Silvia; González-López, Omar; Calahorra, Martha

    2015-12-01

    In Candida albicans, cyanide and antimycin A inhibited K(+) transport, not only with ethanol-O2 as the substrate, but also with glucose. The reason for this was that they inhibited not only respiration, but also fermentation, decreasing ATP production. Measurements of oxygen levels in cell suspensions allowed identification of the electron pathways involved. NADH fluorescence levels increased in the presence of the inhibitors, indirectly indicating lower levels of NAD(+) and so pointing to glyceraldehyde-3-phosphate dehydrogenase as the limiting step responsible for the inhibition of glycolysis, which was confirmed by the levels of glycolytic intermediaries. The cyanide effect could be reversed by hydrogen peroxide, mainly due to an activity by which H2O2 can be reduced by electrons flowing from NADH through a pathway that can be inhibited by antimycin A, and appears to be a cytochrome c peroxidase. Therefore, the inhibition of glycolysis by the respiratory inhibitors seems to be due to the decreased availability of NAD(+), resulting in a decreased activity of glyceraldehyde-3-phosphate dehydrogenase. Compartmentalization of pyridine nucleotides in favor of the mitochondria can contribute to explaining the low fermentation capacity of C. albicans. Similar results were obtained with three C. albicans strains, Candida dubliniensis and, to a lower degree, Candida parapsilosis.

  1. Effect of acute and delayed hyperbaric oxygen therapy on cyanide whole blood levels during acute cyanide intoxication

    DEFF Research Database (Denmark)

    Lawson-Smith, P; Jansen, E C; Hilsted, Linda Maria

    2011-01-01

    causing depletion of adenosine triphosphate. Hyperbaric oxygen (HBO2) is recommended for treating carbon monoxide poisoning. The therapeutic effect is due to a high oxygen pressure removing carbon monoxide from the cells. We hypothesise that HBO2 induces changes in whole-blood-cyanide by a competitive...

  2. Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 Contribute to Insect Killing.

    Science.gov (United States)

    Flury, Pascale; Vesga, Pilar; Péchy-Tarr, Maria; Aellen, Nora; Dennert, Francesca; Hofer, Nicolas; Kupferschmied, Karent P; Kupferschmied, Peter; Metla, Zane; Ma, Zongwang; Siegfried, Sandra; de Weert, Sandra; Bloemberg, Guido; Höfte, Monica; Keel, Christoph J; Maurhofer, Monika

    2017-01-01

    Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whether these compounds also contribute to insecticidal activity. We tested mutants of the highly insecticidal strains Pseudomonas protegens CHA0, Pseudomonas chlororaphis PCL1391, and Pseudomonas sp. CMR12a, defective for individual or multiple antimicrobial compounds, for injectable and oral activity against lepidopteran insect larvae. Moreover, we studied expression of biosynthesis genes for these antimicrobial compounds for the first time in insects. Our survey revealed that hydrogen cyanide and different types of cyclic lipopeptides contribute to insecticidal activity. Hydrogen cyanide was essential to full virulence of CHA0 and PCL1391 directly injected into the hemolymph. The cyclic lipopeptide orfamide produced by CHA0 and CMR12a was mainly important in oral infections. Mutants of CMR12a and PCL1391 impaired in the production of the cyclic lipopeptides sessilin and clp1391, respectively, showed reduced virulence in injection and feeding experiments. Although virulence of mutants lacking one or several of the other antimicrobial compounds, i.e., 2,4-diacetylphloroglucinol, phenazines, pyrrolnitrin, or pyoluteorin, was not reduced, these metabolites might still play a role in an insect background since all investigated biosynthetic genes for antimicrobial compounds of strain

  3. Three hydroxy aurone compounds as chemosensors for cyanide anions.

    Science.gov (United States)

    Chen, Huihui; Sun, Yunhui; Zhou, Chuanjian; Cao, Duxia; Liu, Zhiqiang; Ma, Lin

    2013-12-01

    Three new 4-hydroxy aurone compounds 1-3 with dimethylamino (1), bromine (2) and cyano (3) as terminal group have been synthesized. Their photophysical properties as well as recognition properties for cyanide anions in acetonitrile and aqueous solution have also been examined. These compounds exhibit remarkable response to cyanide anions with obvious color and fluorescence change owing to hydrogen bonding reaction between cyanide anions and the O-H moiety of the sensors, which allows naked eye detection of cyanide anions.

  4. CuO/CeO2 Catalysts for Selective Oxidation of Carbon Monoxide in Excess Hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘春涛; 史鹏飞; 张菊香

    2004-01-01

    CuO/CeO2 catalysts were prepared by a coprecipitation method and tested for CO removal from reformed fuels via selective oxidation. The influence of the calcination temperature on the chemical compositions and catalytic performance of CuO/CeO2 catalysts were studied. It was found that CuO/CeO2 catalysts exhibit excellent CO oxidation activity and selectivity,and the complete removal of CO is attained when the catalysts are calcined at appropriate temperatures. XRD, TPR and XPS results indicate that CuO/CeO2 catalysts exhibit higher catalytic performance in CO selective oxidation due to the strong interaction between copper oxide and cerium dioxide, which promotes the dispersion and hydrogen reduction activity of copper.

  5. Carbon Monoxide-induced Stomatal Closure Involves Generation of Hydrogen Peroxide in Vicia faba Guard Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping She; Xi-Gui Song

    2008-01-01

    Here the regulatory role of CO during stomatal movement In Vicla faba L. was surveyed. Results Indicated that, like hydrogen peroxide (H2O2), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H2O2 exhibit the similar regulation role in the atomatal movement. Moreover, our data showed that ascorbic acid (ASA, an important reducing substrate for H2O2 removal) and diphenylene iodonium (DPI, an inhibitor of the H2O2-generating enzyme NADPH oxidase) not only reversed stomatal closure by CO, but also suppressed the H2O2 fluorescence induced by CO, implying that CO induced-atomatal closure probably involves H2O2 signal. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO specific synthetic inhibitor ZnPPIX, ASA and DPI reversed the darkness-induced stomatal closure and H2O2 fluorescence. These results show that, perhaps like H2O2, the levels of CO in guard cells of V. faba are higher In the dark than in light, HO-1 and NADPH oxidase are the enzyme systems responsible for generating endogenous CO and H2O2 in darkness respectively, and that CO is involved in darkness-induced H2O2 synthesis in V. faba guard cells.

  6. Reduction of Quartz to Silicon Monoxide by Methane-Hydrogen Mixtures

    Science.gov (United States)

    Li, Xiang; Zhang, Guangqing; Tronstad, Ragnar; Ostrovski, Oleg

    2016-08-01

    The reduction of quartz was studied isothermally in a fluidized bed reactor using continuously flowing methane-hydrogen gas mixture in the temperature range from 1623 K to 1773 K (1350 °C to 1500 °C). The CO content in the off-gas was measured online using an infrared gas analyzer. The main phases of the reduced samples identified by XRD analysis were quartz and cristobalite. Significant weight loss in the reduction process indicated that the reduction products were SiO and CO. Reduction of SiO2 to SiO by methane starts with adsorption and dissociation of CH4 on the silica surface. The high carbon activity in the CH4-H2 gas mixture provided a strongly reducing condition. At 1623 K (1350 °C), the reduction was very slow. The rate and extent of reduction increased with the increasing temperature to 1723 K (1450 °C). A further increase in temperature to 1773 K (1500 °C) resulted in a decrease in the rate and extent of reduction. An increase in the gas flow rate from 0.4 to 0.8 NL/min and an increase in the methane content in the CH4-H2 gas mixture from 0 to 5 vol pct facilitated the reduction. Methane content in the gas mixture should be maintained at less than 5 vol pct in order to suppress methane cracking.

  7. Preparation of PdCu Alloy Nanocatalysts for Nitrate Hydrogenation and Carbon Monoxide Oxidation

    Directory of Open Access Journals (Sweden)

    Fan Cai

    2016-06-01

    Full Text Available Alloying Pd with Cu is important for catalytic reactions such as denitrification reaction and CO oxidation reaction, but understanding of the catalyst preparation and its correlation with the catalyst’s activity and selectivity remains elusive. Herein, we report the results of investigations of the preparation of PdCu alloy nanocatalysts using different methods and the catalytic properties of the catalysts in catalytic denitrification reaction and CO oxidation reaction. PdCu alloy nanocatalysts were prepared by conventional dry impregnation method and ligand-capping based wet chemical synthesis method, and subsequent thermochemical activation as well. The alloying characteristics depend on the bimetallic composition. PdCu/Al2O3 with a Pd/Cu ratio of 50:50 was shown to exhibit an optimized hydrogenation activity for the catalytic denitrification reaction. The catalytic activity of the PdCu catalysts was shown to be highly dependent on the support, as evidenced by the observation of an enhanced catalytic activity for CO oxidation reaction using TiO2 and CeO2 supports with high oxygen storage capacity. Implications of the results to the refinement of the preparation of the alloy nanocatalysts are also discussed.

  8. Molecular simulation and macroscopic modeling of the diffusion of hydrogen, carbon monoxide and water in heavy n-alkane mixtures.

    Science.gov (United States)

    Makrodimitri, Zoi A; Unruh, Dominik J M; Economou, Ioannis G

    2012-03-28

    The self-diffusion coefficient of hydrogen (H(2)), carbon monoxide (CO) and water (H(2)O) in n-alkanes was studied by molecular dynamics simulation. Diffusion in a few pure n-alkanes (namely n-C(8), n-C(20), n-C(64) and n-C(96)) was examined. In addition, binary n-C(12)-n-C(96) mixtures with various compositions as well as more realistic five- and six-n-alkane component mixtures were simulated. In all cases, the TraPPE united atom force field was used for the n-alkane molecules. The force field for the mixture of n-alkanes was initially validated against experimental density values and was shown to be accurate. Moreover, macroscopic correlations for predicting diffusion coefficient of H(2), CO and H(2)O in n-alkanes and mixtures of n-alkanes were developed. The functional form of the correlation was based on the rough hard sphere theory (RHS). The correlation was applied to simulation data and an absolute average deviation (AAD) of 5.8% for pure n-alkanes and 3.4% for n-alkane mixtures was obtained. Correlation parameters vary in a systematic way with carbon number and so they can be used to provide predictions in the absence of any experimental or molecular simulation data. Finally, in order to reduce the number of adjustable parameters, for the n-alkane mixtures the "pseudo-carbon number" approach was used. This approach resulted in relatively higher deviation from MD simulation data (AAD of 18.2%); however, it provides a convenient and fast method to predict diffusion coefficients. The correlations developed here are expected to be useful for engineering calculations related to the design of the Gas-to-Liquid process.

  9. Revisión de la toxicocinética y la toxicodinamia del ácido cianhídrico y los cianuros Review of toxicokinetics and toxicodynamics of cyanides and hydrogen cyanide

    Directory of Open Access Journals (Sweden)

    Patricia N. Quiroga

    2009-07-01

    Full Text Available El cianuro es uno de los tóxicos más peligrosos por su rápida y potente acción, muchas veces letal. Los diferentes tratamientos de la intoxicación tienen su base o explicación en el conocimiento de la toxicocinética y la toxicodinamia. La revisión de la toxicocinética del cianuro muestra que, si bien la vía de la tiosulfato-cianuro sulfotransferasa (rodanasa es la principal vía metabólica, el complejo con albúmina sérica sería el primer proceso de detoxificación del cianuro en el metabolismo normal. El efecto protector de formadores de cianhidrinas en casos de intoxicación sigue siendo evaluado a nivel experimental. Los estudios actuales sobre la toxicodinamia del cianuro se enfocan en la afinidad de la unión del cianuro al centro binuclear hemo a3-CuB de la citocromo oxidasa en sus diferentes estados redox y en el mecanismo de inhibición de enzimas antioxidantes. Un mayor y mejor entendimiento de la detoxificación del cianuro así como de los mecanismos de acción tóxica podrían llevar al desarrollo de potenciales antídotos.Cyanide is one of the most dangerous poisons because of its rapid and potent toxicity, most times with lethal outcomes. Different poisoning treatments are based on knowledge of cyanide's toxicokinetic and toxicodynamic. The review of cyanide's toxicokinetics shows that, although thiosulfate-cyanide sulfotransferase (rhodanese is the major metabolic pathway, binding serum albumin would be the first process of detoxification of cyanide in normal metabolism. The protective effect of cyanohydrin formers in cases of poisoning remains experimentally evaluated. Cyanide's binding affinity to the binuclear center heme a3-CuB of cytochrome oxidase within their different redox states and cyanide's mechanism of inhibition of antioxidant enzymes are currently still being investigated. More and better understanding of cyanide's detoxification pathways and/or mechanisms of toxic action could lead to the development

  10. Determination of hydrogen cyanide in yellow phosphorus tail gas%黄磷尾气中氰化氢的测定

    Institute of Scientific and Technical Information of China (English)

    蒋明; 宁平; 王重华; 田森林; 陈炜; 周键; 王磊

    2011-01-01

    采用硝酸银容量法规定黄磷尾气中HCN的含量.依照HJ 484-2009氰化物的AgNO3容量法为蓝本,进行方法的改进研究.结果表明,采用改进后的硝酸银容量法较其他方法更优,能彻底消除黄磷尾气中大量H2S的干扰.该方法简单实用重现性好,适用于工作场所空气中和黄磷尾气中HCN的测定.%Silver nitrate ( AgNO3 ) volumetry is used to determine the content of hydrogen cyanide in yellow phosphorus tail gas. The improvement of this determination method is based on HJ 484—2009. The results show that,the improved AgNO3 volumetry has obvious advantages over other methods,which can completely eliminate the interference of H2S in the yellow phosphorus tail gas. It is simple,practical and feasible for the determination of HCN in workshop and yellow phosphorus tail gas with excellent repeatability.

  11. Connecting the evolution of thermally pulsing asymptotic giant branch stars to the chemistry in their circumstellar envelopes -- I. The case of hydrogen cyanide

    CERN Document Server

    Marigo, Paola; Nanni, Ambra; Bressan, Alessandro; Girardi, Leo

    2015-01-01

    We investigate the formation of hydrogen cyanide (HCN) in the inner circumstellar envelopes of thermally pulsing asymptotic giant branch (TP-AGB) stars. A dynamic model for periodically shocked atmospheres, which includes an extended chemo-kinetic network, is for the first time coupled to detailed evolutionary tracks for the TP-AGB phase computed with the COLIBRI code. We carried out a calibration of the main shock parameters (the shock formation radius and the effective adiabatic index) using the circumstellar HCN abundances recently measured for a populous sample of pulsating TP-AGB stars. Our models recover the range of the observed HCN concentrations as a function of the mass-loss rates, and successfully reproduce the systematic increase of HCN moving along the M-S-C chemical sequence of TP-AGB stars, that traces the increase of the surface C/O ratio. The chemical calibration brings along two important implications: i) the first shock should emerge very close to the photosphere, and ii) shocks are expecte...

  12. A novel cyanide ion sensing approach based on Raman scattering for the detection of environmental cyanides.

    Science.gov (United States)

    Yan, Fei; Gopal Reddy, C V; Zhang, Yan; Vo-Dinh, Tuan

    2010-09-01

    This paper describes a direct optical approach based on Raman scattering for selective and sensitive detection of cyanide ions in aqueous environment without requiring time-consuming sample pretreatment and the formation of hydrogen cyanide. Due to the strong affinity between copper (I) and cyanide ion, evaporated copper (I) iodide (CuI) thin films are shown to be excellent substrates for selective recognition of free cyanide ions in aqueous matrices. The amount of cyanide ion retained by the copper (I) in the CuI thin films reflects its actual concentration in tested samples, and the subsequent Raman measurements of the substrate are shown to be capable of detecting toxic cyanide content at levels under international drinking water standard and environmental regulatory concentrations. Measurements obtained from the same batch of evaporated CuI thin films (approximately 100-nm thickness) show excellent linearity over a variety of cyanide concentrations ranging from 1.5 microM to 0.15 mM. This detection method offers the advantage of selectively detecting cyanides causing a health hazard while avoiding detection of other common interfering anions such as Cl-, Br-, PO4(3-), SO4(2-), NO2-, S2- and SCN-. Coupled with portable Raman systems that are commercially available, our detection approach will provide on-site monitoring capability with little sample preparation or instrument supervision, which will greatly expedite the assessment of potential environmental cyanide risks. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    2009-08-31

    Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory

  14. 一氧化碳和硫化氢在颈动脉体缺氧反应中的调节作用%Hypoxia responses led by carotid body is regulated by carbon monoxide and hydrogen sulfide

    Institute of Scientific and Technical Information of China (English)

    黄跃宇; 夏建华; 石学银

    2008-01-01

    传统认为一氧化碳和硫化氢为有毒气体,但近年的研究表明在颈动脉体感受低氧的过程中,这两种气体起重要的调节作用.一氧化碳通过增加内向钾离子电流抑制窦神经;硫化氢供体硫氢化钠则呈剂量依赖性兴奋窦神经.并且一氧化碳供体能完全逆转硫化氢对窦神经的兴奋作用.因而,一氧化碳和硫化氢共同调节颈动脉体对低氧状态反应的信号转导.%Carbon monoxide and hydrogen sulfide, both of which are well known toxic agents, are now demonstrated as critical gaseous mediators in carotid body when it responds to hypoxia. While carbon monoxide reduces sinus nerve impulses by decreasing inward potassium ion flux, sodium hydrosulfide, a donor of hydrogen sulfide, exerts an opposite effect in a dose - dependent manner.However, the exciting effect of hydrogen sulfide will be reversed completely after the donor of carbon monoxide is subjected. In this way, carbon monoxide and hydrogen sulfide intermingle into the regulation to the hypoxic information transduetion.

  15. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.

    Science.gov (United States)

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  16. Preparation of Fe-Mn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide

    Institute of Scientific and Technical Information of China (English)

    F.Fazlollahi; M.Sarkari; H.Gharebaghi; H.Atashi; M.M.Zarei; A.A.Mirzaei; W.C.Hecker

    2013-01-01

    A K promoted iron-manganese catalyst was prepared by sol-gel method,and subsequently was tested for hydrogenation of carbon monoxide to light olefins.The kinetic experiments on a well-characterized Fe-Mn/K/Al2O3 catalyst were performed in a fixed-bed micro-reactor in a temperature range of 280-380 ℃,pressure range of 0.1-1.2 MPa,H2/CO feed molar ratio range of 1-2.1 and a space velocity range of 2000-7200 h-1.Considering the mechanism of the process and Langmuir-Hinshelwood-Hogan-Watson (LHHW) approach,unassisted CO dissociation and H-assisted CO dissociation mechanisms were defined.The best models were obtained using non-linear regression analysis and Levenberg-Marquardt algorithm.Consequently,4 models were considered as the preferred models based on the carbide mechanism.Finally,a model was proposed as a best model that assumed the following kinetically relevant steps in the iron-Fischer-Tropsch (FT) synthesis:(1) CO dissociation occurred without hydrogen interaction and was not a rate-limiting step; (2) the first hydrogen addition to surface carbon was the rate-determining steps.The activation energy and adsorption enthalpy were calculated 40.0 and-30.2 kJ· mol-1,respectively.

  17. Cyanide: an unreported cause of neurological complications following smoke inhalation.

    Science.gov (United States)

    Baud, Frédéric; Boukobza, Monique; Borron, Stephen W

    2011-10-28

    Although the combustion of natural and synthetic products can yield cyanide, its toxic role in residential fires is unclear. This case concerns a woman aged over 50 years who presented comatose, pulseless and apnoeic after a domestic fire. Cardiopulmonary resuscitation and on-site administration of 2.5 g hydroxocobalamin as an antidote to cyanide resulted in a return of spontaneous circulation. On admission to the intensive care unit, the patient was treated with hyperbaric oxygen for suspected carbon monoxide poisoning. In a blood specimen collected at the scene before hydroxocobalamin administration, blood cyanide and carbon monoxide levels were 68 µmol/l and 10.9%. On admission to hospital, plasma lactate was at 4.6 mmol/l. Brain scans revealed lesions which were confirmed 2 months later, consistent with the haemorrhagic necrosis often seen after poisoning by cyanide. These data suggest that smoke inhalation in a residential fire may cause cyanide poisoning. This case provides clinical, biological, analytical and brain imaging data supporting the hypothesis of the toxic role of smoke-induced cyanide poisoning which may result in neurological sequelae.

  18. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

    OpenAIRE

    Wybouw, N.; Dermauw, W.; Tirry, L.; Stevens, C; Grbić, M.; Feyereisen, R; Van Leeuwen, T.

    2014-01-01

    eLife digest Hydrogen cyanide is a poison that is deadly for most forms of life. Also known as prussic acid, it has killed countless humans throughout history in accidents and during the Holocaust. Hydrogen cyanide is also used by plants to defend themselves against insects and other herbivorous animals. Many plants produce chemicals called cyanogenic glycosides that can be converted into hydrogen cyanide when the plant is eaten. This is an ancient and efficient defense against all sorts of h...

  19. Interaction between 2,4-Diacetylphloroglucinol- and Hydrogen Cyanide-Producing Pseudomonas brassicacearum LBUM300 and Clavibacter michiganensis subsp. michiganensis in the Tomato Rhizosphere.

    Science.gov (United States)

    Paulin, Mélanie M; Novinscak, Amy; Lanteigne, Carine; Gadkar, Vijay J; Filion, Martin

    2017-07-01

    We have previously demonstrated that inoculation of tomato plants with 2,4-diacetylphloroglucinol (DAPG)- and hydrogen cyanide (HCN)-producing Pseudomonas brassicacearum LBUM300 could significantly reduce bacterial canker symptoms caused by Clavibacter michiganensis subsp. michiganensis In this study, in order to better characterize the population dynamics of LBUM300 in the rhizosphere of tomato plants, we characterized the role played by DAPG and HCN production by LBUM300 on rhizosphere colonization of healthy and C. michiganensis subsp. michiganensis-infected tomato plants. The impact of C. michiganensis subsp. michiganensis presence on the expression of DAPG and HCN biosynthetic genes in the rhizosphere was also examined. In planta assays were performed using combinations of C. michiganensis subsp. michiganensis and wild-type LBUM300 or DAPG (LBUM300ΔphlD) or HCN (LBUM300ΔhcnC) isogenic mutant strains. Populations of LBUM300 and phlD and hcnC gene expression levels were quantified in rhizosphere soil at several time points up to 264 h postinoculation using culture-independent quantitative PCR (qPCR) and reverse transcriptase quantitative PCR (RT-qPCR) TaqMan assays, respectively. The presence of C. michiganensis subsp. michiganensis significantly increased rhizospheric populations of LBUM300. In C. michiganensis subsp. michiganensis-infected tomato rhizospheres, the populations of wild-type LBUM300 and strain LBUM300ΔhcnC, both producing DAPG, were significantly higher than the population of strain LBUM300ΔphlD A significant upregulation of phlD expression was observed in the presence of C. michiganensis subsp. michiganensis, while hcnC expression was only slightly increased in the mutant strain LBUM300ΔphlD when C. michiganensis subsp. michiganensis was present. Additionally, biofilm production was found to be significantly reduced in strain LBUM300ΔphlD compared to the wild-type and LBUM300ΔhcnC strains.IMPORTANCE The results of this study suggest that

  20. Rhodium based clusters for oxygen reduction and hydrogen oxidation in 0.5 M H2SO4, tolerant to methanol and carbon monoxide, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Jimenez-Sandoval, O.; Borja-Arco, E.; Altamirano-Gutierrez, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Queritaro (Mexico); Castellanos, R.H. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Queretaro, Queretaro (Mexico)

    2008-07-01

    Rhodium (Rh6(CO)16) and novel Rh-based clusters were prepared using thermolysis techniques under different conditions in N2 and H2 reaction media, as well as in n-nonane, o-xylene, 1,2-dichlorobenzene and dimethylsulfoxide. The clusters were used as novel electrocatalysts for oxygen reduction reaction (ORR) in the absence and presence of 1.0 and 2.0 M methanol solutions. The catalysts were also used for hydrogen oxidation reaction (HOR) with pure hydrogen (H2) and in the presence of carbon monoxide (CO). Rotating disk electrode measurements were used to analyze the materials. The study showed that the electrocatalyst support ratio plays a significant role in the electrochemical behaviour of the materials. Rh6(CO)16 and Rh2(1,2-DCB) presented the best electrocatalytic behaviour for ORR and HOR in the absence and presence of methanol and CO. The study demonstrated that the rhodium-based materials are capable of performing ORR and HOR while being tolerant of both methanol and CO. 3 refs., 3 figs.

  1. Two benzoyl coumarin amide fluorescence chemosensors for cyanide anions

    Science.gov (United States)

    Wang, Zian; Wu, Qianqian; Li, Jiale; Qiu, Shuang; Cao, Duxia; Xu, Yongxiao; Liu, Zhiqiang; Yu, Xueying; Sun, Yatong

    2017-08-01

    Two new benzoyl coumarin amide derivatives with ortho hydroxyl benzoyl as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions in acetonitrile have also been examined. The influence of electron donating diethylamino group in coumarin ring and hydroxyl in benzoyl group on recognition properties was explored. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectral change and high sensitivity. The import of diethylamine group increases smartly the absorption ability and fluorescence intensity of the compound, which allows the recognition for cyanide anions can be observed by naked eyes. The in situ hydrogen nuclear magnetic resonance spectra combining photophysical properties change and job's plot data confirm that Michael addition between the chemosensors and cyanide anions occurs. Molecular conjugation is interrupted, which leads to fluorescence quenching. At the same time, there is a certain extent hydrogen bond reaction between cyanide and hydroxyl group in the compounds, which is beneficial to the recognition.

  2. Pseudomonas aeruginosa PAO1 Kills Caenorhabditis elegans by Cyanide Poisoning

    OpenAIRE

    Gallagher, Larry A.; Manoil, Colin

    2001-01-01

    In this report we describe experiments to investigate a simple virulence model in which Pseudomonas aeruginosa PAO1 rapidly paralyzes and kills the nematode Caenorhabditis elegans. Our results imply that hydrogen cyanide is the sole or primary toxic factor produced by P. aeruginosa that is responsible for killing of the nematode. Four lines of evidence support this conclusion. First, a transposon insertion mutation in a gene encoding a subunit of hydrogen cyanide synthase (hcnC) eliminated ne...

  3. Investigations into the nature of halogen- and hydrogen-bonding interactions of some heteroaromatic rings with dichlorine monoxide.

    Science.gov (United States)

    Wu, Junyong

    2014-09-01

    We have studied the structures, properties, and nature of halogen- and hydrogen-bonding interactions between some heteroaromatic rings (C(5)H(5)N, C(4)H(4)O, and C(4)H(4)S) with Cl(2)O at the MP2/aug-cc-pVTZ level. We also considered the solvent effect on the halogen bonds and hydrogen bonds in the C(5)H(5)N-Cl(2)O complexes and found that the solvent has a weakening effect on the π-type halogen bond and hydrogen bond but a prominent enhancing effect on σ-type halogen bond. The complexes have also been analyzed with symmetry adapted perturbation theory method (SAPT).

  4. Vibrational Spectroscopic Studies of Hydrogen, Carbon-Monoxide and Thiophene Adsorption on Ruthenium-Sulfide and Sulfided Ruthenium Catalysts.

    Science.gov (United States)

    Heise, William Herbert

    The "working surface" of ruthenium hydrodesulfurization (HDS) catalysts has been modeled by preadsorption of sulfur, carbon and carbon plus sulfur on Ru(0001). Adsorption and decomposition of thiophene over these surfaces have been investigated using TDS/TPRS, XPS and EELS. Thiophene is proposed to decompose via a three-step mechanism involving: (i) initial thiophene cracking at 120 K yielding surface sulfur and hydrocarbon species, (ii) hydrogen desorption near 230 K providing additional decomposition ensembles and (iii) continued decomposition to form "metallocycle -like" intermediates which retain EELS features similar to thiophene. Preadsorbed carbon or carbon plus sulfur are not as effective for passivation of the surface toward metallocycle formation as preadsorbed sulfur alone. This result is attributed to the fact that carbon deposited from butadiene annealed and decomposed at 700 K forms islands, while sulfur establishes a well-ordered superlattice on the surface. The decrease in metallocycle formation with increasing poison levels appears to explain HDS selectivity and specific activity trends observed in our laboratory from mildly sulfided (10% H_2S/H_2 , 673 K, 2h) ruthenium catalysts retaining submonolayers of sulfur. Incoherent inelastic neutron scattering (IINS) has been used to characterize hydrogen adsorption sites on ruthenium sulfide. Hydrogen resides on sulfur anions to form SH groups, yielding two non-degenerate bending modes at 600 and 710 cm^{-1}. Complementary hydrogen adsorption and H_2/D _2 exchange data suggest that the active sites for hydrogen adsorption may be coordinatively unsaturated S-S anion pairs. Comparison of CO adsorption on sulfided Ru/Al _2O_3 to sulfur precovered Ru(0001) reveals an adsorption site related to edge/corner atoms directly perturbed by sulfur, consistent with previous kinetic studies demonstrating higher specific activity for thiophene HDS over smaller ruthenium crystallites.

  5. Preferential Oxidation of Carbon Monoxide in Excess Hydrogen over Au/Co3O4- CeO2 Catalysts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Au/Co3O4-CeO2 mixed-oxide catalysts were shown experimentally to be highly active and selective for the oxidation of CO in hydrogen-rich mixture. Activity was markedly influenced by the composition of the support, aging temperature and Au-loading temperature. It provided that single-step removal of CO from hydrogen-rich stream both in the absence and presence of CO2 and H2O to a PEMFC tolerant level. It was found that catalytic activity is greatly affected by adding CO2 in the mixture and increased by farther adding H2O. It meants H2O has the effect to rise catalytic activity. Moreover,it shows better stability with reaction time for the preferential CO oxidation.

  6. Apolar Distal Pocket Mutants of Yeast Cytochrome c Peroxidase: Hydrogen Peroxide Reactivity and Cyanide Binding of the TriAla, TriVal, and TriLeu Variants

    Science.gov (United States)

    Bidwai, Anil K.; Meyen, Cassandra; Kilheeney, Heather; Wroblewski, Damian; Vitello, Lidia B.; Erman, James E.

    2012-01-01

    Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions. PMID:23022490

  7. Effect of Organic Capping Layers over Monodisperse Platinum Nanoparticles upon Activity for Ethylene Hydrogenation and Carbon Monoxide Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, John N.; Tsung, Chia-Kuang; Huang, Wenyu; Somorjai, Gabor A.

    2009-03-24

    The influence of oleylamine (OA), trimethyl tetradecyl ammonium bromide (TTAB), and polyvinlypyrrolidone (PVP) capping agents upon the catalytic properties of Pt/silica catalysts was evaluated. Pt nanoparticles that were 1.5 nm in size were synthesized by the same procedure (ethylene glycol reduction under basic conditions) with the various capping agents added afterward for stabilization. Before examining catalytic properties for ethylene hydrogenation and CO oxidation, the Pt NPs were deposited onto mesoporous silica (SBA-15) supports and characterized by transmission electron microscopy (TEM), H{sub 2} chemisorption, and elemental analysis (ICP-MS). PVP- and TTAB-capped Pt yielded mass-normalized reaction rates that decreased with increasing pretreatment temperature, and this trend was attributed to the partial coverage of the Pt surface with decomposition products from the organic capping agent. Once normalized to the Pt surface area, similar intrinsic activities were obtained regardless of the pretreatment temperature, which indicated no influence on the nature of the active sites. Consequently, a chemical probe technique using intrinsic activity for ethylene hydrogenation was demonstrated as an acceptable method for estimating the metallic surface areas of Pt. Amine (OA) capping exhibited a detrimental influence on the catalytic properties as severe deactivation and low activity were observed for ethylene hydrogenation and CO oxidation, respectively. These results were consistent with amine groups being strong poisons for Pt surfaces, and revealed the need to consider the effects of capping agents on the catalytic properties.

  8. Hydrogenation of carbon monoxide over the mixed catalysts composed of cobalt-nickel/manganese oxide-zirconium oxide and zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, Tatsumi; Iwakuni, Hideharu; Eguchi, Koichi; Arai, Hiromichi (Kyushu Univ., Fukuoka (Japan))

    1991-08-15

    Mechanical mixtures of Co-Ni/MnO-ZrO2 and zeolite were used as catalysts for the selective synthesis of gasoline by carbon monoxide hydrogenation. Formation of branched alkanes was promoted, but that of hydrocarbons higher than a carbon number of 10 was suppressed by a combination with zeolite. The reactivity of zeolite for higher hydrocarbons has the decisive role in the product distribution as result of using these mixed catalysts, and thus the product distribution strongly depends on the type of zeolite. Since the hydrogenolysis of higher hydrocarbons proceeds on the strong acid sites, the formation of branched alkanes was promoted by increasing the aluminium content in the zeolite. Ammonia temperature-programmed desorption suggests that increasing the aluminium content in the zeolite increases the number of strong acid sites, but weakens the average strength of the acid sites. Pentasil zeolite with an aluminium content of 1.32 mmolg{sup -1} is effective for enhancing the yield of gasoline as well as its octane number. 8 figs., 1 tab., 20 refs.

  9. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases!

    Science.gov (United States)

    Li, Ling; Hsu, Anna; Moore, Philip K

    2009-09-01

    Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulphide (H(2)S) together make up a family of biologically active gases (the so-called 'gaseous triumvirate') with an increasingly well defined range of physiological effects plus roles to play in a number of disease states. Over the years, most researchers have concentrated their attention on understanding the part played by a single gas in one or more body systems. It is becoming more clear that all three gases are synthesised naturally in the body, often by the same cells within the same organs, and that all three gases exert essentially similar biological effects albeit via different mechanisms. Within the cardiovascular system, for example, all are vasodilators, promote angiogenesis and vascular remodelling and are protective towards tissue damage in for example, ischaemia-reperfusion injury in the heart. Similarly, all exhibit complex effects in inflammation with both pro- and anti-inflammatory effects recognised. It seems likely that cell function is controlled not by the activity of single gases working in isolation but by the concerted activity of all three of these gases working together.

  10. Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields.

    Science.gov (United States)

    Kim, B H; Bellows, P; Datta, R; Zeikus, J G

    1984-10-01

    Extracts prepared from non-solvent-producing cells of Clostridium acetobutylicum contained methyl viologen-linked hydrogenase activity (20 U/mg of protein at 37 degrees C) but did not display carbon monoxide dehydrogenase activity. CO addition readily inhibited the hydrogenase activity of cell extracts or of viable metabolizing cells. Increasing the partial pressure of CO (2 to 10%) in unshaken anaerobic culture tube headspaces significantly inhibited (90% inhibition at 10% CO) both growth and hydrogen production by C. acetobutylicum. Growth was not sensitive to low partial pressures of CO (i.e., up to 15%) in pH-controlled fermentors (pH 4.5) that were continuously gassed and mixed. CO addition dramatically altered the glucose fermentation balance of C. acetobutylicum by diverting carbon and electrons away from H(2), CO(2), acetate, and butyrate production and towards production of ethanol and butanol. The butanol concentration was increased from 65 to 106 mM and the butanol productivity (i.e., the ratio of butanol produced/total acids and solvents produced) was increased by 31% when glucose fermentations maintained at pH 4.5 were continuously gassed with 85% N(2)-15% CO versus N(2) alone. The results are discussed in terms of metabolic regulation of C. acetobutylicum saccharide fermentations to achieve maximal butanol or solvent yield.

  11. Which cyanide antidote?

    Science.gov (United States)

    Hall, Alan H; Saiers, Jane; Baud, Frédéric

    2009-01-01

    Cyanide has several antidotes, with differing mechanisms of action and diverse toxicological, clinical, and risk-benefit profiles. The international medical community lacks consensus about the antidote or antidotes with the best risk-benefit ratio. Critical assessment of cyanide antidotes is needed to aid in therapeutic and administrative decisions that will improve care for victims of cyanide poisoning (particularly poisoning from enclosed-space fire-smoke inhalation), and enhance readiness for cyanide toxic terrorism and other mass-casualty incidents. This paper reviews preclinical and clinical data on available cyanide antidotes and considers the profiles of these antidotes relative to properties of a hypothetical ideal cyanide antidote. Each of the antidotes shows evidence of efficacy in animal studies and clinical experience. The data available to date do not suggest obvious differences in efficacy among antidotes, with the exception of a slower onset of action of sodium thiosulfate (administered alone) than of the other antidotes. The potential for serious toxicity limits or prevents the use of the Cyanide Antidote Kit, dicobalt edetate, and 4-dimethylaminophenol in prehospital empiric treatment of suspected cyanide poisoning. Hydroxocobalamin differs from these antidotes in that it has not been associated with clinically significant toxicity in antidotal doses. Hydroxocobalamin is an antidote that seems to have many of the characteristics of the ideal cyanide antidote: rapid onset of action, neutralizes cyanide without interfering with cellular oxygen use, tolerability and safety profiles conducive to prehospital use, safe for use with smoke-inhalation victims, not harmful when administered to non-poisoned patients, easy to administer.

  12. Cyanide poisoning after bitter almond ingestion

    Directory of Open Access Journals (Sweden)

    Y Mouaffak

    2013-01-01

    Full Text Available Plants are responsible for 5% poisoning recorded by Poison Control Centers. Among all known toxic plants, some present a real danger if ingested. We report the case of a five years old child, who presented, after ten bitter almonds ingestion, consciousness disorders progressing to coma with generalized tonic-clonic seizures, miosis and metabolic acidosis. Bitter almonds and nuclei of stone fruits or other rosaceae (apricot, peach, plum contain cyanogenic glycosides, amygdalin, that yields hydrogen cyanide when metabolized in the body. Swallowing six to ten bitter almonds may cause serious poisoning, while the ingestion of fifty could kill a man. The binding of cyanide ions on cytochrome oxidase lead to a non hypoxemic hypoxia by blocking the cellular respiratory chain. Therapeutic measures include, oxygen support, correction of acidosis and cyanide antidote by hydroxocobalamin in case of serious poisoning.

  13. Determination of carbon monoxide, methane and carbon dioxide in refinery hydrogen gases and air by gas chromatography.

    Science.gov (United States)

    Kamiński, Marian; Kartanowicz, Rafal; Jastrzebski, Daniel; Kamiński, Marcin M

    2003-03-14

    This paper illustrates a method for determining trace amounts of CO, CH4 and CO2 with the detection limit of 0.15, 0.15 and 0.20 microg/l, respectively, in refinery hydrogen gases or in air. A simple modification of a gas chromatograph equipped with a flame-ionization detector is presented. A Porapak Q column, additionally connected with a short molecular sieve 5A packed column and a catalytic hydrogenation reactor on the Ni catalyst have been applied. The principle of the analytical method proposed is the separation of CO from O2 before the introduction of CO to the methanizer. The analytical procedure and examples of the results obtained have been presented. The modification applied makes it possible to use the GC instrument for other determinations, requiring utilization of the Porapak Q column and the flame-ionization detector. In such cases, the short molecular sieve 5A column and the methanizer can be by-passed.

  14. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  15. Cyanide intoxication as part of smoke inhalation--a review on diagnosis and treatment from the emergency perspective

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hyldegaard, Ole

    2011-01-01

    This paper reviews the current literature on smoke inhalation injuries with special attention to the effects of hydrogen cyanide. It is assumed that cyanide poisoning is still an overlooked diagnosis in fire victims. Treatment against cyanide poisoning in the emergency setting should be given based...

  16. Effects of Tai Chi exercise on blood pressure and plasma levels of nitric oxide, carbon monoxide and hydrogen sulfide in real-world patients with essential hypertension.

    Science.gov (United States)

    Pan, Xiaogui; Zhang, Yi; Tao, Sai

    2015-01-01

    Objective was to investigate the effects of Tai Chi exercise on nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) levels, and blood pressure (BP) in patients with essential hypertension (EH). EH patients were assigned to the Tai Chi exercise group (HTC, n = 24), and hypertension group (HP, n = 16) by patients' willingness. Healthy volunteers matched for age and gender were recruited as control (NP, n = 16). HTC group performed Tai Chi (60 min/d, 6 d/week) for 12 weeks. Measurements (blood glucose, cholesterol, NO, CO, H2S and BP) were obtained at week 0, 6, and 12. SBP, MAP, and low-density lipoprotein cholesterol levels decreased, and high-density lipoprotein cholesterol levels increased by week 12 in the HTC group (all p < 0.05 versus baseline). Plasma NO, CO, and H2S levels in the HTC group were increased after 12 weeks (all p < 0.05 versus baseline). SBP, DBP and MAP levels were significantly lower in the HTC than in the HP group (all p < 0.05). However, no changes were observed in the HP and NP groups. Correlations were observed between changes in SBP and changes in NO, CO and H2S (r = -0.45, -0.51 and -0.46, respectively, all p < 0.05), and between changes in MAP and changes in NO, CO and H2S (r = -0.36, -0.45 and -0.42, respectively, all p < 0.05). In conclusion, Tai Chi exercise seems to have beneficial effects on BP and gaseous signaling molecules in EH patients. However, further investigation is required to understand the exact mechanisms underlying these observations, and to confirm these results in a larger cohort.

  17. Combined crossed molecular beam and ab initio investigation of the multichannel reaction of boron monoxide (BO; X2Σ+) with Propylene (CH3CHCH2; X1A'): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Dangi, Beni B; Parker, Dorian S N; Kaiser, Ralf I; An, Yi; Sun, Bing-Jian; Chang, A H H

    2014-10-16

    The reaction dynamics of boron monoxide ((11)BO; X(2)Σ(+)) with propylene (CH(3)CHCH(2); X(1)A') were investigated under single collision conditions at a collision energy of 22.5 ± 1.3 kJ mol(-1). The crossed molecular beam investigation combined with ab initio electronic structure and statistical (RRKM) calculations reveals that the reaction follows indirect scattering dynamics and proceeds via the barrierless addition of boron monoxide radical with its radical center located at the boron atom. This addition takes place to either the terminal carbon atom (C1) and/or the central carbon atom (C2) of propylene reactant forming (11)BOC(3)H(6) intermediate(s). The long-lived (11)BOC(3)H(6) doublet intermediate(s) underwent unimolecular decomposition involving at least three competing reaction mechanisms via an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group elimination to form cis-/trans-1-propenyl-oxo-borane (CH(3)CHCH(11)BO), 3-propenyl-oxo-borane (CH(2)CHCH(2)(11)BO), and ethenyl-oxo-borane (CH(2)CH(11)BO), respectively. Utilizing partially deuterated propylene (CD(3)CHCH(2) and CH(3)CDCD(2)), we reveal that the loss of a vinyl hydrogen atom is the dominant hydrogen elimination pathway (85 ± 10%) forming cis-/trans-1-propenyl-oxo-borane, compared to the loss of a methyl hydrogen atom (15 ± 10%) leading to 3-propenyl-oxo-borane. The branching ratios for an atomic hydrogen loss from the vinyl group, an atomic hydrogen loss from the methyl group, and a methyl group loss are experimentally derived to be 26 ± 8%:5 ± 3%:69 ± 15%, respectively; these data correlate nicely with the branching ratios calculated via RRKM theory of 19%:5%:75%, respectively.

  18. Millimeter wave spectra of carbonyl cyanide

    Science.gov (United States)

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  19. Vertical observation of molecular hydrogen and carbon monoxide: Implication for non-photochemical H2 production at ocean surface and subsurface

    Science.gov (United States)

    Kawagucci, S.; Narita, T.; Obata, H.; Ogawa, H.; Gamo, T.

    2009-12-01

    Biological nitrogen fixation is a key metabolism controlling marine N-cycling and also known as a main H2 source. Recently, it was proposed that a monitoring of surface H2 concentration could be used quickly to figure out the spatial extent of biological nitrogen fixation activity without onboard incubation required for currently used methods for detecting the activity. However, H2 behavior in ocean water was still unresolved. This study carried out vertical observation of H2 and CO concentrations in south of Japan, western North Pacific. Because carbon monoxide, CO, in seawater has no relation with nitrogen fixation metabolism and is produced dominantly by the photochemical reaction, which is an altanative H2 source, simultaneous observation and comparison of H2 and CO concentration is helpful to investigate H2 behavior in ocean water. Reductive gases in seawater were observed during the R/V Tansei-maru KT-08-14 cruise by using a wired CTD-CMS (CTD-carousel multiple sampling) system to conduct vertical sampling (at most 200 m depth) and by using a plastic bucket for sampling surface seawater. The sample in the Niskin-X bottle was directed to the bottom of a 120 mL brown-colored glass vial allowed to overflow by 2 volumes before the tube was slowly withdrawn. After the addition of 0.5 mL HgCl2-saturated solution for poisoning, the PTFE-lined butyl-gum septum was used to cap the vials. Molecular hydrogen (H2) and carbon monoxide (CO) were analyzed at an onboard laboratory within 6 hours after subsampling. 20 mL of sample water was substituted by 20 mL of H2- and CO-free air using a gas-tight syringe; then the vial was put on an automatic shaker and shaken upside down for 6 minutes to achieve a complete equilibrium between the dissolved and head space gases in the vial. The equilibrated headspace was taken by another gas-tight syringe and then injected into a gas chromatograph equipped with a trace reduced gas detector. Vertical distribution of dissolved H2 and CO

  20. Novel, orally effective cyanide antidotes.

    Science.gov (United States)

    Nagasawa, Herbert T; Goon, David J W; Crankshaw, Daune L; Vince, Robert; Patterson, Steven E

    2007-12-27

    A series of prodrugs of 3-mercaptopyruvate (3-MP), the substrate for the enzyme 3-mercaptopyruvate/cyanide sulfurtransferase (3-MPST) that converts cyanide to the nontoxic thiocyanate, which are highly effective cyanide antidotes, have been developed. These prodrugs of 3-MP are unique in being not only orally bioavailable, but may be administered up to an hour prior to cyanide as a prophylactic agent and are both rapid- or slow-acting when given parenterally.

