WorldWideScience

Sample records for monovalent cation conductances

  1. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  2. Impact of monovalent cations on soil structure. Part I. Results of an Iranian soil

    Science.gov (United States)

    Farahani, Elham; Emami, Hojat; Keller, Thomas; Fotovat, Amir; Khorassani, Reza

    2018-01-01

    This study investigated the impact of monovalent cations on clay dispersion, aggregate stability, soil pore size distribution, and saturated hydraulic conductivity on agricultural soil in Iran. The soil was incubated with treatment solutions containing different concentrations (0-54.4 mmol l-1) of potassium and sodium cations. The treatment solutions included two levels of electrical conductivity (EC=3 or 6 dS m-1) and six K:Na ratios per electrical conductivity level. At both electrical conductivity levels, spontaneously dispersible clay increased with increasing K concentration, and with increasing K:Na ratio. A negative linear relationship between percentage of water-stable aggregates and spontaneously dispersible clay was observed. Clay dispersion generally reduced the mean pore size, presumably due to clogging of pores, resulting in increased water retention. At both electrical conductivity levels, hydraulic conductivity increased with increasing exchangeable potassium percentage at low exchangeable potassium percentage values, but decreased with further increases in exchangeable potassium percentage at higher exchangeable potassium percentage. This is in agreement with earlier studies, but seems in conflict with our data showing increasing spontaneously dispersible clay with increasing exchangeable potassium percentage. Our findings show that clay dispersion increased with increasing K concentration and increasing K:Na ratio, demonstrating that K can have negative impacts on soil structure.

  3. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  4. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  5. Diphtheria toxin-induced channels in Vero cells selective for monovalent cations

    International Nuclear Information System (INIS)

    Sandvig, K.; Olsnes, S.

    1988-01-01

    Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45 Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed

  6. The role of monovalent cations in the ATPase reaction of DNA gyrase.

    Science.gov (United States)

    Hearnshaw, Stephen James; Chung, Terence Tsz-Hong; Stevenson, Clare Elizabeth Mary; Maxwell, Anthony; Lawson, David Mark

    2015-04-01

    Four new crystal structures of the ATPase domain of the GyrB subunit of Escherichia coli DNA gyrase have been determined. One of these, solved in the presence of K(+), is the highest resolution structure reported so far for this domain and, in conjunction with the three other structures, reveals new insights into the function of this domain. Evidence is provided for the existence of two monovalent cation-binding sites: site 1, which preferentially binds a K(+) ion that interacts directly with the α-phosphate of ATP, and site 2, which preferentially binds an Na(+) ion and the functional significance of which is not clear. The crystallographic data are corroborated by ATPase data, and the structures are compared with those of homologues to investigate the broader conservation of these sites.

  7. Monovalent cations transfer through isolated human amnion: a new pharmacological model

    Energy Technology Data Exchange (ETDEWEB)

    Bara, M.; Guiet-Bara, A.; Durlach, J.

    1985-04-01

    Transfer of monovalent cations through the isolated human amnion consists of different factors: paracellular, coupling, ATPase dependent cellular transfer, leak cellular transfer. Understanding this transfer permits testing of the action of various substances. Physiological substances (Mg, taurine) increase ionic transfer and there is a vicarious effect between Mg and taurine. The tocolytic agents MgSO/sub 4/ and ethanol do not exhibit a good effect on the transfer: decrease with ethanol; equality between entry and exit fluxes with MgSO/sub 4/. On the other hand, amphotericin B increases mother-to-fetus transfer. Polluting metals (Pb, Cd, Hg, As) dramatically reduce exchanges and almost completely inhibit amnion permeability. Ingestion of ethanol also exhibits a dramatic effect on the exchange between mother and fetus through the amnion. Study of ionic transfer in vitro can be considered a pharmacological model to investigate the modifications of mother-fetus exchanges by various substances.

  8. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Monovalent cation and amiloride analog modulation of adrenergic ligand binding to the unglycosylated alpha 2B-adrenergic receptor subtype

    International Nuclear Information System (INIS)

    Wilson, A.L.; Seibert, K.; Brandon, S.; Cragoe, E.J. Jr.; Limbird, L.E.

    1991-01-01

    The unglycosylated alpha 2B subtype of the alpha 2-adrenergic receptor found in NG-108-15 cells possesses allosteric regulation of adrenergic ligand binding by monovalent cations and 5-amino-substituted amiloride analogs. These findings demonstrate that allosteric modulation of adrenergic ligand binding is not a property unique to the alpha 2A subtype. The observation that amiloride analogs as well as monovalent cations can modulate adrenergic ligand binding to the nonglycosylated alpha 2B subtype indicates that charge shielding due to carbohydrate moieties does not play a role in this allosteric modulation but, rather, these regulatory effects result from interactions of cations and amiloride analogs with the protein moiety of the receptor. Furthermore, the observation that both alpha 2A and alpha 2B receptor subtypes are modulated by amiloride analogs suggests that structural domains that are conserved between the two are likely to be involved in this allosteric modulation

  10. Circular Dichroism is Sensitive to Monovalent Cation Binding in Monensin Complexes

    Czech Academy of Sciences Publication Activity Database

    Nedzhib, A.; Kessler, Jiří; Bouř, Petr; Gyurcsik, B.; Pantcheva, I.

    2016-01-01

    Roč. 28, č. 5 (2016), s. 420-428 ISSN 0899-0042 R&D Projects: GA ČR GA15-09072S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : monovalent polyether ionophore * metal complexes * synchrotron radiation circular dichroism * time-dependent density functional theory Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.956, year: 2016

  11. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.

    Science.gov (United States)

    Kim, Younggy; Walker, W Shane; Lawler, Desmond F

    2012-05-01

    In electrodialysis desalination, the boundary layer near ion-exchange membranes is the limiting region for the overall rate of ionic separation due to concentration polarization over tens of micrometers in that layer. Under high current conditions, this sharp concentration gradient, creating substantial ionic diffusion, can drive a preferential separation for certain ions depending on their concentration and diffusivity in the solution. Thus, this study tested a hypothesis that the boundary layer affects the competitive transport between di- and mono-valent cations, which is known to be governed primarily by the partitioning with cation-exchange membranes. A laboratory-scale electrodialyzer was operated at steady state with a mixture of 10mM KCl and 10mM CaCl(2) at various flow rates. Increased flows increased the relative calcium transport. A two-dimensional model was built with analytical solutions of the Nernst-Planck equation. In the model, the boundary layer thickness was considered as a random variable defined with three statistical parameters: mean, standard deviation, and correlation coefficient between the thicknesses of the two boundary layers facing across a spacer. Model simulations with the Monte Carlo method found that a greater calcium separation was achieved with a smaller mean, greater standard deviation, or more negative correlation coefficient. The model and experimental results were compared for the cationic transport number as well as the current and potential relationship. The mean boundary layer thickness was found to decrease from 40 to less than 10 μm as the superficial water velocity increased from 1.06 to 4.24 cm/s. The standard deviation was greater than the mean thickness at slower water velocities and smaller at faster water velocities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Systems Biology of Monovalent Cation Homeostasis in Yeast: The Translucent Contribution

    Czech Academy of Sciences Publication Activity Database

    Ariňo, J.; Aydar, E.; Drulhe, S.; Ganser, D.; Jorrín, J.; Kahm, M.; Krause, F.; Petrezsélyová, Silvia; Yenush, L.; Zimmermannová, Olga; Van Heusden, G.P.H.; Kschischo, M.; Ludwig, J.; Palmer, Ch.; Ramos, J.; Sychrová, Hana

    2014-01-01

    Roč. 64, č. 2014 (2014), s. 1-63 ISSN 0065-2911 R&D Project s: GA ČR(CZ) GAP503/10/0307; GA AV ČR(CZ) IAA500110801; GA MŠk(CZ) LD13037 Institutional support: RVO:67985823 Keywords : yeast * cation homeostasis * osmotolerance Subject RIV: EE - Microbiology, Virology Impact factor: 3.250, year: 2014

  13. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  14. Modification of thermal sensitivity of Chinese hamster cells by exposure to solutions of monovalent and divalent cationic salts

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Azzam, E.I.; Vadasz, J.

    1984-06-01

    Chinese hamster V79 cells were heated in culture medium or in 0.155-mol.dm -3 solutions of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 and BaCl 2 . The presence of any one of these ionic solutions during heating increased the thermal sensitivity of the cells. The order of increased thermal sensitivity was KCl > LiCl > NaCl for the monovalent salts and BaCl 2 > MgCl 2 > CaCl 2 for the divalent cation salts. The addition of glucose to LiCl or NaCl solutions did not reduce the thermal sensitization caused by these solutions. When cells were sensitized by LiCl or NaCl treatment, a change in pH from 7.2 to 6.6 did not further increase thermal sensitivity. These data show that nutrient and ionic factors and their interplay are involved in cellular thermal sensitivity

  15. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation

    Czech Academy of Sciences Publication Activity Database

    Felcmanová, Kristina; Nevečeřalová, Petra; Sychrová, Hana; Zimmermannová, Olga

    2017-01-01

    Roč. 17, č. 5 (2017), č. článku fox053. ISSN 1567-1356 R&D Projects: GA ČR(CZ) GA16-03398S; GA MŠk(CZ) LH14297 Institutional support: RVO:67985823 Keywords : Kch proteins * plasma-membrane potential * monovalent cation homeostasis * intracellular pH * Saccharomyces cerevisiae * Candida albicans Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Mycology Impact factor: 3.299, year: 2016

  16. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils

    Science.gov (United States)

    Farahani, Elham; Emami, Hojat; Keller, Thomas

    2018-01-01

    In this study, we investigated the impact of adding solutions with different potassium and sodium concentrations on dispersible clay, water retention characteristics, air permeability, and soil shrinkage behaviour using two agricultural soils from Switzerland with different clay content but similar organic carbon to clay ratio. Three different solutions (including only Na, only K, and the combination of both) were added to soil samples at three different cation ratio of soil structural stability levels, and the soil samples were incubated for one month. Our findings showed that the amount of readily dispersible clay increased with increasing Na concentrations and with increasing cation ratio of soil structural stability. The treatment with the maximum Na concentration resulted in the highest water retention and in the lowest shrinkage capacity. This was was associated with high amounts of readily dispersible clay. Air permeability generally increased during incubation due to moderate wetting and drying cycles, but the increase was negatively correlated with readily dispersible clay. Readily dispersible clay decreased with increasing K, while readily dispersible clay increased with increasing K in Iranian soil (Part I of our study). This can be attributed to the different clay mineralogy of the studied soils (muscovite in Part I and illite in Part II).

  17. Increased mineral oil bioavailability in slurries by monovalent cation-induced dispersion

    International Nuclear Information System (INIS)

    Jonge, H. de; Verstraten, J.M.

    1995-01-01

    Bioavailability of apolar contaminants is an important limiting factor for microbial reclamation of polluted soils. This paper describes a laboratory study of the relation between microaggregate stability and bioavailability of mineral oil in soil-water slurries. The stability of microaggregates in slurries is regulated by the valence and surface affinity of the cations in the system, and by the complexing anion P 2 O 7 4- (metaphosphate). A silt loam, contaminated with a weathered gas oil, was collected from an oil refinery site. Degradation rates were monitored in small-scale incubations at solid:liquid ratios of 1:5 (w/w). The solution contained Ca, Na, or K as the dominant cation. The levels of nutrients and metaphosphate were varied. Biodegradation rates increased with the sequence Ca 2 treatment. Measurements of the particle size distribution the slurry showed that an increase in the finer fractions qualitatively correlated with enhanced biodegradation. This is a strong indication that dispersion of the microaggregates increased bioavailability of the contaminant

  18. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-01-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906

  19. A metal-ion NMR investigation of the antibiotic facilitated transport of monovalent cations through the walls of phospholipid vesicles. II. Sulfur-33 NMR

    International Nuclear Information System (INIS)

    Buster, D.C.

    1988-01-01

    A technique has been developed to investigate the antibiotic facilitated transmembrane transport of monovalent cations using 23 Na and 7 Li Nuclear Magnetic Resonance spectroscopy. The initial portion of this thesis outlines the production and characterization of a model lipid system amenable to the NMR detection of cation transport. Large unilamellar vesicles (LUV) have been prepared from a 4:1 mixture of phosphatidylcholine and phosphatidylglycerol. The presence of the anionic chemical shift reagent dysprosium (III) tripolyphosphate, either inside or outside of the vesicles, allows for the spectroscopic separation of the NMR resonances arising from the inter- and extravesicular cation pools. The cation transporting properties of the channel-forming pentadecapeptide, gramicidin D, have been studied using the NMR technique

  20. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation.

