WorldWideScience

Sample records for monovalent cation permeability

  1. Activation and inhibition of histone deacetylase 8 by monovalent cations.

    Science.gov (United States)

    Gantt, Stephanie L; Joseph, Caleb G; Fierke, Carol A

    2010-02-26

    The metal-dependent histone deacetylases (HDACs) catalyze hydrolysis of acetyl groups from acetyllysine side chains and are targets of cancer therapeutics. Two bound monovalent cations (MVCs) of unknown function have been previously observed in crystal structures of HDAC8; site 1 is near the active site, whereas site 2 is located > 20 A from the catalytic metal ion. Here we demonstrate that one bound MVC activates catalytic activity (K(1/2) = 3.4 mM for K(+)), whereas the second, weaker-binding MVC (K(1/2) = 26 mM for K(+)) decreases catalytic activity by 11-fold. The weaker binding MVC also enhances the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid by 5-fold. The site 1 MVC is coordinated by the side chain of Asp-176 that also forms a hydrogen bond with His-142, one of two histidines important for catalytic activity. The D176A and H142A mutants each increase the K(1/2) for potassium inhibition by > or = 40-fold, demonstrating that the inhibitory cation binds to site 1. Furthermore, the MVC inhibition is mediated by His-142, suggesting that this residue is protonated for maximal HDAC8 activity. Therefore, His-142 functions either as an electrostatic catalyst or a general acid. The activating MVC binds in the distal site and causes a time-dependent increase in activity, suggesting that the site 2 MVC stabilizes an active conformation of the enzyme. Sodium binds more weakly to both sites and activates HDAC8 to a lesser extent than potassium. Therefore, it is likely that potassium is the predominant MVC bound to HDAC8 in vivo.

  2. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    Science.gov (United States)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  3. The Mrp system: a giant among monovalent cation/proton antiporters?

    Science.gov (United States)

    Swartz, Talia H; Ikewada, Sayuri; Ishikawa, Osamu; Ito, Masahiro; Krulwich, Terry Ann

    2005-10-01

    Mrp systems are a novel and broadly distributed type of monovalent cation/proton antiporter of bacteria and archaea. Monovalent cation/proton antiporters are membrane transport proteins that catalyze efflux of cytoplasmic sodium, potassium or lithium ions in exchange for external hydrogen ions (protons). Other known monovalent cation antiporters are single gene products, whereas Mrp systems have been proposed to function as hetero-oligomers. A mrp operon typically has six or seven genes encoding hydrophobic proteins all of which are required for optimal Mrp-dependent sodium-resistance. There is little sequence similarity of Mrp proteins to other antiporters but three of these proteins have significant sequence similarity to membrane embedded subunits of ion-translocating electron transport complexes. Mrp antiporters have essential roles in the physiology of alkaliphilic and neutralophilic Bacillus species, nitrogen-fixing Sinorhizobium meliloti and in the pathogen Staphylococcus aureus, although these bacteria contain multiple monovalent cation/proton antiporters. The wide distribution of Mrp systems leads to the anticipation of important roles in an even wider variety of pathogens, extremophiles and environmentally important organisms. Here, the distribution, established physiological roles and catalytic activities of Mrp systems are reviewed, hypotheses regarding their complexity are discussed and major open questions about their function are highlighted.

  4. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  5. Effects of monovalent cations on folding kinetics of G-quadruplexes.

    Science.gov (United States)

    You, Jing; Li, Hui; Lu, Xi-Ming; Li, Wei; Wang, Peng-Ye; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-08-31

    G-quadruplexes are special structures existing at the ends of human telomeres, the folding kinetics of which are essential for their functions, such as in the maintenance of genome stability and the protection of chromosome ends. In the present study, we investigated the folding kinetics of G-quadruplex in different monovalent cation environments and determined the detailed kinetic parameters for Na(+)- and K(+)-induced G-quadruplex folding, and for its structural transition from the basket-type Na(+) form to the hybrid-type K(+) form. More interestingly, although Li(+) was often used in previous studies of G-quadruplex folding as a control ion supposed to have no effect, we have found that Li(+) can actually influence the folding kinetics of both Na(+)- and K(+)-induced G-quadruplexes significantly and in different ways, by changing the folding fraction of Na(+)-induced G-quadruplexes and greatly increasing the folding rates of K(+)-induced G-quadruplexes. The present study may shed new light on the roles of monovalent cations in G-quadruplex folding and should be useful for further studies of the underlying folding mechanism. © 2017 The Author(s).

  6. Circular Dichroism is Sensitive to Monovalent Cation Binding in Monensin Complexes.

    Science.gov (United States)

    Nedzhib, Ahmed; Kessler, Jiří; Bouř, Petr; Gyurcsik, Béla; Pantcheva, Ivayla

    2016-05-01

    Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li(+) , Na(+) , K(+) , Rb(+) , Ag(+) , and Et4 N(+) ) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178-192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time-dependent Density Functional Theory (TDDFT) simulations did not allow band-to-band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420-428, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Cation Permeability in Soybean Aleurone Layer

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1998-01-01

    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  8. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.

  9. Effect of primycin on monovalent cation transport of erythrocyte membrane and lipid bilayer.

    Science.gov (United States)

    Blaskó, K; Györgyi, S; Horváth, I

    1979-04-01

    The effects of primycin were investigated on the alkali-cation transport of human erythrocytes and on the electric conduction of bimolecular lipid membranes. In the concentration range of 3.10(-6) approximately 10(-5) M primycin increased the permeability of erythrocytes to alkali-cations according to the sequences Cs+ greater than Rb+ approximately K+ greater than Na+, while the conductance of the negatively charged phosphatidylserine bimolecular lipid membrane increased by 2 approximately 3 orders of magnitude. The resistance-lowering effect of primycin strongly depended on the cationic species applied and a selectivity order Na+ greater than K+ greater than Rb+ greater than Cs+ was found. A possible mechanism of the primycin-membrane interaction is suggested on the basis of experimental data.

  10. Single crystal structures of thallium (I) thorium fluorides and crystal chemistry of monovalent tetravalent cation pentafluorides

    Science.gov (United States)

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Jouffret, Laurent; Avignant, Daniel

    2015-12-01

    Two thallium (I) thorium (IV) fluorides, TlTh3F13 and TlThF5 were obtained by solid state synthesis and their crystal structures determined from single crystal X-ray diffraction data recorded at room temperature with an APEX-II CCD diffractometer. TlTh3F13 is orthorhombic, space group Pmc21, with a=8.1801(2) Å, b=7.4479(2) Å, c=8.6375(2) Å, V=526.24(2) Å3, Z=2 and TlThF5 is monoclinic, space group P21/n, with a=8.1128(5) Å, b=7.2250(4) Å, c=8.8493(6) Å, β=116.683(3)°, V=463.46(5) Å3, Z=4. The structure of TlTh3F13 comprises layers of corner and edge-sharing ThF9 polyhedra further linked by chains of trans connected tricapped trigonal prisms ThF9 through corners and edges. The three dimensional thorium frameworks delimits channels parallel to [0 0 1] where the 11-coordinated Tl+ ions are arranged into double columns located in mirror planes of the structure. TlTh3F13 is isotypic with RbTh3F13, RbU3F13 and with one of the two polymorphs of CsTh3F13. The structure of TlThF5 may be regarded as a layer structure built up from the regular succession of 2∞[ M ‧F5 ] - corrugated layers further held by the Tl+ ions along the [1 0 1 ̅] direction. The layers are built up from edge and corner-sharing thorium polyhedra where each (ThF9)5- monocapped square antiprism is connected to five others by sharing three edges and two corners. TlThF5 is isostructural with β-NH4UF5 and with one of the polymorphs of CsThF5. A comparison of the different structural types of MM‧F5 pentafluorides is presented and a diagram of repartition of their structures is given. From the comparison of the Tl structures with their Rb or Cs homologs, where very similar monovalent cation environments are observed it should be concluded to a stereochemically inactivity of the 6s2 lone pair of Tl(I) in both TlTh3F13 and TlThF5, contrary to what is observed in richer Tl(I) content Tl3ThF7 fluorothorate.

  11. Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Grätzel, Michael; Friend, Richard H

    2017-03-19

    Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with similar ionic radii to Pb(2+), including Cu(+), Na(+), and Ag(+). A shift in the Fermi level and a remarkable decrease of sub-bandgap optical absorption, along with a lower energetic disorder in the perovskite, was achieved. An order-of-magnitude enhancement in the bulk hole mobility and a significant reduction of transport activation energy within an additive-based perovskite device was attained. The confluence of the aforementioned improved properties in the presence of these cations led to an enhancement in the photovoltaic parameters of the perovskite solar cell. An increase of 70 mV in open circuit voltage for AgI and a 2 mA/cm(2) improvement in photocurrent density for NaI- and CuBr-based solar cells were achieved compared to the pristine device. Our work paves the way for further improvements in the optoelectronic quality of CH3NH3PbI3 perovskite and subsequent devices. It highlights a new avenue for investigations on the role of dopant impurities in crystallization and controls the electronic defect density in perovskite structures.

  12. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  13. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gerber, Susanne; Fröhlich, Martina; Lichtenberg-Fraté, Hella; Shabala, Sergey; Shabala, Lana; Klipp, Edda

    2016-01-01

    Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  14. Ring-Puckering Potential Energy Functions for Trimethylene Sulfide and Its Monovalent Cation.

    Science.gov (United States)

    Chun, Hye Jin; Ocola, Esther J; Laane, Jaan

    2017-04-13

    The spectra and ring-puckering potential energy function for trimethylene sulfide cation (TMS(+)) from vacuum ultraviolet mass-analyzed threshold ionization spectra have recently been reported. To provide an in-depth comparison of the potential function with that of trimethylene sulfide (TMS) itself, we have used ab initio MP2/cc-pVTZ calculations and DFT B3LYP/cc-pVTZ calculations to predict the structures of both TMS and TMS(+) and then used these to calculate coordinate-dependent ring-puckering kinetic energy functions for both species. These kinetic energy functions allowed us to calculate refined potential energy functions of the puckering for both molecules based on the previously published spectra. TMS has an experimental barrier of 271 cm(-1) and energy minima at ring-puckering angles of ±29°. For TMS(+) the barrier is 60 cm(-1) and the energy minima correspond to ring-puckering angles of ±21°. The lower barrier for the cation reflects the smaller amount of angle strain in the ring angles for TMS(+).

  15. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography.

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-04-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na(+)), potassium (K(+)), ammonium (NH4 (+)), chloride (Cl(-)) and nitrate (NO3 (-)) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples.

  16. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation.

    Science.gov (United States)

    Felcmanova, Kristina; Neveceralova, Petra; Sychrova, Hana; Zimmermannova, Olga

    2017-08-01

    The Kch1 and Kch2 plasma-membrane proteins were identified in Saccharomyces cerevisiae as being essential for the activation of a high-affinity Ca2+ influx system. We searched for Kch proteins roles in the maintenance of cation homeostasis and tested the effect of kch1 and/or kch2 deletions on various physiological parameters. Compared to wild-type, kch1 kch2 mutant cells were smaller, relatively hyperpolarised, grew better under limited K+ conditions and exhibited altered growth in the presence of monovalent cations. The absence of Kch1 and Kch2 did not change the intracellular pH in cells growing at low potassium or the tolerance of cells to divalent cations, high concentration of sorbitol or extreme external pH. The overexpression of KCH1 only increased the intracellular pH in the presence of elevated K+ in media. None of the phenotypes associated with the deletion of KCH1 and KCH2 in wild type were observed in a strain lacking KCH genes and main K+ uptake systems Trk1 and Trk2. The role of the Kch homologue in cation homeostasis was also tested in Candida albicans cells. Our data demonstrate that Kch proteins significantly contribute to the maintenance of optimal cation homeostasis and membrane potential in S. cerevisiae but not in C. albicans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    Energy Technology Data Exchange (ETDEWEB)

    Feltner, D.E.; Marasco, W.A.

    1989-06-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of (3H)FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM (3H)FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. (3H)FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of (3H)FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM (3H)FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.

  18. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  19. Differential effect of HOE642 on two separate monovalent cation transporters in the human red cell membrane

    DEFF Research Database (Denmark)

    Bernhardt, Ingolf; Weiss, Erwin; Robinson, Hannah C

    2007-01-01

    Residual K(+) fluxes in red blood cells can be stimulated in conditions of low ionic strength. Previous studies have identified both the non-selective, voltage-dependent cation (NSVDC) channel and the K(+)(Na(+))/H(+) exchanger as candidate pathways mediating this effect, although it is possible...... blood cell apoptosis (eryptosis) and disease....

  20. Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.; Krupenko, O.; Punt, I.G.M.; Stamatialis, D.; Wessling, M.

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly cha

  1. A monovalent ion-selective cation current activated by noradrenaline in smooth muscle cells of rabbit ear artery.

    Science.gov (United States)

    Wang, Q; Hogg, R C; Large, W A

    1993-04-01

    Membrane currents were recorded with the perforated-patch method with a low-chloride (35 mM) pipette solution in isolated smooth muscle cells of the rabbit ear artery. At a holding potential of -50 mV in potassium-free conditions spontaneous inward single-channel currents were observed and noradrenaline evoked a noisy inward current, which appeared to be comprised of the spontaneous currents. The reversal potential (Vr) of the spontaneous channel and noradrenaline-induced current was not affected in anion-substitution experiments but Vr was altered when external Na+ was replaced with choline or TRIS. The relationship between clamp potential and spontaneous single-channel current amplitude was linear and the mean unitary conductance was 28 pS. Caffeine, which releases calcium from the sarcoplasmic reticulum, and the calcium ionophore ionomycin activated the cation current and also blocked the response to noradrenaline. Spontaneous channel current activity and the noradrenaline-induced current were blocked when external NaCl was replaced with 89 mM CaCl2. The response to noradrenaline was blocked by prazosin but was not affected by yohimbine and therefore the response is mediated by alpha 1-adrenoceptors. It is concluded that in rabbit ear artery smooth muscle cells there is a calcium-activated cation channel of 28 pS conductance, which is relatively impermeable to calcium but can be activated by noradrenaline.

  2. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation

    Institute of Scientific and Technical Information of China (English)

    Milad Rasouli; Nakisa Yaghobi; Hossein Atashi; Majid Rasouli

    2015-01-01

    The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.

  3. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  4. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis.

    Science.gov (United States)

    Meng, Lin; Hong, Shan; Liu, Henan; Huang, Haipeng; Sun, Hao; Xu, Tong; Jiang, Juquan

    2014-11-01

    The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.

  5. Effects of monovalent cation doping on the structure, microstructure, lattice distortion and magnetic behavior of single crystalline NdMnO3 compounds.

    Science.gov (United States)

    Nandy, Anshuman; Pradhan, S K

    2015-10-21

    Pure and 15 mol% Na, K-doped NdMnO3 compounds with perovskite structures are prepared by sol-gel method. Tiny single crystals are formed after sintering the compounds at 1000 °C. The effect of Na and K doping as well as the effect of sintering temperature on the formation and microstructure of NdMnO3 are studied in detail by the Rietveld refinement technique using X-ray powder diffraction data. Single phase formation and single crystalline growth are also confirmed by high resolution transmission electron microscopy (HRTEM). Bond angles and bond lengths are calculated and shown by 3D diagrams. Monovalent doping induces noticeable changes in the microstructure and yields better structural stability in these compounds. Doping results in the change of Mn-O, Nd-O and Mn-O-Mn bond lengths which in turn reduces the lattice and octahedral distortion in the system along with an increase in the tolerance factor. The magnetic properties of these compounds are also modified as a result of doping. The temperature dependent magnetization results show that the Neel temperature of antiferromagnetic NdMnO3 compound is 67.2 K and the Curie temperatures of ferromagnetic Nd0.85Na0.15MnO3 and Nd0.85K0.15MnO3 compounds are 99.1 K and 98.6 K respectively. Both 15% Na and K doping results in a similar TC in doped NdMnO3 compounds.

  6. Effect of Clay Mineralogy and Exchangeable Cations on Permeability of Saudi Sandstone Reservoirs Effet de la minéralogie des argiles et des cations échangeables sur la perméabilité des réservoirs gréseux d'Arabie Saoudite

    Directory of Open Access Journals (Sweden)

    Dahab A. S.

    2006-11-01

    Full Text Available Reservoir rocks are susceptible to formation damage during secondary recovery operations due to the particular mineralogical, textural and electrochemical properties of the clay minerals they contain. This damage can be explained by the swelling of indigeneous clays present, resulting in the constricting of pores, or by the dispersion of indigeneous nonswelling particle rearrangements during fluid flow, resulting in the plugging of the pore system, or by a combination of the two. This article describes a laboratory study showing the effect of clay mineralogy on the permeability of actual Saudi sandstone reservoirs during water flooding operations. The study shows that the permeability damage of Saudi sandstone reservoirs depends upon the amount of swelling clays and exchangeable ions as well as on the nature of these ions. Monovalent cations cause more damage than multivalent ones but within the same group of metals, those with smaller atomic mass cause more damage. Les roches réservoirs peuvent être endommagées pendant les opérations de récupération secondaire à cause des propriétés minéralogiques, texturales et électrochimiques particulières des minéraux argileux qu'elles contiennent. Cet endommagement peut s'expliquer, soit par le gonflement des argiles qui conduit à un rétrécissement des pores, soit par la migration de particules non gonflantes pendant l'écoulement des fluides qui entraîne le colmatage des milieux poreux, soit par une combinaison des deux mécanismes. Cet article présente une étude de laboratoire montrant l'effet de la minéralogie des argiles sur la perméabilité des roches réservoirs réelles d'Arabie Saoudite pendant des opérations d'injection d'eau. L'étude montre que l'endommagement de la perméabilité des roches réservoirs d'Arabie Saoudite dépend de la quantité d'argiles gonflantes et d'ions échangeables, ainsi que de la nature de ces ions. Les cations monovalents provoquent plus d

  7. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.

    Science.gov (United States)

    Padlan, Camille S; Malashkevich, Vladimir N; Almo, Steve C; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E

    2014-04-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.

  8. The Geometry and Structural Properties of the 4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System in the Cationic State. Structures of a Planar Organic Cation with Various Monovalent- and Divalent Anions

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Laursen, Bo W.; Johannsen, Ib

    1999-01-01

    The geometry of the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo[cd,mn]pyrene system in the cationic state was established by X-ray structural resolution of the salts formed between the cationand various anions. The geometry was found to be planar for the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo...... [cd,mn]pyrenylium and 2,6,10-tri (tert-butyl)-4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyre nylium cations with the monovalentanions I-, BF4-, PF6- AsF6-, HNO3. NO3- and CF3SO3-, and the divalent anions S2O62- and Mo6Cl142-. The salts were found to crystallize in distinct space groups...... following a characteristic pattern. Mixed cation-anion stacking resulted in space groups with high symmetry: Pbca in three cases and R (3) over bar c in one; a temperature study of the latter was made at ten different temperatures. The formation of dimers of anions and cations resulted in lower...

  9. Tl(+) induces both cationic and transition pore permeability in the inner membrane of rat heart mitochondria.

    Science.gov (United States)

    Korotkov, Sergey M; Nesterov, Vladimir P; Brailovskaya, Irina V; Furaev, Viktor V; Novozhilov, Artemy V

    2013-12-01

    Effects of Tl(+) were studied in experiments with isolated rat heart mitochondria (RHM) injected into 400 mOsm medium containing TlNO3 and a nitrate salt (KNO3 or NH4NO3) or TlNO3 and sucrose. Tl(+) increased permeability of the inner membrane of the RHM to K(+) and H(+). This manifested as an increase of the non-energized RHM swelling, in the order of sucrose Tl(+)-induced opening of the mitochondrial permeability pore (MPTP) in Ca(2+)-loaded rat heart mitochondria increased both the swelling and the inner membrane potential dissipation, as well as decreased basal state and 2,4-dinitrophenol-stimulated respiration. These effects of Tl(+) were suppressed by the MPTP inhibitors (cyclosporine A, ADP, bongkrekic acid, and n-ethylmaleimide), activated in the presence of the MPTP inducer (carboxyatractyloside) or mitoKATP inhibitor (5-hydroxydecanoate), but were not altered in the presence of mitoKATP agonists (diazoxide or pinacidil). We suggest that the greater sensitivity of heart and striated muscles, versus liver, to thallium salts in vivo can result in more vigorous Tl(+) effects on muscle cell mitochondria.

  10. The effect of the coupled oxidation of substrate on the permeability of blowfly flight-muscle mitochondria to potassium and other cations.

    Science.gov (United States)

    Hansford, R G; Lehninger, A L

    1972-02-01

    1. Blowfly flight-muscle mitochondria respiring in the absence of phosphate acceptor (i.e. in state 4) take up greater amounts of K(+), Na(+), choline, phosphate and Cl(-) (but less NH(4) (+)) than non-respiring control mitochondria. 2. Uptake of cations is accompanied by an increase in the volume of the mitochondrial matrix, determined with the use of [(14)C]-sucrose and (3)H(2)O. The osmolarity of the salt solution taken up was approximately that of the suspending medium. 3. The [(14)C]sucrose-inaccessible space decreased with increasing osmolarity of potassium chloride in the suspending medium, confirming that the blowfly mitochondrion behaves as an osmometer. 4. Light-scattering studies showed that both respiratory substrate and a permeant anion such as phosphate or acetate are required for rapid and massive entry of K(+), which occurs in an electrophoretic process rather than in exchange for H(+). The increase in permeability to K(+) and other cations is probably the result of a large increase in the exposed area of inner membrane surface in these mitochondria, with no intrinsic increase in the permeability per unit area. 5. No increase in permeability to K(+) and other cations occurs during phosphorylation of ADP in state 3 respiration.

  11. Ion permeability of polydopamine films revealed using a Prussian blue-based electrochemical method.

    Science.gov (United States)

    Gao, Bowen; Su, Lei; Tong, Ying; Guan, Miao; Zhang, Xueji

    2014-11-06

    Polydopamine (PDA) is fast becoming a popular surface modification technique. Detailed understanding of the ion permeability properties of PDA films will improve their applications. Herein, we report for the first time the thickness-independent ion permeability of PDA films using a Prussian blue (PB)-based electrochemical method. In this method, PDA films are deposited via ammonium persulfate-induced dopamine polymerization onto a PB electrode. The ion permeability of the PDA films can thus be detected by observing the changes in electrochemical behaviors of the PB coated by PDA films. On the basis of this method, it was unexpectedly found that the PDA films with thickness greater than 45 nm (e.g., ~60 and ~113 nm) can exhibit pH-switchable but thickness-insensitive permeability to monovalent cations such as potassium and sodium ions. These observations clearly indicate the presence of a continuous network of interconnected intermolecular voids within PDA films, regardless of film thickness.

  12. The poorly membrane permeable antipsychotic drugs amisulpride and sulpiride are substrates of the organic cation transporters from the SLC22 family.

    Science.gov (United States)

    Dos Santos Pereira, Joao N; Tadjerpisheh, Sina; Abu Abed, Manar; Saadatmand, Ali R; Weksler, Babette; Romero, Ignacio A; Couraud, Pierre-Olivier; Brockmöller, Jürgen; Tzvetkov, Mladen V

    2014-11-01

    Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (P e sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.

  13. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density.

  14. Attraction between like-charged monovalent ions

    Science.gov (United States)

    Zangi, Ronen

    2012-05-01

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  15. Attraction between like-charged monovalent ions.

    Science.gov (United States)

    Zangi, Ronen

    2012-05-14

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  16. Monovalent plasmonic nanoparticles for biological applications

    Science.gov (United States)

    Seo, Daeha; Lee, Hyunjung; Lee, Jung-uk; Haas, Thomas J.; Jun, Young-wook

    2016-03-01

    The multivalent nature of commercial nanoparticle imaging agents and the difficulties associated with producing monovalent nanoparticles challenge their use in biology, where clustering of target biomolecules can perturb dynamics of biomolecular targets. Here, we report production and purification of monovalent gold and silver nanoparticles for their single molecule imaging application. We first synthesized DNA-conjugated 20 nm and 40 nm gold and silver nanoparticles via conventional metal-thiol chemistry, yielding nanoparticles with mixed valency. By employing an anion-exchange high performance liquid chromatography (AE-HPLC) method, we purified monovalent nanoparticles from the mixtures. To allow efficient peak-separation resolution while keeping the excellent colloidal stability of nanoparticles against harsh purification condition (e.g. high NaCl), we optimized surface properties of nanoparticles by modulating surface functional groups. We characterized the monovalent character of the purified nanoparticles by hybridizing two complementary conjugates, forming dimers. Finally, we demonstrate the use of the monovalent plasmonic nanoprobes as single molecule imaging probes by tracking single TrkA receptors diffusing on the cell membrane and compare to monovalent quantum dot probes.

  17. Cold gelation of alginates induced by monovalent cations.

    Science.gov (United States)

    Karakasyan, C; Legros, M; Lack, S; Brunel, F; Maingault, P; Ducouret, G; Hourdet, D

    2010-11-08

    A new reversible gelation pathway is described for alginates in aqueous media. From various samples differing by their mannuronic/guluronic content (M/G), both enthalpic and viscoelastic experiments demonstrate that alginates having a high M content are able to form thermoreversible assemblies in the presence of potassium salts. The aggregation behavior is driven by the low solubility of M-blocks at low temperature and high ionic strength. In semidilute solutions, responsive assemblies induce a strong increase of the viscosity below a critical temperature. A true physical gel is obtained in the entangled regime, although the length scale of specific interactions between M-blocks decreases with increasing density of entanglements. Cold setting takes place at low temperatures, below 0 °C for potassium concentrations lower than 0.2 mol/kg, but the aggregation process can be easily shifted to higher temperatures by increasing the salt concentration. The self-assembling process of alginates in solution of potassium salts is characterized by a sharp gelation exotherm and a broad melting endotherm with a large hysteresis of 20-30 °C between the transition temperatures. The viscoelastic properties of alginate gels in potassium salts closely depend on thermal treatment (rate of cooling, time, and temperature of storage), polymer and salt concentrations, and monomer composition as well. In the case of alginates with a high G content, a similar aggregation behavior is also evidenced at higher salt concentrations, but the extent of the self-assembling process remains too weak to develop a true gelation behavior in solution.

  18. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties.

    Science.gov (United States)

    Sehaqui, Houssine; Mautner, Andreas; Perez de Larraya, Uxua; Pfenninger, Numa; Tingaut, Philippe; Zimmermann, Tanja

    2016-01-01

    Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process.

  19. Electrically Driven Ion Separations in Permeable Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, Merlin [Michigan State Univ., East Lansing, MI (United States)

    2017-04-21

    Membranes are attractive for a wide range of separations due to their low energy costs and continuous operation. To achieve practical fluxes, most membranes consist of a thin, selective skin on a highly permeable substrate that provides mechanical strength. Thus, this project focused on creating new methods for forming highly selective ultrathin skins as well as modeling transport through these coatings to better understand their unprecedented selectivities. The research explored both gas and ion separations, and the latter included transport due to concentration, pressure and electrical potential gradients. This report describes a series of highlights of the research and then provides a complete list of publications supported by the grant. These publications have been cited more than 4000 times. Perhaps the most stunning finding is the recent discovery of monovalent/divalent cation and anion selectivities around 1000 when modifying cation- and anion-exchange membranes with polyelectrolyte multilayers (PEMs). This discovery builds on many years of exciting research. (Citation numbers refer to the journal articles in the bibliography.)

  20. Quantitative mapping of intracellular cations in the human amniotic membrane

    Science.gov (United States)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.

    1993-05-01

    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  1. Permeability of lipid bilayers to amino acids and phosphate

    Science.gov (United States)

    Chakrabarti, A. C.; Deamer, D. W.

    1992-01-01

    Permeability coefficients for amino acid classes, including neutral, polar, hydrophobic, and charged species, were measured and compared with values for other ionic solutes such as phosphate. The rates of efflux of glycine, lysine, phenylalanine, serine and tryptophan were determined after they were passively entrapped in large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine (EPC) or dimyristoylphosphatidylcholine (DMPC). The following permeability coefficients were obtained for: glycine, 5.7 x 10(-12) cm s-1 (EPC), 2.0 x 10(-11) cm s-1 (DMPC); serine, 5.5 x 10(-12) cm s-1 (EPC), 1.6 x 10(-11) cm s-1 (DMPC); lysine, 5.1 x 10(-12) cm s-1 (EPC), 1.9 x 10(-11) cm s-1 (DMPC); tryptophan, 4.1 x 10(-10) cm s-1 (EPC); and phenylalanine, 2.5 x 10(-10) cm s-1 (EPC). Decreasing lipid chain length increased permeability slightly, while variations in pH had only minor effects on the permeability coefficients of the amino acids tested. Phosphate permeability was in the range of 10(-12)-10(-13) cm s-1 depending on the pH of the medium. The values for the polar and charged amino acids were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium, which are in the range of 10(-12)-10(-13) cm s-1, depending on conditions and the lipid species used. This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. The results are relevant to the permeation of certain peptides into lipid bilayers during protein translocation and membrane biogenesis.

  2. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  3. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    Science.gov (United States)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  4. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains...

  5. Production and targeting of monovalent quantum dots.

    Science.gov (United States)

    Seo, Daeha; Farlow, Justin; Southard, Kade; Jun, Young-Wook; Gartner, Zev J

    2014-10-23

    The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.

  6. Monovalent copper-activated oxygenated insulators

    Science.gov (United States)

    Parent, C.; Boutinaud, P.; Flem, G. Le; Moine, B.; Pedrini, C.; Garcia, D.; Faucher, M.

    1994-12-01

    The photoluminescence of monovalent copper in oxygenated insulators has been extensively studied. The spectroscopy and the excited states dynamics of Cu + ions were investigated as a function of the copper concentration and temperature in various glassy and crystallized materials, essentially borates and phosphates. The broad band fluorescences observed in the visible range under UV excitation arise from two main emitting centers: isolated Cu + ions and (Cu +) 2 pairs. The spectroscopic characteristics of isolated Cu + depend strongly on the local structure, whereas those of the copper pairs remain nearly unaltered whatever the host-matrix. Energy diagrams are proposed for both centers, using ab initio LCAO calculations, in connection with structural investigations involving XRD, ND and EXAFS spectroscopies. Borate glasses can be considered as potential laser sources for tunable output in the whole visible range.

  7. Effects of monovalent and divalent salts on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    Science.gov (United States)

    Miller, K J

    1986-09-01

    The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.

  8. Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis.

    Science.gov (United States)

    Marques-da-Silva, Camila; Chaves, Mariana Martins; Rodrigues, Juliany Cola; Corte-Real, Suzana; Coutinho-Silva, Robson; Persechini, Pedro Muanis

    2011-01-01

    Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.

  9. Differential modulation of ATP-induced P2X7-associated permeabilities to cations and anions of macrophages by infection with Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Camila Marques-da-Silva

    Full Text Available Leishmania and other parasites display several mechanisms to subvert host immune cell function in order to achieve successful infection. The ATP receptor P2X7, an agonist-gated cation channel widely expressed in macrophages and other cells of the immune system, is also coupled to inflammasome activation, IL-1 beta secretion, production of reactive oxygen species, cell death and the induction of the permeabilization of the plasma membrane to molecules of up to 900 Da. P2X7 receptors can function as an effective microbicidal triggering receptor in macrophages infected with several microorganisms including Mycobacteria tuberculosis, Chlamydia and Leishmania. We have previously shown that its expression is up-regulated in macrophages infected with L. amazonensis and that infected cells also display an increase in P2X7-induced apoptosis and membrane permeabilization to some anionic fluorescent dyes. In an independent study we recently showed that the phenomenon of macrophage membrane permeabilization can involve at least two distinct pathways for cations and anions respectively. Here, we re-addressed the effects of ATP-induced P2X7-associated phenomena in macrophages infected with L. amazonensis and demonstrated that the P2X7-associated dye uptake mechanisms are differentially modulated. While the membrane permeabilization for anionic dyes is up-modulated, as previously described, the uptake of cationic dyes is strongly down-modulated. These results unveil new characteristics of two distinct permeabilization mechanisms associated with P2X7 receptors in macrophages and provide the first evidence indicating that these pathways can be differentially modulated in an immunologically relevant situation. The possible importance of these results to the L. amazonensis escape mechanism is discussed.

  10. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  11. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  12. Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures.

    Science.gov (United States)

    Bohinc, Klemen; Shrestha, Ahis; Brumen, Milan; May, Sylvio

    2012-03-01

    In the classical mean-field description of the electric double layer, known as the Poisson-Boltzmann model, ions interact exclusively through their Coulomb potential. Ion specificity can arise through solvent-mediated, nonelectrostatic interactions between ions. We employ the Yukawa pair potential to model the presence of nonelectrostatic interactions. The combination of Yukawa and Coulomb potential on the mean-field level leads to the Poisson-Helmholtz-Boltzmann model, which employs two auxiliary potentials: one electrostatic and the other nonelectrostatic. In the present work we apply the Poisson-Helmholtz-Boltzmann model to ionic mixtures, consisting of monovalent cations and anions that exhibit different Yukawa interaction strengths. As a specific example we consider a single charged surface in contact with a symmetric monovalent electrolyte. From the minimization of the mean-field free energy we derive the Poisson-Boltzmann and Helmholtz-Boltzmann equations. These nonlinear equations can be solved analytically in the weak perturbation limit. This together with numerical solutions in the nonlinear regime suggests an intricate interplay between electrostatic and nonelectrostatic interactions. The structure and free energy of the electric double layer depends sensitively on the Yukawa interaction strengths between the different ion types and on the nonelectrostatic interactions of the mobile ions with the surface.

  13. Polyelectrolyte-like behaviour of poly(ethylene-oxide) solutions with added monovalent salt

    Science.gov (United States)

    Lal, Jyotsana; Hakem, Ilhem-Faiza

    2004-03-01

    Solvent effects on the conformation of poly(ethylene-oxide) (PEO) and complexation of PEO by monovalent cations, have been examined by using small-angle neutron scattering. In methanol and acetonitrile, a big change in interchain interaction, osmotic compressibility and local chain conformation have been observed upon addition of small amounts of potassium iodide. The amplitude of the total intensity decreases significantly and a peak at a certain value of the wavevector q* appears as signature of a polyelectrolyte-like behaviour. With further addition of salt, the ionic strength of the solution increases and potassium binding becomes less favorable: the binding constant decreases with the ionic strength and PEO behaves as a neutral polymer with excluded volume. No association between PEO and potassium iodide was observed in aqueous solutions. Reference: I.F. Hakem and J. Lal. Europhysics letters, 64 (2), 204, 2003

  14. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  15. Dressed counterions: Polyvalent and monovalent ions at charged dielectric interfaces

    Science.gov (United States)

    Kanduč, Matej; Naji, Ali; Forsman, Jan; Podgornik, Rudolf

    2011-07-01

    We investigate the ion distribution and overcharging at charged interfaces with dielectric inhomogeneities in the presence of asymmetric electrolytes containing polyvalent and monovalent ions. We formulate an effective “dressed counterion” approach by integrating out the monovalent salt degrees of freedom and show that it agrees with results of explicit Monte Carlo simulations. We then apply the dressed counterion approach within the framework of the generalized strong-coupling theory, valid for polyvalent ions at low concentrations, which enables an analytical description for salt effects as well as dielectric inhomogeneities in the limit of strong Coulomb interactions. Limitations and applicability of this theory are examined by comparing the results with simulations.

  16. Notional Permeability

    NARCIS (Netherlands)

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; Van der Meer, J.W.

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath

  17. Actinide cation-cation complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Nancy Jane [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+•UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+•UO22+, NpO2+•Th4+, PuO2+•UO22+, and PuO2+•Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ~0.8 M-1.

  18. Competitive interaction of monovalent cations with DNA from 3D-RISM

    OpenAIRE

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site mo...

  19. Notional Permeability

    OpenAIRE

    Kik, R.; Van den Bos, J.P.; Maertens, J.; Verhagen, H.J.; van der Meer, J W

    2012-01-01

    Different layer design of a rock slope and under layers has a large effect on the strengths on the rock slope itself. In the stability formula developed of VAN DER MEER [1988] this effect is represented by the term Notional Permeability with symbol P. A more open, or permeable, structure underneath the armour layer has the ability to dissipate more wave energy and therefore requires less weight of the armour layer. The influence of this parameter is thus very important in economic sense. Up u...

  20. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  1. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate.

    Science.gov (United States)

    Nilius, Bernd; Mahieu, Frank; Prenen, Jean; Janssens, Annelies; Owsianik, Grzegorz; Vennekens, Rudi; Voets, Thomas

    2006-02-08

    Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity.

  2. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  3. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts.

  4. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  5. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  6. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  7. Metal Cations in G-Quadruplex Folding and Stability

    Directory of Open Access Journals (Sweden)

    Debmalya Bhattacharyya

    2016-09-01

    Full Text Available This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  8. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  9. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane.

    Science.gov (United States)

    Feng, Xinghua; Huang, Yu; Lu, Yungang; Xiong, Jian; Wong, Ching-On; Yang, Pu; Xia, Jintang; Chen, De; Du, Guangwei; Venkatachalam, Kartik; Xia, Xuefeng; Zhu, Michael X

    2014-02-14

    Transient Receptor Potential mucolipin (TRPML) channels are implicated in endolysosomal trafficking, lysosomal Ca(2+) and Fe(2+) release, lysosomal biogenesis, and autophagy. Mutations in human TRPML1 cause the lysosome storage disease, mucolipidosis type IV (MLIV). Unlike vertebrates, which express three TRPML genes, TRPML1-3, the Drosophila genome encodes a single trpml gene. Although the trpml-deficient flies exhibit cellular defects similar to those in mammalian TRPML1 mutants, the biophysical properties of Drosophila TRPML channel remained uncharacterized. Here, we show that transgenic expression of human TRPML1 in the neurons of Drosophila trpml mutants partially suppressed the pupal lethality phenotype. When expressed in HEK293 cells, Drosophila TRPML was localized in both endolysosomes and plasma membrane and was activated by phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) applied to the cytoplasmic side in whole lysosomes and inside-out patches excised from plasma membrane. The PI(3,5)P2-evoked currents were blocked by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not other phosphoinositides. Using TRPML A487P, which mimics the varitint-waddler (Va) mutant of mouse TRPML3 with constitutive whole-cell currents, we show that TRPML is biphasically regulated by extracytosolic pH, with an optimal pH about 0.6 pH unit higher than that of human TRPML1. In addition to monovalent cations, TRPML exhibits high permeability to Ca(2+), Mn(2+), and Fe(2+), but not Fe(3+). The TRPML currents were inhibited by trivalent cations Fe(3+), La(3+), and Gd(3+). These features resemble more closely to mammalian TRPML1 than TRPML2 and TRPML3, but with some obvious differences. Together, our data support the use of Drosophila for assessing functional significance of TRPML1 in cell physiology.

  10. Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms

    Directory of Open Access Journals (Sweden)

    R. Otero

    1997-03-01

    Full Text Available Three horse-derived antivenoms were tested for their ability to neutralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic activities induced by the venom of Bothrops atrox from Antioquia and Chocó (Colombia. The following antivenoms were used: a polyvalent (crotaline antivenom produced by Instituto Clodomiro Picado (Costa Rica, b monovalent antibothropic antivenom produced by Instituto Nacional de Salud-INS (Bogotá, and c a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Antioquia and Chocó. The three antivenoms neutralized all toxic activities tested albeit with different potencies. The new monovalent anti-B. atrox antivenom showed the highest neutralizing ability against edema-forming and defibrinating effects of B. atrox venom (41 ± 2 and 100 ± 32 µl antivenom/mg venom, respectively, suggesting that it should be useful in the treatment of B. atrox envenomation in Antioquia and Chocó

  11. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions

    Science.gov (United States)

    Shi, Ya-Zhou; Jin, Lei; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions. PMID:26682822

  12. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    OpenAIRE

    Fitzgerald, M. M.; Trester, M. L.; Jensen, G M; McRee, D. E.; Goodin, D B

    1995-01-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent...