  1. Interaction between hydrogen sulfide/cystathionine γ-lyase and carbon monoxide/heme oxygenase pathways in aortic smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Hong-fang JIN; Jun-bao DU; Xiao-hui LI; Yan-fei WANG; Yin-fang LIANG; Chao-shu TANG

    2006-01-01

    Aim: To investigate the interaction between hydrogen sulfide (H2S)/cystathionine γ-lyase (CSE) and carbon monoxide (CO)/heme oxygenase (HO) pathways in aortic smooth muscle cells (ASMC). Methods: The ASMCs were divided into the following groups: (1) the control group; (2) the zinc protoporphyrin (ZnPP) 20 (μmol/L group; (3) the propargylglycine (PPG) 2 mmol/L, 4 mmol/L and 10 mmol/L groups; and (4) the sodium hydrosulfide (NaHS) 1×10-5 mol/L, 1×10-4 mol/L and 1×10-3 mol/L groups. Each of the groups was further divided into 6 h, 12 h, 18 h and 24 h subgroups. The CO level, represented by carboxyhemoglobin (HbCO) content was measured using a spectrophotometric method and H2S content was detected by a sensitive electrode method. CSE and HO-1 expressions were detected by Western blotting. Results: The H2S content in the medium and CSE expression by ASMC were markedly increased by ZnPP compared with the control group. HbCO content in the medium and HO-1 expression by the ASMC started strengthening following 24 h treatment with PPG at 2 mmol/L, but were further strengthened following 18 h and 24 h treatment with PPG at 4 mmol/L compared with the controls (P<0.01). PPG at 10 mmol/L increased the HbCO level in the medium following 18 h treatment and increased HO-1 expression by the ASMC following 12 h treatment. Moreover, NaHS at 1×10-5 mol/L and 1×10-4 mol/L decreased the HbCO level in the medium and HO-1 expression by the ASMC after 6 h and 12 h treatment, while NaHS at 1×10-3 mol/L decreased them at all time points of the treatments. Conclusion: The results suggested that endogenous CO/HO and H2S/CSE pathways inhibited each other in ASMC under physiological conditions.

  2. Annual hydrogen, carbon monoxide and carbon dioxide concentrations and surface to air exchanges in a rural area (Québec, Canada)

    Science.gov (United States)

    Constant, Philippe; Poissant, Laurier; Villemur, Richard

    The industrialization and the demographic expansion have both influenced the biogeochemical cycle of hydrogen (H 2), carbon monoxide (CO) and carbon dioxide (CO 2). In the actual context, knowledge about the spatial distribution of the natural sources and sinks of these trace gases is then crucial to infer possible effects of climate and land use changes on their global budget. This article reports the H 2, CO and CO 2 concentrations and micrometeorological fluxes measured during 1 year in a rural area of the mixed wood ecozone of Canada. Land use represents a critical issue in the control of trace gas natural sources or sinks of that region, which is the most densely habited in Canada. On average, the site emitted CO 2 at a rate of 7.7 g m -2 d -1 and consumed H 2 and CO at 0.34 and 5.1 mg m -2 d -1, respectively. Temperature was the most important factor affecting the H 2 and CO surface to air exchanges. The strength of the soil sink was maximal at the end of the summer, while H 2 and CO emissions were observed at the snow-melting period. In winter, H 2 and CO depositions were attributed to their oxidation by photochemically active compounds within the snow cover. When soil temperature was above 10 °C, trace gas fluxes followed a well-defined diurnal cycle. H 2 and CO 2 deposition rates were positively correlated with H 2O fluxes, while CO followed the inverse trend. CO 2 diurnal variations resulted from a balance between photosynthesis and soil respiration, while some biotic and abiotic factors were proposed to explain the trend observed for H 2. In the case of CO, emissions originating from heat- and photo-induced reactions were involved in the attenuation in the strength of the soil sink during daytime. Measured fluxes were compared with the literature to show the relative importance of the rural areas in the studied trace gases budget.

  3. Antidotes for Cyanide Poisoning

    Science.gov (United States)

    2013-01-01

    the treatment of acute cyanide toxicity in a swine (Sus scrofa ) model. Ann Emerg Med Jun 2012; 59:532 539. 3 Bebarta VS, Tanen DA, Lairet J, Dixon PS...a swine (Sus scrofa ) model. Ann Emerg Med 2010; 55:345 351. 4 Bebarta VS, Pitotti RL, Dixon PS, Valtier S, Esquivel L, Bush A, Little CM

  4. Behaviour of cyanides in soil and groundwater

    DEFF Research Database (Denmark)

    Kjeldsen, P.

    1999-01-01

    Most people associate the word cyanide with an extremely dangerous and fast-acting poison. However, there are several cyanide species, of varying toxicity, depending on the source to cyanide contamination. The most important cyanide compounds, as well as the most important sources of cyanide...

  5. A crossed molecular beam and ab-initio investigation of the reaction of boron monoxide (BO; X2Σ+) with methylacetylene (CH3CCH; X1A1): competing atomic hydrogen and methyl loss pathways.

    Science.gov (United States)

    Maity, Surajit; Parker, Dorian S N; Dangi, Beni B; Kaiser, Ralf I; Fau, Stefan; Perera, Ajith; Bartlett, Rodney J

    2013-11-21

    The gas-phase reaction of boron monoxide ((11)BO; X(2)Σ(+)) with methylacetylene (CH3CCH; X(1)A1) was investigated experimentally using crossed molecular beam technique at a collision energy of 22.7 kJ mol(-1) and theoretically using state of the art electronic structure calculation, for the first time. The scattering dynamics were found to be indirect (complex forming reaction) and the reaction proceeded through the barrier-less formation of a van-der-Waals complex ((11)BOC3H4) followed by isomerization via the addition of (11)BO(X(2)Σ(+)) to the C1 and/or C2 carbon atom of methylacetylene through submerged barriers. The resulting (11)BOC3H4 doublet radical intermediates underwent unimolecular decomposition involving three competing reaction mechanisms via two distinct atomic hydrogen losses and a methyl group elimination. Utilizing partially deuterated methylacetylene reactants (CD3CCH; CH3CCD), we revealed that the initial addition of (11)BO(X(2)Σ(+)) to the C1 carbon atom of methylacetylene was followed by hydrogen loss from the acetylenic carbon atom (C1) and from the methyl group (C3) leading to 1-propynyl boron monoxide (CH3CC(11)BO) and propadienyl boron monoxide (CH2CCH(11)BO), respectively. Addition of (11)BO(X(2)Σ(+)) to the C1 of methylacetylene followed by the migration of the boronyl group to the C2 carbon atom and/or an initial addition of (11)BO(X(2)Σ(+)) to the sterically less accessible C2 carbon atom of methylacetylene was followed by loss of a methyl group leading to the ethynyl boron monoxide product (HCC(11)BO) in an overall exoergic reaction (78 ± 23 kJ mol(-1)). The branching ratios of these channels forming CH2CCH(11)BO, CH3CC(11)BO, and HCC(11)BO were derived to be 4 ± 3%, 40 ± 5%, and 56 ± 15%, respectively; these data are in excellent agreement with the calculated branching ratios using statistical RRKM theory yielding 1%, 38%, and 61%, respectively.

  6. Carbon monoxide poisoning

    Science.gov (United States)

    ... and smokers. Carbon monoxide can harm a fetus (unborn baby still in the womb). Symptoms of carbon ... symptoms Outlook (Prognosis) Carbon monoxide poisoning can cause death. For those who survive, recovery is slow. How ...

  7. CARBON MONOXIDE TREATMENT GUIDELINES

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2014-02-01

    Full Text Available Carbon monoxide is the leading cause of unintentional poisoning-related death in Slovenia. It is an odorless, colorless gas that usually remains undetectable until exposures result in injury or death. Exposure to carbon monoxide is most commonly accompanied by headache, nausea, vomiting, dizziness, confusion, drowsiness, fatigue and collapse. Carbon monoxide poisoning management includes normobaric oxygen therapy. Hyperbaric-oxygen treatments reduce the risk of cognitive sequelae after carbon monoxide poisoning. 

  8. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... main content Languages 简体中文 English Bahasa Indonesia 한국어 Español ภาษาไทย Tiếng Việt Text Size: Decrease Font Increase ... Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as ...

  9. Análise dos teores de ácidos cianídrico e fítico em suplemento alimentar: multimistura Analysis of hydrogen cyanide and phytic acid contents in feeding supplements: multimixture

    Directory of Open Access Journals (Sweden)

    Elizabete Helbig

    2008-06-01

    Full Text Available OBJETIVO: Este estudo objetivou quantificar o teor de ácido cianídrico em folhas de mandioca, que receberam tratamento prévio antes da secagem, e a concentração de ácido fítico na multimistura submetida à cocção úmida. MÉTODOS: Utilizou-se a multimistura produzida pela Pastoral da Criança da cidade de Pelotas (RS, constituída por: farelos de trigo (30% e arroz (30%: farinhas de milho (15% e trigo (10%; pós de casca de ovo (5%, de folha de mandioca (5% e de sementes (5%, abóbora ou girassol. Foi realizada orientação ao fornecedor da folha de mandioca sobre a forma recomendada de preparo antes da secagem. RESULTADOS: O conteúdo de ácidos cianídrico e fitatos no suplemento alimentar foram respectivamente de 85mg.kg-1 e 35.90mg.100-1. CONCLUSÃO: Verificou-se que a mudança na forma de secagem das folhas de mandioca foi eficiente para a redução de glicosídeos cianogênicos, e que o processo de torrefação dos ingredientes foi suficiente para produzir a redução de ácido fítico da multimistura aos níveis preconizados pela legislação, não sendo observadas diferenças estatisticamente significantes quando comparadas as amostras que também foram tratadas com calor úmido.OBJECTIVE: The objective of this study was to quantify the amount of hydrogen cyanide in cassava leaves that were treated before drying and the concentration of phytic acid in a multimixture submitted to wet cooking. METHODS: The multimixture produced by the Pastoral da Criança of the city of Pelotas (RS consisting of wheat flour (30%, rice flour (30%, corn flour (15%, wheat (10%, egg shell powder (5%, cassava leaves (5% and pumpkin or sunflower seeds (5% was used. The supplier was advised on how to process the cassava leaves before drying them. RESULTS: The hydrogen cyanide and phytic acid contents of the feeding supplement are 85mg.kg-1 and 35.90mg.100-1 respectively. CONCLUSION: Changing the way the cassava leaves were dried was efficient to reduce

  10. Semi-quantitative tests of cyanide in foods and excreta of Three Hapalemur species in Madagascar.

    Science.gov (United States)

    Yamashita, Nayuta; Tan, Chia L; Vinyard, Christopher J; Williams, Cathy

    2010-01-01

    Three sympatric Hapalemur species (H. g. griseus, H. aureus, and H. (Prolemur) simus) in Ranomafana National Park, Madagascar are known to eat bamboo food parts that contain cyanide. How these lemurs avoid cyanide poisoning remains unknown. In this study, we tested for the presence/absence of cyanide in bamboo lemur foods and excreta to (1) document patterns of cyanide consumption among species with respect to diet, (2) identify routes of elimination of cyanide from the gastrointestinal tract, and (3) determine whether cyanide is absorbed from the diet. We tested 102 food, urine, and fecal samples for hydrogen cyanide (HCN) during two "pre-dry" seasons (April 2006, May 2007) using commercially available Cyantesmo test strips. The test strips changed color in the presence of HCN, and we recorded color change on a scale of 0 (no change) to 5 (cobalt) at preset intervals with a final score taken at 24 hr. We detected cyanide in bamboo food parts and urine of all three Hapalemur species. Time to color change of the test strips ranged from almost instantaneous to >12 hr incubation. Of the foods tested, only bamboo contained cyanide, but results differed among bamboo species and plant parts of the same species. Specifically, branch shoot and culm pith of the giant bamboo produced strong, immediate reactions to the test paper, whereas parts of liana bamboos produced either weak or no color change. Cyanide was present in almost all urine samples but rarely in fecal samples. This suggests that dietary cyanide is absorbed in the gastrointestinal tract of the Hapalemur species and excreted, at least in part, by the kidneys. Samples from H. griseus exhibited lower, though still detectable, cyanide levels compared with H. simus and H. aureus. Differences among lemur species appear to be related to the specific bamboo parts consumed.

  11. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  12. Aufnahme von Cyanid in Pflanzen

    DEFF Research Database (Denmark)

    Trapp, Stefan; Koch, Ines; Christiansen, Helle

    2001-01-01

    Cyanides are waste products from the pyrolysis of coal and are frequent soil pollutants in cities nowadays. Prussic acid (HCN) is a fast acting, highly toxic poison, but iron-complexed cyanides in soil are far less toxic. The phytotoxicity of free CN to basket willows (Salix viminalis) was determ...

  13. Recovery of Copper from Cyanidation Tailing by Flotation

    Science.gov (United States)

    Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli

    2016-02-01

    In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.

  14. Cyanide intoxication as part of smoke inhalation - a review on diagnosis and treatment from the emergency perspective

    Directory of Open Access Journals (Sweden)

    Hyldegaard Ole

    2011-03-01

    Full Text Available Abstract This paper reviews the current literature on smoke inhalation injuries with special attention to the effects of hydrogen cyanide. It is assumed that cyanide poisoning is still an overlooked diagnosis in fire victims. Treatment against cyanide poisoning in the emergency setting should be given based on the clinical diagnosis only. Oxygen in combination with a recommended antidote should be given immediately, the first to reduce cellular hypoxia and the second to eliminate cyanide. A specific antidote is hydroxycobalamin, which can be given iv. and has few side effects.

  15. Differential Analysis of Hydrogen Cyanide Delivery in Mainstream Smoke of Different Domestic and Imported Cigarettes%国内外卷烟样品主流烟气中氢氰酸释放量的差异

    Institute of Scientific and Technical Information of China (English)

    许永; 缪明明; 张霞; 刘巍; 陈永宽; 金永灿; 杨帅; 马燕; 曹红云; 芮晓东

    2011-01-01

    The hydrogen cyanide (HCN) content in mainstream smoke of 157 domestic and imported cigarette samples were determined with continuous flow method, and the results were statistically analyzed. The results showed that: 1) the HCN delivery of domestic cigarettes was obviously higher than that of imported ones; 2) the HCN deliveries of domestic Virginia and blended type cigarettes were significantly higher than that of imported blended type cigarettes; the HCN deliveries between domestic Virginia, blended and imported Virginia type cigarettes, as well as between imported Virginia and imported blended type cigarettes were not significantly different; 3 ) as for the domestic Virginia type cigarettes of different price categories, the HCN delivery of Category I was much lower than that of Categories IV and V ; that of Category I, II and M as well as Category II , III and IV showed no significant difference; the HCN delivery of Category V was significantly higher than that of other categories.%采用连续流动法测定了国内外较有代表性的157种卷烟样品主流烟气中HCN的释放量,并对检测结果进行了统计分析.结果表明:①国内卷烟样品主流烟气中HCN释放量明显高于国外卷烟;②国内烤烟型卷烟和混合型卷烟样品主流烟气中HCN释放量明显高于国外混合型卷烟,国内烤烟型、混合型卷烟与国外烤烟型之间,以及国外烤烟型与国外混合型之间无显著性差异;③从不同价位国内烤烟型卷烟样品主流烟气中HCN释放量来看,一类卷烟明显低于四、五类卷烟,一、二、三类卷烟之间没有显著性差异,二、三、四类卷烟之间差异不明显,五类卷烟明显高于一、二、三、四类卷烟.

  16. Aufnahme von Cyanid in Pflanzen

    DEFF Research Database (Denmark)

    Trapp, Stefan; Koch, Ines; Christiansen, Helle

    2001-01-01

    Cyanides are waste products from the pyrolysis of coal and are frequent soil pollutants in cities nowadays. Prussic acid (HCN) is a fast acting, highly toxic poison, but iron-complexed cyanides in soil are far less toxic. The phytotoxicity of free CN to basket willows (Salix viminalis....... Willows survived in gas work soils with up to 452 mg/kg total CN. More CN was taken up from nutrient solution than from the soil.Complexed cyanide is probably translocated into the leaves as well. Free CN was readily eliminated from Erlenmeyers with plants growing in nutrient solution. Planting...

  17. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire Carbon Monoxide from Engine-Driven Generators and ... Engine-Driven Tools, 2004–2014 JANUARY 08, 2015 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2011 Annual Estimates View All ... Inside CPSC Accessibility ...

  18. The fate of cyanide in leach wastes at gold mines: an environmental perspective

    Science.gov (United States)

    Johnson, Craig A.

    2015-01-01

    This paper reviews the basic chemistry of cyanide, methods by which cyanide can be analyzed, and aspects of cyanide behavior that are most relevant to environmental considerations at mineral processing operations associated with gold mines. The emphasis is on research results reported since 1999 and on data gathered for a series of U.S. Geological Survey studies that began in the late 1990s. Cyanide is added to process solutions as the CN− anion, but ore leaching produces numerous other cyanide-containing and cyanide-related species in addition to the desired cyanocomplex of gold. These can include hydrogen cyanide (HCN); cyanometallic complexes of iron, copper, zinc, nickel, and many other metals; cyanate (CNO−); and thiocyanate (SCN−). The fate of these species in solid wastes and residual process solutions that remain once gold recovery activities are terminated and in any water that moves beyond the ore processing facility dictates the degree to which cyanide poses a risk to aquatic organisms and aquatic-dependent organisms in the local environment.

  19. Cyanide binding to ferrous and ferric microperoxidase-11.

    Science.gov (United States)

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low.

  20. Development of Biochemical Cyanide Antidotes.

    Science.gov (United States)

    1992-03-01

    The long accepted mechanism of action for thiosulfate is that it serves as a sulfane-sulfur donor, in the presence of the mitochondrial enzyme...capable of identifying biochemical cyanide antidotes, but would not be expected to detect sulfur donors or methemoglobin formers. Blockade of mitochondrial ...549-558. Yamamoto, H. (1989). Hyperammonemia, increased brain neutral and aromauic amino acid levels and encephalopathy induced by cyanide in mice

  1. Analysis of Potential Risk Caused by Hydrogen and Carbon Monoxide in Buildings Attached to Containment for Asco 1 and 2 and Vandellos II NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Nos, V.; Rosa, C. de la; Lee, S. J.; Burelbach, J.; Plys, M.; Fornos, J.

    2014-07-01

    The Consejo de Seguridad Nuclear (CSN) of Spain issued a Technical Instruction encouraging nuclear power plant s to analyze the potential risk of hydrogen in the buildings attached to containment [1]. According to the Technical Instruction, the analysis should assume that all severe accident mitigation features are available, including those that are planned but not yet in place. (Author)

  2. Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide.

    Science.gov (United States)

    Martínková, Ludmila; Veselá, Alicja Barbara; Rinágelová, Anna; Chmátal, Martin

    2015-11-01

    The purpose of this study is to summarize the current knowledge of the enzymes which are involved in the hydrolysis of cyanide, i.e., cyanide hydratases (CHTs; EC 4.2.1.66) and cyanide dihydratases (CynD; EC 3.5.5.1). CHTs are probably exclusively produced by filamentous fungi and widely occur in these organisms; in contrast, CynDs were only found in a few bacterial genera. CHTs differ from CynDs in their reaction products (formamide vs. formic acid and ammonia, respectively). Several CHTs were also found to transform nitriles but with lower relative activities compared to HCN. Mutants of CynDs and CHTs were constructed to study the structure-activity relationships in these enzymes or to improve their catalytic properties. The effect of the C-terminal part of the protein on the enzyme activity was determined by constructing the corresponding deletion mutants. CynDs are less active at alkaline pH than CHTs. To improve its bioremediation potential, CynD from Bacillus pumilus was engineered by directed evolution combined with site-directed mutagenesis, and its operation at pH 10 was thus enabled. Some of the enzymes have been tested for their potential to eliminate cyanide from cyanide-containing wastewaters. CynDs were also used to construct cyanide biosensors.

  3. A Kinetic Study of Selective Hydrogenation of Carbon Monoxide to C2 Oxygenates on Rh-Mn-Li-Fe/SiO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Hongmei Yin; Yunjie Ding; Hongyuan Luo; Daiping He; Weimiao Chen; Zhiyong Ao; Liwu Lin

    2003-01-01

    The kinetics of CO hydrogenation for the synthesis of C2 oxygenates over Rh-Mn-Li-Fe/SiO2was investigated. Kinetic parameters for the formation of ethanol, acetaldehyde, C2 oxygenates, methanol and methane were obtained. The activation energy, H2 and CO dependence orders for ethanol and acetaldehyde formation differed greatly, the large difference seemed to imply that they were formed through different intermediates.

  4. Thermodynamic equilibrium calculations of hydrogen production from the combined processes of dimethyl ether steam reforming and partial oxidation

    Science.gov (United States)

    Semelsberger, Troy A.; Borup, Rodney L.

    Thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the combined processes of dimethyl ether (DME) partial oxidation and steam reforming were investigated as a function of oxygen-to-carbon ratio (0.00-2.80), steam-to-carbon ratio (0.00-4.00), temperature (100 °C-600 °C), pressure (1-5 atm) and product species. Thermodynamically, dimethyl ether processed with air and steam generates hydrogen-rich fuel-cell feeds; however, the hydrogen concentration is less than that for pure DME steam reforming. Results of the thermodynamic processing of dimethyl ether indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 °C, oxygen-to-carbon ratios greater than 0.00 and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure has negligible effects on the hydrogen content. Thermodynamically, dimethyl ether can produce concentrations of hydrogen and carbon monoxide of 52% and 2.2%, respectively, at a temperature of 300 °C, and oxygen-to-carbon ratio of 0.40, a pressure of 1 atm and a steam-to-carbon ratio of 1.50. The order of thermodynamically stable products (excluding H 2, CO, CO 2, DME, NH 3 and H 2O) in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol and methyl-ethyl ether; trace amounts of formaldehyde, formic acid and methanol are observed. Ammonia and hydrogen cyanide are also thermodynamically favored products. Ammonia is favored at low temperatures in the range of oxygen-to-carbon ratios of 0.40-2.50 regardless of the steam-to-carbon ratio employed. The maximum ammonia content (i.e., 40%) occurs at an oxygen-to-carbon ratio of 0.40, a steam-to-carbon ratio of 1.00 and a temperature of 100 °C. Hydrogen cyanide is favored at high temperatures and low oxygen-to-carbon ratios with a maximum of 3.18% occurring at an oxygen-to-carbon ratio of 0.40 and a steam

  5. N,N-二甲基羟胺辐解产生的氢气和一氧化碳的研究%Qualitative and quantitative analysis of hydrogen and carbon monoxide produced by radiation degradation of N, N-dimethyl hydroxylamine

    Institute of Scientific and Technical Information of China (English)

    WANG Jinhua; BAO Borong; WU Minghong; SUN Xilian; ZHANG Xianye; HU Jingxin; YE Guoan

    2005-01-01

    With the development of nuclear power industry, more attentions have been paid on reprocessing power reactor spent fuel. Up to now, PUREX process is the only process available commercially. The process achieves uranium and plutonium separation by means of quick and quantitative reduction of Pu (Ⅳ) to Pu (Ⅲ). Therefore the reductant is very important in PUREX process. Preliminary experiment results[1] show that N, N-dimethyl hydroxylamine not only reduces rapidly Np (Ⅵ) and Pu (Ⅳ) to Np (V) and Pu (Ⅲ), but also stabilizes the Np (V)and Pu (Ⅲ) in acid solution. It may become a salt-free reductant with promising future for applications in the area[2]. However, organics decompose under intense radiation environment, and this affects its reduction efficiency,and products from the degradation may affect separation of the radioactive elements.This paper reports the qualitative and quantitative analysis of hydrogen and carbon monoxide produced by 60Co y-ray degradation of N, N-dimethyl hydroxylamine. The analyses of hydrogen and carbon monoxide were performed by gas chromatography, in which a 2m column packed with 5A molecular sieve and thermal conduc tivity detector[3] were used. The analysis of hydrogen employed argon as carrier gas, the column temperature was 80℃ and the detector temperature was 110℃. The analysis of carbon monoxide used hydrogen as carrier gas, the column temperature was 50℃ and the detector temperature was 80 ℃. The results show that when the concentration of N, N-dimethyl hydroxylamine was between 0.1 mol/L and 0.5 mol/L and the dose delivered by the irradiation was 10-1000 kGy, the volume fraction of hydrogen was (8.0-303.9)× 10-3; and the volume fraction of carbon monoxide is (0-1.7)× 10-3. The volume fraction of hydrogen increased with increasing dose, and it has little relationship with concentration change of N, N-dimethyl hydroxylamine when the irradiation dose was bellow 500 kGy, whereas it increased with the increasing

  6. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... CONSUMER PRODUCT SAFETY COMMISSION Search CPSC Search Menu Home Recalls Recall List CPSC Recall API Recall Lawsuits ... and Bans Report an Unsafe Product Consumers Businesses Home Safety Education Safety Education Centers Carbon Monoxide Information ...

  7. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ... 2011 Annual Estimates View All CO-Related Injury Statistics and Technical Reports Related Links Recalls Safety Education ...

  8. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide ... Related Links Recalls Safety Education Regulations, Laws & Standards Research & Statistics Business & Manufacturing Small Business Resources OnSafety Blogs ...

  9. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Community Outreach Resource Center Toy Recall Statistics CO Poster Contest Pool Safely Business & Manufacturing Business & Manufacturing Business ... Featured Resources CPSC announces winners of carbon monoxide poster contest Video View the blog Clues You Can ...

  10. Carbon Monoxide Information Center

    Science.gov (United States)

    ... and Criminal Penalties Federal Court Orders & Decisions Research & Statistics Research & Statistics Technical Reports Injury Statistics NEISS Injury Data ... On Safety Blogs: CO Safety More CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths ...

  11. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 Annual Estimates OCTOBER 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire ...

  12. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  13. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Import Safety International Recall Guidance Civil and Criminal Penalties Federal Court Orders & ... 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 ...

  14. Carbon Monoxide Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Carbon Monoxide and have...

  15. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Unites States die every year from accidental non-fire related CO poisoning associated with consumer products, including ... CO Blogs Research & Statistics JANUARY 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of ...

  16. Synthesis and x-ray crystallographic analysis of 4,6-di-O-acetyl-2,3-dideoxy-α-D-threo-hexopyranosyl cyanide.

    Science.gov (United States)

    Rotella, Madeline; Giovine, Matthew; Dougherty, William; Boyko, Walter; Kassel, Scott; Giuliano, Robert

    2016-04-29

    The glycopyranosyl cyanide 4,6-di-O-acetyl-2,3-dideoxy-α-D-threo-hexopyranosyl cyanide has been synthesized from tri-O-acetyl-D-galactal by reaction with trimethylsilyl cyanide in the presence of boron trifluoride diethyl etherate followed by catalytic hydrogenation. The synthesis provides the α-anomer stereoselectively, the structure of which was assigned based on 2D NMR techniques and x-ray crystallography. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.

    Science.gov (United States)

    Redman, Aaron; Santore, Robert

    2012-08-01

    Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.

  18. A Disposable Blood Cyanide Sensor

    Science.gov (United States)

    Tian, Yong; Dasgupta, Purnendu K.; Mahon, Sari B.; Ma, Jian; Brenner, Matthew; Wang, Jian-Hua; Boss, Gerry R.

    2013-01-01

    Deaths due to smoke inhalation in fires are often due to poisoning by HCN. Rapid administration of antidotes can result in complete resuscitation of the patient but judicious dosing requires the knowledge of the level of cyanide exposure. Rapid sensitive means for blood cyanide quantitation are needed. Hydroxocyanocobinamide (OH(CN)Cbi) reacts with cyanide rapidly; this is accompanied by a large spectral change. The disposable device consists of a pair of nested petri dish bottoms and a single top that fits the outer bottom dish. The top cover has a diametrically strung porous polypropylene membrane tube filled with aqueous OH(CN)Cbi. One end of the tube terminates in an amber (583 nm) light emitting diode; the other end in a photodiode via an acrylic optical fiber. An aliquot of the blood sample is put in the inner dish, the assembly covered and acid is added through a port in the cover. Evolved HCN diffuses into the OH(CN)Cbi solution and the absorbance in the long path porous membrane tube cell is measured within 160s. The LOD was 0.047, 1.0, 0.15, 5.0 and 2.2 μM, respectively, for water (1 mL), bovine blood (100 μL, 1 mL), and rabbit blood (20μL, 50 μL). RSDs were cyanide in rabbit and human blood. The disposable device permits field measurement of blood cyanide in < 4 min. PMID:23473259

  19. CYANIDE HEAP BILOGICAL DETOXIFICATION - PHASE II

    Science.gov (United States)

    Many active mine sites, mines in closure stage and some abandoned mines are and have utilized cyanidation to remove and recover precious metals. Discharges from these sites normally contain significant amounts of metal cyanide complexes and concentrations of thiocyanate, soluble...

  20. Prophylaxis and Treatment of Cyanide Intoxication Cyanide - Mechanism of Prophylaxis.

    Science.gov (United States)

    1982-07-15

    sodium dihydrogen phosphate were products of Fisher Scientific Company (Fairlawn, NJ). Sodium thiosulfate, sodium hydroxide, sodium cyanide, sodium...acetate buffer , 4 4 pH 5.2, and 0.5 ml of a 0.1 mM solution of SDS was added to the outer well of the diffusion cell, and 2.0 ml of 0.1 N sodium...digital pH meter (Orion Research, Inc.) that contained 10 U1 of a silver potassium cyanide indicator- buffer solution (17.69 g Na2 HPO4 , 5.5 ml 10 M NaOH

  1. Prophylaxis and Treatment of Cyanide Intoxication. Cyanide - Mechanism of Prophylaxis.

    Science.gov (United States)

    1983-04-15

    AD-A142 380 PROPHYLAXIS AND TREATMENT OF CYANIDE INTOXICATION I/f CYANIDE - MECHANISM OF PROPHYLAXISU) WASHINGTON STATE UNIV PULLMAN d L WAY 15 APR...invaluable contributions to completion of this work. My thanks to fellow students Linda Baker, for helping write a computer program which provided...8217 COMPILED BY KORIAT, LICHTENSTEIN, AND FISCHHOFF(1980) 25 ’PROGRAM DEVELOPED BY 26 ’JOHN R. TIFFANY AND LINDA S. BAKER 27 30 LI$:’A’:L2$:’A’:L3$:’B’:L4$:’B

  2. Cyanide Soap? Dissolved material in Titan's Seas

    Science.gov (United States)

    Lorenz, R. D.; Lunine, J. I.; Neish, C. D.

    2011-10-01

    Although it is evident that Titan's lakes and seas are dominated by ethane, methane, nitrogen, and (in some models) propane, there is divergence on the predicted relative abundance of minor constituents such as nitriles and C-4 alkanes. Nitriles such as hydrogen cyanide and acetonitrile, which have a significant dipole moment, may have a disproportionate influence on the dielectric properties of Titan seas and may act to solvate polar molecules such as water ice. The hypothesis is offered that such salvation may act to enhance the otherwise negligible solubility of water ice bedrock in liquid hydrocarbons. Such enhanced solubility may permit solution erosion as a formation mechanism for the widespread pits and apparently karstic lakes on Titan. Prospects for testing this hypothesis in the laboratory, and with measurements on Titan, will be discussed.

  3. Antidotes for acute cyanide poisoning.

    Science.gov (United States)

    Borron, Stephen W; Baud, Frederic J

    2012-08-01

    Cyanide poisoning can present in multiple ways, given its widespread industrial use, presence in combustion products, multiple physical forms, and chemical structures. The primary target of toxicity is mitochondrial cytochrome oxidase. The onset and severity of poisoning depend on the route, dose, physicochemical structure and other variables. Common poisoning features include dyspnea, altered respiratory patterns, abnormal vital signs, altered mental status, seizures, and lactic acidosis. Our present knowledge supports cyanide poisoning treatment based on excellent supportive care with adjunctive antidotal therapy. Multiple antidotes exist and vary in regional availability. All currently marketed antidotes appear to be effective. Antidotal mechanisms include chelation, formation of stable, less toxic complexes, methemoglobin induction, and sulfane sulfur supplementation for detoxification by endogenous rhodanese. Each antidote has advantages and disadvantages. For example, hydroxocobalamin is safer than the methemoglobin inducers in patients with smoke inhalation. Research for new, safer and more effective cyanide antidotes continues.

  4. Hydrogenation of carbon monoxide over mixed catalysts. Co-Ni/MnO-ZrO sub 2 to zeolite kara naru kongo shokubai wo mochiita issankatanso no suisoka

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T.; Iwakuni, H.; Eguchi, K.; Arai, H. (Graduate School of Engineering Sciences, Kyushu Univ., Fukuoka (Japan). Department of Materials Science and Technology)

    1990-07-10

    The mechanical mixtures of Co-Ni/MnO-ZrO {sub 2} and zeolite were used as catalysts for the selective synthesis of gasoline by CO hydrogenation. Formation of branched-paraffins was promoted but that of higher hydrocarbons than carbon number of 10 was suppressed by combination with zeolite. The product distribution strongly depended on the type of zeolite catalyst. Pentasil zeolite was active for the formation of branched-paraffins, probably because of the cracking reaction occurring on the strong acid sites. The formation of branched paraffin was further promoted by ion-exchange with Pt. The mixture of Co-Ni/MnO-ZrO {sub 2} and PtH-pentasil zeolite was very active for the formation of gasoline with high octane number. 34 refs., 10 figs., 2 tabs.

  5. 一氧化碳对硫化氢舒张大鼠肺动脉作用的影响%THE EFFECTS OF CARBON MONOXIDE ON THE RAT PULMONARY ARTERY RELAXATION RESPONSES TO HYDROGEN SULFIDE

    Institute of Scientific and Technical Information of China (English)

    张晓静; 孟祥艳; 黄新莉; 戴鸿雁; 韦鹏; 凌亦凌

    2010-01-01

    目的 观察在脂多糖(lipopolysaccharide,LPS)诱导下,一氧化碳(carbon monoxide,CO)对硫化氢(hydrogen sulfide,H2S) 舒张肺动脉作用的影响.方法 气管内滴注生理盐水或LPS后,制备肺动脉环(pulmonary artery rings,PARs),应用血管环张力测定技术,分别在给予CO供体氯血红素(hemin,Hm) 或血红素氧合酶1抑制剂锌原卟啉9(zinc protoporphyrin-IX,ZnPP-IX)的条件下,从离体水平观察PARs对H2S供体硫氢化钠(sodium hydrosulfide,NaHS)舒张反应变化,同时检测出肺血(out-going pulmonary blood,OPB)和入肺血(in-flowing pulmonary blood,IPB)中碳氧血红蛋白(carboxyhemoglobin,COHb)含量,以其差值反映肺循环CO生成的水平.结果 滴注LPS 4 h和8 h后,用Hm孵育PARs后,PARs对NaHS的累积浓度舒张反应较孵育前显著增强(P0.05).结论 在LPS诱导下,CO可以增强H2S舒张肺动脉的作用.

  6. Electrocatalytic studies of osmium-ruthenium carbonyl cluster compounds for their application as methanol-tolerant cathodes for oxygen reduction reaction and carbon monoxide-tolerant anodes for hydrogen oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Arco, E.; Uribe-Godinez, J.; Castellanos, R.H. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico); Altamirano-Gutierrez, A.; Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Inst. Politecnico Nacional, Querataro (Mexico)

    2006-07-01

    This paper provided details of an electrokinetic study of novel electrocatalytic materials capable of performing both the oxygen reduction reaction (ORR) and the hydrogen oxidation reaction (HOR). Osmium-ruthenium carbonyl cluster compounds (Os{sub x}Ru{sub 3}(CO){sub n}) were synthesized by chemical condensation in non-polar organic solvents at different boiling points and refluxing temperatures. Three different non-polar organic solvents were used: (1) n-nonane; o-xylene; and 1,2-dichlorobenzene. The electrocatalysts were characterized by Fourier Transform Infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A rotating disk electrode technique was used to analyze the materials. Results of the analysis showed that the materials performed ORR in both the presence and absence of carbon monoxide (CO), and that electrocatalysts were not poisoned by the presence of CO. Cyclic voltamperometry for the disk electrodes showed that the electrochemical behaviour of the compounds in the acid electrolyte was similar in the presence or absence of methanol. The Tafel slope, exchange current density and the transfer coefficient were also investigated. The electrokinetic parameters for the ORR indicated that the materials with the highest electrocatalytic activity were synthesized in 1,2-dichlorobenzene. Electrocatalytic activity during HOR were prepared in n-nonane. It was concluded that the new materials are good candidates for use as both a cathode and an anode in proton exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). 7 refs., 2 tabs., 7 figs.

  7. Pilot industrial experimental study on cyanide removal and copper deposition by hydrogen peroxide in adsorption lean liquid in Zijinshan Gold Mine%紫金山金矿吸附贫液过氧化氢除氰沉铜半工业试验研究

    Institute of Scientific and Technical Information of China (English)

    林斌; 巫銮东; 谭希发

    2014-01-01

    采用过氧化氢氧化除氰沉铜工艺,对紫金山金矿吸附贫液进行了处理。其研究结果表明:在27.5%过氧化氢用量约为4.0 kg/m3,处理过程中不添加石灰时,总铜去除率83.52%,总氰化合物去除率90.57%,沉渣中铜品位为52.08%;处理过程中添加0.5 kg/m3石灰时,总铜去除率95.76%,总氰化合物去除率98.07%,沉渣中铜品位为20.09%。该工艺消除了吸附贫液直接返回堆浸场喷淋时因其铜含量高对金浸出率、吸附率等生产技术指标造成的不良影响。该工艺简单、清洁环保、设备投资小、实施速度较快、技术先进、经济可行,适合对含铜、含氰吸附贫液的短期应急处理。%Hydrogen peroxide is used to oxidize and remove cyanide and precipitate copper ,for the treatment of adsorption lean solution in Zijinshan Gold Mine .The results show that when the dosage of 27.5 %hydrogen peroxide is about 4.0 kg/m3 and without the addition of lime in the process ,the total removal rate of copper is 83.52 %,and that of cyanide is 90.57 %,copper grade of sediment is 52.08 %; with 0.5 kg/m3 lime added,the total copper re-moval rate is 95 .76 %,and cyanide 98 .07 %,copper grade of sediment is 20 .09 %.The process eliminates the ad-verse effects on the technical index ,such as the gold leaching rate and adsorption rate ,caused when adsorption lean solutions directly go back to heaps for spraying because of its high copper content .The process is simple ,clean,envi-ronment-friendly ,needs small equipment investment ,could be fastly implemented ,it is technically reliable ,economical and feasible ,and suitable for short-term emergency treatment of adsorption lean liquid containing copper and cyanide .

  8. Simultaneous Determination of Cyanide and Thiocyanate in Plasma by Chemical Ionization Gas Chromatography Mass-Spectrometry (CI-GC-MS)

    Science.gov (United States)

    2012-09-04

    at RT. It has been found that SCN− can be converted to cyanide in the presence of erythrocytes [46], or oxidizing agents such as nitrite and hydrogen ...by plants. In: Keeler RF, Van Kampen KR, James LF (eds) Effects of poisons in plants on livestock. Academic Press, San Diego, pp 301–310 5...Wu HL (1994) Electron-capture gas chromatographic determination of cyanide, iodide, nitrite, sulfide , and thiocyanate anions by phase-transfer

  9. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  10. Cyanide bioremediation: the potential of engineered nitrilases.

    Science.gov (United States)

    Park, Jason M; Trevor Sewell, B; Benedik, Michael J

    2017-04-01

    The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.

  11. A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

    NARCIS (Netherlands)

    Wybouw, N.; Dermauw, W.; Tirry, L.; Stevens, C.; Grbić, M.; Feyereisen, R.; Van Leeuwen, T.

    2014-01-01

    Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic

  12. Development of new heterogeneous catalysts for the decomposition of methanol into hydrogen and carbon monoxide applying high throughput methods; Entwicklung neuer heterogener Katalysatoren zur Spaltung von Methanol in Wasserstoff und Kohlenmonoxid mittels Hochdurchsatz-Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Torsten

    2008-07-11

    The topic of this thesis has been the development of new heterogeneous catalysts for the decomposition of methanol into hydrogen and carbon monoxide. As an important constraint here, the content of noble metals of the catalysts should be as low as possible. High-throughput-methods were applied in some of the syntheses and experiments to accelerate the development, as, for example, the use of liquid based sol-gel syntheses and the examination of catalyst libraries by spatial resolution gas chromatography. This screening technique allowed to test up to 207 different substances during one single experiment. Then, different combinatorial strategies were applied. First, these methods led to a highly active and stable catalyst in the ternary system of Cu-Ni-Zn, which showed high conversion and selectivity comparable to an industrial reference catalyst. Its activity during an 18 hour long term run was constant in contrast to the reference. Second, an additional approach starting from a broader variety of elements led to a Ce- Ru- and to a Cr-Ru-catalyst. Both of them were highly active in short term experiments, but lost their outstanding performances during long term runs. (orig.) [German] Die vorliegende Arbeit befasste sich mit der Entwicklung neuer heterogener Katalysatoren fuer die Spaltung von Methanol zu Wasserstoff und Kohlenmonoxid, die einen moeglichst geringen Gehalt an Edelmetallen aufweisen sollten. Um diesen Prozess zu beschleunigen, wurden in einem Teil der Synthesen und Experimente Hochdurchsatzmethoden verwendet. Neben der Roboter gestuetzten Sol-Gel-Synthese umfasste dies die Untersuchung von Katalysatorbibliotheken mittels ortsaufgeloester Gaschromatographie, die es ermoeglichte, in einem Experiment bis zu 207 verschiedene Substanzen auf ihre katalytische Aktivitaet zu testen. Unter Anwendung verschiedener kombinatorischer Strategien wurde zunaechst ein sehr aktiver und stabiler Katalysator im ternaeren Cu-Ni-Zn-System entdeckt. Neben Umsaetzen und

  13. Dimethyl trisulfide: A novel cyanide countermeasure.

    Science.gov (United States)

    Rockwood, Gary A; Thompson, David E; Petrikovics, Ilona

    2016-12-01

    In the present studies, the in vitro and in vivo efficacies of a novel cyanide countermeasure, dimethyl trisulfide (DMTS), were evaluated. DMTS is a sulfur-based molecule found in garlic, onion, broccoli, and similar plants. DMTS was studied for effectiveness as a sulfur donor-type cyanide countermeasure. The sulfur donor reactivity of DMTS was determined by measuring the rate of the formation of the cyanide metabolite thiocyanate. In experiments carried out in vitro in the presence of the sulfurtransferase rhodanese (Rh) and at the experimental pH of 7.4, DMTS was observed to convert cyanide to thiocyanate with greater than 40 times higher efficacy than does thiosulfate, the sulfur donor component of the US Food and Drug Administration-approved cyanide countermeasure Nithiodote(®) In the absence of Rh, DMTS was observed to be almost 80 times more efficient than sodium thiosulfate in vitro The fact that DMTS converts cyanide to thiocyanate more efficiently than does thiosulfate both with and without Rh makes it a promising sulfur donor-type cyanide antidote (scavenger) with reduced enzyme dependence in vitro The therapeutic cyanide antidotal efficacies for DMTS versus sodium thiosulfate were measured following intramuscular administration in a mouse model and expressed as antidotal potency ratios (APR = LD50 of cyanide with antidote/LD50 of cyanide without antidote). A dose of 100 mg/kg sodium thiosulfate given intramuscularly showed only slight therapeutic protection (APR = 1.1), whereas the antidotal protection from DMTS given intramuscularly at the same dose was substantial (APR = 3.3). Based on these data, DMTS will be studied further as a promising next-generation countermeasure for cyanide intoxication. © The Author(s) 2016.

  14. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  15. CYANIDE HEAP BIOLOGICAL DETOXIFICATION - PHASE II

    Science.gov (United States)

    Many active mine sites, mines in the closure stage and some abandoned mines are and have utilized cyanidation to remove and recover precious metals. Discharges from these sites normally contain significant amounts of metal cyanide complexes and concentrations of thiocyanate, solu...

  16. Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344.

    Science.gov (United States)

    Luque-Almagro, V M; Blasco, R; Huertas, M J; Martínez-Luque, M; Moreno-Vivián, C; Castillo, F; Roldán, M D

    2005-02-01

    Pseudomonas pseudoalcaligenes CECT5344 uses cyanide, cyanate, beta-cyanoalanine, and other cyanoderivatives as nitrogen sources under alkaline conditions, which prevents volatile HCN (pK(a) 9.2) formation. The cyanide consumed by this strain is stoichiometrically converted into ammonium. In addition, this bacterium grows with the heavy metal, cyanide-containing waste water generated by the jewellery industry, and is also a cyanide-resistant strain which induces an alternative oxidase and a siderophore-based mechanism for iron acquisition in the presence of cyanide. The detection of cyanase and beta-cyanoalanine nitrilase activities in cyanide-induced cells suggests their implication in the cyanide degradation pathway.

  17. Cyanide

    Science.gov (United States)

    ... too. Seal the bag, and then seal that bag inside another plastic bag. Disposing of your clothing in this way will ... arrange for further disposal. Do not handle the plastic bags yourself. For more information about cleaning your body ...