    Science.gov (United States)

    Felcmanova, Kristina; Neveceralova, Petra; Sychrova, Hana; Zimmermannova, Olga

    2017-08-01

    The Kch1 and Kch2 plasma-membrane proteins were identified in Saccharomyces cerevisiae as being essential for the activation of a high-affinity Ca2+ influx system. We searched for Kch proteins roles in the maintenance of cation homeostasis and tested the effect of kch1 and/or kch2 deletions on various physiological parameters. Compared to wild-type, kch1 kch2 mutant cells were smaller, relatively hyperpolarised, grew better under limited K+ conditions and exhibited altered growth in the presence of monovalent cations. The absence of Kch1 and Kch2 did not change the intracellular pH in cells growing at low potassium or the tolerance of cells to divalent cations, high concentration of sorbitol or extreme external pH. The overexpression of KCH1 only increased the intracellular pH in the presence of elevated K+ in media. None of the phenotypes associated with the deletion of KCH1 and KCH2 in wild type were observed in a strain lacking KCH genes and main K+ uptake systems Trk1 and Trk2. The role of the Kch homologue in cation homeostasis was also tested in Candida albicans cells. Our data demonstrate that Kch proteins significantly contribute to the maintenance of optimal cation homeostasis and membrane potential in S. cerevisiae but not in C. albicans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Use of a material conducting hydrogen cations

    International Nuclear Information System (INIS)

    Howe, A.T.; Shilton, M.G.

    1986-01-01

    The invention concerns a separator conducting hydrogenous for electrical devices, which contains at least one compound with the formula H(UO 2 )PO 4 x nH 2 O, H(UO 2 )AsO 4 x nH 2 O or H(UO 2 )IO 4 (OH) 2 x nH 2 O, where not more than 50% by weight of the H + is replaced by one or more cations, such as Li + , Na + , K + , NH 4 + , Cu 2+ , Mg 2+ , Ca 2+ , Ba 2+ , Sr 2+ , Pb 2+ , Fe 2+ , Co 2+ , Ni 2+ , Mn 2+ or Al 3+ . The electrical device having the separator can be an electrolysis cell, for example, an electro chromium cell. (H x WO 3 ), a hydrogen isotope enrichment device, a proton-sensitive electrode (eg for a pH meter), a battery or a fuel cell. (orig./MM) [de

  2. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    International Nuclear Information System (INIS)

    Feltner, D.E.; Marasco, W.A.

    1989-01-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of [3H]FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM [3H]FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. [3H]FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of [3H]FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM [3H]FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state

  3. High-Performance Thin-Film-Nanocomposite Cation Exchange Membranes Containing Hydrophobic Zeolitic Imidazolate Framework for Monovalent Selectivity

    Directory of Open Access Journals (Sweden)

    Jian Li

    2018-05-01

    Full Text Available Zeolitic imidazolate framework-8 (ZIF-8 offers good hydrothermal, chemical, and thermal stabilities, and is therefore of interest in membrane synthesis. In this work, an interfacial polymerization (IP method was applied by anchoring ZIF-8 to the skin layer of thin-film nanocomposite (TFN membranes in order to obtain monovalent selectivity in electrodialysis. Organic trimesoyl chloride (TMC, 0.1 wt % solutions and aqueous m-phenyl diamine (MPD, 2% w/v solutions were used during the interfacial polymerization process. A range of polyamine (PA/ZIF-8 based membranes was fabricated by varying the concentration of ZIF-8 in the organic solution. The properties of the primary and modified membrane were characterized by scanning electron microscope (SEM, energy dispersive X-ray analysis (EDAX, atomic force microscopy (AFM, water uptake, ion exchange capacity, and contact angle measurements. No significant changes of the surface structure of the PA/ZIF-8 based membranes were observed. Nevertheless, the presence of ZIF-8 under the PA layer plays a key role in the separation process. For single salt solutions that were applied in electrodialysis (ED, faster transport of Na+ and Mg2+ was obtained after introducing the ZIF-8 nanoparticles, however, the desalination efficiency remained constant. When the hybrid membranes were applied to electrodialysis for binary mixtures containing Na+ as well as Mg2+, it was demonstrated that the monovalent selectivity and Na+ flux were enhanced by a higher ZIF-8 loading.

  4. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Picart, S.; Mokhtari, H.; Jobelin, I. [CEA Marcoule, Nucl Energy Div, RadioChem and Proc Dept, Actinides Chem and Convers Lab, F-30207 Bagnols Sur Ceze (France); Ramiere, I. [Fuel Simulat Lab, Fuel Study Dept, F-13108 St Paul Les Durance (France)

    2010-07-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  5. Experimental Characterization and Modelization of Ion Exchange Kinetics for a Carboxylic Resin in Infinite Solution Volume Conditions. Application to Monovalent-Trivalent Cations Exchange

    International Nuclear Information System (INIS)

    Picart, S.; Mokhtari, H.; Jobelin, I.; Ramiere, I.

    2010-01-01

    This study is devoted to the characterization of ion exchange inside a microsphere of carboxylic resin. It aims at describing the kinetics of this exchange reaction which is known to be controlled by interdiffusion in the particle. The fractional attainment of equilibrium function of time depends on the concentration of the cations in the resin which can be modelled by the Nernst-Planck equation. A powerful approach for the numerical resolution of this equation is introduced in this paper. This modeling is based on the work of Helfferich but involves an implicit numerical scheme which reduces the computational cost. Knowing the diffusion coefficients of the cations in the resin and the radius of the spherical exchanger, the kinetics can be hence completely determined. When those diffusion parameters are missing, they can be deduced by fitting experimental data of fractional attainment of equilibrium. An efficient optimization tool coupled with the implicit resolution has been developed for this purpose. A monovalent/trivalent cation exchange had been experimentally characterized for a carboxylic resin. Diffusion coefficients and concentration profiles in the resin were then deduced through this new model. (authors)

  6. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  7. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters.

    Science.gov (United States)

    Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K

    2018-04-25

    Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.

  8. Differential effect of HOE642 on two separate monovalent cation transporters in the human red cell membrane

    DEFF Research Database (Denmark)

    Bernhardt, Ingolf; Weiss, Erwin; Robinson, Hannah C

    2007-01-01

    Residual K(+) fluxes in red blood cells can be stimulated in conditions of low ionic strength. Previous studies have identified both the non-selective, voltage-dependent cation (NSVDC) channel and the K(+)(Na(+))/H(+) exchanger as candidate pathways mediating this effect, although it is possible...... blood cell apoptosis (eryptosis) and disease....

  9. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis.

    Science.gov (United States)

    Meng, Lin; Hong, Shan; Liu, Henan; Huang, Haipeng; Sun, Hao; Xu, Tong; Jiang, Juquan

    2014-11-01

    The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.

  10. Cationic Polymers Inhibit the Conductance of Lysenin Channels

    Directory of Open Access Journals (Sweden)

    Daniel Fologea

    2013-01-01

    Full Text Available The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin’s functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.

  11. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Akaighe, Nelson [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Depner, Sean W.; Banerjee, Sarbajit [Department of Chemistry, 410 Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000 (United States); Sharma, Virender K. [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Sohn, Mary, E-mail: msohn@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-12-15

    The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag{sup +} by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl{sub 2} and MgCl{sub 2} was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV-vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments. Highlights: Black-Right-Pointing-Pointer Formation of SRNOM-AgNPs under environmentally relevant conditions Black-Right-Pointing-Pointer Influence of monovalent versus divalent cations on SRHA- and SRNOM-AgNP stability Black-Right-Pointing-Pointer Effect of AgNPs on organic matter removal from water columns.

  12. Structure-conductivity studies in polymer electrolytes containing multivalent cations

    International Nuclear Information System (INIS)

    Aziz, M.

    1996-05-01

    Understanding the structure - conductivity relationship is of paramount importance for the development of polymer electrolytes. The present studies present the techniques found useful in the elucidation of structure - conductivity relationship in PEO n :ZnBr 2 (n = 8, 1000, 2000, 3000, 4000 and 5000) and PEO n :FeBr x (n= 8, 20 and 50; x = 2 and 3). Local structural studies have been undertaken using X-ray absorption fine structures (XAFS) which includes extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES). EXAFS provides interatomic distance and coordination numbers of the nearest neighbours and results from the EXAFS studies showed that high conductivity is associated with stretched M - O interatomic distance. In the studies on ultra dilute Zn samples it was found that the cation is highly solvated by the heteroatom forming a tightly bound environment which inhibits local segmental motion thus impeding ion migration. XANES studies on the PEO and modified PEO complexes of NiBr 2 revealed the sensitivity of XANES to the structural differences. XANES on Zn and Fe samples also revealed the sensitivity to changes in interatomic distances reflected in shifts of the white line. The complementary nature of EXAFS and XANES was reflected in the studies conducted. Morphological studies were undertaken employing differential scanning calorimetry (DSC), variable temperature polarising microscopy (VTPM) and atomic force microscopy (AFM). DSC evidences helped to explain the texture of the iron samples during the drying process, and showed transitions between low melting, PEO and high melting spherulites, and VTPM is able to visualise the spherulites present in the samples. AFM has successfully imaged the as cast PEO 8 :FeBr 2 sample and the surface effect causing extra resistance in the impedance spectra could be seen. Conductivity studies were carried out using a.c. impedance spectra. Fe(ll) samples exhibit the typical semicircle

  13. Effects of Cationic Pendant Groups on Ionic Conductivity for Anion Exchange Membranes: Structure Conductivity Relationships

    Science.gov (United States)

    Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo

    Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.

  14. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    Bengtsson, B.; Ingemarsson, R.; Settervik, G.; Velin, A.

    2010-01-01

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  15. Correlation between the Increasing Conductivity of Aqueous Solutions of Cation Chlorides with Time and the “Salting-Out” Properties of the Cations

    Directory of Open Access Journals (Sweden)

    Nada Verdel

    2016-02-01

    Full Text Available The time-dependent role of cations was investigated by ageing four different aqueous solutions of cation chlorides. A linear correlation was found between the cations’ Setchenov coefficient for the salting-out of benzene and the increase in the conductivity with time. The conductivity of the structure-breaking cations or the chaotropes increased more significantly with time than the conductivity of the kosmotropes. Since larger water clusters accelerate the proton or hydroxyl hopping mechanism, we propose that the structuring of the hydration shells of the chaotropes might be spontaneously enhanced over time.

  16. The influence of monovalent cations on trimeric G protein Gi1alfa activity in HEK293 cells stably expressing DOR-Gi1alfa (Cys351-Ile351) fusion protein

    Czech Academy of Sciences Publication Activity Database

    Vošahlíková, Miroslava; Svoboda, Petr

    2011-01-01

    Roč. 60, č. 3 (2011), s. 541-547 ISSN 0862-8408 R&D Projects: GA AV ČR(CZ) IAA500110606; GA MŠk(CZ) LC554; GA ČR(CZ) GD305/08/H037 Institutional research plan: CEZ:AV0Z50110509 Keywords : delta-opioid receptor (DOR) * monovalent ions * G(i)1alfa protein Subject RIV: CE - Biochemistry Impact factor: 1.555, year: 2011

  17. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains......Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... and their phase is opposite to that of noble-metal chains....

  18. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  19. Ionic charge transport between blockages: Sodium cation conduction in freshly excised bulk brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Emin, David, E-mail: emin@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Akhtari, Massoud [Semple Institutes for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Ellingson, B. M. [Department of Radiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States); Mathern, G. W. [Department of Neurosurgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095 (United States)

    2015-08-15

    We analyze the transient-dc and frequency-dependent electrical conductivities between blocking electrodes. We extend this analysis to measurements of ions’ transport in freshly excised bulk samples of human brain tissue whose complex cellular structure produces blockages. The associated ionic charge-carrier density and diffusivity are consistent with local values for sodium cations determined non-invasively in brain tissue by MRI (NMR) and diffusion-MRI (spin-echo NMR). The characteristic separation between blockages, about 450 microns, is very much shorter than that found for sodium-doped gel proxies for brain tissue, >1 cm.

  20. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  1. Fouling prevention of peptides from a tryptic whey hydrolysate during electromembrane processes by use of monovalent ion permselective membranes

    OpenAIRE

    Persico, Mathieu; Bazinet, Laurent

    2017-01-01

    Peptide adsorption occurring on conventional anion- and cation-exchange membranes is one of the main technological locks in electrodialysis (ED) for hydrolysate demineralization. Hence, the peptide fouling of monovalent anion (MAP) and monovalent cation (MCP) permselective membranes was studied and compared to conventional membranes (AMX-SB and CMX-SB). It appeared that the main peptide sequences responsible for fouling were TPEVDDEALEKFDK, VAGTWY and VLVLDTDYK for both anionic membranes; and...

  2. Effects of cation contaminants in conductive TiO2 ceramics

    Science.gov (United States)

    Yan, M. F.; Rhodes, W. W.