  13. Extraction mechanism of monovalent ion-pairs by polyurethane foams.

    Science.gov (United States)

    Fong, P; Chow, A

    1992-07-01

    The extractability sequence of K(+) approximately Rb(+) > Cs(+) > Na(+) > Li(+) for the extraction with polyether foam suggests that the cation chelation mechanism might be operative. However, the same order was obtained for the extraction with 100% polypropylene oxide polyether foam which does not normally adopt a helical structure to form oxygen-rich cavities as easily or as effectively as polyethylene oxide to accommodate alkali metal ions. This result indicates that a hole-size/cation-diameter relationship may not be required for the high extraction of K(+). The extraction of alkali metal DPAs and hydroxides from methanol demonstrates the importance of the solvent effect. It indicates that the water-structure enforced ion-pairing (WSEIP) is the driving force for extraction of the ion-pairs. The extraction mechanism for ionic species can be described as an ion-pair extraction process. The overall effect of ion-pair formation in water and interaction of the extracted ions with foam appears to determine the extractability of the ions of the extractable ion-pair.

  14. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chunya [Harbin Institute of Technology; Skelton, Adam [Vanderbilt University; Chen, Mingjun [Harbin Institute of Technology; Vlcek, Lukas [ORNL; Cummings, Peter T [ORNL

    2012-01-01

    The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg{sup 2+}, Ca{sup 2+}, or Sr{sup 2+}) or monovalent (Na{sup +}, K{sup +}, or Rb{sup +}) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na{sup +} > K{sup +} > Rb{sup +} shows a 'reverse' lyotropic trend, while the divalent cations on the same surface exhibit a 'regular' lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr{sup 2+} > Ca{sup 2+} > Mg{sup 2+}). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO{sup -} group and the rutile, helping to 'trap' the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO{sup -} group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.

  15. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.

    Science.gov (United States)

    Vácha, Robert; Jurkiewicz, Piotr; Petrov, Michal; Berkowitz, Max L; Böckmann, Rainer A; Barucha-Kraszewska, Justyna; Hof, Martin; Jungwirth, Pavel

    2010-07-29

    Interactions of different anions with phospholipid membranes in aqueous salt solutions were investigated by molecular dynamics simulations and fluorescence solvent relaxation measurements. Both approaches indicate that the anion-membrane interaction increases with the size and softness of the anion. Calculations show that iodide exhibits a genuine affinity for the membrane, which is due to its pairing with the choline group and its propensity for the nonpolar region of the acyl chains, the latter being enhanced in polarizable calculations showing that the iodide number density profile is expanded toward the glycerol level. Solvent relaxation measurements using Laurdan confirm the influence of large soft ions on the membrane organization at the glycerol level. In contrast, chloride exhibits a peak at the membrane surface only in the presence of a surface-attracted cation, such as sodium but not potassium, suggesting that this behavior is merely a counterion effect.

  16. Novel permeability characteristics of red blood cells from sickle cell patients heterozygous for HbS and HbC (HbSC genotype).

    Science.gov (United States)

    Dalibalta, S; Ellory, J C; Browning, J A; Wilkins, R J; Rees, D C; Gibson, J S

    2010-06-15

    Individuals heterozygous for HbS and HbC (HbSC) represent about 1/3(rd) of sickle cell disease (SCD) patients. Whilst HbSC disease is generally milder, there is considerable overlap in symptoms with HbSS disease. HbSC patients, as well as HbSS ones, present with the chronic anaemia and panoply of acute vaso-occlusive complications that characterize SCD. However, there are important clinical and haematological differences. Certain complications occur with greater frequency in HbSC patients (like proliferative retinopathy and osteonecrosis) whilst intravascular haemolysis is reduced. Patients with HbSC disease can be considered as a discrete subset of SCD cases. Although much work has been carried out on understanding the pathogenesis of SCD in HbSS homozygotes, including the contribution of altered red blood cell permeability, relatively little pertains directly to HbSC individuals. Results reported in the literature suggest that HbSC cells, and particularly certain subpopulations, present with similar permeability to HbSS cells but there are also important differences - these have not been well characterized. We hypothesise that their unique cell transport properties accounts for the different pattern of disease in HbSC patients and represents a potential chemotherapeutic target not shared in red blood cells from HbSS patients. The distinct pattern of clinical haematology in HbSC disease is emphasised here. We analyse some of the electrophysiological properties of single red blood cells from HbSC patients, comparing them with those from HbSS patients and normal HbAA individuals. We also use the isosmotic haemolysis technique to investigate the behaviour of total red blood cell populations. Whilst both HbSS and HbSC cells show increased monovalent and divalent (Ca(2+)) cation conductance further elevated upon deoxygenation, the distribution of current magnitudes differs, and outward rectification is greatest for HbSC cells. In addition, although Gd(3+) largely

  17. Monovalent RIVM meningococcal B OMP vesicle F91 vaccines in toddlers

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Labadie J; Berbers GAM; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW; Sophia Kinderziekenhuis /; LVO

    2001-01-01

    This report gives the results of a randomised phase-II clinical study into the safety and immunogenicity of a monovalent MenB OMV vaccine expressing P1.7h,4 PorA (MonoMen) in toddlers. Safety and immunogenicity are compared for two types of vaccine that are differently adjuvated (either aluminium ph

  18. Estimation of soil permeability

    Directory of Open Access Journals (Sweden)

    Amr F. Elhakim

    2016-09-01

    Full Text Available Soils are permeable materials because of the existence of interconnected voids that allow the flow of fluids when a difference in energy head exists. A good knowledge of soil permeability is needed for estimating the quantity of seepage under dams and dewatering to facilitate underground construction. Soil permeability, also termed hydraulic conductivity, is measured using several methods that include constant and falling head laboratory tests on intact or reconstituted specimens. Alternatively, permeability may be measured in the field using insitu borehole permeability testing (e.g. [2], and field pumping tests. A less attractive method is to empirically deduce the coefficient of permeability from the results of simple laboratory tests such as the grain size distribution. Otherwise, soil permeability has been assessed from the cone/piezocone penetration tests (e.g. [13,14]. In this paper, the coefficient of permeability was measured using field falling head at different depths. Furthermore, the field coefficient of permeability was measured using pumping tests at the same site. The measured permeability values are compared to the values empirically deduced from the cone penetration test for the same location. Likewise, the coefficients of permeability are empirically obtained using correlations based on the index soil properties of the tested sand for comparison with the measured values.

  19. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells.

    Science.gov (United States)

    Eiffler, Ina; Behnke, Jane; Ziesemer, Sabine; Müller, Christian; Hildebrandt, Jan-Peter

    2016-09-01

    Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.

  20. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane.

    Science.gov (United States)

    Leontiev, Alexandre V; Jemmett, Charlotte A; Beer, Paul D

    2011-01-17

    A heteroditopic [2]rotaxane consisting of a calix[4]diquinone-isophthalamide macrocycle and 3,5-bis-amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane's interlocked cavity together with Na(+) , K(+) , NH(4) (+) and Ba(2+) cation recognition capabilities are elucidated by (1) H NMR and UV-visible spectroscopic titration experiments. Upon binding of Ba(2+) , molecular displacement of the axle's positively charged pyridinium group from the rotaxane's macrocyclic cavity occurs, whereas the monovalent cations Na(+) , K(+) and NH(4) (+) are bound without causing significant co-conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.

  1. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.

  2. Permeability prediction in chalks

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Prasad, Manika

    2011-01-01

    The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and porosity. Cheap and quick (spatial coverage, ease of measurement) information of permeability can be achieved, if sonic velocity is used for permeability....... The relationships between permeability and porosity from core data were first examined using Kozeny’s equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches...... to enhance permeability prediction fromKozeny’s equation. The FZI is based on a concept of a tortuous flow path in a granular bed. The Sg concept considers the pore space that is exposed to fluid flow and models permeability resulting from effective flow parallel to pressure drop. The porosity-permeability...

  3. Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme.

    Science.gov (United States)

    Krasovska, Maryna V; Sefcikova, Jana; Réblová, Kamila; Schneider, Bohdan; Walter, Nils G; Sponer, Jirí

    2006-07-15

    The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.

  4. Permeability of edible coatings.

    Science.gov (United States)

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  5. Permeability of edible coatings

    OpenAIRE

    B Mishra; Khatkar, B. S.; Garg, M. K.; Wilson, L.A.

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m2.day (6% beeswax) to 758.0 g/m2.day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm3cm cm−2s−1Pa−1, with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrop...

  6. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  7. Permeable pavement study (Edison)

    Data.gov (United States)

    U.S. Environmental Protection Agency — While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types...

  8. Dilution thermodynamics of the biologically relevant cation mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kaczyński, Marek, E-mail: marek.kaczynski@pwr.wroc.pl; Borowik, Tomasz, E-mail: office@novel-id.pl; Przybyło, Magda, E-mail: magdalena.przybylo@pwr.wroc.pl; Langner, Marek, E-mail: marek.langner@pwr.wroc.pl

    2014-01-10

    Graphical abstract: - Highlights: • Dilution energetics of Ca{sup 2+} can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca{sup 2+} dilution is drastically reduced in the K{sup +} presence. • Reduction of the enthalpy change upon Ca{sup 2+} dilution is K{sup +} concentration dependent. • The cooperativity of Ca{sup 2+} hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers.

  9. Mixed polyvalent-monovalent metal coating for carbon-graphite fibers

    Science.gov (United States)

    Harper-Tervet, J.; Tervet, F. W.; Humphrey, M. F. (Inventor)

    1982-01-01

    An improved coating of gasification catalyst for carbon-graphite fibers is provided comprising a mixture of a polyvalent metal such as calcium and a monovalent metal such as lithium. The addition of lithium provides a lighter coating and a more flexible coating when applied to a coating of a carboxyl containing resin such as polyacrylic acid since it reduces the crosslink density. Furthermore, the presence of lithium provides a glass-like substance during combustion which holds the fiber together resulting in slow, even combustion with much reduced evolution of conductive fragments. The coated fibers are utilized as fiber reinforcement for composites.

  10. Coupled-cluster calculations of properties of Boron atom as a monovalent system

    CERN Document Server

    Gharibnejad, H

    2015-01-01

    We present relativistic coupled-cluster (CC) calculations of energies, magnetic-dipole hyperfine constants, and electric-dipole transition amplitudes for low-lying states of atomic boron. The trivalent boron atom is computationally treated as a monovalent system. We explore performance of the CC method at various approximations. Our most complete treatment involves singles, doubles and the leading valence triples. The calculations are done using several approximations in the coupled-cluster (CC) method. The results are within 0.2-0.4% of the energy benchmarks. The hyperfine constants are reproduced with 1-2% accuracy.

  11. Biostable glucose permeable polymer

    DEFF Research Database (Denmark)

    2017-01-01

    A new biostable glucose permeable polymer has been developed which is useful, for example, in implantable glucose sensors. This biostable glucose permeable polymer has a number of advantageous characteristics and, for example, does not undergo hydrolytic cleavage and degradation, thereby providing...... a composition that facilitates long term sensor stability in vivo. The versatile characteristics of this polymer allow it to be used in a variety of contexts, for example to form the body of an implantable glucose sensor. The invention includes the polymer composition, sensor systems formed from this polymer...

  12. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Sawamura, Motoki; Wada, Fumito; Harada-Shiba, Mariko; Obika, Satoshi

    2016-01-01

    The targeting of abundant hepatic asialoglycoprotein receptors (ASGPR) with trivalent N-acetylgalactosamine (GalNAc) is a reliable strategy for efficiently delivering antisense oligonucleotides (ASOs) to the liver. We here experimentally demonstrate the high systemic potential of the synthetically-accessible, phosphodiester-linked monovalent GalNAc unit when tethered to the 5'-terminus of well-characterised 2',4'-bridged nucleic acid (also known as locked nucleic acid)-modified apolipoprotein B-targeting ASO via a bio-labile linker. Quantitative analysis of the hepatic disposition of the ASOs revealed that phosphodiester is preferable to phosphorothioate as an interunit linkage in terms of ASGPR binding of the GalNAc moiety, as well as the subcellular behavior of the ASO. The flexibility of this monomeric unit was demonstrated by attaching up to 5 GalNAc units in a serial manner and showing that knockdown activity improves as the number of GalNAc units increases. Our study suggests the structural requirements for efficient hepatocellular targeting using monovalent GalNAc and could contribute to a new molecular design for suitably modifying ASO.

  13. [Safety and tolerability of monovalent measles and combined measles, mumps, rubella, and varicella vaccines].

    Science.gov (United States)

    Mentzer, D; Meyer, H; Keller-Stanislawski, B

    2013-09-01

    Although effective monovalent and combined measles vaccines have been available for several decades in Germany, measles outbreaks continue to occur leading to severe cases of measles and even death. Possible reasons for the low acceptance of the measles vaccination are concerns about adverse events and serious complications following vaccination. In this report, we have summarized and assessed all adverse events reported in Germany from 2001 to 2012 after vaccination with monovalent- and combined measles-containing vaccines. A total of 1,696 suspected adverse reaction reports describing 5,297 adverse events were sent to the Paul Ehrlich Institute (PEI) between 1 January 2001 and 31 December 2012. The calculated mean reporting rate was 5.7 reports per 100,000 vaccine doses released by the PEI. Analysis of the reports indicates that measles-containing vaccines are well tolerated with a constantly low rate of adverse events reported. Compared to the high rate of serious complications following wild-type measles infection, the benefit of measles-containing vaccines clearly outweighs the anticipated risks of adverse events.

  14. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions

    CERN Document Server

    Shi, Ya-Zhou; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we will further develop the model by improving the implicit-salt electrostatic potential and involving a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. As compared with the experimental data, the present model can predict 3D structures of RNA hairpins with bulge/internal loops (<77nt) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy, and the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different length at extensive divalent/monovalent ion conditions. In addition, the model successfully pred...

  15. Cation-cation interaction in neptunyl(V) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N. [Russian Academy of Sciences, Institute of Physical Chemistry (Russian Federation); Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  16. International collaboration to assess the risk of Guillain Barre Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    Dodd, Caitlin N.; Romio, Silvana A.; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M. Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S. K.; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Sanchez, Francisco Gimenez; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-01-01

    Background: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barre syndrome (GBS), which has been an

  17. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments

    NARCIS (Netherlands)

    F. Aladin (Farah); A.W.C. Einerhand (Sandra); J. Bouma (Janneke); S. Bezemer (Sandra); P. Hermans (Pim); D. Wolvers (Danielle); K. Bellamy (Kate); L.G.J. Frenken (Leon); J. Gray (Jim); M. Iturriza-Gómara (Miren)

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (refe

  18. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    Science.gov (United States)

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  19. The interactions between cationic cellulose and Gemini surfactant in aqueous solution.

    Science.gov (United States)

    Zhao, Shaojing; Cheng, Fa; Chen, Yu; Wei, Yuping

    2016-05-05

    Due to the extensive application of cationic cellulose in cosmetic, drug delivery and gene therapy, combining the improvement effect of surfactant-cellulose complexes, to investigate the properties of cellulose in aqueous solution is an important topic from both scientific and technical views. In this study, the phase behavior, solution properties and microstructure of Gemini surfactant sodium 5-nonyl-2-(4-(4-nonyl-2-sulfonatophenoxy)butoxy)phenyl sulfite (9-4-9)/cationic cellulose (JR400, the ammonium groups are directly bonded to the hydroxyethyl substituent with a degree substitution of 0.37) mixture was investigated using turbidity, fluorescence spectrophotometer and shear rheology techniques. As a control, the interaction of corresponding monovalent surfactant, sodium 2-ethoxy-5-nonylbenzenesulfonate (9-2) with JR400 in aqueous solution was also studied. Experimental results showed that 9-4-9/JR400 mixture has lower critical aggregation concentration (CAC) and critical micelle concentration (CMC) (about one order of magnitude) than 9-2/JR400 mixture. A low concentration of Gemini surfactant 9-4-9 appeared to induce an obvious micropolarity and viscosity value variation of the mixture, while these effects required a high concentration of corresponding monovalent one. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements illuminated the formation and collapse procedure of network structure of the 9-4-9/JR400 mixture, which resulted in the increase and decrease of viscosity. These results suggest that the molecular structure of the surfactant has a great effect on its interaction with cationic cellulose. Moreover, the Gemini surfactant/cationic cellulose mixture may be used as a potencial stimuli-responsive drug delivery vector which not only load hydrophilic drugs, but also deliver hydrophobic substances.

  20. Monovalent metal ions play an essential role in catalysis and intersubunit communication in the tryptophan synthase bienzyme complex.

    Science.gov (United States)

    Woehl, E U; Dunn, M F

    1995-07-25

    This investigation shows that the alpha 2 beta 2 tryptophan synthase bienzyme complex from Salmonella typhimurium is subject to monovalent metal ion activation. The effects of the monovalent metal ions Na+ and K+ were investigated using rapid scanning stopped-flow (RSSF), single-wavelength stopped-flow (SWSF), and steady-state techniques. RSSF measurements of individual steps in the reaction of L-serine and indole to give L-trytophan (the beta-reaction) as well as the reaction of 3-indole-D-glycerol 3'-phosphate (IGP) with L-serine (the alpha beta-reaction) demonstrate that monovalent metal ions such as Na+ and K+ change the distribution of intermediates in both the transient and steady states. Therefore the metal ion effect alters relative ground-state energies and the relative positions of ground- and transition-state energies. The RSSF spectra and SWSF time courses show that the turnover of indole is significantly reduced in the absence of either Na+ or K+. The alpha-aminoacrylate Schiff base species, E(A-A), is in a less active state in the absence of monovalent metal ions. Na+ decreases the steady-state rate of IGP cleavage (the alpha-reaction) to about 30% of the value obtained in the absence of metal ions. Steady-state investigations show that in the absence of monovalent metal ions the alpha- and alpha beta-reactions have the same activity. Na+ binding gives a 30-fold stimulation of the alpha-reaction when the beta-site is in the E(A-A) form.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Change Color Effect and Spectral Properties of Gold Nanoparticle-cationic Surfactants System

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-liang; PAN Hong-cheng; YUAN Wei-en

    2004-01-01

    The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at 600-700 nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100 : 1 -100 : 1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm.The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.

  2. Relative permeability through fractures

    Energy Technology Data Exchange (ETDEWEB)

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  3. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  4. Vascular permeability in a human tumour xenograft: molecular charge dependence.

    Science.gov (United States)

    Dellian, M; Yuan, F; Trubetskoy, V S; Torchilin, V P; Jain, R K

    2000-05-01

    Molecular charge is one of the main determinants of transvascular transport. There are, however, no data available on the effect of molecular charge on microvascular permeability of macromolecules in solid tumours. To this end, we measured tumour microvascular permeability to different proteins having similar size but different charge. Measurements were performed in the human colon adenocarcinoma LS174T transplanted in transparent dorsal skinfold chambers in severe combined immunodeficient (SCID) mice. Bovine serum albumin (BSA) and IgG were fluorescently labelled and were either cationized by conjugation with hexamethylenediamine or anionized by succinylation. The molecules were injected i.v. and the fluorescence in tumour tissue was quantified by intravital fluorescence microscopy. The fluorescence intensity and pharmacokinetic data were used to calculate the microvascular permeability. We found that tumour vascular permeability of cationized BSA (pI-range: 8.6-9.1) and IgG (pI: 8.6-9.3) was more than two-fold higher (4.25 and 4.65x10(-7) cm s(-1)) than that of the anionized BSA (pI approximately 2.0) and IgG (pI: 3.0-3.9; 1.11 and 1.93x10(-7) cm s(-1), respectively). Our results indicate that positively charged molecules extravasate faster in solid tumours compared to the similar-sized compounds with neutral or negative charges. However, the plasma clearance of cationic molecules was approximately 2x faster than that of anionic ones, indicating that the modification of proteins enhances drug delivery to normal organs as well. Therefore, caution should be exercised when such a strategy is used to improve drug and gene delivery to solid tumours.

  5. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  6. Low Permeability Polyimide Insulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  7. Metal-Organic Frameworks (MOFs) as Multivalent Materials: Size Control and Surface Functionalization by Monovalent Capping Ligands.

    Science.gov (United States)

    Rijnaarts, Timon; Mejia-Ariza, Raquel; Egberink, Richard J M; van Roosmalen, Wies; Huskens, Jurriaan

    2015-07-13

    Control over particle size and composition are pivotal to tune the properties of metal organic frameworks (MOFs), for example, for biomedical applications. Particle-size control and functionalization of MIL-88A were achieved by using stoichiometric replacement of a small fraction of the divalent fumarate by monovalent capping ligands. A fluorine-capping ligand was used to quantify the surface coverage of capping ligand at the surface of MIL-88A. Size control at the nanoscale was achieved by using a monovalent carboxylic acid-functionalized poly(ethylene glycol) (PEG-COOH) ligand at different concentrations. Finally, a biotin-carboxylic acid capping ligand was used to functionalize MIL-88A to bind fluorescently labeled streptavidin as an example towards bioapplications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    Science.gov (United States)

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  9. How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2006-06-20

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory.

  10. Differences on the conversion of celestite in solutions bearing monovalent ions under hydrothermal conditions

    Science.gov (United States)

    Rendón-Angeles, J. C.; Pech-Canul, M. I.; López-Cuevas, J.; Matamoros-Veloza, Z.; Yanagisawa, K.

    2006-12-01

    The replacement of SO 42- ions by monovalent ions in mineral SrSO 4 crystals was investigated under hydrothermal conditions by using aqueous solutions bearing F - and OH - ions. Experiments were conducted at various temperatures (150-250 °C) for different reaction intervals (1-96 h), with M-/SO 42- molar ratios of 1, 5 and 10, where M-=F - or OH -. The celestite crystals were completely converted into SrF 2 crystals, at 200 °C using a F -/SO 42- molar ratio=5 for 24 h. The morphology of the converted SrF 2 crystals indicated that the heteroionic conversion proceeded by a pseudomorphic replacement process, because the transformed crystals maintained their original shape and dimensions. In contrast, the SrSO 4 crystals were instantaneously converted into the Sr(OH) 2 phase by a bulk dissolution-recrystallization mechanism, resulting in the formation of large transparent acicular Sr(OH) 2 crystals. The differences on the conversion process are mainly associated with the chemical interaction between the mineral crystal and the hydrothermal fluid. In addition, the chemical stability of the converted phase with low solubility is also essential for the heteroionic conversion to proceed by the pseudomorphic replacement process.

  11. Aqueous batteries based on mixed monovalence metal ions: a new battery family.

    Science.gov (United States)

    Chen, Liang; Zhang, Leyuan; Zhou, Xufeng; Liu, Zhaoping

    2014-08-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, new concepts are urgently needed to build batteries with high energy density, low cost, and good safety. Here, we demonstrate two new aqueous batteries based on two monovalence metal ions (Li(+) /K(+) and Na(+) /K(+) ) as charge-transfer ions, Ni1 Zn1 HCF/TiP2 O7 and Ni1 Zn1 HCF/NaTi2 (PO4 )3 . These new batteries are unlike the conventional "rocking-chair" aqueous metal-ion batteries based on the migration of one type of shuttle ion between cathode and anode. They can deliver specific energy of 46 Wh kg(-1) and 53 Wh kg(-1) based on the total mass of active materials; this is superior to current aqueous battery systems based on sodium-ion and/or potassium-ion technologies. These two new batteries together with the previously developed Li(+) /Na(+) mixed-ion battery not only constitute a new battery family for energy storage, but also greatly broaden our horizons for battery research.

  12. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement.

    Directory of Open Access Journals (Sweden)

    Melissa A Edeling

    2014-04-01

    Full Text Available We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1 infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII of DENV-1 envelope (E protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.

  13. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    Energy Technology Data Exchange (ETDEWEB)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Choe, MuHyeon, E-mail: choemh@korea.ac.kr [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2009-04-24

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  14. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Kollipara, Avinash; Wan, Charles; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2013-02-06

    Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines – A systematic review

    Science.gov (United States)

    Stuurman, Anke L.; Marano, Cinzia; Bunge, Eveline M.; De Moerlooze, Laurence; Shouval, Daniel

    2017-01-01

    ABSTRACT The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike. PMID:27786671

  16. Monovalency Unleashes the Full Therapeutic Potential of the DN-30 Anti-Met Antibody*

    Science.gov (United States)

    Pacchiana, Giovanni; Chiriaco, Cristina; Stella, Maria C.; Petronzelli, Fiorella; De Santis, Rita; Galluzzo, Maria; Carminati, Paolo; Comoglio, Paolo M.; Michieli, Paolo; Vigna, Elisa

    2010-01-01

    Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor “shedding”) followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy. PMID:20833723

  17. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody.

    Science.gov (United States)

    Pacchiana, Giovanni; Chiriaco, Cristina; Stella, Maria C; Petronzelli, Fiorella; De Santis, Rita; Galluzzo, Maria; Carminati, Paolo; Comoglio, Paolo M; Michieli, Paolo; Vigna, Elisa

    2010-11-12

    Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor "shedding") followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy.

  18. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  19. Multi-scale simulation studies on interaction between anionic surfactants and cations

    Directory of Open Access Journals (Sweden)

    Siwei Meng

    2014-12-01

    Full Text Available In this paper, a dissipative particle dynamics (DPD simulation method was used to investigate the impact of cations on the rheological properties of dodecyl sulfonate surfactant solutions. In order to obtain reasonable interaction between head groups of the surfactant, the geometric structure and interaction between dodecyl sulfonate and cations are optimized using density function theory (DFT at the B3LYP/6-31G level. The DFT calculated results indicate that α-methylene nearest the head group can be classified as a part of the polar head. After binding, the charge on polar head decreases, thus greatly reduces the repulsion between the head groups. It is found that the presence of counterions is one of induction factors on the formation of wormlike micelles, thus greatly enhances the viscosity of surfactant solution. With the increasing in shear strengthen, the wormlike micelles are gradually oriented in the x direction and then broken up into small spherical micelles. This process is also shown by the decrease of viscosity, which decreases quickly at the low shear rates, then keeps almost a constant at the moderate shear rates and at last decreases again at the shear rates larger than a critical value. Compared with monovalent cations, divalent cations have a stronger effect on the rheological properties of dodecyl sulfonate solutions.

  20. Cell volume-regulated cation channels.

    Science.gov (United States)

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  1. Paralytic poliomyelitis associated with Sabin monovalent and bivalent oral polio vaccines in Hungary.

    Science.gov (United States)

    Estívariz, Concepción F; Molnár, Zsuzsanna; Venczel, Linda; Kapusinszky, Beatrix; Zingeser, James A; Lipskaya, Galina Y; Kew, Olen M; Berencsi, György; Csohán, Agnes

    2011-08-01

    Historical records of patients with vaccine-associated paralytic poliomyelitis (VAPP) in Hungary during 1961-1981 were reviewed to assess the risk of VAPP after oral polio vaccine (OPV) administration. A confirmed VAPP case was defined as a diagnosis of paralytic poliomyelitis and residual paralysis at 60 days in a patient with an epidemiologic link to the vaccine. Archived poliovirus isolates were retested using polymerase chain reaction and sequencing of the viral protein 1 capsid region. This review confirmed 46 of 47 cases previously reported as VAPP. Three cases originally linked to monovalent OPV (mOPV) 3 and one case linked to mOPV1 presented after administration of bivalent OPV 1 + 3 (bOPV). The adjusted VAPP risk per million doses administered was 0.18 for mOPV1 (2 cases/11.13 million doses), 2.96 for mOPV3 (32 cases/10.81 million doses), and 12.82 for bOPV (5 cases/390,000 doses). Absence of protection from immunization with inactivated poliovirus vaccine or exposure to OPV virus from routine immunization and recent injections could explain the higher relative risk of VAPP in Hungarian children. In polio-endemic areas in which mOPV3 and bOPV are needed to achieve eradication, the higher risk of VAPP would be offset by the high risk of paralysis due to wild poliovirus and higher per-dose efficacy of mOPV3 and bOPV compared with trivalent OPV.

  2. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  3. Permeability testing of biomaterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dreesmann, L; Hajosch, R; Nuernberger, J Vaz; Schlosshauer, B [NMI Natural and Medical Sciences Institute at University Tuebingen, Markwiesenstr. 55, D-72770 Reutlingen (Germany); Ahlers, M [GELITA AG, Gammelsbacher Str. 2, D-69412 Eberbach (Germany)], E-mail: schlosshauer@nmi.de

    2008-09-01

    The permeability characteristics of biomaterials are critical parameters for a variety of implants. To analyse the permeability of membranes made from crosslinked ultrathin gelatin membranes and the transmigration of cells across the membranes, we combined three technical approaches: (1) a two-chamber-based permeability assay, (2) cell culturing with cytochemical analysis and (3) biochemical enzyme electrophoresis (zymography). Based on the diffusion of a coloured marker molecule in conjunction with photometric quantification, permeability data for a gelatin membrane were determined in the presence or absence of gelatin degrading fibroblasts. Cytochemical evaluation after cryosectioning of the membranes was used to ascertain whether fibroblasts had infiltrated the membrane inside. Zymography was used to investigate the potential release of proteases from fibroblasts, which are known to degrade collagen derivatives such as gelatin. Our data show that the diffusion equilibrium of a low molecular weight dye across the selected gelatin membrane is approached after about 6-8 h. Fibroblasts increase the permeability due to cavity formation in the membrane inside without penetrating the membrane for an extended time period (>21 days in vitro). Zymography indicates that cavity formation is most likely due to the secretion of matrix metalloproteinases. In summary, the combination of the depicted methods promises to facilitate a more rational development of biomaterials, because it provides a rapid means of determining permeability characteristics and bridges the gap between descriptive methodology and the mechanistic understanding of permeability alterations due to biological degradation.

  4. Concerted action of two cation filters in the aquaporin water channel

    DEFF Research Database (Denmark)

    Wu, Binghua; Steinbronn, Christina; Alsterfjord, Magnus

    2009-01-01

    Aquaporin (AQP) facilitated water transport is common to virtually all cell membranes and is marked by almost perfect specificity and high flux rates. Simultaneously, protons and cations are strictly excluded to maintain ionic transmembrane gradients. Yet, the AQP cation filters have not been...... identified experimentally. We report that three point mutations turned the water-specific AQP1 into a proton/alkali cation channel with reduced water permeability and the permeability sequence: H(+) >>K(+) >Rb(+) >Na(+) >Cs(+) >Li(+). Contrary to theoretical models, we found that electrostatic repulsion...... of alkali-leaking AQPs depolarized membrane potentials and compromised cell survival. Our results hint at the alkali-tight but solute-unselective NPA region as a feature of primordial channels and the proton-tight and solute-selective ar/R constriction variants as later adaptations within the AQP...

  5. Methods to Measure Water Permeability.

    Science.gov (United States)

    Solenov, Evgeniy I; Baturina, Galina S; Katkova, Liubov E; Zarogiannis, Sotirios G

    2017-01-01

    Water permeability is a key feature of the cell plasma membranes and it has seminal importance for a number of cell functions such as cell volume regulation, cell proliferation, cell migration, and angiogenesis to name a few. The transport of water occurs mainly through plasma membrane water channels , the aquaporins, who have very important function in physiological and pathophysiological states. Due to the above the experimental assessment of the water permeability of cells and tissues is necessary. The development of new methodologies of measuring water permeability is a vibrant scientific field that constantly develops during the past three decades along with the advances in imaging mainly. In this chapter we describe and critically assess several methods that have been developed for the measurement of water permeability both in living cells as well as in tissues with a focus in the first category.

  6. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  7. High Guanidinium Permeability Reveals Dehydration-Dependent Ion Selectivity in the Plasmodial Surface Anion Channel

    Directory of Open Access Journals (Sweden)

    Abdullah A. B. Bokhari

    2014-01-01

    Full Text Available Malaria parasites grow within vertebrate erythrocytes and increase host cell permeability to access nutrients from plasma. This increase is mediated by the plasmodial surface anion channel (PSAC, an unusual ion channel linked to the conserved clag gene family. Although PSAC recognizes and transports a broad range of uncharged and charged solutes, it must efficiently exclude the small Na+ ion to maintain infected cell osmotic stability. Here, we examine possible mechanisms for this remarkable solute selectivity. We identify guanidinium as an organic cation with high permeability into human erythrocytes infected with Plasmodium falciparum, but negligible uptake by uninfected cells. Transport characteristics and pharmacology indicate that this uptake is specifically mediated by PSAC. The rank order of organic and inorganic cation permeabilities suggests cation dehydration as the rate-limiting step in transport through the channel. The high guanidinium permeability of infected cells also allows rapid and stringent synchronization of parasite cultures, as required for molecular and cellular studies of this pathogen. These studies provide important insights into how nutrients and ions are transported via PSAC, an established target for antimalarial drug development.

  8. On the selective adsorption of cations in the cell wall of the green alga Valonia utricularis

    Science.gov (United States)

    Kesseler, H.

    1980-06-01

    The selective adsorption of the cations Na+, K+, Mg++ and Ca++ by the cell wall of the Mediterranean alga Valonia utricularis (Siphonocladales, Chlorophyceae) from sea water of 40 %. S was investigated by extraction of cell-wall preparations, eluted before in 1.1 mol methanol (adjusted to pH 8) with 0.1 n formic acid in a Soxhlet apparatus. Na+ and K+ were determined by flame photometry, Mg++ and Ca++ by complexometric titration with EDTA. From calculation of the dry weight:fresh weight ratios and the chloride determinations in the eluates, the Donnan free-space fraction of the total cell-wall volume was calculated to about 35 %, and the analytical results of the cation concentrations in the extracts expressed as μVal cm-3 DFS. This calculation is based on the assumption that the acidic groups of the noncellulosic matrix material, carrying negative charges by dissociation at the reaction of sea water (ph about 8) are responsible for the adsorption of cations by exhibition of a Donnan effect. The results obtained show clearly that besides the divalent cations Mg++ and Ca++, which according to the physico-chemical laws of the Donnan distribution must be relatively accumulated to the second power of the monovalent ones, potassium is also enriched by selective adsorption, and the K+:Na+ ratio increased significantly compared with that in sea water. This seems to indicate that the strength of attraction between the cations and the negative sites is dependent on the radii of the ions and the state of hydration and/or polarisation of the ions and binding sites.

  9. Bentonite Permeability at Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Katherine A. Daniels

    2017-01-01

    Full Text Available Repository designs frequently favour geological disposal of radioactive waste with a backfill material occupying void space around the waste. The backfill material must tolerate the high temperatures produced by decaying radioactive waste to prevent its failure or degradation, leading to increased hydraulic conductivity and reduced sealing performance. The results of four experiments investigating the effect of temperature on the permeability of a bentonite backfill are presented. Bentonite is a clay commonly proposed as the backfill in repository designs because of its high swelling capacity and very low permeability. The experiments were conducted in two sets of purpose-built, temperature controlled apparatus, designed to simulate isotropic pressure and constant volume conditions within the testing range of 4–6 MPa average effective stress. The response of bentonite during thermal loading at temperatures up to 200 °C was investigated, extending the previously considered temperature range. The results provide details of bentonite’s intrinsic permeability, total stress, swelling pressure and porewater pressure during thermal cycles. We find that bentonite’s hydraulic properties are sensitive to thermal loading and the type of imposed boundary condition. However, the permeability change is not large and can mostly be accounted for by water viscosity changes. Thus, under 150 °C, temperature has a minimal impact on bentonite’s hydraulic permeability.

  10. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  11. Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice.

    Science.gov (United States)

    Fuchs, Jeremy; Chu, Haiyan; O'Day, Peter; Pyles, Richard; Bourne, Nigel; Das, Subash C; Milligan, Gregg N; Barrett, Alan D T; Partidos, Charalambos D; Osorio, Jorge E

    2014-11-12

    Dengue (DEN) is the most important mosquito-borne viral disease, with a major impact on global health and economics, caused by four serologically and distinct viruses termed DENV-1 to DENV-4. Currently, there is no licensed vaccine to prevent DEN. We have developed a live attenuated tetravalent DENV vaccine candidate (TDV) (formally known as DENVax) that has shown promise in preclinical and clinical studies and elicits neutralizing antibody responses to all four DENVs. As these responses are lowest to DENV-4 we have used the AG129 mouse model to investigate the immunogenicity of monovalent TDV-4 or tetravalent TDV vaccines, and their efficacy against lethal DENV-4 challenge. Since the common backbone of TDV is based on an attenuated DENV-2 strain (TDV-2) we also tested the efficacy of TDV-2 against DENV-4 challenge. Single doses of the tetravalent or monovalent vaccines elicited neutralizing antibodies, anti-NS1 antibodies, and cellular responses to both envelope and nonstructural proteins. All vaccinated animals were protected against challenge at 60 days post-immunization, whereas all control animals died. Investigation of DENV-4 viremias post-challenge showed that only the control animals had high viremias on day 3 post-challenge, whereas vaccinated mice had no detectable viremia. Overall, these data highlight the excellent immunogenicity and efficacy profile of our candidate dengue vaccine in AG129 mice.

  12. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  13. Cooperative binding of primycin and gramicidin on erythrocyte membranes. A cation transport study.

    Science.gov (United States)

    Suga'r, I P; Blaskó, K; Györgyi, S; Shcagina, L V; Malev, V V; Lev, A A

    1989-01-01

    In this paper the authors present a comparative study of the actions of the antibiotics primycin and gramicidin on the erythrocyte membrane permeability. It has been found that both antibiotics have a nonlinear effect on the membrane permeability. Above a threshold antibiotic concentration, which is characteristic of the type of the antibiotic, the cation permeability of the erythrocyte membranes increases sharply. In the range of nonlinearity the transport-kinetic curves level off before achieving the equilibrium radioactive ion distribution between the extra- and intracellular spaces. A stochastic model of the cooperative and aspecific incorporation of antibiotic molecules into the membrane explains the experimental findings. The authors conclude that membrane permeability increases at the places where two or more antibiotic molecules form aggregates in the membrane.

  14. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  15. Cationic Nitrogen Doped Helical Nanographenes.

    Science.gov (United States)

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  17. Capillary permeability in adipose tissue

    DEFF Research Database (Denmark)

    Paaske, W P; Nielsen, S L

    1976-01-01

    of about 7 ml/100 g-min. This corresponds to a capillary diffusion capacity of 2.0 ml/100 g-min which is half the value reported for vasodilated skeletal muscle having approximately twice as great capillary surface area. Thus, adipose tissue has about the same capillary permeability during slight metabolic...

  18. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, R.S.; Sullivan, E.J. [New Mexico Institute of Mining and Technology, Socorro, NM (United States)

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  19. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Berbers GAM; Labadie J; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW van; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report describes the results with respect to immunogenicity as well as reactogenicity of a monovalent P1.7h,4 OMV vaccine (MonoMen) used as booster vaccination in children previously vaccinated with a hexavalent MenB vaccine. The participants in this study were immunised in 1995-1996 with hexav

  20. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  1. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; van Limpt CJP; Berbers GAM; Labadie J; de Kleijn ED; de Groot R; Rumke HC; van Alphen AJW; LVO

    2000-01-01

    Dit rapport beschrijft een follow-up studie naar veiligheid en immunogeniciteit van monovalent P1.7h,4 OMV vaccin (MonoMen) gebruikt als boostervaccinatie in kinderen eerder gevaccineerd met hexavalent MenB vaccin. De deelnemers aan deze studie zijn in het kader van een eerdere studie gevaccineerd

  2. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  3. Monovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico.

    Science.gov (United States)

    Yen, Catherine; Figueroa, Jesùs Reyna; Uribe, Edgar Sánchez; Carmen-Hernández, Luz Del; Tate, Jacqueline E; Parashar, Umesh D; Patel, Manish M; Richardson López-Collado, Vesta

    2011-09-01

    After the introduction of monovalent rotavirus vaccine (RV1) in Mexico in 2006-2007, diarrhea mortality and morbidity declined substantially among Mexican children under 5 years of age. In January 2010, surveillance identified the emergence of a novel G9P[4] rotavirus strain nationwide. We conducted a case-control study to assess the field effectiveness of RV1 against severe rotavirus gastroenteritis caused by this unusual strain and to determine whether the G9P[4] emergence was related to vaccine failure or failure to vaccinate. RV1 was 94% effective (95% confidence interval, 16%-100%) against G9P[4] rotavirus-related hospitalization, indicating that its emergence was likely unrelated to vaccine pressure.