  18. Growth and cyanide degradation of Azotobacter vinelandii in cyanide-containing wastewater system.

    Science.gov (United States)

    Koksunan, Sarawut; Vichitphan, Sukanda; Laopaiboon, Lakkana; Vichitphan, Kanit; Han, Jaehong

    2013-04-01

    Azotobacter vinelandii, a strict aerobic nitrogen-fixing bacterium, has been extensively studied with regard to the ability of N2-fixation due to its high expression of nitrogenase and fast growth. Because nitrogenase can also reduce cyanide to ammonia and methane, cyanide degradation by A. vinelandii has been studied for the application in the bioremediation of cyanide-contaminated wastewater. Cyanide degradation by A. vinelandii in NFS (nitrogen-free sucrose) medium was examined in terms of cell growth and cyanide reduction, and the results were applied for cyanide-contaminated cassava mill wastewater. From the NFS medium study in the 300 ml flask, it was found that A. vinelandii in the early stationary growth phase could reduce cyanide more rapidly than the cells in the exponential growth phase, and 84.4% of cyanide was degraded in 66 h incubation upon addition of 3.0 mM of NaCN. The resting cells of A. vinelandii could also reduce cyanide concentration by 90.4% with 3.0 mM of NaCN in the large-scale (3 L) fermentation with the same incubation time. Finally, the optimized conditions were applied to the cassava mill wastewater bioremediation, and A. vinelandii was able to reduce the cyanide concentration by 69.7% after 66 h in the cassava mill wastewater containing 4.0 mM of NaCN in the 3 L fermenter. Related to cyanide degradation in the cassava mill wastewater, nitrogenase was the responsible enzyme, which was confirmed by methane production. These findings would be helpful to design a practical bioremediation system for the treatment of cyanide-contaminated wastewater.

  19. Process for the displacement of cyanide ions from metal-cyanide complexes

    Science.gov (United States)

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  20. CAPSULE REPORT - MANAGING CYANIDE IN METAL FINISHING

    Science.gov (United States)

    The purpose of this document is to provide guidance to surface finishing manufacturers, metal finishing decision maker and regulators on management practices and control technologies for managing cyanide in the workplace. This information can benefit key industry stakeholder gro...

  1. Hydroxocobalamin versus sodium thiosulfate for the treatment of acute cyanide toxicity in a swine (Sus scrofa) model.

    Science.gov (United States)

    Bebarta, Vikhyat S; Pitotti, Rebecca L; Dixon, Patricia; Lairet, Julio R; Bush, Anneke; Tanen, David A

    2012-06-01

    We compare the efficacy of hydroxocobalamin to sodium thiosulfate to reverse the depressive effects on mean arterial pressure in a swine model of acute cyanide toxicity and gain a better understanding of the mechanism of action of the hydroxocobalamin in reversal of the toxicity. Swine were intubated, anesthetized, and instrumented with central arterial and venous lines and a pulmonary artery catheter. Animals (n=36) were randomly assigned to one of 3 groups: hydroxocobalamin alone (150 mg/kg), sodium thiosulfate alone (413 mg/kg), or hydroxocobalamin (150 mg/kg)+sodium thiosulfate (413 mg/kg) and monitored for 60 minutes after the start of antidotal infusion. Cyanide was infused until severe hypotension developed, defined as blood pressure 50% of baseline mean arterial pressure. Repeated-measures ANOVA was used to determine statistically significant changes between groups over time. Time to hypotension (25, 28, and 33 minutes), cyanide dose at hypotension (4.7, 5.0, and 5.6 mg/kg), and mean cyanide blood levels (3.2, 3.7, and 3.8 μg/mL) and lactate levels (7, 8.2, 8.3 and mmol/L) were similar. All 12 animals in the sodium thiosulfate group died compared with 2 of 12 in the hydroxocobalamin/sodium thiosulfate group and 1 of 12 in hydroxocobalamin group. No statistically significant differences were detected between the hydroxocobalamin and hydroxocobalamin/sodium thiosulfate groups for carbon monoxide, mean arterial pressure, cyanide levels, or mortality at 60 minutes. Lactate level (2.6 versus 2.1 mmol/L), pH (7.44 versus 7.42), and bicarbonate level (25 versus 26 mEq/L) at 60 minutes were also similar between groups. Sodium thiosulfate failed to reverse cyanide-induced shock in our swine model of severe cyanide toxicity. Further, sodium thiosulfate was not found to be effective when added to hydroxocobalamin in the treatment of cyanide-induced shock. Hydroxocobalamin alone was again found to be effective for severe cyanide toxicity. Copyright © 2012. Published

  2. Development of sulfanegen for mass cyanide casualties.

    Science.gov (United States)

    Patterson, Steven E; Moeller, Bryant; Nagasawa, Herbert T; Vince, Robert; Crankshaw, Daune L; Briggs, Jacquie; Stutelberg, Michael W; Vinnakota, Chakravarthy V; Logue, Brian A

    2016-06-01

    Cyanide is a metabolic poison that inhibits the utilization of oxygen to form ATP. The consequences of acute cyanide exposure are severe; exposure results in loss of consciousness, cardiac and respiratory failure, hypoxic brain injury, and dose-dependent death within minutes to hours. In a mass-casualty scenario, such as an industrial accident or terrorist attack, currently available cyanide antidotes would leave many victims untreated in the short time available for successful administration of a medical countermeasure. This restricted therapeutic window reflects the rate-limiting step of intravenous administration, which requires both time and trained medical personnel. Therefore, there is a need for rapidly acting antidotes that can be quickly administered to large numbers of people. To meet this need, our laboratory is developing sulfanegen, a potential antidote for cyanide poisoning with a novel mechanism based on 3-mercaptopyruvate sulfurtransferase (3-MST) for the detoxification of cyanide. Additionally, sulfanegen can be rapidly administered by intramuscular injection and has shown efficacy in many species of animal models. This article summarizes the journey from concept to clinical leads for this promising cyanide antidote.

  3. Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH

    Energy Technology Data Exchange (ETDEWEB)

    Huertas, M.J., E-mail: mjhuertas@us.es [Instituto de Bioquimica Vegetal y Fotosintesis, CSIC-Universidad de Sevilla Avda Americo Vespucio, 49, 41092 Sevilla (Spain); Saez, L.P.; Roldan, M.D.; Luque-Almagro, V.M.; Martinez-Luque, M. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Blasco, R. [Departamento de Bioquimica y Biologia Molecular y Genetica, Facultad de Veterinaria, Universidad de Extremadura, 11071 Caceres (Spain); Castillo, F.; Moreno-Vivian, C. [Departamento de Bioquimica y Biologia Molecular, Edificio Severo Ochoa, 1a Planta, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); Garcia-Garcia, I. [Departamento de Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain)

    2010-07-15

    Water containing cyanide was biologically detoxified with the bacterial strain Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Volatilization of toxic hydrogen cyanide (HCN) was avoided by using an alkaline medium for the treatment. The operational procedure was optimized to assess cyanide biodegradation at variable pH values and dissolved oxygen concentrations. Using an initial pH of 10 without subsequent adjustment allowed total cyanide to be consumed at a mean rate of approximately 2.81 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1}; however, these conditions posed a high risk of HCN formation. Cyanide consumption was found to be pH-dependent. Thus, no bacterial growth was observed with a controlled pH of 10; on the other hand, pH 9.5 allowed up to 2.31 mg CN{sup -} L{sup -1} O.D.{sup -1} h{sup -1} to be converted. The combination of a high pH and a low dissolved oxygen saturation (10%) minimized the release of HCN. This study contributes new basic knowledge about this biological treatment, which constitutes an effective alternative to available physico-chemical methods for the purification of wastewater containing cyanide or cyano-metal complexes.

  4. Bioavailability of cyanide in the different environmental compartments

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Vascular plants possess an enzyme system that detoxifies cyanide by converting it to the amino acid asparagine. Hybrid willows (Salix matsudana Koidz×Salix alba L.) were exposed to cyanide to determine whether willows can transport and metabolize this compound. Pre-rooted trees were grown in different environmental compartmentsspiked or irrigated with potassium cyanide at24.0 ±0.5℃. Cyanide in compartments, in air and in tissues of plants was analyzed spectrophotometrically. Results from this study indicated that large amounts of applied cyanide was removed from the systems during the presence of willows. Growing compartments of plants have a strong influence on the removal rates of cyanide. Little or no initial cyanide was detected in plant materials. Volatilization of cyanide was not occurring. Mass balance studies showed that applied cyanide was significantly metabolized during transport through willows cuttings. However, there was a clear difference between the metabolism rates of cyanide by willows exposed to different environmental compartments. The highest cyanide metabolism rate was found at the treatment with transport and metabolism of cyanide in plants is likely and phytoremediation of cyanide is a feasible option for cleaning soils and water contaminated with cyanide.

  5. Influence of copper minerals on cyanide leaching of gold

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper thermodynamically examined the behavior of various copper minerals in cyanide solu-tions and investigated the influence of copper minerals on cyanide leaching of gold. In elucidating the influence of copper minerals on cyanide leaching of gold, copper minerals were classified into two types according to their solubility in cyanide solutions by proposing two concepts, cyaniding easily soluble copper (ECu) and cyaniding insoluble copper. The former involves copper occurrence in metal, oxides and secondary sulfides, and the latter refers mainly to primary sulfides. Experimental results show that not all the total copper in an ore affected cyanide leaching of gold, while cyaniding easily soluble copper turns out to be the decisive factor that interferes with gold cyanidation by causing decrease in gold cyanidation recovery and increase in cyanide consumption. When cyaniding easily soluble copper content (wE(Cu)) lies in the range of 0-0.25%, it linearly affects gold cyanidation recovery (R) as well as cyanide consumption (mc). The regression equations have been worked out to be R(%)=94.177 5-142.735 7 wE(Cu) with a correlation coefficient of -0.902 and mc=5.590 7+33.572 9 wE(Cu) with a correlation coefficient of 0.945, respectively.

  6. Carbon Monoxide (CO) Poisoning Prevention

    Science.gov (United States)

    ... Recommend on Facebook Tweet Share Compartir When power outages occur after severe weather (such as winter storms, hurricanes or tornadoes), using alternative sources of power can cause carbon monoxide (CO) to build up in a ...

  7. Carbon Monoxide Mixing Ratio System

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) Carbon Monoxide (CO) system provides high-precision atmospheric concentration measurements of CO mixing ratio (ppbv dry air) every 10...

  8. Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code.

    Science.gov (United States)

    Donato, D B; Madden-Hallett, D M; Smith, G B; Gursansky, W

    2017-06-01

    Exposed cyanide-bearing solutions associated with gold and silver recovery processes in the mining industry pose a risk to wildlife that interact with these solutions. This has been documented with cyanide-bearing tailings storage facilities, however risks associated with heap leach facilities are poorly documented, monitored and audited. Gold and silver leaching heap leach facilities use cyanide, pH-stabilised, at concentrations deemed toxic to wildlife. Their design and management are known to result in exposed cyanide-bearing solutions that are accessible to and present a risk to wildlife. Monitoring of the presence of exposed solutions, wildlife interaction, interpretation of risks and associated wildlife deaths are poorly documented. This paper provides a list of critical monitoring criteria and attempts to predict wildlife guilds most at risk. Understanding the significance of risks to wildlife from exposed cyanide solutions is complex, involving seasonality, relative position of ponding, temporal nature of ponding, solution palatability, environmental conditions, in situ wildlife species inventory and provision of alternative drinking sources for wildlife. Although a number of heap leach operations are certified as complaint with the International Cyanide Management Code (Cyanide Code), these criteria are not considered by auditors nor has systematic monitoring regime data been published. Without systematic monitoring and further knowledge, wildlife deaths on heap leach facilities are likely to remain largely unrecorded. This has ramifications for those operations certified as compliance with the Cyanide Code. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors.

    Science.gov (United States)

    Mak, Karen K W; Yanase, Hideshi; Renneberg, Reinhard

    2005-06-15

    Sodium cyanide has been used in the Philippines to collect tropical marine fish for aquarium and food trades since the early 1960s. Cyanide fishing is a fast method to stun and collect fish. This practice is damaging the coral reefs irreversibly. In most countries cyanide fishing is illegal, but most of the exporting and importing countries do not have test and certificate systems. Many analytical methods are available for the detection of cyanide in environmental and biological samples. However, most of the techniques are time consuming, and some lack specificity or sensitivity. Besides, an ultra sensitive cyanide detection method is needed due to the rapid detoxification mechanisms in fish. The aim of this review is to give an overview of cyanide fishing problem in the south-east Asia and current strategies to combat this destructive practice, summarise some of the methods for cyanide detection in biological samples and their disadvantages. A novel approach to detect cyanide in marine fish tissues is briefly discussed.

  10. Structural identification of imatinib cyanide adducts by mass spectrometry and elucidation of bioactivation pathway.

    Science.gov (United States)

    Li, Austin C; Yu, Erya; Ring, Steven C; Chovan, James P

    2014-01-15

    Recent publications have reported that imatinib forms cyanide and methoxylamine adducts in vitro but without detail structural identification. The current work reports the identification of seven cyanide adducts that elucidate the bioactivation pathways and may provide hints for observed clinical adverse effects of the drug. Imatinib was incubated with human liver microsomal proteins in the presence of a NADPH-regeneration system and the trapping agents reduced GSH, potassium cyanide and methoxylamine. Samples were analyzed by high-performance liquid chromatography (HPLC) coupled with a LTQ-Orbitrap data collection system. Chemical structures were determined and/or postulated based on data-dependent high-resolution tandem mass spectrometric (MS(n)) exact mass measurements in both positive and negative scan modes, as well as in combination with hydrogen-deuterium exchange (HDX). GSH and methoxylamine conjugates were either not detected or were in insufficient quantities for characterization. However, seven cyanide conjugates were identified, indicating that the piperazine and p-toluidine partial structures in imatinib can become bioactivated and subsequently trapped by the nucleophile cyanide ion. The reactive intermediates were postulated as imine and imine-carbonyl conjugate (α,β-unsaturated) structures on the piperazine ring, and imine-methide on the p-toluidine partial structure. Chemical structures of seven cyanide adducts of imatinib have been identified or proposed based on high-resolution MS/MS data. Mechanisms for the formation of the conjugates were also proposed. The findings may help to understand the mechanism of hepatotoxicity of imatinib in humans. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Catalysis of carbon monoxide methanation by deep sea manganate minerals

    Science.gov (United States)

    Cabrera, A. L.; Maple, M. B.; Arrhenius, G.

    1990-01-01

    The catalytic activity of deep sea manganese nodule minerals for the methanation of carbon monoxide was measured with a microcatalytic technique between 200 and 460 degrees C. The manganate minerals were activated at 248 degrees C by immersion into a stream of hydrogen in which pulses of carbon monoxide were injected. Activation energies for the methanation reaction and hydrogen desorption from the manganate minerals were obtained and compared with those of pure nickel. Similar energy values indicate that the activity of the nodule materials for the reaction appears to be related to the amount of reducible transition metals present in the samples (ca. 11 wt.-%). Since the activity of the nodule minerals per gram is comparable to that of pure nickel, most of the transition metal ions located between manganese oxide layers appear to be exposed and available to catalyze the reaction.

  12. Optimization and Validation of a Surface Wipe Method to Determine Cyanide and Cyanate: Application to the Emergency Destruction System

    Science.gov (United States)

    2012-08-01

    Chemical Weapons Convention. 1 In April 2005, a partially filled cylinder of hydrogen cyanide (AC or HCN, Chemical Abstract Service [CAS] no. 74-90-8...Proving Ground CAS Chemical Abstract Service CCV continuing calibration verification CE capillary electrophoresis CK cyanogen chloride

  13. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than...... that in nitrogen whereas the range in carbon monoxide is about 20% larger than that in the nitrogen....

  14. C-11 cyanide production system

    Science.gov (United States)

    Kim, Dohyun; Alexoff, David; Kim, Sung Won; Hooker, Jacob; Ferrieri, Richard A

    2015-01-13

    A method for providing .sup.11C-labeled cyanides from .sup.11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O.sub.2 is provided, wherein .sup.11C labeled oxides are reduced with H.sub.2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% .sup.11CH.sup.4 , the .sup.11CH.sub.4 is then combined with an excess of NH.sub.3 in a carrier/reaction stream flowing at an accelerated velocity and the combined .sup.11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900 .degree. C., whereby a product stream comprising at least about 60%H.sup.11CN is provided in less than 10 minutes from retrieval of the .sup.11C labeled oxide.

  15. Cisplatin Analogs Confer Protection against Cyanide Poisoning.

    Science.gov (United States)

    Nath, Anjali K; Shi, Xu; Harrison, Devin L; Morningstar, Jordan E; Mahon, Sari; Chan, Adriano; Sips, Patrick; Lee, Jangwoen; MacRae, Calum A; Boss, Gerry R; Brenner, Matthew; Gerszten, Robert E; Peterson, Randall T

    2017-05-18

    Cisplatin holds an illustrious position in the history of chemistry most notably for its role in the virtual cure of testicular cancer. Here we describe a role for this small molecule in cyanide detoxification in vivo. Cyanide kills organisms as diverse as insects, fish, and humans within seconds to hours. Current antidotes exhibit limited efficacy and are not amenable to mass distribution requiring the development of new classes of antidotes. The binding affinity of the cyanide anion for the positively charged metal platinum is known to create an extremely stable complex in vitro. We therefore screened a panel of diverse cisplatin analogs and identified compounds that conferred protection from cyanide poisoning in zebrafish, mice, and rabbits. Cumulatively, this discovery pipeline begins to establish the characteristics of platinum ligands that influence their solubility, toxicity, and efficacy, and provides proof of concept that platinum-based complexes are effective antidotes for cyanide poisoning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Recent developments in cyanide detection: A review

    Science.gov (United States)

    Ma, Jian; Dasgupta, Purnendu K.

    2010-01-01

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors. PMID:20599024

  17. Recent developments in cyanide detection: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jian [Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019-0065 (United States); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [Department of Chemistry and Biochemistry, University of Texas, 700 Planetarium Place, Arlington, TX 76019-0065 (United States)

    2010-07-19

    The extreme toxicity of cyanide and environmental concerns from its continued industrial use continue to generate interest in facile and sensitive methods for cyanide detection. In recent years, there is also additional recognition of HCN toxicity from smoke inhalation and potential use of cyanide as a weapon of terrorism. This review summarizes the literature since 2005 on cyanide measurement in different matrices ranging from drinking water and wastewater, to cigarette smoke and exhaled breath to biological fluids like blood, urine and saliva. The dramatic increase in the number of publications on cyanide measurement is indicative of the great interest in this field not only from analytical chemists, but also researchers from diverse environmental, medical, forensic and clinical arena. The recent methods cover both established and emerging analytical disciplines and include naked eye visual detection, spectrophotometry/colorimetry, capillary electrophoresis with optical absorbance detection, fluorometry, chemiluminescence, near-infrared cavity ring down spectroscopy, atomic absorption spectrometry, electrochemical methods (potentiometry/amperometry/ion chromatography-pulsed amperometry), mass spectrometry (selected ion flow tube mass spectrometry, electrospray ionization mass spectrometry, gas chromatography-mass spectrometry), gas chromatography (nitrogen phosphorus detector, electron capture detector) and quartz crystal mass monitors.

  18. SUBSTITUTION OF CADMIUM CYANIDE ELECTROPLATING WITH ZINC CHLORIDE ELECTROPLATING

    Science.gov (United States)

    The study evaluated the zinc chloride electroplating process as a substitute for cadmium cyanide electroplating in the manufacture of industrial connectors and fittings at Aeroquip Corporation. The process substitution eliminates certain wastes, specifically cadmium and cyanide, ...

  19. Beyond toxicity: a regulatory role for mitochondrial cyanide.

    Science.gov (United States)

    García, Irene; Gotor, Cecilia; Romero, Luis C

    2014-01-01

    In non-cyanogenic plants, cyanide is a co-product of ethylene and camalexin biosynthesis. To maintain cyanide at non-toxic levels, Arabidopsis plants express the mitochondrial β-cyanoalanine synthase CYS-C1. CYS-C1 knockout leads to an increased level of cyanide in the roots and leaves and a severe defect in root hair morphogenesis, suggesting that cyanide acts as a signaling factor in root development. During compatible and incompatible plant-bacteria interactions, cyanide accumulation and CYS-C1 gene expression are negatively correlated. Moreover, CYS-C1 mutation increases both plant tolerance to biotrophic pathogens and their susceptibility to necrotrophic fungi, indicating that cyanide could stimulate the salicylic acid-dependent signaling pathway of the plant immune system. We hypothesize that CYS-C1 is essential for maintaining non-toxic concentrations of cyanide in the mitochondria to facilitate cyanide's role in signaling.

  20. Kinetics and pathways of cyanide degradation at high temperatures and pressures.

    Science.gov (United States)

    Oulego, Paula; Laca, Adriana; Diaz, Mario

    2013-02-05

    The degradation of cyanide was performed in a 1-L semibatch reactor at temperatures between 393 and 473 K and at total pressures in the range of 2.0-8.0 MPa. The initial pH of the solution was set at 11, whereas initial concentrations ranged from 3.85 to 25 mM, which resemble the typical concentrations of cyanide-containing wastewater. The change with time of cyanide concentration, intermediates, and final products was analyzed in order to elucidate the reaction pathways. The experimental results suggest two parallel pathways of alkaline hydrolysis for the degradation of the pollutant. Formate and ammonia were identified as the final reaction products for one of the pathways, whereas carbon dioxide, nitrogen, and hydrogen were considered to be the final products for the other one. The degradation reaction results were fitted to first-order kinetic equations with respect to cyanide, giving respectively activation energies of 108.2 ± 3.3 and 77.6 ± 3.0 kJ/mol. Consequently, the formation of formate and ammonia is favored at high temperatures, whereas low temperatures favored the pathway leading to the formation of carbon dioxide and nitrogen.

  1. Study of electrocatalytic properties of iridium carbonyl cluster and rhodium carbonyl cluster compounds for the oxygen reduction and hydrogen oxidation reactions in 0.5 MH{sub 2}SO{sub 4} in presence and absence of methanol and carbon monoxide, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Uribe-Godinez, J.; Borja-Arco, E.; Castellanos, R.H. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Escobedo (Mexico); Jimenez-Sandoval, O. [Centro de Investigacion y de Estudios Avanzados del Inst. Politecnico Nacional, Querataro (Mexico)

    2006-07-01

    The suitability of carbonyl cluster compounds as a substitute to platinum (Pt) in fuel cell catalysts was investigated. Iridium (Ir{sub 4}(CO){sub 12} and rhodium (Rh{sub 6}(CO){sub 116}) cluster compounds were investigated as potential new electrocatalysts for oxygen reduction reaction (ORR) in the presence and absence of methanol at different concentrations, as well as for the hydrogen oxidation reaction (HOR) with pure hydrogen and a hydrogen/carbon monoxide mixture. The materials were studied using room temperature rotating disk electrode (RDE) measurements and cyclic and linear sweep voltammetry techniques (LSV). Tafel slope and exchange current density were calculated using the LSV polarization curves. Cyclic voltamperometry results suggested that the electrocatalysts were tolerant to methanol. However, electrochemical behaviour of the materials altered in the presence of CO, and peaks corresponding to CO oxidation were observed in both cases. The rhodium carbonyl showed a higher current density for the ORR than the iridium carbonyl. The current potential curves in the presence of methanol were similar to those obtained without methanol. Results confirmed the tolerance properties of the materials to perform the ORR. Decreased current density values were observed during HOR, and were attributed to changes in the hydrogen solubility and diffusion coefficient due to the presence of CO. The Tafel slopes indicated that the mechanics of the HOR were Heyrovsky-Volmer. Results showed that the materials are capable of performing both ORR and HOR in an acid medium. It was noted that the iridium carbonyl cluster followed a 4-electron transfer mechanism towards the formation of water. It was concluded that the compounds are suitable for use as both cathodes and anodes in proton exchange membrane fuel cells (PEMFCs) and as cathodes in direct methanol fuel cells (DMFCs). 3 refs., 2 tabs., 3 figs.

  2. Cyanide speciation at four gold leach operations undergoing remediation

    Science.gov (United States)

    Johnson, Craig A.; Grimes, David J.; Leinz, Reinhard W.; Rye, Robert O.

    2008-01-01

    Analyses have been made of 81 effluents from four gold leach operations in various stages of remediation to identify the most-persistent cyanide species. Total cyanide and weak acid-dissociable (WAD) cyanide were measured using improved methods, and metals known to form stable cyanocomplexes were also measured. Typically, total cyanide greatly exceeded WAD indicating that cyanide was predominantly in strong cyanometallic complexes. Iron was generally too low to accommodate the strongly complexed cyanide as Fe(CN)63- or Fe(CN)64-, but cobalt was abundant enough to implicate Co(CN)63- or its dissociation products (Co(CN)6-x(H2O)x(3-x)-). Supporting evidence for cobalt-cyanide complexation was found in tight correlations between cobalt and cyanide in some sample suites. Also, abundant free cyanide was produced upon UV illumination. Iron and cobalt cyanocomplexes both photodissociate; however, the iron concentration was insufficient to have carried the liberated cyanide, while the cobalt concentration was sufficient. Cobalt cyanocomplexes have not previously been recognized in cyanidation wastes. Their identification at four separate operations, which had treated ores that were not especially rich in cobalt, suggests that cobalt complexation may be a common source of cyanide persistence. There is a need for more information on the importance and behavior of cobalt cyanocomplexes in ore-processing wastes at gold mines.

  3. (Carbon monoxide metabolism by photosynthetic bacteria)

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Research continued on the metabolism of carbon monoxide by Rhodospirillum rubrum. This report discusses progress on the activity, induction, inhibition, and spectroscopic analysis of the enzyme Carbon Monoxide Dehydrogenase. (CBS)

  4. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is an innovative method that for the first time uses the strong reductant carbon monoxide to both reduce iron...

  5. Metallization of cyanide-modified Pt(111) electrodes with copper

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Wildi, Christopher; Mwanda, Jonathan A.

    2016-01-01

    The reduction of Cu2+ ions irreversibly attached to the surface of a cyanide-modified Pt(111) electrode via non-covalent or weakly covalent interactions with the N atom of adsorbed cyanide was studied using cyclic voltammetry (CV) and in situ scanning tunneling microscopy (STM). Both CV and STM...... provide evidence that the reduction of irreversibly adsorbed Cu2+ to Cu in Cu2+-free sulfuric acid solutions does not result in the stripping of the cyanide adlayer. This strongly suggests that the reduction process results in the metallization of the cyanide adlayer on Pt(111), yielding a platinum-cyanide...

  6. Physician Beware: Severe Cyanide Toxicity from Amygdalin Tablets Ingestion.

    Science.gov (United States)

    Dang, Tam; Nguyen, Cham; Tran, Phu N

    2017-01-01

    Despite the risk of cyanide toxicity and lack of efficacy, amygdalin is still used as alternative cancer treatment. Due to the highly lethal nature of cyanide toxicity, many patients die before getting medical care. Herein, we describe the case of a 73-year-old female with metastatic pancreatic cancer who developed cyanide toxicity from taking amygdalin. Detailed history and physical examination prompted rapid clinical recognition and treatment with hydroxocobalamin, leading to resolution of her cyanide toxicity. Rapid clinical diagnosis and treatment of cyanide toxicity can rapidly improve patients' clinical outcome and survival. Inquiries for any forms of ingestion should be attempted in patients with clinical signs and symptoms suggestive of poisoning.

  7. TREATMENT OF CYANIDE SOLUTIONS AND SLURRIES USING AIR-SPARGED HYDROCYCLONE (ASH) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Jan D. Miller; Terrence Chatwin; Jan Hupka; Doug Halbe; Tao Jiang; Bartosz Dabrowski; Lukasz Hupka

    2003-03-31

    The two-year Department of Energy (DOE) project ''Treatment of Cyanide Solutions and Slurries Using Air-Sparged Hydrocyclone (ASH) Technology'' (ASH/CN) has been completed. This project was also sponsored by industrial partners, ZPM Inc., Elbow Creek Engineering, Solvay Minerals, EIMCO-Baker Process, Newmont Mining Corporation, Cherokee Chemical Co., Placer Dome Inc., Earthworks Technology, Dawson Laboratories and Kennecott Minerals. Development of a new technology using the air-sparged hydrocyclone (ASH) as a reactor for either cyanide recovery or destruction was the research objective. It was expected that the ASH could potentially replace the conventional stripping tower presently used for HCN stripping and absorption with reduced power costs. The project was carried out in two phases. The first phase included calculation of basic processing parameters for ASH technology, development of the flowsheet, and design/adaptation of the ASH mobile system for hydrogen cyanide (HCN) recovery from cyanide solutions. This was necessary because the ASH was previously used for volatile organics removal from contaminated water. The design and modification of the ASH were performed with the help from ZPM Inc. personnel. Among the modifications, the system was adapted for operation under negative pressure to assure safe operating conditions. The research staff was trained in the safe use of cyanide and in hazardous material regulations. Cyanide chemistry was reviewed resulting in identification of proper chemical dosages for cyanide destruction, after completion of each pilot plant run. The second phase of the research consisted of three field tests that were performed at the Newmont Mining Corporation gold cyanidation plant near Midas, Nevada. The first field test was run between July 26 and August 2, 2002, and the objective was to demonstrate continuous operation of the modified ASH mobile system. ASH units were applied for both stripping and absorption

  8. Toxicokinetic Profiles of Alpha-ketoglutarate Cyanohydrin, a Cyanide Detoxification Product, following Exposure to Potassium Cyanide

    Science.gov (United States)

    2013-07-15

    al., 2012). Furthermore, -Kg has been suggested as a cyanide antidote (Bhattacharya et al., 2002; Bhattacharya and Vijayaraghavan, 1991, 2002; Hume et...cyanide antidote (Bhattacharya et al., 2002; Bhattacharya and Vijayaraghavan, 1991, 2002; Hume et al., 1995; Mathangi et al., 2011; Tulsawani et al...potential exposure surro- gate. Chemical Research in Toxicology 20, 677–684. Hume , A.S., Mozingo, J.R., McIntyre, B., Ho, I.K., 1995. Antidotal

  9. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    Science.gov (United States)

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.

  10. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  11. Influence of cyanide on diauxic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Smrcinova, Miroslava; Sørensen, Preben Graae

    2012-01-01

    H are taken into account. To our knowledge, use of a cyanide electrode to study cyanide dynamics in living biological systems is new. Cyanide was found to enter starving yeast cells in only negligible amounts, and did not react significantly with glucose. Thus, cyanide consumption must be explained...... by reactions with glycolytic intermediates and evaporation. Evaporation and reaction with the signalling substance, extracellular acetaldehyde (ACA(x)) only explains the observed cyanide removal if [ACA(x)] is improbably high. Furthermore, differences in NADH traces upon cyanide addition before or after...... removal during glycolysis are reactions with pyruvate and ACA. Cyanide removal by all carbonyl-containing intermediates led to a lower mean [ACA(x) ], thereby increasing the amplitude of [ACA(x) ] oscillations....

  12. The cyanide accident in Barskoon (Kyrgyzstan)

    NARCIS (Netherlands)

    Cleven RFMJ; Bruggen M van; LAC

    2000-01-01

    On May 20, 1998, a truck with 20 tons of sodium cyanide crashed and fell into the Barskoon River (Kyrgyzstan). This small stream, used by the local population for irrigation and drinking water purposes, flows into Lake Issyk-Kul, a major tourist resort. As a result of the accident, some 1700 - 1800

  13. SYNTHESES AND CHARACTERIZATIONS OF THE CYANIDE ...

    African Journals Online (AJOL)

    Cyanide anions having binding ability to various center atoms are used in the ... Zn[Ni(CN)4]∙H2O = 0.246 g or Cd[Ni(CN)4]∙H2O = 0.293 g} aqueous solution, .... ρ(CH2) in-plane rocking vibration frequency is identified at 1105 cm-1 in the ...

  14. Carbon monoxide formation in tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Gladon, R.J.; Staby, G.L.

    1979-01-01

    Carbon monoxide (CO) is not emanated to any large extent from tomato fruits (Lycopersicon esculentum, Mill. cvs. Rutgers and Ohio MR-13), but is retained within the internal atmosphere. CO is found during all stages of fruit development, but no set pattern of CO concentration is evident.

  15. MOPITT Carbon Monoxide Over India

    Science.gov (United States)

    2002-01-01

    MOPITT observed high levels of carbon monoxide (red and yellow pixels) over the Indian sub-continent during March. These values are associated with industrial activity in the region just south of the Himalayan Mountains. Notice that to the north, the Himalayas are characterized by low values (blue pixels).

  16. Leaching of cyanogenic glucosides and cyanide from white clover green manure

    DEFF Research Database (Denmark)

    Bjarnholt, Nanna; Lægdsmand, Mette; Hansen, Hans Chr. Bruun

    2008-01-01

    and lotaustralin; CGs release toxic hydrogen cyanide (HCN) upon hydrolysis which may be utilized for pest control. We demonstrate that applying CGs in the form of a liquid extract of white clover to large columns of intact agricultural soils can result in leaching of toxic cyanide species to a depth of at least 1......Use of crops for green manure as a substitute for chemical fertilizers and pesticides is an important approach towards more sustainable agricultural practices. Green manure from white clover is rich in nitrogen but white clover also produces the cyanogenic glucosides (CGs) linamarin...... degradable natural products present in crop plants as defense compounds pose a threat to the quality of groundwater and surface waters. This aspect needs consideration in assessment of the risk associated with use of crops as green manure to replace chemical fertilizers and pesticides as well as in genetic...

  17. Selective removal of nickel from iron substrate by non-cyanide strippers

    Institute of Scientific and Technical Information of China (English)

    LI De-liang(李德良); WU Xiao-fu(吴晓芙); WANG Dian-zuo(王淀佐); J.A.Finch

    2004-01-01

    A novel nickel stripper using ammonia as the key component was developed to substitute cyanide for removing nickel film from iron substrates. Its compositions are: ammonia 150 g/L, hydrogen peroxide 50 g/L, ammonium chloride 100 g/L, EDTA 7.5 g/L, copper chloride 15 g/L and glucopyrone 1.2 g/L. The optimum operating conditions are: pH 9.5 - 11, temperature 40 - 50 ℃ and stripping time 1 h. It shows many advantages over the traditional cyanide stripper including no toxicity, mild operation, lower cost, larger holding capacity, faster stripping rate and good protection for the base metal, and can meet the technical requirements in industry.

  18. Intelligent Monitoring System For Carbon Monoxide Poisoning And Leakage In Mines

    Directory of Open Access Journals (Sweden)

    Anshul Thakur

    2014-03-01

    Full Text Available This paper presents a feasibility study of a wearable helmet in order to protect mine workers specially of goldmines from carbon monoxide poisoning and cyanidation. Carbon monoxide(CO poisoning is a common problem faced by the workers of coal, gold and many other mines. On the other hand cyanidation problem occurs in gold mines only during ore processing. Current safety systems for mine workers, only monitors environmental concentrations of gas. This is insufficient because toxic exposures effects people at different levels based on their immunity levels. During mining process CO can be emitted which is a odorless gas and lighter than air, it cannot be sensed by workers and effects the hemoglobin range in the body so a CO gas sensor is implemented here in order to detect CO, if the density of CO exceeds inside the mines then the exhaust fan can be switched ON automatically. The key feature of this system is pulse oximetery sensor which will be checking the health parameters of each and every person employed there. During ore processing sodium cyanide is added to the ore in order to extract the gold from its ore which is a acidic substance. If acidity increases beyond a certain level then system will automatically pump sodium hydroxide into the ore to make it less acidic. All these three parameters will be displayed on LCD in the central location which will contain buzzer also for emergency. So in this system we are monitoring three parameters of workers as compare to one in previous systems and hence the security of workers is enhanced.

  19. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater

    Directory of Open Access Journals (Sweden)

    Sujatha Kandasamy

    2015-09-01

    Full Text Available Ten bacterial strains that utilize cyanide (CN as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM and glucose (0.2% w/v. The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  20. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    Science.gov (United States)

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  1. Carbon monoxide in biology and microbiology: surprising roles for the "Detroit perfume".

    Science.gov (United States)

    Davidge, Kelly S; Motterlini, Roberto; Mann, Brian E; Wilson, Jayne Louise; Poole, Robert K

    2009-01-01

    Carbon monoxide (CO) is a colorless, odorless gas with a reputation for being an anthropogenic poison; there is extensive documentation of the modes of human exposure, toxicokinetics, and health effects. However, CO is also generated endogenously by heme oxygenases (HOs) in mammals and microbes, and its extraordinary biological activities are now recognized and increasingly utilized in medicine and physiology. This review introduces recent advances in CO biology and chemistry and illustrates the exciting possibilities that exist for a deeper understanding of its biological consequences. However, the microbiological literature is scant and is currently restricted to: 1) CO-metabolizing bacteria, CO oxidation by CO dehydrogenase (CODH) and the CO-sensing mechanisms that enable CO oxidation; 2) the use of CO as a heme ligand in microbial biochemistry; and 3) very limited information on how microbes respond to CO toxicity. We demonstrate how our horizons in CO biology have been extended by intense research activity in recent years in mammalian and human physiology and biochemistry. CO is one of several "new" small gas molecules that are increasingly recognized for their profound and often beneficial biological activities, the others being nitric oxide (NO) and hydrogen sulfide (H2S). The chemistry of CO and other heme ligands (oxygen, NO, H2S and cyanide) and the implications for biological interactions are briefly presented. An important advance in recent years has been the development of CO-releasing molecules (CO-RMs) for aiding experimental administration of CO as an alternative to the use of CO gas. The chemical principles of CO-RM design and mechanisms of CO release from CO-RMs (dissociation, association, reduction and oxidation, photolysis, and acidification) are reviewed and we present a survey of the most commonly used CO-RMs. Amongst the most important new applications of CO in mammalian physiology and medicine are its vasoactive properties and the

  2. Hydroxocobalamin for severe acute cyanide poisoning by ingestion or inhalation.

    Science.gov (United States)

    Borron, Stephen W; Baud, Frédéric J; Mégarbane, Bruno; Bismuth, Chantal

    2007-06-01

    This chart review was undertaken to assess efficacy and safety of hydroxocobalamin for acute cyanide poisoning. Hospital records of the Fernand Widal and Lariboisière Hospitals were reviewed for intensive care unit admissions with cyanide poisoning for which hydroxocobalamin was used as first-line treatment from 1988 to 2003. Smoke inhalation cases were excluded. Hydroxocobalamin (5-20 g) was administered to 14 consecutive patients beginning a median 2.1 hours after cyanide ingestion or inhalation. Ten patients (71%) survived and were discharged. Of the 11 patients with blood cyanide exceeding the typically lethal threshold of 100 micromol/L, 7 survived. The most common hydroxocobalamin-attributed adverse events were chromaturia and pink skin discoloration. Severe cyanide poisoning of the nature observed in most patients in this study is frequently fatal. That 71% of patients survived after treatment with hydroxocobalamin suggests that hydroxocobalamin as first-line antidotal therapy is effective and safe in acute cyanide poisoning.

  3. Pressure cyanide leaching for precious metals recovery

    Science.gov (United States)

    Parga, José R.; Valenzuela, Jesús L.; Francisco, Cepeda T.

    2007-10-01

    A novel method demonstrates that the oxidation and dissolution of gold and silver in alkaline cyanide solution can be conducted simultaneously in the same autoclave in less than 90 minutes with a recovery that exceeds 96%. Because mild operating conditions of 80°C and 0.6 MPa oxygen pressure are used in this process, low cost materials of construction can be utilized for the autoclave.

  4. Examination of Treatment Methods for Cyanide Wastes.

    Science.gov (United States)

    1979-05-15

    Treatment Ozonation and Electrolysis ", Metal Finishing, Metals and Plastics Publications, Inc., Hackensack, N.J., February 1958, pp. 71 - 74. 80. Serota, L...and Caldwell, M.R., "Destruction of Cyanide Copper Solutions by Hot Electrolysis ", Plating, American Electroplaters Society, Inc., East Orange, N.J...volume of 2,200 gallons. Salt was stored in a brine tank in liquid form and injected into the system. No caustic was necessary since the system is

  5. Inhibitory effect of cyanide on wastewater nitrification ...

    Science.gov (United States)

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at

  6. Carbon monoxide kinetics following simulated cigarette smoking

    Energy Technology Data Exchange (ETDEWEB)

    Karnik, A.S. (Wayne State Univ., Detroit, MI); Coin, E.J.

    1980-05-01

    Carbon monoxide kinetics were measured in the blood (% carboxyhemoglobin) and alveolar phase (ppM carbon monoxide) after simulated cigarette smoking. Cigarette smoking was siumlated using the same amount of carbon monoxide that 2R1F cigarettes manufactured by the Tobacco Research Institute would contain. Ten boluses of air containing carbon monoxide equivalent to smoking one cigarette were inhaled by six healthy nonsmoker volunteers. Carbon monoxide in the air phase was measured by an Ecolyzer and carboxyhemoglobin was measured by a CO-Oximeter. The mean rise in alveolar carbon monoxide immediately and 20 min after inhaling the last bolus was 3.3 and 3.1 ppM, respectively (p<.005). The mean rise in carboxyhemoglobin immediately and 20 min after inhalation of the last bolus was 0.8 and 0.5% respectively (P<.005). The changes in carboxyhemoglobin were found to be similar to changes that occur when one cigarette is actually smoked.

  7. The effect of additives on the reactivity of palladium surfaces for the chemisorption and hydrogenation of carbon monoxide: A surface science and catalytic study. [LaMO/sub 3/(M = Cr, Mn, Fe, Co, Rh)

    Energy Technology Data Exchange (ETDEWEB)

    Rucker, T.G.

    1987-06-01

    This research studied the role of surface additives on the catalytic activity and chemisorptive properties of Pd single crystals and foils. Effects of Na, K, Si, P, S, and Cl on the bonding of CO and H and on the cyclotrimerization of acetylene on the (111), (100) and (110) faces of Pd were investigated in addition to role of TiO/sub 2/ and SiO/sub 2/ overlayers deposited on Pd foils in the CO hydrogenation reaction. On Pd, only in the presence of oxide overlayers, are methane or methanol formed from CO and H/sub 2/. The maximum rate of methane formation is attained on Pd foil where 30% of the surface is covered with titania. Methanol formation can be achieved only if the TiO/sub x//Pd surface is pretreated in 50 psi of oxygen at 550/sup 0/C prior to the reaction. The additives (Na, K, Si, P, S, Cl) affect the bonding of CO and hydrogen and the cyclotrimerization of acetylene to benzene by structural and electronic interactions. In general, the electron donating additives increase the desorption temperature of CO and increase the rate of acetylene cyclotrimerization and the electron withdrawing additives decrease the desorption temperature of CO and decrease the rate of benzene formation from acetylene.

  8. [Cyanides--treatment beneath the shade of terror].

    Science.gov (United States)

    Krivoy, Amir; Finkelstein, Arseny; Rotman, Eran; Layish, Ido; Tashma, Zeev; Hoffman, Azik; Schein, Ophir; Yehezkelli, Yoav; Dushnitsky, Tsvika; Eisenkraft, Arik

    2007-03-01

    Although the use of cyanides as warfare agents has not been documented since the Iran-Iraq war in the 1980s, there are rising fears of cyanide being used by terrorists. An Al-Qaeda terror plot to use cyanide gas in the London Underground was foiled in 2002. The threat of similar events becomes more imminent in light of the terror attacks in our country and worldwide, accompanied by statements and threats by fundamentalist leaders to employ chemical weapons. Therefore, mass-intoxication with cyanides is not merely a hypothetical scenario. The treatment of cyanide poisoning is under constant evaluation and there is no international consensus on the subject. The medical treatment of victims at the scene and in hospitals should be rapid and efficient. Current treatment dictates establishing an intravenous line and a slow rate of administration of antidotes. Both demands are not feasible in this specific mass casualty event. The clinical signs of cyanide poisoning are complex, variable and not necessarily obvious for the medical team. There is great interest in reconsidering the existing treatment protocols for cyanide intoxication in light of current research. This review describes the mechanisms of cyanide toxicity, clinical signs of exposure, and current treatment protocols in use worldwide. On the basis of this evidence we suggest a medical treatment protocol for a mass casualty event caused by cyanide.

  9. 40 CFR Appendix A to Part 414 - Non-Complexed Metal-Bearing Waste Streams and Cyanide-Bearing Waste Streams

    Science.gov (United States)

    2010-07-01

    .../ Ethylenediamine + Ethylene oxide + Formaldehyde + Sodium cyanide, hydrolysis 5,5-Dimethyl hyantoin/Acetone... Mercaptan/Ethanol + Hydrogen sulfide Methanol/H.P. Synthesis from natural gas via synthetic gas Oxo Alcohols... propylene oxide) 1-Tetralol, 1-Tetralone mix/Oxidation of tetralin (1,2,3,4-Tetrahydronaphthalene) 3,3,3...

  10. Pathways and Bioenergetics of Anaerobic Carbon Monoxide Fermentation.

    Science.gov (United States)

    Diender, Martijn; Stams, Alfons J M; Sousa, Diana Z

    2015-01-01

    Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO-rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis, and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  11. Pathways and bioenergetics of anaerobic carbon monoxide fermentation.

    Directory of Open Access Journals (Sweden)

    Martijn eDiender

    2015-11-01

    Full Text Available Carbon monoxide can act as a substrate for different modes of fermentative anaerobic metabolism. The trait of utilizing CO is spread among a diverse group of microorganisms, including members of bacteria as well as archaea. Over the last decade this metabolism has gained interest due to the potential of converting CO rich gas, such as synthesis gas, into bio-based products. Three main types of fermentative CO metabolism can be distinguished: hydrogenogenesis, methanogenesis and acetogenesis, generating hydrogen, methane and acetate, respectively. Here, we review the current knowledge on these three variants of microbial CO metabolism with an emphasis on the potential enzymatic routes and bio-energetics involved.