    1982-12-01

    Ten cation contaminants, namely Al, Ga, Co, Fe, Mg, Zn, Zr, Ca, Sr, and Ba were investigated for their effects on the electrical properties, microstructures, and discoloration of conductive TiO2 ceramics. It was found that Al, Ga, Co, Fe, and Mg cause discoloration and increase the electrical resistivity by a factor of 104 to 106 in Nb-doped TiO2 ceramics. The other dopants do not introduce such changes in TiO2. The electrical properties, microstructures, and discoloration were measured in specimens of AlxNb0.007Ti0.993-xO2 with 0≤x≤0.01. When the Al content exceeds a critical value, ranging from 0.48% at 1400 °C to 0.25% at 1200 °C, the electrical resistivities and grain size increase rapidly, and the specimen is discolored from the original black to an ivory white color. Color boundary migration induced by Al diffusion in Nb-doped TiO2 was quantitatively measured. From the kinetics of the boundary migration, the Al diffusivity (D) was calculated to be D=2.67 exp(-53.3 kcal/mole/RT) cm2/s in the temperature range of 1200 to 1400 °C. The rapid diffusion of the small cations, namely Al, Ga, Co, Fe, and Mg, results from an interstitial diffusion mechanism. However, other cations, having a radius larger than the interstitial channel (˜0.77 Å radius), cannot diffuse by this mechanism. Defect reactions are proposed to explain the increase in the electrical resistivity and microstructural changes due to Al diffusion. These defect reactions also show that the problem of acceptor contamination cannot be avoided by adding an excess quantity of donor dopant if the solubility of the donor is much less than that of the acceptor contaminant.

  3. The ionic conductivity and local environment of cations in Bi9ReO17

    International Nuclear Information System (INIS)

    Thompson, M.; Herranz, T.; Santos, B.; Marco, J.F.; Berry, F.J.; Greaves, C.

    2010-01-01

    The influence of temperature on the structure of Bi 9 ReO 17 has been investigated using differential thermal analysis, variable temperature X-ray diffraction and neutron powder diffraction. The material undergoes an order-disorder transition at ∼1000 K on heating, to form a fluorite-related phase. The local environments of the cations in fully ordered Bi 9 ReO 17 have been investigated by Bi L III - and Re L III -edge extended X-ray absorption fine structure (EXAFS) measurements to complement the neutron powder diffraction information. Whereas rhenium displays regular tetrahedral coordination, all bismuth sites show coordination geometries which reflect the importance of a stereochemically active lone pair of electrons. Because of the wide range of Bi-O distances, EXAFS data are similar to those observed for disordered structures, and are dominated by the shorter Bi-O bonds. Ionic conductivity measurements indicate that ordered Bi 9 ReO 17 exhibits reasonably high oxide ion conductivity, corresponding to 2.9x10 -5 Ω -1 cm -1 at 673 K, whereas the disordered form shows higher oxide ion conductivity (9.1x10 -4 Ω -1 cm -1 at 673 K). - Graphical abstract: The structure of Bi 9 ReO 17 is discussed and related to the ionic conductivity of the ordered and disordered forms.

  4. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultane......Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations....... The number of water moleculesentering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primarymembrane hydration number of the cation involved...... in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are: The hydration number for all of these cations seems to follow the same simple relation....

  5. DFT studies of all fluorothiophenes and their cations as candidate monomers for conductive polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shirani, Hossein, E-mail: shiranihossein@gmail.com [Young Researchers Club, Islamic Azad University, Toyserkan Branch, Toyserkan (Iran, Islamic Republic of); Jameh-Bozorghi, Saeed [Department of Chemistry, Islamic Azad University, Arak Branch, Arak (Iran, Islamic Republic of); Yousefi, Ali [Department of Computer Engineering, Islamic Azad University, Hamedan Branch, Hamedan (Iran, Islamic Republic of)

    2015-01-22

    In this paper, electronic, structural, and properties of mono-, di-, tri-, and tetrafluorothiophenes and their radical cations are studied using the density functional theory and B3LYP method with 6-311++G** basis set. Also, the effects of the number and position of the substituent of fluorine atoms on the properties of the thiophene ring have been studied using optimized structures obtained for these molecules and their radical cations; vibrational frequencies, spin-density distribution, size and direction of the dipole moment vector, ionization potential, electric Polarizabilities, HOMO–LUMO gaps and NICS values of these compounds have been calculated and analyzed.

  6. Electromembrane extraction of heavy metal cations followed by capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Strieglerová, Lenka; Gebauer, Petr; Boček, Petr

    2011-01-01

    Roč. 32, č. 9 (2011), s. 1025-1032 ISSN 0173-0835 R&D Projects: GA ČR GA203/08/1536; GA ČR GAP206/10/1219; GA AV ČR IAA400310703 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electrophoresis * electromembrane extraction * heavy metal cations Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.303, year: 2011

  7. Spontaneous and CRH-Induced Excitability and Calcium Signaling in Mice Corticotrophs Involves Sodium, Calcium, and Cation-Conducting Channels

    Czech Academy of Sciences Publication Activity Database

    Zemková, Hana; Tomič, M.; Kučka, M.; Aguilera, G.; Stojilkovic, S. S.

    2016-01-01

    Roč. 157, č. 4 (2016), s. 1576-1589 ISSN 0013-7227 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : action potential * background sodium conductance * bursting activity * cation -conducting channels * cytosolic calcium concentration * resting membrane potential Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.286, year: 2016

  8. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  9. Electrical conductivity of pyroxene which contains trivalent cations: Laboratory measurements and the lunar temperature profile

    International Nuclear Information System (INIS)

    Huebner, J.S.; Duba, A.; Wiggins, L.B.

    1979-01-01

    Three natural orthopyroxene single crystals, measured in the laboratory over the temperature range 850 0 --1200 0 C, are more than 1/2 order of magnitude more electrically conducting than previously measured crystals. Small concentrations (1--2%) of Al 2 O 3 and Cr 2 O 3 present in these crystals may be responsible for their relatively high conductivity. Such pyroxenes, which contain trivalent elements, are more representative of pyroxenes expected to be present in the lunar mantle than those which have been measured by other investigators. The new conductivity values for pyroxene are responsible for a relatively large bulk conductivity calculated for (polymineralic) lunar mantle assemblages. The results permit a somewhat cooler lunar temperature profile than previously proposed. Such lower profiles, several hundred degrees Celsius below the solidus, are quite consistent with low seismic attenuation and deep moonquakes observed in the lunar mantle

  10. Integrating high electrical conductivity and photocatalytic activity in cotton fabric by cationizing for enriched coating of negatively charged graphene oxide.

    Science.gov (United States)

    Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-10-05

    Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte so...

  12. An evaluation of soluble cations and anions on the conductivity and rate of flocculation of kaolins

    Science.gov (United States)

    Fulton, Deborah Lee

    1998-10-01

    The focus of this project was to learn how ionic concentrations and their contributions to electric conductivity influence the flocculation behavior of kaolin/water suspensions. Sodium silicate, calcium chloride, and magnesium sulfate were used as chemical additives. The specific surface areas, particle size distributions, and methylene blue indices for two kaolins were measured. The SSA and MBI for these kaolins indicated that they possessed inherent differences in SSA and flocculation behaviors. Rheological studies were also performed. Testing included simultaneous gelation, deflocculation, and pH tests. Viscosity, pH, temperature, and chemical additive concentrations were monitored at each point. Testing was performed at 45/55 wt% solids. Effects of additions of various levels of deflocculant and flocculant to each of the kaolin/water suspensions were studied by making several suspensions from each kaolin. The concentrations of dispersant, and flocculant levels and types were varied to produce suspensions with different chemical additive "histories," but all with similar final apparent viscosities. Slurry filtrates were analyzed for conductivity, pH, temperature, and ion concentrations of (Al3+, Fe2+,3+, Ca 2+, Mg+, Na+, SO4 2--, and Cl--). Plastic properties were calculated to determine how variations in suspension histories affected conductivities, pH, and detectable ion contents of the suspensions. These analyses were performed on starting slurries which were under-, completely-, and over-deflocculated before further additions of flocculants and deflocculant were added to tune the slurries to the final, constant, target viscosity. Results showed that rates of flocculation and conductivities increased as concentrations of ions increased. By increasing conductivity correlations with increases in flocculation occurs, which yields higher rates of buildup, or RBU [1]. This is the single most important slip control property in the whitewares industry. Shear

  13. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  15. Strong and Reversible Monovalent Supramolecular Protein Immobilization

    NARCIS (Netherlands)

    Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc

    2010-01-01

    Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The

  16. Atomistic detailed mechanism and weak cation-conducting activity of HIV-1 Vpu revealed by free energy calculations.

    Directory of Open Access Journals (Sweden)

    Siladitya Padhi

    Full Text Available The viral protein U (Vpu encoded by HIV-1 has been shown to assist in the detachment of virion particles from infected cells. Vpu forms cation-specific ion channels in host cells, and has been proposed as a potential drug target. An understanding of the mechanism of ion transport through Vpu is desirable, but remains limited because of the unavailability of an experimental structure of the channel. Using a structure of the pentameric form of Vpu--modeled and validated based on available experimental data--umbrella sampling molecular dynamics simulations (cumulative simulation time of more than 0.4 µs were employed to elucidate the energetics and the molecular mechanism of ion transport in Vpu. Free energy profiles corresponding to the permeation of Na+ and K+ were found to be similar to each other indicating lack of ion selection, consistent with previous experimental studies. The Ser23 residue is shown to enhance ion transport via two mechanisms: creating a weak binding site, and increasing the effective hydrophilic length of the channel, both of which have previously been hypothesized in experiments. A two-dimensional free energy landscape has been computed to model multiple ion permeation, based on which a mechanism for ion conduction is proposed. It is shown that only one ion can pass through the channel at a time. This, along with a stretch of hydrophobic residues in the transmembrane domain of Vpu, explains the slow kinetics of ion conduction. The results are consistent with previous conductance studies that showed Vpu to be a weakly conducting ion channel.

  17. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  18. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    Science.gov (United States)

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Ion-exclusion/cation-exchange chromatography with dual detection of the conductivity and spectrophotometry for the simultaneous determination of common inorganic anionic species and cations in river and wastewater.

    Science.gov (United States)

    Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko

    2011-01-01

    Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.

  20. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    Energy Technology Data Exchange (ETDEWEB)

    Valtakari, Dimitar, E-mail: dimitar.valtakari@abo.fi [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland); Bollström, Roger [Omya International AG, CH 4665 Oftringen (Switzerland); Toivakka, Martti; Saarinen, Jarkko J. [Abo Akademi University, Laboratory of Paper Coating and Converting, Center for Functional Materials at Biological Interfaces (FUNMAT), Porthansgatan 3, FI-20500 Åbo/Turku (Finland)

    2015-09-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass.

  2. Influence of anionic and cationic polyelectrolytes on the conductivity and morphology of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films

    International Nuclear Information System (INIS)

    Valtakari, Dimitar; Bollström, Roger; Toivakka, Martti; Saarinen, Jarkko J.

    2015-01-01

    Conductivity of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) strongly depends on the film morphology, which can be altered by the presence of polyelectrolytes. Aqueous dispersion of PEDOT:PSS was studied with anionic sodium polyacrylate (PA) and cationic poly(dimethyldiallylammonium chloride) (pDADMAC) polyelectrolytes that are typically used in papermaking as retention aids and dispersing agents in the paper pigment coating formulations. Spin-coated PEDOT:PSS films on a PA coated glass formed non-uniform layers with lowered conductivity compared to the reference PEDOT:PSS films on a clean glass substrate. On contrary, spin-coated PEDOT:PSS on a pDADMAC coated glass formed uniform layers with good conductivity. These results point out the importance of surface chemistry when using renewable and recyclable paper-based substrates with the PEDOT:PSS films. - Highlights: • PEDOT:PSS polymer was studied in the presence of polyelectrolytes. • Uniform layers of PEDOT:PSS and polyelectrolytes were spin-coated on glass. • Cationic polyelectrolyte was found to be more susceptible to humidity. • Cationic polyelectrolyte improves the conductivity of PEDOT:PSS. • PEDOT:PSS forms non-uniform layers on anionic polyelectrolyte coated glass

  3. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

    Science.gov (United States)

    Vandorpe, David H; Xu, Chang; Shmukler, Boris E; Otterbein, Leo E; Trudel, Marie; Sachs, Frederick; Gottlieb, Philip A; Brugnara, Carlo; Alper, Seth L

    2010-01-15

    Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca(2+)] ([Ca(2+)](i)) and subsequent activation of K(Ca) 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration. We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca(2+)- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 microM), dipyridamole (100 microM), DIDS (100 microM), and carbon monoxide (25 ppm pretreatment). Deoxygenation also elevates sickle erythrocyte [Ca(2+)](i), in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca(2+)](i) in mouse sickle erythrocytes did not require KCa3.1 activity. The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca(2+)-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca(2+) for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.