  4. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    Science.gov (United States)

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  5. Quantifying Evaporation in a Permeable Pavement System

    Science.gov (United States)

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  6. Hydration, Ionic Valence and Cross-Linking Propensities of Cations Determine the Stability of Lipopolysaccharide (LPS) Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Agrinaldo; Pontes, Frederico J.; Lins, Roberto D.; Soares, Thereza A.

    2013-10-29

    The supra-molecular structure of LPS aggregates governs outer membrane permeability and activation of the host immune response during Gram-negative bacterial infections. Molecular dynamics simulations unveil at atomic resolution 10 the subtle balance between cation hydration and cross-link ability in modulating phase transitions of LPS membranes.

  7. Permeability of Non-Crimp Fabric Preforms

    NARCIS (Netherlands)

    Loendersloot, Richard; Lomov, Stepan V.

    2011-01-01

    Experimental permeability data of non-crimp fabrics (NCFs) is discussed in this chapter. The chapter starts with a general introduction on permeability, followed by a discussion on experimental permeability data. The infl uence of geometrical features of the textile architecture, in particular the s

  8. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...

  9. Nutrient infiltrate concentrations from three permeable pavement types.

    Science.gov (United States)

    Brown, Robert A; Borst, Michael

    2015-12-01

    While permeable pavement is increasingly being used to control stormwater runoff, field-based, side-by-side investigations on the effects different pavement types have on nutrient concentrations present in stormwater runoff are limited. In 2009, the U.S. EPA constructed a 0.4-ha parking lot in Edison, New Jersey, that incorporated permeable interlocking concrete pavement (PICP), pervious concrete (PC), and porous asphalt (PA). Each permeable pavement type has four, 54.9-m(2), lined sections that direct all infiltrate into 5.7-m(3) tanks enabling complete volume collection and sampling. This paper highlights the results from a 12-month period when samples were collected from 13 rainfall/runoff events and analyzed for nitrogen species, orthophosphate, and organic carbon. Differences in infiltrate concentrations among the three permeable pavement types were assessed and compared with concentrations in rainwater samples and impervious asphalt runoff samples, which were collected as controls. Contrary to expectations based on the literature, the PA infiltrate had significantly larger total nitrogen (TN) concentrations than runoff and infiltrate from the other two permeable pavement types, indicating that nitrogen leached from materials in the PA strata. There was no significant difference in TN concentration between runoff and infiltrate from either PICP or PC, but TN in runoff was significantly larger than in the rainwater, suggesting meaningful inter-event dry deposition. Similar to other permeable pavement studies, nitrate was the dominant nitrogen species in the infiltrate. The PA infiltrate had significantly larger nitrite and ammonia concentrations than PICP and PC, and this was presumably linked to unexpectedly high pH in the PA infiltrate that greatly exceeded the optimal pH range for nitrifying bacteria. Contrary to the nitrogen results, the PA infiltrate had significantly smaller orthophosphate concentrations than in rainwater, runoff, and infiltrate from PICP

  10. Structure of a cation-bound multidrug and toxic compound extrusion transporter

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Szewczyk, Paul; Karyakin, Andrey; Evin, Mariah; Hong, Wen-Xu; Zhang, Qinghai; Chang, Geoffrey (Scripps)

    2010-10-26

    Transporter proteins from the MATE (multidrug and toxic compound extrusion) family are vital in metabolite transport in plants, directly affecting crop yields worldwide. MATE transporters also mediate multiple-drug resistance (MDR) in bacteria and mammals, modulating the efficacy of many pharmaceutical drugs used in the treatment of a variety of diseases. MATE transporters couple substrate transport to electrochemical gradients and are the only remaining class of MDR transporters whose structure has not been determined. Here we report the X-ray structure of the MATE transporter NorM from Vibrio cholerae determined to 3.65 {angstrom}, revealing an outward-facing conformation with two portals open to the outer leaflet of the membrane and a unique topology of the predicted 12 transmembrane helices distinct from any other known MDR transporter. We also report a cation-binding site in close proximity to residues previously deemed critical for transport. This conformation probably represents a stage of the transport cycle with high affinity for monovalent cations and low affinity for substrates.

  11. Cation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays

    Science.gov (United States)

    Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H.; Yusoff, Mohd Kamil

    2012-01-01

    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+ and Al3+ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl2 and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements. PMID:22997497

  12. Cation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays

    Directory of Open Access Journals (Sweden)

    Zufarzaana Zulkeflee

    2012-01-01

    Full Text Available A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+ and Al3+ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P<0.05, respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v CaCl2 and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.

  13. Permeability equipment for porous friction surfaces

    Science.gov (United States)

    Standiford, D. L.; Graul, R. A.; Lenke, L. R.

    1985-04-01

    Hydroplaning is the loss of traction between tires and pavement due to the presence of a layer of water. This loss of traction can result in loss of vehicle control. A porous friction surface (PFS) applied over an existing pavement permits the water to drain laterally and vertically away from the tire path, effectively lowering hydroplaning potential. Equipment used to measure pavement drainage (permeability) is discussed with respect to usage on porous friction surface. Background information on hydroplaning, flow theory, and PFS field performance as they are affected by permeability are also presented. Two dynamic test devices and four static devices are considered for measuring PFS permeability. Permeability tests are recommended to measure PFS permeability for maintenance purposes and construction control. Dynamic devices cited could possibly estimate hydroplaning potential; further research must be done to determine this. Permeability devices cannot be used to accurately estimate friction of a pavement surface, however, decreased permeability of a pavement infers a decrease in friction.

  14. On the permeability of fractal tube bundles

    CERN Document Server

    Zinovik, I

    2011-01-01

    The permeability of a porous medium is strongly affected by its local geometry and connectivity, the size distribution of the solid inclusions and the pores available for flow. Since direct measurements of the permeability are time consuming and require experiments that are not always possible, the reliable theoretical assessment of the permeability based on the medium structural characteristics alone is of importance. When the porosity approaches unity, the permeability-porosity relationships represented by the Kozeny-Carman equations and Archie's law predict that permeability tends to infinity and thus they yield unrealistic results if specific area of the porous media does not tend to zero. The goal of this paper is an evaluation of the relationships between porosity and permeability for a set of fractal models with porosity approaching unity and a finite permeability. It is shown that the two-dimensional foams generated by finite iterations of the corresponding geometric fractals can be used to model poro...

  15. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  16. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  17. Structural determinants of glomerular permeability.

    Science.gov (United States)

    Deen, W M; Lazzara, M J; Myers, B D

    2001-10-01

    Recent progress in relating the functional properties of the glomerular capillary wall to its unique structure is reviewed. The fenestrated endothelium, glomerular basement membrane (GBM), and epithelial filtration slits form a series arrangement in which the flow diverges as it enters the GBM from the fenestrae and converges again at the filtration slits. A hydrodynamic model that combines morphometric findings with water flow data in isolated GBM has predicted overall hydraulic permeabilities that are consistent with measurements in vivo. The resistance of the GBM to water flow, which accounts for roughly half that of the capillary wall, is strongly dependent on the extent to which the GBM surfaces are blocked by cells. The spatial frequency of filtration slits is predicted to be a very important determinant of the overall hydraulic permeability, in keeping with observations in several glomerular diseases in humans. Whereas the hydraulic resistances of the cell layers and GBM are additive, the overall sieving coefficient for a macromolecule (its concentration in Bowman's space divided by that in plasma) is the product of the sieving coefficients for the individual layers. Models for macromolecule filtration reveal that the individual sieving coefficients are influenced by one another and by the filtrate velocity, requiring great care in extrapolating in vitro observations to the living animal. The size selectivity of the glomerular capillary has been shown to be determined largely by the cellular layers, rather than the GBM. Controversial findings concerning glomerular charge selectivity are reviewed, and it is concluded that there is good evidence for a role of charge in restricting the transmural movement of albumin. Also discussed is an effect of albumin that has received little attention, namely, its tendency to increase the sieving coefficients of test macromolecules via steric interactions. Among the unresolved issues are the specific contributions of the

  18. The Membrane Permeability Outcome study.

    Science.gov (United States)

    Locatelli, Francesco; Cavalli, Andrea; Manzoni, Celestina; Pontoriero, Giuseppe

    2011-01-01

    Many observational studies have consistently shown that high-flux hemodialysis has positive effects on the survival and morbidity of uremic patients when compared with low-flux hemodialysis. However, the HEMO study, a randomized trial designed to evaluate the effect of membrane permeability on patient survival, showed only an 8% non-statistically significant reduction of mortality, albeit a secondary analysis suggested an advantage for high-flux membranes in certain patient subgroups. The prospective, randomized Membrane Permeability Outcome (MPO) study investigated the impact of membrane permeability on survival in incident hemodialysis patients who had low albumin (≤4 g/dl) and normal albumin ( >4 g/dl) as separate randomization groups. Patients with serum albumin ≤4 g/dl had significantly better survival rates in the high-flux group compared with the low-flux group (p = 0.032). Moreover, a post-hoc secondary analysis showed that high-flux membranes may significantly improve survival in diabetic patients. No difference was found in patients with normal albumin levels. Considering the increasing number of dialysis patients with low serum albumin levels and with diabetes, the relevance of the MPO study led to the publication of a position statement by the European Renal Best Practice Advisory Board. This board strongly recommended that high-flux hemodialysis should be used for high-risk patients and, with a lower degree of evidence, even also for low-risk subjects due to the substantial reduction in β(2)-microglobulin levels observed in the high-flux group. Copyright © 2011 S. Karger AG, Basel.

  19. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  20. Cation size effects in mixed-ion metaphosphate glasses: structural characterization by multinuclear solid state NMR spectroscopy.

    Science.gov (United States)

    Schneider, J; Tsuchida, J; Eckert, H

    2013-09-14

    Metaphosphate glasses with two monovalent species A(1-x)B(x)PO3 (0 ≤x≤ 1) show mixed-ion effects (MIE) in the dc conductivities and glass transition temperatures, which are strongly dependent on the cation size mismatch between the two mobile species. In the present contribution, mixed-ion metaphosphate glasses based on the cation combinations Cs-Li, Rb-Li, and Cs-Ag, exhibiting particularly large size mismatches, are analyzed by (31)P, (87)Rb, (109)Ag and (133)Cs NMR to determine possible correlations between this mismatch and some of the structural properties critical to the development of the MIE: the local environments around the mobile species and their spatial distribution relative to each other. The results are compared with those obtained in the Na-Ag metaphosphate series, which serves as a reference system, with minimized cation mismatch MIE. The local coordination environments of the Ag(+), Rb(+) and Cs(+) ions follow analogous compositional trends as previously observed in Na-based mixed-ion metaphosphate glasses: for a given cation species A, the average A-O distance shows an expansion/compression when this cation is replaced by a second species B with smaller/bigger ionic radius, respectively. This compositional differentiation of the structural sites for the mobile species may contribute to the MIE. Concerning the relative spatial distribution of the mobile ions, results from (7)Li-(133)Cs (SEDOR) experiments indicate a random mixture of Cs and Li in Cs-Li metaphosphate glasses. While this result is in agreement with one of the fundamental hypotheses of the models proposed to describe the MIE, it is at variance with the observation of various partial cation segregation phenomena observed in Na-based mixed alkali glasses. This result suggests that cation size mismatch is not the decisive parameter in determining segregation or non-statistical mixing of cations in the glass. In the Cs-Ag and Na-Ag glasses, (109)Ag spin-echo NMR reveals a progressive

  1. Permeability of normal versus carious dentin.

    Science.gov (United States)

    Pashley, E L; Talman, R; Horner, J A; Pashley, D H

    1991-10-01

    Although a number of reports have been published demonstrating that carious dentin is less permeable than normal dentin, these reports have been qualitative rather than quantitative. The purpose of this in vitro study was to apply a quantitative technique to the study of the permeability of carious human teeth before and after excavation, before and after removal of the smear layer and before and after preparation of a control cavity of similar size and depth in normal dentin subjected to the same measurements, for comparative purposes. Dentin permeability was measured as a hydraulic conductance. The permeability values measured at each step in the protocol were expressed as a percent of the maximum permeability of both cavities, permitting each tooth the serve as its own control. Carious lesions exhibited a slight degree of permeability (2.3 +/- 0.6% of controls) which remained unchanged after excavation of the lesions. Removal of the smear layer in the excavated carious lesions increased the permeability significantly to 6.9 +/- 3.2%. Preparation of a control cavity of the same area and depth increased the permeability slightly. Removal of its smear layer increased the permeability of the dentin 91%. These results confirm previous qualitative studies that carious dentin, even after excavation and removal of the smear layer has a very low permeability.

  2. Diffusion of an organic cation into root cell walls.

    Science.gov (United States)

    Meychik, N R; Yermakov, I P; Prokoptseva, O S

    2003-07-01

    Uptake of a cationic dye (methylene blue) by isolated root cell walls, roots of whole transpiring seedlings, and excised roots was investigated using 7-day-old seedlings of cucumber, maize, and wheat. The number of ionogenic groups per 1 g dry and wet weight of the root cell walls, their swelling capacity (K(cw)), time-dependence of methylene blue (M(cw)) ion exchange capacity, and diffusion coefficients of the cation diffusion in the polymer matrix of the cell walls (D(cw)) were determined. The M(cw) value depended on pH (or carboxyl group dissociation); it changed in accordance with the number of carboxyl groups per 1 g cell wall dry weight. This parameter decreased in the order: cucumber > wheat > maize. For description of experimental kinetic curves and calculation of cation diffusion coefficients, the equation for ion diffusion into a cylinder of infinite length was used. The chosen model adequately described cation diffusion in cell walls and roots. Diffusion coefficient values for cucumber, wheat, and maize were 3.1*10(-8), 1.3*10(-8), and 8.4*10(-8) cm(2)/sec, respectively. There was a statistically significant linear dependence between K(cw) and D(cw) values, which characterize the same property of the polymer matrix, rigidity of its polymer structure or the degree of cross-linkage or permeability. This also confirms the right choice of the model selected for calculation of methylene blue diffusion coefficients, because K(cw) and D(cw) values were obtained in independent experiments. The coefficients determined for methylene blue diffusion in transpiring seedling roots (D(ts)) and excised roots (D(er)) depended on the plant species. The rate of methylene blue diffusion into the excised roots was either 1.5-fold lower (cucumber) or 3-4-times lower (maize, wheat) than in cell walls. The values of diffusion coefficients in roots of whole seedlings were comparable which those for the cell walls. On the basis of the experimental data and results of calculations

  3. Cation permeability of liposomes as a function of the chemical composition of the lipid bilayers

    NARCIS (Netherlands)

    Scarpa, A.; Gier, J. de

    1971-01-01

    1. 1.|Comparable liposome preparations were obtained from lipids differing in degree of unsaturation and cholesterol content. 2. 2.|An exchange between alkali ions and protons through the bilayers was induced by replacing the alkali ions on the one side of the outer lipid membrane by impermeable

  4. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  5. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  6. Vortex rings impinging on permeable boundaries

    Science.gov (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  7. Clogging in permeable concrete: A review.

    Science.gov (United States)

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model......, the predicted permeability of hydrating cement pastes is extremely sensitive to the particle size distribution of the cement and especially to the minimum size of the cement particles. Both in simulations and experiments, the permeability of cement pastes is mainly determined by the critical diameter...

  9. The protective efficacy of cloned Moraxella bovis pili in monovalent and multivalent vaccine formulations against experimentally induced infectious bovine keratoconjunctivitis (IBK).

    Science.gov (United States)

    Lepper, A W; Atwell, J L; Lehrbach, P R; Schwartzkoff, C L; Egerton, J R; Tennent, J M

    1995-07-01

    Calves were vaccinated with cloned Moraxella bovis pili of serogroup C (experiment 1) or B (experiment 2) either as a monovalent formulation or as part of a multivalent preparation with pili of six other serogroups. Within 4 weeks of the second vaccine dose vaccinated calves and non-vaccinated controls were challenged via the ocular route with either virulent M. bovis strain Dal2d (serogroup C) or M. bovis strain 3WO7 (serogroup B) in experiments 1 and 2, respectively. Calves vaccinated with multivalent vaccines had significantly lower antibody titres than those vaccinated with monovalent preparations. Nevertheless, the levels of protection against infectious bovine keratoconjunctivitis (IBK) achieved with multivalent vaccines were 72% and 83% for the groups challenged with M. bovis strains of serogroups B and C, respectively. The serogroup C monovalent vaccine gave 100% protection against experimentally induced IBK and M. bovis isolates cultured from the eyes 6 days post-challenge were identified as belonging solely to serogroup C. Unexpectedly, only 25% protection was achieved against homologous strain challenge of calves that received the monovalent serogroup B vaccine. Furthermore, the majority of M. bovis isolates recovered from calves in this group belonged to serogroup C, as did half of those isolates cultured from the multivalent vaccinates. The remaining bacterial isolates from the latter group, together with all isolates from the non-vaccinated controls, belonged to serogroup B. Results are consistent with the hypothesis that derivatives of the serogroup B challenge inoculum had expressed serogroup C pilus antigen within 6 days of the challenge, possibly as a result of pilus gene inversion occurring in response to the presence of specific antibody in eye tissues and tears.

  10. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin.

    Science.gov (United States)

    Sun, Wenchao; Fletcher, David; van Heeckeren, Rolf Christiaan; Davis, Pamela B

    2012-09-01

    DNA nanoparticles (DNA NPs), which self-assemble from DNA plasmids and poly-L-lysine (pLL)-polyethylene glycol (PEG) block copolymers, transfect several cell types in vitro and in vivo with minimal toxicity and immune response. To further enhance the gene transfer efficiency of DNA NP and control its tropism, we established a strategy to efficiently attach peptide ligands to DNA NPs. The non-covalent biotin-streptavidin (SA) interaction was used for ligand conjugation to overcome problems associated with covalent conjugation methods. A fusion protein of SA with the HIV-1 TAT peptide was cloned, expressed, purified and attached to biotinylated DNA NPs. A modified SA system with tetrameric structure but monovalent biotin binding capacity was adopted and shown to reduce the aggregation of biotinylated DNA NPs compared to neutravidin. Compared to unmodified DNA NPs, TAT modified DNA NPs significantly enhanced in vitro gene transfer, particularly at low DNA concentrations. Studies of cellular uptake and cellular distribution of the DNA NPs indicated that attaching TAT enhanced binding of DNA NPs to cell surface but not internalization at high DNA concentrations. In vivo studies showed that TAT modified DNA NPs mediated equal level of gene transfer to the mouse airways via the luminal route compared to unmodified DNA NPs.

  11. Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

    Directory of Open Access Journals (Sweden)

    Aljaž Velikonja

    2013-01-01

    Full Text Available The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD simulation.

  12. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    Science.gov (United States)

    Fitzgerald, M M; Trester, M L; Jensen, G M; McRee, D E; Goodin, D B

    1995-09-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent cations should modulate the affinity of the W191G cavity for ligand binding are addressed in this study. Competitive binding titrations of the imidazolium ion to W191G as a function of [K+] show that potassium competes weakly with the binding of imidazoles. The dissociation constant observed for potassium binding (18 mM) is more than 3,000-fold higher than that for 1,2-dimethylimidazole (5.5 microM) in the absence of competing cations. Significantly, the W191G-D235N double mutant shows no evidence for binding imidazoles in their cationic or neutral forms, even though the structure of the cavity remains largely unperturbed by replacement of the carboxylate. Refined crystallographic B-values of solvent positions indicate that the weakly bound potassium in W191G is significantly depopulated in the double mutant. These results demonstrate that the buried negative charge of Asp-235 is an essential feature of the cation binding determinant and indicate that this carboxylate plays a critical role in stabilizing the formation of the Trp-191 radical cation.

  13. Organic non-aqueous cation-based redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Andrew N.; Vaughey, John T.; Chen, Zonghai; Zhang, Lu; Brushett, Fikile R.

    2016-03-29

    The present invention provides a non-aqueous redox flow battery comprising a negative electrode immersed in a non-aqueous liquid negative electrolyte, a positive electrode immersed in a non-aqueous liquid positive electrolyte, and a cation-permeable separator (e.g., a porous membrane, film, sheet, or panel) between the negative electrolyte from the positive electrolyte. During charging and discharging, the electrolytes are circulated over their respective electrodes. The electrolytes each comprise an electrolyte salt (e.g., a lithium or sodium salt), a transition-metal free redox reactant, and optionally an electrochemically stable organic solvent. Each redox reactant is selected from an organic compound comprising a conjugated unsaturated moiety, a boron cluster compound, and a combination thereof. The organic redox reactant of the positive electrolyte is selected to have a higher redox potential than the redox reactant of the negative electrolyte.

  14. In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand

    Directory of Open Access Journals (Sweden)

    Muhamad Rusdi Ahmad Rusmili

    2014-03-01

    Full Text Available Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  15. In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand.

    Science.gov (United States)

    Rusmili, Muhamad Rusdi Ahmad; Yee, Tee Ting; Mustafa, Mohd Rais; Othman, Iekhsan; Hodgson, Wayne C

    2014-03-12

    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  16. Permeability of Electrospun Superhydrophobic Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Sarfaraz U. Patel

    2012-01-01

    Full Text Available This paper discusses the fabrication and characterization of electrospun nanofiber mats made up of poly(4-methyl-1-pentene polymer. The polymer was electrospun in different weight concentrations. The mats were characterized by their basis weight, fiber diameter distribution, contact angles, contact angle hysteresis, and air permeability. All of the electrospun nonwoven fiber mats had water contact angles greater than 150 degrees making them superhydrophobic. The permeabilities of the mats were empirically fitted to the mat basis weight by a linear relation. The experimentally measured air permeabilities were significantly larger than the permeabilities predicted by the Kuwabara model for fibrous media.

  17. Vascular permeability in cerebral cavernous malformations.

    Science.gov (United States)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao; Girard, Romuald; Shenkar, Robert; Guo, Xiaodong; Shah, Akash; Larsson, Henrik B W; Tan, Huan; Li, Luying; Wishnoff, Matthew S; Shi, Changbin; Christoforidis, Gregory A; Awad, Issam A

    2015-10-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability correlates with CCM disease activity. Permeability in white matter far (WMF) from lesions was significantly greater in familial than in sporadic cases, but was similar in CCM lesions. Permeability in WMF increased with age in sporadic patients, but not in familial cases. Patients with more aggressive familial CCM disease had greater WMF permeability compared to those with milder disease phenotype, but similar lesion permeability. Subjects receiving statin medications for routine cardiovascular indications had a trend of lower WMF, but not lesion, permeability. This is the first demonstration of brain vascular hyperpermeability in humans with an autosomal dominant disease, as predicted mechanistically. Brain permeability, more than lesion permeability, may serve as a biomarker of CCM disease activity, and help calibrate potential drug therapy.

  18. Intercomparison on measurement of water vapour permeability

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard

    Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001).......Three different materials are tested - hard woodfibre board - damp proof course - underlay for roofing The water vapour permeability has been measured according to EN ISO 12572 (2001)....

  19. Crustal permeability: Introduction to the special issue

    Science.gov (United States)

    Ingebritsen, Steven E.; Gleeson, Tom

    2015-01-01

    The topic of crustal permeability is of broad interest in light of the controlling effect of permeability on diverse geologic processes and also timely in light of the practical challenges associated with emerging technologies such as hydraulic fracturing for oil and gas production (‘fracking’), enhanced geothermal systems, and geologic carbon sequestration. This special issue of Geofluids is also motivated by the historical dichotomy between the hydrogeologic concept of permeability as a static material property that exerts control on fluid flow and the perspective of economic geologists, geophysicists, and crustal petrologists who have long recognized permeability as a dynamic parameter that changes in response to tectonism, fluid production, and geochemical reactions. Issues associated with fracking, enhanced geothermal systems, and geologic carbon sequestration have already begun to promote a constructive dialog between the static and dynamic views of permeability, and here we have made a conscious effort to include both viewpoints. This special issue also focuses on the quantification of permeability, encompassing both direct measurement of permeability in the uppermost crust and inferential permeability estimates, mainly for the deeper crust.

  20. Accurate determination of characteristic relative permeability curves

    Science.gov (United States)

    Krause, Michael H.; Benson, Sally M.

    2015-09-01

    A recently developed technique to accurately characterize sub-core scale heterogeneity is applied to investigate the factors responsible for flowrate-dependent effective relative permeability curves measured on core samples in the laboratory. The dependency of laboratory measured relative permeability on flowrate has long been both supported and challenged by a number of investigators. Studies have shown that this apparent flowrate dependency is a result of both sub-core scale heterogeneity and outlet boundary effects. However this has only been demonstrated numerically for highly simplified models of porous media. In this paper, flowrate dependency of effective relative permeability is demonstrated using two rock cores, a Berea Sandstone and a heterogeneous sandstone from the Otway Basin Pilot Project in Australia. Numerical simulations of steady-state coreflooding experiments are conducted at a number of injection rates using a single set of input characteristic relative permeability curves. Effective relative permeability is then calculated from the simulation data using standard interpretation methods for calculating relative permeability from steady-state tests. Results show that simplified approaches may be used to determine flowrate-independent characteristic relative permeability provided flow rate is sufficiently high, and the core heterogeneity is relatively low. It is also shown that characteristic relative permeability can be determined at any typical flowrate, and even for geologically complex models, when using accurate three-dimensional models.

  1. Cationic Nanocylinders Promote Angiogenic Activities of Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Jung Bok Lee

    2016-01-01

    Full Text Available Polymers have been used extensively taking forms as scaffolds, patterned surface and nanoparticle for regenerative medicine applications. Angiogenesis is an essential process for successful tissue regeneration, and endothelial cell–cell interaction plays a pivotal role in regulating their tight junction formation, a hallmark of angiogenesis. Though continuous progress has been made, strategies to promote angiogenesis still rely on small molecule delivery or nuanced scaffold fabrication. As such, the recent paradigm shift from top-down to bottom-up approaches in tissue engineering necessitates development of polymer-based modular engineering tools to control angiogenesis. Here, we developed cationic nanocylinders (NCs as inducers of cell–cell interaction and investigated their effect on angiogenic activities of human umbilical vein endothelial cells (HUVECs in vitro. Electrospun poly (l-lactic acid (PLLA fibers were aminolyzed to generate positively charged NCs. The aninolyzation time was changed to produce two different aspect ratios of NCs. When HUVECs were treated with NCs, the electrostatic interaction of cationic NCs with negatively charged plasma membranes promoted migration, permeability and tubulogenesis of HUVECs compared to no treatment. This effect was more profound when the higher aspect ratio NC was used. The results indicate these NCs can be used as a new tool for the bottom-up approach to promote angiogenesis.

  2. Effect of alkali-treated lipopolysaccharide on the intracellular cations of human erythrocytes.

    Science.gov (United States)

    Warren, J R; Kowalski, M M; Wallas, C H

    1977-08-01

    The adsorption to human erythrocytes of Escherichia coli lipopolysaccharide treated by mild alkaline hydrolysis (h-LPS) stimulated an increase in the intracellular Na+ concentration and a decrease in the intracellular K+ concentration of the erythrocytes. Erythrocytes treated by h-LPS remained responsive to the membrane adenosine triphosphatase inhibitors ouabain and ethacrynic acid, indicating that hLPS did not alter erythrocyte cations be depleting energy intermediates or uncoupling energy metabolism from active cation transport. The h-LPS-treated erythrocytes became non-agglutinable by the lectin concanavalin A prior to the development of changes in intracellular cations. In addition, h-LPS-treated erythrocytes demonstrated a three-fold greater cation response to ethacrynic acid than the untreated erythrocytes; this greater response was probably due to local membrane effects by h-LPS on the ethacrynic acid-sensitive adenosine triphosphatase. It is suggested that the h-LPS-induced alteration of erythrocyte cation content was secondary to an increase in ion permeability localized to the concanavalin A receptor regions of the erythrocyte membrane, possibly combined with indirect effects of membrane-bound h-LPS on ethacrynic acid-sensitive adenosine triphosphatase.

  3. Decrease in ciprofloxacin absorption by polyvalent metal cations is not fully attributable to chelation or adsorption.

    Science.gov (United States)

    Imaoka, Ayuko; Hattori, Michiko; Akiyoshi, Takeshi; Ohtani, Hisakazu

    2014-01-01

    The drug interaction between new quinolone antibiotics (NQs) and polyvalent metal cation products, leading to a significant decrease in the absorption of NQ, is considered to be attributable to the formation of poorly absorbable chelate and physicochemical adsorption of NQs to cation products. To clarify the mechanisms of this drug interaction in detail, we investigated the effects of Al(3+) or Mg(2+) on the membrane permeation profile of ciprofloxacin (CPFX) across human colon carcinoma cell lines (Caco-2) in monolayer culture, and characterized the adsorption nature of CPFX to polyvalent metal cation products under physiological conditions. As a result, Al(3+) or Mg(2+) partially but not fully impaired the permeation of CPFX across Caco-2 monolayer up to 30% or 60% of control, respectively. Physicochemical adsorption of CPFX to cation products was not observed under physiological pH. In conclusion, two possible mechanisms investigated, the decrease in the permeability of CPFX by chelate formation and adsorption of CPFX to polyvalent metal cation products, may partially but not fully explain the extent of the drug interaction clinically observed.

  4. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.

    Directory of Open Access Journals (Sweden)

    Jong Bae Seo

    Full Text Available Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2 of the plasma membrane by phospholipase C (PLC generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1. Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.

  5. Permeability Tests on Eastern Scheldt Sand

    DEFF Research Database (Denmark)

    Jakobsen, Kim Parsberg

    The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends on the charact......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...... on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Eastern Scheldt Sand. The permeability is determined by use of a falling head apparatus. Finally the test results are briefly summarised and a relationship between...... void ratio and permeability is established....

  6. Macro fluid analysis of laminated fabric permeability

    Directory of Open Access Journals (Sweden)

    Qiu Li

    2016-01-01

    Full Text Available A porous jump model is put forward to predict the breathability of laminated fabrics by utilizing fluent software. To simplify the parameter setting process, the methods of determining the parameters of jump porous model by means of fabric layers are studied. Also, effects of single/multi-layer fabrics and thickness on breathability are analyzed, indicating that fabric breathability reduces with the increase of layers. Multi-layer fabric is simplified into a single layer, and the fabric permeability is calculated by proportion. Moreover, the change curve of fabric layer and face permeability, as well as the equation between the fabric layer and the face permeability are obtained. Then, face permeability and pressure-jump coefficient parameters setting of porous jump model could be integrated into single parameter (i. e. fabric layers, which simplifies the fluent operation process and realizes the prediction of laminated fabric permeability.

  7. Permeability measurement and control for epoxy composites

    Science.gov (United States)

    Chang, Tsun-Hsu; Tsai, Cheng-Hung; Wong, Wei-Syuan; Chen, Yen-Ren; Chao, Hsien-Wen

    2017-08-01

    The coupling of the electric and magnetic fields leads to a strong interplay in materials' permittivity and permeability. Here, we proposed a specially designed cavity, called the mu cavity. The mu cavity, consisting of a mushroom structure inside a cylindrical resonator, is exclusively sensitive to permeability, but not to permittivity. It decouples materials' electromagnetic properties and allows an accurate measurement of the permeability. With the help of an epsilon cavity, these two cavities jointly determine the complex permeability and permittivity of the materials at microwave frequencies. Homemade epoxy-based composite materials were prepared and tested. Measurement and manipulation of the permeability and permittivity of the epoxy composites will be shown. The results will be compared with the effective medium theories.

  8. Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions

    Science.gov (United States)

    Clarens, A. F.; Tao, Z.; Plattenberger, D.

    2016-12-01

    Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better

  9. Increased cation conductance in human erythrocytes artificially aged by glycation.

    Science.gov (United States)

    Kucherenko, Yuliya V; Bhavsar, Shefalee K; Grischenko, Valentin I; Fischer, Uwe R; Huber, Stephan M; Lang, Florian

    2010-06-01

    Excessive glucose concentrations foster glycation and thus premature aging of erythrocytes. The present study explored whether glycation-induced erythrocyte aging is paralleled by features of suicidal erythrocyte death or eryptosis, which is characterized by cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface and cell shrinkage. Both are triggered by increases of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which may result from activation of Ca(2+) permeable cation channels. Glycation was accomplished by exposure to high glucose concentrations (40 and 100 mM), phosphatidylserine exposure estimated from annexin binding, cell shrinkage from decrease of forward scatter, and [Ca(2+)](i) from Fluo3-fluorescence in analysis via fluorescence-activated cell sorter. Cation channel activity was determined by means of whole-cell patch clamp. Glycation of total membrane proteins, immunoprecipitated TRPC3/6/7, and immunoprecipitated L-type Ca(2+) channel proteins was estimated by Western blot testing with polyclonal antibodies used against advanced glycation end products. A 30-48-h exposure of the cells to 40 or 100 mM glucose in Ringer solution (at 37 degrees C) significantly increased glycation of membrane proteins, hemoglobin (HbA(1c)), TRPC3/6/7, and L-type Ca(2+) channel proteins, enhanced amiloride-sensitive, voltage-independent cation conductance, [Ca(2+)](i), and phosphatidylserine exposure, and led to significant cell shrinkage. Ca(2+) removal and addition of Ca(2+) chelator EGTA prevented the glycation-induced phosphatidylserine exposure and cell shrinkage after glycation. Glycation-induced erythrocyte aging leads to eryptosis, an effect requiring Ca(2+) entry from extracellular space.

  10. Compact rock material gas permeability properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanling, E-mail: whl_hm@163.com [Key Laboratory of Coastal Disaster and Defence, Ministry of Education, Hohai University, Nanjing 210098 (China); LML, University of Lille, Cite Scientifique, 59655 Villeneuve d’Ascq (France); Xu, Weiya; Zuo, Jing [Institutes of Geotechnical Engineering, Hohai University, Nanjing 210098 (China)

    2014-09-15

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO{sub 2,} shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10{sup −19} m{sup 2}; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10{sup −17} m{sup 2}; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens’ permeability evolution is related to the relative particle movements and microcrack closure.

  11. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  12. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  13. Explorations of a series of second order nonlinear optical materials based on monovalent metal gold(III) iodates.

    Science.gov (United States)

    Huang, Chao; Hu, Chun-Li; Xu, Xiang; Yang, Bing-Ping; Mao, Jiang-Gao

    2013-10-07

    The syntheses, crystal structures, and characterizations of a series of monovalent metal gold(III) iodates, namely, α-NaAu(IO3)4, β-NaAu(IO3)4, RbAu(IO3)4, α-CsAu(IO3)4, β-CsAu(IO3)4, and AgAu(IO3)4 are reported. Their structures feature Au(IO3)4(-) anions that are separated by alkali metal ions or silver(I) ions. The Au(IO3)4(-) anions in the polar α-NaAu(IO3)4, RbAu(IO3)4, and α-CsAu(IO3)4 are polar with all four iodate groups being located only above (or below) the AuO4 square plane (cis- configuration). α-NaAu(IO3)4, RbAu(IO3)4, and α-CsAu(IO3)4 display moderate strong Second-Hamonic Generation (SHG) responses of 1.17 ×, 1.33 ×, and 1.17 × KTP (KTiOPO4), respectively, and all three materials are type-I phase-matchable. The Au(IO3)4(-) anions in centrysymmetric β-NaAu(IO3)4, β-CsAu(IO3)4, and AgAu(IO3)4 are nonpolar with the four iodate groups of the Au(IO3)4(-) anion being located both above and below the AuO4 square plane (trans- configuration). IR and UV spectra, luminescent and ferroelectric properties have also been measured. Theoretical calculations of their optical properties based on density functional theory (DFT) methods were performed by using the CASTEP total-energy code.

  14. Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb. In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q, was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B and 14/00/4 (subtype F, both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q. The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.

  15. Group a rotavirus and norovirus genotypes circulating in the northeastern Brazil in the post-monovalent vaccination era.

    Science.gov (United States)

    Sá, Ana Caroline C; Gómez, Mariela M; Lima, Ila Fernanda N; Quetz, Josiane S; Havt, Alexandre; Oriá, Reinaldo B; Lima, Aldo A; Leite, José Paulo G

    2015-09-01

    Group A rotaviruses (RVA) and noroviruses (NoV) are the leading cause of acute gastroenteritis (AGE) worldwide. Childhood diarrhea deaths and hospital admissions have declined since the introduction of the monovalent (G1P[8]) vaccine (Rotarix(®) [RV1]) in the National Immunization Program in Brazil in 2006. This study aims to investigate the epidemiological profile of NoV and RVA infections from children with AGE in the Northeastern region of Brazil in the post vaccine season. Two-hundred fecal samples collected from children up to 10 years old in Fortaleza, Ceará between 2008-2009 were screened for the presence of RVA and NoV. Positive samples were genotyped and sequenced. The RVA screening revealed 12% prevalence and all RVA strains belonged to G2P[4] genotype. Phylogenetic analysis based on the 11 RVA genome segments sequenced from eight samples revealed a DS-1-like genotype constellation: I2-R2-C2-M2-A2-N2-T2-E2-H2. For NoV screening, the prevalence observed was 17% and the following genotypes were detected: GII.4 (59%), GII.12 (17%), GII.6 (9%), GII.3 (6%), and GII.? (9%). At least four different NoVs genotypes and two RVA G2P[4] variants were identified circulating in the Northeastern region of Brazil. RVA phylogenetic analysis suggests that the RVA G2P[4] strains might have originated from intragenogroup reassortment events. Whether the genetic modifications observed in these contemporary G2P[4] RVA strains may impact the long-term effectiveness of the current vaccination programs remains to be explored. These data reinforce the importance of surveillance for monitoring the emergence of new strains of RVA and NoV and their impact on cases of acute gastroenteritis.

  16. Policy statement—Prevention of varicella: update of recommendations for use of quadrivalent and monovalent varicella vaccines in children.

    Science.gov (United States)

    2011-09-01

    Two varicella-containing vaccines are licensed for use in the United States: monovalent varicella vaccine (Varivax [Merck & Co, Inc, West Point, PA]) and quadrivalent measles-mumps-rubella-varicella vaccine (MMRV) (ProQuad [Merck & Co, Inc]). It is estimated from postlicensure data that after vaccination at 12 through 23 months of age, 7 to 9 febrile seizures occur per 10,000 children who receive the MMRV, and 3 to 4 febrile seizures occur per 10,000 children who receive the measles-mumps-rubella (MMR) and varicella vaccines administered concurrently but at separate sites. Thus, 1 additional febrile seizure is expected to occur per approximately 2300 to 2600 children 12 to 23 months old vaccinated with the MMRV, when compared with separate MMR and varicella vaccine administration. The period of risk for febrile seizures is from 5 through 12 days after receipt of the vaccine(s). No increased risk of febrile seizures is seen among patients 4 to 6 years of age receiving MMRV. Febrile seizures do not predispose to epilepsy or neurodevelopmental delays later in life and are not associated with long-term health impairment. The American Academy of Pediatrics recommends that either MMR and varicella vaccines separately or the MMRV be used for the first dose of measles, mumps, rubella, and varicella vaccines administered at 12 through 47 months of age. For the first dose of measles, mumps, rubella, and varicella vaccines administered at ages 48 months and older, and for dose 2 at any age (15 months to 12 years), use of MMRV generally is preferred over separate injections of MMR and varicella vaccines.