  12. Cyanide toxicokinetics: the behavior of cyanide, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid in multiple animal models.

    Science.gov (United States)

    Bhandari, Raj K; Oda, Robert P; Petrikovics, Ilona; Thompson, David E; Brenner, Matthew; Mahon, Sari B; Bebarta, Vikhyat S; Rockwood, Gary A; Logue, Brian A

    2014-05-01

    Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers following cyanide exposure, a toxicokinetics study was performed in three animal models: (i) rats (250-300 g), (ii) rabbits (3.5-4.2 kg) and (iii) swine (47-54 kg). Cyanide reached a maximum in blood and declined rapidly in each animal model as it was absorbed, distributed, metabolized and eliminated. Thiocyanate concentrations rose more slowly as cyanide was enzymatically converted to SCN(-). Concentrations of ATCA did not rise significantly above the baseline in the rat model, but rose quickly in rabbits (up to a 40-fold increase) and swine (up to a 3-fold increase) and then fell rapidly, generally following the relative behavior of cyanide. Rats were administered cyanide subcutaneously and the apparent half-life (t1/2) was determined to be 1,510 min. Rabbits were administered cyanide intravenously and the t1/2 was determined to be 177 min. Swine were administered cyanide intravenously and the t1/2 was determined to be 26.9 min. The SCN(-) t1/2 in rats was 3,010 min, but was not calculated in rabbits and swine because SCN(-) concentrations did not reach a maximum. The t1/2 of ATCA was 40.7 and 13.9 min in rabbits and swine, respectively, while it could not be determined in rats with confidence. The current study suggests that cyanide exposure may be verified shortly after exposure by determining significantly elevated cyanide and SCN(-) in each animal model and ATCA may be used when the ATCA detoxification pathway is significant.

  13. Cyanide toxicity to Burkholderia cenocepacia is modulated by polymicrobial communities and environmental factors

    Directory of Open Access Journals (Sweden)

    Steve P. Bernier

    2016-05-01

    Full Text Available Microbes within polymicrobial communities can establish positive and negative interactions that have the potential to influence the overall behaviour of the community. Pseudomonas aeruginosa and species of the Burkholderia cepacia complex (Bcc can co-exist in the lower airways, however several studies have shown that P. aeruginosa can effectively kill the Bcc in vitro, for which hydrogen cyanide was recently proposed to play a critical role. Here we show that modification of the environment (i.e. culture medium, long-term genetic adaptation of P. aeruginosa to the cystic fibrosis (CF lung, or the addition of another bacterial species to the community can alter the sensitivity of Burkholderia cenocepacia to P. aeruginosa toxins. We specifically demonstrate that undefined rich media leads to higher susceptibility of B. cenocepacia to P. aeruginosa toxins like cyanide as compared to a synthetic medium (SCFM, that mimics the CF lung nutritional content. Overall, our study shows that the polymicrobial environment can have profound effects on negative interactions mediated by P. aeruginosa against B. cenocepacia. In fact, evolved P. aeruginosa or the presence of other species such as Staphylococcus aureus can directly abolish the direct competition mediated by cyanide and consequently maintaining a higher level of species diversity within the community.

  14. [Determination of total cyanides and sulfides in wastewater using ion chromatography coupled with ultraviolet photo-dissociation/gas-membrane diffusion].

    Science.gov (United States)

    Lu, Keping

    2015-03-01

    An automated system for the determination of total cyanides and sulfides in wastewater has been developed using flow injection, ultraviolet (UV) photo-dissociation, gas-membrane diffusion, column trapping, ion chromatography separation and pulsed amperometric detection. When the sample was mixed with sulfuric acid and hypophosphorous acid medium containing the appropriate amount of sulfamic acid, ascorbic acid, EDTA and citric acid, metal-cyanide complexes such as Fe (CN)3-(6) can be photo-dissociated by 312 nm UV light, which results in hydrogen cyanide ( HCN) and similarly, sulfides release hydrogen sulfide (H2S). These products were diffused through a 0.45 µm hydrophobic porous polypropylene membrane and were then absorbed in the dilute NaOH solution, concentrated with a Metrosep A PCC 1 HC/4.0 column, separated on an IonPac AS7 column, and finally detected by the pulsed amperometric detector with Ag electrode. The total cyanides and sulfides were good linear in the range of 0.5-1,000 µg/L with correlation coefficients of 0.998 9 and 0.999 7 respectively. The recoveries were 93%-102% and the limits of detection were 0.5 µg/L for total cyanides and 1.0 µg/L for sulfides under the conditions of the sample volume of 100 µL and the signal to noise ratio of 5. The sample throughput of the system was six samples per hour. The results from this new method have been compared with the ones obtained with the standard method, which shows a good agreement.

  15. Relation of blood cyanide to plasma cyanocobalamin concentration after a fixed dose of hydroxocobalamin in cyanide poisoning.

    Science.gov (United States)

    Houeto, P; Hoffman, J R; Imbert, M; Levillain, P; Baud, F J

    1995-09-02

    Hydroxocobalamin combines with cyanide to form cyanocobalamin. We hypothesised that the amount of cyanocobalamin formed after a fixed dose of hydroxocobalamin given for cyanide poisoning would correlate with initial blood cyanide concentration. We determined blood cyanide concentration in 12 patients exposed to residential fires, and compared this with markers of the amount of cyanocobalamin formed after treatment with 5 g intravenous hydroxocobalamin. All relationships were highly correlated (r2 0.79-0.95), for the whole group, and there appeared to be an almost linear relationship for the 9 patients with initial cyanide concentration below 40 mumol/L. Above this concentration, no further cyanocobalamin was formed from a single 5 g dose of hydroxocobalamin. In one patient with initial blood cyanide concentration of 96 mumol/L, however, plasma cyanocobalamin concentration approximately doubled after a second 5 g dose of hydroxocobalamin. 5 g of hydroxocobalamin appears capable of binding all available cyanide ions for blood cyanide concentrations up to about 40 mumol/L. Beyond this, more hydroxocobalamin must be given for remaining cyanide ions to be bound. This information will allow clinicians to use rapidly measurable plasma cyanocobalamin concentrations to gauge severity of exposure and evaluate adequacy of treatment.

  16. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S

    2014-12-21

    This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.

  17. A reproducible nonlethal animal model for studying cyanide poisoning.

    Science.gov (United States)

    Vick, J; Marino, M T; von Bredow, J D; Kaminskis, A; Brewer, T

    2000-12-01

    Previous studies using bolus intravenous injections of sodium cyanide have been used to model the sudden exposure to high concentrations of cyanide that could occur on the battlefield. This study was designed to develop a model that would simulate the type of exposure to cyanide gas that could happen during actual low-level continuous types of exposure and then compare it with the bolus model. Cardiovascular and respiratory recordings taken from anesthetized dogs have been used previously to characterize the lethal effects of cyanide. The intravenous, bolus injection of 2.5 mg/kg sodium cyanide provides a model in which a greater than lethal concentration is attained. In contrast, our model uses a slow, intravenous infusion of cyanide to titrate each animal to its own inherent end point, which coincides with the amount of cyanide needed to induce death through respiratory arrest. In this model, therapeutic intervention can be used to restore respiration and allow for the complete recovery of the animals. After recovery, the same animal can be given a second infusion of cyanide, followed again by treatment and recovery, providing a reproducible end point. This end point can then be expressed as the total amount of cyanide per body weight (mg/kg) required to kill. In this study, the average dose of sodium cyanide among 12 animals was 1.21 mg/kg, which is approximately half the cyanide used in the bolus model. Thus, titration to respiratory arrest followed by resuscitation provides a repetitive-use animal model that can be used to test the efficacy of various forms of pretreatment and/or therapy without the loss of a single animal.

  18. Disulfides as Cyanide Antidotes: Evidence for a New In Vivo Oxidative Pathway for Cyanide Detoxification

    Science.gov (United States)

    2009-01-01

    garlic ] have been found to be effective as in vivo therapeutic agents for cyanide intoxication (10, 11). It is believed that the efficacy of these...of sulfur-sulfur bond cleavage. J. Biol. Chem. 241, 3381–3385. (10) Iciek, M., and Wlodek, L. (2001) Biosynthesis and biological properties of

  19. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Ingvorsen, K.; Hojer-Pederson, B.; Godtfredsen, S.E. (Novo Nordisk A/S, Bagsvaerd (Denmark))

    1991-06-01

    A cyanide-metabolizing bacterium, strain DF3, isolated from soil was identified as Alcaligenes xylosoxidans subsp. denitrificans. Whole cells and cell extracts of strain DF3 catalyzed hydrolysis of cyanide to formate and ammonia (HCN + 2H{sub 2}O {r arrow} HCOOH + NH{sub 3}) without forming formamide as a free intermediate. The cyanide-hydrolyzing activity was inducibly produced in cells during growth in cyanide-containing media. Cyanate (OCN{sup {minus}}) and a wide range of aliphatic and aromatic nitriles were not hydrolyzed by intact cells of A. xylosoxidans subsp. denitrificans DF3. Strain DF3 hydrolyzed cyanide with great efficacy. Thus, by using resting induced cells at a concentration of 11.3 mg (dry weight) per ml, the cyanide concentration could be reduced from 0.97 M (approximately 25,220 ppm) to less than 77 nM (approximately 0.002 ppm) in 55 h. Enzyme purification established that cyanide hydrolysis by A. xylosoxidans subsp. denitrificans DF3 was due to a single intracellular enzyme. The molecular mass of the active enzyme (purity, {gt}97% as determined by amino acid sequencing) was estimated to be {gt}300,000 Da. The cyanide-hydrolyzing enzyme of A. xylosoxidans subsp. denitrificans DF3 was tentatively named cyanidase to distinguish it from known nitrilases (EC 3.5.5.1) which act on organic nitriles.

  20. Chemical speciation and behaviour of cyanide in contaminated soils

    NARCIS (Netherlands)

    Meeussen, J.C.L.

    1992-01-01

    Cyanide is present as a contaminant of the soil on several hundred (former) industrial sites in the Netherlands. The risk for the occurrence of adverse effects on human health and the environment strongly depends on the chemical form in which cyanide is present and on the behaviour of this

  1. Carbon monoxide conversion by anaerobic bioreactor sludges

    NARCIS (Netherlands)

    Sipma, J.; Stams, A.J.M.; Lens, P.N.L.; Lettinga, G.

    2003-01-01

    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and 55degreesC
    Seven different anaerobic sludges from wastewater treatment reactors were screened for their ability to convert carbon monoxide (CO) at 30 and

  2. The cyanide gasp and spontaneous deep breaths.

    Science.gov (United States)

    Glogowska, M; Richardson, P S

    1973-01-01

    Stimulation of the carotid body chemoreceptors with cyanide in anaesthetized rabbits usually causes a deep breath or gasp, but only if the vagus nerves are intact. This gasp has several similarities with spontaneous deep breaths in eupnoea. In paralysed rabbits, artificially ventilated, chemoreceptor stimulation induces an augmented discharge in the phrenic nerve equivalent to a gasp. In spontaneously breathing rabbits spontaneous deep breaths are more frequent with hypoxia than with normoxia. The results are interpreted in relation to (i) positive feedback from the lungs and (ii) summation of chemoreceptor and tonic vagal drive causing augmented deep breaths.

  3. Competing hydrostatic compression mechanisms in nickel cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, J. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn (Estonia); Lucas, T.C. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Cairns, A.B.; Funnell, N.P. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Tucker, M.G. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Kleppe, A.K. [Diamond Light Source, Chilton, Oxfordshire OX11 0DE (United Kingdom); Hriljac, J.A. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Goodwin, A.L. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2015-12-15

    We use variable-pressure neutron and X-ray diffraction measurements to determine the uniaxial and bulk compressibilities of nickel(II) cyanide, Ni(CN){sub 2}. Whereas other layered molecular framework materials are known to exhibit negative area compressibility, we find that Ni(CN){sub 2} does not. We attribute this difference to the existence of low-energy in-plane tilt modes that provide a pressure-activated mechanism for layer contraction. The experimental bulk modulus we measure is about four times lower than that reported elsewhere on the basis of density functional theory methods [Phys. Rev. B 83 (2011) 024301].

  4. Physician Beware: Severe Cyanide Toxicity from Amygdalin Tablets Ingestion

    Directory of Open Access Journals (Sweden)

    Tam Dang

    2017-01-01

    Full Text Available Despite the risk of cyanide toxicity and lack of efficacy, amygdalin is still used as alternative cancer treatment. Due to the highly lethal nature of cyanide toxicity, many patients die before getting medical care. Herein, we describe the case of a 73-year-old female with metastatic pancreatic cancer who developed cyanide toxicity from taking amygdalin. Detailed history and physical examination prompted rapid clinical recognition and treatment with hydroxocobalamin, leading to resolution of her cyanide toxicity. Rapid clinical diagnosis and treatment of cyanide toxicity can rapidly improve patients’ clinical outcome and survival. Inquiries for any forms of ingestion should be attempted in patients with clinical signs and symptoms suggestive of poisoning.

  5. Mg改性纳米线碳化钼在CO加氢反应中的应用%Preparation of Mg doped nanowireβ-Mo2C and its performance for hydrogenation of carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    刘长城; 林明桂; 姜东; 房克功; 孙予罕

    2014-01-01

    以1,6-己二胺和钼酸铵为前躯体,采用有机-无机杂化法及后续的程序升温碳化法制备了纳米线β-Mo2C。通过机械混合法制备了镁改性的β-Mo2C催化剂并考察了其在CO加氢反应中的催化性能。结果表明,镁的改性对纳米线碳化钼的织构性质没有明显的影响,但在CO加氢反应中显著提高了CO转化率,且提高了烷烃的选择性及其链增长能力,表现为抑制了甲烷而促进了C2~C5烷烃的生成。但是Mg的添加对醇选择性及链增长能力影响不明显。%β-Mo2C nanowires were prepared by an organic-inorganic hybrid method with 1,6-hexamethylenediamine and ammonium molybdate as precursors, then modified with magnesium by mechanical mixing. The performances of the prepared Mg-doped nanostructuredβ-Mo2C catalysts for hydrogenation of CO were investigated. The results showed that the doping of MgO did not alter the textural properties of the catalysts, but increased CO conversation, improved the selectivity to hydrocarbons and promoted hydrocarbon chain growth, which resulted in that the formation of methane was inhibited and the yield of C2-C5 alkanes increased. However, the selectivity towards alcohols and the ability of alcohol chain growth almost unchanged.

  6. Influence of Gas Composition on the Resisting Ability of Gunning Material for Blast Furnace to Carbon Monoxide Corrosion

    Institute of Scientific and Technical Information of China (English)

    YANG Lihong; LIU Liu; GUO Yanling; CAO Feng; MENG Qingmin; LONG Shigang

    2002-01-01

    This paper describes the resisting ability of gunning material for blast furnace to carbon monoxide corrosion under the mixed gas condition through inletting hydrogen into pure CO.A standard for testing the resisting ability of refractory to Co corrosion with mixed gas instead of pure CO has also been discussed. The results show:the addition of hydrogen accelerates the CO corrosion on gunning material;the same results has been reached with the CO,200 hours to test the resisting ability of refractory to carbon monoxide corrosion.

  7. A Cyanide-Induced 3-Cyanoalanine Nitrilase in the Cyanide-Assimilating Bacterium Pseudomonas pseudoalcaligenes Strain CECT 5344.

    Science.gov (United States)

    Acera, Felipe; Carmona, María Isabel; Castillo, Francisco; Quesada, Alberto; Blasco, Rafael

    2017-05-01

    Pseudomonas pseudoalcaligenes CECT 5344 is a bacterium able to assimilate cyanide as a sole nitrogen source. Under this growth condition, a 3-cyanoalanine nitrilase enzymatic activity was induced. This activity was encoded by nit4, one of the four nitrilase genes detected in the genome of this bacterium, and its expression in Escherichia coli enabled the recombinant strain to fully assimilate 3-cyanoalanine. P. pseudoalcaligenes CECT 5344 showed a weak growth level with 3-cyanoalanine as the N source, unless KCN was also added. Moreover, a nit4 knockout mutant of P. pseudoalcaligenes CECT 5344 became severely impaired in its ability to grow with 3-cyanoalanine and cyanide as nitrogen sources. The native enzyme expressed in E. coli was purified up to electrophoretic homogeneity and biochemically characterized. Nit4 seems to be specific for 3-cyanoalanine, and the amount of ammonium derived from the enzymatic activity doubled in the presence of exogenously added asparaginase activity, which demonstrated that the Nit4 enzyme had both 3-cyanoalanine nitrilase and hydratase activities. The nit4 gene is located downstream of the cyanide resistance transcriptional unit containing cio1 genes, whose expression levels are under the positive control of cyanide. Real-time PCR experiments revealed that nit4 expression was also positively regulated by cyanide in both minimal and LB media. These results suggest that this gene cluster including cio1 and nit4 could be involved both in cyanide resistance and in its assimilation by P. pseudoalcaligenes CECT 5344.IMPORTANCE Cyanide is a highly toxic molecule present in some industrial wastes due to its application in several manufacturing processes, such as gold mining and the electroplating industry. The biodegradation of cyanide from contaminated wastes could be an attractive alternative to physicochemical treatment. P. pseudoalcaligenes CECT 5344 is a bacterial strain able to assimilate cyanide under alkaline conditions, thus

  8. Spatial separation of the cyanogenic β-glucosidase ZfBGD2 and cyanogenic glucosides in the haemolymph of Zygaena larvae facilitates cyanide release

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Jensen, Mikael Kryger; Matthes, Annemarie

    2017-01-01

    . Cyanogenic plants contain cyanogenic glucosides and release hydrogen cyanide due to such a well-characterized two-component system. Some arthropods are also cyanogenic, but comparatively little is known about their system. Here, we identify a specific β-glucosidase (ZfBGD2) involved in cyanogenesis from...... larvae of Zygaena filipendulae (Lepidoptera, Zygaenidae), and analyse the spatial organization of cyanide release in this specialized insect. High levels of ZfBGD2 mRNA and protein were found in haemocytes by transcriptomic and proteomic profiling. Heterologous expression in insect cells showed that Zf......BGD2 hydrolyses linamarin and lotaustralin, the two cyanogenic glucosides present in Z. filipendulae. Linamarin and lotaustralin as well as cyanide release were found exclusively in the haemoplasma. Phylogenetic analyses revealed that ZfBGD2 clusters with other insect β...

  9. The Carbon Monoxide Tape Recorder

    Science.gov (United States)

    Schoeberl, M. R.; Duncan, B. N.; Douglass, A. R.; Waters, J.; Livesey, N.; Read, W.; Filipiak, M.

    2006-01-01

    Using Aura MLS data we have identified the stratospheric tape recorder in carbon monoxide (CO). Unlike the water vapor tape recorder, which is controlled by upper troposphere processes, the CO tape recorder is linked to seasonal biomass burning. Since CO has a lifetime of only a few months, the CO tape recorder barely extends above 20 km. The tape head for CO appears to be close to 360K near the same location as the water vapor tape head [Read et al, 20041. Both tape heads are below the equatorial cold point tropopause but above the base of the tropical tropopause layer. The tape recorder signal becomes more distinct from 360K to 380K suggesting that convective detrainment of plays a decreasingly important role with altitude. The Global Modeling Initiative chemical transport model forced by the climatology of biomass burning reproduces the CO tape recorder.

  10. Engineering evidence for carbon monoxide toxicity cases.

    Science.gov (United States)

    Galatsis, Kosmas

    2016-07-01

    Unintentional carbon monoxide poisonings and fatalities lead to many toxicity cases. Given the unusual physical properties of carbon monoxide-in that the gas is odorless and invisible-unorganized and erroneous methods in obtaining engineering evidence as required during the discovery process often occurs. Such evidence gathering spans domains that include building construction, appliance installation, industrial hygiene, mechanical engineering, combustion and physics. In this paper, we attempt to place a systematic framework that is relevant to key aspects in engineering evidence gathering for unintentional carbon monoxide poisoning cases. Such a framework aims to increase awareness of this process and relevant issues to help guide legal counsel and expert witnesses.

  11. Delayed encephalopathy after acute carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Mehmet İbrahim Turan

    2014-03-01

    Full Text Available Carbon monoxide poisoning is a major cause of death following attempted suicide and accidental exposures. Although clinical presentation depends on the duration and the intensity of exposure, the assessment of the severity of intoxication is difficult. A small percentage of patients who show complete initial recovery may develop delayed neurological deficits. Delayed encephalopathy after acute carbon monoxide poisoning is a rare and poor prognosis neurologic disorders and there is no specific treatment. We present a case with early onset of delayed encephalopathy after acute carbon monoxide poisoning with typical cranial imaging findings in a child with atypical history and clinical presentation.

  12. Isotopic Fingerprints of Iron-Cyanide Complexes in the Environment.

    Science.gov (United States)

    Mansfeldt, Tim; Höhener, Patrick

    2016-07-19

    Tracing the origin of iron-cyanide complexes in the environment is important because these compounds are potentially toxic. We determined the stable isotopic compositions of cyanide-carbon (CCN) and cyanide-nitrogen (NCN) in 127 contaminated solids and 11 samples of contaminated groundwater from coal carbonization sites, blast furnace operations, and commercial cyanide applications. Coal-carbonization-related cyanides had unique high mean δ(13)CCN values of -10.5 ± 3.5‰ for the solids and -16.1 ± 1.2‰ for the groundwater samples, while the values for blast furnace sludge (-26.9 ± 1.5‰), commercial cyanides (-26.0 ± 3.0‰), and their corresponding groundwaters were significantly lower. Determination of δ(13)CCN is a promising tool for identifying the source of cyanide contamination. However, for coal carbonization sites, historical research into the manufacturing process is necessary because a nonconventional gas works site exhibited exceptionally low δ(13)CCN values of -22.7 ± 1.7‰. The δ(15)NCN values for samples related to coal carbonization and blast furnaces overlapped within a range of +0.1 to +10.3‰, but very high δ(15)NCN values seemed to be indicative for a cyanide source in the blast furnace. In contrast, commercial cyanides tend to have lower δ(15)NCN values of -5.6 to +1.9‰ in solids and -0.5 to +3.0‰ in the groundwater.

  13. A new PANI biosensor based on catalase for cyanide determination.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Aydin, Tuba

    2016-01-01

    Cyanide is one of the most widespread of compounds measured in environmental analysis due to their toxic effects on environment and health. We report a highly sensitive, reliable, selective amperometric sensor for determination of cyanide, using a polyaniline conductive polymer. The enzyme catalase was immobilized by electropolymerization. The steps during the immobilization were controlled by electrochemical impedance spectroscopy. Optimum pH, temperature, aniline concentration, enzyme concentration, and the number of scans obtained during electropolymerization, were investigated. In addition, the cyanide present in artificial waste water samples was determined. In the characterization studies of the biosensor, some parameters such as reproducibility and storage stability, were analyzed.

  14. Removal of cadmium and cyanide from aqueous solutions through electrodialysis

    Directory of Open Access Journals (Sweden)

    Marder Luciano

    2003-01-01

    Full Text Available The discharge of galvanic industry wastewaters containing heavy metals and cyanide is one of the largest sources of water pollution. The use of the electrodialysis technique for the treatment of a synthetic wastewater containing approximately 0.0089 mol L-1 cadmium and 0.081 mol L-1 cyanide was studied using a five-compartment electrodialysis cell. The results demonstrate that the removal of cadmium and cyanide depends on the applied current density and it is limited by the precipitation of cadmium on the cation-exchange membrane in the diluate central cell compartment.

  15. The Hydration Structure of Carbon Monoxide by Ab Initio Methods

    CERN Document Server

    Awoonor-Williams, Ernest

    2016-01-01

    The solvation of carbon monoxide (CO) in liquid water is important for understanding its toxicological effects and biochemical roles. In this paper, we use ab initio molecular dynamics (AIMD) and CCSD(T)-F12 calculations to assess the accuracy of the Straub and Karplus molecular mechanical (MM) model for CO(aq). The CCSD(T)-F12 CO--H2O potential energy surfaces show that the most stable structure corresponds to water donating a hydrogen bond to the C center. The MM-calculated surface it incorrectly predicts that the O atom is a stronger hydrogen bond acceptor than the C atom. The AIMD simulations indicate that CO is solvated like a hydrophobic solute, with very limited hydrogen bonding with water. The MM model tends to overestimate the degree of hydrogen bonding and overestimates the atomic radius of the C atom. The calculated Gibbs energy of hydration is in good agreement with experiment (9.3 kJ/mol calc. vs 10.7 kJ/mol exptl.). The calculated diffusivity of CO(aq) in TIP3P-model water was 5.19 x 10-5 cm2/s ...

  16. Weeding the Astrophysical Garden: Ethyl Cyanide

    Science.gov (United States)

    De Lucia, F. C.; Fortman, S. M.; Medvedev, I. R.; Neese, C. F.

    2009-12-01

    It is well known that many, if not most, of the unidentified features in astrophysical spectra arise from relatively low lying excited vibrational and torsional states of a relatively small number of molecular species— the astrophysical weeds. It is also well known that the traditional quantum mechanical assignment and fitting of these excited state spectra is a formidable task, one that is made harder by the expected perturbations and interactions among these states. We have previously proposed an alternative fitting and analysis approach based on experimental, intensity calibrated spectra taken at many temperatures. In this paper we discuss the implementation of this approach and provide details in the context of one of these weeds, ethyl cyanide.

  17. Shock tube measurements of growth constants in the branched chain formaldehyde-carbon monoxide-oxygen system

    Science.gov (United States)

    Brabbs, T. A.; Brokaw, R. S.

    1982-01-01

    Exponential free radical growth constants were measured for formaldehyde carbon monoxide-oxygen systems by monitoring the growth of oxygen atom concentration as manifested by CO flame band emission. Data were obtained over the temperature range of 1200 to 2000 K. The data were analyzed using a formaldehyde oxidation mechanism involving 12 elementary reaction steps. The computed growth constants are roughly in accord with experimental values, but are much more temperature dependent. The data was also analyzed assuming formaldehyde is rapidly decomposed to carbon monoxide and hydrogen. Growth constants computed for the resulting carbon monoxide hydrogen oxygen mixtures have a temperature dependence similar to experiments; however, for most mixtures, the computed growth constants were larger than experimental values.

  18. Carbon Monoxide Silicate Reduction System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbon Monoxide Silicate Reduction System (COSRS) is a novel technology for producing large quantities of oxygen on the Moon. Oxygen yields of 15 kilograms per...

  19. Protect Yourself from Carbon Monoxide Poisoning

    Centers for Disease Control (CDC) Podcasts

    2007-11-20

    Learn about carbon monoxide - a colorless, odorless gas - and how to protect yourself and your family.  Created: 11/20/2007 by CDC National Center for Environmental Health.   Date Released: 12/4/2007.

  20. Integrated electricity and carbon monoxide production

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, J.

    1994-03-23

    In a process for the production of carbon monoxide and electric power in an IGCC with the removal of sulphur compounds, between the outlet of quenched gas from a partial oxidation unit and a fuel inlet to a combined cycle gas turbine there is a permeable membrane unit to separate a non-permeable stream, which is utilised as a source of carbon monoxide, and a permeate stream, which is used as fuel for the gas turbine of the combined cycle unit. (author)

  1. Hearing Loss due to Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Amir Houshang Mehrparvar

    2013-01-01

    Full Text Available Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker after an acute exposure to carbon monoxide. This complication was diagnosed by pure-tone audiometry and confirmed by transient evoked otoacoustic emissions. Hearing loss has not improved after 3 months of followup.

  2. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PERFORMANCE TESTING OF THE INDUSTRIAL TEST SYSTEM, INC. CYANIDE REAGENTSTRIP™ TEST KIT

    Science.gov (United States)

    Cyanide can be present in various forms in water. The cyanide test kit evaluated in this verification study (Industrial Test System, Inc. Cyanide Regent Strip ™ Test Kit) was designed to detect free cyanide in water. This is done by converting cyanide in water to cyanogen...

  3. Intravenous Cobinamide, a Novel Cyanide Antidote, versus Hydroxocobalamin in the Treatment of Acute Cyanide Toxicity and Apnea in a Swine (Sus scrofa) Model

    Science.gov (United States)

    2013-02-12

    treatment of acute, severe cyanide induced cardiotoxicity of severe hypotension and of cardiac arrest in a swine (Sus Scrofa ) model Intravenous...cobinamide, a novel cyanide antidote, versus hydroxocobalamin in the treatment of acute cyanide toxicity and apnea in a swine (Sus Scrofa ) model...hydroxocobalamin in the treatment of acute cyanide toxicity and apnea in a swine (Sus Scrofa ) model Background: Hydroxocobalamin (HOC) is an FDA approved

  4. Uptake, metabolism, accumulation and toxicity of cyanide in willow trees

    DEFF Research Database (Denmark)

    Larsen, Morten; Ucisik, Ahmed Süheyl; Trapp, Stefan

    2005-01-01

    Chemicals taken up into plants may be accumulated so leading to toxic effects. Uptake and phytotoxicity of free cyanide was determined with the willow-tree transpiration test. Willow sets were grown in sand and irrigated with varying levels of cyanide (CN). Toxicity was determined by measuring...... transpiration. At CN concentrations below 10 mg/L, no toxic effects were observed. At 20 mg/L, transpiration was reduced to approximately 50% after 96 h. With 30, 40 and 50 mg/L, the transpiration decreased with a similar rate to cyanide in plant...... tissue was observed at 40 and 50 mg/L. The kinetics of metabolism of cyanide by roots, stems and leaves of willows was determined by the closed-bottle metabolism test. The Michaelis−Menten parameters vmax and KM (maximal metabolic velocity and half-saturation constant, respectively) were determined...

  5. Management of cyanide toxicity in patients with burns.

    Science.gov (United States)

    MacLennan, Louise; Moiemen, Naiem

    2015-02-01

    The importance of cyanide toxicity as a component of inhalational injury in patients with burns is increasingly being recognised, and its prompt recognition and management is vital for optimising burns survival. The evidence base for the use of cyanide antidotes is limited by a lack of randomised controlled trials in humans, and in addition consideration must be given to the concomitant pathophysiological processes in patients with burns when interpreting the literature. We present a literature review of the evidence base for cyanide antidotes with interpretation in the context of patients with burns. We conclude that hydroxycobalamin should be utilised as the first-line antidote of choice in patients with burns with inhalational injury where features consistent with cyanide toxicity are present. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  6. Cyanide Suicide After Deep Web Shopping: A Case Report.

    Science.gov (United States)

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Allorge, Delphine; Hédouin, Valéry; Tournel, Gilles

    2016-09-01

    Cyanide is a product that is known for its use in industrial or laboratory processes, as well as for intentional intoxication. The toxicity of cyanide is well described in humans with rapid inhibition of cellular aerobic metabolism after ingestion or inhalation, leading to severe clinical effects that are frequently lethal. We report the case of a young white man found dead in a hotel room after self-poisoning with cyanide ordered in the deep Web. This case shows a probable complex suicide kit use including cyanide, as a lethal tool, and dextromethorphan, as a sedative and anxiolytic substance. This case is an original example of the emerging deep Web shopping in illegal drug procurement.

  7. Assessment of over time changes of moisture, cyanide and selected ...

    African Journals Online (AJOL)

    sunny

    2014-10-15

    Oct 15, 2014 ... Water, cyanide, ascorbic acid, β-carotene, protein, iron, phosphorus, potassium and zinc .... UV/visible spectrometer (Okalebo et al., 1993). Calcium (Ca) and ... array (PDA) detector fitted with a 436 nm wavelength. For sample.

  8. Improved processing methods to reduce the total cyanide content of ...

    African Journals Online (AJOL)

    PierGuido

    2013-05-08

    May 8, 2013 ... Health Organization (WHO) has set the safe level of cyanogens in cassava flour ..... the cyanide content of cassava chips. Int. J. Food Technol. 13: 299 ... Tropical root and tuber crops : cassava, sweet potato, yams and aroids.

  9. Detoxification of cyanides in cassava flour by linamarase of Bacillus ...

    African Journals Online (AJOL)

    enoh

    2012-04-05

    Apr 5, 2012 ... utilizing indigenous bacteria from cyanide rich cassava peel waste and exploited their potential for detoxification. ... lotaustralin), and low content of protein and free amino ... these toxic constituents is required to avoid chronic.

  10. Use of ferricyanide for gold and silver cyanidation

    Institute of Scientific and Technical Information of China (English)

    F. XIE; D. B. DREISINGER

    2009-01-01

    Low gold and silver leaching kinetics has been commonly observed in traditional gold-silver cyanidation process, especially in heap leaching and in situ leaching operations. The different mineralogy of gold and silver in the ores is suspected to be the main reason, e.g., the occurrence of low solubility acanthite (Ag2S) typically results in low overall silver extraction. Due to the low solubility of oxygen in cyanide solution, the reactivity and availability of oxidant is believed to be the critical limitation for gold and silver dissolution. The use of ferricyanide as the auxiliary oxidant for gold and silver cyanidation has been examined. The rotating disc test results prove the assistant effect of ferricyanide on increasing the dissolution rate of gold and silver. The potential use of ferricyanide in gold/silver cyanidation process is proposed based on the leaching results of actual ores.

  11. Geochemical modeling of cyanide in tailing dam gold processing plant

    Science.gov (United States)

    Khodadadi, Ahmad; Monjezi, M.; Mehrpouya, H.; Dehghani, H.

    2009-09-01

    This research is aimed at investigating possible neutralization of cyanide in tailing dam of Muteh gold processing plant in Isfahan, Iran at various conditions such as pH and temperature using USEPA Visual MINTEQ geochemical model simulation. The model is based on geochemical equilibrium which uses the simultaneous solution of the non-linear mass action expressions and linear mass balance relationships to formulate and solve the multiple-component chemical equilibrium problems. In this study the concentration of aqueous species in tailing dam as an aqueous, solid and gaseous were used as input in the model. Temperature and pH variation were simulated. The results of the model indicated that cyanide may be complexes in 10 < pH < 5. In other pH values complexation is not important. The results also indicated that cyanide reduction mechanism in acidic pH and temperature above 30°C is due to cyanide acid formation which is vaporized.

  12. Cyanide - Mechanism of Prophylaxis and Effect on Cytochrome Oxidase.

    Science.gov (United States)

    1981-08-15

    other laboratories (Greenberg, 1975; Lewis, 1977). The basis for the antituiaor effect is that the cyanogenic glycoside, amygdalin (also called laetrile...is a postulated selective hydrolysis of amygdalin by a beta glucosidase, liberating cyanide, benzaldehyde at the neoplastic site. The cyanide then...lack of antitumor activity of amygdalin in model tumor cells (Hill et al., 1976; Laster and Schnabel, 1975; Levi et al., 1965; Wodinsky and Swiniaski

  13. Cyanide residues biotreatment and their relation with public health

    Directory of Open Access Journals (Sweden)

    Carmen L. Jaramillo C

    2010-04-01

    Full Text Available Objective: To propose a bio-treatment for cyanide residues generated by medico-legal procedures and to identify risk factors from handling. Methodology: cyanide residues, from the Institute of Legal Medicine, Medellin, were characterized by their physical state and identified its management, and risk factors. For the residues degradation 22 pre-essays and 9 bioassays were done with Pseudomonas aeruginosa and Thiobacillus ferrooxidans at different cyanide concentrations. Results: there were failures in all risk factors analyzed, predominating the chemical component which sources of pollution. In studies of degradation, Pseudomonas aeruginosa showed a 87% removal percentage at a concentration of 50 mg / L and Thiobacillus ferrooxidans, 79% removal at a concentration of 500 mg / L. We conducted a technical guide for the management of cyanide residues. Conclusions: The evaluation of the routes of cyanide from seizure to final disposal, were found that the Institute of Forensic Medicine had no documented guidelines on the management of them. Biological treatment with bacteria such as Pseudomonas aeruginosa and Thiobacillus ferrooxidans were efficient in the degradation of cyanide.

  14. Acute cyanide poisoning among jewelry and textile industry workers.

    Science.gov (United States)

    Coentrão, Luís; Moura, Daniel

    2011-01-01

    Limited work has focused on occupational exposures that may increase the risk of cyanide poisoning by ingestion. A retrospective chart review of all admissions for acute cyanide poisoning by ingestion for the years 1988 to 2008 was conducted in a tertiary university hospital serving the largest population in the country working in jewelry and textile facilities. Of the 9 patients admitted to the hospital during the study period, 8 (7 males, 1 female; age 36 ± 11 years, mean ± SD) attempted suicide by ingestion of potassium cyanide used in their profession as goldsmiths or textile industry workers. Five patients had severe neurologic impairment and severe metabolic acidosis (pH 7.02 ± 0.08, mean ± SD) with high anion gap (23 ± 4 mmol/L, mean ± SD). Of the 5 severely intoxicated patients, 3 received antidote therapy (sodium thiosulfate or hydroxocobalamin) and resumed full consciousness in less than 8 hours. All patients survived without major sequelae. Cyanide intoxication by ingestion in our patients was mainly suicidal and occurred in specific jobs where potassium cyanide is used. Metabolic acidosis with high anion is a good surrogated marker of severe cyanide poisoning. Sodium thiosulfate and hydroxocobalamin are both safe and effective antidotes.

  15. Biological Treatment of Cyanide by Using Klebsiella pneumoniae Species

    Directory of Open Access Journals (Sweden)

    Isil Seyis Bilkay

    2016-01-01

    Full Text Available In this study, optimization conditions for cyanide biodegradation by Klebsiella pneumoniae strain were determined to be 25 °C, pH=7 and 150 rpm at the concentration of 0.5 mM potassium cyanide in the medium. Additionally, it was found that K. pneumoniae strain is not only able to degrade potassium cyanide, but also to degrade potassium hexacyanoferrate(II trihydrate and sodium ferrocyanide decahydrate with the efficiencies of 85 and 87.5 %, respectively. Furthermore, this strain degraded potassium cyanide in the presence of different ions such as magnesium, nickel, cobalt, iron, chromium, arsenic and zinc, in variable concentrations (0.1, 0.25 and 0.5 mM and as a result the amount of the bacteria in the biodegradation media decreased with the increase of ion concentration. Lastly, it was also observed that sterile crude extract of K. pneumoniae strain degraded potassium cyanide on the fifth day of incubation. Based on these results, it is concluded that both culture and sterile crude extract of K. pnemoniae will be used in cyanide removal from different wastes.

  16. Some liver function indicators in guinea pigs injected with cyanide

    Directory of Open Access Journals (Sweden)

    Idonije O. Blessing

    2013-08-01

    Full Text Available To determine the lethal effect of cyanide poisoning on the liver cells using ALP, AST, ALT and Bilirubin (Total and Conjugated as test indicators, eighteen (18 male guinea pigs, age matched were used for this study. This included 12 guinea pigs which served as test groups and injected with different concentrations of potassium cyanide saline solution while 6 guinea pigs without cyanide injection served as control group. Blood samples were collected from the guinea pigs three hours after the injections of the cyanide saline solution. The blood samples were analysed for liver enzymes and bilirubin using standard methods. The result of the plasma AST and ALT at the different concentrations showed decreased levels which were significant when compared with the controls. The plasma levels of Total and Conjugated bilirubin were also significantly decreased when compared with controls. However, the levels of the ALP in both test and control groups showed no significant difference. This study therefore highlighted the need to determine the levels of these liver function indicators in cases of cyanide poisoning to ensure efficient management of patients who are exposed to the cyanide.

  17. Cyanide intoxication induced exocytotic epinephrine release in rabbit myocardium.

    Science.gov (United States)

    Kawada, T; Yamazaki, T; Akiyama, T; Sato, T; Shishido, T; Inagaki, M; Tatewaki, T; Yanagiya, Y; Sugimachi, M; Sunagawa, K

    2000-05-12

    Cyanide intoxication, which has been used as a model of energy depletion at cardiac sympathetic nerve terminals, causes non-exocytotic release of norepinephrine (NE). However, the effect of cyanide intoxication on cardiac epinephrine (Epi) release remains unknown. Using cardiac microdialysis in the rabbit, we measured dialysate Epi and NE concentrations as indices of myocardial interstitial Epi and NE levels, respectively. Local administration of sodium cyanide (30 mM) through the dialysis probe increased both Epi and NE levels (from 11.3+/-2.3 to 32.3+/-4.4 pg/ml and from 33.6+/-6.1 to 389.0+/-71.8 pg/ml, respectively, mean+/-S.E., P<0.01). Local desipramine (100 microM) administration suppressed the cyanide induced NE response without affecting the Epi response. In contrast, local omega-conotoxin GVIA (10 microM) administration partially suppressed the cyanide induced NE response and totally abolished the Epi response. In conclusion, cyanide intoxication causes N-type Ca(2+) channel dependent exocytotic Epi release as well as inducing N-type Ca(2+) channel independent non-exocytotic NE release.

  18. A review of rapid and field-portable analytical techniques for the diagnosis of cyanide exposure.

    Science.gov (United States)

    Jackson, Randy; Logue, Brian A

    2017-04-01

    Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Another relatively common, but consistently overlooked, mode of cyanide exposure is inhalation of fire smoke. Both civilians and fire rescue personnel risk exposure during the unfortunate event of a structure fire. Additionally, fire rescue personnel risk long-term effects of habitual exposure throughout their careers in fire rescue. The relatively rapid onset of cyanide toxicity and the fact that cyanide exposure symptoms mimic other medical conditions necessitate a rapid, sensitive, portable, and accurate method for the diagnosis of cyanide exposure. This review focuses on the important issues concerning accurate point-of-care diagnosis of cyanide exposure and cyanide detection technologies that may allow a commercial cyanide exposure diagnostic to become a reality.

  19. Reactor for producing a carbon monoxide and hydrogen containing gas

    Energy Technology Data Exchange (ETDEWEB)

    Abraamov, E.; Achmatov, I.; Berger, F.

    1982-08-10

    The reactor for the production of CO and H/sub 2/ containing gases by means of a partial oxidation of powdery or liquid high ash fuels in a carburation fluid including free oxygen, at high temperatures and increased pressure, includes a pressure vessel enclosing a gas-tight housing whereby an interspace is formed between the inner wall of the vessel and the outer surface of the housing. Within the housing is arranged a cooling wall enclosing the reaction chamber proper. The cooling wall includes a coil of cooling pipes embedded in a mass of refractory material such as silicium carbide. The pipes are partially supported on web sections projecting from the inner surface of the housing into the refractory lining. The web sections prevent propagation of leaking hot gas from the reaction chamber along the inner surface of the housing.

  20. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure.

    Science.gov (United States)

    Nath, Anjali K; Roberts, Lee D; Liu, Yan; Mahon, Sari B; Kim, Sonia; Ryu, Justine H; Werdich, Andreas; Januzzi, James L; Boss, Gerry R; Rockwood, Gary A; MacRae, Calum A; Brenner, Matthew; Gerszten, Robert E; Peterson, Randall T

    2013-05-01

    Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.

  1. Chemical analysis of cyanide in cyanidation process: review of methods; Analisis quimico de cianuro en el proceso de cianuracion: revision de los principales metodos

    Energy Technology Data Exchange (ETDEWEB)

    Nova-Alonso, F.; Elorza-Rodriguez, E.; Uribe-Salas, A.; Perez-Garibay, R.

    2007-07-01

    Cyanidation, the world wide method for precious metals recovery, the chemical analysis of cyanide, is a very important, but complex operation. Cyanide can be present forming different species, each of them with different stability, toxicity, analysis method and elimination technique. For cyanide analysis, there exists a wide selection of analytical methods but most of them present difficulties because of the interference of species present in the solution. This paper presents the different available methods for chemical analysis of cyanide: titration, specific electrode and distillation, giving special emphasis on the interferences problem, with the aim of helping in the interpretation of the results. (Author)

  2. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel cells catalysts. Part I: Carbon monoxide oxidation onto low index platinum single crystals

    Directory of Open Access Journals (Sweden)

    PHILIP N. ROSS JR

    2001-12-01

    Full Text Available The electrochemical oxidation of carbon monoxide and the interfacial structure of the CO adlayer (COads on platinum low index single crystals, Pt(111, Pt(100 and two reconstruction of Pt(110, were examined using the rotation disk electrode method in combination with the in situ surface X-ray diffraction scattering technique. The mechanism of CO oxidation is discussed on the basis of the findings that, depending on the potential, two energetic states of COads exist on the platinum surfaces. Thus, at lower potentials, weakly bonded states (COads,w and at higher potentials strongly bonded states (COads,s are formed. The mechanism of the oxidation of hydrogen-carbon monoxide mixtures is also proposed.