  4. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

    Directory of Open Access Journals (Sweden)

    David H Vandorpe

    2010-01-01

    Full Text Available Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle, leading to elevated intracellular [Ca(2+] ([Ca(2+](i and subsequent activation of K(Ca 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration.We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca(2+- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 microM, dipyridamole (100 microM, DIDS (100 microM, and carbon monoxide (25 ppm pretreatment. Deoxygenation also elevates sickle erythrocyte [Ca(2+](i, in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca(2+](i in mouse sickle erythrocytes did not require KCa3.1 activity.The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca(2+-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca(2+ for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.

  5. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  6. Photoluminescence of monovalent indium centres in phosphate glass

    OpenAIRE

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-01-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL ...

  7. Monovalent IgG4 molecules

    Science.gov (United States)

    Wilkinson, Ian C.; Fowler, Susan B.; Machiesky, LeeAnn; Miller, Kenneth; Hayes, David B.; Adib, Morshed; Her, Cheng; Borrok, M. Jack; Tsui, Ping; Burrell, Matthew; Corkill, Dominic J.; Witt, Susanne; Lowe, David C.; Webster, Carl I.

    2013-01-01

    Antibodies have become the fastest growing class of biological therapeutics, in part due to their exquisite specificity and ability to modulate protein-protein interactions with a high biological potency. The relatively large size and bivalency of antibodies, however, limits their use as therapeutics in certain circumstances. Antibody fragments, such as single-chain variable fragments and antigen binding-fragments, have emerged as viable alternatives, but without further modifications these monovalent formats have reduced terminal serum half-lives because of their small size and lack of an Fc domain, which is required for FcRn-mediated recycling. Using rational engineering of the IgG4 Fc domain to disrupt key interactions at the CH3-CH3 interface, we identified a number of point mutations that abolish Fc dimerization and created half-antibodies, a novel monovalent antibody format that retains a monomeric Fc domain. Introduction of these mutations into an IgG1 framework also led to the creation of half-antibodies. These half-antibodies were shown to be soluble, thermodynamically stable and monomeric, characteristics that are favorable for use as therapeutic proteins. Despite significantly reduced FcRn binding in vitro, which suggests that avidity gains in a dimeric Fc are critical to optimal FcRn binding, this format demonstrated an increased terminal serum half-life compared with that expected for most alternative antibody fragments. PMID:23567207

  8. A cell shrinkage-induced non-selective cation conductance with a novel pharmacology in Ehrlich-Lettre-ascites tumour cells

    DEFF Research Database (Denmark)

    Lawonn, Peter; Hoffmann, Else K; Hougaard, Charlotte

    2003-01-01

    In whole-cell recordings on Ehrlich-Lettre-ascites tumour (ELA) cells, the shrinkage-induced activation of a cation conductance with a selectivity ratio P(Na):P(Li):P(K):P(choline):P(NMDG) of 1.00:0.97:0.88:0.03:0.01 was observed. In order of potency, this conductance was blocked by Gd(3+)=benzam......-sensitive and -insensitive channels. In addition, because of its pharmacological profile, it may possibly be related to epithelial Na+ channels (ENaCs)....

  9. Effect of anions and cations on liquid extraction of TcO{sub 4} - in ionic liquids; Vplyv anionov a kationov na kvapalinovu extrakciu TcO4 - v ionovych kvapalinach

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, P.; Galambos, M.; Meciarova, M.; Rajec, P [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    An influence of monovalent and divalent cations and anions on an liquid extraction of pertechnetate anion from aqueous media using ionic liquids solubilized in various organic solvents has been studied. Suppression of extraction percentage was obtained with a divalent cations in a compare with monovalent cations showing almost no influence on extraction percentage. In a case of anions, perchlorate anion suppressed the extraction percentage in a highest degree. (authors)

  10. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  11. Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide Gated Cation Channels

    Directory of Open Access Journals (Sweden)

    Alice Kira Zelman

    2012-05-01

    Full Text Available Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs. CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide binding domain (CNBD and a calmodulin binding domain (CaMBD as well as a 6 transmembrane/1 pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.

  12. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  13. Cation dependency of the hydrolytic activity of activated bovine Protein C

    International Nuclear Information System (INIS)

    Hill, K.A.W.

    1986-01-01

    The hydrolytic activity of activated bovine plasma Protein C (APC) is dependent upon monovalent or divalent cations. The kinetics of APC activity were examined with a variety of monovalent and divalent cations, and significant differences were observed. Similar studies were performed with des(1-41, light chain)APC (GDAPC), from which all γ-carboxyglutamic acid residues have been removed. These studies provided useful information concerning the cation dependency. Divalent cations apparently stimulate APC and GDAPC kinetic activity through association at a single γ-carboxyglutamic acid-independent high affinity binding site. A Mn(II) binding site of this nature of GDAPC was determined by EPR spectroscopy, to possess a dissociation constant of 53 +/- 8 uM. Monovalent cations stimulate GDAPC activity through association at an apparently single binding site that is distinct from the divalent cation site. The monovalent cation , Tl(I), was determined, by 205 Tl(I) NMR spectroscopy, to bind to APC and GDAPC with dissociation constants of 16 +/- 8 mM and 32+/- 11 mM, respectively. Both NMR and EPR spectroscopy have been utilized to estimate topographical relationships between divalent cation sites, monovalent cation sites, and the active site of GDAPC. By observing the paramagnetic effects of either Mn(II) or an active site directed spin-label on the longitudinal relaxation rates of Tl(I) nuclei bound to this enzyme, the average interatomic distance between Mn(II) and Tl(I) was calculated to be 8.3 +/- 0.3 A, and the average distance between Tl(I) and the spin-label free electron was estimated to be 3.8 +/- 0.2 A

  14. Impact of reclaimed water irrigation on soil salinity, hydraulic conductivity, cation exchange capacity and macro-nutrients

    Directory of Open Access Journals (Sweden)

    Saif A. Al-Khamisi

    2016-01-01

    Full Text Available Field studies were conducted at Agriculture Research Center, Oman during the year 2010/2011 to monitor the impact of reclaimed water irrigation on soil physical and chemical properties after wheat, cowpea and maize cultivation (in rotation. Three different water sources (Groundwater (GW, desalinized water (DW, and Reclaimed Water (RW were used as the treatments in Randomized Completely Block Design (RCBD with 3 blocks (replicates. Samples were taken from four depths (30, 45, 60 and 90 cm after harvesting time of the three crops. Soil salinity (ECe in all soil depths decreased with time. Organic carbon did not show significant difference between harvest timings of wheat and cowpea. Organic carbon increased with time in soil irrigated with reclaimed water. The saturated hydraulic conductivity of the soil, Ksat didn’t show significant difference among the water types and their interaction with soil depths. Total nitrogen was the highest after cowpea harvest in reclaimed water irrigation. The soil phosphorus and potassium were not affected by any of the three water irrigation types. The highest concentrations of phosphorus and potassium were found to be in the upper soil layers. Overall, no adverse impacts of reclaimed water irrigation were observed after growing three crops of rotation.

  15. Attractive non-DLVO forces induced by adsorption of monovalent organic ions.

    Science.gov (United States)

    Smith, Alexander M; Maroni, Plinio; Borkovec, Michal

    2017-12-20

    Direct force measurements between negatively charged colloidal particles were carried out using an atomic force microscope (AFM) in aqueous solutions containing monovalent organic cations, namely tetraphenylarsonium (Ph 4 As + ), 1-hexyl-3-methylimidazolium (HMIM + ), and 1-octyl-3-methylimidazolium (OMIM + ). These ions adsorb to the particle surface, and induce a charge reversal. The forces become attractive at the charge neutralization point, but they are stronger than van der Waals forces. This additional and unexpected attraction decays exponentially with a decay length of a few nanometers, and is strikingly similar to the one previously observed in the presence of multivalent ions. This attractive force probably originates from coupled spontaneous charge fluctuations on the respective surfaces as initially suggested by Kirkwood and Shumaker.

  16. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph. [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y. [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1996-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  17. A fixed cations and low Tg polymer: the poly(4-vinyl-pyridine) quaternized by poly(ethylene oxide) links. Conductivity study; Un electrolyte polymere a cations fixes et bas Tg: les poly(4-vinylpyridine) quaternisees par des chainons de poly(oxyde d`ethylene). Etude de la conductivite

    Energy Technology Data Exchange (ETDEWEB)

    Gramain, Ph [Ecole Nationale Superieure de Chimie de Montpellier, 34 (France); Frere, Y [Centre National de la Recherche Scientifique (CNRS), 67 - Strasbourg (France). Institut Charles Sadron

    1997-12-31

    The spontaneous ionic polymerization of 4-vinyl-pyridine in presence of mono-tosylated or bromated short chains of poly(ethylene oxide)-(PEO) is used to prepare amorphous comb-like poly-cations with low Tg. The polymer electrolyte properties of these new structures have been studied without any addition of salts. The ionic conductivity of these fixed cation poly-electrolytes depends on the length of the grafted PEO and varies from 10{sup -7} to 10{sup -4} S/cm between 25 and 80 deg. C. It is only weakly dependent on the nature of the cation but it is controlled by the movements of the pyridinium cation which are facilitated by the plastifying effect of the POE chains which do not directly participate to the ionic transport. (J.S.) 17 refs.

  18. Effectiveness of Monovalent and Pentavalent Rotavirus Vaccines in Guatemala.

    Science.gov (United States)

    Gastañaduy, Paul A; Contreras-Roldán, Ingrid; Bernart, Chris; López, Beatriz; Benoit, Stephen R; Xuya, Marvin; Muñoz, Fredy; Desai, Rishi; Quaye, Osbourne; Tam, Ka Ian; Evans-Bowen, Diana K; Parashar, Umesh D; Patel, Manish; McCracken, John P

    2016-05-01

    Concerns remain about lower effectiveness and waning immunity of rotavirus vaccines in resource-poor populations. We assessed vaccine effectiveness against rotavirus in Guatemala, where both the monovalent (RV1; 2-dose series) and pentavalent (RV5; 3-dose series) vaccines were introduced in 2010. A case-control evaluation was conducted in 4 hospitals from January 2012 to August 2013. Vaccine status was compared between case patients (children with laboratory-confirmed rotavirus diarrhea) and 2 sets of controls: nondiarrhea "hospital" controls (matched by birth date and site) and nonrotavirus "test-negative" diarrhea controls (adjusted for age, birth month/year, and site). Vaccine effectiveness ([1 - odds ratio of vaccination] × 100%) was computed using logistic regression models. We evaluated 213 case patients, 657 hospital controls, and 334 test-negative controls. Effectiveness of 2-3 doses of a rotavirus vaccine against rotavirus requiring emergency department visit or hospitalization was 74% (95% confidence interval [CI], 58%-84%) with hospital controls, and 52% (95% CI, 26%-69%) with test-negative controls. Using hospital controls, no significant difference in effectiveness was observed between infants 6-11 months (74% [95% CI, 18%-92%]) and children ≥12 months of age (71% [95% CI, 44%-85%]) (P= .85), nor between complete courses of RV1 (63% [95% CI, 23%-82%]) and RV5 (69% [95% CI, 29%-87%]) (P= .96). An uncommon G12P[8] strain, partially heterotypic to strains in both vaccines, was identified in 89% of cases. RV1 and RV5 were similarly effective against severe rotavirus diarrhea caused by a heterotypic strain in Guatemala. This supports broader implementation of rotavirus vaccination in low-income countries where >90% global deaths from rotavirus occur. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Empirical formula for the parameters of metallic monovalent halides ...

    African Journals Online (AJOL)

    By collating the data on melting properties and transport coefficients obtained from various experiments and theories for certain halides of monovalent metals, allinclusive linear relationship has been fashioned out. This expression holds between the change in entropy and volume on melting; it is approximately obeyed by ...

  20. Immunogenic Response of Rabbits to Monovalent and Polyvalent ...

    African Journals Online (AJOL)

    This work was carried out in University of Surrey UK Department of Microbiology. In this study, the efficacy of monovalent and polyvalent vaccines made from Mannhaemia haemolytica antigens, were evaluated by measuring specific serum antibody titers produced against the bacteria in immunized rabbits. Eleven biotype A ...

  1. Multivalent protein assembly using monovalent self-assembling building blocks

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Sonntag, M.H.; Colditz, A.; Brunsveld, L.

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard

  2. Surface Modification of Multiwall Carbon Nanotubes with Cationic Conjugated Polyelectrolytes: Fundamental Interactions and Intercalation into Conductive Poly(methyl-methacrylate) Composites

    KAUST Repository

    Ezzeddine, Alaa

    2015-05-22

    This research investigates the modification and dispersion and of pristine multiwalled carbon nanotubes (MWCNTs) through a simple solution mixing technique based on noncovalent interactions between poly(phenylene ethynylene) based conjugated polyelectrolytes functionalized with cationic imidazolium solubilizing groups (PIM-2 and PIM-4) and MWCNTs. Spectroscopic studies demonstrated the ability of PIMs to strongly interact with and efficiently disperse MWCNTs in different solvents mainly due to π-interactions between the PIMs and MWCNTs. Transmission electron microscopy and atomic force microscopy revealed the coating of the polyelectrolytes on the walls of the nanotubes. Scanning electron microscopy (SEM) studies confirm the homogenous dispersion of PIM modified MWCNTs in poly(methyl methacrylate) (PMMA) matrix. The addition of 1 wt% PIM modified MWCNTs to the matrix has led to a significant decrease in DC resistivity of the composite (13 orders of magnitude). The increase in electrical conductivity and the improvement in thermal and mechanical properties of the membranes containing the PIM modified MWCNTs is ascribed to the formation of MWCNTs networks and cross-linking sites that provided channels for the electrons to move in throughout the matrix and reinforced the interface between MWCNTs and PMMA.