  17. Review on cation exchange selectivity coefficients for MX-80 bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, C.; Arcos, D.; Duro, L. [ENVIROS, Passeig de Rubi, 29-31, 08197 Valldoreix (Spain); Sellin, P. [SKB, Brahegatan 47, SE-102 40 Stockholm (Sweden)

    2005-07-01

    Full text of publication follows: Bentonite is considered as engineered barrier in the near field of a nuclear waste repository due to its low permeability, what impedes groundwater flow to the nuclear waste, and its high retention capacity (sorption) of radionuclides in the eventuality of groundwater intrusion. One of the main retention processes occurring at the bentonite surface is ion exchange. This process may exert a strong control on the mobility of major pore water cations. Changes in major cation concentration, especially calcium, can affect the dissolution-precipitation of calcite, which in turn controls one of the key parameters in the system: pH. The cation exchange process is usually described according to the Gaines-Thomas convention: Ca{sup 2+} + 2 NaX = CaX{sub 2} + 2 Na{sup +}, K{sub Ca} = (N{sub Ca} x a{sup 2}{sub Na{sup +}})/(N{sup 2}{sub Na} x a{sub Ca{sup 2+}}) where K{sub Ca} is the selectivity coefficient for the Ca by Na exchange, ai is the activity of cation 'i' in solution and NJ the equivalent fractional occupancy of cation 'J' in bentonite. Parameters such as solid to liquid (S:L) ratio and dry density of the solid have an important influence on the value of selectivity coefficients (K{sub ex}). Although in most geochemical modelling works, K{sub ex} values are directly taken from experiments conducted at low S:L ratios and low dry densities, the expected conditions in a deep geological nuclear waste repository are higher S:L and higher bentonite density (1.6 g.cm{sup -3} in the SKB design to obtain a fully water saturated density of around 2.0 g.cm{sup -3}). Experiments focused at obtaining selectivity coefficients under the conditions of interest face the difficulty of achieving a proper extraction and analyses of pore water without disturbing the system by the sampling method itself. In this work we have conducted a complete analyses of published data on MX-80 bentonite cationic exchange in order to assess the

  18. The laws governing ionic liquid extraction of cations: partition of 1-ethylpyridinium monocation and paraquat dication in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Hamamoto, Takuya; Okai, Miho; Katsuta, Shoichi

    2015-05-21

    To find the laws governing the extraction of cations from aqueous solutions into hydrophobic ionic liquids (ILs), we investigated the partition of 1-ethylpyridinium monocation and paraquat (1,1'-dimethyl-4,4'-bipyridinium) dication in various IL/water biphasic systems. Ten different ILs of 1-butyl-3-methylimidazolium-based or bis(trifluoromethanesulfonyl)amide-based salts were used. The distribution ratio of the target cations (T(n+)) was dependent on the initial concentration in the aqueous phase and also very sensitive to the kind of IL. The behavior was quantitatively explained on the basis of a model in which the extraction goes through both the ion exchange and ion pair transfer processes, while keeping the product of the aqueous concentrations of the IL constituent ions a constant value (solubility product, Ksp). The distribution ratio of T(n+) is expressed as a function of the difference between the initial and equilibrium concentrations of T(n+) in the aqueous phase (Δ[T(n+)]W), the aqueous solubility of IL (Ksp(1/2)), and the cation valence n. The distribution ratio is a nearly constant value (D0) when Δ[T(n+)]W ≪ Ksp(1/2)/n and decreases inversely proportional to the nth power of Δ[T(n+)]W when Δ[T(n+)]W ≫ Ksp(1/2)/n. The log D0 versus log Ksp(1/2) plot gives a linear relationship with a slope of +n for the ILs with the same anion but different cations and that with a slope of nearly -n for the ILs with the same cation but different anions. This means that the extractability dependence on the kinds of IL constituent ions is greater for the divalent cation than for the monovalent one.

  19. Plant actin controls membrane permeability.

    Science.gov (United States)

    Hohenberger, Petra; Eing, Christian; Straessner, Ralf; Durst, Steffen; Frey, Wolfgang; Nick, Peter

    2011-09-01

    The biological effects of electric pulses with low rise time, high field strength, and durations in the nanosecond range (nsPEFs) have attracted considerable biotechnological and medical interest. However, the cellular mechanisms causing membrane permeabilization by nanosecond pulsed electric fields are still far from being understood. We investigated the role of actin filaments for membrane permeability in plant cells using cell lines where different degrees of actin bundling had been introduced by genetic engineering. We demonstrate that stabilization of actin increases the stability of the plasma membrane against electric permeabilization recorded by penetration of Trypan Blue into the cytoplasm. By use of a cell line expressing the actin bundling WLIM domain under control of an inducible promotor we can activate membrane stabilization by the glucocorticoid analog dexamethasone. By total internal reflection fluorescence microscopy we can visualize a subset of the cytoskeleton that is directly adjacent to the plasma membrane. We conclude that this submembrane cytoskeleton stabilizes the plasma membrane against permeabilization through electric pulses. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of cationized gelatins on the paracellular transport of drugs through caco-2 cell monolayers.

    Science.gov (United States)

    Seki, Toshinobu; Kanbayashi, Hiroshi; Nagao, Tomonobu; Chono, Sumio; Tabata, Yasuhiko; Morimoto, Kazuhiro

    2006-06-01

    Cationized gelatins, candidate absorption enhancers, were prepared by addition of ethylenediamine or spermine to gelatin and the effects of the resulting ethylenediaminated gelatin (EG) and sperminated gelatin (SG) on the paracellular transport of 5(6)-carboxyfluorescein (CF), FITC-dextran-4 (FD4), and insulin through caco-2 cell monolayers were examined. The Renkin function was used for characterization of the paracellular pathway and changes in the pore radius (R) and pore occupancy/length ratio (epsilon/L) calculated from the apparent permeability coefficients (P(app)) of CF and FD4 are discussed. Ethylenediaminetetraacetic acid (EDTA) increased the R of the caco-2 cell monolayer and the P(app) of all compounds examined was markedly increased by the addition of EDTA. On the other hand, EG and SG did not increase R and their enhancing effects were not as strong as those of EDTA. The increase in epsilon/L could be the enhancing mechanism for the cationized gelatins. The number of pathways for water-soluble drugs, such as CF and FD4, in the caco-2 monolayers could be increased by the addition of the cationized gelatins. The ratios of the permeability coefficients of insulin (observed/calculated based on the Renkin function) suggest that insulin undergoes enzymatic degradation during transport which is not inhibited by enhancers.

  1. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra

    Science.gov (United States)

    Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.

    2015-08-01

    Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including

  2. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb(2+)-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb(2+) ions into one monovalent M(+) and one trivalent M(3+) ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  3. Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations.

    Science.gov (United States)

    Xu, Huacheng; Yang, Changming; Jiang, Helong

    2016-12-01

    The stability/aggregation propensity of inorganic colloids in eutrophic shallow lakes is of great essence in governing the water transparency and contaminant behavior. In this study, time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of Al2O3 inorganic colloids over a wide range of cyanobacterial extracellular polymeric substance (EPS) concentrations in the absence and presence of electrolyte cations. The results showed that EPS adsorption alone greatly decreased the hydrodynamic diameters of colloidal particles, whose stability behavior followed closely the predictions of the classical DLVO theory. Electrolyte cations, however, can induce the aggregation of colloidal particles, and divalent Ca(2+) were found to be more efficient in destabilizing the colloids than monovalent Na(+), as indicated by the considerably lower critical coagulation concentrations (2.5 mM for Ca(2+) vs. 170 mM for Na(+)). Further addition of Ca(2+), i.e., >2.5 mM, caused an extremely high aggregation degree and rate. High resolution transmission electron microscopy revealed that this enhanced aggregation should be attributed to the gel-like bridging between colloidal particles, which were verified to be the amorphous EPS-Ca(2+) complexes. Field-emission scanning electron microscopy coupled with elemental mapping provided additional evidence that the bridging interaction of EPS with Ca(2+) was the predominant mechanism for the aggregation enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species.

    Science.gov (United States)

    Zhou, Hongsheng; Qi, Kaijie; Liu, Xing; Yin, Hao; Wang, Peng; Chen, Jianqing; Wu, Juyou; Zhang, Shaoling

    2016-08-01

    The monovalent cation proton antiporters (CPAs) play essential roles in plant nutrition, development, and signal transduction by regulating ion and pH homeostasis of the cell. The CPAs of plants include the Na(+)/H(+) exchanger, K(+) efflux antiporter, and cation/H(+) exchanger families. However, currently, little is known about the CPA genes in Rosaceae species. In this study, 220 CPA genes were identified from five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume), and 53 of which came from P. bretschneideri. Phylogenetic, structure, collinearity, and gene expression analyses were conducted on the entire CPA genes of pear. Gene expression data showed that 35 and 37 CPA genes were expressed in pear fruit and pollen tubes, respectively. The transcript analysis of some CPA genes under abiotic stress conditions revealed that CPAs may play an important role in pollen tubes growth. The results presented here will be useful in improving understanding of the complexity of the CPA gene family and will promote functional characterization in future studies.

  5. A Negative Permeability Material at Red Light

    DEFF Research Database (Denmark)

    Yuan, Hsiao-Kuan; Chettiar, Uday K.; Cai, Wenshan;

    2007-01-01

    A negative permeability in a periodic array of pairs of thin silver strips is demonstrated experimentally for two distinct samples. The effect of the strip surface roughness on negative permeability is evaluated. The first sample, Sample A, is fabricated of thinner strips with a root mean square...... roughness of 7 nm, while Sample B is made of thicker strips with 3-nm roughness. The real part of permeability, μ ′ , is −1 at a wavelength of 770 nm in Sample A and −1.7 at 725 nm in Sample B. Relative to prototypes simulated with ideal strips, larger strip roughness acts to decrease μ ′ by a factor of 7...

  6. Gut Permeability in Autism Spectrum Disorders

    OpenAIRE

    2014-01-01

    ObjectiveTo test whether gut permeability is increased in autism spectrum disorders (ASD) by evaluating gut permeability in a population-derived cohort of children with ASD compared with age- and intelligence quotient-matched controls without ASD but with special educational needs (SEN).Patients and MethodsOne hundred thirty-three children aged 10–14 years, 103 with ASD and 30 with SEN, were given an oral test dose of mannitol and lactulose and urine collected for 6 hr. Gut permeability was a...

  7. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Directory of Open Access Journals (Sweden)

    Igor A Vereninov

    Full Text Available Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  8. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Science.gov (United States)

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  9. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  10. Assessment of epicutaneous testing of a monovalent Influenza A (H1N1 2009 vaccine in egg allergic patients

    Directory of Open Access Journals (Sweden)

    Pitt Tracy

    2011-02-01

    Full Text Available Abstract Background H1N1 is responsible for the first influenza pandemic in 41 years. In the fall of 2009, an H1N1 vaccine became available in Canada with the hopes of reducing the overall effect of the pandemic. The purpose of this study was to assess the safety of administering 2 different doses of a monovalent split virus 2009 H1N1 vaccine in egg allergic patients. Methods Patients were skin tested to the H1N1 vaccine in the outpatient paediatric and adult allergy and immunology clinics of the Health Sciences Centre and Children's Hospital of Winnipeg, Manitoba Canada. Individuals Results A total of 61 patients with egg allergy (history of an allergic reaction to egg with either positive skin test &/or specific IgE to egg >0.35 Ku/L were referred to our allergy clinics for skin testing to the H1N1 vaccine. 2 patients were excluded, one did not have a skin prick test to the H1N1 vaccine (only vaccine administration and the other passed an egg challenge during the study period. Ages ranged from 1 to 27 years (mean 5.6 years. There were 41(69.5% males and 18(30.5% females. All but one patient with a history of egg allergy, positive skin test to egg and/or elevated specific IgE level to egg had negative skin tests to the H1N1 vaccine. The 58 patients with negative skin testing to the H1N1 vaccine were administered the vaccine and observed for 30 minutes post vaccination with no adverse results. The patient with the positive skin test to the H1N1 vaccine was also administered the vaccine intramuscularly with no adverse results. Conclusions Despite concern regarding possible anaphylaxis to the H1N1 vaccine in egg allergic patients, in our case series 1/59(1.7% patients with sensitization to egg were also sensitized to the H1N1 vaccine. Administration of the H1N1 vaccine in egg allergic patients with negative H1N1 skin tests and observation is safe. Administering the vaccine in a 1 or 2 dose protocol without skin testing is a reasonable alternative

  11. Variability of permeability with diameter of conduit

    Indian Academy of Sciences (India)

    J A Adegoke; J A Olowofela

    2008-05-01

    An entry length is always observed before laminar flow is achieved in fluid flowing in a conduit. This depends on the Reynolds number of the flow and the degree of smoothness of the conduit. This work examined this region and the point where laminar flow commences in the context of flow through conduit packed with porous material like beads, of known porosity. Using some theoretical assumptions, it is demonstrated that permeability varies from zero at wall-fluid boundary to maximum at mid-stream, creating a permeability profile similar to the velocity profile. An equation was obtained to establish this. We also found that peak values of permeability increase with increasing porosity, and therefore entry length increases with increasing porosity with all other parameters kept constant. A plot of peak permeability versus porosity revealed that they are linearly related.

  12. Effect of temperature on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Kjøller, Claus

    assumptions would be required in order to estimate sandstone permeability based on the Kozeny equation. An effective specific surface area per pore volume for permeability was estimated by using image analysis and pore size distributions as from nuclear magnetic resonance (NMR) transverse relaxation data...... be determined based on the Klinkenberg (1941) procedure, which accounts for effects on permeability of gas slip on the fluid-solid interface by means of several permeability measurements with different pore pressures. A comparison between the equivalent pore sizes as estimated using the Kozeny equation...... at 80°C than at 20°C; at 80°C the main effect might be due to an alteration of pore fluid rheology, whereas at 20°C particles might be filtered in pore constrictions. DLVO theory (Derjaguin and Landau (1941); Verwey and Overbeek (1948)) was used to compare effects of temperature and salinity on surface...

  13. Measuring Permeability of Composite Cryotank Laminants

    Science.gov (United States)

    Oliver, Stanley T.; Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    This paper describes a test method developed to identify whether certain materials and material systems are suitable candidates for large pressurized reusable cryogenic tanks intended for use in current and future manned launch systems. It provides a quick way to screen numerous candidate materials for permeability under anticipated loading environments consistent with flight conditions, as well as addressing reusability issues. cryogenic tank, where the major design issue was hydrogen permeability. It was successfully used to evaluate samples subjected to biaxial loading while maintaining test temperatures near liquid hydrogen. After each sample was thermally preconditioned, a cyclic pressure load was applied to simulate the in-plane strain. First permeability was measured while a sample was under load. Then the sample was unloaded and allowed to return to ambient temperature. The test was repeated to simulate reusability, in order to evaluate its effects on material permeability.

  14. Lunar electrical conductivity and magnetic permeability

    Science.gov (United States)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1975-01-01

    Improved analytical techniques are applied to a large Apollo magnetometer data set to yield values of electroconductivity, temperature, magnetic permeability, and iron abundance. Average bulk electroconductivity of the moon is calculated to be .0007 mho/m; a rapid increase with depth to about .003 mho/m within 250 km is indicated. The temperature profile, obtained from the electroconductivity profile for olivine, indicates high lunar temperatures at relatively shallow depths. Magnetic permeability of the moon relative to its environment is calculated to be 1.008 plus or minus .005; a permeability relative to free space of 1.012 plus 0.011, minus 0.008 is obtained. Lunar iron abundances corresponding to this permeability value are 2.5 plus 2.3, minus 1.7 wt% free iron and 5.0-13.5 wt% total iron for a moon composed of a combination of free iron, olivine, and orthopyroxene.

  15. Permeable landscapes for wildlife in the Northeast

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Landscape permeability, also referred to as "habitat connectivity," is the ability of a diverse land area to provide for passage of animals. This project will...

  16. Impermeability of argillaceous layers: a relative concept as seen through two examples of sandstone permeability variations; L`etancheite des couvertures argileuses: une notion relative vue a travers deux exemples de variations de la permeabilite de gres

    Energy Technology Data Exchange (ETDEWEB)

    Baudracco, J.; Veganzones, S.; Aoubouazza, M. [Universite Paul Sabatier, 31 - Toulouse (France). Laboratoire de Mecanismes de Transferts en Geologie

    1997-12-31

    Argillaceous formations are frequently used, due to their impermeability, in waste disposal to ensure tightness and protection of reservoirs. It is shown that an effluent influx may lead, through cationic exchanges or diffusion processes, to important permeability variations that could modify and deteriorate the formation imperviousness. An experimental study has been carried out on Berea sandstone using two different percolation cycles and a helium permeability experiment

  17. Food Packaging Permeability Behaviour: A Report

    OpenAIRE

    Valentina Siracusa

    2012-01-01

    The use of polymer materials in food packaging field is one of the largest growing market area. Actually the optimization behaviour of packaging permeability is of crucial importance, in order to extend the food shelf-life and to reach the best engineering solution. Studying the permeability characterization of the different polymer material (homogeneous and heterogeneous polymer system) to the different packaging gases, in different environmental condition, is crucial to understand if the se...

  18. Pneumatic fracturing of low permeability media

    Energy Technology Data Exchange (ETDEWEB)

    Schuring, J.R. [New Jersey Institute of Technology, Newark, NJ (United States)

    1996-08-01

    Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.

  19. Relations Between Permeability and Structure of Wood

    Institute of Scientific and Technical Information of China (English)

    Bao Fucheng; Zhao Youke; Lü Jianxiong

    2003-01-01

    The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried green-wood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured inorder to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of boththe air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchangeddried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand,a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number ofunaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller numberof tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effectivetracheid length for permeability.

  20. Permeability of lateritic soil by various methods

    Directory of Open Access Journals (Sweden)

    Tatiana Tavares Rodriguez

    2015-10-01

    Full Text Available Soil Permeability is an important property of soil used to dimension several types of engineering works, and it can be quantified by the permeability rates. Despite of the great use, the type of the re doubts about the best way to determine de permeability rates. The main questions are: (1 the type of the method and (2 the reproducibility of samples in tropical soils. So, the objective of this work is to evaluate the permeability of a lateritic soil by comparing values of permeability coefficient determined for laboratory and in situ testing. For this, it was chosen the lateritic soil of Campo Experimental de Engenharia Geotécncia (CEEG of the Universidade Estadual de Londrina (UEL and four equipments: constant and variable head permeameters, Guelph permeameter and infiltrometer. The results show that all the methods present mean value of permeability coefficient on the order of 10-3 cm/s whit variation coefficient in range of 37% to 92% , except the constant permeameter. The heterogeneous structure of lateritic soil (in macro and micro pores is the probably determinant of the variability observed.

  1. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  2. Comparative field permeability measurement of permeable pavements using ASTM C1701 and NCAT permeameter methods.

    Science.gov (United States)

    Li, Hui; Kayhanian, Masoud; Harvey, John T

    2013-03-30

    Fully permeable pavement is gradually gaining support as an alternative best management practice (BMP) for stormwater runoff management. As the use of these pavements increases, a definitive test method is needed to measure hydraulic performance and to evaluate clogging, both for performance studies and for assessment of permeability for construction quality assurance and maintenance needs assessment. Two of the most commonly used permeability measurement tests for porous asphalt and pervious concrete are the National Center for Asphalt Technology (NCAT) permeameter and ASTM C1701, respectively. This study was undertaken to compare measured values for both methods in the field on a variety of permeable pavements used in current practice. The field measurements were performed using six experimental section designs with different permeable pavement surface types including pervious concrete, porous asphalt and permeable interlocking concrete pavers. Multiple measurements were performed at five locations on each pavement test section. The results showed that: (i) silicone gel is a superior sealing material to prevent water leakage compared with conventional plumbing putty; (ii) both methods (NCAT and ASTM) can effectively be used to measure the permeability of all pavement types and the surface material type will not impact the measurement precision; (iii) the permeability values measured with the ASTM method were 50-90% (75% on average) lower than those measured with the NCAT method; (iv) the larger permeameter cylinder diameter used in the ASTM method improved the reliability and reduced the variability of the measured permeability.

  3. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Elsworth, Derek [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Department of Geosciences, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Wang, Chaoyi [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Ishibashi, Takuya [Department of Energy and Mineral Engineering, EMS Energy Institute, and G3 Center, Pennsylvania State University, University Park Pennsylvania USA; Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, Koriyama Japan; Fitts, Jeffrey P. [Department of Civil and Environmental Engineering, Princeton University, Princeton New Jersey USA

    2017-01-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  4. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)

    1999-12-14

    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  5. Cationic guar gum orchestrated environmental synthesis for silver nano-bio-composite films.

    Science.gov (United States)

    Abdullah, Md Farooque; Ghosh, Sumanta Kumar; Basu, Sreyasree; Mukherjee, Arup

    2015-12-10

    This work is meant for environmentally friendly synthesis and functional evaluation of silver nanoparticles in a newer cationic guar biopolymer (GGAA). Assembly of molecules in lower size range (∼ 10 nm) was attained in a biopolymer entrapped bottom-up synthesis. Guar gum is a filming biopolymer. Nanoparticles encaged in cationic guar (GGAgnC) were preserved as films for months without any significant effect on particle size, distribution or plasmonic intensity. The new nano-bio-composite and films were characterized fully in FTIR, XRD, SEM and TEM studies. Silver nanoparticles induced surface water repellency remarkably and lowered moisture permeability. GGAgnC film water contact angle was recorded as 115° while, that in case of GGAA was 59°. GGAgnC expressed intense antimicrobial activity when tested against a range of microorganisms. Immobilized silver nanoparticles in GGAA can feasibly be used as filming microbicidals suitable for textiles, packaging and biomedical device applications.

  6. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors

    Science.gov (United States)

    Zhu, Zicai; Chang, Longfei; Horiuchi, Tetsuya; Takagi, Kentaro; Aabloo, Alvo; Asaka, Kinji

    2016-03-01

    Ion-migration based electrical potential widely exists not only in natural systems but also in ionic polymer materials. We presented a multi-physical model and investigated the transport process of cation and water of ionic polymer-metal composites based on our thorough understanding on the ionic sensing mechanisms in this paper. The whole transport process was depicted by transport equations concerning convection flux under the total pressure gradient, electrical migration by the built-in electrical field, and the inter-coupling effect between cation and water. With numerical analysis, the influence of critical material parameters, the elastic modulus Ewet, the hydraulic permeability coefficient K, the diffusion coefficient of cation dII and water dWW, and the drag coefficient of water ndW, on the distribution of cation and water was investigated. It was obtained how these parameters correlate to the voltage characteristics (both magnitude and response speed) under a step bending. Additionally, it was found that the effective relative dielectric constant ɛr has little influence on the voltage but is positively correlated to the current. With a series of optimized parameters, the predicted voltage agreed with the experimental results well, which validated our model. Based on our physical model, it was suggested that an ionic polymer sensor can benefit from a higher modulus Ewet, a higher coefficient K and a lower coefficient dII, and a higher constant ɛr.

  7. Relative permeability in dual porosity porous media

    Energy Technology Data Exchange (ETDEWEB)

    Deghmoum, A. [SONATRACH CRD, Boumerdes (Algeria); Tiab, D. [Oklahoma Univ., Norman, OK (United States); Mazouzi, A. [SONATRACH PED (Algeria)

    2000-06-01

    One of the important factors in the field of reservoir simulation of dual-porosity systems is reliable relative permeability data. Laboratory limitations hinder measurements. The real behaviour of naturally fractures reservoirs is not reflected in the reservoir core samples, which as a rule originate from zones without induced or natural fractures. Therefore, it is commonly assumed that the relative permeability of a naturally fractured system is a straight line, which can cause errors. The authors undertook to conduct special core analyses on Berea outcrop core samples, to simulate fracture opening through the cutting of the samples to get different fracture apertures, to study the effects of dual porosity on the shape of capillary pressure curves, and to evaluate absolute and relative permeability, as they are affected by fracture opening. The correlation obtained between absolute permeability and fracture aperture was good, and capillary pressure curves permitted the observation of the effect of dual porosity. High residual oil saturation was present in the matrix, since the fractures became the easiest route for water flow, and this situation prevented the use of unsteady-state tests to measure relative permeability on the samples. Instead, the centrifuge technique was successfully used. A naturally fractured reservoir (NFR), the Tin Fouye Tabankort (TFT) reservoir in Algeria was selected to extend the findings. The site was principally selected due to the availability of naturally fractured cores and published data. Core observations, well test analysis and borehole imager tools were all TFT natural fracture indicators presented in the paper. Representative data of relative permeability was obtained by conducting a displacement test on a full diameter core to solve the laboratory limitations. The correlation between permeability and fracture opening was used to estimate the aperture of natural fractures in TFT reservoir. 17 refs., 2 tabs., 24 figs.

  8. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  9. The effects of surface treatments on rapid chloride permeability tests

    KAUST Repository

    Yoon, Seyoon

    2012-08-01

    Surface treatments are commonly applied to improve the chloride resistance of concrete structures exposed to saline environments. Information on chloride ingress to surface-treated concrete is mostly provided by application of the rapid chloride permeability test (RCPT); this test is short in duration and provides rapid results. This study presents a numerical formulation, based on the extended Nernst-Plank/Poisson (NPP) equation, to model the effect of the surface treatment on a sample tested by RCPT. Predictions of the model are compared to experimental measurements. The simulations show that the results from RCPT, in terms of ionic profiles and measurement of the electric field, are dependent on the effectiveness of surface treatments. During RCPT, highly effective surface treatments cause both cations and anions to flocculate at the interface between the surface treatment and the concrete, creating a local electric field. Our numerical model includes these phenomena and presents a methodology to obtain more accurate diffusivities of the surface-treated- concrete from RCPT. © 2012 Elsevier B.V. All rights reserved.

  10. In vivo human buccal permeability of nicotine

    DEFF Research Database (Denmark)

    Adrian, Charlotte L; Olin, Helle B D; Dalhoff, Kim

    2006-01-01

    The aim was to examine the in vivo buccal pH-dependent permeability of nicotine in humans and furthermore compare the in vivo permeability of nicotine to previous in vitro permeability data. The buccal permeability of nicotine was examined in a three-way cross-over study in eight healthy non......-smokers using a buccal perfusion cell. The disappearance of nicotine from perfusion solutions with pH 6.0, 7.4, and 8.1 was studied for 3h. The apparent permeability of nicotine (P(app)) was determined at each pH value. Parotid saliva was collected in an attempt to assess systemic levels of nicotine....... The disappearance rate of nicotine increased significantly as the pH increased, which resulted in P(app) values of 0.57+/-0.55 x 10(-4), 2.10+/-0.23 x 10(-4), and 3.96+/-0.54 x 10(-4)cms(-1) (mean+/-S.D.) at pH 6.0, 7.4, and 8.1, respectively. A linear relationship (R(2)=0.993) was obtained between the P...

  11. Permeability Tests on Silkeborg Sand No. 0000

    DEFF Research Database (Denmark)

    Lund, Willy; Jakobsen, Kim Parsberg

    The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends on the charact......The flow through porous media plays an important role in various engineering disciplines, as for example in ground water hydrology and soil mechanics. In the present study the permeability is determined for a fine, saturated sand. As the flow through a porous media strongly depends...... on the characteristics of the soil matrix, the permeability is determined for different void ratios. All tests are performed on reconstituted specimens of Silkeborg Sand No. 0000. The permeability is determined by use of a falling head apparatus. The apparatus, test procedures and the analysis method are described...... in the succeeding sections. Finally the test results are briefly summarised and a relationship between void ratio l and permeability is established....

  12. Vascular permeability in cerebral cavernous malformations

    DEFF Research Database (Denmark)

    Mikati, Abdul G; Khanna, Omaditya; Zhang, Lingjiao;

    2015-01-01

    Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case-controlled observ......Patients with the familial form of cerebral cavernous malformations (CCMs) are haploinsufficient for the CCM1, CCM2, or CCM3 gene. Loss of corresponding CCM proteins increases RhoA kinase-mediated endothelial permeability in vitro, and in mouse brains in vivo. A prospective case......-controlled observational study investigated whether the brains of human subjects with familial CCM show vascular hyperpermeability by dynamic contrast-enhanced quantitative perfusion magnetic resonance imaging, in comparison with CCM cases without familial disease, and whether lesional or brain vascular permeability...... correlates with CCM disease activity. Permeability in white matter far (WMF) from lesions was significantly greater in familial than in sporadic cases, but was similar in CCM lesions. Permeability in WMF increased with age in sporadic patients, but not in familial cases. Patients with more aggressive...

  13. Honeycomb Core Permeability Under Mechanical Loads

    Science.gov (United States)

    Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.

    1997-01-01

    A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.

  14. Trospium chloride is absorbed from two intestinal "absorption windows" with different permeability in healthy subjects.

    Science.gov (United States)

    Tadken, Tobias; Weiss, Michael; Modess, Christiane; Wegner, Danilo; Roustom, Tarek; Neumeister, Claudia; Schwantes, Ulrich; Schulz, Hans-Ulrich; Weitschies, Werner; Siegmund, Werner

    2016-12-30

    Intestinal P-glycoprotein is regio-selectively expressed and is a high affinity, low capacity efflux carrier for the cationic, poorly permeable trospium. Organic cation transporter 1 (OCT1) provides lower affinity but higher capacity for trospium uptake. To evaluate regional intestinal permeability, absorption profiles after gastric infusion of trospium chloride (30mg/250ml=[I]2) for 6h and after swallowing 30mg immediate-release tablets in fasted and fed healthy subjects, were evaluated using an inverse Gaussian density function to model input rate and mean absorption time (MAT). Trospium chloride was slowly absorbed (MAT ∼10h) after gastric infusion involving two processes with different input rates, peaking at about 3h and 7h. Input rates and MAT were influenced by dosage form and meal. In conclusion, trospium is absorbed from two "windows" located in the jejunum and cecum/ascending colon, whose uptake capacity might result from local abundance and functional interplay of P-glycoprotein and OCT1. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synergistic effect of low-frequency ultrasound and surfactants on skin permeability.

    Science.gov (United States)

    Tezel, Ahmet; Sens, Ashley; Tuchscherer, Joe; Mitragotri, Samir

    2002-01-01

    Low-frequency ultrasound (20 kHz) and surfactants have been individually shown to enhance transdermal drug transport. In this study, we investigated the synergistic effect of ultrasound and surfactants on transdermal drug delivery. Surfactants with different head group chemistries including anionic, cationic, and nonionic with varying tail lengths (8-16-carbon atoms) were studied. We found that surfactants possessing anionic and cationic head groups were more potent than those possessing nonionic head groups in increasing skin conductivity in the presence of ultrasound. Furthermore, for surfactants possessing the same head group, those with a 14-carbon tail length were found to be most effective in enhancing skin permeability. The data presented in this report show that ultrasound and surfactants synergistically enhance skin permeability. Two mechanisms are shown to play a role in this synergistic effect. First, ultrasound enhances surfactant delivery (enhanced delivery) into the skin and, second, ultrasound disperses surfactant (enhanced dispersion) within the skin. In general, surfactants that are potent enhancers by themselves are potent enhancers in the presence of ultrasound as well. We performed imaging experiments to assess the effect of ultrasound on delivery of a model permeant, sulforhodamine B, into the skin. These experiments show that ultrasound enhances surfactant delivery and dispersion in the skin.

  16. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  17. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  18. Alterations of red blood cell metabolome in overhydrated hereditary stomatocytosis.

    NARCIS (Netherlands)

    Darghouth, D.; Koehl, B.; Heilier, J.F.; Madalinski, G.; Bovee, P.H.; Bosman, G.J.C.G.M.; Delaunay, J.; Junot, C.; Romeo, P.H.

    2011-01-01

    Overhydrated hereditary stomatocytosis, clinically characterized by hemolytic anemia, is a rare disorder of the erythrocyte membrane permeability to monovalent cations, associated with mutations in the Rh-associated glycoprotein gene. We assessed the red blood cell metabolome of 4 patients with this

  19. Tunable permeability of magnetic wires at microwaves

    Science.gov (United States)

    Panina, L. V.; Makhnovskiy, D. P.; Morchenko, A. T.; Kostishin, V. G.

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires.

  20. Gyroid Nanoporous Membranes with Tunable Permeability

    DEFF Research Database (Denmark)

    Li, Li; Schulte, Lars; Clausen, Lydia D.

    2011-01-01

    Understanding the relevant permeability properties of ultrafiltration membranes is facilitated by using materials and procedures that allow a high degree of control on morphology and chemical composition. Here we present the first study on diffusion permeability through gyroid nanoporous cross......-sided skin membranes, much faster than expected by a naive resistance-in-series model; the flux through the two-sided skin membranes even increases with the membrane thickness. We propose a model that captures the physics behind the observed phenomena, as confirmed by flow visualization experiments...... the effective diffusion coefficients of a series of antibiotics, proteins, and other biomolecules; solute permeation is discussed in terms of hindered diffusion. The combination of uniform bulk morphology, isotropically percolating porosity, controlled surface chemistry, and tunable permeability is distinctive...

  1. Ammonia and urea permeability of mammalian aquaporins

    DEFF Research Database (Denmark)

    Litman, Thomas; Søgaard, Rikke; Zeuthen, Thomas

    2009-01-01

    The human aquaporins,AQP3,AQP7, AQP8,AQP9, and possibly AQP10, are permeable to ammonia, and AQP7, AQP9, and possibly AQP3, are permeable to urea. In humans, these aquaporins supplement the ammonia transport of the Rhesus (Rh) proteins and the urea transporters (UTs). The mechanism by which...... ammonium is transported by aquaporins is not fully resolved. A comparison of transport equations, models, and experimental data shows that ammonia is transported in its neutral form, NH(3). In the presence of NH(3), the aquaporin stimulates H(+) transport. Consequently, this transport of H(+) is only...... significant at alkaline pH. It is debated whether the H(+) ion passes via the aquaporin or by some external route; the investigation of this problem requires the aquaporin-expressing cell to be voltage-clamped. The ammonia-permeable aquaporins differ from other aquaporins by having a less restrictive aromatic...

  2. Permeability of Hollow Microspherical Membranes to Helium

    Science.gov (United States)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.

    2016-01-01

    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  3. Food Packaging Permeability Behaviour: A Report

    Directory of Open Access Journals (Sweden)

    Valentina Siracusa

    2012-01-01

    Full Text Available The use of polymer materials in food packaging field is one of the largest growing market area. Actually the optimization behaviour of packaging permeability is of crucial importance, in order to extend the food shelf-life and to reach the best engineering solution. Studying the permeability characterization of the different polymer material (homogeneous and heterogeneous polymer system to the different packaging gases, in different environmental condition, is crucial to understand if the selected material is adapted to the chosen food contact field. Temperature and humidity parameters are of crucial importance for food quality preservation, especially in real life situations, like food market, and house long-life use. The aim of this report was to collect information about the state of the art on the permeability characteristics of the polymer packages used on food field.

  4. Magnetohydrodynamic Flow Past a Permeable Bed

    Directory of Open Access Journals (Sweden)

    R. Venugopal

    1983-01-01

    Full Text Available The paper evaluates mass flow velocity heat transfer rates and velocity/temperature distributions in the viscous, incompressible and slightly conducting fluid past a permeable bed in three different configurations namely (1 Couette flow (2 Poiseuille flow and (3 free surface flow, under the influence of a uniform transverse magnetic field. To discuss the solution, the flow region is divided into two zones : Zone 1 (from the impermeable upper rigid plate to the permeable bed in which the flow is laminar and governed by Navier-Stokes equations, and Zone 2 (the permeable bed below the nominal surface in which the flow is governed by Darcy law. The paper also investigates the effects of magnetic field, porosity and Biot number on the physical quantities mentioned above.

  5. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress...... strain data. We found that Kozeny's modelled permeability fall in the same order of magnitude with measured permeability for shale rich in kaolinite but overestimates permeability by two to three orders of magnitudes for shale with high content of smectite. The empirical Yang and Aplin model gives good...

  6. Magnetic levitation from negative permeability materials

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Mark W., E-mail: mcoffey@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2012-09-03

    As left-handed materials and metamaterials are becoming more prevalent, we examine the effect of negative permeability upon levitation force. We first consider two half spaces of differing permeability and a point magnetic source, so that the method of images may be employed. We determine that the resulting force may be larger than for conventional magnetic materials. We then illustrate the inclusion of a finite sample thickness. -- Highlights: ► The effect of negative permeability upon levitation force is considered. ► Such an effect could be realized with metamaterials. ► The resulting force may be larger than with conventional materials. ► The analysis is extended to allow for a finite sample thickness. ► Representative numerical values are given.

  7. Blood flow and permeability in microvessels

    Science.gov (United States)

    Sugihara-Seki, Masako; Fu, Bingmei M.

    2005-07-01

    The mechanics of blood flow in microvessels and microvessel permeability are reviewed. In the first part, characteristics of blood flow in vivo and in vitro are described from a fluid-mechanical point of view, and mathematical models for blood flow in microvessels are presented. Possible causes of the increased flow resistance obtained in vivo compared to in vitro are examined, including the effects of irregularities of vessel lumen, the presence of endothelial surface glycocalyx and white blood cells. In the second part, the ultrastructural pathways and mechanisms whereby endothelial cells and the clefts between the cells modulate microvessel permeability to water and solutes are introduced. Previous and current models for microvessel permeability to water and solutes are reviewed. These models examine the role of structural components of interendothelial cleft, such as junction strands and surface glycocalyx, in the determination of water and solute transport across the microvessel walls. Transport models in the tissue space surrounding the microvessel are also described.

  8. Intracellular NHX-Type Cation/H+ Antiporters inPlants

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Cells depend on the homeostatic maintenance of pHwithin specific cellular compartments to ensure optimalconditions for metabolic and enzymatic processes as wellas protein structure and function. In the animal secre-tory pathway, cells maintain distinct luminal pHs withinvarious compartments (Paroutis et al., 2004). Among themany molecular players that contribute to pH and ionhomeostasis in plants, Na+(K+)/H+ exchangers (also knownas NHX-type cation/H+ antiporters) appear to be particu-larly important for the regulation of a wide variety ofphysiological processes, including cell expansion, cellvolume regulation, osmotic adjustment, pH regulation,membrane trafficking, protein processing, and cellularstress responses (Pardo et al., 2006; Rodriguez-Rosaleset al., 2009; Bassil et al., 2012). In plants, NHX antiportersappeared early in evolution and are ubiquitously encodedmembers of the CPA1 cation/H+ antiporters subgroupthat belongs to the large family of monovalent cation/H+ transporters CPA (Brett et al., 2005). NHX antiport-ers are found, thus far, in all sequenced plant genomes(Bassil et al., 2012; Chanroj et al., 2012). In Arabidopsis,the NHX family consists of eight isoforms, six of whichare intracellular (AtNHXl-AtNHX6), located either to thevacuole (AtNHXl to AtNHX4) or endosomes (AtNHX5 andAtNHX6) and an additional two more divergent members(AtNHX7/SOSl and AtNHX8) at the plasma membrane(Bassil et al., 2012). Orthologous sequences in each of thethree classes (plasma membrane, vacuolar, or endosomal)appear in all sequenced genomes, suggesting that distinctfunctional NHX classes appeared early in evolution andmay have conserved roles that are compartment-specific(Bassil et al., 2012). Emerging new evidence highlightsthe importance of particular intracellular NHX antiport-ers in the regulation of vesicular and vacuolar pH andK+ homeostasis. Vacuolar NHXs are needed to maintainK+ homeostasis

  9. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  10. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  11. Liquid Permeability of Ceramic Foam Filters

    OpenAIRE

    Zhang, Kexu

    2012-01-01

    This project is in support of the PhD project: ‘Removal of Inclusions from Liquid Aluminium using Electromagnetically Modified Filtration’. The purpose of this project was to measure the tortuosity, and permeability of ~50mm thick: 30, 40, 50 and 80 pores per inch (ppi) commercial alumina ceramic foam filters (CFFs). Measurements have been taken of: cell (pore), window and strut sizes, porosity, tortuosity and liquid permeability. Water velocity from ~0.015-0.77 m/s have been used ...

  12. Development of an Improved Permeability Modification Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Gao, H.W.; Elphnick, J.

    1999-03-09

    This report describes the development of an improved permeability modification simulator performed jointly by BDM Petroleum Technologies and Schlumberger Dowell under a cooperative research and development agreement (CRADA) with the US Department of Energy. The improved simulator was developed by modifying NIPER's PC-GEL permeability modification simulator to include a radial model, a thermal energy equation, a wellbore simulator, and a fully implicit time-stepping option. The temperature-dependent gelation kinetics of a delayed gel system (DGS) is also included in the simulator.

  13. The Permeability of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Williams, A.F.; Burcharth, H. F.; Adel, H. den

    1992-01-01

    The results of an extensive series of permeability experiments originally analysed by Shih (1990) are reinterpreted in the light of new experiments. It is proposed that the Forchheimer equation might not fully describe flow at the high Reynolds numbers found in the interior of rubble material....... A new series of tests designed to test for deviations from the Forchheimer equation and investigate the effects of material shape are described. While no evidence can be found to indicate a deviation from the Forchheimer equation a dependency of permeability and the surface roughness the material...

  14. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  15. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  16. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  17. Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide

    Directory of Open Access Journals (Sweden)

    Mehrdad Moosazadeh Moghaddam

    2013-01-01

    Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.