  3. Application of immobilized cells to the treatment of cyanide wastewater.

    Science.gov (United States)

    Chen, C Y; Kao, C M; Chen, S C; Chien, H Y; Lin, C E

    2007-01-01

    Cyanide is highly toxic to living organisms, particularly in inactivating the respiration system by tightly binding to terminal oxidase. To protect the environment and water bodies, wastewater containing cyanide must be treated before discharging into the environment. Biological treatment is a cost-effective and environmentally acceptable method for cyanide removal compared with the other techniques currently in use. Klebsiella oxytoca (K. oxytoca), isolated from cyanide-containing industrial wastewater, has been shown to be able to biodegrade cyanide to non-toxic end products. The technology of immobilized cells can be applied in biological treatment to enhance the efficiency and effectiveness of biodegradation. In this study, potassium cyanide (KCN) was used as the target compound and both alginate (AL) and cellulose triacetate (CTA) techniques were applied for the preparation of immobilized cells. Results from this study show that KCN can be utilized as the sole nitrogen source by K. oxytoca. The free suspension systems reveal that the cell viability was highly affected by initial KCN concentration, pH, and temperature. Results show that immobilized cell systems could tolerate a higher level of KCN concentration and wider ranges of pH and temperature, especially in the system with CTA gel beads. Results show that a longer incubation period was required for KCN degradation using immobilized cells compared to the free suspended systems. This might be due to internal mass transfer limitations. Results also indicate that immobilized systems can support a higher biomass concentration. Complete KCN degradation was observed after the operation of four consecutive degradation experiments with the same batch of immobilized cells. This suggests that the activity of the immobilized cells can be maintained and KCN can be used as the nitrogen source throughout KCN degradation experiments. Results reveal that the application of immobilized cells of K. oxytoca is advantageous

  4. Bacterial degradation of cyanide and its metal complexes under alkaline conditions.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Huertas, María-J; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Roldán, M Dolores; García-Gil, L Jesús; Castillo, Francisco; Blasco, Rafael

    2005-02-01

    A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded.

  5. Crystal structures of two mixed-valence copper cyanide complexes with N-methyl-ethylenedi-amine.

    Science.gov (United States)

    Corfield, Peter W R; Sabatino, Alexander

    2017-02-01

    The crystal structures of two mixed-valence copper cyanide compounds involving N-methyl-ethylenedi-amine (meen), are described. In compound (I), poly[bis(μ3-cyanido-κ3C:C:N)tris(μ2-cyanido-κ2C:N)bis(N-methylethane-1,2-di-amine-κ2N,N')tricopper(I)copper(II)], [Cu4(CN)5(C3H10N2)2] or Cu4(CN)5meen2, cyanide groups link Cu(I) atoms into a three-dimensional network containing open channels parallel to the b axis. In the network, two tetra-hedrally bound Cu(I) atoms are bonded by the C atoms of two end-on bridging CN groups to form Cu2(CN)6 moieties with the Cu atoms in close contact at 2.560 (1) Å. Other trigonally bound Cu(I) atoms link these units together to form the network. The Cu(II) atoms, coordinated by two meen units, are covalently linked to the network via a cyanide bridge, and project into the open network channels. In the mol-ecular compound (II), [(N-methylethylenediamine-κ(2)N,N')copper(II)]-μ(2)-cyanido-κ(2)C:N-[bis(cyanido-κC)copper(I)] monohydrate, [Cu2(CN)3(C3H10N2)2]·H2O or Cu2(CN)3meen2·H2O, a CN group connects a Cu(II) atom coordinated by two meen groups with a trigonal-planar Cu(I) atom coordinated by CN groups. The mol-ecules are linked into centrosymmetric dimers via hydrogen bonds to two water mol-ecules. In both compounds, the bridging cyanide between the Cu(II) and Cu(I) atoms has the N atom bonded to Cu(II) and the C atom bonded to Cu(I), and the Cu(II) atoms are in a square-pyramidal coordination.

  6. Adsorption of Zinc and Cyanide from Cyanide Effluents on Anionic Ion-exchange Resin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-li; FANG Tao; YU Xian-jin

    2013-01-01

    The adsorption of zinc and cyanide from cyanide effluents onto strong and weak basic anion exchange resins was studied in a batch adsorption system.Factors influencing the adsorption rates such as resin selection,resin amounts,contact time and temperature were studied and scanning electron microscopy-energy disperse spectroscopy(SEM-EDS) was used in the analysis.The present study shows that the adsorption capacity of resin 201 ×7 is better than that of resin 301.The adsorption process was relatively fast and came to equilibrium after 60 min.The kinetic data were analyzed with three models and the pseudo-second-order kinetic model was found to agree with the experimental data well.The equilibrium data could also be described well by Langmuir isotherm model.Thermodynamic parameters such as enthalpy change(△H0),free energy change(△G0) and entropy change(△S0) were calculated and the adsorption process was spontaneous and endothermic.

  7. Biodegradation of free cyanide by bacterial species isolated from cyanide-contaminated artisanal gold mining catchment area in Burkina Faso.

    Science.gov (United States)

    Razanamahandry, Lovasoa Christine; Andrianisa, Harinaivo Anderson; Karoui, Hela; Kouakou, Koffi Marcelin; Yacouba, Hamma

    2016-08-01

    Soil and water samples were collected from a watershed in Burkina Faso where illegal artisanal gold extraction using cyanidation occurs. The samples were used to evaluate cyanide contamination and the presence of cyanide degrading bacteria (CDB). Free cyanide (F-CN) was detected in all samples, with concentrations varying from 0.023 to 0.9 mg kg(-1), and 0.7-23 μg L(-1) in the soil and water samples, respectively. Potential CDB also were present in the samples. To test the effective F-CN degradation capacity of the isolated CDB species, the species were cultivated in growth media containing 40, 60 or 80 mg F-CN L(-1), with or without nutrients, at pH 9.5 and at room temperature. More than 95% of F-CN was degraded within 25 h, and F-CN degradation was associated with bacterial growth and ammonium production. However, initial concentrations of F-CN higher than 100 mg L(-1) inhibited bacterial growth and cyanide degradation. Abiotic tests showed that less than 3% of F-CN was removed by volatilization. Thus, the degradation of F-CN occurred predominately by biological mechanisms, and such mechanisms are recommended for remediation of contaminated soil and water. The bacteria consortium used in the experiment described above exist in a Sahelian climate, which is characterized by a long hot and dry season. Because the bacteria are already adapted to the local climate conditions and show the potential for cyanide biodegradation, further applicability to other contaminated areas in West Africa, where illegal gold cyanidation is widespread, should be explored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    Science.gov (United States)

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals.

  9. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa.

    Science.gov (United States)

    Askeland, R A; Morrison, S M

    1983-06-01

    Of 200 water isolates screened, five strains of Pseudomonas fluorescens and one strain of Pseudomonas aeruginosa were cyanogenic. Maximum cyanogenesis by two strains of P. fluorescens in a defined growth medium occurred at 25 to 30 degrees C over a pH range of 6.6 to 8.9. Cyanide production per cell was optimum at 300 mM phosphate. A linear relationship was observed between cyanogenesis and the log of iron concentration over a range of 3 to 300 microM. The maximum rate of cyanide production occurred during the transition from exponential to stationary growth phase. Radioactive tracer experiments with [1-14C]glycine and [2-14C]glycine demonstrated that the cyanide carbon originates from the number 2 carbon of glycine for both P. fluorescens and P. aeruginosa. Cyanide production was not observed in raw industrial wastewater or in sterile wastewater inoculated with pure cultures of cyanogenic Pseudomonas strains. Cyanide was produced when wastewater was amended by the addition of components of the defined growth medium.

  10. Pulmonary edema in acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Chang, Kee Hyun; Lee, Myung Uk [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1974-10-15

    Acute carbon monoxide poisoning has frequently occurred in Korean, because of the coal briquette being widely used as fuel in Korean residences. Carbon monoxide poisoning has been extensively studied, but it has been sparsely reported that pulmonary edema may develop in acute CO poisoning. We have noticed nine cases of pulmonary edema in acute CO poisoning last year. Other possible causes of pulmonary edema could be exclude in all cases but one. The purpose of this paper is to describe nine cases of pulmonary edema complicated in acute CO poisoning and discuss the pathogenesis and the prognosis.

  11. 40 CFR 60.103 - Standard for carbon monoxide.

    Science.gov (United States)

    2010-07-01

    ... Refineries § 60.103 Standard for carbon monoxide. Each owner or operator of any fluid catalytic cracking unit... regenerator any gases that contain carbon monoxide (CO) in excess of 500 ppm by volume (dry basis)....

  12. [Carbon monoxide metabolism by photosynthetic bacteria]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    Research continued on the metabolism of carbon monoxide by Rhodospirillum rubrum. This report discusses progress on the activity, induction, inhibition, and spectroscopic analysis of the enzyme Carbon Monoxide Dehydrogenase. (CBS)

  13. Carbon Monoxide Hazards from Small Gasoline Powered Engines

    Science.gov (United States)

    ... Topics Publications and Products Programs Contact NIOSH NIOSH CARBON MONOXIDE Recommend on Facebook Tweet Share Compartir On this Page Recommendations NIOSH Publications Worker Notification Program Carbon Monoxide Hazards from Small Gasoline Powered Engines Many ...

  14. Energy efficient--advanced oxidation process for treatment of cyanide containing automobile industry wastewater.

    Science.gov (United States)

    Mudliar, R; Umare, S S; Ramteke, D S; Wate, S R

    2009-05-30

    Destruction of cyanide (CN) from an automobile industry wastewater by advance oxidation process (AOP) has been evaluated. The operating conditions (in an indigenously designed photoreactor) for three different treatment strategies have been optimized. The treatment strategies involved use of, ultra violet light (UV), hydrogen peroxide (H(2)O(2)) and ozone (O(3)) in various combinations. Treatment of automobile industry wastewater (250 mg/L CN) showed fastest CN destruction, which was significantly (Pwater bodies. The specific energy consumption by the photoreactor following this treatment was comparable to that obtained by conventional treatments, which use photocatalyst. Since the present treatment does not use catalyst, it provides an excellent energy efficient and economical option for treatment and safe disposal of CN containing industrial wastewater.

  15. Intramuscular Cobinamide Sulfite in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    Science.gov (United States)

    Brenner, Matthew; Kim, Jae G.; Mahon, Sari B.; Lee, Jangwoen; Kreuter, Kelly A.; Blackledge, William; Mukai, David; Patterson, Steve; Mohammad, Othman; Sharma, Vijay S.; Boss, Gerry R.

    2009-01-01

    Objective To determine the ability of an intramuscular cobinamide sulfite injection to rapidly reverse the physiologic effects of cyanide toxicity. Background Exposure to cyanide in fires and industrial exposures and intentional cyanide poisoning by terrorists leading to mass casualties is an ongoing threat. Current treatments for cyanide poisoning must be administered intravenously, and no rapid treatment methods are available for mass casualty cyanide exposures. Cobinamide is a cobalamin (vitamin B12) analog with an extraordinarily high affinity for cyanide that is more water-soluble than cobalamin. We investigated the use of intramuscular cobinamide sulfite to reverse cyanide toxicity induced physiologic changes in a sublethal cyanide exposure animal model. Methods New Zealand white rabbits were given 10 mg sodium cyanide intravenously over 60 minutes. Quantitative diffuse optical spectroscopy and continuous wave near infrared spectroscopy monitoring of tissue oxy- and deoxyhemoglobin concentrations were performed concurrently with blood cyanide level measurements and cobinamide levels. Immediately after completion of the cyanide infusion, the rabbits were injected intramuscularly with cobinamide sulfite (n=6) or inactive vehicle (controls, n=5). Results Intramuscular administration led to rapid mobilization of cobinamide and was extremely effective at reversing the physiologic effects of cyanide on oxyhemoglobin and deoxyhemoglobin extraction. Recovery time to 63% of their baseline values in the central nervous system was in a mean of 1032 minutes in the control group and 9 minutes in the cobinamide group with a difference of 1023 minutes (95% confidence interval [CI] 116, 1874 minutes). In muscle tissue, recovery times were 76 and 24 minutes with a difference of 52 minutes (95% CI 7, 98min). Red blood cell cyanide levels returned towards normal significantly faster in cobinamide sulfite-treated animals than in control animals. Conclusions Intramuscular

  16. Application of 2-Aminothiazoline-4-carboxylic Acid as a Forensic Marker of Cyanide Exposure.

    Science.gov (United States)

    Rużycka, Monika; Giebułtowicz, Joanna; Fudalej, Marcin; Krajewski, Paweł; Wroczyński, Piotr

    2017-02-20

    Cyanides are infamous for their highly poisonous properties. Accidental cyanide poisoning occurs frequently, but occasionally, intentional poisonings also occur. Inhalation of fumes generated by fire may also cause cyanide poisoning. There are many limitations in direct analysis of cyanide. 2-Aminothiazoline-4-carboxylic acid (ATCA), a cyanide metabolite, seems to be the only surrogate that is being used in the detection of cyanide because of its stability and its cyanide-dependent quality in a biological matrix. Unfortunately, toxicokinetic studies on diverse animal models suggest significant interspecies differences; therefore, the attempt to extrapolate animal models to human models may be unsuccessful. The aim of the present study was to evaluate the use of ATCA as a forensic marker of cyanide exposure. For this purpose, post-mortem materials (blood and organs) from fire victims (n = 32) and cyanide-poisoned persons (n = 3) were collected. The distribution of ATCA in organs and its thermal stability were evaluated. The variability of cyanides in a putrid sample and in the context of their long-term and higher temperature stability was established. The presence of ATCA was detected by using an LC-MS/MS method and that of cyanide was detected spectrofluorimetrically. This is the first report on the endogenous ATCA concentrations and the determination of ATCA distribution in tissues of fire victims and cyanide-poisoned persons. It was found that blood and heart had the highest ATCA concentrations. ATCA was observed to be thermally stable even at 90 °C. Even though the cyanide concentration was not elevated in putrid samples, it was unstable during long-term storage and at higher temperature, as expected. The relationship between ATCA and cyanides was also observed. Higher ATCA concentrations were related to increased levels of cyanide in blood and organs (less prominent). ATCA seems to be a reliable forensic marker of exposure to lethal doses of cyanide.

  17. Cyanide reduction by nitrogenase in intact cells of Rhodopseudomonas gelatinose Molisch.

    Science.gov (United States)

    Materassi, R; Balloni, W; Florenzano, G

    1977-01-01

    Intact cells of Rhodopseudomonas gelatinosa, grown in N-free medium, reduce cyanide to methane and ammonia at a rate 5--8 times lower than acetylene. Cyanide reduction in whole cells is distinctly more sensitive to cyanide inhibition compared with enzyme preparations. These results are discussed in view of the exploitation of nitrogen-fixing photobacteria in the anaerobic detoxification of cyanide-containing wastewaters.

  18. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb...

  19. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    Science.gov (United States)

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia.

    Science.gov (United States)

    Bos, Eelke M; van Goor, Harry; Joles, Jaap A; Whiteman, Matthew; Leuvenink, Henri G D

    2015-03-01

    Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.

  1. Hydroxocobalamin treatment of acute cyanide poisoning from apricot kernels

    Science.gov (United States)

    Cigolini, Davide; Ricci, Giogio; Zannoni, Massimo; Codogni, Rosalia; De Luca, Manuela; Perfetti, Paola; Rocca, Giampaolo

    2011-01-01

    Clinical experience with hydroxocobalamin in acute cyanide poisoning via ingestion remains limited. This case concerns a 35-year-old mentally ill woman who consumed more than 20 apricot kernels. Published literature suggests each kernel would have contained cyanide concentrations ranging from 0.122 to 4.09 mg/g (average 2.92 mg/g). On arrival, the woman appeared asymptomatic with a raised pulse rate and slight metabolic acidosis. Forty minutes after admission (approximately 70 min postingestion), the patient experienced headache, nausea and dyspnoea, and was hypotensive, hypoxic and tachypnoeic. Following treatment with amyl nitrite and sodium thiosulphate, her methaemoglobin level was 10%. This prompted the administration of oxygen, which evoked a slight improvement in her vital signs. Hydroxocobalamin was then administered. After 24 h, she was completely asymptomatic with normalised blood pressure and other haemodynamic parameters. This case reinforces the safety and effectiveness of hydroxocobalamin in acute cyanide poisoning by ingestion. PMID:22694886

  2. Effect of hyperbaric oxygen therapy on whole blood cyanide concentrations in carbon monoxide intoxicated patients from fire accidents

    DEFF Research Database (Denmark)

    Lawson-Smith, Pia; Jansen, Erik C; Hilsted, Linda

    2010-01-01

    and possibly death. While several reports support the use of hyperbaric oxygen therapy (HBO) for the treatment of severe CO poisoning, limited data exist on the effect of HBO during CN poisoning. HBO increases the elimination rate of CO haemoglobin in proportion to the increased oxygen partial pressure...

  3. Hearing Loss due to Carbon Monoxide Poisoning

    DEFF Research Database (Denmark)

    Mehrparvar, Amir Houshang; Davari, Mohammad Hossein; Mollasadeghi, Abolfazl

    2013-01-01

    Carbon monoxide poisoning is one of the rare causes of hearing loss which may cause reversible or irreversible, unilateral or bilateral hearing loss after acute or chronic exposure. In this report, we present a case of bilateral sensorineural hearing loss in a secondary smelting workshop worker...

  4. Hydrogen sulfide and translational medicine

    OpenAIRE

    Guo, Wei; Cheng, Ze-yu; Zhu, Yi-Zhun

    2013-01-01

    Hydrogen sulfide (H2S) along with carbon monoxide and nitric oxide is an important signaling molecule that has undergone large numbers of fundamental investigations. H2S is involved in various physiological activities associated with the regulation of homeostasis, vascular contractility, pro- and anti-inflammatory activities, as well as pro- and anti-apoptotic activities etc. However, the actions of H2S are influenced by its concentration, reaction time, and cell/disease types. Therefore, H2S...

  5. On OMC-1 temperatures determined from methyl cyanide observations

    Science.gov (United States)

    Hollis, J. M.

    1982-01-01

    An analysis is performed on the J(k) = 12(k)-11(k) and 13(k)-12(k) transitions of methyl cyanide detected by other investigators in the direction of OMC-1. The original interpretation of those observations argues for the presence of two distinct temperature regions or possibly a temperature gradient within the cloud. The analysis presented here demonstrates that the observations of these particular molecular transitions are consistent with a single methyl cyanide emission region with a source kinetic temperature of 121.2 + or - 8.2 K and a molecular rotational temperature of 16.6 + or - 1.8 K.

  6. Evaluation of non cyanide methods for hemoglobin estimation

    Directory of Open Access Journals (Sweden)

    Vinaya B Shah

    2011-01-01

    Full Text Available Background: The hemoglobincyanide method (HiCN method for measuring hemoglobin is used extensively worldwide; its advantages are the ready availability of a stable and internationally accepted reference standard calibrator. However, its use may create a problem, as the waste disposal of large volumes of reagent containing cyanide constitutes a potential toxic hazard. Aims and Objective: As an alternative to drabkin`s method of Hb estimation, we attempted to estimate hemoglobin by other non-cyanide methods: alkaline hematin detergent (AHD-575 using Triton X-100 as lyser and alkaline- borax method using quarternary ammonium detergents as lyser. Materials and Methods: The hemoglobin (Hb results on 200 samples of varying Hb concentrations obtained by these two cyanide free methods were compared with a cyanmethemoglobin method on a colorimeter which is light emitting diode (LED based. Hemoglobin was also estimated in one hundred blood donors and 25 blood samples of infants and compared by these methods. Statistical analysis used was Pearson`s correlation coefficient. Results: The response of the non cyanide method is linear for serially diluted blood samples over the Hb concentration range from 3gm/dl -20 gm/dl. The non cyanide methods has a precision of + 0.25g/dl (coefficient of variation= (2.34% and is suitable for use with fixed wavelength or with colorimeters at wavelength- 530 nm and 580 nm. Correlation of these two methods was excellent (r=0.98. The evaluation has shown it to be as reliable and reproducible as HiCN for measuring hemoglobin at all concentrations. The reagents used in non cyanide methods are non-biohazardous and did not affect the reliability of data determination and also the cost was less than HiCN method. Conclusions: Thus, non cyanide methods of Hb estimation offer possibility of safe and quality Hb estimation and should prove useful for routine laboratory use. Non cyanide methods is easily incorporated in hemobloginometers

  7. On OMC-1 temperatures determined from methyl cyanide observations

    Science.gov (United States)

    Hollis, J. M.

    1982-01-01

    An analysis is performed on the J(k) = 12(k)-11(k) and 13(k)-12(k) transitions of methyl cyanide detected by other investigators in the direction of OMC-1. The original interpretation of those observations argues for the presence of two distinct temperature regions or possibly a temperature gradient within the cloud. The analysis presented here demonstrates that the observations of these particular molecular transitions are consistent with a single methyl cyanide emission region with a source kinetic temperature of 121.2 + or - 8.2 K and a molecular rotational temperature of 16.6 + or - 1.8 K.

  8. Effect of water on carbon monoxide-oxygen flame velocity

    Science.gov (United States)

    Mcdonald, Glen E

    1954-01-01

    The flame velocities were measured of 20 percent oxygen and 80 percent carbon monoxide mixtures containing either light water or heavy water. The flame velocity increased from 34.5 centimeters per second with no added water to about 104 centimeters per second for a 1.8 percent addition of light water and to 84 centimeters per second for an equal addition of heavy water. The addition of heavy water caused greater increases in flame velocity with equilibrium hydrogen-atom concentration than would be predicted by the Tanford and Pease square-root relation. The ratio of the flame velocity of a mixture containing light water to that of a mixture containing heavy water was found to be 1.4. This value is the same as the ratio of the reaction rate of hydrogen to that of deuterium and oxygen. A ratio of reaction rates of 1.4 would also be required for the square-root law to give the observed ratio of flame-velocity changes.

  9. Measurements on high temperature fuel cells with carbon monoxide-containing fuel gases; Messungen an Hochtemperatur-Brennstoffzellen mit kohlenmonoxidhaltigen Brenngasen

    Energy Technology Data Exchange (ETDEWEB)

    Apfel, Holger

    2012-10-10

    In the present work the different power density of anode-supported high-temperature solid oxide fuel cells (ASC-SOFCs) were examined for carbon monoxide-containing fuels. In addition to wet hydrogen / carbon monoxide mixtures the cells were run with synthetic gas mixtures resembling the products of an autothermal reformer, and actual reformate generated by a 2 kW autothermal reformer. It was found that the power-voltage characteristics of an ASC depends primarily on the open circuit voltages of different gas mixtures, but is nearly independent of the hydrogen concentration of the fuel, although the reaction rates of other potential fuels within the gas mixture, namely carbon monoxide and methane, are much lower that the hydrogen reaction rate. The probable reason is that the main fuel for the electrochemical oxidation within the cell is hydrogen, while the nickel in the base layer of the anode acts as a reformer which replenishes the hydrogen by water reduction via carbon monoxide and methane oxidation.

  10. Cyanide formation by the cyanide distillation of nitrate. Zen shian joryuji ni okeru shosan ion ga kanyosuru shian kagobutsu ion no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, H. (The Chiba Prefectural Lab. of Water Pollution, Chiba (Japan))

    1994-06-10

    Cyanide ion is formed by reacting disodium ethylenediamine-tetra-acetate (EDTA) with a sample containing nitrous ion. Further, it is known that cyanide ions are also generated from the reaction between EDTA and the product of the reaction of oxide and the substance like hydroxyl ammonium chloride which is added to reduce the oxide contained in the sample. In the present researches, the possibility of the formation of cyanide ions from the nitric acid used popularly in the manufactory of plating and surface-treatment is examined. It is expected that if nitric ion takes a part in the formation of cyanide ion, the reaction reducing the nitric ion into nitrous ion would happen as the former step thereof. Therefore, the cyanide distillation of nitric ions co-existing with the reducing agent is carried out, and it is confirmed that cyanide ion is formed with the participation of EDTA. 14 refs., 1 fig., 7 tabs.

  11. Cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 involves a malate:quinone oxidoreductase and an associated cyanide-insensitive electron transfer chain.

    Science.gov (United States)

    Luque-Almagro, Victor M; Merchán, Faustino; Blasco, Rafael; Igeño, M Isabel; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Castillo, Francisco; Roldán, M Dolores

    2011-03-01

    The alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from L-malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation in vivo. Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate:quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in P. pseudoalcaligenes CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.

  12. A direct and rapid method to determine cyanide in urine by capillary electrophoresis.

    Science.gov (United States)

    Zhang, Qiyang; Maddukuri, Naveen; Gong, Maojun

    2015-10-02

    Cyanides are poisonous chemicals that widely exist in nature and industrial processes as well as accidental fires. Rapid and accurate determination of cyanide exposure would facilitate forensic investigation, medical diagnosis, and chronic cyanide monitoring. Here, a rapid and direct method was developed for the determination of cyanide ions in urinary samples. This technique was based on an integrated capillary electrophoresis system coupled with laser-induced fluorescence (LIF) detection. Cyanide ions were derivatized with naphthalene-2,3-dicarboxaldehyde (NDA) and a primary amine (glycine) for LIF detection. Three separate reagents, NDA, glycine, and cyanide sample, were mixed online, which secured uniform conditions between samples for cyanide derivatization and reduced the risk of precipitation formation of mixtures. Conditions were optimized; the derivatization was completed in 2-4min, and the separation was observed in 25s. The limit of detection (LOD) was 4.0nM at 3-fold signal-to-noise ratio for standard cyanide in buffer. The cyanide levels in urine samples from smokers and non-smokers were determined by using the method of standard addition, which demonstrated significant difference of cyanide levels in urinary samples from the two groups of people. The developed method was rapid and accurate, and is anticipated to be applicable to cyanide detection in waste water with appropriate modification. Published by Elsevier B.V.

  13. Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure.

    Science.gov (United States)

    Jackson, Randy; Oda, Robert P; Bhandari, Raj K; Mahon, Sari B; Brenner, Matthew; Rockwood, Gary A; Logue, Brian A

    2014-02-04

    Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture "apparatus", consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.

  14. Identification of a crystalline cyanide-containing compound in blast furnace sludge deposits.

    Science.gov (United States)

    Mansfeldt, T; Dohrmann, R

    2001-01-01

    During blast furnace operation, a cyanide-containing muddy waste referred to as blast furnace sludge is generated in large amounts. In Germany it was and is still common practice to pump this sludge into surface deposits. Depending on species, cyanide has very different toxicity. To this day there is no information about the type of cyanide occurring in blast furnace sludge deposits. In order to identify the type of cyanide we investigated by means of wet chemical and powder X-ray diffraction analyses 37 samples of three blast furnace deposits. Wet chemical results indicate that both the extremely toxic free cyanide (HCN and CN ) and toxic weak metal-cyanide complexes, for example [Zn(CN)4]2-, are not present in the sludge. By powder X-ray diffraction we identified the crystalline cyanide-containing compound potassium zinc hexacyanoferrate(II) nonahydrate, K2Zn3[Fe(CN)6]2 x 9H2O, as the cyanide-bearing compound. Our study is the first that identifies potassium zinc hexacyanoferrate(II) nonahydrate in the environment. As the iron-cyanide complex [Fe(CN)6] is not acutely toxic, any direct hazard comes from cyanide occurring in the investigated wastes. Under the predominant pH milieu of the sludge (pH about 8) the solubility of potassium zinc hexacyanoferrate(II) nonahydrate is low, thus minimizing the mobility of cyanide.

  15. Cyanide and Copper Recovery from Barren Solution of the Merrill Crowe Process

    Science.gov (United States)

    Parga, José R.; Valenzuela, Jesús L.; Díaz, J. A.

    This paper is a brief overview of the role of inducing the nucleated precipitation of copper and cyanide in a flashtube serpentine reactor, using sodium sulfide as the precipitate and sulfuric acid as pH control. The results showed that pH had a great effect on copper cyanide removal efficiency and the optimum pH was about 3 to 3.5. At this pH value copper cyanide removal efficiency could be achieved above 97 and 99 %, when influent copper concentration ions were 650 and 900 ppm respectively. In this process the cyanide associated with the copper, zinc, iron cyanide complexes are released as HCN gas under strong acidic conditions, allowing it to be recycled back to the cyanidation process as free cyanide.

  16. Comparison of cyanide exposure markers in the biofluids of smokers and non-smokers.

    Science.gov (United States)

    Vinnakota, Chakravarthy V; Peetha, Naga S; Perrizo, Mitch G; Ferris, David G; Oda, Robert P; Rockwood, Gary A; Logue, Brian A

    2012-11-01

    Cyanide is highly toxic and is present in many foods, combustion products (e.g. cigarette smoke), industrial processes, and has been used as a terrorist weapon. In this study, cyanide and its major metabolites, thiocyanate and 2-amino-2-thiazoline-4-carboxylic acid (ATCA), were analyzed from various human biofluids of smokers (low-level chronic cyanide exposure group) and non-smokers to gain insight into the relationship of these biomarkers to cyanide exposure. The concentrations of each biomarker tested were elevated for smokers in each biofluid. Significant differences (p cyanide exposure, and other statistical methods were performed to better understand the relationship between cyanide and its metabolites. Of the markers studied, the results indicate plasma ATCA, in particular, showed excellent promise as a biomarker for chronic low-level cyanide exposure.

  17. Transport of complexed cyanide in soil; Trasporto dei complessi del cianuro nel terreno

    Energy Technology Data Exchange (ETDEWEB)

    Meeussen, J.C.L.; Zee, S.E.A.T.M. van der; Bosma, W.J.P.; Keizer, M.G. [Wageningen Agricultural Univ., Wageningen (Netherlands). Dept. of soil science and plant nutrition

    1994-12-31

    Contamination of the soil with cyanide is common at sites of several types of industries. Risks for adverse effects of this cyanide for human health or for the environment are largely determined by the behaviour of this cyanide in soil. In acidic soils this behaviour is probably dominated by precipitation and dissolution of prussian blue, Fe{sub 4}(Fe(CN){sub 6}){sub 3}(s), an iron cyanide precipitate. Calculations of multi-component cyanide transport, including equilibrium with this solid phase, iron hydroxide and several redox reactions, are compared with cyanide concentrations observed in contaminated soils. The calculated cyanide concentrations, as well as the pH and redox potentials, agree well with the field situations.

  18. Liver and kidney lesions and associated enzyme changes induced in rabbits by chronic cyanide exposure.

    Science.gov (United States)

    Okolie, N P; Osagie, A U

    1999-07-01

    The effect of prolonged chronic cyanide exposure on liver and kidney integrity, as well as some associated enzyme and metabolite changes, were investigated in New Zealand white rabbits (initial mean weight 1.52 kg) using a combination of colorimetric, spectrophotometric, enzymatic, gravimetric and histological procedures. Two groups of rabbits were fed for 40 weeks on either pure growers' mash or growers' mash containing 702 ppm inorganic cyanide. Results obtained indicate that the cyanide-fed rabbits had significantly decreased liver activities of alkaline phosphatase, glutamate pyruvate transaminase and sorbitol dehydrogenase relative to controls (Pactivities of these enzymes in the cyanide-treated group. Kidney alkaline phosphatase activity was significantly decreased (Pactivities of lactate dehydrogenase. In addition, liver and kidney rhodanese activities were significantly raised in the cyanide-fed group. There were marked degenerative changes in the liver and kidney sections from the cyanide-treated rabbits. These results suggest that chronic cyanide exposure may be deleterious to liver and kidney functions.

  19. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  20. Cyanides in a soil of a former coking plant site

    Energy Technology Data Exchange (ETDEWEB)

    Mansfeldt, T.; Gehrt, S.B. [Bochum Univ. (Germany). Geographisches Inst.; Friedl, J. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Bodenkunde

    1998-12-31

    Soils of former coking plant sites are frequently contaminated with cyanide, which mainly occurs as the pigment Berlin blue, Fe{sup III}{sub 4}[Fe{sup II}(CN){sub 6}]{sub 3}, and soluble iron cyanide complexes, Fe(CN){sub 6}{sup 3-/4-}. Berlin blue is only slightly soluble under acidic conditions. The cyanide mobility in a strongly acid soil (pH about 3) of such a site was studied by assessing the distribution of cyanides in the soil and sediment and by conducting batch experiments at different pH levels. The soil is based on a disposal layer (0-32 cm) overlying sandy loess (32-145 cm) overlying glaciofluvial sand (145-250 cm) overlying marlstone (250-500 cm). Highest cyanide concentrations were found in the disposal layer (62-2865 mg CN{sup -} kg{sup -1}), medium concentrations in the sandy loess (16-29 mg CN{sup -} kg{sup -1}), concentrations of about 100 mg CN{sup -} kg{sup -1} in the glaciofluvial sand and lowest concentrations in the marlstone (0.22-0.49 mg CN{sup -} kg{sup -1}). The surfaces of macropores, which occur in the sandy loess and finish in the glasicofluvial sand, are dark-blue dyed and have much higher cyanide concentrations than the surrounding bulk soil. Thus, the accumulation of cyanides in the sand layer may partly be the result of macropore flow. Batch experiments show a strong pH dependence of the solubility of cyanide in the soil as well as of Berlin blue which was found by Moessbauer spectroscopy to be the dominating or sole iron cyanide. The time necessary to transport the cyanides solely as hexacyanoferrate into the undisturbed horizons is estimated to 1000 yr. However, because Berlin blue is known to form colloids, we discuss the possibility of cyanide transport as colloid not requiring dissolution and reprecipitation. We postulate that colloidal Berlin blue transported by macropore flow is responsible for the high mobility of cyanides in this acid soil. (orig.) [Deutsch] Boeden ehemaliger Kokereistandorte sind haeufig mit Cyaniden

  1. Transition metal chemistry under high carbon monoxide pressure: an infrared spectroscopic study of catalysis in the Fischer--Tropsch reaction. [7 refs

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; King, A.D. Jr.; Iqbal, M.Z.; Frazier, C.C.

    1977-01-01

    This project involves the design and construction of equipment to investigate the infrared spectra of metal carbonyl derivatives in the 1600 to 2200 cm./sup -1/ nu(CO) region at pressures up to 500 atmospheres and temperatures up to 250/sup 0/ followed by the use of this equipment to study the infrared spectra of a variety of transition metal derivatives at elevated pressures of carbon monoxide. The ultimate objective of this work is the discovery of new chemistry leading to the development of new systems which are catalytically active for the conversion of mixtures of carbon monoxide and hydrogen to hydrocarbons in connection with the conversion of coal to hydrocarbon fuels. During the initial period covered by this first progress report a high pressure infrared cell has been designed, constructed, and used for the preliminary investigations of reactions of about 15 transition metal derivatives under elevated pressure of carbon monoxide and hydrogen.

  2. Effect of long-term cyanide exposure on cyanide-sensitive respiration and phosphate metabolism in the fungus Phycomyces blakesleeanus

    Directory of Open Access Journals (Sweden)

    Stanić Marina

    2014-01-01

    Full Text Available The effects of long-term exposure (5 h of Phycomyces blakesleeanus mycelium to 5 mM KCN on respiration and phosphate metabolites were tested. Exposure to cyanide, antimycin A and azide lead to a decrease in the activity of cyanide-sensitive respiration (CSR, and the ratio of core polyphosphates (PPc and inorganic phosphates (Pi, which is a good indicator of the metabolic state of a cell. After 5 h of incubation, the activity of CSR returned to control values. For this, the recovery of cytochrome c oxidase (COX was required. In addition, the PPc/Pi ratio started to recover shortly after initiation of COX recovery, but never reached control values. This led us to conclude that the regulation of polyphosphate (PPn levels in the cell is tightly coupled to respiratory chain functioning. In addition, acutely applied cyanide caused two different responses, observed by 31P NMR spectroscopy, that were probably mediated through the mechanism of glycolytic oscillations, triggered by the effect of cyanide on mitochondria. [Projekat Ministarstva nauke Republike Srbije, br. 173040

  3. Photosynthetic carbon monoxide metabolism by sugarcane leaves

    Energy Technology Data Exchange (ETDEWEB)

    Kortschak, H.P.; Nickell, L.G.

    1973-01-01

    The photosynthetic carbon monoxide metabolism by sugarcane was studied to determine whether substantial quantities of CO are removed from the air by fields in Hawaii. Leaves metabolized low CO concentrations photosynthetically, with sucrose as an end product. Rates of uptake were of the order of 10/sup -4/ power mg/d sq m/hr. This was to low to be significant in removing CO from the atmosphere.

  4. Sensorineural Hearing Loss following Carbon Monoxide Poisoning

    Directory of Open Access Journals (Sweden)

    Joseph P. Pillion

    2012-01-01

    Full Text Available A case study is presented of a 17-year-old male who sustained an anoxic brain injury and sensorineural hearing loss secondary to carbon monoxide poisoning. Audiological data is presented showing a slightly asymmetrical hearing loss of sensorineural origin and mild-to-severe degree for both ears. Word recognition performance was fair to poor bilaterally for speech presented at normal conversational levels in quiet. Management considerations of the hearing loss are discussed.

  5. Hydrogen sulfide in signaling pathways.

    Science.gov (United States)

    Olas, Beata

    2015-01-15

    For a long time hydrogen sulfide (H₂S) was considered a toxic compound, but recently H₂S (at low concentrations) has been found to play an important function in physiological processes. Hydrogen sulfide, like other well-known compounds - nitric oxide (NO) and carbon monoxide (CO) is a gaseous intracellular signal transducer. It regulates the cell cycle, apoptosis and the oxidative stress. Moreover, its functions include neuromodulation, regulation of cardiovascular system and inflammation. In this review, I focus on the metabolism of hydrogen sulfide (including enzymatic pathways of H₂S synthesis from l- and d-cysteine) and its signaling pathways in the cardiovascular system and the nervous system. I also describe how hydrogen sulfide may be used as therapeutic agent, i.e. in the cardiovascular diseases.

  6. Three-Dimensional Cadmium(II Cyanide Coordination Polymers with Ethoxy-, Butoxy- and Hexyloxy-ethanol

    Directory of Open Access Journals (Sweden)

    Takeshi Kawasaki

    2016-08-01

    Full Text Available The three novel cadmium(II cyanide coordination polymers with alkoxyethanols, [Cd(CN2(C2H5OCH2CH2OH]n (I, [{Cd(CN2(C4H9OCH2CH2OH}3{Cd(CN2}]n (II and [{Cd(CN2(H2O2}{Cd(CN2}3·2(C6H13OCH2CH2OH]n (III, were synthesized and charcterized by structural determination. Three complexes have three-dimensional Cd(CN2 frameworks; I has distorted tridymite-like structure, and, II and III have zeolite-like structures. The cavities of Cd(CN2 frameworks of the complexes are occupied by the alkoxyethanol molecules. In I and II, hydroxyl oxygen atoms of alkoxyethanol molecules coordinate to the Cd(II ions, and the Cd(II ions exhibit slightly distort trigonal-bipyramidal coordination geometry. In II, there is also tetrahedral Cd(II ion which is coordinated by only the four cyanides. The hydroxyl oxygen atoms of alkoxyethanol connects etheric oxygen atoms of the neighboring alkoxyethanol by hydrogen bond in I and II. In III, hexyloxyethanol molecules do not coordinate to the Cd(II ions, and two water molecules coordnate to the octahedral Cd(II ions. The framework in III contains octahedral Cd(II and tetrahedral Cd(II in a 1:3 ratio. The Cd(CN2 framework structures depended on the difference of alkyl chain for alkoxyethanol molecules.

  7. Concentrations of cyanide in blood samples of corpses after smoke inhalation of varying origin.

    Science.gov (United States)

    Stoll, Simone; Roider, Gabriele; Keil, Wolfgang

    2017-01-01

    Cyanide (CN) blood concentration is hardly considered during routine when evaluating smoke gas intoxications and fire victims, although some inflammable materials release a considerable amount of hydrogen cyanide. CN can be significant for the capacity to act and can in the end even be the cause of death. Systematic data concerning the influence of different fire conditions, especially those of various inflammable materials, on the CN-blood concentration of deceased persons do not exist. This study measured the CN level in 92 blood samples of corpses. All persons concerned were found dead in connection with fires and/or smoke gases. At the same time, the carboxyhemoglobin (COHb) level was determined, and the corpses were examined to detect pharmaceutical substances, alcohol and drugs. Furthermore, we analysed autopsy findings and the investigation files to determine the inflammable materials and other circumstances of the fires. Due to the inflammable materials, the highest concentration of CN in the victims was found after enclosed-space fires (n = 45) and after motor-vehicle fires (n = 8). The CN levels in these two groups (n = 53) were in 47 % of the cases toxic and in 13 % of the cases lethal. In victims of charcoal grills (n = 17) and exhaust gases (n = 6), no or only traces of CN were found. Only one case of the self-immolations (n = 12) displayed a toxic CN level. The results show that CN can have considerable significance when evaluating action ability and cause of death with enclosed-space fires and with motor-vehicle fires.

  8. Cyanide in industrial wastewaters and its removal: a review on biotreatment.

    Science.gov (United States)

    Dash, Rajesh Roshan; Gaur, Abhinav; Balomajumder, Chandrajit

    2009-04-15

    Cyanides are produced by certain bacteria, fungi, and algae, and may be found in plants and some foods, such as lima beans and almonds. Although cyanides are present in small concentrations in these plants and microorganisms, their large-scale presence in the environment is attributed to the human activities as cyanide compounds are extensively used in industries. Bulk of cyanide occurrence in environment is mainly due to metal finishing and mining industries. Although cyanide can be removed and recovered by several processes, it is still widely discussed and examined due to its potential toxicity and environmental impact. From an economic standpoint, the biological treatment method is cost-effective as compared to chemical and physical methods for cyanide removal. Several microbial species can effectively degrade cyanide into less toxic products. During metabolism, they use cyanide as a nitrogen and carbon source converting it to ammonia and carbonate, if appropriate conditions are maintained. Biological treatment of cyanide under anaerobic as well as aerobic conditions is possible. The present review describes the mechanism and advances in the use of biological treatment for the removal of cyanide compounds and its advantages over other treatment processes. It also includes various microbial pathways for their removal.

  9. The Combination of Cobinamide and Sulfanegen Is Highly Effective in Mouse Models of Cyanide Poisoning

    Science.gov (United States)

    Chan, Adriano; Crankshaw, Daune L.; Monteil, Alexandre; Patterson, Steven E.; Nagasawa, Herbert T.; Briggs, Jackie E.; Kozocas, Joseph A.; Mahon, Sari B.; Brenner, Matthew; Pilz, Renate B.; Bigby, Timothy D.; Boss, Gerry R.

    2013-01-01

    SUMMARY Context Cyanide poisoning is a major contributor to death in smoke inhalation victims and accidental exposure to cyanide occurs in a variety of industries. Moreover, cyanide has the potential to be used by terrorists, particularly in a closed space such as an airport or train station. Current therapies for cyanide poisoning must be given by intravenous administration, limiting their use in treating mass casualties. Objective We are developing two new cyanide antidotes—cobinamide, a vitamin B12 analog, and sulfanegen, a 3-mercaptopyruvate prodrug. Both drugs can be given by intramuscular administration, and therefore could be used to treat a large number of people quickly. We now asked if the two drugs would have an augmented effect when combined. Materials and Methods We used a non-lethal and two different lethal models of cyanide poisoning in mice. The non-lethal model assesses neurologic recovery by quantitatively evaluating the innate righting reflex time of a mouse. The two lethal models are a cyanide injection and a cyanide inhalation model. Results We found that the two drugs are at least additive when used together in both the non-lethal and lethal models: at doses where all animals died with either drug alone, the combination yielded 80 and 40% survival in the injection and inhalation models, respectively. Similarly, drug doses that yielded 40% survival with either drug alone yielded 80 and 100% survival in the injection and inhalatiion models, respectively. As part of the inhalation model, we developed a new paradigm in which animals are exposed to cyanide gas, injected intramuscularly with antidote, and then re-exposed to cyanide gas. This simulates cyanide exposure of a large number of people in a closed space, because people would remain exposed to cyanide, even after receiving an antidote. Conclusion The combination of cobinamide and sulfanegen shows great promise as a new approach to treating cyanide poisoning. PMID:21740135

  10. Monitoring of river water for free cyanide pollution from mining activity in Papua New Guinea and attenuation of cyanide by biochar.

    Science.gov (United States)

    Sawaraba, Ian; Rao, B K Rajashekhar

    2015-01-01

    Cyanide (CN) pollution was reported in the downstream areas of Watut and Markham Rivers due to effluent discharges from gold mining and processing activities of Hidden Valley mines in Morobe province of Papua New Guinea. We monitored free cyanide levels in Watut and Markham River waters randomly three times in years for 2 years (2012 and 2013). Besides, a short-term static laboratory study was conducted to evaluate the potential of river sediment to attenuate externally added cyanide, with and without the presence of biochar material. Results indicated that the free cyanide content ranged between 0.17 and 1.32 μg L(-1) in the river waters. The free cyanide content were found to be significantly (p cyanide levels in all four monitoring sites across three sampling intervals were lower than 0.20 mg L(-1) which is the maximum contaminant level (MCL) permitted according to US Environmental Protection Agency. Under laboratory conditions, the biochar-impregnated sediment showed ∼3 times more attenuation capacity for cyanide than non-amended sediment, thus indicating possibility of using biochar to cleanse cyanide from spills or other sources of pollution.

  11. On the role of β-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings.

    Science.gov (United States)

    Yu, Xiao-Zhang; Lu, Peng-Cheng; Yu, Zhen

    2012-03-01

    A study was conducted to investigate the contribution of β-cyanoalanine synthase (CAS) to the botanical metabolism of free cyanide and iron cyanides. Seedlings of rice (Oryza sativa L. cv. XZX 45) were grown hydroponically and then amended with free cyanide (KCN) or ferri-cyanide [K(3)Fe(CN)(6)] into the growth media. Total cyanide, free cyanide, and Fe(3+)/Fe(2+) in aqueous solution were analyzed to identify the speciation of K(3)Fe(CN)(6). Activity of CAS in different parts of the rice seedlings was also assayed in vivo and results indicated that dissociation of K(3)Fe(CN)(6) to free cyanide in solution was negligible. Almost all of the applied KCN was removed by rice seedlings and the metabolic rates were concentration dependent. Phyto-transport of K(3)Fe(CN)(6) was apparent, but appreciable amounts of cyanide were recovered in plant tissues. The metabolic rates of K(3)Fe(CN)(6) were also positively correlated to the concentrations supplied. Rice seedlings exposed to KCN showed a considerable increase in the CAS activity and roots had higher CAS activity than shoots, indicating that CAS plays an important role in the botanical assimilation of KCN. However, no measurable change of CAS activity in different parts of rice seedlings exposed to K(3)Fe(CN)(6) was detected, suggesting that K(3)Fe(CN)(6) is likely metabolized by rice directly through an unknown pathway rather than the β-cyanoalanine pathway.