  3. Thermodynamics of self-assembling of mixture of a cationic gemini surfactant and sodium dodecylsulfate in aqueous solution: Calorimetry, conductivity and surface pressure measurements

    International Nuclear Information System (INIS)

    Bai, Guangyue; Wang, Yujie; Ding, Yanhong; Zhuo, Kelei; Wang, Jianji; Bastos, Margarida

    2016-01-01

    Highlights: • ITC provided thermodynamic characterization of self-association of oppositely charged gemini/SDS surfactants. • Phase transitions and corresponding enthalpies were obtained by ITC. • The transitions reflect a change in morphology, supported by Cryo-TEM images. • Conductivity and ITC results show very good agreement. • An asymmetric distribution of surfactants in the aggregates is supported by results. - Abstract: The thermodynamics and phase behavior of mixtures of cationic gemini surfactant decanediyl-α,ω-bis(dodecyldimethylammonium bromide) (12-10-12) and sodium dodecylsulfate (SDS) were studied in the dilute SDS-rich region. The enthalpy of interaction between both surfactant monomers before the critical micelle concentration for the mixture (cmc_m_i_x) was determined by isothermal titration calorimetry (ITC). After the cmc_m_i_x, ITC results exhibited a first process associated with a large endothermic enthalpy change followed by a second one with a very small exothermic enthalpy change. In the same regions, the conductivity curves show an increase in slope after the break, followed by a plateau region, respectively for the two processes. The combined results from the various methodologies used lead us to propose that the first process reflects the formation of non-spherical micelles and the second one the vesicle formation. The area per catanionic complex was obtained through surface pressure measurements, leading to an apparent packing parameter ⩾1. The observed behavior may be rationalized on the basis of the hypothesis that both surfactants distribute asymmetrically in the vesicle bilayers and unevenly in the non-spherical micelle. In order to get structural information Cryo-TEM experiments were performed, which provided images that support this interpretation. From all the information gathered a phase diagram was mapped, including three one-phase regions of spherical micelles, non-spherical micelles and vesicles.

  4. Comparative analysis of cation/proton antiporter superfamily in plants.

    Science.gov (United States)

    Ye, Chu-Yu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-06-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant species was reported. We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240 members are separated into three families, i.e., Na(+)/H(+) exchangers, K(+) efflux antiporters, and cation/H(+) exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H(+) exchangers in the examined angiosperm species. Sliding window analysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and found most motifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates

    International Nuclear Information System (INIS)

    Hardin, C.C.; Watson, T.; Henderson, E.; Prosser, J.K.

    1991-01-01

    Telomeric DNA consists of G- and C-rich strands that are always polarized such that the G-rich strand extends past the 3' end of the duplex to form a 12-16-base overhang. These overhanging strands can self-associate in vitro to form intramolecular structures that have several unusual physical properties and at least one common feature, the presence of non-Watson-Crick G·G base pairs. The term G-DNA was coined for this class of structures. On the basis of gel electrophoresis, imino proton NMR, and circular dichroism (CD) results, the authors find that changing the counterions from sodium to potassium specifically induces conformational transitions in the G-rich telomeric DNA from Tetrahymena, d(T 2 G 4 ) 4 (TET4), which results in a change from the intramolecular species to an apparent multistranded structure, accompanied by an increase in the melting temperature of the base pairs of >25 degree, as monitored by loss of the imino proton NMR signals. They infer that the multistranded structure is a quadruplex. The results indicate that specific differences in ionic interactions can result in a switch in telomeric DNAs between intramolecular hairpin-like or quadruplex-containing species and intermolecular quadruplex structures, all of which involve G·G base pairing interaction. They propose a model in which duplex or hairpin forms of G-DNA are folding intermediates in the formation of either 1-, 2-, or 4-stranded quadruplex structures

  6. Activation of a Ca2+-dependent cation conductance with properties of TRPM2 by reactive oxygen species in lens epithelial cells.

    Science.gov (United States)

    Keckeis, Susanne; Wernecke, Laura; Salchow, Daniel J; Reichhart, Nadine; Strauß, Olaf

    2017-08-01

    Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca 2+ -dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca 2+ - and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca 2+ -activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H 2 O 2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca 2+ - and H 2 O 2 -activated non-selective cation channels with properties of TRPM2. Copyright © 2017. Published by Elsevier Ltd.

  7. Synthesis and characterization of sodium cation-conducting Nax(MyL1-yO2 (M = Ni2+, Fe3+; L = Ti4+, Sb5+

    Directory of Open Access Journals (Sweden)

    Marques, F. M. B.

    2004-06-01

    Full Text Available The Na+-conducting ceramics of layered Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (structural type O3 and Na0.68Ni0.34Ti0.66O2 (P2 type with density higher than 91% were prepared via the standard solid-state synthesis route and characterized by the impedance spectroscopy, thermal analysis, scanning electron microscopy, structure refinement using X-ray powder diffraction data, measurements of Na+ concentration cell e.m.f., and dilatometry. The conductivity of antimonate Na0.8Ni0.6Sb0.4O2, synthesized first time, was found lower than that of isostructural Na0.8Ni0.4Ti0.6O2 due to larger ion jump distance between Na+ sites. At temperatures above 420 K, transport properties of sodium cationconducting materials are essentially independent of partial water vapor pressure. In the low-temperature range, the conductivity reversibly increases with water vapor pressure varied in the range from approximately 0 (dry air up to 0.46 atm. The sensitivity to air humidity is influenced by the ceramic microstructure, being favored by increasing boundary area. The average thermal expansion coefficients of layered materials at 300-1173 K are in the range (13.7-16.0×10-6 K-1.Se han preparado cerámicas conductoras conteniendo Na+ de composición Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (tipo estructural O3 y Na0.68Ni0.34Ti0.66O2 (tipo P2 con densidad mayor del 91%. Las vía de preparación fu la ruta de estandard de síntesis en estado sólido. Las composiciones se caracterizaron mediante espectroscopía de impedancia, análisis térmico, microscopía electrónica de barrido, refinamiento de la estructura usando datos de difracción de rayos X en polvo, medidas de concentración de Na+, f.e.m. de la célula y dilatometría. La conductividad del antimoniate, sintetizado por primera vez, Na0.8Ni0.6Sb0.4O2, era menor que la del compuesto isoestructural Na0.8Ni0.4Ti0.6O2 debido a la mayor distancia de salto iónico entre las posiciones de Na

  8. Hypoxia activates a Ca2+-permeable cation conductance sensitive to carbon monoxide and to GsMTx-4 in human and mouse sickle erythrocytes.

    OpenAIRE

    David H Vandorpe; Chang Xu; Boris E Shmukler; Leo E Otterbein; Marie Trudel; Frederick Sachs; Philip A Gottlieb; Carlo Brugnara; Seth L Alper

    2010-01-01

    Background: Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca2+] ([Ca2+]i) and subsequent activation of KCa 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded...

  9. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  10. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold

    Science.gov (United States)

    Gonzalez-Gutierrez, Giovanni

    2015-01-01

    The superfamily of pentameric ligand-gated ion channels (pLGICs) is unique among ionotropic receptors in that the same overall structure has evolved to generate multiple members with different combinations of agonist specificities and permeant-ion charge selectivities. However, aside from these differences, pLGICs have been typically regarded as having several invariant functional properties. These include pore blockade by extracellular quaternary-ammonium cations in the micromolar-to-millimolar concentration range (in the case of the cation-selective members), and a gain-of-function phenotype, which manifests as a slower deactivation time course, as a result of mutations that reduce the hydrophobicity of the transmembrane pore lining. Here, we tested this notion on three distantly related cation-selective members of the pLGIC superfamily: the mouse muscle nicotinic acetylcholine receptor (nAChR), and the bacterial GLIC and ELIC channels. Remarkably, we found that, whereas low millimolar concentrations of TMA+ and TEA+ block the nAChR and GLIC, neither of these two quaternary-ammonium cations blocks ELIC at such concentrations; instead, both carry measurable inward currents when present as the only cations on the extracellular side. Also, we found that, whereas lidocaine binding speeds up the current-decay time courses of the nAChR and GLIC in the presence of saturating concentrations of agonists, the binding of lidocaine to ELIC slows this time course down. Furthermore, whereas mutations that reduce the hydrophobicity of the side chains at position 9′ of the M2 α-helices greatly slowed the deactivation time course of the nAChR and GLIC, these mutations had little effect—or even sped up deactivation—when engineered in ELIC. Our data indicate that caution should be exercised when generalizing results obtained with ELIC to the rest of the pLGICs, but more intriguingly, they hint at the possibility that ELIC is a representative of a novel branch of the

  12. Tuning the optical bandgap in multi-cation compound transparent conducting-oxides: The examples of In2ZnO4 and In4Sn3O12

    Science.gov (United States)

    Sabino, Fernando P.; Oliveira, Luiz N.; Wei, Su-Huai; Da Silva, Juarez L. F.

    2018-02-01

    Transparent conducting oxides such as the bixbyite In2O3 and rutile SnO2 systems have large disparities between the optical and fundamental bandgaps, ΔEgO F , because selection rules forbid dipolar transitions from the top of the valence band to the conduction-band minimum; however, the optical gaps of multi-cation compounds with the same chemical species often coincide with their fundamental gaps. To explain this conundrum, we have employed density-functional theory to compute the optical properties of multi-cation compounds, In2ZnO4 and In4Sn3O12, in several crystal structures. We show that a recently proposed mechanism to explain the disparity between the optical and fundamental gaps of M2O3 (M = Al, Ga, and In) applies also to other binary systems and to multi-compounds. Namely, a gap disparity will arise if the following three conditions are satisfied: (i) the crystal structure has inversion symmetry; (ii) the conduction-band minimum is formed by the cation and O s-orbitals; and (iii) there is strong p-d coupling and weak p-p in the vicinity of the valence-band maximum. The third property depends critically on the cationic chemical species. In the structures with inversion symmetry, Zn (Sn) strengthens (weakens) the p-d coupling in In2ZnO4 (In4Sn3O12), enhancing (reducing) the gap disparity. Furthermore, we have also identified a In4Sn3O12 structure that is 31.80 meV per formula unit more stable than a recently proposed alternative model.

  13. Competition among Li+, Na+, K+ and Rb+ Monovalent Ions for DNA in Molecular Dynamics Simulations using the Additive CHARMM36 and Drude Polarizable Force Fields

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286

  14. Robust Multilayer Graphene-Organic Frameworks for Selective Separation of Monovalent Anions.

    Science.gov (United States)

    Zhao, Yan; Zhu, Jiajie; Li, Jian; Zhao, Zhijuan; Charchalac Ochoa, Sebastian Ignacio; Shen, Jiangnan; Gao, Congjie; Van der Bruggen, Bart

    2018-05-30

    The chemical and mechanical stability of graphene nanosheets was used in this work to design a multilayer architecture of graphene, grafted with sulfonated 4,4'-diaminodiphenyl sulfone (SDDS). Quaternized poly(phenylene oxide) (QPPO) was synthesized and mixed with SDDS (rGO-SDDS-rGO@QPPO), yielding a multilayer graphene-organic framework (MGOF) with positive as well as negative functional groups that can be applied as a versatile electrodriven membrane in electrodialysis (ED). Multilayer graphene-organic frameworks are a new class of multilayer structures, with an architecture having a tunable interlayer spacing connected by cationic polymer material. MGOF membranes were demonstrated to allow for an excellent selective separation of monovalent anions in aqueous solution. Furthermore, different types of rGO-SDDS-rGO@QPPO membranes were found to have a good mechanical strength, with a tensile strength up to 66.43 MPa. The membrane (rGO-SDDS-rGO@QPPO-2) also has a low surface electric resistance (2.79 Ω·cm 2 ) and a low water content (14.5%) and swelling rate (4.7%). In addition, the selective separation between Cl - and SO 4 2- of the MGOF membranes could be as high as 36.6%.

  15. Superconducting state parameters of monovalent and polyvalent amorphous

    Energy Technology Data Exchange (ETDEWEB)

    Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India)

    2015-08-28

    In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N{sub 0}V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.