  18. Glycosylated hemoglobin in human and animal red cells. Role of glucose permeability.

    Science.gov (United States)

    Higgins, P J; Garlick, R L; Bunn, H F

    1982-09-01

    We have compared red cells from man and selected animals in order to determine the effect of glucose permeability on nonenzymatic glycosylation of hemoglobin. Glucose permeability was highest in the primates (human, baboon, rhesus monkey), lower in dogs and rabbits, and nearly zero in pigs. Glycosylation of hemoglobin was measured by three independent methods: cation-exchange chromatography on Bio-Rex 70 (Bio-Rad, Inc., Richmond, California), agar gel electrophoresis, and affinity chromatography. The colorimetric thiobarbituric acid test did not provide valid data on animal hemolysates. However, this test was useful for identifying glycosylated hemoglobin (HbA1c) components isolated on Bio-Rex chromatography. In all animals tested, levels of HbA1c (from Bio-Rex chromatography) and total glycosylated hemoglobin (from affinity chromatography) correlated well with glucose exposure, the product of intracellular glucose concentration, and red cell life span. These results indicate that nonenzymatic glycosylation of hemoglobin in mammals is determined by three major variables: mean plasma glucose concentration, red cell life span, and red cell glucose permeability.

  19. Perovskite Hollow Fibers with Precisely Controlled Cation Stoichiometry via One-Step Thermal Processing.

    Science.gov (United States)

    Zhu, Jiawei; Zhang, Guangru; Liu, Gongping; Liu, Zhengkun; Jin, Wanqin; Xu, Nanping

    2017-05-01

    The practical applications of perovskite hollow fibers (HFs) are limited by challenges in producing these easily, cheaply, and reliably. Here, a one-step thermal processing approach is reported for the efficient production of high performance perovskite HFs, with precise control over their cation stoichiometry. In contrast to traditional production methods, this approach directly uses earth-abundant raw chemicals in a single thermal process. This approach can control cation stoichiometry by avoiding interactions between the perovskites and polar solvents/nonsolvents, optimizes sintering, and results in high performance HFs. Furthermore, this method saves much time and energy (≈ 50%), therefore pollutant emissions are greatly reduced. One successful example is Ba0.5Sr0.5Co0.8Fe0.2O3-δ HFs, which are used in an oxygen-permeable membrane. This exhibits high oxygen permeation flux values that exceed desired commercial targets and compares favorably with previously reported oxygen-permeable membranes. Studies on other perovskites have produced similarly successful results. Overall, this approach could lead to energy efficient, solid-state devices for industrial application in energy and environmental fields. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  1. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed...

  2. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger;

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane...

  3. Quantitative permeability imaging of plant tissues

    NARCIS (Netherlands)

    Sibgatullin, T.; Vergeldt, F.J.; Gerkema, E.; As, van H.

    2010-01-01

    A method for mapping tissue permeability based on time-dependent diffusion measurements is presented. A pulsed field gradient sequence to measure the diffusion encoding time dependence of the diffusion coefficients based on the detection of stimulated spin echoes to enable long diffusion times is co

  4. Vascular permeability and drug delivery in cancers

    Directory of Open Access Journals (Sweden)

    Sandy eAzzi

    2013-08-01

    Full Text Available The endothelial barrier strictly maintains vascular and tissue homeostasis, and therefore modulates many physiological processes such as angiogenesis, immune responses, and dynamic exchanges throughout organs. Consequently, alteration of this finely tuned function may have devastating consequences for the organism. This is particularly obvious in cancers, where a disorganized and leaky blood vessel network irrigates solid tumors. In this context, vascular permeability drives tumor-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration, and tumor cell extravasation. This can directly restrain the efficacy of conventional therapies by limiting intravenous drug delivery. Indeed, for more effective anti-angiogenic therapies, it is now accepted that not only should excessive angiogenesis be alleviated, but also that the tumor vasculature needs to be normalized. Recovery of normal state vasculature requires diminishing hyperpermeability, increasing pericyte coverage, and restoring the basement membrane, to subsequently reduce hypoxia and interstitial fluid pressure. In this review, we will introduce how vascular permeability accompanies tumor progression and, as a collateral damage, impacts on efficient drug delivery. The molecular mechanisms involved in tumor-driven vascular permeability will next be detailed, with a particular focus on the main factors produced by tumor cells, especially the emblematic vascular endothelial growth factor (VEGF. Finally, new perspectives in cancer therapy will be presented, centered on the use of anti-permeability factors and normalization agents.

  5. [Graphic recording of the maxillary ostium permeability].

    Science.gov (United States)

    Rosique, M; Pastor, A; Hellín, D; García-Ortega, F P

    1993-01-01

    Currently we practise salpingography for evaluating Eustachian tube permeability. In a similar mode, we describe a technique of graphic search, with impedianciometry, of patency in the osteomeatal complex, after puncture and placing Foley's catheter in the maxillary sinus. In several cases without opening, we make topical treatment though catheter. For this technique, we propose the term of infundibulography.

  6. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible i

  7. Pump and treat in low permeability media

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, D.M. [Univ. of Waterloo, Ontario (Canada)

    1996-08-01

    Pump and Treat (P&T) is a commonly applied technology whose primary promise for the low permeability environments of interest to these technology reviews is almost certainly containment of the problem. Conventional P&T would be expected to offer little promise of complete restoration in such environments, unless very long time frames (decades or centuries) are considered. A variety of approaches have been proposed to enhance the efficiency of P&T; some appear to offer little promise in low or mixed permeability environments, while others may offer more promise (e.g. hydro- or pneumatic-fracturing, which are described elsewhere in this document, and application of vacuum to the extraction well(s), which is a proprietary technology whose promise is currently difficult to assess objectively). Understanding the potential advantages and means of optimizing these enhancement approaches requires more understanding of the basic processes limiting P&T performance in low or mixed permeability media. These efforts are probably also necessary to understand the advantages and means of optimizing many of the very different remedial technologies that may be applicable to low or mixed permeability environments. Finally, since a reasonably certain capability of P&T is containment (i.e. prevention of further migration of contaminants), P&T may generally be required as a sort of safety net around sites at which the alternative technologies are being tested or applied. 23 refs.

  8. Oxygen permeable membrane for oxygen enriched combustion

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, S. (Matsushita Research Inst., Tokyo, Japan); Saito, Y.; Kawahito, M.; Ito, Y.; Tsuchiya, S.; Sugata, K.

    1983-02-01

    An oxygen enriched air production system using gas separation membranes has been developed to be used for fuel combustion systems. High oxygen permeable scopolymers, including three dimensional structure, have been synthesized through condensation of polyvinylphenol with some, ..cap alpha..,..omega..-bis (diethylamino) polydimethylsiloxanes. The experimental results showed that the oxygen permeability through the copolymer varies as a function of the dimethylsiloxane content of the copolymers. Such composition dependence of the oxygen permeability was explained on the basis of polymer constitution. Typical values of the oxygen permeability, 3.4 x 10/sup -8/ (cc x cm/cm/sup 2/ x sec x cmHg) and ..cap alpha.., 2.1, were obtained at 72% of dimethylsiloxane content. The copolymers are soluble in most common organic solvents and uniform, defect-free membranes as thin as 1000 Angstroms have been formed by spreading solutions of the copolymer on water. Composite membranes fabricated by applying the membranes to porous support materials were used for practical gas separation and 30% oxygen enriched air was produced from ambient air. A new type oxygen enriched combustion system, which is more efficient for energy saving, has been developed by utilizing oxygen enriched air thus produced. 15 references, 15 figures, 1 table.

  9. Foam film permeability: theory and experiment.

    Science.gov (United States)

    Farajzadeh, R; Krastev, R; Zitha, Pacelli L J

    2008-02-28

    The mass transfer of gas through foam films is a prototype of various industrial and biological processes. The aim of this paper is to give a perspective and critical overview of studies carried out to date on the mass transfer of gas through foam films. Contemporary experimental data are summarized, and a comprehensive overview of the theoretical models used to explain the observed effects is given. A detailed description of the processes that occur when a gas molecule passes through each layer that forms a foam film is shown. The permeability of the film-building surfactant monolayers plays an important role for the whole permeability process. It can be successfully described by the models used to explain the permeability of surfactant monolayers on aqueous sub-phase. For this reason, the present paper briefly discusses the surfactant-induced resistance to mass transfer of gases through gas-liquid interface. One part of the paper discusses the experimental and theoretical aspects of the foam film permeability in a train of foam films in a matrix or a cylinder. This special case is important to explain the gas transfer in porous media or in foams. Finally, this paper will highlight the gaps and challenges and sketch possible directions for future research.

  10. Tunable permeability of magnetic wires at microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Panina, L.V., E-mail: lpanina@plymouth.ac.uk [National University of Science and Technology, MISiS, Moscow (Russian Federation); Institute for Design Problems in Microelectronics, RAN, Moscow (Russian Federation); Makhnovskiy, D.P. [School of Computing and Mathematics, University of Plymouth (United Kingdom); Morchenko, A.T.; Kostishin, V.G. [National University of Science and Technology, MISiS, Moscow (Russian Federation)

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires. - Highlights: • Applications of magnetic microwires for functional composites and distributed sensor networks are proposed. • Diluted composites with magnetic microwires can demonstrate tunable left-handed properties. • Large microwave permeability combined with a specific magnetic structure lead to a large and sensitive microwave magnetoimpedance. • Microwave magnetoimpedance highly sensitive to temperature is demonstrated.

  11. Low-dose aspirin use does not diminish the immune response to monovalent H1N1 influenza vaccine in older adults.

    Science.gov (United States)

    Jackson, M L; Bellamy, A; Wolff, M; Hill, H; Jackson, L A

    2016-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may inhibit antibody production by peripheral blood mononuclear cells; one consequence of this could be decreased effectiveness of vaccines in NSAID users. Because many older adults use low-dose aspirin for primary or secondary prevention of coronary events, any inhibitory effect of aspirin on vaccine immune response could reduce the benefits of vaccination programmes in older adults. We tested whether immune response to vaccination differed between users vs. non-users of low-dose aspirin, using data from four randomized trials of monovalent 2009 pandemic influenza A(H1N1) vaccine. Geometric mean haemagglutination inhibition antibody titres were not significantly lower in low-dose aspirin users compared to non-users. Our results provide reassurance that influenza vaccination effectiveness is probably not reduced in older adults taking chronic low-dose aspirin.

  12. The effect of primycin on the intracellular monovalent ion and water contents of rat hepatocytes as revealed by energy dispersive X-ray microanalysis and interference microscopy.

    Science.gov (United States)

    Horváth, I; Nagy, I; Lustyik, G; Váradi, G

    1983-01-01

    Using energy-dispersive X-ray microanalytic and interference microscopic techniques, the intracellular concentration of the monovalent ions (Na+, K+, Cl+) as well as the intracytoplasmic and intracellular water contents were studied in normal and adrenalectomized rat hepatocytes with and without primycin treatment. Although primycin influenced significantly only the intracellular potassium content of the adrenalectomized group, it exerted a marked influence on the intranuclear water content in both the normal and adrenalectomized rats. The intranuclear water content increased significantly in the primycin-treated animals. The conclusion is drawn that the increased level of hydration of the nuclear substances reflects a 'decondensation' of the chromatin which on the other hand, may represent the basis for the various effects of primycin on the induction of certain hepatic enzymes.

  13. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline

    Indian Academy of Sciences (India)

    Suresh Kumar Gupta; Vandna Luthra; Ramadhar Singh

    2012-10-01

    A detailed comparative study of electron paramagnetic resonance (EPR) in conjunction with d.c. electrical conductivity has been undertaken to know about the charge transport mechanism in polyaniline (PANI) doped with monovalent and multivalent protonic acids. This work is in continuation of our previous work for further understanding the conduction mechanism in conducting polymers. The results reveal that the polarons and bipolarons are the main charge carriers formed during doping process and these cause increase in electrical conductivity not only by increase in their concentration but also because of their enhanced mobility due to increased inter-chain transport in polyaniline at high doping levels. EPR line asymmetry having Dysonian line shape for highly doped samples shows a marked deviation of amplitudes / ratio from values close to one to much high values as usually observed in metals, thereby support the idea of high conductivity at higher doping levels. The nature of dopant ions and their doping levels control the charge carriers concentration as well as electrical conductivity of polyaniline. The electrical conductivity has also been studied as a function of temperature to know the thermally assisted transport process of these charge carriers at different doping levels which has been found to follow the Mott’s variable range hopping (VRH) conduction model for all the three dopants used. The charge carriers show a change over from 3D VRH to quasi 1D VRH hopping process for multivalent ions at higher doping levels whereas 1D VRH has been followed by monovalent ion for full doping range. These studies collectively give evidence of inter-chain percolation at higher doping levels causing increase in effective mobility of the charge carriers which mainly seems to govern the electrical conduction behaviour in this system.

  14. Permeability Measurements On Hot Rock Samples

    Science.gov (United States)

    Mueller, S.; Spieler, O.; Scheu, B.; Dingwell, D. B.

    Gas permeability is an important issue with regards to the explosive behaviour of Si- rich volcanoes. It directly affects the gas pressure within the volcano which influences the eruptive behaviour of the volcano. To date permeability measurements have only been performed on cold porous rocks (e.g. Eichelberger et al. 1986, Klug &Cashman 1996), because measurements with higher temperatures are not possible with common gas permeameters. Investigating the permeability of volcanic rocks in a hot state (up to 850 C) provides a better insight into the degassing processes under natural condi- tions. Therefore, any new experimental setup is expected to yield information about the temperature dependency of permeability in volcanic rocks. The present experi- ments have been performed on samples with a wide range of porosities. The samples were collected from block-and-ash flows on Merapi (Indonesia), Unzen (Japan) and pumices on Lipari Island (Italy). Permeabiltiy was measured using a modified setup of the fragmentation apparatus. A cylindrical rock sample (Æ = 25mm, l = 60 mm), glued gas tight in a sample container, was placed in a steel autoclave. Below the sample was a defined volume of argon gas at a known pressure. After the rupture of a diaphragm, the pressure above the sample drops rapidly to atmospheric conditions and the pres- surized gas flows through the porous rock sample until the pressure is equalized. The length of time from the beginning of the pressure drop to equilization delivers the basis for the calculation of the gas flow rate. The measurements we have performed at room temperature and at 850C to study the temperature dependency of the permeability.

  15. Simultaneous estimation of relative permeability and porosity/permeability fields by history matching production data

    Energy Technology Data Exchange (ETDEWEB)

    Eydinov, D. [Scandpower, Kjeller (Norway); Gao, G. [Chevron, San Ramon, CA (United States); Li, G.; Reynolds, A.C. [Tulsa Univ., Tulsa, OK (United States)

    2007-07-01

    Relative permeability curves are typically obtained through core flood tests. This paper provided details of a procedure that used automatic history matching of 3-phase flow production data to estimate permeability curves with grid block porosities. The method used a B-spline approximation to represent sets of permeability curves with a log transformation of parameters to ensure that curves were monotonic or convex. It was assumed that the model vector was a multivariate Gaussian distribution. The history matching problem was considered in a Bayesian framework. The method was then compared with a power law model using the same data from a synthetic reservoir model. Results showed that the B-spline model obtained more accurate permeability curves than the power law model. The randomized maximum likelihood (RML) method was used to quantify uncertainties in the model parameters. 19 refs., 17 figs.

  16. A Novel Empirical Equation for Relative Permeability in Low Permeability Reservoirs☆

    Institute of Scientific and Technical Information of China (English)

    Yulei Ge; Shurong Li; Kexin Qu

    2014-01-01

    In this paper, a novel empirical equation is proposed to calculate the relative permeability of low permeability res-ervoir. An improved item is introduced on the basis of Rose empirical formula and Al-Fattah empirical formula, with one simple model to describe oil/water relative permeability. The position displacement idea of bare bones particle swarm optimization is applied to change the mutation operator to improve the RNA genetic algorithm. The param-eters of the new empirical equation are optimized with the hybrid RNA genetic algorithm (HRGA) based on the ex-perimental data. The data is obtained from a typical low permeability reservoir wel 54 core 27-1 in GuDong by unsteady method. We carry out matlab programming simulation with HRGA. The comparison and error analysis show that the empirical equation proposed is more accurate than the Rose empirical formula and the exponential model. The generalization of the empirical equation is also verified.

  17. Quantitative Prediction of Structural Fractures in Low Permeability Reservoir

    Institute of Scientific and Technical Information of China (English)

    Zeng Lianbo; Tian Chonglu

    1996-01-01

    @@ Low -permeability fractured reservoirs will become increasingly prominent along with the enhanced exploration extent and the emerging moderate-high water content in most of the moderate-high permeability reservoirs of the oil fields in eastern China.

  18. Considerations about the internodal permeability evaluation in reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cordazzo, Jonas; Maliska, Clovis R. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. Computacional de Dinamica dos Fluidos]. E-mails: jonas@sinmec.ufsc.br; maliska@sinmec.ufsc.br; Romeu, Regis K. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: regis@cenpes.petrobras.com.br

    2003-07-01

    This work reports some numerical problems caused by the using of harmonic average in the inter nodal permeability calculation during the petroleum reservoir simulation. This paper begins with a brief review, showing, in the sequence the approach used by commercial simulators in interpreting the permeability map. Then, the results of using harmonic averaging to determine the inter nodal permeability are presented by solving the 2D chessboard problem. Finally, the Element-based Finite Volume Method (EbFVM) is analyzed considering the permeability evaluation. It is demonstrated that this method, besides dealing with triangular and quadrilateral elements, can also deal with the permeability map without averaging. The two possibilities of storing the physical properties and their implications in the permeability evaluation are addressed. The permeability storage in the center of the elements, instead of in the center of control volumes, avoids the need of weighting the permeability values in the interfaces of the control volumes. (author)

  19. Influence of salinity on permeability characteristics of marine sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Jose, U.V.; Bhat, S.T.; Nayak, B.U.

    that permeability increases with an increase in salt concentration for a given void ratio. This is explained by diffused double layer theory. Also, the rate of increase in permeability decreases with increase in salt concentration. The effect of salt concentration...

  20. Intestinal permeability study of minoxidil: assessment of minoxidil as a high permeability reference drug for biopharmaceutics classification.

    Science.gov (United States)

    Ozawa, Makoto; Tsume, Yasuhiro; Zur, Moran; Dahan, Arik; Amidon, Gordon L

    2015-01-05

    The purpose of this study was to evaluate minoxidil as a high permeability reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil was determined in in situ intestinal perfusion studies in rodents and permeability studies across Caco-2 cell monolayers. The permeability of minoxidil was compared with that of metoprolol, an FDA reference drug for BCS classification. In rat perfusion studies, the permeability of minoxidil was somewhat higher than that of metoprolol in the jejunum, while minoxidil showed lower permeability than metoprolol in the ileum. The permeability of minoxidil was independent of intestinal segment, while the permeability of metoprolol was region-dependent. Similarly, in mouse perfusion study, the jejunal permeability of minoxidil was 2.5-fold higher than that of metoprolol. Minoxidil and metoprolol showed similar permeability in Caco-2 study at apical pH of 6.5 and basolateral pH of 7.4. The permeability of minoxidil was independent of pH, while metoprolol showed pH-dependent transport in Caco-2 study. Minoxidil exhibited similar permeability in the absorptive direction (AP-BL) in comparison with secretory direction (BL-AP), while metoprolol had higher efflux ratio (ER > 2) at apical pH of 6.5 and basolateral pH of 7.4. No concentration-dependent transport was observed for either minoxidil or metoprolol transport in Caco-2 study. Verapamil did not alter the transport of either compounds across Caco-2 cell monolayers. The permeability of minoxidil was independent of both pH and intestinal segment in intestinal perfusion studies and Caco-2 studies. Caco-2 studies also showed no involvement of carrier mediated transport in the absorption process of minoxidil. These results suggest that minoxidil may be an acceptable reference drug for BCS high permeability classification. However, minoxidil exhibited higher jejunal permeability than metoprolol and thus to use minoxidil as a reference drug would raise the

  1. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.

    Science.gov (United States)

    Medda, P; Fassold, E; Hasselbach, W

    1987-06-01

    The coupling of Ca2+ movements and phosphate fluxes as well as the time-dependent occurrence of sequential reaction intermediates in the forward mode of the Ca,Mg-dependent ATPase reaction have been investigated using leaky vesicles (A23187) in the presence of varying Ca2+, Mg2+, and K+ concentrations. The employed ATP concentration of 2 microM does not allow more than one reaction cycle to occur. The respective fractions of ADP-sensitive and ADP-insensitive phosphoenzyme have been determined. The chosen experimental conditions (0-1 degree C, pH 6.0, absence of solubilizers) allow a prolonged time of observation and exclude interfering alterations of coupling and binding parameters, respectively. It is shown that under the experimental conditions K+ interacts with at least four different reaction steps (phosphoenzyme formation, E1P----E2P transition, E2P hydrolysis, and E2----E1 transformation). Mg2+ represents the sole ionic co-factor for the formation of the substrate MgATP if it is present in high concentrations (5 mM). Additional Ca2+ is bound to the substrate as well as to unspecific sites otherwise occupied by Mg2+ if Mg2+ is reduced to 0.1 mM. In this case the E1P----E2P transition rate (including Ca2+ translocation and Ca2+ release from low-affinity sites) is little diminished. If, in the absence of K+, both Mg2+ and Ca2+ are deficient E2P hydrolysis is vastly retarded. We find Ca2+ release to occur time-coincidently with E1P formation and not concomitantly with the comparably slow appearance of E2P; the molar amount of Ca2+ released, however, rather agreed with that of E2P formed. This suggests that under the prevailing conditions of a high proton concentration, phosphoenzyme states containing occluded Ca2+ or Ca2+ bound to low-affinity sites are transitional and not detectable. Preliminary findings on this subject have been published by us and colleagues from this laboratory [Hasselbach, W., Agostini, B., Medda, P., Migala, A. & Waas, W. (1985) in The sarcoplasmic reticulum calcium pump: Early and recent developments critically overviewed (Fleischer, S. & Tonomura, Y., eds) pp. 19-49, Academic Press, Orlando].

  2. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    Science.gov (United States)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  3. In situ emulsion cationic polymerization of isoprene onto the surface of graphite oxide sheets

    Science.gov (United States)

    Pazat, Alice; Beyou, Emmanuel; Barrès, Claire; Bruno, Florence; Janin, Claude

    2017-02-01

    Grafting of polymers onto graphite oxide sheets (GO) has been widely studied in recent years due to the numerous applications of GO-based composites. Herein, polyisoprene (PI) chains were anchored on the surface of GO by in situ cationic polymerization using a "grafting through" approach with allyltrimethoxysilane-modified GO (GO-ATMS). First, the functionalization of GO sheets through the hydrolysis-condensation of allyltrimethoxysilane (ATMS) molecules was qualitatively evidenced by infra-red spectroscopy and X-ray photoelectron spectrometry and a weight content of 4% grafted ATMS was calculated from thermogravimetric analysis. Then, isoprene was in situ polymerized through a one-pot cationic mechanism by using a highly water-dispersible Lewis acid surfactant combined catalyst. For comparison, it was shown that the cationic polymerization of isoprene in presence of un-functionalized GO sheets led to a polyisoprene weight content on the solid filler divided by 3 compared to GO-ATMS. Finally, the compounding of the modified GO/PI composites was performed at a processing temperature of 80 °C with 2 phr and 15 phr loadings and it was shown a decrease of the air permeability coefficient of 27% for the vulcanizates with 15 phr loading.

  4. Strong cation-exchange chromatography of proteins on a sulfoalkylated monolithic cryogel.

    Science.gov (United States)

    Perçin, Işık; Khalaf, Rushd; Brand, Bastian; Morbidelli, Massimo; Gezici, Orhan

    2015-03-20

    A new strong cation exchanger (SCX) monolithic column was synthesized by at-line surface modification of a cryogel prepared by copolymerization of 2-hydroxyethylmethacrylate (HEMA) and glycidylmethacrylate (GMA). Sodium salt of 3-Mercaptopropane sulfonic acid (3-MPS) was used as the ligand to transform the surface of the monolith into a strong cation exchanger. The obtained material was characterized in terms of elemental analysis, infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) N2 adsorption, and used as a stationary phase for strong-cation exchange chromatography of some proteins, such as α-chymotrypsinogen, cytochrome c and lysozyme. Water permeability of the column was calculated according to Darcy's law (2.66×10(-13)m(2)). The performance of the monolithic cryogel column was evaluated on the basis of Height Equivalent to a Theoretical Plate (HETP). Retention behavior of the studied proteins was modeled on the basis of Yamamoto model to understand the role of the ion-exchange mechanism in retention behaviors. The considered proteins were successfully separated, and the obtained chromatogram was compared with that obtained with a non-functionalized cryogel column.

  5. Degradation of permeability resistance of high strength concrete after combustion

    Institute of Scientific and Technical Information of China (English)

    Min LI; Hongtao KAO; Chunxiang QIAN

    2008-01-01

    To evaluate the remaining durability of con-crete materials after combustion, the permeability of high strength concrete (HSC) after combustion was studied. The transport behavior of chloride ion, water and air in concrete after combustion and the effect of temperature, strength grade, and aggregation on the permeability of HSC after combustion are investigated by chloride ion permeability coefficient (Dc), water permeability coef-ficient (Dw) and air permeability coefficient (Da). The experiment results show that all three permeability coeffi-cients commendably reflect changes of permeability. The permeability coefficient increases with the evaluation tem-perature. After the same temperature, the permeability coefficient of HSC is lower than that of normal strength concrete (NSC). However, the degree of degradation of permeability coefficient of HSC is greater than that of NSC. The permeability resistance of HSC containing limestone is better than that of HSC containing basalt. Combining changes of compressive strength and per-meability, the remaining durability of concrete materials after combustion is appropriately evaluated.

  6. 21 CFR 886.5916 - Rigid gas permeable contact lens.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rigid gas permeable contact lens. 886.5916 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5916 Rigid gas permeable contact lens. (a) Identification. A rigid gas permeable contact lens is a device intended to be worn...

  7. Determination of permeability using fractal method for porous media

    Institute of Scientific and Technical Information of China (English)

    施明恒; 陈永平

    2001-01-01

    A theoretical formulation was developed to express permeability as a function of different fractal dimensions and other scales for porous media . The effective fractal void ratio, the spectral dimension and the fractal dimension of particle mass distribution were introduced. The permeabilities for different soils in China are calculated. The predicted permeability for rice soil was compared with the measured data available in literature.

  8. Scanning electron microscopy and dentinal permeability analysis of smear layer.

    Science.gov (United States)

    Prati, C; Mongiorgi, R; Pashley, D H; Riva di Sanseverino, L

    1991-05-01

    The aim of the present study was to evaluate the surface morphology and the permeability of dentine after different acid treatments: polyacrylic acid, maleic acid, phosphoric acid and saline solution as control. Dentine permeability was expressed as hydraulic conductance. All the acid treatments removed the smear layer and increased the dentine permeability.

  9. Hydraulic permeability of bentonite-polymer composites for application in landfill technology

    Science.gov (United States)

    Dehn, Hanna; Haase, Hanna; Schanz, Tom

    2015-04-01

    Bentonites are often used as barrier materials in landfill technology to prevent infiltration of leachates to the natural environment. Since decades, geoenvironmental engineering aims at improving the hydro-mechanical performance of landfill liners. Various studies on the permeability performance of geosynthetic clay liners (GCLs) show effects of non-standard liquids on behaviour of Na+-bentonite regarding its sealing capacity. With increasing concentration of chemical aggressive solutions the sealing capacity decreases (Shackelford et al. 2000). An opportunity to improve the hydraulic permeability of the bentonites is the addition of polymers. The changes in hydraulic permeability performance of polymer treated and untreated bentonites while adding chemical aggressive solutions were studied by several authors. Results obtained by Scalia et al. (2014) illustrate that an increase in permeability can be prevented by adding polymer to Na+-bentonite. On the other hand, Ashmawy et al. (2002) presented results on the incapability of several commercial bentonite-polymer-products. The objective of this study is to characterize the influence of polymer addition on hydraulic performance of Na+-bentonite systematically. Therefore, the influence of 1% polymer addition of cationic and anionic polyacrylamide on the swelling pressure and hydraulic permeability of MX 80 bentonite was investigated. Preparation of bentonite-polymer composites was conducted (1) in dry conditions and (2) using solution-intercalation method. Experiments on hydraulic permeability were carried out using distilled water as well as CaCl2-solution. References Ashmawy, A. K., El-Hajji, D., Sotelo, N. & Muhammad, N. (2002), `Hydraulic Performance of Untreated and Polymer-treated Bentonite in Inorganic Landfill Leachates', Clays and Clay Minerals 50(5), 546-552. Scalia, J., Benson, C., Bohnhoff, G., Edil, T. & Shackelford, C. (2014), 'Long-Term Hydraulic Conductivity of a Bentonite-Polymer Composite Permeated

  10. Auxiliary Subunit GSG1L Acts to Suppress Calcium-Permeable AMPA Receptor Function

    Science.gov (United States)

    McGee, Thomas P.; Bats, Cécile

    2015-01-01

    AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of

  11. Ion Permeability of Free-Suspended Layer-by-Layer (LbL Films Prepared Using an Alginate Scaffold

    Directory of Open Access Journals (Sweden)

    Katsuhiko Sato

    2013-06-01

    Full Text Available Layer-by-layer (LbL films were prepared over an aperture (diameter 1–5 mm on a glass plate to study ion permeation across free-suspended LbL films. LbL films were prepared by depositing alternating layers of poly(allylamine hydrochloride (PAH and poly(styrene sulfonate (PSS on the surface of a glass plate with an aperture filled with an alginate gel, followed by dissolution of the alginate gel. PAH-PSS films prepared in this way showed permeability to inorganic salts, depending on the size and charge. Permeability to alkali metal chlorides depended on the Stokes radius of the alkali metal cations. The effect of the type of halide was negligible because of the halides’ smaller ionic radii. Permeation of multivalent ions such as Ru(NH363+ and [Fe(CN6]3− was severely suppressed owing to Donnan exclusion.

  12. Time-resolved fluoroimmunoassay for bactericidal/permeability-increasing protein

    Directory of Open Access Journals (Sweden)

    J.-O. Häggblom

    1996-01-01

    Full Text Available Bactericidal/permeability-increasing protein (BPI is a cationic antimicrobial protein produced by polymorphonuclear leukocytes, that specifically interacts with and kills Gram-negative bacteria. BPl competes with lipopolysaccharide-binding protein (LBP secreted by liver cells into blood plasma for binding to lipopolysaccharide (LPS and thus reduces the proinflammatory effects of LPS. We have developed a time-resolved fluoroimmunoassay for BPI and measured the concentration of BPI in human serum and plasma samples. The assay is based on a rabbit antibody against recombinant BPI. This antibody specifically adheres to polymorphonuclear leukocytes in immunostained human tissues. The difference in the serum concentration of BPI between unselected hospitalized patients with and without an infection was statistically significant. The mean concentration of BPI in serum samples was 28.3 μg/l (range 1.64–132, S.D. 26.8, n = 83. In contrast, there was no difference between the two groups in the BPI levels in plasma samples. For all individuals tested, BPI levels were consistently higher in plasma samples compared to the matched serum samples. The mean concentration of BPI in plasma samples was 52.3 μg/l (range 0.9–403, S.D. 60.6, n = 90. There was a positive correlation between the concentration of BPI and the white blood cell count as well as between the BPI concentration and C-reactive protein (CRP in serum samples. In conclusion, the present study demonstrates that BPI can be quantified reliably by time-resolved fluoroimmunoassay in human serum samples.

  13. Electrostatically gated membrane permeability in inorganic protocells

    Science.gov (United States)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  14. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-01

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  15. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David

    2016-01-01

    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  16. Monitoring pulmonary vascular permeability using radiolabeled transferrin

    Energy Technology Data Exchange (ETDEWEB)

    Basran, G.S.; Hardy, J.G.

    1988-07-01

    A simple, noninvasive technique for monitoring pulmonary vascular permeability in patients in critical care units is discussed. High vascular permeability is observed in patients with clinically defined adult respiratory distress syndrome (ARDS) but not in patients with hydrostatic pulmonary edema or in patients with minor pulmonary insults who are considered to be at risk of developing ARDS. The technique has been used in the field of therapeutics and pharmacology to test the effects of the putative antipermeability agents methylprednisolone and terbutaline sulfate. There appears to be a good correlation between the acute inhibitory effect of either drug on transferrin exudation and patient prognosis. Thus, a byproduct of such drug studies may be an index of survival in patients with established ARDS.

  17. Permittivity and permeability tensors for cloaking applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book is focused on derivations of analytical expressions for stealth and cloaking applications. An optimal version of electromagnetic (EM) stealth is the design of invisibility cloak of arbitrary shapes in which the EM waves can be controlled within the cloaking shell by introducing a prescribed spatial variation in the constitutive parameters. The promising challenge in design of invisibility cloaks lies in the determination of permittivity and permeability tensors for all the layers. This book provides the detailed derivation of analytical expressions of the permittivity and permeability tensors for various quadric surfaces within the eleven Eisenhart co-ordinate systems. These include the cylinders and the surfaces of revolutions. The analytical modeling and spatial metric for each of these surfaces are provided along with their tensors. This mathematical formulation will help the EM designers to analyze and design of various quadratics and their hybrids, which can eventually lead to design of cloakin...

  18. Gravity filtration of suspensions: permeability effects

    Science.gov (United States)

    Soori, Tejaswi; Wang, Mengyu; Ward, Thomas

    2015-11-01

    This paper examines the filtration rates of mono-modal suspensions as a function of time and a cake layer builds up through theory and experimentation. Darcy's Law, which describes fluid flow through porous media, was applied along with the Kynch theory of sedimentation, which provides the basis for analyzing low concentration (ϕ filter media. A CCD camera was used to capture images of the cake formation and fluid drainage processes, and subsequent image and theoretical analysis found the fluid flow experienced a constant pressure loss due to the permeability of the filter media, whereas the experienced pressure loss due to the cake formation varies as a function of time, ϕ and d. The rate of cake formation was also found to be independent of ϕ but dependent on d which can be attributed to a change in porosity affecting permeability. Studies on similar systems with multi-modal suspensions are in-progress.

  19. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  20. Metalated Nitriles: Cation-Controlled Cyclizations

    Science.gov (United States)

    Fleming, Fraser F.; Wei, Yunjing; Liu, Wang; Zhang, Zhiyu

    2008-01-01

    Judicious choice of cation allows the selective cyclization of substituted γ-hydroxynitriles to trans- or cis-decalins and trans- or cis-bicyclo[5.4.0]-undecanes. The stereoselectivities are consistent with deprotonations generating two distinctly different metalated nitriles: an internally coordinated nitrile anion with BuLi, and a C-magnesiated nitrile with i-PrMgCl. Employing cations to control the geometry of metalated nitriles permits stereodivergent cyclizations with complete control over the stereochemistry of the quaternary, nitrile-bearing carbon. PMID:17579448

  1. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  2. Cation Effect on Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin

    2009-02-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  3. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  4. Changes of Intestinal Permeability in Cholelithiasis Patients

    Institute of Scientific and Technical Information of China (English)

    Shao-long Sun; Shuo-dong Wu; Dong-xu Cui; Bao-lin Liu; Xian-wei Dai

    2009-01-01

    @@ In normal condition,intestine mucosa possesses barrier function.When the barrier function of intestine mucosa was damaged,intestinal bacteria,endotoxin,or other substances would enter blood.It is generally accepted that biliary bacteria origins from the intestine either via duodenal papilla or intestinal mucosa.In this study,we aimed to investigate the intestinal permeability changes of cholelithiasis patients to elucidate the possible pathogenesis of cholelithiasis.

  5. A Reconciliation of Packed Column Permeability Data: Column Permeability as a Function of Particle Porosity

    Directory of Open Access Journals (Sweden)

    Hubert M. Quinn

    2014-01-01

    Full Text Available In his textbook teaching of packed bed permeability, Georges Guiochon uses mobile phase velocity as the fluid velocity term in his elaboration of the Darcy permeability equation. Although this velocity frame makes a lot of sense from a thermodynamic point of view, it is valid only with respect to permeability at a single theoretical boundary condition. In his more recent writings, however, Guiochon has departed from his long-standing mode of discussing permeability in terms of the Darcy equation and has embraced the well-known Kozeny-Blake equation. In this paper, his teaching pertaining to the constant in the Kozeny-Blake equation is examined and, as a result, a new correlation coefficient is identified and defined herein based on the velocity frame used in his teaching. This coefficient correlates pressure drop and fluid velocity as a function of particle porosity. We show that in their experimental protocols, Guiochon et al. have not adhered to a strict material balance of permeability which creates a mismatch of particle porosity and leads to erroneous conclusions regarding the value of the permeability coefficient in the Kozeny-Blake equation. By correcting the experimental data to properly reflect particle porosity we reconcile the experimental results of Guiochon and Giddings, resulting in a permeability reference chart which is presented here for the first time. This reference chart demonstrates that Guiochon’s experimental data, when properly normalized for particle porosity and other related discrepancies, corroborates the value of 267 for the constant in the Kozeny-Blake equation which was derived by Giddings in 1965.

  6. Ammonia gas permeability of meat packaging materials.

    Science.gov (United States)

    Karim, Faris; Hijaz, Faraj; Kastner, Curtis L; Smith, J Scott

    2011-03-01

    Meat products are packaged in polymer films designed to protect the product from exterior contaminants such as light, humidity, and harmful chemicals. Unfortunately, there is almost no data on ammonia permeability of packaging films. We investigated ammonia permeability of common meat packaging films: low-density polyethylene (LDPE; 2.2 mil), multilayer polyolefin (MLP; 3 mil), and vacuum (V-PA/PE; 3 mil, 0.6 mil polyamide/2.4 mil polyethylene). The films were fabricated into 10 × 5 cm pouches and filled with 50 mL deionized water. Pouches were placed in a plexiglass enclosure in a freezer and exposed to 50, 100, 250, or 500 ppm ammonia gas for 6, 12, 24, and 48 h at -17 ± 3 °C and 21 ± 3 °C. At freezing temperatures, no ammonia residues were detected and no differences in pH were found in the water. At room temperature, ammonia levels and pH of the water increased significantly (P packaging materials have low ammonia permeability and protect meat products exposed to ammonia leaks during frozen storage.

  7. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    Science.gov (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  8. Multiple—tube Permeable Element for Combined Blowing Converter

    Institute of Scientific and Technical Information of China (English)

    YANGWen-yuan; XUWei-hua; 等

    1994-01-01

    The method consisting of cold test and hot simulating has been proved to be reliable for designing permeable ele-ments.The carbon-magnesia multiple-tube permeable ele-ments which are formed by isostatical pressure have higher density,high heat resistance and good thermoshock resis-tance,The brickwork ,maintenance and erosion meha-nism of permeable elements were studied.The tehnology of combined blowing wa established based on the peculiari-ties of semi-steel refining at Panzhihua Irom& Steel Co.(PZISC).The service life of permeable elements reahed 600 heats,that means the permeable elements can work synchronitially with converter lining.

  9. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Science.gov (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  10. Permeability and permeability anisotropy in Crab Orchard sandstone: Experimental insights into spatio-temporal effects

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip M.

    2017-08-01

    Permeability in tight crustal rocks is primarily controlled by the connected porosity, shape and orientation of microcracks, the preferred orientation of cross-bedding, and sedimentary features such as layering. This leads to a significant permeability anisotropy. Less well studied, however, are the effects of time and stress recovery on the evolution of the permeability hysteresis which is becoming increasingly important in areas ranging from fluid migration in ore-forming processes to enhanced resource extraction. Here, we report new data simulating spatio-temporal permeability changes induced using effective pressure, simulating burial depth, on a tight sandstone (Crab Orchard). We find an initially (measured at 5 MPa) anisotropy of 2.5% in P-wave velocity and 180% in permeability anisotropy is significantly affected by the direction of the effective pressure change and cyclicity; anisotropy values decrease to 1% and 10% respectively after 3 cycles to 90 MPa and back. Furthermore, we measure a steadily increasing recovery time (10-20 min) for flow parallel to cross-bedding, and a far slower recovery time (20-50 min) for flow normal to cross-bedding. These data are interpreted via strain anisotropy and accommodation models, similar to the ;seasoning; process often used in dynamic reservoir extraction.