  12. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    Science.gov (United States)

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tobacco and chemicals (image)

    Science.gov (United States)

    Some of the chemicals associated with tobacco smoke include ammonia, carbon dioxide, carbon monoxide, propane, methane, acetone, hydrogen cyanide and various carcinogens. Other chemicals that are associated with chewing ...

  14. Determination of free cyanide and total cyanide concentrations in surface and underground waters in Bogoso and its surrounding areas in Ghana

    Directory of Open Access Journals (Sweden)

    S. Obiri

    2007-08-01

    Full Text Available Concentrations of free cyanide and total cyanide in water samples in Bogoso and its surrounding areas in Ghana have been measured in this study. Concentrations of free cyanide and total cyanide were found to be above the maximum permissible discharge limit of effluent from mining companies into natural waters set by Environmental Protection Agency, Ghana (GEPA. A comparison of the results obtained in this study with permissible levels set by US Environmental Protection Agency and the World Health Organization reveals that surface waters in the study areas are highly polluted with cyanide and it's not safe for human consumptions. This means that, the resident in and around Bogoso are at risk.

  15. Compact Instrument for Measurement of Atmospheric Carbon Monoxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposed the development of a rugged, compact, and automated instrument for the high sensitivity measurement of tropospheric carbon monoxide...

  16. Biodegradation of cyanide using Serratia sp. isolated from contaminated soil of gold mine in Takab

    Directory of Open Access Journals (Sweden)

    Mojtaba Mohseni

    2014-07-01

    Full Text Available   Introduction : Cyanide is a toxic and hazardous compound for all organisms which is produced enormously by human being and causes the environment pollution. Biodegradation is the best method for cyanide elimination in industrial wastewater. The aims of this study were isolation of cyanide degrading bacteria from contaminated soil and investigation of their ability for cyanide degradation.   Materials and methods: After soil samples collection, enrichment of cyanide degrading bacteria was performed in a minimal medium containing 0.5 mM potassium cyanide. The ability of isolated bacterium to utilize the cyanide as sole carbon and nitrogen source was investigated. Cyanide degradation and ammonium production was determined in growth medium using picric acid and Nessler’s regent methods. Toxicity effect of different cyanide compounds on bacterial growth was determined using minimum inhibitory concentration. In addition, the ability of the isolated bacterium to utilize different cyanide compounds was investigated . Identification of the isolate was undertaken using morphological, physiological and biochemical characteristics and molecular analysis .   Results : A bacterium with ability to degrade cyanide as sole carbon and nitrogen source was isolated from soil. This bacterium named as isolate MF1. MF1 degraded cyanide in growth medium in alkaline condition after 40 hours. Moreover this isolate tolerated more than 7 mM potassium cyanide. The results showed that there was a direct relation between decreasing of cyanide concentration, increasing of ammonia concentration and growth of MF1. In addition, the isolated bacterium demonstrated the ability to utilize different cyanide compounds as sole carbon and nitrogen source. The results of morphological and physiological characteristics showed that this bacterium belonged to the Serratia sp. Moreover, 16S rDNA sequencing and phylogenetic analyses exhibited that MF1 strain was similar to Serratia

  17. 非晶态NiP(B)/Al2O3催化一氧化碳,水和氧气合成过氧化氢%Amorphous NiP(B)/Al2O3 Catalyst for Synthesis of Hydrogen Peroxide from Carbon Monoxide, Water and Oxygen

    Institute of Scientific and Technical Information of China (English)

    马忠龙; 张伦; 刘昌俊

    2003-01-01

    Hydrogen peroxide is a green oxidant with great potential for much application. The present production of hydrogen peroxide requires severe conditions and generates pollutants. Alternative syntheses are required and the synthesis of H2O2 from CO, H2O and O2 is very promising. As shown in Eq(1), the synthesis is thermodynamically favored:

  18. Gene expression in rat striatum following carbon monoxide poisoning

    Directory of Open Access Journals (Sweden)

    Shuichi Hara

    2017-06-01

    Full Text Available Carbon monoxide (CO poisoning causes brain damage, which is attenuated by treatment with hydrogen [1,2], a scavenger selective to hydroxyl radical (·≡OH [3]. This suggests a role of ·≡OH in brain damage due to CO poisoning. Studies have shown strong enhancement of ·≡OH production in rat striatum by severe CO poisoning with a blood carboxyhemoglobin (COHb level >70% due to 3000 ppm CO, but not less severe CO poisoning with a blood COHb level at approximately 50% due to 1000 ppm CO [4]. Interestingly, 5% O2 causes hypoxia comparable with that by 3000 ppm CO and produces much less •OH than 3000 ppm CO does [4]. In addition, cAMP production in parallel with ·≡OH production [5] might contribute to ·≡OH production [6]. It is likely that mechanisms other than hypoxia contribute to brain damage due to CO poisoning [7]. To search for the mechanisms, we examined the effects of 1000 ppm CO, 3000 ppm CO and 5% O2 on gene expression in rat striatum. All array data have been deposited in the Gene Expression Omnibus (GEO database under accession number GSE94780.

  19. Copper Plating from Non-Cyanide Alkaline Baths

    Science.gov (United States)

    Li, Minggang; Wei, Guoying; Wang, Jianfang; Li, Meng; Zhao, Xixi; Bai, Yuze

    2014-12-01

    Non-cyanide alkaline bath was used to prepare copper thin films. Influences of various temperatures on deposition rates, surface morphologies and microstructures of films were investigated. Copper thin films prepared from non-cyanide alkaline bath show typical nodular structures. Copper films fabricated at higher temperature possess rough surface due to hydrolysis of complexing agents. According to the XRD patterns, all deposited films were crystalline and showed Cu (111), Cu (200) and Cu (220) peaks. The intensity of peak (200) increases gradually with the rise on bath temperatures. Films with maximum thickness (7.5 μm) could be obtained at the temperature of 40°C. From the cyclic voltammetry curve, it was found that the cathodic polarization decreased slightly with increase of bath temperatures. In addition, when the bath temperature was equal to 50°C, current efficiency could reach to 96.95%.

  20. Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

    Science.gov (United States)

    Luque-Almagro, Víctor M; Acera, Felipe; Igeño, Ma Isabel; Wibberg, Daniel; Roldán, Ma Dolores; Sáez, Lara P; Hennig, Magdalena; Quesada, Alberto; Huertas, Ma José; Blom, Jochen; Merchán, Faustino; Escribano, Ma Paz; Jaenicke, Sebastian; Estepa, Jessica; Guijo, Ma Isabel; Martínez-Luque, Manuel; Macías, Daniel; Szczepanowski, Rafael; Becerra, Gracia; Ramirez, Silvia; Carmona, Ma Isabel; Gutiérrez, Oscar; Manso, Isabel; Pühler, Alfred; Castillo, Francisco; Moreno-Vivián, Conrado; Schlüter, Andreas; Blasco, Rafael

    2013-01-01

    Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.

  1. Characterization of a Mouse Model of Oral Potassium Cyanide Intoxication.

    Science.gov (United States)

    Sabourin, Patrick J; Kobs, Christina L; Gibbs, Seth T; Hong, Peter; Matthews, Claire M; Patton, Kristen M; Sabourin, Carol L; Wakayama, Edgar J

    2016-09-01

    Potassium cyanide (KCN) is an inhibitor of cytochrome C oxidase causing rapid death due to hypoxia. A well-characterized model of oral KCN intoxication is needed to test new therapeutics under the Food and Drug Administration Animal Rule. Clinical signs, plasma pH and lactate concentrations, biomarkers, histopathology, and cyanide and thiocyanate toxicokinetics were used to characterize the pathology of KCN intoxication in adult and juvenile mice. The acute oral LD50s were determined to be 11.8, 11.0, 10.9, and 9.9 mg/kg in water for adult male, adult female, juvenile male, and juvenile female mice, respectively. The time to death was rapid and dose dependent; juvenile mice had a shorter mean time to death. Juvenile mice displayed a more rapid onset and higher incidence of seizures. The time to observance of respiratory signs and prostration was rapid, but mice surviving beyond 2 hours generally recovered fully within 8 hours. At doses up to the LD50, there were no gross necropsy or microscopic findings clearly attributed to administration of KCN in juvenile or adult CD-1 mice from 24 hours to 28 days post-KCN challenge. Toxicokinetic analysis indicated rapid uptake, metabolism, and clearance of plasma cyanide. Potassium cyanide caused a rapid, dose-related decrease in blood pH and increase in serum lactate concentration. An increase in fatty acid-binding protein 3 was observed at 11.5 mg/kg KCN in adult but not in juvenile mice. These studies provide a characterization of KCN intoxication in adult and juvenile mice that can be used to screen or conduct preclinical efficacy studies of potential countermeasures.

  2. The Millimeterwave Spectrum of n-BUTYL Cyanide

    Science.gov (United States)

    Ordu, Matthias H.; Müller, Holger S. P.; Lewen, Frank; Schlemmer, Stephan; Nez, Marc Nu; Walters, Adam

    2011-06-01

    The rotational spectrum of n-butyl cyanide (C_4H_9CN) was measured between 75 and 130 GHz using a novel all-solid-state spectrometer with a total absorption path of 44 m. In the course of the analysis of the spectrum, about 3000 transitions were assigned and a full set of quartic centrifugal distortion parameters with some sextic and octic terms could be determined for each of the three known conformers (anti-anti, anti-gauche(methyl end) and gauche(CN end)-anti). The work was motivated by the fact that n-butyl cyanide is likely to be found in interstellar hot core environments. This is indicated by the discovery of n-propyl cyanide (C_3H_7CN), the next smaller alkyl cyanide, in the ISM. The increased accuracy of the model, which will be additionally extended by future laboratory measurements around 200 GHz, may now be employed for a prediction of the spectrum up to 300 GHz with a feasible uncertainty for astronomic line surveys. Furthermore, there are two less abundant conformers, cis-gauche-gauche and trans-gauche-gauche, which have not yet been detected in the rotational spectrum. Due to the increased sensitivity of the new spectrometer, it seems possible now for the first time to identify their sectroscopic fingerprints in the recorded data. A. Belloche, R. T. Garrod, H. S. P.Müller, K. M. Menten, C. Comito, and P. Schilke, Astronomy & Astrophysics 499, 215 (2009) R. K. Bohn, J. L. Pardus, J. August, T. Brupbacher, W. Jäger, J. Mol. Struct. 413-414, 293 (1997)

  3. Coumarin benzothiazole derivatives as chemosensors for cyanide anions.

    Science.gov (United States)

    Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao

    2015-06-05

    Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.

  4. Antidotal Efficacy of Antioxidants against Cyanide Poisoning in vitro.

    Directory of Open Access Journals (Sweden)

    R. Bhattacharya

    1999-01-01

    Full Text Available Cyanide is a potent homicidal, genocidal and chemical warfare agent. Besides, its known inhibitory effects on various enzyme Systems, its other pronounced toxic effects include lipid peroxidation (LPx, particularly in the central nervous system or neuronal cells in vitro. The present study assessed the cytotoxicity of potassium cyanide (KCN in two non-neuronal mammalian cell cultures, viz., human embryonic lung epithelium (L-132 and baby hamster kidney (BHK-21 cells. In addition, the cytoprotective potential of two antioxidant agents, namely, curcumin (CMN and N-acetylcysteine (NAC against KCN (2 and 4 mM in vitro was evaluated. In both the cell lines, KCN reduced cell viability as indicated by trypan blue dye exclusion, leakage of cytosolic lactate dehydrogenase and neutral red uptake. Protein content was unaffected in L-132 cells while cellular respiration determined by MTT assay was impaired in both the cells. A dose-dependent glutathione mediated LPx was observed in BHK-21 cells alone. The above cytotoxic changes produced by KCN were more effectively minimised by NAC as compared to CMN. Efficacy of CMN and NAC have therapeutic implications as adjuncts to existing cyanide antidotes.

  5. Acute cyanide Intoxication: A rare case of survival

    Directory of Open Access Journals (Sweden)

    Durga Jethava

    2014-01-01

    Full Text Available A 30-year-old male jewellery factory worker accidentally ingested silver potassium cyanide and was brought to the emergency department in a state of shock and profound metabolic acidosis. This patient was managed hypothetically with use of injection thiopentone sodium intravenously until the antidote was received. Cyanide is a highly cytotoxic poison and it rapidly reacts with the trivalent iron of cytochrome oxidase thus paralysing the aerobic respiration. The result is severe lactic acidosis, profound shock, and its fatal outcome. The patient dies of cardio-respiratory arrest secondary to dysfunction of the medullary centres. It is rapidly absorbed, symptoms begin few seconds after exposure and death usually occurs in <30 min. The average lethal dose for potassium cyanide is about 250 mg. We used repeated doses of thiopentone sodium till the antidote kit was finally in our hands, hypothesising that it contains thiol group similar to the antidote thiosulphate. Moreover, it is an anticonvulsant. We were successful in our attempts and the patient survived though the specific antidotes could be administered after about an hour.

  6. Coumarin benzothiazole derivatives as chemosensors for cyanide anions

    Science.gov (United States)

    Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao

    2015-06-01

    Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.

  7. Acute Electrocardiographic ST Segment Elevation May Predict Hypotension in a Swine Model of Severe Cyanide Toxicity

    Science.gov (United States)

    2012-04-21

    were also detected before hypotension. Keywords Cyanide . Cardiology . Toxicology . Electrocardiography . Hypotension . STelevation Background Cyanide... Cardiology , the European Resuscitation Council, the Heart and Stroke Foundation of Canada, the Institute of Critical Care Medicine, the Safar Center for...Reid F (2006) Efficacy of hydroxoco balamin for the treatment of acute cyanide poisoning in adult beagle dogs . Clin Toxicol (Phila) 44(Suppl 1):5 15 290 J. Med. Toxicol. (2012) 8:285 290

  8. Draft Genome Sequence of the Cyanide-Utilizing Bacterium Pseudomonas fluorescens Strain NCIMB 11764

    OpenAIRE

    2012-01-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  9. Draft genome sequence of the cyanide-utilizing bacterium Pseudomonas fluorescens strain NCIMB 11764.

    Science.gov (United States)

    Vilo, Claudia A; Benedik, Michael J; Kunz, Daniel A; Dong, Qunfeng

    2012-12-01

    We report here the 6.97-Mb draft genome sequence of Pseudomonas fluorescens strain NCIMB 11764, which is capable of growth on cyanide as the sole nitrogen source. The draft genome sequence allowed the discovery of several genes implicated in enzymatic cyanide turnover and provided additional information contributing to a better understanding of this organism's unique cyanotrophic ability. This is the first sequenced genome of a cyanide-assimilating bacterium.

  10. Isolation and characterization of mutants defective in the cyanide-insensitive respiratory pathway of Pseudomonas aeruginosa.

    OpenAIRE

    Cunningham, L.; Williams, H D

    1995-01-01

    The branched respiratory chain of Pseudomonas aeruginosa contains at least two terminal oxidases which are active under normal physiological conditions. One of these, cytochrome co, is a cytochrome c oxidase which is completely inhibited by concentrations of the respiratory inhibitor potassium cyanide as low as 100 microM. The second oxidase, the cyanide-insensitive oxidase, is resistant to cyanide concentrations in excess of 1 mM as well as to sodium azide. In this work, we describe the isol...

  11. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents

    OpenAIRE

    Naveen Dwivedi; Chandrajit Balomajumder; Prasenjit Mondal

    2016-01-01

    In the present study, comparative investigation for the bioremoval of cyanide from synthetic aqueous solution by Prunus amygdalus (Almond) shell (PAS) and Tectona grandis (Sagwan) leaves (TGL) powder have been performed as a function of solution pH, bioadsorbent dose, contact time and initial cyanide concentration. The cyanide uptake by PAS and TGL powder has been quantitatively estimated using sorption isotherms. The equilibrium data are best fitted to Freundlich and Langmuir isotherm model ...

  12. Analysis of Carbon Monoxide in Blood

    Science.gov (United States)

    Huddle, Benjamin P.; Stephens, Joseph C.

    2003-04-01

    Forensic tests used to perform the qualitative and quantitative analyses of carbon monoxide in blood are described. The qualitative test uses the diffusion of CO, which is released from blood by reaction with H2SO4, into a PdCl2 solution in a Conway cell and the resultant formation of a palladium mirror. The quantitative analysis is based on the absorption of visible light by carboxyhemoglobin at 541 nm and reduced hemoglobin at 555 nm. Both procedures are suitable for undergraduate chemistry experiments.

  13. Effects of cyanide and dissolved oxygen concentration on biological Au recovery.

    Science.gov (United States)

    Kita, Yoshito; Nishikawa, Hiroshi; Takemoto, Tadashi

    2006-07-25

    The number of discarded electric devices containing traces of Au is currently increasing. It is desirable to recover this Au because of its valuable physicochemical properties. Au is usually dissolved with relatively high concentrations of cyanide, which is associated with environmental risk. Chromobacterium violaceum is able to produce and detoxify small amounts of cyanide, and may thus be able to recover Au from discarded electric devices. This study investigated the effects of cyanide and dissolved oxygen concentration on biological Au recovery. Cyanide production by C. violaceum was sufficient to dissolve Au, while maintaining a high cyanide concentration did not enhance Au dissolution. Increased oxygen concentration enhanced Au dissolution from 0.04 to 0.16 mmol/l within the test period of 70 h. Electrochemical measurement clarified this phenomenon; the rest potential of Au in the cyanide solution produced by C. violaceum increased from -400 to -200 mV, while in the sterile cyanide solution, it was constant in cyanide concentrations ranging from 0 to 1.5 mmol/l and increased in dissolved oxygen concentrations ranging from 0 to 0.25 mmol/l. Therefore, it was clarified that dissolved oxygen concentration is the main factor affecting the efficiency of cyanide leaching of gold by using bacteria.

  14. The Effect of Storage Longtime on Cyanide Production in Postmortem Stored Tissues

    Directory of Open Access Journals (Sweden)

    Saeeid Gholamzadeh

    2017-02-01

    Full Text Available Background & Objective: Acute cyanide poisoning happens intentionally as suicide attempt or in accidental use. Interpretation of cyanide analysis results in postmortem samples is important in forensic medicine. Material & Methods: In this case-control study, the liver and the lung of 100 autopsy cases were collected during six months in Shiraz Forensic Medicine Department. Samples were divided into three parts and were examined as follow: one part of the liver and the lung was analyzed qualitatively to detect cyanide with Prussian blue test at first day of admission, the second and the third parts of the samples were stored at 0-4°C for one and two months, respectively. Then, liver and lung samples were analyzed to measure the amount of cyanide. Results: Cyanide was detected in only six cases in all three parts of the liver samples. Screening results for cyanide were negative for the remaining 94 liver samples. Conclusion: Endogenous cyanide production was not detected in liver and lung samples in this study. Therefore, cyanide detection was not affected by the time of the storage of the samples. The cyanide level changes in mentioned tissues were not significant. More importantly, our results would be more advantageous if we studied quantitatively on more samples to pave the way for future studies.

  15. Analysis of Cyanide in Blood by Headspace-Isotope-Dilution-GC-MS

    DEFF Research Database (Denmark)

    Løbger, Lise Lotte; Petersen, Henning Willads; Andersen, Jens Enevold Thaulov

    2008-01-01

    An uncomplicated, rapid, automated procedure for the analysis of low cyanide concentrations in whole blood is reported. The analysis was performed by headspace gas chromatography and mass spectrometry in the (1H12C14N) and m/z 29 (1H13C15N). Carryover from cyanide adsorption onto the surface...... of the needle was prevented by developing a new method that enabled automated flushing of the needle in between each cyanide analysis. Results were compared of ordinary calibrations and those of isotope dilutions. The total time of analysis was 18min for a single cyanide analysis....

  16. Efficiency Compare of Both Sonochemical and Photosonochemical Technologies for Cyanide Removal fromAqueous Solutions

    Directory of Open Access Journals (Sweden)

    Z Bonyadi

    2010-07-01

    Full Text Available "n "nBackgrounds and Objectives: Cyanide is a species of high toxicity that found mostly in industrial effluents such as electroplating, metal mining, metallurgy and metal cleaning processes. Intrance of it to Existence enviroment contains very health hazardous. Purpose of this study, efficiency compare of both sonochemical and photosonochemical technologies for cyanide removal from aqueous solutions."nMaterials and Methods: in this study, it has been used from a productive set of 500w power ultresound waves in of two frequencies 35 kHz and 130 kHz and a 125 W low pressure mercury lamp. Experiments were performed at initial cyanide concentrations varying from 2.5 to 75 mg/L. in this study, The effects of parameters such as pH, time and initial cyanide concentration on the sonochemical and photosonic degradation have been studied."nResults:The results of the study showed that the maximom removal efficiency of cyanide had been achieved sonochemical technology was 71% while it was 74% by photosonic at frequency of 130 kHz, at time of 90 min, pH of 11 and initial cyanide concentration of 2.5 mg/l."nConclusion: The results of the study showed that efficiency of photosonic process is more than for sonochemical cyanide removal fromaqueous solutions.Also efficiency of cyanide removal has direct relationship with pH, frequeny and time ,and it has reverse relationship with cyanide concentration for both processes.

  17. Investigation of the Inhibition of Cyanide on Metabolism of Fish Liver Mitochondria by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI Hui-Rong; LIU Yi; DAI Jie; QIN Cai-Qin; ZHANG Zhong-Hai; QU Song-Sheng

    2006-01-01

    A microcalorimetric technique based on the metabolic heat-output was explored to evaluate the inhibition of cyanide on the mitochondrial metabolism of aquatic animal, Cyprinus carpio. The power-time curves could be divided into four parts: lag phase, active recovery phase, stationary phase, and decline phase, and the corresponding thermokinetic parameters were obtained. The maximum heat production rate Pmax decreased in a linear manner with the increase of concentration of cyanide, however, such mitochondria of aquatic animal were still metabolized actively even under the action of high concentration of cyanide. All the observations suggested that the mitochondria of this aquatic animal should exhibit considerable ability of cyanide-resistant respiration.

  18. Determination of cyanide in microsamples by means of capillary flow injection analysis with amperometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Backofen, U. [Leipzig Univ. (Germany). Sektion 8 - Chemie; Matysik, F.-M. [Department of Chemistry, University of Coimbra (Portugal); Werner, G. [Leipzig Univ. (Germany). Sektion 8 - Chemie

    1996-10-01

    A new approach for determining cyanide in microsamples is described. The method is based on capillary flow injection analysis (CFIA) with amperometric detection. The sensing electrode is a silver-plated microdisk electrode, where cyanide can react under formation of a dicyanoargentate complex. A remarkably low mass detection limit of 231 fmol cyanide is obtained for an injection volume of 60 nl. The sample throughput of the CFIA-arrangement is comparable with a conventional sized FIA-system. A practical application is given by analyzing the cyanide (amygdalin) concentration in apple kernels. (orig.). With 5 figs.

  19. Amygdalin Toxicity Studies in Rats Predict Chronic Cyanide Poisoning in Humans

    Science.gov (United States)

    Newton, George W.; Schmidt, Eric S.; Lewis, Jerry P.; Lawrence, Ruth; Conn, Eric

    1981-01-01

    Significant amounts of cyanide are released when amygdalin (Laetrile), a cyanogenic glycoside, is given orally or intravenously to rats. The amount of cyanide liberated following oral administration is dependent in part on the bacterial flora of the gut and can be suppressed by antibiotic pretreatment of the animals. Bacteria from human feces likewise hydrolyze amygdalin with release of cyanide. Humans taking amygdalin orally in the hope of preventing cancer are likely to be exposed to levels of cyanide in excess of that associated with the development of tropical ataxic neuropathy in people of underdeveloped countries where food containing cyanogenic glycosides is a staple part of the diet. PMID:7222669

  20. Total cyanide mass measurement with micro-ion selective electrode for determination of specific activity of carbon-11 cyanide.

    Science.gov (United States)

    Shea, Colleen; Alexoff, David L; Kim, Dohyun; Hoque, Ruma; Schueller, Michael J; Fowler, Joanna S; Qu, Wenchao

    2015-08-01

    In this research, we aim to directly measure the specific activity (SA) of the carbon-11 cyanide ([(11)C]CN¯) produced by our in-house built automated [(11)C]HCN production system and to identify the major sources of (12)C-cyanide ((12)CN¯). The [(11)C]CN¯ is produced from [(11)C]CO2, which is generated by the (14)N(p,α)(11)C nuclear reaction using a cyclotron. Direct measurement of cyanide concentrations was accomplished using a relatively inexpensive, and easy to use ion selective electrode (ISE) which offered an appropriate range of sensitivity for detecting mass. Multiple components of the [(11)C]HCN production system were isolated in order to determine their relative contributions to (12)CN¯ mass. It was determined that the system gases were responsible for approximately 30% of the mass, and that the molecular sieve/nickel furnace unit contributed approximately 70% of the mass. Beam on target (33µA for 1 and 10min) did not contribute significantly to the mass. Additionally, we compared the SA of our [(11)C]HCN precursor determined using the ISE to the SA of our current [(11)C]CN¯ derived radiotracers determined by HPLC to assure there was no significant difference between the two methods. These results are the first reported use of an ion selective electrode to determine the SA of no-carrier-added cyanide ion, and clearly show that it is a valuable, inexpensive and readily available tool suitable for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. [Carbon monoxide poisoning by a heating system].

    Science.gov (United States)

    Dietz, Eric; Gehl, Axel; Friedrich, Peter; Kappus, Stefan; Petter, Franz; Maurer, Klaus; Püschel, Klaus

    2016-01-01

    A case of accidental carbon monoxide poisoning in several occupants of two neighboring residential buildings in Hamburg-Harburg (Germany) caused by a defective gas central heating system is described. Because of leaks in one of the residential buildings and the directly adjacent wall of the neighboring house, the gas could spread and accumulated in both residential buildings, which resulted in a highly dangerous situation. Exposure to the toxic gas caused mild to severe intoxication in 15 persons. Three victims died still at the site of the accident. Measures to protect the occupants were taken only with a great delay. As symptoms were unspecific, it was not realized that the various alarms given by persons involved in the accident were related to the same cause. In order to take appropriate measures in time it is indispensible to recognize, assess and check potential risks, which can be done by using carbon monoxide warning devices and performing immediate COHb measurements with special pulse oximeters on site. Moreover, the COHb content in the blood should be routinely determined in all patients admitted to an emergency department with unspecific symptoms.

  2. Observations of iodine monoxide columns from satellite

    Directory of Open Access Journals (Sweden)

    A. Schönhardt

    2008-02-01

    Full Text Available Iodine species in the troposphere are linked to ozone depletion and new particle formation. In this study, a full year of iodine monoxide (IO columns retrieved from measurements of the SCIAMACHY satellite instrument is presented, coupled with a discussion of their uncertainties and the detection limits. The largest amounts of IO are found near springtime in the Antarctic. A seasonal variation of iodine monoxide in Antarctica is revealed with high values in springtime, slightly less IO in the summer period and again larger amounts in autumn. In winter, no elevated IO levels are found in the areas accessible to satellite measurements. This seasonal cycle is in good agreement with recent ground-based measurements in Antarctica. In the Arctic region, no elevated IO levels were found in the period analysed. This implies that different conditions with respect to iodine release exist in the two Polar Regions. To investigate possible release mechanisms, comparisons of IO columns with those of tropospheric BrO, and ice coverage are described and discussed. Some parallels and interesting differences between IO and BrO temporal and spatial distributions are identified. Overall, the large spatial coverage of satellite retrieved IO data and the availability of a long-term dataset provide new insight about the abundances and distributions of iodine compounds in the troposphere.

  3. Nitric oxide and carbon monoxide diffusing capacity of the lung

    NARCIS (Netherlands)

    Lee, I. van der

    2006-01-01

    The single breath diffusion capacity of the lung for carbon monoxide (DLCO) is measure for gas uptake by the lung, and consists of a membrane and a vascular component. Nitric oxide (NO) binds 400 times faster to hemoglobin than carbon monoxide, thus the uptake of NO by the blood is very large.

  4. Nitric oxide and carbon monoxide diffusing capacity of the lung

    NARCIS (Netherlands)

    Lee, I. van der

    2006-01-01

    The single breath diffusion capacity of the lung for carbon monoxide (DLCO) is measure for gas uptake by the lung, and consists of a membrane and a vascular component. Nitric oxide (NO) binds 400 times faster to hemoglobin than carbon monoxide, thus the uptake of NO by the blood is very large. There

  5. Fatal carbon monoxide intoxication after acetylene gas welding of pipes.

    Science.gov (United States)

    Antonsson, Ann-Beth; Christensson, Bengt; Berge, Johan; Sjögren, Bengt

    2013-06-01

    Acetylene gas welding of district heating pipes can result in exposure to high concentrations of carbon monoxide. A fatal case due to intoxication is described. Measurements of carbon monoxide revealed high levels when gas welding a pipe with closed ends. This fatality and these measurements highlight a new hazard, which must be promptly prevented.

  6. Real World of Industrial Chemistry: Organic Chemicals from Carbon Monoxide.

    Science.gov (United States)

    Kolb, Kenneth E.; Kolb, Doris

    1983-01-01

    Carbon Monoxide obtained from coal may serve as the source for a wide variety of organic compounds. Several of these compounds are discussed, including phosgene, benzaldehyde, methanol, formic acid and its derivatives, oxo aldehydes, acrylic acids, and others. Commercial reactions of carbon monoxide are highlighted in a table. (JN)

  7. Determination of the Michaelis-Menten kinetics and the genes expression involved in phyto-degradation of cyanide and ferri-cyanide.

    Science.gov (United States)

    Yu, Xiao-Zhang; Zhang, Xue-Hong

    2016-07-01

    Hydroponic experiments were conducted with different species of plants (rice, maize, soybean and willow) exposed to ferri-cyanide to investigate the half-saturation constant (K M ) and the maximal metabolic capacity (v max ) involved in phyto-assimilation. Three varieties for each testing species were collected from different origins. Measured concentrations show that the uptake rates responded biphasically to ferri-cyanide treatments by showing increases linearly at low and almost constant at high concentrations from all treatments, indicating that phyto-assimilation of ferri-cyanide followed the Michaelis-Menten kinetics. Using non-linear regression, the highest v max was by rice, followed by willows. The lowest v max was found for soybean. All plants, except maize (DY26) and rice (XJ12), had a similar K M value, suggesting the same enzyme was active in phyto-assimilation of ferri-cyanide. Transcript level, by real-time quantitative PCR, of enzymes involved in degradation of cyanides showed that the analyzed genes were differently expressed during different cyanides exposure. The expression of CAS and ST genes responded positively to KCN exposure, suggesting that β-CAS and ST pathways were two possible pathways for cyanide detoxification in rice. The transcript level of NIT and ASPNASE genes also showed a remarkable up-regulation to KCN, implying the contribution to the pool of amino acid aspartate, which is an end product of CN metabolism. Up-regulation of GS genes suggests that acquisition of ammonium released from cyanide degradation may be an additional nitrogen source for plant nutrition. Results also revealed that the expressions of these genes, except for GS, were relatively constant during iron cyanide exposure, suggesting that they are likely metabolized by plants through a non-defined pathway rather than the β-CAS pathway.

  8. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.

    Science.gov (United States)

    Donato, D B; Nichols, O; Possingham, H; Moore, M; Ricci, P F; Noller, B N

    2007-10-01

    Wildlife deaths associated with cyanide-bearing mine waste solutions have plagued the gold mining industries for many years, yet there is little published data showing the relationship between wildlife mortality and cyanide toxicity. A gap of knowledge exists in monitoring, understanding the causal relationships and managing risks to wildlife from cyanide-bearing waste solutions and tailings. There is a need for the gold industry to address this issue and to meet the International Cyanide Management Code (ICMC) guidelines. The perceived extent of the issue varies, with one study finding the issue inadequately monitored and wildlife deaths grossly underestimated. In Nevada, USA during 1990 and 1991, 9512 carcasses were reported of over 100 species, although there was underestimation due to reporting being voluntary. Of these, birds comprised 80-91% of vertebrate carcasses reported annually. At Northparkes, Australia in 1995, it was initially estimated that 100 bird carcasses were present by mine staff following a tailings incident; when a thorough count was conducted, 1583 bird carcasses were recorded. Eventually, 2700 bird deaths were documented over a four-month period. It is identified that avian deaths are usually undetected and significantly underestimated, leading to a perception that a risk does not exist. Few guidelines and information are available to manage the risks of cyanide to wildlife, although detoxification, habitat modification and denying wildlife access have been used effectively. Hazing techniques have proven ineffective. Apparently no literature exists that documents accurate wildlife monitoring protocols on potentially toxic cyanide-bearing mine waste solutions or any understanding on the analysis of any derived dataset. This places the onus on mining operations to document that no risk to wildlife exists. Cyanide-bearing tailings storage facilities are environmental control structures to contain tailings, a standard practice in the mining

  9. Search of medical literature for indoor carbon monoxide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.; Ivanovich, M.

    1995-12-01

    This report documents a literature search on carbon monoxide. The search was limited to the medical and toxicological databases at the National Library of Medicine (MEDLARS). The databases searched were Medline, Toxline and TOXNET. Searches were performed using a variety of strategies. Combinations of the following keywords were used: carbon, monoxide, accidental, residential, occult, diagnosis, misdiagnosis, heating, furnace, and indoor. The literature was searched from 1966 to the present. Over 1000 references were identified and summarized using the following abbreviations: The major findings of the search are: (1) Acute and subacute carbon monoxide exposures result in a large number of symptoms affecting the brain, kidneys, respiratory system, retina, and motor functions. (2) Acute and subacute carbon monoxide (CO) poisonings have been misdiagnosed on many occasions. (3) Very few systematic investigations have been made into the frequency and consequences of carbon monoxide poisonings.

  10. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.

    Science.gov (United States)

    Nwokoro, Ogbonnaya; Dibua, Marie Esther Uju

    2014-03-01

    The aim of this investigation was to study whether certain bacteria could be used for cyanide degradation in soil. The bacteria Pseudomonas stutzeri and Bacillus subtilis were selected based on their good growth in a minimal medium containing 0.8 mg mL-1 potassium cyanide (KCN). In this study we tested their ability to reduce cyanide levels in a medium containing 1.5 mg mL-1 of KCN. Although both microorganisms reduced cyanide levels, Pseudomonas stutzeri was the more effective test organism. Later on, the selected cultures were grown, diluted and their various cell concentrations were used individually and in combination to test their ability of cyanide degradation in soil samples collected around a cassava processing mill. Bacillus subtilis caused degradation of soil cyanide from 0.218 mg g-1 soil immediately with an inoculum concentration of 0.1 (OD600nm) to 0.072 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) implying a 66.9 % reduction. Pseudomonas stutzeri cell concentration of 0.1 (OD600nm) decreased soil cyanide from 0.218 mg g-1 soil initially to 0.061 mg g-1 soil after 10 days with an inoculum concentration of 0.6 (OD600nm) (72 % reduction). The mixed culture of the two bacteria produced the best degradation of soil cyanide from 0.218 mg g-1 soil sample with a combined inoculum concentration of 0.1 (OD600nm) initially to 0.025 mg g-1 soil with a combined inoculum concentration of 0.6 (OD600nm) after 10 days incubation resulting in an 88.5 % degradation of soil cyanide. The analysed bacteria displayed high cyanide degradation potential and may be useful for efficient decontamination of cyanide contaminated sites.

  11. Sulfanegen Sodium Treatment in a Rabbit Model of Sub-Lethal Cyanide Toxicity

    Science.gov (United States)

    Brenner, Matthew; Kim, Jae G.; Lee, Jangwoen; Mahon, Sari B.; Lemor, Daniel; Ahdout, Rebecca; Boss, Gerry R.; Blackledge, William; Jann, Lauren; Nagasawa, Herbert T.; Patterson, Steven E.

    2010-01-01

    The aim of this study is to investigate the ability of intramuscular and intravenous sulfanegen sodium treatment to reverse cyanide effects in a rabbit model as a potential treatment for mass casualty resulting from cyanide exposure. Cyanide poisoning is a serious chemical threat from accidental or intentional exposures. Current cyanide exposure treatments, including direct binding agents, methemoglobin donors, and sulfur donors, have several limitations. Non-rhodanese mediated sulfur transferase pathways, including 3-mercaptopyruvate sulfurtransferase (3-MPST) catalyze the transfer of sulfur from 3-MP to cyanide, forming pyruvate and less toxic thiocyanate. We developed a water soluble 3-MP prodrug, 3-mercaptopyruvatedithiane (sulfanegen sodium), with the potential to provide a continuous supply of substrate for CN detoxification. In addition to developing a mass casualty cyanide reversal agent, methods are needed to rapidly and reliably diagnose and monitor cyanide poisoning and reversal. We use non-invasive technology, diffuse optical spectroscopy (DOS) and continuous wave near infrared spectroscopy (CWNIRS) to monitor physiologic changes associated with cyanide exposure and reversal. A total of 35 animals were studied. Sulfanegen sodium was shown to reverse the effects of cyanide exposure on oxyhemoglobin and deoxyhemoglobin rapidly, significantly faster than control animals when administered by intravenous or intramuscular routes. RBC cyanide levels also returned to normal faster following both intramuscular and intravenous sulfanegen sodium treatment than controls. These studies demonstrate the clinical potential for the novel approach of supplying substrate for non-rhodanese mediated sulfur transferase pathways for cyanide detoxification. DOS and CWNIRS demonstrated their usefulness in optimizing the dose of sulfanegen sodium treatment. PMID:20705081

  12. Chemical factors affecting the interpretation of blood cyanide concentrations in fire victims.

    Science.gov (United States)

    Moriya, Fumio; Hashimoto, Yoshiaki

    2003-03-01

    The purpose of this study was to examine the effects of methemoglobinemia caused by fire gases on blood cyanide concentrations in fire victims. Twenty-two fire victims with postmortem intervals of 8-48 h were involved. Blood cyanide concentrations at the time of death (C(0)) were estimated using the formula: C(0)=Ce(0.046 t) (C=blood cyanide concentration detected at autopsy, 0.046=first-order rate constant of cyanide disappearing from blood in corpses, and t=postmortem interval). Total (free and combined with cyanide) methemoglobin (MetHb) content was used to estimate the maximum capacity of MetHb for combining cyanide. Blood cyanide concentrations at the time of death were very high (5.32-6.47 mg/l) in five victims. Three showed high saturation (54.7-63.0%) of carboxyhemoglobin (CO-Hb) and elevated total MetHb contents (2.6-5.0%). MetHb at these levels is capable of scavenging up to 8.6-11.4 mg/l of blood cyanide. Thus, blood cyanide might have been completely combined with MetHb at the time of their death. In the remaining two victims, CO-Hb saturation was not high (30.9 and 37.9%) and no free MetHb was detected. As a result they may have exhibited severe toxic effects of cyanide at the time of their death. Our results indicate that MetHb contents and CO-Hb saturation should be determined to evaluate the toxic effects of cyanide in fire victims.

  13. A highly efficient dinuclear Cu(II) chemosensor for colorimetric and fluorescent detection of cyanide in water

    Science.gov (United States)

    Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.

    2017-01-01

    A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water.

  14. The behaviour of a single catalyst pellet for the selective hydrogenation of ethyne in ethene

    NARCIS (Netherlands)

    Bos, A.N.R.; Hof, E.; Kuper, W.; Westerterp, K.R.

    1993-01-01

    The steady-state and dynamic behaviour of a single Pd---Al2O3 catalyst particle is studied for the selective hydrogenation of ethyne in the presence of ethene, without addition of carbon monoxide. The particle-to-gas heat transfer in the reactor is characterized. During selective hydrogenation, not

  15. Cyanide and the human brain: perspectives from a model of food (cassava) poisoning.

    Science.gov (United States)

    Tshala-Katumbay, Desire D; Ngombe, Nadege N; Okitundu, Daniel; David, Larry; Westaway, Shawn K; Boivin, Michael J; Mumba, Ngoyi D; Banea, Jean-Pierre

    2016-08-01

    Threats by fundamentalist leaders to use chemical weapons have resulted in renewed interest in cyanide toxicity. Relevant insights may be gained from studies on cyanide mass intoxication in populations relying on cyanogenic cassava as the main source of food. In these populations, sublethal concentrations (up to 80 μmol/l) of cyanide in the blood are commonplace and lead to signs of acute toxicity. Long-term toxicity signs include a distinct and irreversible spastic paralysis, known as konzo, and cognition deficits, mainly in sequential processing (visual-spatial analysis) domains. Toxic culprits include cyanide (mitochondrial toxicant), thiocyanate (AMPA-receptor chaotropic cyanide metabolite), cyanate (protein-carbamoylating cyanide metabolite), and 2-iminothiazolidine-4-carboxylic acid (seizure inducer). Factors of susceptibility include younger age, female gender, protein-deficient diet, and, possibly, the gut functional metagenome. The existence of uniquely exposed and neurologically affected populations offers invaluable research opportunities to develop a comprehensive understanding of cyanide toxicity and test or validate point-of-care diagnostic tools and treatment options to be included in preparedness kits in response to cyanide-related threats. © 2016 New York Academy of Sciences.

  16. Effect of GarriI processing effluents [waste water] on the cyanide ...

    African Journals Online (AJOL)

    Effect of GarriI processing effluents [waste water] on the cyanide level of some root ... Journal Home · ABOUT · Advanced Search · Current Issue · Archives ... Root tubers are the important staple food crops in the tropics, Nigeria inclusive. ... Numerous studies have described environmental exposure of humans to cyanide in ...

  17. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  18. Cyanide Antidotes for Mass Casualties: Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery

    Science.gov (United States)

    2013-10-01

    circumstances , starting an intravenous line takes several minutes, and even more time will likely be required in cyanide-poisoned victims, since they may be...and the animal survived until the time of euthanasia at 40 min after starting the cyanide infusion. This is to be contrasted to the control animal

  19. Hydrocyanation of sulfonylimines using potassium hexacyanoferrate(II) as an eco-friendly cyanide source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Li, Rongzhi; Zheng, Huanhuan; Wen, Fei; Li, Hongbo; Yin, Junjun; Yang, Jingya, E-mail: lizheng@nwnu.edu.cn [Key Laboratory of Eco-Environment-Related Polymer Materials for Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu (China)

    2013-11-15

    An efficient and eco-friendly method for hydrocyanation of sulfonylimines via one-pot two-step procedure using potassium hexacyanoferrate)II) as cyanide source, benzoyl chloride as a promoter, and potassium carbonate as a base is described. This protocol has the features of using nontoxic, nonvolatile and inexpensive cyanide source, high yield, and simple work-up procedure. (author)

  20. Study of Potential Prophylactic and Antidotal Use of Scavenging Agents in Treatment of Cyanide Poisoning

    Science.gov (United States)

    1984-11-15

    oxaloacetic cyanohydrins. Biochem. J. 31, 617-618, 1937. 9 13. Cittadini, A., Caprino , L. and Terronova, T. Effect of pyruvate on the acute cyanide...Boston, Mass. p. 173, 1973. 3. Cittadini, A., Caprino , L. and Ternanova, T. Effect of pyruvate on the acute cyanide poisoning in mice. Experientia

  1. Comparative Studies on Simultaneous Biodegradation of Phenol and Cyanide Using Different Strains

    Directory of Open Access Journals (Sweden)

    Neetu Singh

    2014-03-01

    Full Text Available Removal of pollutants like phenol and cyanide is a serious environmental concern. Widespread studies on the biodegradation of phenol and cyanide have been carried out to overcome the environmental problems. This study provides an overview on the biological degradation of phenol and cyanide by isolated strain S.odorifera. For comparison three strains namely, A. chroococuum, E. coli and P. putida were also used for the degradation of phenol and cyanide. In this study, the effect of initial concentration of phenol and cyanide on their removal and biomass concentration was studied. It was observed that amongst these four bacteria percentage removal of phenol and cyanide, was found to be maximum for S. odorifera. The maximum tolerance level of phenol and cyanide for S. odorifera was found to be 1500 mg/l and 150 mg/l respectively. It was also concluded from this study that, the bacteria S. odorifera was capable simultaneous removal of phenol and cyanide i.e., 88.26% and 99.85% respectively.

  2. Reduction of carbon monoxide. Past research summary

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, R.R.

    1981-10-01

    Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

  3. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  4. Hydrogen sulfide prodrugs—a review

    Science.gov (United States)

    Zheng, Yueqin; Ji, Xingyue; Ji, Kaili; Wang, Binghe

    2015-01-01

    Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications. PMID:26579468

  5. Bepaling van vrij- en totaal-cyanide in grond en water met een doorstroomanalysesysteem: evaluatie van ontwerp NEN-6655

    NARCIS (Netherlands)

    Staden JJ van; Moayeri-Mirck MWG; Cleven RFMJ; Wiel HJ van de; LAC; LBA

    1994-01-01

    De ontwerp-methode voor de fotometrische bepaling van het totale gehalte aan cyanide (totaal-cyanide) en het gehalte aan vrij-cyanide in water en bodem met een doorstroomanalysesysteem (Ontwerp NEN 6655) is onderzocht en zonodig gewijzigd. De ontwerp-methode is gemodificeerd om de

  6. Cyanide antidotes for mass casualties: water-soluble salts of the dithiane (sulfanegen) from 3-mercaptopyruvate for intramuscular administration.