  16. Open-Structured V 2 O 5 · n H 2 O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huali [Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Bi, Xuanxuan [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Lemont IL 60439 USA; Department of Chemistry and Biochemistry, Ohio State University, 100 West 18th Avenue Columbus OH 43210 USA; Bai, Ying [Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Wu, Chuan [Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 China; Gu, Sichen [Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Chen, Shi [Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 China; Wu, Feng [Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 China; Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081 China; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Lemont IL 60439 USA; Lu, Jun [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Lemont IL 60439 USA

    2017-04-21

    The high-capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self-assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well-layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g-1 in a Li-ion cell, 110 mA h g-1 in a Na-ion cell, and 80 mA h g-1 in an Al-ion cell in their respective potential ranges (2.0–4.0 V for Li and Na-ion batteries and 0.1–2.5 V for Al-ion battery) after 100 cycles.

  17. Contribution to the physicochemical investigation of monovalent thallium and tetravalent uranium fluorides

    International Nuclear Information System (INIS)

    Hsini, M.S.

    1983-07-01

    Ionic transport properties are studied in monovalent elements and tetravalent uranium fluorides and oxyfluorides. Crystal structure of the oxyfluoride: TlUsub(2.75)OF 10 was determined by X-ray diffraction on a monocrystal. The particular role played by oxygen is evidenced in the stabilization of the crystal structure based on an original arrangement of Archimedes antiprisms: UOF 7 corresponding to a long distance order oxygen-fluorine in the anionic network. Electric conductivity measurements in AC by the complex impedance method or in DC by the Van der Pauw method allowed performance estimation of these materials which are solid electrolytes. Correlations between electrical properties and structure give information in basic diffusion mechanism in these materials [fr

  18. Organic solvation of intercalated cations in V/sub 2/O/sub 5/ xerogels

    International Nuclear Information System (INIS)

    Lemordant, D.; Bouhaouss, A.; Aldbert, P.; Baffier, N.

    1986-01-01

    V/sub 2/O/sub 5/ xerogels (V/sub 2/O/sub 5/, 1.6H/sub 2/O) undergo a topotactic reversible exchange reaction at room temperature in organic solvents containing monovalent alkali or divalent (Mn/sup 2+/) cations. Basal spacing are dependent on solvent type and charge-to-radius ratio of guest cations. From the interlayer distances, two solvation stages have been inferred, depending on the nature of the solvent and of the cation, except with Cs/sup +/ for which no intracrystalline swelling by organic solvents is observed

  19. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain.

    Science.gov (United States)

    Arima, Hiroki; Tsutsui, Hidekazu; Sakamoto, Ayako; Yoshida, Manabu; Okamura, Yasushi

    2018-01-06

    The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K + channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Hyperfine-mediated static polarizabilities of monovalent atoms and ions

    International Nuclear Information System (INIS)

    Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.

    2010-01-01

    We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.

  1. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  2. A short term NaCl exposure increases the Na+ conductance of outward-rectified cation currents in the pith cells of sweet pepper

    NARCIS (Netherlands)

    Blom, M.; Vogelzang, S.A.

    2003-01-01

    The regulatory role of pith cells in the stem in Na recirculation in sweet pepper was investigated by evaluating the transport characteristics of the plasma membrane of this cell type and comparison with those of root cells. Ion conductivity and Na permeability of the plasma membranes of protoplasts

  3. Differential Impact of the Monovalent Ions Li+, Na+, K+, and Rb+ on DNA Conformational Properties

    OpenAIRE

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    The present report demonstrates that the conformational properties of DNA in solution are sensitive to the type of monovalent ion. Results are based on the ability of a polarizable force field using the classical Drude oscillator to reproduce experimental solution X-ray scattering data more accurately than two nonpolarizable DNA models, AMBER Parmbsc0 and CHARMM36. The polarizable model is then used to calculate scattering profiles of DNA in the presence of four different monovalent salts, Li...

  4. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species.

    Science.gov (United States)

    Zhou, Hongsheng; Qi, Kaijie; Liu, Xing; Yin, Hao; Wang, Peng; Chen, Jianqing; Wu, Juyou; Zhang, Shaoling

    2016-08-01

    The monovalent cation proton antiporters (CPAs) play essential roles in plant nutrition, development, and signal transduction by regulating ion and pH homeostasis of the cell. The CPAs of plants include the Na(+)/H(+) exchanger, K(+) efflux antiporter, and cation/H(+) exchanger families. However, currently, little is known about the CPA genes in Rosaceae species. In this study, 220 CPA genes were identified from five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume), and 53 of which came from P. bretschneideri. Phylogenetic, structure, collinearity, and gene expression analyses were conducted on the entire CPA genes of pear. Gene expression data showed that 35 and 37 CPA genes were expressed in pear fruit and pollen tubes, respectively. The transcript analysis of some CPA genes under abiotic stress conditions revealed that CPAs may play an important role in pollen tubes growth. The results presented here will be useful in improving understanding of the complexity of the CPA gene family and will promote functional characterization in future studies.

  5. Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips.

    Science.gov (United States)

    Chagas, Cyro L S; Costa Duarte, Lucas; Lobo-Júnior, Eulício O; Piccin, Evandro; Dossi, Nicolò; Coltro, Wendell K T

    2015-08-01

    This paper describes for the first time the fabrication of pencil drawn electrodes (PDE) on paper platforms for capacitively coupled contactless conductivity detection (C(4) D) on electrophoresis microchips. PDE-C(4) D devices were attached on PMMA electrophoresis chips and used for detection of K(+) and Na(+) in human tear samples. PDE-C(4) D devices were produced on office paper and chromatographic paper platforms and their performance were thoroughly investigated using a model mixture containing K(+) , Na(+) , and Li(+) . In comparison with chromatographic paper, PDE-C(4) D fabricated on office paper has exhibited better performance due to its higher electrical conductivity. Furthermore, the detector response was similar to that recorded with electrodes prepared with copper adhesive tape. The fabrication of PDE-C(4) D on office paper has offered great advantages including extremely low cost (paper). The proposed electrodes demonstrated excellent analytical performance with good reproducibility. For an inter-PDE comparison (n = 7), the RSD values for migration time, peak area, and separation efficiency were lower than 2.5, 10.5, and 14%, respectively. The LOD's achieved for K(+) , Na(+) , and Li(+) were 4.9, 6.8, and 9.0 μM, respectively. The clinical feasibility of the proposed approach was successfully demonstrated with the quantitative analysis of K(+) and Na(+) in tear samples. The concentration levels found for K(+) and Na(+) were, respectively, 20.8 ± 0.1 mM and 101.2 ± 0.1 mM for sample #1, and 20.4 ± 0.1 mM and 111.4 ± 0.1 mM for sample #2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Selective crystallization of cations with crown ethers

    International Nuclear Information System (INIS)

    Heffels, Dennis Egidius

    2014-01-01

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  7. Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios.

    Science.gov (United States)

    Bourgeois, J C; Walsh, M E; Gagnon, G A

    2004-03-01

    Spent filter backwash water (SFBW) and clarifier sludge generally comprise the majority of the waste residual volume generated and in relative terms, these can be collectively referred to as combined filter backwash water (CFBW). CFBW is essentially a low-solids wastewater with metal hydroxide flocs that are typically light and slow to settle. This study evaluates the impact of adding calcium and magnesium carbonates to CFBW in terms of assessing the impacts on the sedimentation and DAF separation processes. Representative CFBW samples were collected from two surface water treatment plants (WTP): Lake Major WTP (Dartmouth, Nova Scotia, Canada) and Victoria Park WTP (Truro, Nova Scotia, Canada). Bench-scale results indicated that improvements in the CFBW settled water quality could be achieved through the addition of the divalent cations, thereby adjusting the monovalent to divalent (M:D) ratios of the wastewater. In general, the DAF process required slightly higher M:D ratios than the sedimentation process. The optimum M:D ratios for DAF and sedimentation were determined to be 1:1 and 0.33:1, respectively. It was concluded that the optimisation of the cation balance between monovalent cations (e.g., Na(+), K(+)) and added divalent cations (i.e., Ca(2+), Mg(2+)) aided in the settling mechanism through charge neutralisation-precipitation. The increase in divalent cation concentrations within the waste residual stream promoted destabilisation of the negatively charged colour molecules within the CFBW, thereby causing the colloidal content to become more hydrophobic.

  8. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines – A systematic review

    Science.gov (United States)

    Stuurman, Anke L.; Marano, Cinzia; Bunge, Eveline M.; De Moerlooze, Laurence; Shouval, Daniel

    2017-01-01

    ABSTRACT The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike. PMID:27786671

  9. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    Science.gov (United States)

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  10. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  11. Uranium isotope separation using styrene cation exchangers

    International Nuclear Information System (INIS)

    Kahovec, J.

    1980-01-01

    The separation of 235 U and 238 U isotopes is carried out either by simple isotope exchange in the system uranium-cation exchanger (sulphonated styrene divinylbenzene resin), or by combination of isotope exchange in a uranium-cation exchanger (Dowex 50, Amberlite IR-120) system and a chemical reaction. A review is presented of elution agents used, the degree of cation exchanger cross-linking, columns length, and 235 U enrichment. The results are described of the isotope effect study in a U(IV)-U(VI)-cation exchanger system conducted by Japanese and Romanian authors (isotope exchange kinetics, frontal analysis, reverse (indirect) frontal analysis). (H.S.)

  12. Tumour targeting with monovalent fragments of anti-neuroblastoma antibody chCE7

    International Nuclear Information System (INIS)

    Carrel, F.; Novak-Hofer, I.; Ruch, C.; Zimmermann, K.; Amstutz, H.

    1997-01-01

    The in vitro and in vivo behaviour of the monovalent single chain (scFv) and Fab-fragments derived from anti-neuroblastoma antibody chCE7 is reported. When comparing tumour uptake and -retention of radioactivity of 67 Cu-labelled monovalent chCE7 with divalent chCE7 F(ab') 2 the advantage of the radiocopper label over the radioiodine label was more pronounced with the divalent (internalising) F(ab') 2 fragments. (author) 1 fig., 1 ref

  13. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects.

    Science.gov (United States)

    Xia, Tianjiao; Qi, Yu; Liu, Jing; Qi, Zhichong; Chen, Wei; Wiesner, Mark R

    2017-01-17

    Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na + cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs + and divalent Ca 2+ and Ba 2+ , which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.

  14. Succinate, iron chelation, and monovalent cations affect the transformation efficiency of Acinetobacter baylyi ATCC 33305 during growth in complex media.

    Science.gov (United States)

    Leong, Colleen G; Boyd, Caroline M; Roush, Kaleb S; Tenente, Ricardo; Lang, Kristine M; Lostroh, C Phoebe

    2017-10-01

    Natural transformation is the acquisition of new genetic material via the uptake of exogenous DNA by competent bacteria. Acinetobacter baylyi is model for natural transformation. Here we focus on the natural transformation of A. baylyi ATCC 33305 grown in complex media and seek environmental conditions that appreciably affect transformation efficiency. We find that the transformation efficiency for A. baylyi is a resilient characteristic that remains high under most conditions tested. We do find several distinct conditions that alter natural transformation efficiency including addition of succinate, Fe 2+ (ferrous) iron chelation, and substitution of sodium ions with potassium ones. These distinct conditions could be useful to fine tune transformation efficiency for researchers using A. baylyi as a model organism to study natural transformation.

  15. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  16. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    Science.gov (United States)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  17. Monovalent Strep-Tactin for strong and site-specific tethering in nanospectroscopy.

    Science.gov (United States)

    Baumann, Fabian; Bauer, Magnus S; Milles, Lukas F; Alexandrovich, Alexander; Gaub, Hermann E; Pippig, Diana A

    2016-01-01

    Strep-Tactin, an engineered form of streptavidin, binds avidly to the genetically encoded peptide Strep-tag II in a manner comparable to streptavidin binding to biotin. These interactions have been used in protein purification and detection applications. However, in single-molecule studies, for example using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), the tetravalency of these systems impedes the measurement of monodispersed data. Here, we introduce a monovalent form of Strep-Tactin that harbours a unique binding site for Strep-tag II and a single cysteine that allows Strep-Tactin to specifically attach to the atomic force microscope cantilever and form a consistent pulling geometry to obtain homogeneous rupture data. Using AFM-SMFS, the mechanical properties of the interaction between Strep-tag II and monovalent Strep-Tactin were characterized. Rupture forces comparable to biotin:streptavidin unbinding were observed. Using titin kinase and green fluorescent protein, we show that monovalent Strep-Tactin is generally applicable to protein unfolding experiments. We expect monovalent Strep-Tactin to be a reliable anchoring tool for a range of single-molecule studies.

  18. Monovalent RIVM meningococcal B OMP vesicle F91 vaccines in toddlers

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Labadie J; Berbers GAM; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW; Sophia Kinderziekenhuis /; LVO

    2001-01-01

    This report gives the results of a randomised phase-II clinical study into the safety and immunogenicity of a monovalent MenB OMV vaccine expressing P1.7h,4 PorA (MonoMen) in toddlers. Safety and immunogenicity are compared for two types of vaccine that are differently adjuvated (either

  19. The apparent monovalency of human IgG4 is due to bispecificity

    NARCIS (Netherlands)

    Aalberse, R. C.; Schuurman, J.; van Ree, R.