  11. Evaluating Permeability Enchancement Using Electrical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    John W. Pritchett

    2008-09-01

    Enhanced Geothermal Systems (EGS) development projects involve the artificial stimulation of relatively impermeable high-temperature underground regions (at depths of 2-4 kilometers or more) to create sufficient permeability to permit underground fluid circulation, so that hot water can be withdrawn from production wells and used to generate electric power. Several major research projects of this general type have been undertaken in the past in New Mexico (Fenton Hill), Europe, Japan and Australia. Recent U.S. activities along these lines focus mainly on stimulating peripheral areas of existing operating hydrothermal fields rather than on fresh 'greenfield' sites, but the long-term objective of the Department of Energy's EGS program is the development of large-scale power projects based on EGS technology (MIT, 2006; NREL, 2008). Usually, stimulation is accomplished by injecting water into a well at high pressure, enhancing permeability by the creation and propagation of fractures in the surrounding rock (a process known as 'hydrofracturing'). Beyond just a motivation, low initial system permeability is also an essential prerequisite to hydrofracturing. If the formation permeability is too high, excessive fluid losses will preclude the buildup of sufficient pressure to fracture rock. In practical situations, the actual result of injection is frequently to re-open pre-existing hydrothermally-mineralized fractures, rather than to create completely new fractures by rupturing intact rock. Pre-existing fractures can often be opened using injection pressures in the range 5-20 MPa. Creation of completely new fractures will usually require pressures that are several times higher. It is preferable to undertake development projects of this type in regions where tectonic conditions are conducive to shear failure, so that when pre-existing fractures are pressurized they will fail by shearing laterally. If this happens, the fracture will often stay open

  12. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.

    1995-01-01

    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  13. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  14. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  15. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  16. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  17. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    Science.gov (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  18. Rheological behaviour of clays depending on the nature of the compensator cationLa nature du cation compensateur et le comportement rhéologique des argiles : une dépendance intime

    Science.gov (United States)

    Gasmi, Nejmeddine; Al-Mukhtar, Muzahim; Kbir Ariguib, Najia; Bergaya, Faïza

    2000-03-01

    A natural smectite soil and three purified clays: Na-smectite, Ca-smectite and bi-ionic (15% of Na + within Ca-smectite), respectively, were consolidated in an oedometer to an axial stress range of 0 to 10 MPa. Compression index, swelling index, elastic modulus and hydraulic conductivity calculated from consolidation data tests show the high effect of cation exchange on the rheological behaviour of these materials. The purified Na-smectite is the most compressible, the less permeable and having the highest swelling potential of all tested clays. Using pore volume data from gas adsorption measurements and oedometer tests allows investigation of the distributions of micro, meso and macropores, which are also function of clay cation.

  19. Effective stress law for the permeability of a limestone

    CERN Document Server

    Ghabezloo, Siavash; Guédon, Sylvine; Martineau, François

    2008-01-01

    The effective stress law for the permeability of a limestone is studied experimentally by performing constant head permeability tests in a triaxial cell with different conditions of confining pressure and pore pressure. Test results have shown that a pore pressure increase and a confining pressure decrease both result in an increase of the permeability, and that the effect of the pore pressure change on the variation of the permeability is more important than the effect of a change of the confining pressure. A power law is proposed for the variation of the permeability with the effective stress. The permeability effective stress coefficient increases linearly with the differential pressure and is greater than one as soon the differential pressure exceeds few bars. The test results are well reproduced using the proposed permeability-effective stress law. A conceptual pore-shell model based on a detailed observation of the microstructure of the studied limestone is proposed. This model is able to explain the ex...

  20. The Accelerated Test of Chloride Permeability of Concrete

    Institute of Scientific and Technical Information of China (English)

    TAN Ke-feng; ODD E Gjφrv

    2003-01-01

    The availability of accelerated chloride permeability test and the effect of w/c ratio, incorporation of silica fume, maximum aggregate size and aggregate type on the chloride permeability were studied. The mathematic analysis certifies that there is a linear relationship between accelerated test and natural diffusion. Test results show that the chloride permeability of concrete increases as w/c ratio increases whilst a limited amount of replacement of cement with silica fume, the chloride permeability decreases dramatically. The maximum aggregate size in the range of 8 to 25 mm seems also affect chloride permeability but with a much less significant level. The chloride permeability of silica fume lightweight aggregate concrete is very low, especially the concrete made with dry lightweight concrete. The chloride permeability can be evaluated by this accelerated test method.

  1. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  2. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  3. Permeability-porosity relationships of subduction zone sediments

    Science.gov (United States)

    Gamage, K.; Screaton, E.; Bekins, B.; Aiello, I.

    2011-01-01

    Permeability-porosity relationships for sediments from the northern Barbados, Costa Rica, Nankai, and Peru subduction zones were examined based on sediment type, grain size distribution, and general mechanical and chemical compaction history. Greater correlation was observed between permeability and porosity in siliciclastic sediments, diatom oozes, and nannofossil chalks than in nannofossil oozes. For siliciclastic sediments, grouping of sediments by percentage of clay-sized material yields relationships that are generally consistent with results from other marine settings and suggests decreasing permeability as percentage of clay-sized material increases. Correction of measured porosities for smectite content improved the correlation of permeability-porosity relationships for siliciclastic sediments and diatom oozes. The relationship between permeability and porosity for diatom oozes is very similar to the relationship in siliciclastic sediments, and permeabilities of both sediment types are related to the amount of clay-size particles. In contrast, nannofossil oozes have higher permeability values by 1.5 orders of magnitude than siliciclastic sediments of the same porosity and show poor correlation between permeability and porosity. More indurated calcareous sediments, nannofossil chalks, overlap siliciclastic permeabilities at the lower end of their measured permeability range, suggesting similar consolidation patterns at depth. Thus, the lack of correlation between permeability and porosity for nannofossil oozes is likely related to variations in mechanical and chemical compaction at shallow depths. This study provides the foundation for a much-needed global database with fundamental properties that relate to permeability in marine settings. Further progress in delineating controls on permeability requires additional carefully documented permeability measurements on well-characterized samples. ?? 2010 Elsevier B.V.

  4. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  5. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    Science.gov (United States)

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  6. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    Science.gov (United States)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (packaging and foil replacement for food.

  7. Calcium-permeable ion channels involved in glutamate receptor-independent ischemic brain injury

    Institute of Scientific and Technical Information of China (English)

    Ming-hua LI; Koichi INOUE; Hong-fang SI; Zhi-gang XIONG

    2011-01-01

    Brain ischemia is a leading cause of death and long-term disabilities worldwide. Unfortunately, current treatment is limited to thrombolysis, which has limited success and a potential side effect of intracerebral hemorrhage. Searching for new cell injury mechanisms and therapeutic interventions has become a major challenge in the field. It has been recognized for many years that intracellular Ca2+overload in neurons is essential for neuronal injury associated with brain ischemia. However, the exact pathway(s) underlying the toxic Ca2+ loading remained elusive. This review discusses the role of two Ca2+-permeable cation channels, TRPM7 and acid-sensing channels, in glutamate-independent Ca2+ toxicity associated with brain ischemia.

  8. CO2 breakthrough pressure and permeability for unsaturated low-permeability sandstone of the Ordos Basin

    Science.gov (United States)

    Zhao, Yan; Yu, Qingchun

    2017-07-01

    With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish

  9. The effects of cationic contamination on the physio-chemical properties of perfluoroionomer membranes

    Science.gov (United States)

    Molter, Trent M.

    Proton Exchange Membrane (PEM) technology cannot meet fuel cell and electrolyzer durability standards for stationary and transportation applications. Cell designs are not of sufficient maturity to demonstrate more than several thousand hours of invariant performance. One of the limiting factors is the operational lifetime of membrane electrode assemblies (MEA's) because of pin-holing, dry-out, mechanical breeches, chemical attack and contamination. This program investigated the role of contamination on the degradation of perfluorinated membranes in fuel cell and electrolysis environments. Tests were conducted to develop an understanding of the effects of cationic contaminants on fundamental design parameters for these membranes including water content, ion exchange capacity, gas diffusion, ionic conductivity, and mechanical properties. Tests showed that cations rapidly transport into the membrane and disperse throughout its structure achieving high equilibrium concentrations. Ion charge density appears to govern membrane water content with small ions demonstrating the highest water content. Permeability studies showed transport in accordance with Fick's law in the following order: H2>O2>N 2>H2O. Cations negatively affect gas and water transport, with charge density affecting transport rates. Unique diffusion coefficients were calculated for each contaminating species suggesting that the contaminant is an integral participant in the transport process. AC resistance measurements showed that size of the ion charge carrier is an important factor in the conduction mechanism and that membrane area specific resistance correlates well with water content. Increases in membrane yield strength and the modulus of elasticity were demonstrated with increased contamination. Tensile tests showed that cation size plays an important role in determining the magnitude of this increase, indicating that larger ions interfere more with strain than smaller ones. Contaminants reduced

  10. Engineered Trehalose Permeable to Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Alireza Abazari

    Full Text Available Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre and trehalose tetraacetate (4-O-Ac-Tre. Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies.

  11. [Corneal permeability of topically applied pirenzepine solution].

    Science.gov (United States)

    Wang, Kai-di; Zhang, Jin-song; Yan, Pan-shi

    2006-06-01

    To study the corneal permeability of three different pirenzepine eye-drop solutions and provide reference for further clinical use. Sixty-three New Zealand white rabbits were divided into three groups. Each group of rabbits received 2% pirenzepine (pirenzepine group), 2% pirenzepine with 0.1% hyaluronic acid (hyaluronic acid group), or 2% pirenzepine with 0.1% azone (azone group). One drop eye-drops was applied to conjunctive sac every 5 min for six times. Aqueous samples were obtained from each group at 0.5, 1.0, 2.0, 4.0, 8.0, 12.0, 24.0 h after the last drop, respectively. Concentration of pirenzepine in these samples was determined by the HPLC (high pressure liquid chromatography). Stimulation symptom of rabbit eyes was also observed. The concentrations of pirenzepine in aqueous humor were (0.40 +/- 0.06) microg/ml at 0.5 h, (0.53 +/- 0.03) microg/ml at 1.0 h, (1.52 +/- 0.33) microg/ml at 2.0 h and (0.15 +/- 0.02) microg/ml at 4.0 h in pirenzepine group. Aqueous humor concentration of pirenzepine in both 2% pirenzepine with 0.1% azone and 2% pirenzepine with 0.1% hyaluronic acid were significantly higher than that of single pirenzepine application, and their bioavailability in the groups with combinations of pirenzepine with 0.1% azone or 0.1% hyaluronic acid were 23.0 times and 3.4 times higher than that of single pirenzepine usage. No obvious irritate symptom was found in rabbit of all three groups after eye-drop applying. The combination application of pirenzepine with azone or hyaluronic acid has higher corneal permeability compared with pirenzepine alone. This result indicates that azone and hyaluronic acid could be used in pirenzepine eye-drop solution to increase corneal permeability.

  12. THE CATIONIC ADDITIVES USED IN COATED INK-JET PAPER

    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen

    2004-01-01

    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  13. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...

  14. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  15. PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J; Tommy Edwards, T; Vickie Williams, V

    2008-01-30

    One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for

  16. Altered permeability barrier structure in cholesteatoma matrix

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Halkier-Sørensen, Lars; Rasmussen, Gurli

    2002-01-01

    The stratum corneum of the cholesteatoma epithelium comprises the greater part of the cholesteatoma matrix. The permeability barrier that militates against diffusion and penetration of infectious and toxic agents into and through the epithelium is situated here. The multiple long sheets of lamellar...... lipid structures filling the intercellular spaces mainly control the barrier function. The barrier in cholesteatoma epithelium is several times thicker than in unaffected skin but presents distinctive features of a defective barrier as seen in other scaling skin diseases. The intercellular spaces appear...

  17. Gas permeability measurements for film envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, Gerard M. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Watkin, David C. (Clinton, TN); Walton, David G. (Knoxville, TN)

    1998-01-01

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

  18. Gas permeability measurements for film envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Ludtka, G.M.; Kollie, T.G.; Watkin, D.C.; Walton, D.G.

    1998-05-12

    Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the ``body-filled panel.`` Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials. 4 figs.

  19. On the dynamic viscous permeability tensor symmetry.

    Science.gov (United States)

    Perrot, Camille; Chevillotte, Fabien; Panneton, Raymond; Allard, Jean-François; Lafarge, Denis

    2008-10-01

    Based on a direct generalization of a proof given by Torquato for symmetry property in static regime, this express letter clarifies the reasons why the dynamic permeability tensor is symmetric for spatially periodic structures having symmetrical axes which do not coincide with orthogonal pairs being perpendicular to the axis of three-, four-, and sixfold symmetry. This somewhat nonintuitive property is illustrated by providing detailed numerical examples for a hexagonal lattice of solid cylinders in the asymptotic and frequency dependent regimes. It may be practically useful for numerical implementation validation and/or convergence assessment.

  20. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations.

    Science.gov (United States)

    Bücking, Heike

    2004-06-01

    A prerequisite for symbiotic phosphate transfer in an ectomycorrhizal (ECM) association is hypothesized to be conditions in the interface between both symbiotic partners, that either promote the release of inorganic phosphate (P) from the Hartig net into the interfacial apoplast and/or decrease the fungal reabsorption from this location. To get more information about conditions, which might be involved in the regulation of P efflux or P reabsorption, the effect of various external conditions on 33P-orthophosphate (33P) uptake or efflux by axenic cultures of the ECM basidiomycetes Hebeloma crustliniforme, Amanita muscaria and Laccaria laccata was analysed. In short-time experiments the following external conditions were analysed: an external supply of (1) P in the preculture, (2) cations (0.1-100 mM K, 0.1-50 mM Na, Mg and Ca), and (3) carbohydrates (0.5-50 mM glucose, fructose or sucrose). The P absorption was generally reduced in cultures previously supplied with an abundant P supply and with increased P concentrations in their tissues. The P uptake was also affected by an external supply of cations, whereas carbohydrates had only a slight effect. Compared to Na, Mg and Ca, the P absorption by H. crustuliniforme and L. laccata was increased by 0.1 mM K in the labelling solution but decreased after a supply of 100 mM K and then did not differ from the other cation treatments. Compared to other cations, an addition of 50 mM Ca led to a decrease of P absorption by A. muscaria, whereas 50 mM Mg increased the P uptake by H. crustuliniforme. The P efflux from the fungi was affected by both the cation and carbohydrate concentration of the bathing solution. High concentrations of the monovalent cations K and Na (5 mM or 50 mM) in the bathing solution increased the P efflux by H. crustuliniforme (only Na) and L. laccata (K and Na), but had little effects on A. muscaria. By contrast, the same concentrations of the divalent cation Mg reduced the P efflux from all fungal

  1. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.

    1982-02-10

    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  2. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis*

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M.; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I.; Chan, A. W. Edith; Towers, Greg J.; Coker, Alun R.; Duchen, Michael R.; Szabadkai, Gyorgy; Baker, David; Selwood, David L.

    2016-01-01

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use. PMID:26679998

  3. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis.

    Science.gov (United States)

    Warne, Justin; Pryce, Gareth; Hill, Julia M; Shi, Xiao; Lennerås, Felicia; Puentes, Fabiola; Kip, Maarten; Hilditch, Laura; Walker, Paul; Simone, Michela I; Chan, A W Edith; Towers, Greg J; Coker, Alun R; Duchen, Michael R; Szabadkai, Gyorgy; Baker, David; Selwood, David L

    2016-02-26

    The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.

  4. Estimation of permeability and permeability anisotropy in horizontal wells through numerical simulation of mud filtrate invasion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Nelson [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Altman, Raphael; Rasmus, John; Oliveira, Jansen [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This paper describes how permeability and permeability anisotropy is estimated in horizontal wells using LWD (logging-while-drilling) laterolog resistivity data. Laterolog-while-drilling resistivity passes of while-drilling and timelapse (while reaming) were used to capture the invasion process. Radial positions of water based mud invasion fronts were calculated from while-drilling and reaming resistivity data. The invasion process was then recreated by constructing forward models with a fully implicit, near-wellbore numerical simulation such that the invasion front at a given time was consistent with the position of the front predicted by resistivity inversions. The radial position of the invasion front was shown to be sensitive to formation permeability. The while-drilling environment provides a fertile scenario to investigate reservoir dynamic properties because mud cake integrity and growth is not fully developed which means that the position of the invasion front at a particular point in time is more sensitive to formation permeability. The estimation of dynamic formation properties in horizontal wells is of particular value in marginal fields and deep-water offshore developments where running wireline and obtaining core is not always feasible, and where the accuracy of reservoir models can reduce the risk in field development decisions. (author)

  5. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2017-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc......-protected alkyl- and aryl-substituted α-amido sulfones. In-situ generated imines smoothly reacted with the nitrogen nucleophiles to corresponding aminals with good to excellent enantioselectivitiy under mild reaction conditions. In addition, transformation of aminal products gave biologically relevant...

  6. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes...... concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D....... In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake...

  7. Modeling of microvascular permeability changes after electroporation.

    Directory of Open Access Journals (Sweden)

    Selma Corovic

    Full Text Available Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach with in vivo measurements (by intravital fluorescence microscopy. Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s] for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation.

  8. Modeling the pharmacodynamics of passive membrane permeability

    Science.gov (United States)

    Swift, Robert V.; Amaro, Rommie E.

    2011-11-01

    Small molecule permeability through cellular membranes is critical to a better understanding of pharmacodynamics and the drug discovery endeavor. Such permeability may be estimated as a function of the free energy change of barrier crossing by invoking the barrier domain model, which posits that permeation is limited by passage through a single "barrier domain" and assumes diffusivity differences among compounds of similar structure are negligible. Inspired by the work of Rezai and co-workers (JACS 128:14073-14080, 2006), we estimate this free energy change as the difference in implicit solvation free energies in chloroform and water, but extend their model to include solute conformational affects. Using a set of eleven structurally diverse FDA approved compounds and a set of thirteen congeneric molecules, we show that the solvation free energies are dominated by the global minima, which allows solute conformational distributions to be effectively neglected. For the set of tested compounds, the best correlation with experiment is obtained when the implicit chloroform global minimum is used to evaluate the solvation free energy difference.

  9. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  10. Air sparging in low permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Marley, M.C. [Envirogen, Inc., Canton, MA (United States)

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.

  11. Modeling of microvascular permeability changes after electroporation.

    Science.gov (United States)

    Corovic, Selma; Markelc, Bostjan; Dolinar, Mitja; Cemazar, Maja; Jarm, Tomaz

    2015-01-01

    Vascular endothelium selectively controls the transport of plasma contents across the blood vessel wall. The principal objective of our preliminary study was to quantify the electroporation-induced increase in permeability of blood vessel wall for macromolecules, which do not normally extravasate from blood into skin interstitium in homeostatic conditions. Our study combines mathematical modeling (by employing pharmacokinetic and finite element modeling approach) with in vivo measurements (by intravital fluorescence microscopy). Extravasation of fluorescently labeled dextran molecules of two different sizes (70 kDa and 2000 kDa) following the application of electroporation pulses was investigated in order to simulate extravasation of therapeutic macromolecules with molecular weights comparable to molecular weight of particles such as antibodies and plasmid DNA. The increase in blood vessel permeability due to electroporation and corresponding transvascular transport was quantified by calculating the apparent diffusion coefficients for skin microvessel wall (D [μm2/s]) for both molecular sizes. The calculated apparent diffusion coefficients were D = 0.0086 μm2/s and D = 0.0045 μm2/s for 70 kDa and 2000 kDa dextran molecules, respectively. The results of our preliminary study have important implications in development of realistic mathematical models for prediction of extravasation and delivery of large therapeutic molecules to target tissues by means of electroporation.

  12. Dehumidification System with Steam Permeability Films

    Science.gov (United States)

    Ishikwa, Masaaki; Sekimori, Souji; Ogiwara, Shigeaki; Ochiai, Tetsunari; Hirata, Tetsuo

    In a factory with a clean room facility in cold regions, dew-condensation on walls of the facility is one of the most serious problems in winter. In this study, a new dehumidification system in which a steam permeability film is located between humid air in a clean room and dry air from outside to exchange steam is proposed. This system can treat a lot of humid air with small energy only for driving fans to flow air. Some films are examined in two kinds of steam exchangers; double tube type and flat p1ate type. Steam permeability resistance and therma1 resistance of each film are first obtained in a double tube type exchanger. An analytica1 model for a flat plate type exchanger is then proposed, which shows good agreement with experimental data. Steam and heat transfer characteristics of a flat plate type exchanger are also evaluated experimentally. One film on a flat plate type exchanger shows dehumidification capacity of 0.033g/s(=120g/h )with its area of 2.232m2.

  13. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  14. Therapeutic benefits of enhancing permeability barrier for atopic eczema

    Directory of Open Access Journals (Sweden)

    George Man

    2015-06-01

    Full Text Available The regulatory role of epidermal permeability barrier function in cutaneous inflammation has been well appreciated. While barrier disruption induces cutaneous inflammation, improvement of permeability barrier function alleviates inflammation. Studies have demonstrated that improvement of epidermal permeability barrier function not only prevents the development of atopic eczema, but also delays the relapse of these diseases. Moreover, enhancing the epidermal permeability barrier also alleviates atopic eczema. Furthermore, co-applications of barrier enhancing products with glucocorticoids can increase the therapeutic efficacy and reduce the adverse effects of glucocorticoids in the treatment of atopic eczema. Therefore, utilization of permeability barrier enhancing products alone or in combination with glucocorticoids could be a valuable approach in the treatment of atopic eczema. In this review, we discuss the benefits of improving the epidermal permeability barrier in the management of atopic eczema.

  15. Herbal medicines that benefit epidermal permeability barrier function

    Directory of Open Access Journals (Sweden)

    Lizhi Hu

    2015-06-01

    Full Text Available Epidermal permeability barrier function plays a critical role in regulating cutaneous functions. Hence, researchers have been searching for effective and affordable regimens to enhance epidermal permeability barrier function. In addition to topical stratum corneum lipids, peroxisome proliferator-activated receptor, and liver X receptor ligands, herbal medicines have been proven to benefit epidermal permeability barrier function in both normal and diseased skin, including atopic dermatitis, glucocorticoid-induced skin damage, and UVB-damaged skin. The potential mechanisms by which herbal medicines improve the permeability barrier include stimulation of epidermal differentiation, lipid production, antimicrobial peptide expression, and antioxidation. Therefore, utilization of herbal medicines could be a valuable alternative approach to enhance epidermal permeability barrier function in order to prevent and/or treat skin disorders associated with permeability barrier abnormalities.

  16. Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi)channels.

    Science.gov (United States)

    Hansen, Daniel Bloch; Ye, Zu-Cheng; Calloe, Kirstine; Braunstein, Thomas Hartig; Hofgaard, Johannes Pauli; Ransom, Bruce R; Nielsen, Morten Schak; MacAulay, Nanna

    2014-09-19

    Astrocytes and neurons express several large pore (hemi)channels that may open in response to various stimuli, allowing fluorescent dyes, ions, and cytoplasmic molecules such as ATP and glutamate to permeate. Several of these large pore (hemi)channels have similar characteristics with regard to activation, permeability, and inhibitor sensitivity. Consequently, their behaviors and roles in astrocytic and neuronal (patho)physiology remain undefined. We took advantage of the Xenopus laevis expression system to determine the individual characteristics of several large pore channels in isolation. Expression of connexins Cx26, Cx30, Cx36, or Cx43, the pannexins Px1 or Px2, or the purinergic receptor P2X7 yielded functional (hemi)channels with isoform-specific characteristics. Connexin hemichannels had distinct sensitivity to alterations of extracellular Ca(2+) and their permeability to dyes and small atomic ions (conductance) were not proportional. Px1 and Px2 exhibited conductance at positive membrane potentials, but only Px1 displayed detectable fluorescent dye uptake. P2X7, in the absence of Px1, was permeable to fluorescent dyes in an agonist-dependent manner. The large pore channels displayed overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized the divalent cation-sensitive permeation pathway in primary cultured astrocytes. We observed no activation of membrane conductance or Cx43-mediated dye uptake in astrocytes nor in Cx43-expressing C6 cells. Our data underscore that although Cx43-mediated transport is observed in overexpressing cell systems, such transport may not be detectable in native cells under comparable experimental conditions.

  17. Effect of Cationic and Anionic Surfactants on the Application of Calcium Carbonate Nanoparticles in Paper Coating

    CERN Document Server

    Barhoum, Ahmed; Abou-Zaied, Ragab Esmail; Rehan, Mohamed; Dufour, Thierry; Hill, Gavin; Dufresne, Alain

    2016-01-01

    Modification of calcium carbonate particles with surfactant significantly improves the properties of the calcium carbonate coating on paper. Unmodified and CTAB and oleate-modified calcium carbonate nanoparticles were prepared using the wet carbonation technique for paper coating. CTAB (cationic surfactant) and sodium oleate (anionic surfactant) were used to modify the size, morphology, and surface properties of the precipitated nanoparticles. The obtained particles were characterized by XRD, FT-IR spectroscopy, zeta potential measurements, TGA and TEM. Coating colors were formulated from the prepared unmodified and modified calcium carbonates and examined by creating a thin coating layer on reference paper. The effect of calcium carbonate particle size and surface modification on paper properties, such as coating thickness, coating weight, surface roughness, air permeability, brightness, whiteness, opacity, and hydrophobicity, were investigated and compared with GCC calcium carbonate-coated papers. The obtai...

  18. Controlling chemistry with cations: photochemistry within zeolites.

    Science.gov (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  19. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  20. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  1. Modelling of Longwall Mining-Induced Strata Permeability Change

    Science.gov (United States)

    Adhikary, D. P.; Guo, H.

    2015-01-01

    The field measurement of permeability within the strata affected by mining is a challenging and expensive task, thus such tests may not be carried out in large numbers to cover all the overburden strata and coal seams being affected by mining. However, numerical modelling in conjunction with a limited number of targeted field measurements can be used efficiently in assessing the impact of mining on a regional scale. This paper presents the results of underground packer testing undertaken at a mine site in New South Wales in Australia and numerical simulations conducted to assess the mining-induced strata permeability change. The underground packer test results indicated that the drivage of main headings (roadways) had induced a significant change in permeability into the solid coal barrier. Permeability increased by more than 50 times at a distance of 11.2-11.5 m from the roadway rib into the solid coal barrier. The tests conducted in the roof strata above the longwall goaf indicated more than 1,000-fold increase in permeability. The measured permeability values varied widely and strangely on a number of occasions; for example the test conducted from the main headings at the 8.2-8.5 m test section in the solid coal barrier showed a decline in permeability value as compared to that at the 11.2-11.5 m section contrary to the expectations. It is envisaged that a number of factors during the tests might have had affected the measured values of permeability: (a) swelling and smearing of the borehole, possibly lowering the permeability values; (b) packer bypass by larger fractures; (c) test section lying in small but intact (without fractures) rock segment, possibly resulting in lower permeability values; and (d) test section lying right at the extensive fractures, possibly measuring higher permeability values. Once the anomalous measurement data were discarded, the numerical model results could be seen to match the remaining field permeability measurement data

  2. Fractal Derivative Model for Air Permeability in Hierarchic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2012-01-01

    Full Text Available Air permeability in hierarchic porous media does not obey Fick's equation or its modification because fractal objects have well-defined geometric properties, which are discrete and discontinuous. We propose a theoretical model dealing with, for the first time, a seemingly complex air permeability process using fractal derivative method. The fractal derivative model has been successfully applied to explain the novel air permeability phenomenon of cocoon. The theoretical analysis was in agreement with experimental results.

  3. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  4. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  5. Neural Approach for Calculating Permeability of Porous Medium

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Cheng; LIU Li; SONG Kao-Ping

    2006-01-01

    @@ Permeability is one of the most important properties of porous media. It is considerably difficult to calculate reservoir permeability precisely by using single well-logging response and simple formula because reservoir is of serious heterogeneity, and well-logging response curves are badly affected by many complicated factors underground. We propose a neural network method to calculate permeability of porous media. By improving the algorithm of the back-propagation neural network, convergence speed is enhanced and better results can be achieved. A four-layer back-propagation network is constructed to effectively calculate permeability from well log data.

  6. Characteristics of permeability in carbonate areas of Korea

    Science.gov (United States)

    Park, Y.; Lee, J.; Lim, H.; Keehm, Y.

    2010-12-01

    Permeability (hydraulic conductivity) in carbonate areas is affected by various factors such as fracture, pore and degree of weathering and diagenesis. Also, caves developed in carbonate area are main factors. This study was performed to understand factors controlling the permeability in carbonate areas in Korea. In order to conduct this study, the permeability and well logging data (n=30) were collected from many literatures and rock samples were collected around wells. Vertical profile of the carbonate areas can be classified into soil, weathered carbonate and fresh carbonate zone. They show a different range at each region. Most of the rock samples were hardly weathered. The permeability showed wide ranges (0.009 to 1.1 m/day). The average value of the permeability was 0.159 m/day. However, 80% (n=24) of total data had the permeability valves lower than 0.1 m/day. The permeability values were distinguished according to degree of development of fractures. The permeability showed low values (approximately 0.5 m/day) in highly fractured carbonate. These results mean that fractures are dominant factors controlling the permeability in carbonate areas of Korea than others. This work was supported by Energy Resource R&D program (2009T100200058) under the Ministry of Knowledge Economy, Republic of Korea.

  7. Gut permeability in neonates after a stage 1 Norwood procedure.

    Science.gov (United States)

    Malagon, Ignacio; Onkenhout, Willem; Klok, Margreet; van der Poel, Petrus F H; Bovill, James G; Hazekamp, Mark G

    2005-09-01

    Intestinal mucosal ischemia can occur during and after cardiac surgery. Severe decreases in mucosal perfusion may be a causative factor for postoperative mortality or complications such as necrotizing enterocolitis. Mesenteric perfusion is challenged preoperatively due to an imbalance between the systemic and pulmonary circulations and challenged intraoperatively due to hypothermic circulatory arrest. We have investigated gut permeability in seven patients undergoing stage 1 of the Norwood procedure, applying the dual sugar permeability test with L-rhamnose and lactulose. Seven patients with hypoplastic left heart syndrome: clinical presentation, gut permeability findings, and outcome. A 10-bed mixed pediatric intensive care unit in a university hospital. Seven patients admitted for postoperative care after cardiac surgery. Determination of gut permeability with the dual sugar permeability test using lactulose and rhamnose. Intestinal permeability was measured after induction of anesthesia and 12 and 24 hrs later. : All patients had abnormal lactulose/rhamnose ratios. One patient, who had a lactulose/rhamnose ratio 12 hrs after surgery of 2.3 (46-times normal), developed necrotizing enterocolitis postoperatively and died 3 days after surgery. Gut permeability as assessed by the dual sugar permeability test is abnormal in patients with hypoplastic left heart syndrome before and after surgery. Lactulose/rhamnose ratios 46 times the normal value reflect a highly permeable small intestine. This may be a sign of a low output state and may help to identify patients at risk of developing necrotizing enterocolitis.

  8. Influence of decenylsuccinic Acid on water permeability of plant cells.

    Science.gov (United States)

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified.

  9. Dentin permeability: effects of endodontic procedures on root slabs.

    Science.gov (United States)

    Fogel, H M; Pashley, D H

    1990-09-01

    The permeability of human radicular dentin was measured as a hydraulic conductance before and after treatment with K files and before and after subsequent treatment of the endodontic smear layer with NaOCl, 50% citric acid, or 3% monopotassium-monohydrogen oxalate. Filing reduced dentin permeability 25 to 49%, respectively, depending upon whether outer or inner root dentin was filed. The permeability of these smear layers was unaffected by 5% NaOCl but increased many times after treatment with 50% citric acid for 2 min. Oxalate treatment lowered root dentin permeability to levels below that produced by creation of smear layers due to the production of a crystalline precipitate.

  10. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    OBJECTIVE: Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestin......OBJECTIVE: Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small......-intestinal biopsies, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal...

  11. Composite binders for concrete with reduced permeability

    Science.gov (United States)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  12. Lattice Boltzmann modelling of intrinsic permeability

    CERN Document Server

    Li, Jun; Wu, Lei; Zhang, Yonghao

    2016-01-01

    Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous media including intrinsic permeability, where it is implicitly assumed that the LBM is equivalent to the incompressible (or near incompressible) Navier-Stokes equation. However, in LBM simulations, high-order moments, which are completely neglected in the Navier-Stokes equation, are still available through particle distribution functions. To ensure that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level, the high-order moments have to be negligible. This requires that the Knudsen number (Kn) is small so that rarefaction effect can be ignored. In this technical note, we elaborate this issue in LBM modelling of porous media flows, which is particularly important for gas flows in ultra-tight media.

  13. Cadmium substituted high permeability lithium ferrite

    Indian Academy of Sciences (India)

    S S Bellad; S C Watawe; A M Shaikh; B K Chougule

    2000-04-01

    Polycrystalline Li0.5–/2 Cd Fe2.5–/2O4 ferrites where = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 were prepared by a double sintering ceramic technique and characterized by X-ray diffraction and scanning electron microscopy (SEM). The lattice parameter is found to increase monotonically with the cadmium content. It is explained in terms of the sizes of component ions. The grain size of the samples increases up to = 0.3 and then it decreases for higher values of . A similar trend is observed in the variation of Ms with Cd2+ content. The initial permeability () is however found to increase continuously with . The increase in is attributed to decrease of anisotropy constant K1 and higher grain size of the samples.

  14. Nitric oxide turnover in permeable river sediment

    DEFF Research Database (Denmark)

    Schreiber, Frank; Stief, Peter; Kuypers, Marcel M M;

    2014-01-01

    We measured nitric oxide (NO) microprofiles in relation to oxygen (O2) and all major dissolved N-species (ammonium, nitrate, nitrite, and nitrous oxide [N2O]) in a permeable, freshwater sediment (River Weser, Germany). NO reaches peak concentrations of 0.13 μmol L-1 in the oxic zone and is consumed...... in the oxic-anoxic transition zone. Apparently, NO is produced by ammonia oxidizers under oxic conditions and consumed by denitrification under microoxic conditions. Experimental percolation of sediment cores with aerated surface water resulted in an initial rate of NO production that was 12 times higher than...... the net NO production rate in steady state. This initial NO production rate is in the same range as the net ammonia oxidation rate, indicating that NO is transiently the main product of ammonia oxidizers. Stable isotope labeling experiments with the 15N-labeled chemical NO donor S...

  15. Interaction between alginates and manganese cations: identification of preferred cation binding sites.

    Science.gov (United States)

    Emmerichs, N; Wingender, J; Flemming, H-C; Mayer, C

    2004-04-01

    Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.

  16. Induction of morphogenesis in Geodermatophilus by inorganic cations and by organic nitrogenous cations.

    Science.gov (United States)

    Ishiguro, E E; Wolfe, R S

    1974-01-01

    Morphogenesis of Geodermatophilus strain 22-68 involves two stages, a motile rod (R form) and an irregularly shaped cluster of coccoid cells (C form). A variety of mono- and divalent cations have been found to induce R-form to C-form morphogenesis and to maintain the organism in the C form. Concentration optima for all cations exceeded 100 mM. Results indicated that uptake of cations was accompanied by extrusion of intracellular protons, causing an increase in intracellular pH. A variety of organic amines also induced morphogenesis. Organic amines were taken up in the dissociated free base form, causing the intracellular pH to rise. None of these compounds was utilized as a carbon or nitrogen source.

  17. Parallel artificial membrane permeability assay for blood-brain permeability determination of illicit drugs and synthetic analogues.

    Science.gov (United States)

    Clemons, Kristina; Kretsch, Amanda; Verbeck, Guido

    2014-09-01

    With the number of designer drugs on the streets rampantly on the rise, it's becoming more and more important to be able to rapidly characterize them in a biologically relevant way. Using a parallel artificial membrane permeability assay (PAMPA) to assess the blood brain barrier permeability has shown to be a high throughput way to compare new drugs with currently controlled substances via their effective permeability values. This combined with direct infusion electrospray ionization-mass spectrometry creates a rapid technique for characterization of new designer drugs. PAMPA has successfully determined the effective permeabilities of cocaine, methamphetamine, heroin, MDMA, and several tryptamine derivatives.

  18. Back diffusion from thin low permeability zones.

    Science.gov (United States)

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2015-01-06

    Aquitards can serve as long-term contaminant sources to aquifers when contaminant mass diffuses from the aquitard following aquifer source mass depletion. This study describes analytical and experimental approaches to understand reactive and nonreactive solute transport in a thin aquitard bounded by an adjacent aquifer. A series of well-controlled laboratory experiments were conducted in a two-dimensional flow chamber to quantify solute diffusion from a high-permeability sand into and subsequently out of kaolinite clay layers of vertical thickness 15 mm, 20 mm, and 60 mm. One-dimensional analytical solutions were developed for diffusion in a finite aquitard with mass exchange with an adjacent aquifer using the method of images. The analytical solutions showed very good agreement with measured breakthrough curves and aquitard concentration distributions measured in situ by light reflection visualization. Solutes with low retardation accumulated more stored mass with greater penetration distance in the aquitard compared to high-retardation solutes. However, because the duration of aquitard mass release was much longer, high-retardation solutes have a greater long-term back diffusion risk. The error associated with applying a semi-infinite domain analytical solution to a finite diffusion domain increases as a function of the system relative diffusion length scale, suggesting that the solutions using image sources should be applied in cases with rapid solute diffusion and/or thin clay layers. The solutions presented here can be extended to multilayer aquifer/low-permeability systems to assess the significance of back diffusion from thin layers.

  19. Turbulent Hyporheic Exchange in Permeable Sediments

    Science.gov (United States)

    Roche, K. R.; Aubeneau, A. F.; Li, A.; Packman, A. I.

    2015-12-01

    Solute delivery from the water column into a streambed strongly influences metabolism in rivers. Current hydrological models simplify surface-subsurface (hyporheic) exchange by treating each domain separately, constraining turbulent flows to the water column. Studies have shown, however, that turbulence penetrates into permeable sediments. Evidence is lacking for how this highly coupled flow regime influences hyporheic exchange. We characterized the dynamics of turbulent exchange between surface and porewaters in a 2.5 m recirculating flume. The channel was packed with 3.8 cm PVC spheres to form a coarse gravel bed, with a total depth of 21 cm. We implanted microsensors onto an array of spheres to measure in situsalt concentrations within the streambed. Water was recirculated in the channel, and concentrated salt solution was continuously injected upstream of the sensor array. We observed solute exchange increased with free-stream Reynolds number and decreased with depth in the sediment bed. Mass of injected solute remaining in the bed decreased rapidly in all cases, with only 10-30% of mass recovered 50 cm downstream of the injection point at Re = 25,000. We observed high-frequency (1-10 Hz) concentration fluctuations at bed depths of at least 4.75 cm, and sporadic low-frequency fluctuations at depths of 12.5 cm. Spectral analysis revealed increased filtering of high frequencies with depth. We used particle-tracking simulations to fit depth-dependent turbulent diffusion profiles to experimental results. These results demonstrate that free-stream turbulence impacts hyporheic mixing deep into permeable streambeds, and mixing is strongly influenced by the coupled surface-subsurface flow field.

  20. Permeability of Dental Adhesives - A SEM Assessment.

    Science.gov (United States)

    Malacarne-Zanon, Juliana; de Andrade E Silva, Safira M; Wang, Linda; de Goes, Mario F; Martins, Adriano Luis; Narvaes-Romani, Eliene O; Anido-Anido, Andrea; Carrilho, Marcela R O

    2010-10-01

    To morphologically evaluate the permeability of different commercial dental adhesives using scanning electron microscopy. SEVEN ADHESIVE SYSTEMS WERE EVALUATED: one three-step system (Scotchbond Multi-Purpose - MP); one two-step self-etching primer system (Clearfil SE Bond - SE); three two-step etch-and-rinse systems (Single Bond 2 - SB; Excite - EX; One-Step - OS); and two single-step self-etching adhesives (Adper Prompt - AP; One-Up Bond F - OU). The mixture of primer and bond agents of the Clearfil SE Bond system (SE-PB) was also tested. The adhesives were poured into a brass mold (5.8 mm x 0.8 mm) and light-cured for 80 s at 650 mW/cm2. After a 24 h desiccation process, the specimens were immersed in a 50% ammoniac silver nitrate solution for tracer permeation. Afterwards, they were sectioned in ultra-fine slices, carbon-coated, and analyzed under backscattered electrons in a scanning electron microscopy. MP and SE showed slight and superficial tracer permeation. In EX, SB, and OS, permeation extended beyond the inner superficies of the specimens. SE-PB did not mix well, and most of the tracer was precipitated into the primer agent. In AP and OU, "water-trees" were observed all over the specimens. Different materials showed distinct permeability in aqueous solution. The extent of tracer permeation varied according to the composition of each material and it was more evident in the more hydrophilic and solvated ones.