    Science.gov (United States)

    Patterson, Steven E; Monteil, Alexandre R; Cohen, Jonathan F; Crankshaw, Daune L; Vince, Robert; Nagasawa, Herbert T

    2013-02-14

    Current cyanide antidotes are administered by IV infusion, which is suboptimal for mass casualties. Therefore, in a cyanide disaster, intramuscular (IM) injectable antidotes would be more appropriate. We report the discovery of the highly water-soluble sulfanegen triethanolamine as a promising lead for development as an IM injectable cyanide antidote.

  7. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  8. Cyanide poisoning of a Cooper’s hawk (Accipiter cooperii)

    Science.gov (United States)

    Franson, J. Christian

    2017-01-01

    A Cooper’s hawk (Accipiter cooperii) was found dead in a ditch leading from a heap leach pad at a gold mine in Nevada. Observations at autopsy included an absence of external lesions, traces of subcutaneous and coronary fat, no food in the upper gastrointestinal tract, and no lesions in the viscera. Cyanide concentrations (µg/g ww) were 5.04 in blood, 3.88 in liver, and 1.79 in brain. No bacteria or viruses were isolated from tissues, and brain cholinesterase activity was within the normal range for a Cooper’s hawk.

  9. (Z-N-(2-Iodophenyl-4-nitrobenzimidoyl cyanide

    Directory of Open Access Journals (Sweden)

    Rodolfo Moreno-Fuquen

    2016-02-01

    Full Text Available In the title molecule, C14H8IN3O2, the cyanide group is anti to the iodide substituent of the adjacent benzene ring. The central segment is essentially planar (r.m.s deviation = 0.0341 Å and it is twisted away from the iodide- and nitro-substituted benzene rings by 69.02 (9 and 15.83 (16°, respectively. In the crystal, molecules are linked by weak C—H...N interactions, leading to C(8 chains along [010].

  10. Evaluation of Commercially Available Cyanide Test Kits against Various Matrices

    Science.gov (United States)

    2016-08-01

    Scientific ; Fair Lawn, NJ);  Brewer’s yeast (Lot SLBK4518V; Sigma Aldrich; St. Louis, MO);  DG chalk dust;  Chitin from shrimp shells (SLBL2694V...SOP T005(004); Forensic Chemistry Center, U.S. Food and Drug Administration: Cincinnati, OH, 2006; UNCLASSIFIED Procedure. 17 3.2 Procedures...B.S.; Urban, J.R.; Roberts, J.N.; Toomey, V.M. Screen for the Presence of Cyanide; SOP T005(004); Forensic Chemistry Center, U.S. Food and Drug

  11. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  12. Survey of Efficiency of Electrochemical Treatment in Cyanid Removal from Industrial Wastewatersrs

    Directory of Open Access Journals (Sweden)

    M Salehii

    2012-03-01

    Full Text Available Background and Objectives: Cyanide is a highly toxic compound which is Normally found in numerous industries, such as electroplating wastewater. Release of this compounds in to the Enviroment has a lot health hazards.The Purpose of this study is to Determine the efficiency of electrochemical oxidation method for Cyanide removal from industrial wastewaters Materials and Methods: This study conducted in a pilot system experimentally .In this study the effect of pH, voltage and operation time on total cyanide removal from industrial wastewaters by Electrochemical Oxidation was investigated by applying a Stainless Steel as a Anode and copper as a cathode .Results: The average percentage removal of cyanide was about 88 with SD=2.43. The optimal condition obtained at voltage of 9V and pH=13 and The operation time of 90 minutes.The volume of sludge which formed in this condition was about 20 percent of a one liter pilot reactor.Conclusion: the results statistically confirmed the significant relationship between input and cyanide concentration removal efficiency (p< 0.05, and confirmed The this confirmed The relation between cyanide & cyanat oxidation and hydroxyl ions consumption 1:2.( L.Szpyruowicz. therefore the best pH is 12.5-13.5 by Considering the need of alkaline environment to remove cyanide.Background and Objectives: Cyanide is a highly toxic compound which is Normally found in numerous industries, such as electroplating wastewater. Release of this compounds in to the Enviroment has a lot health hazards.The Purpose of this study is to Determine the efficiency of electrochemical oxidation method for Cyanide removal from industrial wastewaters Materials and Methods: This study conducted in a pilot system experimentally .In this study the effect of pH, voltage and operation time on total cyanide removal from industrial wastewaters by Electrochemical Oxidation was investigated by applying a Stainless Steel as a Anode and copper as a cathode

  13. Hydrogen sulfide : physiological properties and therapeutic potential in ischaemia

    NARCIS (Netherlands)

    Bos, Eelke M.; van Goor, Harry; Joles, Jaap A.; Whiteman, Matthew; Leuvenink, Henri G. D.

    2015-01-01

    Hydrogen sulfide (H2S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2S, focusing upon the

  14. Nitrocobinamide, a New Cyanide Antidote That Can Be Administered by Intramuscular Injection

    Science.gov (United States)

    Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T.; Shelton, G. Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J.; Patel, Hemal H.; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Mahon, Sari B.; Brenner, Matthew; Pilz, Renate B.; Boss, Gerry R.

    2015-01-01

    Currently available cyanide antidotes must be given by intravenous injection over 5–10 min, making them illsuited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intramuscular injection. Here we show that adding sodium nitrite to cobinamide yields a stable derivative (referred to as nitrocobinamide) that rescues cyanide-poisoned mice and rabbits when given by intramuscular injection. We also show that the efficacy of nitrocobinamide is markedly enhanced by coadministering sodium thiosulfate (reducing the total injected volume), and we calculate that ∼1.4 mL each of nitrocobinamide and sodium thiosulfate should rescue a human from a lethal cyanide exposure. PMID:25650735

  15. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.

    Science.gov (United States)

    Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D

    2014-11-01

    We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, pcyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.

  16. Nitrocobinamide, a new cyanide antidote that can be administered by intramuscular injection.

    Science.gov (United States)

    Chan, Adriano; Jiang, Jingjing; Fridman, Alla; Guo, Ling T; Shelton, G Diane; Liu, Ming-Tao; Green, Carol; Haushalter, Kristofer J; Patel, Hemal H; Lee, Jangwoen; Yoon, David; Burney, Tanya; Mukai, David; Mahon, Sari B; Brenner, Matthew; Pilz, Renate B; Boss, Gerry R

    2015-02-26

    Currently available cyanide antidotes must be given by intravenous injection over 5-10 min, making them ill-suited for treating many people in the field, as could occur in a major fire, an industrial accident, or a terrorist attack. These scenarios call for a drug that can be given quickly, e.g., by intramuscular injection. We have shown that aquohydroxocobinamide is a potent cyanide antidote in animal models of cyanide poisoning, but it is unstable in solution and poorly absorbed after intramuscular injection. Here we show that adding sodium nitrite to cobinamide yields a stable derivative (referred to as nitrocobinamide) that rescues cyanide-poisoned mice and rabbits when given by intramuscular injection. We also show that the efficacy of nitrocobinamide is markedly enhanced by coadministering sodium thiosulfate (reducing the total injected volume), and we calculate that ∼1.4 mL each of nitrocobinamide and sodium thiosulfate should rescue a human from a lethal cyanide exposure.

  17. Comparative investigation on the removal of cyanide from aqueous solution using two different bioadsorbents

    Directory of Open Access Journals (Sweden)

    Naveen Dwivedi

    2016-09-01

    Full Text Available In the present study, comparative investigation for the bioremoval of cyanide from synthetic aqueous solution by Prunus amygdalus (Almond shell (PAS and Tectona grandis (Sagwan leaves (TGL powder have been performed as a function of solution pH, bioadsorbent dose, contact time and initial cyanide concentration. The cyanide uptake by PAS and TGL powder has been quantitatively estimated using sorption isotherms. The equilibrium data are best fitted to Freundlich and Langmuir isotherm model for PAS and TGL powder respectively. The monolayer capacity of PAS and TGL powder for cyanide adsorption as calculated by Langmuir isotherm are 32.05 mg/g and 18.45 mg/g respectively. The kinetic data are found to follow closely the pseudo-second order kinetic model for both the bioadsorbents. The present study shows that such low cost materials could be used as efficient bioadsorbents for the removal of cyanide from aqueous solutions.

  18. Investigation of Hydrogen Sulfide Gas as a Treatment against P. falciparum, Murine Cerebral Malaria, and the Importance of Thiolation State in the Development of Cerebral Malaria

    DEFF Research Database (Denmark)

    Dellavalle, Brian; Staalsoe, Trine; Kurtzhals, Jørgen Anders;

    2013-01-01

    Cerebral malaria (CM) is a potentially fatal cerebrovascular disease of complex pathogenesis caused by Plasmodium falciparum. Hydrogen sulfide (HS) is a physiological gas, similar to nitric oxide and carbon monoxide, involved in cellular metabolism, vascular tension, inflammation, and cell death...

  19. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. Quarterly technical progress report for the period ending December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-12-31

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream`s composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  20. Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas, Phase 1. [Poly(etherimide) and poly(ether-ester-amide) membranes

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    During the last quarter several high performance membranes for the separation of hydrogen from nitrogen, carbon monoxide, hydrogen sulfide and carbon dioxide. The heat-resistant resin poly(etherimide) has been selected as the polymer with the most outstanding properties for the separation of hydrogen from nitrogen and carbon monoxide. Flat sheet and hollow fiber poly(etherimide) membranes have been prepared and evaluated with pure gases and gas mixtures at elevated pressures and temperatures. Multilayer composite poly(ether-ester-amide) membranes were also developed. These membranes are useful for the separation of carbon dioxide and hydrogen sulfide hydrogen. They have very high selectivities and extremely high normalized carbon dioxide and hydrogen sulfide fluxes. Separation of carbon dioxide/hydrogen streams is a key problem in hydrogen production from coal. The development of the two membranes now gives us two approaches to separate these gas streams, depending on the stream's composition. If the stream contains small quantities of hydrogen, the hydrogen- permeable poly(etherimide) membrane would be used to produce a hydrogen-enriched permeate. If the stream contains small quantities of carbon dioxide or hydrogen sulfide, the poly(ether-ester-amide) membrane would be used to produce a carbon dioxide/hydrogen sulfide-free, hydrogen-enriched residue stream. 6 fig., 4 tabs.

  1. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    Science.gov (United States)

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  2. Biodegradation of cyanide by acetonitrile-induced cells of Rhodococcus sp. UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Ibrahim, Abdul Latif; Cass, Anthony E G

    2013-01-01

    A Rhodococcus sp. UKMP-5M isolate was shown to detoxify cyanide successfully, suggesting the presence of an intrinsic property in the bacterium which required no prior cyanide exposure for induction of this property. However, in order to promote growth, Rhodococcus sp. UKMP-5M was fully acclimatized to cyanide after 7 successive subcultures in 0.1 mM KCN for 30 days. To further shorten the lag phase and simultaneously increase the tolerance towards higher cyanide concentrations, the bacterium was induced with various nitrile compounds sharing a similar degradatory pathway to cyanide. Acetonitrile emerged as the most favored inducer and the induced cells were able to degrade 0.1 mM KCN almost completely within 18 h. With the addition of subsequent aliquots of 0.1 mM KCN a shorter period for complete removal of cyanide was required, which proved to be advantageous economically. Both resting cells and crude enzyme of Rhodococcus sp. UKMP-5M were able to biodegrade cyanide to ammonia and formate without the formation of formamide, implying the identification of a simple hydrolytic cyanide degradation pathway involving the enzyme cyanidase. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Since the recent advancement in the application of biological methods in treating cyanide-bearing wastewater has been promising, the discovery of this new bacterium will add value by diversifying the existing microbial populations capable of cyanide detoxification.

  3. Cobinamide is superior to other treatments in a mouse model of cyanide poisoning

    Science.gov (United States)

    Chan, Adriano; Balasubramanian, Maheswari; Blackledge, William; Mohammad, Othman M.; Alvarez, Luis; Boss, Gerry R.; Bigby, Timothy D.

    2011-01-01

    Context Cyanide is a rapidly acting cellular poison, primarily targeting cytochrome c oxidase, and is a common occupational and residential toxin, mostly via smoke inhalation. Cyanide is also a potential weapon of mass destruction, with recent credible threats of attacks focusing the need for better treatments, since current cyanide antidotes are limited and impractical for rapid deployment in mass casualty settings. Objective We have used mouse models of cyanide poisoning to compare the efficacy of cobinamide, the precursor to cobalamin (vitamin B12), to currently approved cyanide antidotes. Cobinamide has extremely high affinity for cyanide and substantial solubility in water. Materials and Methods We studied cobinamide in both an inhaled and intraperitoneal model of cyanide poisoning in mice. Results We found cobinamide more effective than hydroxocobalamin, sodium thiosulfate, sodium nitrite, and the combination of sodium thiosulfate-sodium nitrite in treating cyanide poisoning. Compared to hydroxocobalamin, cobinamide was 3 and 11 times more potent in the intraperitoneal and inhalation models, respectively. Cobinamide sulfite was rapidly absorbed after intramuscular injection, and mice recovered from a lethal dose of cyanide even when given at a time when they had been apneic for over two minutes. In range finding studies, cobinamide sulfite at doses up to 2000 mg/kg exhibited no clinical toxicity. Discussion and Conclusion These studies demonstrate that cobinamide is a highly effective cyanide antidote in mouse models, and suggest it could be used in a mass casualty setting, because it can be given rapidly as an intramuscular injection when administered as cobinamide sulfite. Based on these animal data cobinamide sulfite appears to be an antidote worthy of further testing as a therapy for mass casualties. PMID:20704457

  4. Stress-Corrosion Cracking of Metallic Materials. Part III. Hydrogen Entry and Embrittlement in Steel

    Science.gov (United States)

    1975-04-01

    Strength Steels," Stress Corrosion Cracking in High-Strength Steels and in Titanium and Altuninum Alloys, Naval Rasearch Laboratory, Washington, D.C...to pickling solutions. In all of these examples, the sulfide, cyanide, etc., caused a hydrogen-related problem that would not have existed in their...desorption reaction. In studying the pickling of low-carbon steel in various strong acids, Hudson’ 4 measured the corrosion rate and amount of hydr-ogen

  5. Syncope Associated with Carbon Monoxide Poisoning due to Narghile Smoking

    Directory of Open Access Journals (Sweden)

    Seda Ozkan

    2013-01-01

    Full Text Available Narghile smoking is a traditional method of tobacco use, and it has been practiced extensively for 400 years. Traditionally, narghile smoking is a matter of culture mainly in Middle East, Asia, and Africa. In recent years, its use as a social activity has increased worldwide, especially among young people. Narghile smoking is an unusual cause of carbon monoxide poisoning. Narghile smoking, compared to cigarette smoking, can result in more smoke exposure and greater levels of carbon monoxide. We present an acute syncope case of a 19-year-old male patient who had carbon monoxide poisoning after narghile smoking.

  6. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water.

    Science.gov (United States)

    Novak, Domen; Franke-Whittle, Ingrid H; Pirc, Elizabeta Tratar; Jerman, Vesna; Insam, Heribert; Logar, Romana Marinšek; Stres, Blaž

    2013-07-01

    In contrast to the general aerobic detoxification of industrial effluents containing cyanide, anaerobic cyanide degradation is not well understood, including the microbial communities involved. To address this knowledge gap, this study measured anaerobic cyanide degradation and the rearrangements in bacterial and archaeal microbial communities in an upflow anaerobic sludge blanket (UASB) reactor biomass treating brewery waste water using bio-methane potential assays, molecular profiling, sequencing and microarray approaches. Successful biogas formation and cyanide removal without inhibition were observed at cyanide concentrations up to 5 mg l(-1). At 8.5 mg l(-1) cyanide, there was a 22 day lag phase in microbial activity, but subsequent methane production rates were equivalent to when 5 mg l(-1) was used. The higher cumulative methane production in cyanide-amended samples indicated that part of the biogas was derived from cyanide degradation. Anaerobic degradation of cyanide using autoclaved UASB biomass proceeded at a rate more than two times lower than when UASB biomass was not autoclaved, indicating that anaerobic cyanide degradation was in fact a combination of simultaneous abiotic and biotic processes. Phylogenetic analyses of bacterial and archaeal 16S rRNA genes for the first time identified and linked the bacterial phylum Firmicutes and the archaeal genus Methanosarcina sp. as important microbial groups involved in cyanide degradation. Methanogenic activity of unadapted granulated biomass was detected at higher cyanide concentrations than reported previously for the unadapted suspended biomass, making the aggregated structure and predominantly hydrogenotrophic nature of methanogenic community important features in cyanide degradation. The combination of brewery waste water and cyanide substrate was thus shown to be of high interest for industrial level anaerobic cyanide degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  8. Cross section data for ionization of important cyanides

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaspreet; Antony, Bobby, E-mail: bka.ism@gmail.com

    2015-11-15

    Highlights: • Multi centre spherical complex optical potential formalism used to find the CS. • Effective method (CSP-ic) to derive ionization contribution from inelastic CS. • Result shows excellent accord with previous results and consistent behaviour. • Maiden attempt to find CS for many cyanide molecules. • Strong correlation observed between peak of ionization with target properties. - Abstract: This article presents cross section calculations for interactions of important cyanides with electrons possessing energies beginning from ionization threshold of the target molecule to 5 keV. These data are pursued to meet the ever increasing demand for cross sections by the relevant atomic and molecular community for modelling astrophysical, atmospheric and technological domains. The calculations have been executed using an amalgam of multi centre spherical complex optical potential (MSCOP) formalism and complex scattering potential-ionization contribution (CSP-ic) method. Cross sections are compared with experimental and theoretical data wherever available. Strong correlations are observed for the cross sections which affirms consistent and reliable cross sections. Isomeric effect has been interpreted using variation of cross section with structure and target properties. Our cross sections will be tabulated in atomic collision database for use in modelling various statistical and dynamical quantities.

  9. An interesting cause of pulmonary emboli: Acute carbon monoxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Sevinc, A.; Savli, H.; Atmaca, H. [Gaziantep University, Gaziantep (Turkey). School of Medicine

    2005-07-01

    Carbon monoxide poisoning, a public health problem of considerable significance, is a relatively frequent event today, resulting in thousands of hospitalizations annually. A 70-year-old lady was seen in the emergency department with a provisional diagnosis of carbon monoxide poisoning. The previous night, she slept in a tightly closed room heated with coal ember. She was found unconscious in the morning with poor ventilation. She had a rare presentation of popliteal vein thrombosis, pulmonary emboli, and possible tissue necrosis with carbon monoxide poisoning. Oxygen treatment with low-molecular-weight heparin (nadroparine) and warfarin therapy resulted in an improvement in both popliteal and pulmonary circulations. In conclusion, the presence of pulmonary emboli should be sought in patients with carbon monoxide poisoning.

  10. US EPA Region 9 carbon monoxide designated areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — Polygon Feature class of Nonattainment Areas for Carbon Monoxide. Nonattainment areas are geographic areas which have not met National Ambient Air Quality Standards...

  11. Carbon monoxide poisoning in the United Arab Emirates.

    Science.gov (United States)

    Al Kaabi, Juma M; Wheatley, Andrew D; Barss, Peter; Al Shamsi, Mariam; Lababidi, Anis; Mushtaq, Ahmed

    2011-01-01

    Carbon monoxide (CO) poisoning is rare in the Arabian Peninsula and occurs almost exclusively during the winter months. Knowledge and perception of the hazards of carbon monoxide is limited. Migrant workers from warm climates appear particularly at risk. We investigated 46 cases of carbon monoxide poisoning presenting at emergency departments from 2007-2009 of the two main hospitals in Al Ain city, United Arab Emirates. Interviews, hospital records, and administered questionnaires were used to collect the data. Among the 46 cases investigated, 24 (52%) were males. Foreign nationals compromised 80% of the cases and the incidence was 3.1 cases per 100,000 residents per year. Burning charcoal in poorly ventilated residences was the predominant source of the carbon monoxide poisoning. Almost all cases (98%) were admitted during the winter months, most in the early morning hours. Carboxyhaemoglobin (COHb) was significantly increased in cases with loss of consciousness and depressed consciousness. There were no reported fatalities.

  12. Same Exposure, Various Clinical Pictures: The Carbon Monoxide Enigma

    Directory of Open Access Journals (Sweden)

    Musa Salmanoglu

    2013-02-01

    Full Text Available -Children and adolescents exposed to the same source of carbon monoxide have been shown to demonstrate different clinical pictures (1,2. The same condition probably may be extrapolated between children with varying ages and hence lung surface areas. Smaller children will receive larger doses of carbon monoxide, because they have greater lung surface area/body weight ratios and increased minute volumes/weight ratios. As carbon monoxide accumulation is expected to be more significant nearer to the ground, another explanation for varying clinical pictures in poisoning events may be the different level of sleeping positions of the casualties. Herein, we report a cluster poisoning of carbon monoxide affecting 5 children from the same family at the same time but in different clinical pictures. [TAF Prev Med Bull 2013; 12(1.000: 118-118

  13. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells

    Science.gov (United States)

    Kwon, Kyungjung; Yoo, Duck Young; Park, Jung Ock

    The poisoning effect of carbon monoxide (CO) on high-temperature proton-exchange membrane fuel cells (PEMFCs) is investigated with respect to CO concentration, operating temperature, fuel feed mode, and anode Pt loading. The loss in cell voltage when CO is added to pure hydrogen anode gas is a function of fuel utilization and anode Pt loading as well as obvious factors such as CO concentration, temperature and current density. The tolerance to CO can be varied significantly using a different experimental design of fuel utilization and anode Pt loading. A difference in cell performance with CO-containing hydrogen is observed when two cells with different flow channel geometries are used, although the two cells show similar cell performance with pure hydrogen. A different combination of fuel utilization, anode Pt loading and flow channel design can cause an order of magnitude difference in CO tolerance under identical experimental conditions of temperature and current density.

  14. Experimental factors that influence carbon monoxide tolerance of high-temperature proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kyungjung; Yoo, Duck Young; Park, Jung Ock [Energy and Environment Lab, Samsung Advanced Institute of Technology, Nongseo-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-712 (Korea)

    2008-10-15

    The poisoning effect of carbon monoxide (CO) on high-temperature proton-exchange membrane fuel cells (PEMFCs) is investigated with respect to CO concentration, operating temperature, fuel feed mode, and anode Pt loading. The loss in cell voltage when CO is added to pure hydrogen anode gas is a function of fuel utilization and anode Pt loading as well as obvious factors such as CO concentration, temperature and current density. The tolerance to CO can be varied significantly using a different experimental design of fuel utilization and anode Pt loading. A difference in cell performance with CO-containing hydrogen is observed when two cells with different flow channel geometries are used, although the two cells show similar cell performance with pure hydrogen. A different combination of fuel utilization, anode Pt loading and flow channel design can cause an order of magnitude difference in CO tolerance under identical experimental conditions of temperature and current density. (author)

  15. Inhibitory effect of cyanide on nitrification process and its eliminating method in a suspended activated sludge process.

    Science.gov (United States)

    Han, Yuanyuan; Jin, Xibiao; Wang, Yuan; Liu, Yongdi; Chen, Xiurong

    2014-02-01

    Inhibition of nitrification by four typical pollutants (acrylonitrile, acrylic acid, acetonitrile and cyanide) in acrylonitrile wastewater was investigated. The inhibitory effect of cyanide on nitrification was strongest, with a 50% inhibitory concentration of 0.218 mg·gVSS-1 being observed in a municipal activated sludge system. However, the performance of nitrification was recovered when cyanide was completely degraded. The nitrification, which had been inhibited by 4.17 mg·gVSS-1 of free cyanide for 24 h, was recovered to greater than 95% of that without cyanide after 10 days of recovery. To overcome cyanide inhibition, cyanide-degrading bacteria were cultivated in a batch reactor by increasing the influent cyanide concentration in a stepwise manner, which resulted in an increase in the average cyanide degradation rate from 0.14 to 1.01 mg CN-·gVSS-1·h-1 over 20 days. The cultured cyanide-degrading bacteria were shaped like short rods, and the dominant cyanide-degrading bacteria strain was identified as Pseudomonas fluorescens NCIMB by PCR.

  16. Cyanide hazards to plants and animals from gold mining and related water issues.

    Science.gov (United States)

    Eisler, Ronald; Wiemeyer, Stanley N

    2004-01-01

    Cyanide extraction of gold through milling of high-grade ores and heap leaching of low-grade ores requires cycling of millions of liters of alkaline water containing high concentrations of potentially toxic sodium cyanide (NaCN), free cyanide, and metal-cyanide complexes. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Puddles of various sizes may occur on the top of heaps, where the highest concentrations of NaCN are found. Solution recovery channels are usually constructed at the base of leach heaps, some of which may be exposed. All these cyanide-containing water bodies are hazardous to wildlife, especially migratory waterfowl and bats, if not properly managed. Accidental spills of cyanide solutions into rivers and streams have produced massive kills of fish and other aquatic biota. Freshwater fish are the most cyanide-sensitive group of aquatic organisms tested, with high mortality documented at free cyanide concentrations >20 microg/L and adverse effects on swimming and reproduction at >5 microg/L. Exclusion from cyanide solutions or reductions of cyanide concentrations to nontoxic levels are the only certain methods of protecting terrestrial vertebrate wildlife from cyanide poisoning; a variety of exclusion/cyanide reduction techniques are presented and discussed. Additional research is recommended on (1) effects of low-level, long-term, cyanide intoxication in birds and mammals by oral and inhalation routes in the vicinity of high cyanide concentrations; (2) long-term effects of low concentrations of cyanide on aquatic biota; (3) adaptive resistance to cyanide; and (4) usefulness of various biochemical indicators of cyanide poisoning. To prevent flooding in mine open pits, and to enable earth moving on a large scale, it is often necessary to withdraw groundwater and use it for

  17. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    Science.gov (United States)

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.

  18. Biodegradation of cyanide in groundwater and soils from gasworks sites in south-eastern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, S.M.E.; Weaver, T.R.; Lawrence, C.R. [University of Melbourne, Parkvills, Vic. (Australia). School of Earth Sciences

    1999-07-01

    Groundwater from a gasworks site in south-eastern Australia has been found to contain high concentrations of cyanide (total), sulphate, and ammonia (1400 mg L{sup -1}, 6500 mg L{sup -1}, and 580 mg L{sup -1} respectively). Soil from another gasworks site has been found to contain 587 mg kg{sup -1} of cyanide (total), with concentrations of cyanide in the groundwater at this site being relatively low ({lt} 21 mgL{sup -1} CN(Total)). Experiments were conducted to determine the biodegradation rates of cyanide in groundwater and soils using samples from both sites. Column experiments and bioreactors were constructed to produce both aerobic and anaerobic conditions for the groundwater containing high concentrations of cyanide. Samples of water were taken periodically to analyse the pH, redox potential, temperature, and concentrations of cyanide (free and total), sulphate, ammonia, nitrate and dissolved organic carbon (DOC). Initial results indicate that concentrations of cyanide are declining in both aerobic and anaerobic conditions, with biodegradation one process producing degradation. 9 refs., 4 figs., 2 tabs.

  19. Effect of Organic Matter on Cyanide Removal by Illuminated Titanium Dioxide or Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Mehdi Shirzad-Siboni

    2013-08-01

    Full Text Available Effect of different type of organic compounds (humic acid, oxalate, ethylenediaminetetraacetic acid, nitrilotriacetic acid, phenol on the photocatalytic removal of cyanide with TiO2 or ZnO was studied in this work with variation of the solution pH, contact time, initial cyanide concentration and type of organic compounds. Photocatalytic oxidation efficiency of cyanide with TiO2 was greatly affected by the solution pH. It increased as the solution pH decreased. Also maximum removal of cyanide by ZnO was observed near at neutral pH because of the reduced photocatalytic activity of ZnO at exceedingly low and high pH values originated from either acidic/photochemical corrosion of the catalyst and/or surface passivation with Zn(OH2. Removal efficiency of cyanide greatly decreased in the presence of humic acid, ethylenediaminetetraacetic acid, nitrilotriacetic acid compared to that without presence of organic compound because of the competitive oxidation as well as surface blocking by relatively large organic compounds. The oxidation pattern of cyanide was better described by first-order kinetic model. Finally photocatalytic reaction with TiO2 or ZnO can be effectively applied to treat synthetic wastewater contaminated with cyanide.

  20. TIE for cyanides in groundwater at a former coal gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    McLeay, M.; Cameron, M. [Hemmeram, Vancouver, BC (Canada); Elphick, J. [Nautilus Environmental Co., Burnaby, BC (Canada)

    2010-07-01

    Groundwater remediation efforts are underway at a former coal gasification plant site in British Columbia because the concentrations of cyanide and other substances were found to exceed aquatic life guidelines. Hemmera and Nautilus Environmental examined whether that groundwater was toxic to a variety of sensitive marine aquatic life species, and whether cyanide was the primary toxicant. Untreated groundwater containing cyanide, weak acid dissociable cyanide and free cyanide was tested for toxicity on bivalve larval survival, kelp zoospore germination, sea urchin gamete fertilization, and larval topsmelt survival and growth. The untreated groundwater was found to be toxic to kelp zoospores and sea urchin gametes, but relatively non-toxic to bivalve larvae and topsmelt. The following 4 toxicity identification evaluation (TIE) treatments were conducted on site groundwater: (1) acidification/aeration of the sample, (2) filtration of the sample through anion exchange media, (3) filtration of the sample through activated carbon, and (4) exposure of the sample to UV light. Both the cyanide concentration and the toxicity to kelp decreased considerably when the anion exchange treatment was applied. The results suggest that the toxicity may be attributed to cyanides in the groundwater. The information obtained from this study will be used to plan excavation water treatment strategies during site remediation as part of an ecological risk assessment for the site.

  1. Differential effects of chronic cyanide intoxication on heart, lung and pancreatic tissues.

    Science.gov (United States)

    Okolie, N P; Osagie, A U

    2000-06-01

    The histotoxic effects of chronic cyanide insult on heart, lung and pancreatic tissues, and some corroborative enzyme and metabolite changes were studied in New Zealand White rabbits using colorimetric, enzymatic and histochemical methods. Two groups of rabbits were fed for 10 months on either pure growers mash or grower mash +702 ppm inorganic cyanide. There were no significant differences in time-course profiles of serum amylase and fasting blood glucose between the cyanide-fed group and control. Pancreatic islet and heart histologies showed no pathological changes, and there were no significant differences in both serum and heart aspartate transaminase activities between the two groups. However, there were significant decreases (Pactivity in the lungs of the cyanide-fed group, with corresponding significant (Pactivity of the enzyme. Histological examination of lung tissue of the cyanide-treated rabbits revealed focal areas of pulmonary oedema and necrosis. These results suggest the existence of variabilities in tissue susceptibilities to the toxic effect of chronic cyanide exposure. It would appear that chronic cyanide exposure may not predispose to diabetes in the presence of adequate protein intake.

  2. THE EXTRACTION OF GOLD FROM CYANIDE SOLUTION BY α—ALKYL SUBSTITUTED PYRIDINE RESIN

    Institute of Scientific and Technical Information of China (English)

    GANWeitang; LIUYouying; 等

    1992-01-01

    In this paper,we have studied the adsorption properties of gold by α-alkyl substituted pyridine resin( BPR) in alkaline solution.The single and dual component kinetic mass transfer process of Au(I),Ag(I) and other metal cyanide ions were also investigated.The results obtained show that the mass transfer rates of the cyanide ions in the resin phase are closely related to the molar ratio and the configuration of metal cyanide ions. The elution kinetics of Au(I) and other cyanide ions by NH4SCN has been investigated systematically.The intraparticle diffusion coefficient and activation energy of Au(I),Ag(I),Ni(I) Fe(Ⅲ) cyanide anions were determined in CI,NO3,OH-type BPR resin at different temperatures.It is found from the experimental results that the mechanism for extracting Au(I),Ag(I) and other metal cyanide anions by BPR resin belongs to ion exchange process.The difference of activation entropy of some metal cyanide anions(ΔS-ΔS-) was evaluated.

  3. Changes of Cyanide Content and Linamarase Activity in Wounded Cassava Roots 1

    Science.gov (United States)

    Kojima, Mineo; Iwatsuki, Norio; Data, Emma S.; Villegas, Cynthia Dolores V.; Uritani, Ikuzo

    1983-01-01

    When cassava (Manihot esculenta Crantz) root was cut into blocks and incubated under laboratory conditions, the blocks showed more widespread and more even symptoms of physiological deterioration than those under natural conditions. Thus, the tissue block system has potential for biochemical studies of natural deterioration of cassava root. The changes in cyanide content and linamarase (linamarin β-d-glucoside glucohydrolase; EC 3.2.1.21) activity in various tissues during physiological deterioration were investigated. Total cyanide content increased in all parts of block tissue after 3-day incubation. The degree of increase in cyanide was most pronounced in white parenchymal tissue, 2 to 3 millimeters thick, next to the cortex (A-part tissue), where no physiological symptoms appeared. On the other hand, linamarase activity was decreased in all parts of block tissue after a 3-day incubation. A time course analysis of A-part tissue indicated a clear reciprocal relationship between changes in total cyanide and linamarase activity; total cyanide increased, while linamarase activity decreased. Free cyanide constituted a very small portion of the total cyanide and did not change markedly. Images Fig. 2 PMID:16662957

  4. Paper Strip-based Fluorometric Determination of Cyanide with an Internal Reference

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Nam; Hong, Jong-In [Seoul National University, Seoul (Korea, Republic of); Seo, Hyejin; Shin, Ik-Soo [Soongsil University, Seoul (Korea, Republic of)

    2016-08-15

    The rapid, selective, and sensitive determination of cyanide anion (CN{sup -}) using a simple paper strip is highly attractive because cyanide is acutely lethal to living organisms via all routes of administration, including alcohol consumption and inhaling cigarette smoke. Here, a synthetic probe (1) was designed for the selective determination of cyanide. The probe displays rapid and large blue spectral change (Δλ{sub abs}=148 nm, Δλ{sub em}= 165 nm) with respect to target recognition. Probe 1 exhibits a strong push-pull electronic effect and comprises a dimethylaminoaryl group as a donor and malononitrile as an acceptor; the π-conjugation system can be destroyed by the Michael-type addition of cyanide at the electrophilic β-positions of the nitrile groups, resulting in the marked emergence of a peak at λ{sub em}= 515 nm. The developed probe was successfully applied to a paper test strip because of its noticeable optical changes upon reaction with cyanide. The fabricated dumbbell-shaped paper strip with an internal reference allowed the cyanide detection, which is indispensable for quantitative analysis in point-of-care testing. The paper strip test showed selective response to cyanide, with a linear correlation in the range of 0-25 mM in a simple and cost-effective manner.

  5. Enzymatic cyanide degradation by cell-free extract of Rhodococcus UKMP-5M.

    Science.gov (United States)

    Nallapan Maniyam, Maegala; Sjahrir, Fridelina; Latif Ibrahim, Abdul; Cass, Anthony E G

    2015-01-01

    The cell-free extract of locally isolated Rhodococcus UKMP-5M strain was used as an alternative to develop greener and cost effective cyanide removal technology. The present study aims to assess the viability of the cell-free extract to detoxify high concentrations of cyanide which is measured through the monitoring of protein concentration and specific cyanide-degrading activity. When cyanide-grown cells were subjected to grinding in liquid nitrogen which is relatively an inexpressive and fast cell disruption method, highest cyanide-degrading activity of 0.63 mM min(-1) mg(-1) protein was obtained in comparison to enzymatic lysis and agitation with fine glass beads. The cell-free extracts managed to degrade 80% of 20 mM KCN within 80 min and the rate of cyanide consumption increased linearly as the concentration of protein was raised. In both cases, the addition of co-factor was not required which proved to be advantageous economically. The successful formation of ammonia and formate as endproducts indicated that the degradation of cyanide by Rhodococcus UKMP-5M proceeded via the activity of cyanidase and the resulting non-toxic products are safe for disposal into the environment. Further verification with SDS-PAGE revealed that the molecular weight of the active enzyme was estimated to be 38 kDa, which is consistent with previously reported cyanidases. Thus, the utilization of cell-free extracts as an alternative to live microbial in cyanide degradation offers numerous advantageous such as the potential to tolerate and degrade higher concentration of cyanide and total reduction in the overall cost of operation since the requirement for nutrient support is irrelevant.

  6. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard

    Energy Technology Data Exchange (ETDEWEB)

    Badugu, Ramachandram [Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Medical Biotechnology Center, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 (United States); Lakowicz, Joseph R. [Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Medical Biotechnology Center, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 (United States)]. E-mail: lakowicz@cfs.umbi.umd.edu; Geddes, Chris D. [Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Medical Biotechnology Center, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 (United States) and Institute of Fluorescence and Center for Fluorescence Spectroscopy, Medical Biotechnology Center, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201 (United States)]. E-mail: chris@cfs.umbi.umd.edu

    2004-09-20

    We characterize six new fluorescent probes that show both intensity and lifetime changes in the presence of free uncomplexed aqueous cyanide, allowing for fluorescence based cyanide sensing up to physiological safeguard levels, i.e. <30 {mu}M. One of the probes, m-BMQBA, shows a {approx}15-fold reduction in intensity and a {approx}10% change in mean lifetime at this level. The response of the new probes is based on their ability to bind the cyanide anion through a boronic acid functional group, changing from the neutral form of the boronic acid group R-B(OH){sub 2} to the anionic R-B{sup -}(CN){sub 3} form, a new cyanide binding mechanism which we have recently reported. The presence of an electron deficient quaternary heterocyclic nitrogen nucleus, and the electron rich cyanide bound form, provides for the intensity changes observed. We have determined the disassociation constants of the probes to be in the range {approx}15-84 {mu}M{sup 3}. In addition we have synthesized control compounds which do not contain the boronic acid moiety, allowing for a rationale of the cyanide responses between the probe isomers to be made. The lifetime of the cyanide bound probes are significantly shorter than the free R-B(OH){sub 2} probe forms, providing for the opportunity of lifetime based cyanide sensing up to physiologically lethal levels. Finally, while fluorescent probes containing the boronic acid moiety have earned a well-deserved reputation for monosaccharide sensing, we show that strong bases such as CN{sup -} and OH{sup -} preferentially bind as compared to glucose, enabling the potential use of these probes for cyanide safeguard and determination in physiological fluids, especially given that physiologies do not experience any notable changes in pH.

  7. Carbon monoxide exposure in blast furnace workers.

    Science.gov (United States)

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  8. Carbon Monoxide: An Essential Signalling Molecule

    Science.gov (United States)

    Mann, Brian E.

    Carbon monoxide (CO), like nitric oxide (NO), is an essential signalling molecule in humans. It is active in the cardiovascular system as a vasodilator. In addition, CO possesses anti-inflammatory, anti-apoptotic and anti-proliferative properties and protects tissues from hypoxia and reperfusion injury. Some of its applications in animal models include suppression of organ graft rejection and safeguarding the heart during reperfusion after cardiopulmonary bypass surgery. CO also suppresses arteriosclerotic lesions following angioplasty, reverses established pulmonary hypertension and mitigates the development of post-operative ileus in the murine small intestine and the development of cerebral malaria in mice as well as graft-induced intimal hyperplasia in pigs. There have been several clinical trials using air-CO mixtures for the treatment of lung-, heart-, kidney- and abdominal-related diseases. This review examines the research involving the development of classes of compounds (with particular emphasis on metal carbonyls) that release CO, which could be used in clinically relevant conditions. The review is drawn not only from published papers in the chemical literature but also from the extensive biological literature and patents on CO-releasing molecules (CO-RMs).

  9. First-Principles Investigations on Europium Monoxide

    KAUST Repository

    Wang, Hao

    2011-05-01

    Europium monoxide is both an insulator and a Heisenberg ferromagnet (Tc=69 K). In the present thesis, the author has investigated the electronic structure of different types of EuO by density functional theory. The on-site Coulomb interaction of the localized Eu 4f and 5d electrons, which is wrongly treated in the standard generalized gradient approximation method, is found to be crucial to obtain the correct insulating ground state as observed in experiments. Our results show that the ferromagnetism is stable under pressure, both hydrostatic and uniaxial. For both types of pressure an insulator-metal transition is demonstrated. Moreover, the experimentally observed insulator-metal transition in oxygen deficient and gadolinium-doped EuO is reproduced in our calculations for impurity concentrations of 6.25% and 25%. Furthermore, a 10- layer EuO thin film is theoretically predicted to be an insulator with a narrow band gap of around 0.08 eV, while the Si/EuO interface shows metallic properties with the Si and O 2p as well as Eu 5d bands crossing the Fermi level.

  10. Chlorine Monoxide in the Antarctic Spring Stratosphere.

    Science.gov (United States)

    Jaramillo-Ayerbe, Mauricio

    1988-06-01

    A series of observations of stratospheric chlorine monoxide (ClO) were carried out during the austral springs of 1986 and 1987 in McMurdo Station, Antarctica, as part of two experimental campaigns sent to investigate the seasonal decrease in ozone over the antarctic continent (the ozone "hole"). Measurements of the vertical distribution of ClO were obtained by high resolution ground-based emission spectroscopy at 278 GHz, using the Stony Brook mm-wave receiver. They show the presence of an anomalous layer of lower stratospheric ClO which is not observed at other latitudes. This anomalous layer is centered at ~20 km altitude and exhibits a pronounced diurnal variation, reaching a maximum at midday and disappearing at night. During the period of Sep. 20-24, 1987, the lower-stratospheric ClO had a maximum volume mixing ratio of 1.8_sp{+0cdot5}{ -0cdot9} ppbv. A normal ClO layer centered at ~36 km was also observed, with concentrations and diurnal behavior similar to those seen in tropical latitudes. These findings are evidence of anomalous chlorine chemistry taking place in the lower stratosphere during the antarctic spring, and indicate that increasing anthropogenic chlorine is a prime causative agent in the formation of the ozone hole.

  11. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  12. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb) ......) in arterial blood. The objectives were to determine the level of correlation and to determine whether the methods showed agreement and evaluate them as diagnostic tests in discriminating between heavy and light smokers....

  13. Cerebral energy metabolism during mitochondrial dysfunction induced by cyanide in piglets

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Olsen, N.V.; Toft, P

    2013-01-01

    and immediate enzymatic analysis. Mitochondrial function was blocked by unilateral infusion of NaCN/KCN (0.5 mol/L) through the microdialysis catheter (N = 5). As a reference, NaCl (0.5 mol/L) was infused by intracerebral microdialysis in one group of animals (N = 3). RESULTS: PbtO2 increased during cyanide...... infusion and returned to baseline afterwards. The lactate/pyruvate (LP) ratio increased significantly following cyanide infusion because of a marked increase in lactate level while pyruvate remained within normal limits. Glutamate and glycerol increased after cyanide infusion indicating insufficient energy...

  14. Sorption and desorption of iron-cyanide complexes in deposited blast furnace sludge.

    Science.gov (United States)

    Rennert, Thilo; Mansfeldt, Tim

    2002-11-01

    Blast furnace sludge is a waste originating from pig iron production and contains small amounts of iron-cyanide complexes. Leaching of iron-cyanide complexes from deposited blast furnace sludge into the ground water seems to be possible in principle. We investigated the sorption of the iron-cyanide complexes ferrocyanide, [FeII(CN)6](4-), and ferricyanide, [FeIII(CN)6](3-), in 22 samples of deposited blast furnace sludge in batch experiments. Subsequently, desorption of iron-cyanide complexes was investigated using 1 M NaCl. Sorption in five samples was evaluated with Langmuir isotherms. The blast furnace sludge samples were neutral to slightly alkaline (pH 7.6-9) and consisted of X-ray amorphous compounds and crystalline Fe oxides primarily. X-ray amorphous compounds are assumed to comprise coke-bound C and amorphous Fe, Zn, and Al oxides. The experiments that were evaluated with Langmuir isotherms indicated that the extent of ferricyanide sorption was higher than that of ferrocyanide sorption. Saturation of blast furnace sludge with iron-cyanide complexes was achieved. Sorption of iron-cyanide complexes in 22 blast furnace sludge samples at one initial concentration showed that 12 samples sorbed more ferrocyanide than ferricyanide. The extent of sorption largely differed between 0.07 and 2.76 Micromol [Fe(CN)6] m(-2) and was governed by coke-bound C. Ferricyanide sorption was negatively influenced by crystalline Fe oxides additionally. Only small amounts of iron-cyanide complexes sorbed in blast furnace sludge were desorbed by 1 M NaCl (ferrocyanide, 3.2%; ferricyanide, 1.1%, given as median). This indicated strong interactions of iron-cyanide complexes in blast furnace sludge. The mobility of iron-cyanide complexes in deposited blast furnace sludge and consequently contamination of the seepage and ground water was designated as low, because (i) deposited blast furnace sludge is able to sorb iron-cyanide complexes strongly, (ii) the solubility of the iron-cyanide

  15. Lanthanide complexes that respond to changes in cyanide concentration in water

    Energy Technology Data Exchange (ETDEWEB)

    Routledge, Jack D.; Zhang, Xuejian; Connolly, Michael; Tropiano, Manuel; Blackburn, Octavia A.; Beer, Paul D.; Aldridge, Simon; Faulkner, Stephen [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford (United Kingdom); Kenwright, Alan M. [Department of Chemistry, Durham University (United Kingdom)

    2017-06-26

    Cyanide ions are shown to interact with lanthanide complexes of phenacylDO3A derivatives in aqueous solution, giving rise to changes in the luminescence and NMR spectra. These changes are the consequence of cyanohydrin formation, which is favored by the coordination of the phenacyl carbonyl group to the lanthanide center. These complexes display minimal affinity for fluoride and can detect cyanide at concentrations less than 1 μm. By contrast, lanthanide complexes with DOTAM derivatives display no affinity for cyanide in water, but respond to changes in fluoride concentration. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Acute Cyanide Poisoning: Hydroxocobalamin and Sodium Thiosulfate Treatments with Two Outcomes following One Exposure Event

    Directory of Open Access Journals (Sweden)

    Andrew Meillier

    2015-01-01

    Full Text Available Cyanide is rapidly reacting and causes arrest of aerobic metabolism. The symptoms are diffuse and lethal and require high clinical suspicion. Remediation of symptoms and mortality is highly dependent on quick treatment with a cyanide antidote. Presently, there are two widely accepted antidotes: sodium thiosulfate and hydroxocobalamin. These treatments act on different components of cyanide’s metabolism. Here, we present two cases resulting from the same source of cyanide poisoning and the use of both antidotes separately used with differing outcomes.