    1999-01-01

    A hypothesis is put forward to explain the apparent monovalency of human IgG4. It is based upon the known instability of the IgG4 hinge. IgG4 is secreted as a regular bivalent antibody, but after secretion interacts with another IgG4 molecule. This interaction results in the exchange of half

  20. Self-assembling multivalency : supramolecular polymers assembled from monovalent mannose-labelled discotic molecules

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Brunsveld, L.

    2013-01-01

    Supramolecular synthesis, the "bottom-up" construction of higher-order structures from monomeric building blocks, represents a flexible approach for the generation of multivalent materials. Here, monovalent building blocks decorated with a single bioactive ligand were synthesized. In water, these

  1. In vitro lipofection with novel series of symmetric 1,3-dialkoylamidopropane-based cationic surfactants containing single primary and tertiary amine polar head groups.

    Science.gov (United States)

    Sheikh, Mohammad; Feig, Jennifer; Gee, Becky; Li, Song; Savva, Michalakis

    2003-06-01

    A novel series of symmetric double-chained primary and tertiary 1,3-dialkoylamido monovalent cationic lipids were synthesized and evaluated for their transfection activities. In the absence of the helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), only the primary and tertiary dioleoyl derivatives 1,3lmp5 and 1,3lmt5, respectively elicited transfection activity. This is a striking difference between symmetrical 1,2-diacyl glycerol-based monovalent cationic lipids that always found both dioleoyl and dimyristoyl analogues being efficient transfection reagents. In the presence of helper lipid, all cationic derivatives induced marker gene expression, except the dilauroyl analogues 1,3lmp1 and 1,3lmt1 that elicited no transfection activity. Combining electrophoretic mobility data of the lipoplexes at different charge ratios with transfection activity suggested two requirements for high transfection activity with monovalent double-chained cationic lipids, that is, binding/association of the lipid to the plasmid DNA and membrane fusion properties of the lipid layers surrounding the DNA.

  2. Isomerization of propargyl cation to cyclopropenyl cation ...

    Indian Academy of Sciences (India)

    step) for isomeri- zation of the linear propargyl cation to ..... C3, C4 and C5. The ZPE corrections in each case are derived from the. B3LYP calculations. ..... the converse of which gives the relative capacity of the. LPD's to stabilize TS6 with respect ...

  3. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Science.gov (United States)

    Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen

    2013-01-01

    It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.

  4. Dilution thermodynamics of the biologically relevant cation mixtures

    International Nuclear Information System (INIS)

    Kaczyński, Marek; Borowik, Tomasz; Przybyło, Magda; Langner, Marek

    2014-01-01

    Graphical abstract: - Highlights: • Dilution energetics of Ca 2+ can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca 2+ dilution is drastically reduced in the K + presence. • Reduction of the enthalpy change upon Ca 2+ dilution is K + concentration dependent. • The cooperativity of Ca 2+ hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers

  5. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  6. EVALUATION OF REACTOGENICITY, SAFETY AND IMMUNOGENICITY OF INACTIVATED MONOVALENT VACCINE IN CHILDREN

    OpenAIRE

    A.N. Mironov; A.A. Romanova; R.Ya. Meshkova; I.V. Fel’dblyum; N.V. Kupina; D.S. Bushmenkov; A.A. Tsaan

    2010-01-01

    NPO «Microgen» developed vaccine «PANDEFLU» — influenza inactivated subunit adsorbed monovalent vaccine, strain A/California/7/2009 (H1N1), for specific prophylaxis of pandemic influenza in different age groups of citizens. Reactogenicity, safety and immunogenicity were analyzed in a study of volunteers 18–60 years old. The article presents results of administration of vaccine «PANDEFLU» in children. The study performed in two clinical centers proves good tolerability, reactogenicity, safety ...

  7. Thermal study of monovalent-divalent phase transition in npBifc-F1TCNQ System

    International Nuclear Information System (INIS)

    Sato, Michiko; Nishio, Yutaka; Kajita, Koji; Mochida, Tomoyuki

    2009-01-01

    In a new molecular solid composed of di-neopentyl-biferrocene (npBifc) and fluorotetracyanoquinodimethane (F 1 TCNQ) 3 , Mochida reported the discovery of a reversible valence transfer that can be regarded as an 'ionic(I)-ionic(II)' phase transfer between the monovalent state (D + A - ) and the divalent state (D 2+ A 2- ). We have studied thermo-dynamical properties of this transformation for this complex using the differential thermal analyses (DTA). We observed a broad excess specific heat with multi-peaks attributed to micro-domain structure over the corresponding temperature range (100-150K) accompanied by temperature hysteresis of 7K. The transition entropy (ΔS) was determined to be 22 ± 2 J/mol-K and almost satisfied a Clausius-Clapeyron relation. These experimental results provide an experimental confirmation of the first order phase transition for the monovalent-divalent transfer. At the transition, we observe that the electronic degrees of freedom remained constant values, while large entropy absorbed crossing from low temperature phase to high temperature one is contributed by the lattice one. We finally estimated the internal energy and concluded that delicate energy valance between Madelung, ionization and affinity energies enable this system to exhibit a temperature induce monovalent-divalent phase transition.

  8. Cation Exchange Water Softeners

    Science.gov (United States)

    WaterSense released a notice of intent to develop a specification for cation exchange water softeners. The program has made the decision not to move forward with a spec at this time, but is making this information available.

  9. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity

    International Nuclear Information System (INIS)

    Avery, S.V.

    1995-01-01

    The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs + in the natural environment. Although Cs + is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K + facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs + (K + ) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differ widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs + ; Cs + appears to have an equal or greater affinity than K + for transport in certain microorganisms. Microbial Cs + accumulation is markedly influenced by the presence of external cations, e.g. K + , Na + , NH 4 + and H + , and is generally accompanied by an approximate stoichiometric exchange for intracellular K + . However, stimulation of growth of K + -starved microbial cultures by Cs + is limited and it has been proposed that it is not the presence of Cs + in cells that is growth inhibitory but rather the resulting loss of K + . Increased microbial tolerance to Cs + may result from sequestration of Cs + in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs + uptake. The precise intracellular target(s) for Cs + - induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs + and Cs + is known to substitute poorly for K + in the activation of many K + -requiring enzymes. (author)

  10. Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.

    Science.gov (United States)

    Jiménez, José A

    2016-06-03

    CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cation selectivity of the plasma membrane of tobacco protoplasts in the electroporated state.

    Science.gov (United States)

    Wegner, Lars H

    2013-08-01

    Cation selectivity of the cellular membrane of tobacco culture cells (cell line 'bright yellow-2') exposed to pulsed electric fields in the millisecond range was investigated. The whole cell configuration of the patch clamp technique was established on protoplasts prepared from these cells. Ion selectivity of the electroporated membrane was investigated by measuring the reversal potential of currents passing through field-induced pores. To this end the membrane was hyper- or depolarized for 10ms (prepulse); subsequently the voltage was driven to opposite polarity at a constant rate (+40 or -40mV/ms, respectively). The experiment was started by polarizing the membrane to moderately negative or positive voltages (prepulse potential ±150mV) that would not induce pore formation. Subsequently, an extended voltage range was scanned in the porated state of the membrane (prepulse potential ±600mV). IV curves in the porated and the non-porated state (obtained at the same prepulse polarity) were superimposed to determine the voltage at which both curves intersected ('Intersection potential'). Using a modified version of the Goldmann-Hodgkin-Katz equation relative permeabilities to Ca(2+) and various monovalent alkali and organic cations were calculated. Pores were found to be fairly cation selective, with a selectivity sequence determined to be Ca(2+)>Li(+)>Rb(+)≈K(+)≈Na(+)>TEA(+)≈TBA(+)>Cl(-). Relative permeability to monovalent cations was inversely related to the ionic diameter. By fitting a formalism suggested by Dwyer at al. (J. Gen. Physiol. 75 (1980), 469-492) the effective average diameter of field induced pores was estimated to be about 1.8nm. Implications of these results for biotechnology and electroporation theory are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Differential Deformability of the DNA Minor Groove and Altered BI/BII Backbone Conformational Equilibrium by the Monovalent Ions Li+, Na+, K+ and Rb+ via Water-Mediated Hydrogen Bonding

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2015-01-01

    Recently, we reported the differential impact of the monovalent cations Li+, Na+, K+ and Rb+ on DNA conformational properties. These were identified from variations in the calculated solution-state X-ray DNA spectra as a function of the ion type in the solvation buffer in MD simulations using our recently developed polarizable force field based on the classical Drude oscillator. Changes in the DNA structure were found to mainly involve variations in the minor groove width. Because minor groove dimensions vary significantly in protein-DNA complexes and have been shown to play a critical role in both specific and nonspecific DNA readout, understanding the origins of the observed differential DNA modulation by the first-group monovalent ions is of great biological importance. In the present study we show that the primary microscopic mechanism for the phenomenon is the formation of the water-mediated hydrogen bonds between solvated cations located inside the minor groove and simultaneously to two DNA strands, a process whose intensity and impact on DNA structure depends on both the type of the ion and DNA sequence. Additionally, it is shown that formation of such ion-DNA hydrogen bond complexes appreciably modulates the conformation of the backbone by increasing the population of the BII substate. Notably, the differential impact of the ions on DNA conformational behavior is only predicted by the Drude polarizable model for DNA, with virtually no effect observed from MD simulations utilizing the additive CHARMM36 model. Analysis of dipole moments of the water shows the Drude SWM4 model to possess high sensitivity to changes in the local environment, which indicates the important role of electronic polarization in the salt-dependent conformational properties. This also suggests that inclusion of polarization effects is required to model even relatively simple biological systems such as DNA in various ionic solutions. PMID:26575937

  13. Effect of doping of trivalent cations Ga{sup 3+}, Sc{sup 3+}, Y{sup 3+} in Li{sub 1.3}Al{sub 0.3}Ti{sub 1.7} (PO{sub 4}){sub 3} (LATP) system on Li{sup +} ion conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, Dharmesh H.; Kanchan, D.K., E-mail: dkkanchan.ssi@gmail.com

    2016-11-15

    We report the effect of trivalent cations dopants in the Li{sub 1.3}Al{sub 0.3−x}R{sub x}Ti{sub 1.7}(PO{sub 4}){sub 3} (R=Ga{sup 3+}, Sc{sup 3+}, Y{sup 3+}) NASICON ceramic system in the concentration range x=0.01,0.03,0.05,0.07, on the Li{sup +} ion conducting properties using impedance spectroscopy. The samples were prepared by solid state reaction method and characterized by X-Ray Diffraction and density measurements. The electrical properties were studied using impedance spectroscopy in frequency range 10 Hz to 20 MHz and temperature range 303 K to 423 K. Although the porosity of the material decreased with doping, the overall Li{sup +} ion conductivity of the system did not improve with doping. Ionic radii of the dopant cations was found to be an important factor in formation of impurity phases and low Li{sup +} ion conductivity. Gallium doped samples exhibited a higher Li{sup +} ion conductivity compared to its scandium and yttrium doped counterparts.

  14. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  15. Identifi cation of Sectarianism

    Directory of Open Access Journals (Sweden)

    Martinovich Vladimir

    2016-03-01

    Full Text Available «New religious movements and society» is traditionally one of the most sophisticated topics in the area of new religions studies. Its problem field is so huge that up to now by far not all important research themes where even touched by scientists from all over the world. The problem of the process of the identification of sectarianism by diff erent societal institutions is one of such untouched themes that is taken as the main subject of this article. This process by itself is an inseparable part of the every societal deliberate reaction to the very existence of unconventional religiosity, its unstructured and mainly structured types. The focal point of the article is step-by-step analysis of the general structure elements of the process of the identification of sectarianism without any reference to the specific time and place of its flow. Special attention is paid to the analysis of the subjects of the identification of sectarianism, to the criteria for religious groups to be qualified as new religious movements, and to the specific features of the process of documents filtration. The causes of selective perception of sectarianism are disclosed. Some main consequences and unpredictable outcomes of the process of the identification of sectarianism are described.