  1. Permeability of alkaline magmas: a study from Campi Flegrei, Italy

    Science.gov (United States)

    Polacci, M.; Bouvet de Maissoneuve, C.; Giordano, D.; Piochi, M.; Degruyter, W.; Bachmann, O.; Mancini, L.

    2012-04-01

    Knowledge of permeability is of paramount importance for understanding the evolution of magma degassing during pre-, syn- and post-eruptive volcanic processes. Most permeability estimates existing to date refer to magmas of calc-alkaline compositions. We report here the preliminary results of permeability measurements performed on alkali-trachyte products erupted from the Campanian Ignimbrite (CI) and Monte Nuovo (MTN), two explosive eruptions from Campi Flegrei (CF), an active, hazardous caldera west of Naples, Southern Italy. Darcian (viscous) permeability spans a wide range between 10^-11 and 10^-14 m^2. We observe that the most permeable samples are the scoria clasts from the upper units of MTN; pumice samples from the Breccia Museo facies of CI are instead the least permeable. Non-Darcian (inertial) permeability follows the same trend as Darcian permeability. The first implication of this study is that porosity in alkaline as well as calc-alkaline magmas does not exert a first order control on permeability (e.g. the MTN samples are the most permeable but not the most porous). Second, sample geometry exhibits permeability anisotropy (higher permeability in the direction of vesicle elongation), suggesting stronger degassing in the vertical direction in the conduit. In addition, inertial effects are higher across the sample. As inertial effects are potentially generated by tortuosity (or tortuous vesicle paths), tortuosity is likely higher horizontally than vertically in the conduit. Finally, the measured CF permeability values overlap with those of rhyolitic pumice clasts from the Kos Plateau Tuff (Bouvet de Maisonneuve et al., 2009), together with CI one of the major Quaternary explosive eruptions of the Mediterranean region. This indicates that gas flow is strongly controlled by the geometry of the porous media, which is generated by the bubble dynamics during magma ascent. Therefore, permeability will depend on composition through the rheological properties

  2. Diacylglycerols Activate Mitochondrial Cationic Channel(s) and Release Sequestered Ca2+

    Science.gov (United States)

    Chinopoulos, Christos; Starkov, Anatoly A.; Grigoriev, Sergey; Dejean, Laurent M.; Kinnally, Kathleen W.; Liu, Xibao; Ambudkar, Indu S.; Fiskum, Gary

    2008-01-01

    Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slowreuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGsinduced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brainmitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis. PMID:16167179

  3. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  4. Adverse events following pandemic A (H1N1 2009 monovalent vaccines in pregnant women--Taiwan, November 2009-August 2010.

    Directory of Open Access Journals (Sweden)

    Wan-Ting Huang

    Full Text Available BACKGROUND: During the 2009 H1N1 pandemic, pregnant women were prioritized to receive the unadjuvanted or MF59®-adjuvanted pandemic A (H1N1 2009 monovalent vaccines ("2009 H1N1 vaccines" in Taiwan regardless of stage of pregnancy. Monitoring adverse events following 2009 H1N1 vaccination in pregnant women was a priority for the mass immunization campaign beginning November 2009. METHODS/FINDINGS: We characterized reports to the national passive surveillance from November 2009 through August 2010 involving adverse events following 2009 H1N1 vaccines among pregnant women. Reports from the passive surveillance were matched to a large-linked database on a unique identifier, date of vaccination, and date of diagnosis in a capture-recapture analysis to estimate the true number of spontaneous abortion after 2009 H1N1 vaccination. We verified 16 spontaneous abortions, 11 stillbirths, 4 neonatal deaths, 4 nonpregnancy-specific adverse events, and 2 inadvertent immunizations in recipients who were unaware of pregnancy at time of vaccination. The Chapman capture-recapture estimator of true number of spontaneous abortion after 2009 H1N1 vaccination was 329 (95% confidence interval [CI] 196-553. Of the 14,474 pregnant women who received the 2009 H1N1 vaccines, the estimated risk of spontaneous abortion was 2.3 (95% CI, 1.4-3.8 per 100 pregnancies, compared with a local background rate of 12.8 (95% CI, 12.8-12.9 per 100 pregnancies. CONCLUSIONS: The passive surveillance provided rapid initial assessment of adverse events after 2009 H1N1 vaccination among pregnant women. Its findings were reassuring for the safety of 2009 H1N1 vaccines in pregnancy.

  5. Comparison of accelerated and rapid schedules for monovalent hepatitis B and combined hepatitis A/B vaccines in children with cancer.

    Science.gov (United States)

    Köksal, Yavuz; Varan, Ali; Aydin, G Burca; Sari, Neriman; Yazici, Nalan; Yalcin, Bilgehan; Kutluk, Tezer; Akyuz, Canan; Büyükpamukçu, Münevver

    2007-12-01

    The aim of this study was to determine the efficacy of immunization against hepatitis A and B infections with "rapid" or "accelerated" schedules in children with cancer receiving chemotherapy. Fifty-one children were recruited to receive either vaccination schedule, in the "rapid vaccination schedule"; hepatitis B (group I) or combined hepatitis A/B vaccines (group III) were administered at months 0, 1, 2, and 12; in the "accelerated vaccination schedule," hepatitis B (group II) or combined hepatitis A/B (group IV) vaccines were administered on days 0, 7, 21, and 365 intramuscularly. The seroconversion rates at months 1 and 3 were 35.7 and 57.1% in group I and 25 and 18.8% in group II, respectively. Group I developed higher seroconversion rates at month 3. In group III the seroconversion rates for hepatitis B at months 1 and 3 were 54.5 and 60% and in group IV 50 and 70%, respectively. For hepatitis A, the seroconversion rates at months 1 and 3 were 81.8 and 90% in group III and 80 and 88.9% in group IV, respectively. The accelerated vaccination schedule seems to have no advantage in children receiving cancer chemotherapy except for high antibody levels at month 1. In conclusion, the accelerated vaccination schedules are not good choices for cancer patients. The combined hepatitis A/B vaccine is more effective than monovalent vaccine in cancer patients, which probably can be explained by an adjuvant effect of the antigens. The seroconversion of hepatitis A by the combined hepatitis A/B vaccination is very good in cancer patients.

  6. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  7. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.

    1981-10-02

    The cationic technetium-99 complex trans-(99TC(dmpe)2Cl2)+, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH3)2P-CH2-P(CH3)2, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(99mTc(dmpe) 2Cl2)+, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  8. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen

    2007-01-01

    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  9. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  10. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    L.D. Thanh; R. Sprik

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients be

  11. Permeability dependence of streaming potential coefficient in porous media

    NARCIS (Netherlands)

    Thanh, L.D.; Sprik, R.

    2015-01-01

    In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients

  12. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gert; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was investiga

  13. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Directory of Open Access Journals (Sweden)

    Chung Hae ePARK

    2015-04-01

    Full Text Available In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  14. Selective permeability of PVA membranes. I - Radiation-crosslinked membranes

    Science.gov (United States)

    Katz, M. G.; Wydeven, T., Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  15. Selective Permeability of PVA Membranes. I: Radiation-Crosslinked Membranes

    Science.gov (United States)

    Katz, Moshe G.; Wydeven, Theodore, Jr.

    1981-01-01

    The water and salt transport properties of ionizing radiation crosslinked poly(vinyl alcohol) (PVA) membranes were investigated. The studied membranes showed high permeabilities and low selectivities for both water and salt. The results were found to be in accord with a modified solution-diffusion model for transport across the membranes, in which pressure-dependent permeability coefficients are employed.

  16. Recovery of Porosity and Permeability for High Plasticity Clays

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Foged, Niels Nielsen

    Clays, which have been loaded to a high stress level, will under certain conditions keep low porosity and permeability due to the high degree of compression. In some situations it seems that porosity and permeability will recover to a very high extent when the clay is unloaded. This seems...... the clay will expand to an even higher porosity....

  17. Duration of ultrasound-mediated enhanced plasma membrane permeability

    NARCIS (Netherlands)

    Lammertink, Bart; Deckers, Roel; Storm, Gerrit; Moonen, Chrit; Bos, Clemens

    2015-01-01

    Ultrasound (US) induced cavitation can be used to enhance the intracellular delivery of drugs by transiently increasing the cell membrane permeability. The duration of this increased permeability, termed temporal window, has not been fully elucidated. In this study, the temporal window was

  18. Permeability of crust is key to crispness retention

    NARCIS (Netherlands)

    Hirte, A.; Hamer, R.J.; Meinders, M.B.J.; Primo-Martin, C.

    2010-01-01

    Bread loses crispness rapidly after baking because water originating from the wet crumb accumulates in the dry crust. This water accumulation might be increased by the dense and low permeable character of the bread crust. Our objective was to investigate the influence of permeability of the crust on

  19. Nitrogen Transformations in Three Types of Permeable Pavement

    Science.gov (United States)

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  20. Unsaturated and Saturated Permeabilities of Fiber Reinforcement: Critics and Suggestions

    Science.gov (United States)

    Park, Chung Hae; Krawczak, Patricia

    2015-04-01

    In general, permeability measurement results show a strong scattering according to the measurement method, the type of test fluid and the fluid injection condition, even though permeability is regarded as a unique property of porous medium. In particular, the discrepancy between the unsaturated and saturated permeabilities for the same fabric has been widely reported. In the literature, relative permeability has been adopted to model the unsaturated flow. This approach has some limits in the modeling of double-scale porosity medium. We address this issue of permeability measurement by rigorously examining the mass conservation condition. Finally, we identify that the pressure gradient is non-linear with positive curvature in the unsaturated flow and a misinterpretation of pressure gradient is the main reason for the difference between the saturated and unsaturated permeabilities of the same fiber reinforcement. We propose to use a fixed value of permeability and to modify the mass conservation equation if there are air voids which are entrapped inside the fiber tow. Finally, we also suggest some guidelines and future perspectives to obtain more consistent permeability measurement results.

  1. Formation and liquid permeability of dense colloidal cube packings

    NARCIS (Netherlands)

    Castillo, Sonja I R; Thies-Weesie, Dominique M E; Philipse, Albert P.

    2015-01-01

    The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are similar, confirming that the micropores in the silica shell of the hollow cubes do

  2. 21 CFR 876.5860 - High permeability hemodialysis system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false High permeability hemodialysis system. 876.5860... hemodialysis system. (a) Identification. A high permeability hemodialysis system is a device intended for use... toxemic conditions by performing such therapies as hemodialysis, hemofiltration, hemoconcentration,...

  3. Milan hypertensive rat as a model for studying cation transport abnormality in genetic hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, P.; Barber, B.R.; Torielli, L.; Ferrandi, M.; Salardi, S.; Bianchi, G.

    1987-11-01

    Environmental factors, genetic polymorphisms, and different experimental designs have been the main impediments to evaluating a genetic association between cell membrane cation transport abnormalities and human essential or genetic hypertension. We review the results obtained in the Milan hypertensive strain of rats (MHS) and in its appropriate control normotensive strain (MNS) to illustrate our approach to defining the role of cation transport abnormality in a type of genetic hypertension. Before the development of a difference in blood pressure between the two strains, the comparison of kidney and erythrocyte functions showed that MHS had an increased glomerular filtration rate and urinary output, and lower plasma renin and urine osmolality. Kidney cross-transplantation between the strains showed that hypertension is transplanted with the kidney. Proximal tubular cell volume and sodium content were lower in MHS while sodium transport across the brush border membrane vesicles of MHS was faster. Erythrocytes in MHS were smaller and had lower sodium concentration, and Na+-K+ cotransport and passive permeability were faster. The differences in volume, sodium content, and Na+-K+ cotransport between erythrocytes of the two strains persisted after transplantation of bone marrow to irradiated F1 (MHS X MNS) hybrids. Moreover, in normal segregating F2 hybrid populations there was a positive correlation between blood pressure and Na+-K+ cotransport. These results suggest a genetic and functional link in MHS between cell membrane cation transport abnormalities and hypertension. Thus, erythrocyte cell membrane may be used for approaching the problem of defining the genetically determined molecular mechanism underlying the development of a type of essential hypertension. 35 references.

  4. Chloride permeability of concrete under static and repeated compressive loading

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Mitsuru; Ishimori, Hiroshi [Kanazawa Inst. of Technology, Ishikawa (Japan)

    1995-05-01

    The chloride permeability of normal weight concrete subjected to static and repeated compressive loading was evaluated by using the AASHTO T277 test method. The results of concrete under static loading showed that the application of loads up to 90% of the ultimate strength had little effect on the chloride permeability. It was found from the results of concrete under repeated loading that load repetitions at the maximum stress levels of 60% or more caused the chloride permeability to increase significantly. The test results also indicated that the chloride permeability of concrete subjected to static and repeated loading increased at an increasing rate with its residual strain. The relation between the chloride permeability obtained and the cracking behavior of concrete previously reported was discussed.

  5. Two-phase relative permeability models in reservoir engineering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, S.; Hicks, P.J.; Ertekin, T.

    1999-01-15

    A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)

  6. Permeability characterization of polymer matrix composites by RTM/VARTM

    Science.gov (United States)

    Naik, N. K.; Sirisha, M.; Inani, A.

    2014-02-01

    Cost effective manufacturing of high performance polymer matrix composite structures is an important consideration for the growth of its use. Resin transfer moulding (RTM) and vacuum assisted resin transfer moulding (VARTM) are the efficient processes for the cost effective manufacturing. These processes involve transfer of resin from the tank into the reinforcing preform loaded into a closed mould. Resin flow within the preform and reinforcement wetting can be characterized using the permeability properties. Different reinforcement and resin properties and process parameters affecting the permeability are discussed based on state of art literature review covering experimental studies. General theory for the determination of permeability is presented. Based on the literature review, permeability values for different reinforcement architecture, resin and processing conditions are presented. Further, possible sources of error during experimental determination of permeability and issues involved with reproducibility are discussed.

  7. Permeability of mono- and bi-dispersed porous media

    Directory of Open Access Journals (Sweden)

    Kim S.J.

    2013-04-01

    Full Text Available In this study, the permeability of mono- and bi-dispersed porous media is considered. The effects of the particle size distribution and the packing structure of particles on the permeability are investigated experimentally and analytically. Both experimental and analytic results suggest that the particlesize distribution is close to the log-normal distribution, and the permeability of the mono-dispersed porous media quasi-linearly decreases as the range of the particle size distribution increases. On the other hand, the effect of packing structure of particles on the permeability is shown to be negligible.The permeability of the bidispersed porous media quasi-linearly decreases as the range of cluster size increases, and nearly independent of the particle size distribution. The present model is valid over the range of parameters typically found in heat transfer applications.

  8. Stochastic back analysis of permeability coefficient using generalized Bayesian method

    Institute of Scientific and Technical Information of China (English)

    Zheng Guilan; Wang Yuan; Wang Fei; Yang Jian

    2008-01-01

    Owing to the fact that the conventional deterministic back analysis of the permeability coefficient cannot reflect the uncertainties of parameters, including the hydraulic head at the boundary, the permeability coefficient and measured hydraulic head, a stochastic back analysis taking consideration of uncertainties of parameters was performed using the generalized Bayesian method. Based on the stochastic finite element method (SFEM) for a seepage field, the variable metric algorithm and the generalized Bayesian method, formulas for stochastic back analysis of the permeability coefficient were derived. A case study of seepage analysis of a sluice foundation was performed to illustrate the proposed method. The results indicate that, with the generalized Bayesian method that considers the uncertainties of measured hydraulic head, the permeability coefficient and the hydraulic head at the boundary, both the mean and standard deviation of the permeability coefficient can be obtained and the standard deviation is less than that obtained by the conventional Bayesian method. Therefore, the present method is valid and applicable.

  9. Permeability, storage and hydraulic diffusivity controlled by earthquakes

    Science.gov (United States)

    Brodsky, E. E.; Fulton, P. M.; Xue, L.

    2016-12-01

    Earthquakes can increase permeability in fractured rocks. In the farfield, such permeability increases are attributed to seismic waves and can last for months after the initial earthquake. Laboratory studies suggest that unclogging of fractures by the transient flow driven by seismic waves is a viable mechanism. These dynamic permeability increases may contribute to permeability enhancement in the seismic clouds accompanying hydraulic fracking. Permeability enhancement by seismic waves could potentially be engineered and the experiments suggest the process will be most effective at a preferred frequency. We have recently observed similar processes inside active fault zones after major earthquakes. A borehole observatory in the fault that generated the M9.0 2011 Tohoku earthquake reveals a sequence of temperature pulses during the secondary aftershock sequence of an M7.3 aftershock. The pulses are attributed to fluid advection by a flow through a zone of transiently increased permeability. Directly after the M7.3 earthquake, the newly damaged fault zone is highly susceptible to further permeability enhancement, but ultimately heals within a month and becomes no longer as sensitive. The observation suggests that the newly damaged fault zone is more prone to fluid pulsing than would be expected based on the long-term permeability structure. Even longer term healing is seen inside the fault zone of the 2008 M7.9 Wenchuan earthquake. The competition between damage and healing (or clogging and unclogging) results in dynamically controlled permeability, storage and hydraulic diffusivity. Recent measurements of in situ fault zone architecture at the 1-10 meter scale suggest that active fault zones often have hydraulic diffusivities near 10-2 m2/s. This uniformity is true even within the damage zone of the San Andreas fault where permeability and storage increases balance each other to achieve this value of diffusivity over a 400 m wide region. We speculate that fault zones

  10. Extreme Rainfall Impacts in Fractured Permeable Catchments

    Science.gov (United States)

    Ireson, A. M.; Butler, A. P.

    2009-12-01

    Serious groundwater flooding events have occurred on Chalk catchments in both the UK and north west Europe in the last decade, causing substantial amounts of disruption and economic damage. These fractured, permeable catchments are characterized by low surface runoff, high baseflow indices and strongly attenuated streamflow hydrographs. They have a general resilience to drought and pluvial/fluvial flooding. The small pore size of the Chalk matrix (~ 1 µm) exerts a high suction, such that dynamic storage is primarily due to the fractures, and amounts to ~ 1% of the total volume. As a result, under sustained rainfall the water table can rise up to exceptional levels leading to surface water emergence from springs and valleys. Floodwater may slowly drain with the topography, or, in localized depressions, it may simply pond until the groundwater levels decline. In winter 2000/1, a sequence of individually unexceptional rainfall events over several months led to large scale flooding in the Pang catchment, Berkshire, UK. By contrast, an extreme rainfall event on 20th July 2007 in the same catchment caused a very rapid response at the water table, but due to the antecedent conditions did not lead to flooding. The objective of this study is to quantify how the water table in a fractured permeable catchment responds to different types of rainfall, and the implications of this for groundwater flooding. We make use of measurements from the Pang catchment, including: rainfall (tipping bucket gauges); actual evaporation (eddy flux correlation); soil water content (profile probes and neutron probes); near surface matric potential (tensiometers and equitensiometers); deep (>10m) matric potential (deep jacking tensiometers); and water table elevation (piezometers). Conventional treatment of recharge in Chalk aquifers considers a fixed bypass component of rainfall, normally 15%, to account for the role of the fractures. However, interpretation of the field data suggest three modes

  11. Electronic absorptions of the benzylium cation

    Science.gov (United States)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.

    2012-11-01

    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  12. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  13. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    Science.gov (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  14. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  15. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  16. Cations and anions as modifiers of ryanodine binding to the skeletal muscle calcium release channel.

    Science.gov (United States)

    Hasselbach, W; Migala, A

    1998-08-01

    Rate and equilibrium measurements of ryanodine binding to terminal cysternae fractions of heavy sarcoplasmic reticulum vesicles demonstrate that its activation by high concentrations of monovalent salts is based on neither elevated osmolarity nor ionic strength. The effect of the ions specifically depends on their chemical nature following the Hofmeister ion series for cations (Li+ < NH+4 < K- approximately Cs+

  17. Nature as a source of inspiration for cationic lipid synthesis.

    Science.gov (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno

    2010-02-01

    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  18. Drainage hydraulics of permeable friction courses

    Science.gov (United States)

    Charbeneau, Randall J.; Barrett, Michael E.

    2008-04-01

    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  19. Second law violations, continuum mechanics, and permeability

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2016-03-01

    The violations of the second law are relevant as the length and/or time scales become very small. The second law then needs to be replaced by the fluctuation theorem and mathematically, the irreversible entropy is a submartingale. First, we discuss the consequences of these results for the axioms of continuum mechanics, arguing in favor of a framework relying on stochastic functionals of energy and entropy. We next determine a Lyapunov function for diffusion-type problems governed by stochastic rather than deterministic functionals of internal energy and entropy, where the random field coefficients of diffusion are not required to satisfy the positive definiteness everywhere. Next, a formulation of micropolar fluid mechanics is developed, accounting for the lack of symmetry of stress tensor on molecular scales. This framework is then applied to employed to show that spontaneous random fluctuations of the microrotation field will arise in Couette—and Poiseuille-type flows in the absence of random (turbulence-like) fluctuations of the classical velocity field. Finally, while the permeability is classically modeled by the Darcy law or its modifications, besides considering the violations of the second law, one also needs to account for the spatial randomness of the channel network, implying a modification of the hierarchy of scale-dependent bounds on the macroscopic property of the network.

  20. Redox Active Cation Intercalation/Deintercalation in Two-Dimensional Layered MnO2 Nanostructures for High-Rate Electrochemical Energy Storage.

    Science.gov (United States)

    Xiong, Pan; Ma, Renzhi; Sakai, Nobuyuki; Bai, Xueyin; Li, Shen; Sasaki, Takayoshi

    2017-02-22

    Two-dimensional (2D) layered materials with a high intercalation pseudocapacitance have long been investigated for Li(+)-ion-based electrochemical energy storage. By contrast, the exploration of guest ions other than Li(+) has been limited, although promising. The present study investigates intercalation/deintercalation behaviors of various metal ions in 2D layered MnO2 with various interlayer distances, K-birnessite nanobelt (K-MnO2), its protonated form (H-MnO2), and a freeze-dried sample of exfoliated nanosheets. Series of metal ions, such as monovalent Li(+), Na(+), and K(+) and divalent Mg(2+), exhibit reversible intercalation during charge/discharge cycling, delivering high-rate pseudocapacitances. In particular, the freeze-dried MnO2 of exfoliated nanosheets restacked with the largest interlayer spacing and a less compact 3D network exhibits the best rate capability and a stable cyclability over 5000 cycles. Both theoretical calculation and kinetic analysis reveal that the increased interlayer distance facilitates the fast diffusion of cations in layered MnO2 hosts. The results presented herein provide a basis for the controllable synthesis of layered nanostructures for high-rate electrochemical energy storage using various single- and multivalent ions.

  1. Update to Permeable Pavement Research at the Edison Environmental Center - proceedings

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, p...

  2. Effects of different cations on properties of ionomers of maleated styrene-butadiene-styrene triblock copolymer%阳离子对顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物离聚体性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘大刚; 谢洪泉; 高玉

    2011-01-01

    The ionomers containing different cations, such as sodium, lithium, potassium, calcium,zinc, lead, magnesium, and ethyl ammonium were synthesized from the ionization of maleated styrenebutadiene-styrene triblock copolymer ( SBS ) .Effects of different cations on the thermal, mechanical, oil resistance and adhesive properties of the ionomers were studied. The results showed that, in addition to the glass transition temperatures (Tg) of butadiene and styrene blocks, the ionomers exhibited third Tg, which is due to the dissociation of the ionic domains. For the monovalent alkali metal cation neutralized ionomers, the higher the ionic potential, the higher the dissociation temperature of ionic domains, tensile strength and lap shear strength to iron plates and the order from large to small was Li+ > Na+> K+; for the divalent cation neutralized ionomers, the dissociation temperature of ionic domains decreased in the order of Ca2+> Zn2+>Pb2+ , whereas the tensile strength decreased in the order of Ca2+> Zn2 + > Mg2 + , but all were lower than those of the monovalent alkali metal cation neutralized ionomers. The oil resistance of the divalent cation neutralized ionomers was better than that of the monovalent cation neutralized ionomers or SBS.The lap shear strength of zinc ion neutralized ionomer to iron plates was the highest of all, being 0. 594 MPa.%将顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)离子化得到含不同阳离子的离聚体,考察了不同阳离子对离聚体热性能、物理机械性能、耐油性能和粘接性能的影响.结果表明,离聚体有3个玻璃化转变温度(Tg),其中2个是SBS固有的Tg,另一个是离子微区的离解温度;对于含1价阳离子的离聚体,离子电离势越高,离聚体的离解温度、拉伸强度和搭接剪切强度基本越高,即从大到小依次为含锂离聚体、含钠离聚体、含钾离聚体;含2价阳离子离聚体的离解温度从大到小依次为含钙离聚

  3. An apparent permeability model of shale gas under formation conditions

    Science.gov (United States)

    Chen, Peng; Jiang, Shan; Chen, Yan; Wang, Shanshan

    2017-08-01

    There are various types of pores in shale, mainly consisting of nanopores and micropores, causing flow regime variations and apparent permeability changes during the development of the reservoir. In this paper, a Knudsen number calculation model is proposed with the actual conditions of gas in a shale reservoir. Then, based on the distribution of pores in shale, an apparent permeability model is established using hydrodynamics, and a calculation method is put forward for the actual permeability of a reservoir. Finally, the Knudsen number model and the permeability correction coefficient model are used to analyze the flow regime and permeability correction coefficients in pores during the development of the shale gas reservoir. Results show that with a decreasing of pressure, the Knudsen number increases, the flow regime changes from continuous flow and slip flow to transition flow or free molecular flow. When the Knudsen number is Kn > 0.1, and with a further increasing of Kn, gas molecule slippage greatly intensifies and the permeability correction coefficient K app/Kd significantly increases. While the Knudsen number increases, the permeability correction coefficient significantly increases in the micropores and the small pores, but this does not appear in the macropores and the mesopores. These results can be used to guide flow regime analysis and production forecasting in shale gas reservoirs.

  4. Characterization and estimation of permeability correlation structure from performance data

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Al-Qahtani, M. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-08-01

    In this study, the influence of permeability structure and correlation length on the system effective permeability and recovery factors of 2-D cross-sectional reservoir models, under waterflood, is investigated. Reservoirs with identical statistical representation of permeability attributes are shown to exhibit different system effective permeability and production characteristics which can be expressed by a mean and variance. The mean and variance are shown to be significantly influenced by the correlation length. Detailed quantification of the influence of horizontal and vertical correlation lengths for different permeability distributions is presented. The effect of capillary pressure, P{sub c1} on the production characteristics and saturation profiles at different correlation lengths is also investigated. It is observed that neglecting P{sub c} causes considerable error at large horizontal and short vertical correlation lengths. The effect of using constant as opposed to variable relative permeability attributes is also investigated at different correlation lengths. Next we studied the influence of correlation anisotropy in 2-D reservoir models. For a reservoir under five-spot waterflood pattern, it is shown that the ratios of breakthrough times and recovery factors of the wells in each direction of correlation are greatly influenced by the degree of anisotropy. In fully developed fields, performance data can aid in the recognition of reservoir anisotropy. Finally, a procedure for estimating the spatial correlation length from performance data is presented. Both the production performance data and the system`s effective permeability are required in estimating the correlation length.

  5. Stress dependence of permeability of intact and fractured shale cores.

    Science.gov (United States)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  6. Prediction of Hydrocarbon Reservoirs Permeability Using Support Vector Machine

    Directory of Open Access Journals (Sweden)

    R. Gholami

    2012-01-01

    Full Text Available Permeability is a key parameter associated with the characterization of any hydrocarbon reservoir. In fact, it is not possible to have accurate solutions to many petroleum engineering problems without having accurate permeability value. The conventional methods for permeability determination are core analysis and well test techniques. These methods are very expensive and time consuming. Therefore, attempts have usually been carried out to use artificial neural network for identification of the relationship between the well log data and core permeability. In this way, recent works on artificial intelligence techniques have led to introduce a robust machine learning methodology called support vector machine. This paper aims to utilize the SVM for predicting the permeability of three gas wells in the Southern Pars field. Obtained results of SVM showed that the correlation coefficient between core and predicted permeability is 0.97 for testing dataset. Comparing the result of SVM with that of a general regression neural network (GRNN revealed that the SVM approach is faster and more accurate than the GRNN in prediction of hydrocarbon reservoirs permeability.

  7. Effects of CO2 laser energy on dentin permeability.

    Science.gov (United States)

    Pashley, E L; Horner, J A; Liu, M; Kim, S; Pashley, D H

    1992-06-01

    The effect of a CO2 laser on the structure and permeability of smear layer-covered human dentin was evaluated in vitro. Three different energy levels were used (11, 113, and 566 J/cm2). The lowest exposure to the laser energy increased dentin permeability, measured as a hydraulic conductance, due to partial measured as a hydraulic conductance, due to partial loss of the superficial smear layer and smear plugs. The intermediate energy level also increased dentin permeability by crater formation, making the dentin thinner. The lack of uniform glazing of the surface of the crater, leaving its surface porous and in communication with the underlying dentinal tubules also contributed to the increase in dentin permeability seen with the intermediate laser energy. The highest laser energy produced complete glazing of the crater surfaces and sealed the dentinal tubules beneath the crater. However, it also completely removed the smear layer in a halo zone about 100-microns wide around each crater which increased the permeability of the pericrater dentin at the same time it decreased the permeability of the dentin within the crater. The combined use of scanning electron microscopy and permeability measurements provides important complementary information that is essential in evaluating the effects of lasers on dentin.

  8. Wave transmission over permeable submerged breakwaters; Transmision del oleaje en rompeolas sumergidos permeables

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-y-Zurvia-Flores, Jaime Roberto; Fragoso-Sandoval, Lucio [Instituto Politecnico Nacional(Mexico)

    2008-10-15

    The permeable submerged breakwaters represent a coastal protection alternative, where some degree of wave energy transmission is acceptable. Such would be the case of tourist beach protection in Mexico. In previous researches, like those performed by D'Angremond et al. (1996), Seabrook and Hall (1998), and Briganti et al. (2003), the empirical formulas developed, give only some limited information over the spatial distribution of wave energy over the structure. Therefore, a decision was made to conduct a study on a reduced physical model of a permeable submerged breakwater based on the results presented by those researchers and with possible applications. Therefore this paper presents the development of a study of wave transmission over permeable submerged breakwaters performed in a reduced physical model of different sections of a submerged rockfill breakwater of the trapezoidal type. This was done in a narrow wave flume with a hydraulic irregular wave generator controlled by a computer that was used to generate and to reproduce different types of irregular waves to be used in the tests. It also has a wave meter with four sensors, and they are connected to a computer in order to process the wave data. The main objective of the study was to determine in an experimental way the influence of the several parameters of submerged breakwater over the wave transmission coefficient. Our experimental results were comparable to those obtained by D'Angremond et al. (1996) and Seabrook and Hall (1998). The results show that the sumerged breakwater parameters of most influence over the wave transmission coefficient were relative submergence and the relative width crest of the sumerged breakwater, and that the formula by Seabrook and Hall correlates best with our results. [Spanish] Los rompeolas sumergidos permeables representan actualmente una alternativa de proteccion de costas, donde un cierto grado de transmision de energia del oleaje es aceptable, como seria el

  9. Permeable Steel and Its Application in Plastic-injection Mould

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhaoyao; CAO Wenjiong; WU Zhengqiang; YU Minqiang; LI Yuanyuan

    2010-01-01

    The gas in plastics mould has great influence on performance, appearance and lifespan of the injection molded parts. Venting channel and its appendix system should be used for gas exhausting in general. However, the dependence on the venting system complicates the mould design. Furthermore in certain condition, it is difficult to integrate the venting system into the mould. Currently a kind of mold material which has gas permeability has been developed in abroad, but the applications of this mold material were restricted by its higher cost and smaller size. In this research, a porous material which was made by powder metallurgy was applied to plastic mould to replace the venting system. Permeability of the steel with different secondary processing was tested and compared with a special apparatus. The metallographic samples of the steel with different secondary processing were prepared and investigated. Finally an actual injection set was established to investigate the applications of permeable steel. The metallographies indicate that the micro-holes inside permeable steel were interconnected. Moulds made of permeable steel exhibit good permeability in the plastic-injection experiments and gas generated in the mould cavity was smoothly exhausted. The melted plastic did not penetrate into the mould or block in the micro-holes. After several times of plastic-injection experiments, the mould still retained good permeability. The strength of this permeable steel is between 200-250 MPa and suitable for industrial applications. The venting systems simplified by permeable steel in plastic-injection have simple structures, which can be applied into any place that requires gas exhausting.

  10. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    Science.gov (United States)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr

    2017-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  11. Preliminary results: surveillance for Guillain-Barré syndrome after receipt of influenza A (H1N1) 2009 monovalent vaccine - United States, 2009-2010.

    Science.gov (United States)

    2010-06-01

    Guillain-Barré syndrome (GBS) is an uncommon peripheral neuropathy causing paralysis and in severe cases respiratory failure and death. GBS often follows an antecedent gastrointestinal or upper respiratory illness but, in rare cases, can follow vaccination. In 1976, vaccination against a novel swine-origin influenza A (H1N1) virus was associated with a statistically significant increased risk for GBS in the 42 days after vaccination (approximately 10 excess cases per 1 million vaccinations), a consideration in halting the vaccination program in the context of limited influenza virus transmission. To monitor influenza A (H1N1) 2009 monovalent vaccine safety, several federal surveillance systems, including CDC's Emerging Infections Program (EIP), are being used. In October 2009, EIP began active surveillance to assess the risk for GBS after 2009 H1N1 vaccination. Preliminary results from an analysis in EIP comparing GBS patients hospitalized through March 31, 2010, who did and did not receive 2009 H1N1 vaccination showed an estimated age-adjusted rate ratio of 1.77 (GBS incidence of 1.92 per 100,000 person-years among vaccinated persons and 1.21 per 100,000 person-years among unvaccinated persons). If end-of-surveillance analysis confirms this finding, this would correspond to 0.8 excess cases of GBS per 1 million vaccinations, similar to that found in seasonal influenza vaccines. No other federal system to date has detected a statistically significant association between GBS and 2009 H1N1 vaccination. Surveillance and further analyses are ongoing. The 2009 H1N1 vaccine safety profile is similar to that for seasonal influenza vaccines, which have an excellent safety record. Vaccination remains the most effective method to prevent serious illness and death from 2009 H1N1 influenza infection; illness from the 2009 H1N1 influenza virus has been associated with a hospitalization rate of 222 per 1 million and a death rate of 9.7 per 1 million population.

  12. Fractal Analysis of Stress Sensitivity of Permeability in Porous Media

    Science.gov (United States)

    Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Cai, Jianchao

    2015-12-01

    A permeability model for porous media considering the stress sensitivity is derived based on mechanics of materials and the fractal characteristics of solid cluster size distribution. The permeability of porous media considering the stress sensitivity is related to solid cluster fractal dimension, solid cluster fractal tortuosity dimension, solid cluster minimum diameter and solid cluster maximum diameter, Young's modulus, Poisson's ratio, as well as power index. Every parameter has clear physical meaning without the use of empirical constants. The model predictions of permeability show good agreement with those obtained by the available experimental expression. The proposed model may be conducible to a better understanding of the mechanism for flow in elastic porous media.

  13. Timescales for permeability reduction and strength recovery in densifying magma

    Science.gov (United States)

    Heap, M. J.; Farquharson, J. I.; Wadsworth, F. B.; Kolzenburg, S.; Russell, J. K.

    2015-11-01

    Transitions between effusive and explosive behaviour are routine for many active volcanoes. The permeability of the system, thought to help regulate eruption style, is likely therefore in a state of constant change. Viscous densification of conduit magma during effusive periods, resulting in physical and textural property modifications, may reduce permeability to that preparatory for an explosive eruption. We present here a study designed to estimate timescales of permeability reduction and strength recovery during viscous magma densification by coupling measurements of permeability and strength (using samples from a suite of variably welded, yet compositionally identical, volcanic deposits) with a rheological model for viscous compaction and a micromechanical model, respectively. Bayesian Information Criterion analysis confirms that our porosity-permeability data are best described by two power laws that intersect at a porosity of 0.155 (the "changepoint" porosity). Above and below this changepoint, the permeability-porosity relationship has a power law exponent of 8.8 and 1.0, respectively. Quantitative pore size analysis and micromechanical modelling highlight that the high exponent above the changepoint is due to the closure of wide (∼200-300 μm) inter-granular flow channels during viscous densification and that, below the changepoint, the fluid pathway is restricted to narrow (∼50 μm) channels. The large number of such narrow channels allows porosity loss without considerable permeability reduction, explaining the switch to a lower exponent. Using these data, our modelling predicts a permeability reduction of four orders of magnitude (for volcanically relevant temperatures and depths) and a strength increase of a factor of six on the order of days to weeks. This discrepancy suggests that, while the viscous densification of conduit magma will inhibit outgassing efficiency over time, the regions of the conduit prone to fracturing, such as the margins, will

  14. The Effect of Bacteria Penetration on Chalk Permeability

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Shapiro, Alexander; Nielsen, Sidsel Marie;

    , the spore forming Bacillus licheniformis 421 and the non-spore forming Pseudomonas putida K12, were used. The core plugs were Stevns Klint outcrop with initial permeability at 2-4 mD. The results revealed that bacteria were able to penetrate and to be transported through the chalk. Furthermore, a higher...... number of B. licheniformis was detected on the effluent compared with P. putida. However, in the experiment with B. licheniformis mainly spores were detected in the effluent. The core permeability decreased rapidly during injection of bacteria and a starvation period of 12 days did not allow...... the permeability to return to initial condition....

  15. Predicting the permeability of sedimentary rocks from microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, E.M.

    1995-01-01

    Permeability is linked to other properties of porous media such as capillary pressure and relative permeability. In order to understand the relationships, one has to understand how all those properties are conditioned by the connectivity and geometrical properties of the pore space. In this study, we look at a natural porous material which is defined as a two-phase material in which the interconnected pore space constitutes one phase and the solid matrix the other. Laboratory samples are tested using fluid flow experiments to determine the relationship of macroscopic properties such as permeability to rock microstructure. Kozeny-Carman and other equations are developed to further quantify these relationships.

  16. Studies on the induction of permeability in Ascaris lumbricoides eggs.

    Science.gov (United States)

    Barrett, J

    1976-08-01

    The initial process in the hatching mechanism of Ascaris eggs is the sudden onset of permeability in the previously impermeable ascaroside membrane. During this change the ascaroside membrane remains intact and no chemical changes can be detected. Using the molecular probe 1-anilino-8-naphthalene sulphonic acid no conformational changes were detected in the ascaroside membrane during the induction of permeability. It is suggested that either the permeability change is due to a very localized chemical or conformational change, not detectable by conventional analytical techniques, or the change is due to mechanical damage of the ascaroside membrane, brought about by the activity of the infective larva.

  17. The permeability of dentine from bovine incisors in vitro.

    Science.gov (United States)

    Tagami, J; Tao, L; Pashley, D H; Horner, J A

    1989-01-01

    The permeability of coronal dentine was investigated by measuring the hydraulic conductance of dentine discs. Reductions in dentine thickness from the enamel side of disc resulted in a greater increase in permeability than reductions from the pulpal side. Scanning electron microscopy revealed fewer dentinal tubules with smaller diameters in superficial dentine than in deep dentine. The permeability of coronal incisor bovine dentine is six to eight times less than that of unerupted coronal human third molar dentine but similar to that of human root dentine.

  18. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  19. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.

    1985-12-01

    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  20. Structural and cytotoxic studies of cationic thiosemicarbazones

    Science.gov (United States)

    Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai

    2017-06-01

    Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.