  17. Selection of a Commercial Anode Oxide Coating for Electro-oxidation of Cyanide

    Directory of Open Access Journals (Sweden)

    Lanza Marcos Roberto V.

    2002-01-01

    Full Text Available This paper presents a study of the performance of two commercial dimensionally stable anode (DSA® oxide coatings in the electrochemical process for cyanide oxidation. The coatings studied were 70TiO2/30RuO2 and 55Ta2O5/45IrO2, on Ti substrate. The efficiency of both materials in the electro-oxidation of free cyanide was compared using linear voltammetry and electrolysis at constant potential. The 70TiO2/30RuO2 electrode shows a better performance in the electro-oxidation of free cyanide.

  18. DDTC-Na-based colorimetric chemosensor for the sensing of cyanide in water

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Sodium diethyldithiocarbamate (DDTC-Na) was demonstrated to be a new colorimetric cyanide chemosensor by utilizing an indirect trick. First, some copper ions were added to the colorless aque- ous solution of DDTC-Na. Then, the resultant brown solution was studied upon the addition of different anions, including Cl-, I-, IO3-, SO42-, NO-2, Br-, H2PO4-, F-, SCN-, HSO-4, ClO-4 and CN-. It was observed by naked eyes that the brown solution changed to colorless immediately after the addition of the trace cyanide, but there were no changes towards other anions, making DDTC-Na a good selective cyanide chemosensor in pure water.

  19. Potential for error when assessing blood cyanide concentrations in fire victims.

    Science.gov (United States)

    Moriya, F; Hashimoto, Y

    2001-11-01

    The present study explores toxicologic significance of blood cyanide concentrations in fire victims. Headspace gas chromatography was used for cyanide detection. Analysis of blood samples from ten fire victims (postmortem interval = 8 h to 3 to 5 d) detected zero to 11.9 mg/L of cyanide and a large difference in cyanide concentrations among victims. Carboxyhemoglobin (COHb) saturation was in the range of 24.9 to 84.2%. To examine the effects of methemoglobinemia and postmortem interval on blood cyanide concentrations in fire victims, an experiment was carried out using rabbits as the animal model. The rabbits were sacrificed by intramuscular injection of 1 mL/kg 2% potassium cyanide 5 min after intravenous injection of 0.33 mL/kg of 3% sodium nitrite (Group A, n = 3) or physiological saline (Group B, n = 6). Average methemoglobin contents immediately before potassium cyanide administration were 6.9 and 0.8% in Groups A and B, respectively. Average cyanide concentrations in cardiac blood at the time of death were 47.4 and 3.56 mg/L, respectively. When blood-containing hearts of the rabbits (n = 3 for Group B) were left at 46 degrees C for the first 1 h, at 20 to 25 degrees C for the next 23 h and then at 4 degrees C for 48 h, approximately 85 and 46% of the original amounts of blood cyanide disappeared within 24 h in Groups A and B, respectively. After the 72-h storage period, 37 and 10%, respectively, of the original amounts of cyanide remained in the blood. When the other three hearts in Group B were left at 20 to 25 degrees C for the last 48 h without refrigeration, cyanide had disappeared almost completely by the end of the experiment. The present results and those published in the literature demonstrate that the toxic effects of cyanide on fire victims should not be evaluated based solely on the concentration in blood.

  20. Hydrogen sulfide in hemostasis: friend or foe?

    Science.gov (United States)

    Olas, Beata

    2014-06-25

    Hydrogen sulfide (H2S) is a well known toxic gas that is synthesized from the amino acids: cysteine (Cys) and homocysteine (Hcy) by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and mercaptopyruvate sulfurtransferase (3-MST). Hydrogen sulfide, like carbon monoxide (CO) or nitric oxide (NO) is a signaling molecule in different biological systems, including the cardiovascular system. Moreover, hydrogen sulfide plays a role in the pathogenesis of various cardiovascular diseases. It modulates different elements of hemostasis (activation of blood platelet, and coagulation process) as well as proliferation and apoptosis of vascular smooth muscle cells. However, the biological role and the therapeutic potential of H2S is not clear. This review summarizes the different functions of hydrogen sulfide in hemostasis.

  1. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel catalysts. Part II: Electrooxidation of H2, CO and H2/CO mixtures on well characterized PtMo alloy

    Directory of Open Access Journals (Sweden)

    PHILIP N. ROSS JR.

    2003-03-01

    Full Text Available The oxidation of hydrogen and hydrogen–carbon monoxide mixture has been investigated on well-characterized metallurgically prepared platinum–molybdenum (PtMo alloys. It was concluded that the optimum surface concentration of molybdenum is near 23 mol.%. Based on experimentally determined parameters and simulations, the mechanism of the oxidation of CO/H2 mixtures is discussed.

  2. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities

    Directory of Open Access Journals (Sweden)

    Lukhanyo Mekuto

    2017-08-01

    Full Text Available The data presented in this article contains the bacterial community structure of the free cyanide (CN- and thiocyanate (SCN- degrading organisms that were isolated from electroplating wastewater and synthetic SCN- containing wastewater. PCR amplification of the 16S rRNA V1-V3 regions was undertaken using the 27F and 518R oligonucleotide primers following the metacommunity DNA extraction procedure. The PCR amplicons were processed using the illumina® reaction kits as per manufacturer׳s instruction and sequenced using the illumina® MiSeq-2000, using the MiSeq V3 kit. The data was processed using bioinformatics tools such as QIIME and the raw sequence files are available via NCBI׳s Sequence Read Archive (SRA database.

  3. A Peptoid-Based Fluorescent Sensor for Cyanide Detection

    Directory of Open Access Journals (Sweden)

    Bumhee Lim

    2016-03-01

    Full Text Available Peptoids, N-substituted glycine oligomers, are versatile peptidomimetics with diverse biomedical applications. However, strategies to the development of novel fluorescent peptoids as chemical sensors have not been extensively explored, yet. Here, we synthesized a novel peptoid-based fluorescent probe in which a coumarin moiety was incorporated via copper(I-catalyzed azide-alkyne cycloaddition reaction. Fluorescence of the newly generated coumarin-peptoid was dramatically quenched upon coordination of the Cu2+ ion, and the resulting peptoid-Cu2+ complex exhibited significant Turn-ON fluorescence following the addition of CN−. The rapid and reversible response, combined with cyanide selectivity of the synthesized peptoid, reflects a multistep photo-process and supports its utility as a new type of CN− sensor.

  4. Highly selective dry etching of polystyrene-poly(methyl methacrylate) block copolymer by gas pulsing carbon monoxide-based plasmas

    Science.gov (United States)

    Miyazoe, Hiroyuki; Jagtiani, Ashish V.; Tsai, Hsin-Yu; Engelmann, Sebastian U.; Joseph, Eric A.

    2017-05-01

    We propose a very selective PMMA removal method from poly(styrene-block-methyl methacrylate) (PS-b-PMMA) copolymer using gas pulsing cyclic etching. Flow ratio of hydrogen (H2) added to carbon monoxide (CO) plasma was periodically changed to control etch and deposition processes on PS. By controlling the process time of each etch and deposition step, full PMMA removal including etching of the neutral layer was demonstrated at 28 nm pitch, while PS thickness remained intact. This is more than 10 times higher etch selectivity than conventional continuous plasma etch processes using standard oxygen (O2), CO-H2 and CO-O2-based chemistries.

  5. Acute carbon monoxide poisoning in an animal model: the effects of altered glucose on morbidity and mortality.

    Science.gov (United States)

    Penney, D G

    1993-06-11

    An animal model in which the common carotid artery and the jugular vein serving one side of the brain are occluded by indwelling catheters has been used during the past few years to investigate acute carbon monoxide (CO) poisoning. This article reviews the recent research examining the pattern of changes in blood glucose concentration which results from CO exposure, and the manner in which altered glucose concentration alters neurologic outcome and mortality. At present it appears that either greatly depressed glucose or greatly elevated glucose during and/or after CO exposure increases morbidity and mortality. Cyanide (CN) poisoning, in contrast to CO, produces a different pattern of changes in blood glucose and lactate, and unlike CO, fails to slow cardiac AV conduction and ventricular repolarization. Through the use of magnetic resonance imaging and spectroscopic techniques, cerebral cortical edema and the changes in brain phosphagens have been assessed following CO poisoning in the rat. The published results as well as data from recent pilot studies are discussed in the light of our current understanding of CO toxicology.

  6. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring

    Science.gov (United States)

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)-induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8+/-7.1 min compared to 75.4+/-25.1 and 76.4+/-42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (p<0.0001). This study indicates that cobinamide more rapidly and completely reverses the physiologic effects of cyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS.

  7. Removal of metal cyanides from aqueous solutions by suspended and immobilized cells of rhizopus oryzae (MTCC 2541)

    Energy Technology Data Exchange (ETDEWEB)

    Roshan Dash, Rajesh; Kumar, Arvind [Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand (India); Balomajumder, Chandrajit [Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand (India)

    2009-02-15

    This paper presents a study on biodegradation and simultaneous adsorption and biodegradation (SAB) of zinc and iron cyanides by Rhizopus oryzae (MTCC 2541), with a brief process review. Granular activated carbon was used for the immobilization of Rhizopus oryzae (MTCC 2541) for the SAB study. pH and temperature were optimized at an initial cyanide concentration of 100 mg/L for biodegradation and SAB. The microbes adapted to grow at maximum cyanide concentration were harvested and their ability to degrade cyanide was measured in both biodegradation and SAB. The removal efficiency of the SAB process was found to be better as compared to the biodegradation process. In the case of biodegradation, removal was found up to a maximum cyanide concentration of 250 mg CN{sup -}/L for zinc cyanide and 200 mg CN{sup -}/L for iron cyanide, whereas in the case of SAB, about 50% removal of cyanide at 400 mg CN{sup -}/L zinc cyanide and 300 mg CN{sup -}/L iron cyanide was possible. It was found that the SAB process is more effective than biodegradation. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  8. A coumarin-indole based colorimetric and 'turn on' fluorescent probe for cyanide

    Science.gov (United States)

    Xu, Yu; Dai, Xi; Zhao, Bao-Xiang

    2015-03-01

    A novel coumarin-indole based chemodosimeter with a simple structure was designed and prepared via a condensation reaction in high yield. The probe exhibited very high selectivity towards cyanide on both fluorescence and UV-vis spectra, which allowed it to quantitatively detect and imaging cyanide ions in organic-aqueous solution by either fluorescence enhancement or colorimetric changes. Confirmed by 1H NMR and HRMS spectra, the detection mechanism was proved to be related with the Michael addition reaction induced by cyanide ions, which blocked the intramolecular charge transfer (ICT) of the probe. Moreover, the probe was able to be utilized efficiently in a wide pH range (7.5-10) with negligible interference from other anions and a low detection limit of 0.51 μM. Application in 5 kinds of natural water source and accurate detection of cyanide in tap water solvent system also indicated the high practical significance of the probe.

  9. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide

    Energy Technology Data Exchange (ETDEWEB)

    Bose, P.; Bose, M.A.; Kumar, S. [Indian Inst. of Technology, Kanpur (India). Dept Civil Engineering, Environmental Engineering & Management Programme

    2002-11-01

    Industrial wastewater containing heavy metals and cyanide must be treatment for removal of both metals and cyanide before disposal. The study described evaluated treatment strategies involving some indigenous adsorbents and a low-cost chelating agent for treatment of a simulated wastewater containing copper and zinc, complexed with cyanide. Treatment strategies involving three adsorbents, sulfonated coal, biosorbent G. lucidum, and iron oxide coated sand (IOCS), and a chelating agent, insoluble agro-based starch xanthate (IAX), were tested. The evaluation procedure involved comparison of the performance of these treatment strategies with that of conventional treatment. Results indicate that treatment using the chelating agent IAX has the greatest potential as an alternative to the conventional treatment technique. The three adsorbents tested, although reported to be very effective in removing copper and zinc from pure systems, exhibit diminished metal removal capacity in the presence of cyanide, and hence are unsuitable.

  10. Giotto IMS measurements of the production rate of hydrogen cyanide in the coma of comet Halley

    Energy Technology Data Exchange (ETDEWEB)

    Ip, W.H.; Rosenbauer, H.; Schwenn, R. (Max-Planck-Institut fuer Aeronomie, Katlenburg-Lindau, (DE)); Balsiger, H.; Geiss, J.; Meier, A. (Bern Univ. (CH). Physikalisches Inst.); Goldstein, B.E. (California Inst. of Techn., Pasadena, CA (US)); Lazarus, A.J. (Massachusetts Inst. of Techn., Cambridge, MA (US). Center for Space Research); Shelley, E. (Lockheed Palo Alto Research Lab., CA (US)); Kettmann, G. (Los Alamos National Lab., NM (US))

    1990-05-01

    The ion composition measurements in the ionosphere of comet Halley by the ion mass spectrometer (IMS) experiment on the Giotto spacecraft are used to estimate the relative abundance of HCN. From a comparison of the normalized number density of ions with mass-to-charge (M/q) ratio of 28 AMU/e with steady-state photochemical models, it can be determined that the production rate of HCN directly from the central nucleus is Q(HCN) <{approx} 2 x 10{sup -4} Q(H{sub 2}O) at the time of Giotto encounter. The related photo chemical model calculations also indicate that Q(NH{sub 3})/Q(H{sub 2}O) {approx} 5 x 10{sup -3} in agreement with recent determination from ground-based observations. The estimated value of Q(HCN) is lower than the relative abundance of Q(HCN)/Q(H{sub 2}O) {approx} 10{sup -3} as derived from radio observations of the 88.6 GHz emission of the J = 1 - 0 transition of HCN. The difference may be the result of time-variations of the coma composition and dynamics as well as other model-dependent effects.

  11. COLD ELECTRON REACTIONS PRODUCING THE ENERGETIC ISOMER OF HYDROGEN CYANIDE IN INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Mario B.; Buhr, Henrik; Berg, Max H.; Froese, Michael; Grieser, Manfred; Jordon-Thaden, Brandon; Krantz, Claude; Novotny, Oldrich; Novotny, Steffen; Orlov, Dmitry A.; Petrignani, Annemieke; Repnow, Roland; Schwalm, Dirk; Shornikov, Andrey; Stuetzel, Julia; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Heber, Oded; Rappaport, Michael L.; Zajfman, Daniel, E-mail: A.Wolf@mpi-hd.mpg.de [Weizmann Institute of Science, P.O. Box 26, 76100 Rehovot (Israel)

    2012-02-10

    Using event-by-event fragment momentum spectroscopy in a storage-ring merged-beams experiment, we find laboratory evidence that in the dissociative recombination (DR) of HCNH{sup +} with cold electrons the energetic isomer HNC is produced with a high yield, similar to that of HCN. With a newly implemented mass-sensitive fragment imaging detector, we analyze the kinetic energy release of the triatomic fragments DCN/DNC from the DR reaction of the isotopologue DCND{sup +} with cold (near 10 K) electrons. The results show that the internal energy of these fragments is extremely high, far exceeding the isomerization barrier between DNC and DCN. From this laboratory characterization of the DR reaction we conclude that also the triatomic fragment HCN/HNC from the DR of HCNH{sup +} will carry a large amount of ro-vibrational excitation and show that this implies an isomeric production ratio in a narrow range near unity.

  12. Relativistic theory of incoherent scattering of a photon by water, hydrogen cyanide, glucose, protein molecules

    Science.gov (United States)

    Grimm, Shu-Ya Lisa

    We have developed a general method to calculate the incoherent scattering cross section for complex molecules for photon energy ranging from 1 keV to 130 keV. Within this energy range the binding energy of an electron in a biosystem is comparable to the energy of the incident photon, thus we need to take into account the effect of binding energy in calculations of the total scattering cross section. Also the energy acquired by the scattered electron is in the high energy range, and therefore we are required to use relativistic treatment in our calculations. In our Theory we show the derivation of incoherent scattering function. The calculation of the incoherent scattering function involves matrix elements between two molecular wave functions. With Sharma's analytical formula we are able to expand one of the wave functions to the center of the other wave function, enabling us to perform the calculation of incoherent scattering function for molecules which require multi-center integrals. We explain briefly how one obtains the wave function of a molecule in the Hartree-Fock self-consistent field approximation. Since there are no available molecular wave functions for large molecules such as glucose and Gly-Pro-Pro sequence protein (which are important molecules in biosystems) we develop and use the molecular wave functions using the overlap effect only for large molecules. We further apply the calculated incoherent scattering function to calculate the total incoherent scattering cross section for a molecule. We perform the calculations of incoherent scattering function and total incoherent scattering cross sections for H2O,/ HCN, Glucose, and Gly-Pro-Pro protein molecules. For H2O,/ HCN molecules we calculate the incoherent scattering function using both Hartree-Fock (HF) self-consistent field wave functions and overlap- effect-only wave functions. We further apply these two calculated incoherent scattering functions obtained by Hartree-Fock (HF) self-consistent field wave functions and overlap-effect-only wave functions to calculate the total incoherent scattering cross section for H2O,/ HCN. We compare the results of the total incoherent scattering cross section using Hartree-Fock (HF) self- consistent field wave functions and using overlap-effect- only wave functions for both H2O and HCN molecules. The results show good agreement for energy above 10 keV which is the useful energy range for medical applications. This validates the performance of the overlap-effect-only wave functions. We further apply the overlap-effect-only method to obtain wave functions for glucose and Gly-Pro-Pro protein molecules and use the overlap-effect-only wave functions to obtain the incoherent scattering functions. The ratio of the total incoherent cross section to that of a free electron for H2O,/ HCN, glucose and Gly- Pro-Pro protein molecules are calculated and the result are plotted. The ratio of the total incoherent cross section to that of a free electron approach the total number of electrons contained in the atom or molecule as the incident photon energy increases. It is because the binding energy of the atomic (or molecular) electron has less effect on the scattering process and the electron can be considered as a free electron when the incident photon energy is much higher than the binding energy of the atomic (or molecular) electron. We have shown a general method of calculating total incoherent scattering cross section for complex molecules. More calculation of the incoherent scattering cross sections need to be done for various proteins which are important molecules in biosystems.

  13. Quantification of Hydrogen Cyanide Generated at Low Temperature O-Chlorobenzylidene Malononitrile (CS) Dispersal

    Science.gov (United States)

    2013-05-10

    Aerospace Medicine Squadron ( AMDS ) Bioenvironmental Engineering (BE) Flight conducted personal air sampling in the Mask Confidence Chamber...defined as an exposure that could cause notable discomfort, irritation, or asymptomatic non-sensory effects. These effects are not disabling , are...953A). ed. AMDS /SGPB. Lackland Air Force Base, Texas 13. El Ghawabi SH, Gaafar MA, El-Saharti AA, Ahmed SH, Malash KK, Fares R. 1975. Chronic

  14. Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n- (n=3, 4)

    Science.gov (United States)

    Wu, Di; Li, Ying; Li, Zhuo; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2006-02-01

    Theoretical studies of the solvated electrons (HCN)n- (n =3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n =3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2/aug -cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear C∞ν and D∞h structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.

  15. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  16. Concept for lowest emissions of a hydrogen internal combustion engine; Niedrigstemissionskonzept fuer einen wasserstoffbetriebenen Verbrennungsmotor

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Marcel Christian Thomas

    2012-03-15

    This paper describes a concept with lowest emissions for a hydrogen internal combustion engine for passenger cars. With optimisation of the combustion concept the level of nitrogen oxide is below 90%, hydrocarbon and carbon monoxide below 99% of the SULEV target (CARB). This concept enables a potential in power density that is comparable to current supercharged combustion engines at lowest emission level without catalytic aftertreatment. Additionally with a catalytic aftertreatment system, the emission level of a current hydrogen combustion engine (mono-fuel) is lowered to a level, that this car can be labeled as air cleaning vehicle for hydrocarbons and carbon monoxide.

  17. The Analysis of Cyanide and Its Breakdown Products in Biological Samples

    Science.gov (United States)

    2010-01-01

    and saliva (64, 66, 68, 69, 73, 79, 80, 182, 183, 186–188). For example, ISEs based on crystal violet or methylene blue and a selec- tive polymeric... HPLC ). Another example is the fluorometric derivatization of cyanide produced from the reaction of cyanide with 2,3-naphthalenedialdehyde (NDA) and...taurine (Figure 3). This reaction has been effectively used with HPLC -fluorescence or as a stand-alone fluorescence method to produce highly sensitive

  18. Rapid Field-Usable Cyanide Sensor Development for Blood and Saliva

    Science.gov (United States)

    2013-12-01

    nitrite and sodium thiosulfate 28 in the treatment of acute cyanide toxicity in a swine ( Sus scrofa ) model. Annals of Emergency Medicine 55 (4...MO, USA). LC/MS grade formic acid was purchased from Thermo Scientific (Rockford, IL, USA). Swine ( Sus scrofa ) plasma (non-sterile with sodium...thiosulfate in the treatment of acute cyanide toxicity in a swine ( Sus scrofa ) model. Annals of Emergency Medicine 55 (4), 345-51. 9. Mitchell

  19. Cyanide Antidotes for Mass Casualties: Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery

    Science.gov (United States)

    2014-10-01

    cyanide poisoning in a swine ( Sus Scrofa ) model. Annals of Emergency Medicine, in press, 2014 2. Mao, R.W., Lin, S.K., Tsai, S.C., Brenner, M...versus intravenous cobinamide in treating acute cyanide toxicity and apnea in a swine ( Sus Scrofa ) model. Manuscript submitted. CONCLUSION We...in a Swine ( Sus scrofa ) Model Lt Col Vikhyat S. Bebarta, MC, USAF*; David A. Tanen, MD; Susan Boudreau, RN, BSN; Maria Castaneda, MS; Lee A. Zarzabal

  20. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    Science.gov (United States)

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-02

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock

  1. The Study of Fenton Performance in Removal of  Cyanide from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Somayeh Golbaz

    2013-02-01

    Full Text Available Background and Objectives: Cyanide is a toxic pollutant existing in the various industrial effluents such as iron and steel, coal mining, non-ferrous metals manufacturing and metal plating. Its presence in water resources and wastewater, as serious hazardous substances leads to undesirable effects on both the environment and human. Thus, its concentration control is essential for human health. The main goal of this study was to evaluate Fenton process efficiency in cyanide removal from aqueous solution.Materials and Methods: This is an experimental study Conducted at Lab scale in a batch system. We investigated effect of different variables including; pH, mole ratio of Fe2+/ H2O2, contact time, and initial concentration of cyanide. Data were analyzed using Excel software.Results: We found that cyanide with initial concentrations of 0.4 mM/L was reduced by 92 %. This removal result was related to oxidizing agent of hydroxyl radicals under optimum conditions including; pH = 4, molar ratio Fe2+/ H2O2= 0.046 (Fe2+=0.27 mM/L after 6o min reaction time. An increase in reaction time was not improved cyanide removal efficiency. Moreover, the Fenton process efficiency in cyanide removal decreased from 92 to 60 %, by increasing the initial cyanide concentration from 0.4 to 0.6 mM/L.Conclusion: It can be concluded that Fenton oxidation Process can be considered as a suitable alternative for cyanide removal to achieve environmental standards.

  2. Cobinamide-Based Cyanide Analysis by Multiwavelength Spectrometry in a Liquid Core Waveguide

    OpenAIRE

    Ma, Jian; Dasgupta, Purnendu K.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    A novel cyanide analyzer based on sensitive cobinamide chemistry relies on simultaneous reagent and sample injection and detection in a 50 cm liquid core waveguide (LCW) flow cell illuminated by a white light emitting diode. The transmitted light is read by a fiber-optic charge coupled device (CCD) spectrometer. Alkaline cobinamide (orange, λmax = 510 nm) changes to violet (λmax = 583 nm) upon reaction with cyanide. Multiwavelength detection permits built-in correction for artifact responses ...

  3. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway.

    Science.gov (United States)

    Oracz, Krystyna; El-Maarouf-Bouteau, Hayat; Bogatek, Renata; Corbineau, Françoise; Bailly, Christophe

    2008-01-01

    Freshly harvested sunflower (Helianthus annuus L.) seeds are considered to be dormant because they fail to germinate at relatively low temperatures (10 degrees C). This dormancy results mainly from an embryo dormancy and disappears during dry storage. Although endogenous ethylene is known to be involved in sunflower seed alleviation of dormancy, little attention had been paid to the possible role of cyanide, which is produced by the conversion of 1-aminocyclopropane 1-carboxylic acid to ethylene, in this process. The aims of this work were to investigate whether exogenous cyanide could improve the germination of dormant sunflower seeds and to elucidate its putative mechanisms of action. Naked dormant seeds became able to germinate at 10 degrees C when they were incubated in the presence of 1 mM gaseous cyanide. Other respiratory inhibitors showed that this effect did not result from an activation of the pentose phosphate pathway or the cyanide-insensitive pathway. Cyanide stimulated germination of dormant seeds in the presence of inhibitors of ethylene biosynthesis, but its improving effect required functional ethylene receptors. It did not significantly affect ethylene production and the expression of genes involved in ethylene biosynthesis or in the first steps of ethylene signalling pathway. However, the expression of the transcription factor Ethylene Response Factor 1 (ERF1) was markedly stimulated in the presence of gaseous cyanide. It is proposed that the mode of action of cyanide in sunflower seed dormancy alleviation does not involve ethylene production and that ERF1 is a common component of the ethylene and cyanide signalling pathways.

  4. Impact of hydrogen sulfide donor on experimental pulmonary hypertension induced by high pulmonary flow and endogenous carbon monoxide/heme oxygenase pathway%硫化氢供体对实验性高肺血流性肺动脉高压及内源性一氧化碳/血红素氧合酶体系的影响

    Institute of Scientific and Technical Information of China (English)

    李晓惠; 杜军保; 丁亚光; 金红芳; 卜定方; 汤秀英; 唐朝枢

    2006-01-01

    目的:探讨硫化氢供体--硫氢化钠(sodium hydrosulfide,NaHS)对大鼠高肺血流性肺动脉高压及内源性一氧化碳(carbon monoxide,CO)/血红素氧合酶(heme oxygenase,HO)体系的影响.方法:将32只雄性SD大鼠随机分为分流组(n=8)、分流+NaHS组(n=8)、假手术组(n=8)和假手术+NaHS组(n=8).对分流组和分流+NaHS组大鼠行腹主动脉-下腔静脉穿刺建立高肺血流动物模型.分流11周后,测定肺动脉收缩压(systolic pulmonary artery pressure,SPAP)和肺组织CO含量;光镜下计算肺血管中肌型动脉(muscularized artery,MA)、部分肌型动脉(partially muscularized artery,PMA)和非肌型动脉(non-muscularized artery,NMA)百分比,以及肌型动脉的相对中膜厚度(relative medial thickness,RMT)和相对中膜面积(relative medial areas,RMA);电镜下观察其超微结构变化;应用蛋白质免疫印迹技术(Western blot)检测大鼠肺组织HO-1含量.结果:术后11周,分流组与假手术组比较,大鼠SPAP增高48.6%;肺MA和PMA百分比分别升高74.2%和90.9%,NMA百分比降低32.2%,在中型MA和小型MA中RMT分别升高83.6%和86.9%,RMA分别升高74.4%和39.9%;大鼠肺腺泡水平肌型动脉内皮细胞变性明显,内外弹力层不规则,平滑肌细胞体积增大,呈合成表型;大鼠肺组织CO和HO-1含量变化不明显.而分流+NaHS组与分流组比较,大鼠SPAP降低19.8%;肺MA和PMA百分比分别降低14.4%和12.2%,NMA百分比升高13.9%,在中型MA和小型MA中RMT分别升高16.2%和14.3%,RMA分别升高26.9%和14.3%;大鼠肺腺泡水平肌型动脉内皮细胞变性减轻;内弹力层比较规则;平滑肌细胞呈收缩表型;大鼠肺组织CO含量升高25.5%,HO-1蛋白表达升高114.3%.结论:NaHS可以缓解高肺血流性肺动脉高压形成和肺血管结构重建,其作用机制可能与调节内源性CO/HO-1体系变化有关.

  5. High temperature thermodynamics and vaporization of stoichiometric titanium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.I.; Gilles, P.W.

    1976-08-17

    Three vaporization experiments were performed on samples of nearly stoichiometric titanium monoxide. Two experiments were constant temperature experiments (1806/sup 0/K) designed to measure the equilibrium vapor pressures of Ti(g) and TiO(g). In one experiment titanium monoxide was vaporized from a tungsten Knudsen effusion cell; the vapor was collected on a water cooled quartz cap surrounding the cell; and the total amount of titanium deposited on the cap was analyzed colorimetrically. In the second constant temperature experiment (1806/sup 0/K) the vapor composition in equilibrium with nearly stoichiometric titanium monoxide was measured mass spectrometrically. The mass spectrometer results were used to apportion the total titanium collected in the first experiment to Ti(g) and TiO(g). In the third experiment the temperature dependence of the ions Ti/sup +/(48) and TiO(64) was measured spectrometrically. The results obtained in this work are compared with published thermodynamic properties of the titanium oxygen system, and indicate the standard free energy of formation of titanium monoxide obtained from the earliest calorimetric measurements yielded a result not negative enough and also oxygen pressures obtained by emf measurements for stoichiometric titanium monoxide at 1806/sup 0/K are high by a factor of 42.6. The present results are in good agreement with the thermodynamic properties reported in recently issued pages of the JANAF Thermochemical Tables.

  6. Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway.

    Science.gov (United States)

    Gniazdowska, Agnieszka; Krasuska, Urszula; Bogatek, Renata

    2010-11-01

    The connection between classical phytohormone-ethylene and two signaling molecules, nitric oxide (NO) and hydrogen cyanide (HCN), was investigated in dormancy removal and germination "sensu stricto" of apple (Malus domestica Borkh.) embryos. Deep dormancy of apple embryos was removed by short-term (3-6 h) pre-treatment with NO or HCN. NO- or HCN-mediated stimulation of germination was associated with enhanced emission of ethylene by the embryos, coupled with transient increase in ROS concentration in embryos. Ethylene vapors stimulated germination of dormant apple embryos and eliminated morphological anomalies characteristic for young seedlings developed from dormant embryos. Inhibitors of ethylene receptors completely impeded beneficial effect of NO and HCN on embryo germination. NO- and HCN-induced ethylene emission by apple embryo was only slightly reduced by inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase activity during first 4 days of germination. Short-term pre-treatment of the embryos with NO and HCN modified activity of both key enzymes of ethylene biosynthetic pathway: ACC synthase and ACC oxidase. Activity of ACC synthase declined during first 4 days of germination, while activity of ACC oxidase increased markedly at that time. Additional experiments point to non-enzymatic conversion of ACC to ethylene in the presence of ROS (H(2)O(2)). The results indicate that NO and HCN may alleviate dormancy of apple embryos "via" transient accumulation of ROS, leading to enhanced ethylene emission which is required to terminate germination "sensu stricto". Therefore, ethylene seems to be a trigger factor in control of apple embryo dormancy removal and germination.

  7. Effect of temperature on the uptake and metabolism of cyanide by weeping willows

    DEFF Research Database (Denmark)

    Yu, X.-Z.; Trapp, Stefan; Zhou, P.-H.

    2007-01-01

    Plants’ uptake and metabolism of cyanide in response to changes in temperature was investigated. Pre-rooted weeping willows (Salix babylonica L.) were exposed to hydroponic solution spiked with potassium cyanide for 2–3 d. Ten different temperatures were used, ranging from 11◦C to 32◦C. Cyanide...... in water, plant tissue, and air was analyzed spectrophotometrically. The results revealed that significant amounts of the applied cyanide were removed from the aqueous solutions in the presence of plants. Small amounts of free cyanide were detected in plant materials in all treatments......, but there was no clear trend that showed an increase or decrease in the accumulation in plant material with temperature. The highest cyanide metabolism rate for weeping willows was found at 32◦C with a value of 2.78 mg CN/(kg·d), whereas the lowest value was 1.20 mg CN/(kg·d) at 11◦C. The temperature coefficient, Q10...

  8. Treatment of cyanide wastewater by bulk liquid membrane using tricaprylamine as a carrier.

    Science.gov (United States)

    Li, Guoping; Xue, Juanqin; Liu, Nina; Yu, Lihua

    2016-01-01

    The transport of cyanide from wastewater through a bulk liquid membrane (BLM) containing tricaprylamine (TOA) as a carrier was studied. The effect of cyanide concentration in the feed solution, TOA concentration in the organic phase, the stirring speed, NaOH concentration in the stripping solution and temperature on cyanide transport was determined through BLM. Mass transfer of cyanide through BLM was analyzed by following the kinetic laws of two consecutive irreversible first-order reactions, and the kinetic parameters (k(1), k(2), R(m)(max), t(max), J(a)(max), J(d)(max)) were also calculated. Apparently, increase in membrane entrance (k(1)) and exit rate (k(2)) constants was accompanied by a rise in temperature. The values of activation energies were obtained as 35.6 kJ/mol and 18.2 kJ/mol for removal and recovery, respectively. These values showed that both removal and recovery steps in cyanide transport is controlled by the rate of the chemical complexation reaction. The optimal reaction conditions were determined by BLM using trioctylamine as the carrier: feed phase: pH 4, carrier TOA possession ratio in organic phase: 2% (V/V), stripping phase concentration of NaOH: 1% (W/V), reaction time: 60 min, stirring speed: 250 r/min. Under the above conditions, the removal rate was up to 92.96%. The experiments demonstrated that TOA was a good carrier for cyanide transport through BLM in this study.

  9. Novel colorimetric sensors for cyanide based on azo-hydrazone tautomeric skeletons.

    Science.gov (United States)

    Adegoke, Olajire A; Adesuji, Temitope E; Thomas, Olusegun E

    2014-07-15

    The monoazo dyes, 4-carboxyl-2, 6-dinitrophenylazohydroxynaphthalenes dyes (AZ-01, AZ-03 and AZ-04), were evaluated as a highly selective colorimetric chemosensor for cyanide ion. The recognition of cyanide ion gave an obvious colour change from light yellow to brownish red and upon dilution with acetone produced a purple to lilac colour. Optimum conditions for the reaction between the azo dyes and cyanide ion were established at 30°C for 5 min, and different variables affecting the reaction were carefully studied and optimised. Under the optimum conditions, linear relationships between the CN(-) concentrations and light absorption were established. Using these azo-hydrazone molecular switch entities, excellent selectivity towards the detection of CN(-) in aqueous solution over miscellaneous competitive anions was observed. Such selectivity mainly results from the possibility of nucleophilic attack on the azo-hydrazone chemosensors by cyanide anions in aqueous system, which is not afforded by other competing anions. The cyanide chemosensor method described here should have potential application as a new family probes for detecting cyanide in aqueous solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  11. Study of cyanide removal from contaminated water using zinc peroxide nanomaterial.

    Science.gov (United States)

    Uppal, Himani; Tripathy, S Swarupa; Chawla, Sneha; Sharma, Bharti; Dalai, M K; Singh, S P; Singh, Sukhvir; Singh, Nahar

    2017-05-01

    The present study highlights the potential application of zinc peroxide (ZnO2) nanomaterial as an efficient material for the decontamination of cyanide from contaminated water. A process patent for ZnO2 synthesis has been granted in United States of America (US Patent number 8,715,612; May 2014), South Africa, Bangladesh, and India. The ZnO2 nanomaterial was capped with polyvinylpyrrolidone (PVP) to control the particle size. The PVP capped ZnO2 nanomaterial (PVP-ZnO2) before and after adsorption of cyanide was characterized by scanning electron microscope, transmission electron microscope, X-ray diffractometer, Fourier transform infrared spectroscopy and time of flight-secondary ion mass spectrometry. The remaining concentration of cyanide after adsorption by PVP-ZnO2 was determined using ion chromatograph. The adsorption of cyanide over PVP-ZnO2 was also studied as a function of pH, adsorbent dose, time and concentration of cyanide. The maximum removal of cyanide was observed in pH range 5.8-7.8 within 15min. The adsorption data was fitted to Langmuir and Fruendlich isotherm and it has been observed that data follows both the isotherms and also follows second order kinetics. Copyright © 2016. Published by Elsevier B.V.

  12. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  13. Hydrogen storage

    NARCIS (Netherlands)

    Peters, C.J.; Sloan, E.D.

    2005-01-01

    The invention relates to the storage of hydrogen. The invention relates especially to storing hydrogen in a clathrate hydrate. The clathrate hydrate according to the present invention originates from a composition, which comprises water and hydrogen, as well as a promotor compound. The promotor comp

  14. Saga of hydrogen civilization

    Energy Technology Data Exchange (ETDEWEB)

    Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States). Clean Energy Research Institute

    2008-09-30

    In the 1960s, air pollution in cities became an important issue hurting the health of people. The author became interested in environmental issues in general and air pollution in particular. He started studying possible vehicle fuels, with a view of determining the fuel which would cause little or no pollution. He particularly studied methanol, ethanol, ammonia and hydrogen as well as the gasohols (i.e., the mixtures of gasoline and methanol and/or ethanol). His investigation of fuels for transportation lasted five years (1967-1972). The result was that hydrogen is the cleanest fuel, and it is also the most efficient one. It would not produce CO (carbon monoxide), CO{sub 2} (carbon dioxide), SO{sub x}, hydrocarbons, soot and particulates. If hydrogen was burned in oxygen, it would not produce NO{sub x} either. If it burned in air, there would then be some NO{sub x} produced. Since the author has always believed that engineers and scientists should strive to find solutions to the problems facing humankind and the world, he established the Clean Energy Research Institute (CERI) at the University of Miami in 1973. The mission of the Institute was to find a solution or solutions to the energy problem, so the world economy can function properly and provide humankind with high living standards. To find clean forms of energy was also the mission of the Institute, so that they would not produce pollution and damage the health of flora, fauna and humans, as well as the environment of the planet Earth as a whole. CERI looked at all of the possible primary energy sources, including solar, wind, currents, waves, tides, geothermal, nuclear breeders and thermonuclear. Although they are much cleaner and would last much longer than fossil fuels, these sources were not practical for use. They were not storable or transportable by themselves, except nuclear. They could not be used as a fuel for transportation by themselves, except nuclear for marine transportation. In order to solve

  15. Fate of process solution cyanide and nitrate at three nevada gold mines inferred from stable carbon and nitrogen isotope measurements

    Science.gov (United States)

    Johnson, C.A.; Grimes, D.J.; Rye, R.O.

    2000-01-01

    Stable isotope methods have been used to identify the mechanisms responsible for cyanide consumption at three heap-leach operations that process Carlin-type gold ores in Nevada, U.S.A. The reagent cyanide had ??15N values ranging from -5 to -2??? and ??13C values from -60 to -35???. The wide ??13C range reflects the use by different suppliers of isotopically distinct natural-gas feedstocks and indicates that isotopes may be useful in environmental studies where there is a need to trace cyanide sources. In heap-leach circuits displaying from 5 to 98% consumption of cyanide, barren-solution and pregnant-solution cyanide were isotopically indistinguishable. The similarity is inconsistent with cyanide loss predominantly by HCN offgassing (a process that in laboratory experiments caused substantial isotopic changes), but it is consistent with cyanide retention within the heaps as solids, a process that caused minimal isotopic changes in laboratory simulations, or with cyanide oxidation, which also appears to cause minimal changes. In many pregnant solutions cyanide was carried entirely as metal complexes, which is consistent with ferrocyanides having precipitated or cyanocomplexes having been adsorbed within the heaps. It is inferred that gaseous cyanide emissions from operations of this type are less important than has generally been thought and that the dissolution or desorption kinetics of solid species is an important control on cyanide elution when the spent heaps undergo rinsing. Nitrate, nitrite and ammonium had ??15N values of 1-16???. The data reflect isotopic fractionation during ammonia offgassing or denitrification of nitrate - particularly in reclaim ponds - but do not indicate the extent to which nitrate is derived from cyanide or from explosive residues. ?? The Institution of Mining and Metallurgy 2000.

  16. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  17. Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal.

    Science.gov (United States)

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2007-06-01

    Knowledge of the kinetic parameters, the half-saturation constant (K(m)) and the maximum metabolic capacity (v(max)), is very useful for the characterization of enzymes and biochemical processes. Little is known about rates of which vegetation metabolizes environmental chemicals. It is known, however, that vascular plants possess an enzyme system that detoxifies cyanide by converting it into the amino acid asparagine. This study investigated the differences in Michaelis-Menten kinetics of cyanide removal by different cultivars of maize. Detached leaves (1.0 g fresh weight) of seven different cultivars of maize (Zea mays L.) were kept in glass vessels with 100mL of aqueous solution spiked with potassium cyanide at 25+/-0.5 degrees C for 28 h. Four treatment concentrations of cyanide were used, ranging from 0.43 to 7.67 mgCNL(-1). The disappearance of cyanide from the aqueous solution was analyzed spectrophotometrically. Realistic values of K(m) and v(max) were estimated by a computer program using non-linear regression treatment. Lineweaver-Burk plots were also used to estimate the kinetic parameters for comparison. Using non-linear regression treatments, values of v(max) and K(m) were found to be between 10.80 and 22.80 mgCNkg(-1)h(-1), and 2.57 and 7.09 mgCNL(-1), respectively. The highest v(max) was achieved by the cultivars HengFen 1, followed by NongDa 108. The lowest v(max) was demonstrated by JingKe 8. The highest K(m) was found in NongDa 108, followed by HengFen 1. The lowest K(m) was associated with JingKe 8. Results from this study indicated that significant removal of cyanide from an aqueous solution was observed in the presence of plant materials without apparent phytotoxicity, even at the high concentration of cyanide used in this study. All maize cultivars used in this study were able to metabolize cyanide efficiently, although with different metabolic capacities. Results also showed a small variation of metabolic rates between the different cultivars

  18. [Massive poisoning with carbon monoxide: an update from a case].

    Science.gov (United States)

    Díaz, Mariano; Crapanzano, Gabriel; Cabrerizo, Silvia; Aichele, Cristina; Deurtiaga, Alejandra; Vallejos, Yamila

    2017-02-01

    Carbon monoxide is known as the "silent murderer" because it is a colorless and odorless gas. According to these characteristics, toxicity goes unnoticed which makes the diagnosis difficult. In most cases, the cold periods and group poisoning make suspect its presence because inappropriate heat both in home or public environments. Our goal is to inform about a mass carbon monoxide poisoning in a children's parties room using a combustion source installed, not for the purpose of heating, but as a supply of light (generator), emphasizing that it can occur in any time of the year.

  19. Structural and magnetic properties of mechanochemically synthesized nanocrystalline titanium monoxide

    Directory of Open Access Journals (Sweden)

    Barudžija Tanja

    2012-01-01

    Full Text Available Nano-sized titanium monoxide (TiO powder was prepared by mechanochemical synthesis. A mixture of commercial Ti and TiO2 (rutile powders with the molar ratio of 1:1 was milled in a planetary ball mill for 5, 10, 20, 30 and 60 min under argon atmosphere. The final single-phase titanium monoxide sample was characterized by X-ray diffraction (XRD, magnetic measurements using a superconducting quantum interference device magnetometer (SQUID and thermogravimetric analysis (TGA. The temperature dependency of the magnetic susceptibility is characterized by significant contribution of Pauli paramagnetism due to conduction electrons.

  20. Comparison of cobinamide to hydroxocobalamin in reversing cyanide physiologic effects in rabbits using diffuse optical spectroscopy monitoring

    Science.gov (United States)

    Brenner, Matthew; Mahon, Sari B.; Lee, Jangwoen; Kim, Jae; Mukai, David; Goodman, Seth; Kreuter, Kelly A.; Ahdout, Rebecca; Mohammad, Othman; Sharma, Vijay S.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    Our purpose is to compare cobinamide to hydroxocobalamin in reversing cyanide (CN)–induced physiologic effects in an animal model using diffuse optical spectroscopy (DOS). Cyanide poisoning is a major threat worldwide. Cobinamide is a novel molecule that can bind two molecules of cyanide, has a much higher binding affinity than hydroxocobalamin, and is more water soluble. We investigated the ability of equimolar doses of cobinamide and hydroxocobalamin to reverse the effects of cyanide exposure in an animal model monitored continuously by DOS. Cyanide toxicity was induced in 16 New Zealand white rabbits by intravenous infusion. Animals were divided into three groups: controls (n=5) received saline following cyanide, hydroxocobalamin (N=6) following cyanide, and cobinamide (N=5) following cyanide. Cobinamide caused significantly faster and more complete recovery of oxy- and deoxyhemoglobin concentrations in cyanide-exposed animals than hydroxocobalamin- or saline-treated animals, with a recovery time constant of 13.8±7.1 min compared to 75.4±25.1 and 76.4±42.7 min, for hydroxocobalamin- and saline-treated animals, respectively (pcyanide than equimolar doses of cobalamin at the dose used in this study, and CN effects and response can be followed noninvasively using DOS. PMID:20210475