  1. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E. (Univ. of Cincinnati, Cincinnati, OH); Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.

    1981-10-02

    The cationic technetium-99 complex trans-(/sup 99/Tc(dmpe)/sub 2/Cl/sub 2/)/sup +/, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH/sub 3/)/sub 2/P-CH/sub 2/CH/sub 2/-P(CH/sub 3/)/sub 2/, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(/sup 99m/Tc (dmpe)/sub 2/Cl/sub 2/)/sup +/, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  2. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  3. Capturing dynamic cation hopping in cubic pyrochlores

    Science.gov (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2011-08-01

    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  4. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  5. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (Kd). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (Kd) decreasing as follows: Kd(Na(+)) > Kd(NH4(+)) ≥ Kd(K(+)) > Kd(Ca(2+)) ≥ Kd(Mg(2+)) > Kd(Al(3+)). This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium Kd values, allowed for

  6. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly

    2013-03-01

    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  7. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  8. A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Wei Jianping; Wang Kai; Li Peng; Wang Ke

    2014-01-01

    This study developed the equipment for thermo-fluid-solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded meth-ane-containing coal has been studied under the conditions of different confining pressures and pore pres-sures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.

  9. Composites with tuned effective magnetic permeability

    Science.gov (United States)

    Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2007-07-01

    Pendry et al. [J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999)] and Smith et al. [D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)] have shown that the effective magnetic permeability, μ, of free space can be rendered negative over a certain frequency range by a periodic arrangement of very thin conductors with suitable magnetic resonance properties, the so-called split-ring resonators. Because of its rather bulky architecture, this structure does not lend itself to a proper integration into a reasonably thin real composite structural panel. To remedy this fundamental barrier, we invented a new magnetic resonator consisting of very thin folded plates that are suitably nested within one another to form folded-doubled resonators (FDRs) that can be integrated into an actual composite panel. Measurements, using a focused beam electromagnetic characterization system combined with time-domain numerical simulations of the reflection and transmission coefficients of such a composite slab have revealed that indeed the composite has a negative μ over a frequency range of about 9.1-9.35 GHz [S. Nemat-Nasser, S. C. Nemat-Nasser, T. A. Plaisted, A. Starr, and A. Vakil Amirkhizi, in Biomimetics: Biologically Inspired Technologies, edited by Y. Bar Cohen (CRC Press, Boca Raton, FL, 2006)]. Thus, it has become possible to construct a structural composite panel with negative index of refraction by simultaneously creating negative effective ɛ and μ [V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968); R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001); A. F. Starr, P. M. Rye, D. R. Smith, and S. Nemat-Nasser, Phys. Rev. B 70, 113102 (2004)].

  10. Membrane permeability properties of dental adhesive films.

    Science.gov (United States)

    Carrilho, Marcela R; Tay, Franklin R; Donnelly, Adam M; Agee, Kelli A; Carvalho, Ricardo M; Hosaka, Keiichi; Reis, Alessandra; Loguercio, Alessandro D; Pashley, David H

    2009-02-01

    This study evaluated the permeability properties of five experimental resin membranes that ranged from relatively hydrophobic to relatively hydrophilic to seal acid-etched dentin saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents or as solutions solvated with ethanol (70% resin/30% ethanol). The quality of dentin sealing by these experimental resins was expressed in terms of reflection coefficients calculated as the ratio of the effective osmotic pressure to the theoretical osmotic pressure of test solutions. The effective osmotic pressure produced across resin-bonded dentin was induced in hypertonic solutions (CaCl(2) or albumin) at zero hydrostatic pressure. The outward fluid flow induced by these solutions was brought to zero by applying an opposing negative hydrostatic pressure. The least hydrophilic resins blends, R1 and R2, exhibited significantly (p < 0.05) higher reflection coefficients than the most hydrophilic resins (R4 and R5) in both conditions of dentin saturation (water and ethanol). The reflection coefficients of neat resins were, in general, significantly higher when compared with their corresponding solvated versions in both conditions of dentin saturation. In dentin saturated with ethanol, bonding with neat or solvated resins, resulted in reflection coefficients that were significantly higher when compared with the results obtained in dentin saturated with water. Reflection coefficients of CaCl(2) (ca. 1 x 10(-4)) were significantly lower (p < 0.05) than for albumin (ca. 3 x 10(-2)). Application of hydrophobic resins may provide better sealing of acid-etched dentin if the substrate is saturated with ethanol, instead of water.

  11. Relative roles of doxycycline and cation chelation in endothelial glycan shedding and adhesion of leukocytes.

    Science.gov (United States)

    Lipowsky, Herbert H; Sah, Rachna; Lescanic, Anne

    2011-02-01

    Leukocyte [white blood cell (WBC)] adhesion and shedding of glycans from the endothelium [endothelial cells (ECs)] in response to the chemoattractant f-Met-Leu-Phe (fMLP) has been shown to be attenuated by topical inhibition of matrix metalloproteases (MMPs) with doxycycline (Doxy). Since Doxy also chelates divalent cations, these responses were studied to elucidate the relative roles of cation chelation and MMP inhibition. WBC-EC adhesion, WBC rolling flux, and WBC rolling velocity were studied in postcapillary venules in the rat mesentery during superfusion with the cation chelator EDTA or Doxy. Shedding and accumulation of glycans on ECs, with and without fMLP, were quantified by the surface concentration of lectin (BS-1)-coated fluorescently labeled microspheres (FLMs) during constant circulating concentration. Without fMLP, low concentrations of EDTA (1-3 mM) increased FLM-EC sequestration due to disruption of the permeability barrier with prolonged exposure. In contrast, with 0.5 μM Doxy alone, FLM adhesion remained constant (i.e., no change in glycan content) on ECs, and WBC adhesion increased with prolonged superfusion. Without fMLP, EDTA did not affect firm WBC-EC adhesion but reduced WBC rolling flux in a dose-dependent manner. With fMLP, EDTA did not inhibit WBC adhesion, whereas Doxy did during the first 20 min of superfusion. Thus, the inhibition by Doxy of glycan (FLM) shedding and WBC adhesion in response to fMLP results from MMP inhibition, in contrast to cation chelation. With either Doxy or the MMP inhibitor GM-6001, WBC rolling velocity decreased by 50%, as in the case with fMLP, suggesting that MMP inhibition reduces sheddase activity, which increases the adhesiveness of rolling WBCs. These events increase the effective leukocrit on the venular wall and increase firm WBC-EC adhesion. Thus, MMP inhibitors have both a proadhesion effect by reducing sheddase activity while exerting an antiadhesion effect by inhibiting glycocalyx shedding and

  12. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)

    VIKASH DHINDHWAL; N SATHYAMURTHY

    2016-10-01

    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  13. Probing permeability and microstructure: Unravelling the role of a low-permeability dome on the explosivity of Merapi (Indonesia)

    Science.gov (United States)

    Kushnir, Alexandra R. L.; Martel, Caroline; Bourdier, Jean-Louis; Heap, Michael J.; Reuschlé, Thierry; Erdmann, Saskia; Komorowski, Jean-Christophe; Cholik, Noer

    2016-04-01

    Low permeability dome rocks may contribute to conduit overpressure development in volcanic systems, indirectly abetting explosive activity. The permeability of dome-forming rocks is primarily controlled by the volume, type (vesicles and/or microcracks), and connectivity of the void space present. Here we investigate the permeability-porosity relationship of dome-forming rocks and pumice clasts from Merapi's 1888 to 2013 eruptions and assess their possible role in eruptive processes, with particular emphasis on the 2010 paroxysmal eruption. Rocks are divided into three simple field classifications common to all eruptions: Type 1 samples have low bulk density and are pumiceous in texture; Type 2 samples, ubiquitous to the 2010 eruption, are dark grey to black in hand sample and vary greatly in vesicularity; and Type 3 samples are weakly vesicular, light grey in hand sample, and are the only samples that contain cristobalite. Type 2 and Type 3 rocks are present in all eruptions and their permeability and porosity data define similar power law relationships, whereas data for Type 1 samples are clearly discontinuous from these trends. A compilation of permeability and porosity data for andesites and basaltic andesites with published values highlights two microstructural transitions that exert control on permeability, confirmed by modified Bayesian Information Criterion (BIC) analysis. Permeability is microcrack- and diktytaxitic-controlled at connected porosities, φc, 31 vol.%. Type 3 basaltic andesites, the least permeable of the measured samples and therefore the most likely to have originated in the uppermost low-permeability dome, are identified as relicts of terminal domes (the last dome extruded prior to quiescence). Cristobalite commonly found in the voids of Type 3 blocks may not contribute significantly to the reduction of the permeability of these samples, mainly because it is associated with an extensive microporous, diktytaxitic texture. Indeed, the low

  14. Toward high permeability, selectivity and controllability of water desalination with FePc nanopores.

    Science.gov (United States)

    Deng, Qingming; Pan, Jun; Yin, Xiaohui; Wang, Xiaofeng; Zhao, Lina; Kang, Seung-gu; Jimenez-Cruz, Camilo A; Zhou, Ruhong; Li, Jingyuan

    2016-03-21

    Nanoporous materials exhibit promising potential in water transportation applications, especially in ocean water desalination. It is highly desired to have great permeability, selectivity and controllability in the desalination performance of these nanopores. However, it is still a challenge to achieve all three features in one material or device. Here, we demonstrate efficient and controllable water desalination with a nanoporous 2D Fe phthalocyanine (FePc) membrane using molecular dynamics simulations. We find the FePc membrane not only conducts fast water flow, but it also suppresses ion permeation. The selectivity is attributed to a mechanism distinct from the traditional steric exclusion: cations are excluded due to electrostatic repulsion, whereas anions can be trapped in the nanopore and induce the reorganization of ions in the vicinity of the nanopore, which in turn creates a tendency for the trapped anions to move back into the saline reservoir. More interestingly, we find such mechanism is largely due to the sufficiently strong electrostatic interaction of the charged nanopore region with ions and is not restricted to the FePc nanopore. In addition, the number of protonated nitrogen atoms in FePc pores can be modulated by adjusting the pH value of the solution. The extent of the anion occupancy can thus be regulated, giving rise to control of the water flow. Taken together, great permeability, selectivity and controllability can be achieved with this nanosheet system. Moreover, our study suggests there is an alternative mechanism of water desalination which may be realized by intrinsically nanoporous materials such as FePc membranes.

  15. Airspace Analyzer for Assessing Airspace Directional Permeability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We build a software tool which enables the user (airline or Air Traffic Service Provider (ATSP)) the ability to analyze the flight-level-by-flight-level permeability...

  16. Topical tranexamic acid improves the permeability barrier in rosacea

    Directory of Open Access Journals (Sweden)

    Shaomin Zhong

    2015-06-01

    Conclusion: Topical tranexamic acid could improve the epidermal permeability barrier function and clinical signs of rosacea, likely resulting from inhibition of PAR-2 activation and consequent calcium influx. Thus, tranexamic acid could serve as an adjuvant therapy for rosacea.

  17. Applying COSISIM model to study the permeability of porous media

    Institute of Scientific and Technical Information of China (English)

    LIU Zhen; MU Chao-min

    2011-01-01

    Accuracy of simulated permeability can be improved using soft data during the process of simulation. Integrating soft data with hard data, a method based on COSISIM (sequential indicator cosimulation) was proposed to reconstruct permeability. The algorithm COSISIM extends the SISIM (sequential indicator simulation) algorithm to handle secondary data. At the difference of SISIM, data must already be an indicator-coded prior to using COSISIM. The soft data were integrated with hard data using the Markov-Bayes algorithm and must be coded into indicators before they are used. This method was tested on a regional simulation of permeability. The simulated results and the original distribution of permeability were compared. The experimental results demonstrate that this method is practical.

  18. AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An analytical approach is described for the axisymmetric flow through a permeable near-sphere with a modification to boundary conditions in order to account permeability. The Stokes equation was solved by a regular perturbation technique up to the second order correction in epsilon representing the deviation from the radius of nondeformed sphere. The drag and the flow rate were calculated and the results were evaluated from the point of geometry and the permeability of the surface. An attempt also was made to apply the theory to the filter feeding problem. The filter appendages of small ecologically important aquatic organisms were modeled as axisymmetric permeable bodies, therefore a rough model for this problem was considered here as an oblate spheroid or near-sphere.

  19. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    The seasonal imbalance between supply and demand of renewable energy requires temporary storage, which can be achieved by hot water injection in warm aquifers. This requires that the permeability and porosity of the aquifer are not reduced significantly by heating. We present an overview...... of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  20. Permeability studies on 3D Ni foam/graphene composites

    Science.gov (United States)

    Yang, Zhuxian; Chen, Hongmei; Wang, Nannan; Xia, Yongde; Zhu, Yanqiu

    2017-09-01

    This study investigates the permeability of new 3D Ni foam/graphene composites (Ni foam covered with graphene) using compressed air, Ar and N2 as the probe gases. The results show that the introduction of graphene on the surface of Ni foam via in situ chemical vapour deposition is not detrimental to the permeability of the composites; on the contrary, in some cases it improves permeability. A modified Ergun-type correlation has been proposed, which represents very well the permeability of the Ni foam/graphene composites, especially at flow rates higher than 0.3 m s-1. Further studies show that graphene also helps to improve the thermal conductivity of the composite. These results suggest that the graphene involvement will make the Ni foam/graphene composite a good candidate for potential applications such as filters or heat exchangers suitable for working under harsh conditions such as at high temperatures, in corrosive environments, etc.

  1. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  2. Interferon-gamma regulation of intestinal epithelial permeability.

    Science.gov (United States)

    Beaurepaire, Cécile; Smyth, David; McKay, Derek M

    2009-03-01

    The maintenance and regulation of the barrier function of the epithelial lining of the intestine are important homeostatic events, serving to allow selective absorption from the gut lumen while simultaneously limiting the access of bacteria into the mucosa. Interferon-gamma is a pleiotrophic cytokine produced predominantly by natural kill cells and CD4+ T cells that under normal circumstances, and particularly during infection or inflammation, will be a component of the intestinal milieu. Use of colon-derived epithelial cell lines and, to a less extent, murine in vivo analyses, have revealed that interferon-gamma (IFN-gamma) can increase epithelial permeability as gauged by markers of paracellular permeability and bacterial transcytosis, with at least a portion of the bacteria using the transcellular permeation pathway. In this review, we describe the main characteristics of epithelial permeability and then focus on the ability of IFN-gamma to increase epithelial permeability, and the mechanism(s) thereof.

  3. Water permeability of rat liver mitochondria: A biophysical study.

    Science.gov (United States)

    Calamita, Giuseppe; Gena, Patrizia; Meleleo, Daniela; Ferri, Domenico; Svelto, Maria

    2006-08-01

    The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.

  4. Lightweight, Low Permeability, Cryogenic Thoraeus RubberTM Inflatables Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed a candidate state-of-the-art inflatable as a novel bladder material for life critical, space habitats that maintains low air permeability...

  5. Permeability analysis for thermal binder removal from green ceramic bodies

    Science.gov (United States)

    Yun, Jeong Woo

    2007-12-01

    The permeability of unlaminated and laminated green tapes was determined as a function of binder content for binder removed by air oxidation. The tapes are comprised of barium titanate as the dielectric, and polyvinyl butyral and dioctyl phthalate as the main compoents of the binder mixture. The flow in porous media through the tapes was analyzed in terms of models for describing Knudsen, slip, and Poiseuille flow mechanisms. The characteristic pore size was determined to be 0.5-2 mum and thus Poiseuille flow was the dominant transport mechanism contributing to the flux. The permeability was then determined from Darcy's law for flow in porous media. The permeability was also determined from micro-structural attributes in terms of the specific surface, the pore fraction, and terms to account for tortuosity and constrictions. The permeability and adhesion strength of laminated green ceramic tapes were determined as a function of lamination conditions of time, temperature, and pressure.

  6. Determination of permeability distribution from well-test pressure data

    Energy Technology Data Exchange (ETDEWEB)

    Feitosa, G.S.; Chu, L.; Thompson, L.G.; Reynolds, A.C. (Univ. of Tulsa, OK (United States))

    1994-07-01

    The emergence of reservoir characterization has stimulated efforts to obtain improved information on reservoir heterogeneities. This work considers single-phase flow to a well in a reservoir where permeability varies with distance from the well. The authors consider methods for estimating the permeability distribution from well-test pressure data. The methods considered were obtained by modifying and extending elegant seminal works of Oliver and Yeh and Agarwal. This work considers the analysis of pressure data, both drawdown and buildup, obtained at a well producing reservoir in which the absolute permeability varies with position. A new inverse-solution algorithm is presented that can be applied to estimate the reservoir permeability distribution as a function of distance from the well.

  7. Porosity, permeability, and their relationship in granite, basalt, and tuff

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    This report discusses the porosity, storage, and permeability of fractured (mainly crystalline) rock types proposed as host rock for nuclear waste repositories. The emphasis is on the inter-relationships of these properties, but a number of reported measurements are included as well. The porosity of rock is shown to consist of fracture porosity and matrix porosity; techniques are described for determining the total interconnected porosity through both laboratory and field measurement. Permeability coefficient, as obtained by experiments ranging from laboratory to crustal scale, is discussed. Finally, the problem of determining the relationship between porosity and permeability is discussed. There is no simple, all encompassing relationship that describes the dependence of permeability upon porosity. However, two particular cases have been successfully analyzed: flow through a single rough fracture, and flow through isotropic porous rock. These two cases are discussed in this report.

  8. Buoyancy Effect on MHD Flow Past a Permeable Bed

    Directory of Open Access Journals (Sweden)

    S. Venkataramana

    1986-10-01

    Full Text Available In this paper, the effect of buoyancy force on the parallel flows bounded above by a rigid permeable plate which may be moving or stationary and below, by a permeable bed has been investigated. To discuss the solution, the flow region is divided into two zones. In Zone 1, the flow is laminar and is governed by the Navier-Stokes equations from the impermeable upper rigid plate to the permeable bed. In Zone 2, the flow is governed by the Darcy law in the permeable bed below the nominal surface. The expressions for velocity and temparature distributions, Slip velocity, slip temperature, mass flow rate and the rates of heat transfer coefficients are obtained. The effects of magnetic, porous, slip and buoyancy parameters and Biot number on the above physical quantities are investigated. The thickness of the boundary layer in Zone 2 has been evaluated.

  9. Gas Permeability of Porous Plasma-Sprayed Coatings

    Science.gov (United States)

    Wittmann-Ténèze, K.; Caron, N.; Alexandre, S.

    2008-12-01

    For different applications, such as solid oxide fuel cells, there is an interest in understanding the relationship between the microstructure and the gas permeability of plasma-sprayed coatings. Nevertheless, plasma spraying processes allow to elaborate coatings with singular microstructures, depending strongly on the initial material and plasma operating conditions. And so, the evolution of permeability is not directly linked to the porosity. In this work, coatings were manufactured using different initial feedstock and spray parameters to obtain various microporous structures. Measurements of their permeation with the pressure drop method and their open porosity just as the observation of the morphology and the structure by optical microscopy were achieved. The different data show that the evolution of the gas permeability with the open porosity follows the Kozeny-Carman equation. This result correlated with the microstructural observation highlights the relationship between the permeability and the physical properties of porous plasma-sprayed layers.

  10. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  11. How mobile are sorbed cations in clays and clay rocks?

    Science.gov (United States)

    Gimmi, T; Kosakowski, G

    2011-02-15

    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  12. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  13. Permeability testing of drilling core sample from pavement

    Institute of Scientific and Technical Information of China (English)

    Suda WANG; Zhengguang TANG; Xiaojun NING; Peiguan WU; Pingyi XING

    2008-01-01

    The permeability coefficient of pavement material is a very important parameter in designing the drainage of pavement structures and is also used to evalu-ate the quality of road construction. New equipment is used to measure the permeability coefficient of the pave-ment drilling core sample and relevant testing methods are introduced. Testing drilling core samples from a certain highway of Yunnan province has been proven to be feas-ible. The test results are also analyzed.

  14. Development of Low Permeability Oilfields in Shengli Oil Province

    Institute of Scientific and Technical Information of China (English)

    Wang Binhai; Fan Naifu

    1995-01-01

    @@ Shengli oil province,complicated in geology and rich in resources, is the second largest oil production basin of China. Except for some big/medium sized oil/gas field with high and medium permeability which have already been put into production. There are 11oil fields at great depth with low permeability of less than 50 ×10-3 μm2 have been discovered with 12. 2% of the total proved original oil in place.

  15. Factors Affecting Water Permeability of Aleurone Layer in Soybean Seeds

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1999-01-01

    The effect of the immersion condition of soybean seeds on the water permeability in aleurone layer was investigated to clarify the water permeability at the initial stage of water sorption. The amounts of water absorbed in seeds coated with only aleurone layer (embryos uncovered with seed coat) and untreated seeds (embryos covered with seed coat and aleurone layer; intact seeds) were compared under several conditions of temperature, pH, ion species, and salt concentration. The relative weight...

  16. Regional variability in the permeability of human dentine.

    Science.gov (United States)

    Pashley, D H; Andringa, H J; Derkson, G D; Derkson, M E; Kalathoor, S R

    1987-01-01

    This was measured qualitatively by using dyes and quantitatively by hydraulic conductance in dentine discs and crown segments in vitro. Both types of preparation demonstrated large regional differences in permeability, with the highest values at the periphery and the lowest in the centre of the disc or crown. As dentine permeability may vary 3-10-fold across a few millimetres, investigators should use as large a surface area as possible to compensate for these regional differences.

  17. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)

    ANA MARIA CARMONA-RIBEIRO

    2000-03-01

    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  18. Interactions between cationic liposomes and drugs or biomolecules.

    Science.gov (United States)

    Carmona-Ribeiro, A M

    2000-01-01

    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  19. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  20. Regulation of AQP0 water permeability is enhanced by cooperativity.

    Science.gov (United States)

    Németh-Cahalan, Karin L; Clemens, Daniel M; Hall, James E

    2013-03-01

    Aquaporin 0 (AQP0), essential for lens clarity, is a tetrameric protein composed of four identical monomers, each of which has its own water pore. The water permeability of AQP0 expressed in Xenopus laevis oocytes can be approximately doubled by changes in calcium concentration or pH. Although each monomer pore functions as a water channel, under certain conditions the pores act cooperatively. In other words, the tetramer is the functional unit. In this paper, we show that changes in external pH and calcium can induce an increase in water permeability that exhibits either a positive cooperativity switch-like increase in water permeability or an increase in water permeability in which each monomer acts independently and additively. Because the concentrations of calcium and hydrogen ions increase toward the center of the lens, a concentration signal could trigger a regulatory change in AQP0 water permeability. It thus seems plausible that the cooperative modes of water permeability regulation by AQP0 tetramers mediated by decreased pH and elevated calcium are the physiologically important ones in the living lens.

  1. The Use Of Permeable Concrete For Ground Water Recharge

    Directory of Open Access Journals (Sweden)

    Akshay Tejankar

    2016-09-01

    Full Text Available In order to develop Smart Cities in India, we need to develop smart technologies and smart construction materials. Permeable concrete an innovative material is environment friendly and a smart material which can be used for construction of several structures. In India, the ground water table is decreasing at a faster rate due to reduction in ground water recharge. These days, the vegetation cover is replaced by infrastructure hence the water gets very less opportunity to infiltrate itself into the soil. If the permeable concrete which has a high porosity is used for the construction of pavements, walking tracks, parking lots, well lining, etc. then it can reduce the runoff from the site and help in the ground water recharge. Such type of smart materials will play an important role for Indian conditions where government is putting lot of efforts to implement ground water recharging techniques. During the research work, the runoff for a particular storm was calculated for a bitumen pavement on a sloping ground. Later after studying the various topographical features, the traffic intensity and the rainfall for that particular area, the concrete was designed and tested for the different proportion and thus the mix design for the permeable concrete was finalized based upon its permeability and strength characteristics. Later by using this permeable concrete the infiltration and runoff for the same storm was compared and studied. The research paper will thus give an account of the properties of permeable concrete where it can be used over an existing road.

  2. Hybrid green permeable pave with hexagonal modular pavement systems

    Science.gov (United States)

    Rashid, M. A.; Abustan, I.; Hamzah, M. O.

    2013-06-01

    Modular permeable pavements are alternatives to the traditional impervious asphalt and concrete pavements. Pervious pore spaces in the surface allow for water to infiltrate into the pavement during rainfall events. As of their ability to allow water to quickly infiltrate through the surface, modular permeable pavements allow for reductions in runoff quantity and peak runoff rates. Even in areas where the underlying soil is not ideal for modular permeable pavements, the installation of under drains has still been shown to reflect these reductions. Modular permeable pavements have been regarded as an effective tool in helping with stormwater control. It also affects the water quality of stormwater runoff. Places using modular permeable pavement has been shown to cause a significant decrease in several heavy metal concentrations as well as suspended solids. Removal rates are dependent upon the material used for the pavers and sub-base material, as well as the surface void space. Most heavy metals are captured in the top layers of the void space fill media. Permeable pavements are now considered an effective BMP for reducing stormwater runoff volume and peak flow. This study examines the extent to which such combined pavement systems are capable of handling load from the vehicles. Experimental investigation were undertaken to quantify the compressive characteristics of the modular. Results shows impressive results of achieving high safety factor for daily life vehicles.

  3. Internal filtration in dialyzers with different membrane permeabilities.

    Science.gov (United States)

    Sato, Yuichi; Kimura, Kenjiro; Chikaraishi, Tatsuya

    2010-07-01

    Over the last decade, hemodialysis with enhanced internal filtration (IF) has been investigated as an alternative to conventional dialysis. Several factors affect IF, including the geometry and permeability of hollow-fiber dialyzers. Although various studies have been performed, the association between IF and membrane permeability has not been fully examined because of the difficulty in measuring IF. Therefore, in this study, we set up an experimental circuit and attempted to directly measure IF as well as membrane permeability in five dialyzers. In the circuit, we placed two dialyzers of the same type in series, and a special sampling port between them, thereby making it possible to determine IF by measuring the extent to which blood was concentrated between the two dialyzers. We showed that a significant amount of IF occurred in this tandem-dialyzer circuit, ranging from 23.5 to 100 ml/min, which increased linearly with increasing membrane permeability. We also showed that membrane permeability was reduced in the first dialyzer to a greater extent than in the second one after four hours of circulation, suggesting that filtration caused substantial membrane fouling. In this study we practically demonstrated that membrane permeability is highly relevant to the phenomenon of IF.

  4. Degree of conversion and permeability of dental adhesives.

    Science.gov (United States)

    Cadenaro, Milena; Antoniolli, Francesca; Sauro, Salvatore; Tay, Franklin R; Di Lenarda, Roberto; Prati, Carlo; Biasotto, Matteo; Contardo, Luca; Breschi, Lorenzo

    2005-12-01

    The aim of this study was to analyse the extent of polymerization of different adhesive films in relation to their permeability. One adhesive of each class was investigated: OptiBond FL; One-Step; Clearfil Protect Bond; and Xeno III. Adhesive films were prepared and cured with XL-2500 (3M ESPE) for 20, 40 or 60 s. Polymerization kinetic curves of the adhesives tested were obtained with differential scanning calorimetry (DSC) and data were correlated with microhardness. The permeability of the adhesives under the same experimental conditions was evaluated on human extracted teeth connected to a permeability device and analysed statistically. The results showed that the extent of polymerization obtained from DSC exotherms was directly correlated with microhardness. An increased level of polymerization after prolonged light-curing was confirmed for all adhesives. Simplified adhesives exhibited a lower extent of polymerization and showed incomplete polymerization, even after 60 s. An inverse correlation was found between the degree of cure and the permeability. This study supports the hypothesis that the permeability of simplified adhesives is correlated with incomplete polymerization of resin monomers and the extent of light exposure. These adhesives may be rendered less permeable by using longer curing times than those recommended by the respective manufacturer.

  5. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  6. Magnetic susceptibility and electron magnetic resonance study of monovalent potassium doped manganites Pr{sub 0.6}Sr{sub 0.4−x}K{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thaljaoui, R., E-mail: thaljaoui@gmail.com [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Pękała, K. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Szydłowska, J. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Fagnard, J.-F.; Vanderbemden, P. [SUPRATEC, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia)

    2013-12-15

    Highlights: •Orthorhombic monovalent doped manganites Pr0.6Sr0.4-xKxMnO3 (x = 0.05 to 0.2). •Unit cell volume decreases with K content. •Curie temperature decreases with K content. •Electron magnetic resonance determines low temperature limit of paramagnetic phase. -- Abstract: The monovalent potassium doped manganites Pr{sub 0.6}Sr{sub 0.4−x}K{sub x}MnO{sub 3} (x = 0.05–0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie–Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature.

  7. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  8. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  9. The Effect of Temperature and Rock Permeability on Oil-Water Relative Permeability Curves of Waxy Crude Oil

    Directory of Open Access Journals (Sweden)

    Liyuan Cao

    2016-04-01

    Full Text Available Wax deposition has always been a problem for the production of waxy crude oil. When the reservoir temperature is below the wax appearance temperature (WAT, wax would precipitate in the oil phase as wax crystals, which could increase the oil viscosity and decrease the permeability of the rock. In this study, a series of core flooding experiments under 5 different temperatures and using two groups of core samples with permeability liein300 md and 1000 md respectively were carried out to investigate the effect of temperature and rock permeability on waxy crude oil-water relative permeability curves under reservoir condition. The results revealed that temperature has a significant influence on relative permeability, especially when the temperature is below the WAT (70℃ in this study. The initial water decreased by 40% and the residual oil saturation increased to about 2.5 times when temperature decreased from 85℃ to 50℃ for experiments of both two groups in this study. Oil recovery decreased as the temperature dropped. There was not much difference between the oil recovery of cores with permeability of 1000 md and that with permeability of 300 md until the temperature dropped to 70℃, and the difference increased to 8% when temperature decreased to 50℃, which implies that reservoir with lower permeability is easier to be damaged by wax deposition only when the temperature drops to below WAT. According to this work, it is suggested that reservoir temperature should be better maintained higher than theWAT when extracting waxy crude oil of this reservoir, or at least above 60℃.

  10. Study of the magnetite to maghemite transition using microwave permittivity and permeability measurements.

    Science.gov (United States)

    Cuenca, Jerome Alexander; Bugler, Keith; Taylor, Stuart; Morgan, David; Williams, Paul; Bauer, Johann; Porch, Adrian

    2016-03-16

    The microwave cavity perturbation (MCP) technique is used to identify the transition from magnetite (Fe3O4) to the meta-stable form of maghemite (γ-Fe2O3). In this study Fe3O4 was annealed at temperatures from 60 to 300 °C to vary the oxidation. Subsequent to annealing, the complex permittivity and magnetic permeability of the iron oxide powders were measured. The transition to γ-Fe2O3 was corroborated with x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM). XRD, XPS and VSM implied that the starting powder was consistent with Fe3O4 and the powders annealed at more than 200 °C were transitioning to γ-Fe2O3. The MCP measurements gave large differences in both complex permittivity and magnetic permeability of the two phases in the frequency range of 2.5-10.2 GHz. Magnetic permeability decreased with annealing temperature, though magnetic losses showed frequency dependent behaviour. Complex permittivity measurements showed a large decrease in both dielectric constant and losses at all measurement frequencies, as well as a prominent loss peak centred around the phase transition temperatures. We interpret the loss peak as being a consequence of field effects due to an intermediate multi-phase mixture. Additionally, almost no frequency dependence was observed. The reduction in complex permittivity implies that the Feoct(2+) cations in the lattice provide a significant contribution to polarization at microwave frequencies and the effects of Feoct(3+) are nominal in comparison.. The change in loss can be explained as a combination of the differences in the effective conductivity of the two phases (i.e. Fe3O4 exhibits electron-hopping conduction whereas the presence of vacancies in γ-Fe2O3 nullifies this). This shows that the non-invasive MCP measurements serve as a highly sensitive and versatile method for looking at this phase transition in iron and potentially the effects of oxidation states on the polarization

  11. Hydrogen motion in proton sponge cations: a theoretical study.

    Science.gov (United States)

    Horbatenko, Yevhen; Vyboishchikov, Sergei F

    2011-04-18

    This work presents a study of intramolecular NHN hydrogen bonds in cations of the following proton sponges: 2,7-bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (1), 1,6-diazabicyclo[4.4.4.]tetradecane (2), 1,9-bis(dimethylamino)dibenzoselenophene (3), 1,9-bis(dimethylamino)dibenzothiophene (4), 4,5-bis(dimethylamino)fluorene (5), quino[7,8-h]quinoline (6) 1,2-bis(dimethylamino)benzene (7), and 1,12-bis(dimethylamino)benzo[c]phenantrene (8). Three different patterns were found for proton motion: systems with a single-well potential (cations 1-2), systems with a double-well potential and low proton transfer barrier, ΔEe (cations 3-5), and those with a double-well potential and a high barrier (cations 6-8). Tests of several density functionals indicate that the PBEPBE functional reproduces the potential-energy surface (PES) obtained at the MP2 level well, whereas the B3LYP, MPWB1K, and MPW1B95 functionals overestimate the barrier. Three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved for selected cases of cation 1 (with a single-well potential), cation 4 (with a ΔEe value of 0.1 kcal mol(-1) at the MP2 level), and cations 6 (ΔEe = 2.4 kcal mol(-1)) and 7 (ΔEe=3.4 kcal mol(-1)). The PES is highly anharmonic in all of these cases. The analysis of the three-dimensional ground-state vibrational wave function shows that the proton is delocalized in cations 1 and 4, but is rather localized around the energy minima for cation 7. Cation 6 is an intermediate case, with two weakly pronounced maxima and substantial tunneling. This allows for classification of proton sponge cations into those with localized and those with delocalized proton behavior, with the borderline between them at ΔEe values of about 1.5 kcal mol(-1). The excited vibrational states of proton sponge cations with a low barrier can be described within the framework of a simple particle-in-a-box model. Each cation can be assigned an effective box width.

  12. Effect of entomocidal proteins from Bacillus thuringiensis on ion permeability of apical membranes of Tenebrio molitor larvae gut epithelium.

    Science.gov (United States)

    Andreev, I M; Bulushova, N V; Zalunin, I A; Chestukhina, G G

    2009-10-01

    Effects of entomocidal Cry-type proteins, delta-endotoxins Cry3A and Cry11A produced by Bacillus thuringiensis, on ion permeability of the apical membranes of intestinal epithelium from Tenebrio molitor larvae midgut were studied. Using potential-sensitive dyes safranine O and oxonol VI and DeltapH indicator acridine orange, it was shown that placing brush border membrane vesicles (BBMV) (loaded with Mg2+ during their preparation) into a salt-free buffer medium resulted in spontaneous generation of transmembrane electric potential on the vesicular membrane (negative inside the vesicles) accompanied by acidification of the aqueous phase inside the vesicles. The generation of transmembrane ion gradients on the vesicular membrane was a result of an electrogenic efflux of Mg2+ from the vesicles as shown by abolishing of the membrane potential by such agents as MgSO4 or CaCl2 in centimolar concentrations, a highly lipophilic cation tetraphenylphosphonium, and some blockers of cell membrane Ca2+-channels in submillimolar concentrations. A passive generation of membrane potential on the vesicular membrane (but positive inside the vesicles) was also observed upon addition of centimolar concentrations of K2SO4. Addition of delta-endotoxins Cry3A and Cry11A to the vesicle suspension in a salt-free buffer medium or in the same medium supplemented with centimolar concentrations of K2SO4 exerted a pronounced hyperpolarization of the vesicular membrane. This hyperpolarization was sensitive to the same agents, which abolished the membrane potential generation in the absence of delta-endotoxin. It is concluded that Cry proteins induced in BBMV from T. molitor opening pores or ion channels, which were considerably more permeable for alkaline- and alkaline-earth metal cations than for the accompanying anions.

  13. A fast Laplace solver approach to pore scale permeability

    Science.gov (United States)

    Arns, Christoph; Adler, Pierre

    2017-04-01

    The permeability of a porous medium can be derived by solving the Stokes equations in the pore space with no slip at the walls. The resulting velocity averaged over the pore volume yields the permeability KS by application of the Darcy law. The Stokes equations can be solved by a number of different techniques such as finite differences, finite volume, Lattice Boltzmann, but whatever the technique it remains a heavy task since there are four unknowns at each node (the three velocity components and the pressure) which necessitate the solution of four equations (the projection of Newton's law on each axis and mass conservation). By comparison, the Laplace equation is scalar with a single unknown at each node. The objective of this work is to replace the Stokes equations by an elliptical equation with a space dependent permeability. More precisely, the local permeability k is supposed to be proportional to (r-alpha)**2 where r is the distance of the voxel to the closest wall, and alpha a constant; k is zero in the solid phase. The elliptical equation is div(k gradp)=0. A macroscopic pressure gradient is assumed to be exerted on the medium and again the resulting velocity averaged over space yields a permeability K_L. In order to validate this method, systematic calculations have been performed. First, elementary shapes (plane channel, circular pipe, rectangular channels) were studied for which flow occurs along parallel lines in which case KL is the arithmetic average of the k's. KL was calculated for various discretizations of the pore space and various values of alpha. For alpha=0.5, the agreement with the exact analytical value of KS is excellent for the plane and rectangular channels while it is only approximate for circular pipes. Second, the permeability KL of channels with sinusoidal walls was calculated and compared with analytical results and numerical ones provided by a Lattice Boltzmann algorithm. Generally speaking, the discrepancy does not exceed 25% when

  14. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.

    Science.gov (United States)

    Hagigit, Tal; Nassar, Taher; Behar-Cohen, Francine; Lambert, Gregory; Benita, Simon

    2008-09-01

    Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

  15. Decontamination of groundwater by permeable reactive barriers; Descontaminacion de aguas subterraneas mediante barreras reactivas permeables

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Flores, A.; Chimenos, J. M.

    2002-07-01

    Passive in-situ remediation techniques have seen increased application at contaminated aquifers in recent years as a means of contaminant control and as means of passively treating contaminants in groundwater, because of their low economic cost and minor ground occupation. Permeable reactive barriers (PRBs) are based on the creation of a subsurface barrier, where groundwater contaminants are intercepted in the saturated zone, establishing a passive system of control and contamination treatment, in particular in the heavy metals removal. This paper discusses, related to PRBs experimentation, the results obtained from laboratory experiences by means of Mg oxides and sandy soils as barrier materials, showing a high removal of Cd, Cu, Ni, Fe, Pb and Zn. (Author) 21 refs.

  16. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard

    2016-07-01

    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  17. Cationic Noncovalent Interactions: Energetics and Periodic Trends.

    Science.gov (United States)

    Rodgers, M T; Armentrout, P B

    2016-05-11

    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  18. INTERACTIONS BETWEEN CATIONIC POLYELECTROLYTE AND PULP FINES

    Directory of Open Access Journals (Sweden)

    Elina Orblin

    2011-05-01

    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  19. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.

  20. Inactivation of Heparin by Cationically Modified Chitosan

    Directory of Open Access Journals (Sweden)

    Barbara Lorkowska-Zawicka

    2014-06-01

    Full Text Available This study was performed to evaluate the ability of N-(2-hydroxypropyl-3-tri methylammonium chitosan chloride (HTCC, the cationically modified chitosan, to form biologically inactive complexes with unfractionated heparin and thereby blocking its anticoagulant activity. Experiments were carried out in rats in vivo and in vitro using the activated partial thromboplastin time (APTT and prothrombin time (PT tests for evaluation of heparin anticoagulant activity. For the first time we have found that HTCC effectively neutralizes anticoagulant action of heparin in rat blood in vitro as well as in rats in vivo. The effect of HTCC on suppression of heparin activity is dose-dependent and its efficacy can be comparable to that of protamine-the only agent used in clinic for heparin neutralization. HTCC administered i.v. alone had no direct effect on any of the coagulation tests used. The potential adverse effects of HTCC were further explored using rat experimental model of acute toxicity. When administered i.p. at high doses (250 and 500 mg/kg body weight, HTCC induced some significant dose-dependent structural abnormalities in the liver. However, when HTCC was administered at low doses, comparable to those used for neutralization of anticoagulant effect of heparin, no histopathological abnormalities in liver were observed.