  16. In silico prediction of monovalent and chimeric tetravalent vaccines for prevention and treatment of dengue fever.

    Science.gov (United States)

    Vijayakumar, Subramaniyan; Ramesh, Venkatachalam; Prabhu, Srinivasan; Manogar, Palani

    2017-11-01

    Reverse vaccinology method was used to predict the monovalent peptide vaccine candidate to produce antibodies for therapeutic purpose and to predict tetravalent vaccine candidate to act as a common vaccine to cover all the fever dengue virus serotypes. Envelope (E)-proteins of DENV-1-4 serotypes were used for vaccine prediction using NCBI, Uniprot/Swissprot, Swiss-prot viewer, VaxiJen V2.0, TMHMM, BCPREDS, Propred-1, Propred and MHC Pred,. E-proteins of DENV-1-4 serotypes were identified as antigen from which T cell epitopes, through B cell epitopes, were predicted to act as peptide vaccine candidates. Each selected T cell epitope of E-protein was confirmed to act as vaccine and to induce complementary antibody against particular serotype of dengue virus. Chimeric tetravalent vaccine was formed by the conjugation of four vaccines, each from four dengue serotypes to act as a common vaccine candidate for all the four dengue serotypes. It can be justifiably concluded that the monovalent 9-mer T cell epitope for each DENV serotypes can be used to produce specific antibody agaomst dengue virus and a chimeric common tetravalent vaccine candidate to yield a comparative vaccine to cover any of the four dengue virus serotype. This vaccine is expected to act as highly immunogenic against preventing dengue fever.

  17. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time.

    Directory of Open Access Journals (Sweden)

    Yamuna Kunhi Mouvenchery

    Full Text Available It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM molecules via cation bridges (CaB. The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+, Ca(2+ or Na(+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h than deprotonation of functional groups (<2 h and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB and molecular mobility of water (NMR analysis suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is

  18. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  19. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments

    NARCIS (Netherlands)

    F. Aladin (Farah); A.W.C. Einerhand (Sandra); J. Bouma (Janneke); S. Bezemer (Sandra); P. Hermans (Pim); D. Wolvers (Danielle); K. Bellamy (Kate); L.G.J. Frenken (Leon); J. Gray (Jim); M. Iturriza-Gómara (Miren)

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment

  20. International collaboration to assess the risk of Guillain Barre Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    Dodd, Caitlin N.; Romio, Silvana A.; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M. Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S. K.; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Sanchez, Francisco Gimenez; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-01-01

    Background: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barre syndrome (GBS), which has been an

  1. EVALUATION OF REACTOGENICITY, SAFETY AND IMMUNOGENICITY OF INACTIVATED MONOVALENT VACCINE IN CHILDREN

    Directory of Open Access Journals (Sweden)

    A.N. Mironov

    2010-01-01

    Full Text Available NPO «Microgen» developed vaccine «PANDEFLU» — influenza inactivated subunit adsorbed monovalent vaccine, strain A/California/7/2009 (H1N1, for specific prophylaxis of pandemic influenza in different age groups of citizens. Reactogenicity, safety and immunogenicity were analyzed in a study of volunteers 18–60 years old. The article presents results of administration of vaccine «PANDEFLU» in children. The study performed in two clinical centers proves good tolerability, reactogenicity, safety and high immunogenicity of this vaccine.Key words: children, influenza, influenza virus А/H1N1, inactivated influenza vaccine, reactogenicity, safety, immunogenicity.(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(4:106-109

  2. Solvation of monovalent anions in formamide and methanol: Parameterization of the IEF-PCM model

    International Nuclear Information System (INIS)

    Boees, Elvis S.; Bernardi, Edson; Stassen, Hubert; Goncalves, Paulo F.B.

    2008-01-01

    The thermodynamics of solvation for a series of monovalent anions in formamide and methanol has been studied using the polarizable continuum model (PCM). The parameterization of this continuum model was guided by molecular dynamics simulations. The parameterized PCM model predicts the Gibbs free energies of solvation for 13 anions in formamide and 16 anions in methanol in very good agreement with experimental data. Two sets of atomic radii were tested in the definition of the solute cavities in the PCM and their performances are evaluated and discussed. Mean absolute deviations of the calculated free energies of solvation from the experimental values are in the range of 1.3-2.1 kcal/mol

  3. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  4. Two-phase coexistence in the monovalent-to-divalent phase transition of dineopentylbiferrocene-fluorotetracyanoquinodimethane [npBifc-(F1TCNQ)3], charge-transfer salt

    International Nuclear Information System (INIS)

    Uruichi, Mikio; Yue, Yue; Yakushi, Kyuya; Mochida, Tomoyuki

    2007-01-01

    We present experimental findings showing that for npBifc-(F 1 TCNQ) 3 , two phases coexist over a wide temperature interval of 100-150 K near the monovalent-to-divalent phase transition temperature. Macroscopic domains of the high-temperature (monovalent) and low-temperature (divalent) phases were detected in the transition temperature region using X-ray diffraction and micro-Raman spectroscopy techniques. The volume fraction of the two domains continuously varied depending upon the temperature. A considerably large volume difference was found between the monovalent and divalent phases. The effect of volumetric strain due to this volume difference is discussed to understand this inhomogeneous state. (author)

  5. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  6. Selective cation-exchange separation of cesium(I) on chromium ferricyanide gel

    International Nuclear Information System (INIS)

    Jain, A.K.; Agrawal, S.; Singh, R.P.

    1980-01-01

    The removal of 137 Cs from liquid streams of nuclear power plants and from processed radioactive waste of nuclear fission has received increasing attention from ion-exchange chemists. A desirable exchanger (adsorbent) for 137 Cs removal is one which can adsorb it significantly and selectively in the presence of appreciable amounts (approx. 2molL -1 ) of Na + , NH 4 + , and H + . This paper deals with the exchange properties of the inorganic exchanger, chromium ferricyanide gel (CFiC). The stability of the gel in both acid and salt solutions and its high specificity for cesium are responsible for its good scavanger properties in removing long lived 137 Cs from radioactive waste. The chromium ferricyanide exchanger is highly selective for monovalent cations, the order being Ag + >Tl + >Cs + >Rb + >K + >Na + . It does not adsorb any bivalent, trivalent, and tetravalent ions even when present in trace amounts. (2 figures, 3 tables)

  7. Dimerization of human immunodeficiency virus (type 1) RNA: stimulation by cations and possible mechanism.

    Science.gov (United States)

    Marquet, R; Baudin, F; Gabus, C; Darlix, J L; Mougel, M; Ehresmann, C; Ehresmann, B

    1991-05-11

    The retroviral genome consists of two identical RNA molecules joined close to their 5' ends by the dimer linkage structure. Recent findings indicated that retroviral RNA dimerization and encapsidation are probably related events during virion assembly. We studied the cation-induced dimerization of HIV-1 RNA and results indicate that all in vitro generated HIV-1 RNAs containing a 100 nucleotide domain downstream from the 5' splice site are able to dimerize. RNA dimerization depends on the concentration of RNA, mono- and multivalent cations, the size of the monovalent cation, temperature, and pH. Up to 75% of HIV-1 RNA is dimeric in the presence of spermidine. HIV-1 RNA dimer is fairly resistant to denaturing agents and unaffected by intercalating drugs. Antisense HIV-1 RNA does not dimerize but heterodimers can be formed between HIV-1 RNA and either MoMuLV or RSV RNA. Therefore retroviral RNA dimerization probably does not simply proceed through mechanisms involving Watson-Crick base-pairing. Neither adenine and cytosine protonation, nor quartets containing only guanines appear to determine the stability of the HIV-1 RNA dimer, while quartets involving both adenine(s) and guanine(s) could account for our results. A consensus sequence PuGGAPuA found in the putative dimerization-encapsidation region of all retroviral genomes examined may participate in the dimerization process.

  8. Thermal study of monovalent-divalent phase transition in npBifc-F{sub 1}TCNQ System

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Michiko; Nishio, Yutaka; Kajita, Koji [Department of Physics, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510 (Japan); Mochida, Tomoyuki, E-mail: nishio@ph.sci.toho-u.ac.j [Department of Chemistry, Faculty of Science, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2009-03-01

    In a new molecular solid composed of di-neopentyl-biferrocene (npBifc) and fluorotetracyanoquinodimethane (F{sub 1}TCNQ){sub 3}, Mochida reported the discovery of a reversible valence transfer that can be regarded as an 'ionic(I)-ionic(II)' phase transfer between the monovalent state (D{sup +}A{sup -}) and the divalent state (D{sup 2+}A{sup 2-}). We have studied thermo-dynamical properties of this transformation for this complex using the differential thermal analyses (DTA). We observed a broad excess specific heat with multi-peaks attributed to micro-domain structure over the corresponding temperature range (100-150K) accompanied by temperature hysteresis of 7K. The transition entropy (DELTAS) was determined to be 22 +- 2 J/mol-K and almost satisfied a Clausius-Clapeyron relation. These experimental results provide an experimental confirmation of the first order phase transition for the monovalent-divalent transfer. At the transition, we observe that the electronic degrees of freedom remained constant values, while large entropy absorbed crossing from low temperature phase to high temperature one is contributed by the lattice one. We finally estimated the internal energy and concluded that delicate energy valance between Madelung, ionization and affinity energies enable this system to exhibit a temperature induce monovalent-divalent phase transition.

  9. Excited state fluorescence quenching of the U O2++ ion by monovalent anions

    International Nuclear Information System (INIS)

    Santarine, G.A.

    1987-01-01

    The reactions of the Uranyl ion U O 2 ++ in the excited state with the monovalent inorganic ions N O 3 - and I O 3 - in aqueous solutions at normal temperature were studied, using three techniques: Fluorescence in the steady state - Flash photolysis - Fluorescence decay after excitation. With increasing concentration of these ions it was observed a decrease in the normalized intensity and a decrease in the decay time of the fluorescence of the Uranyl ion in the solution and a corresponding appearance of the radicals N O 3 . or I O 3 . . In each case the radical was identified by its optical absorption spectrum. These results suggest that the quenching of fluorescence of the Uranyl ion in each case is owing to an electron transfer reaction. In the case of the Nitrate ion the transfer may occur after the formation of an ionic par (U O 2 + ...N O 3 ) in the ground state. Evidence for static quenching in the system Uranyl iodate was not forthcoming. A mechanism for the determination of the velocity constant (probability per ion pair per unit time) is proposed for each of the systems. (author)

  10. Compliance with future emission standards of mobile machines by developing a monovalent natural gas combustion process

    International Nuclear Information System (INIS)

    Prehn, Sascha; Wichmann, Volker; Harndorf, Horst; Beberdick, Wolfgang

    2014-01-01

    Within the presented project a monovalent natural gas engine is being developed. Based on a serial diesel engine the operation mode of this prototype is changed to a spark ignition concept. The long term purpose of this new engine is an agricultural application. One major objective of the project is the investigation and evaluation of a combustion process, able to fulfil the performance requests as well as the European emission limits for nitrogen oxides NO x , and carbon monoxide CO of mobile machinery, which become into law in October 2014 (EU stage IV). At the time there are no legislative regulations existing regarding the methane emissions of the observed engines. To get a benefit in greenhouse gas emissions compared to diesel or gasoline engines the methane emissions have to be minimized while operating in natural gas mode. In the course of the current project an engine operation with a methane emission less than 0.5 g/kWh (representing the EURO VI limit for heavy duty vehicles) could be demonstrated. In contrast to diesel engines for agricultural applications it is possible to comply with the emission standards without using a high sophisticated after treatment system consisting of diesel oxidation catalyst (DOC), particulate filter (DPF) and SCR catalyst. The usage of a three way catalyst optimized for high methane conversions is sufficient for a stoichiometry gas operation with exhaust gas recirculation. Therefore a significant cost advantage is given.

  11. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  12. Effect of age on the incidence of aseptic meningitis following immunization with monovalent mumps vaccine.

    Science.gov (United States)

    Muta, Hiromi; Nagai, Takao; Ito, Yuhei; Ihara, Toshiaki; Nakayama, Tetsuo

    2015-11-09

    The purpose of this study was to determine the risk of aseptic meningitis after mumps vaccination in younger children compared with older children. This prospective cohort study included a total of 21,465 children under 18 years of age who had received the first dose of three of the Japanese mumps monovalent vaccine. We compared the cumulative incidence of aseptic meningitis for 30 days after vaccination among the following age groups: ≤ 1, 2, 3-4, and ≥ 5 years old. We also investigated the cumulative incidence of salivary gland swelling, a fever (≥ 38°C) lasting at least 3 days during the 10 to 25 days following immunization, vomiting of 3 times or more, headache, and seizure. A total of 10 aseptic meningitis, 551 salivary gland swelling, 844 fevers, 669 vomiting, 757 headaches, and 29 seizure cases were identified. The cumulative incidence of aseptic meningitis increased with age (0.016%, 0.021%, 0.066%, and 0.096%, respectively). Statistical significance was observed between children ≥ 3 years old and those mumps vaccine that is currently available for use in Japan may be administered in children less than 3 years of age in order to complicate a less aseptic meningitis after immunization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Kollipara, Avinash; Wan, Charles; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2013-02-06

    Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  14. Impact and Effectiveness of Monovalent Rotavirus Vaccine Against Severe Rotavirus Diarrhea in Ghana.

    Science.gov (United States)

    Armah, George; Pringle, Kimberly; Enweronu-Laryea, Christabel C; Ansong, Daniel; Mwenda, Jason M; Diamenu, Stanley K; Narh, Clement; Lartey, Belinda; Binka, Fred; Grytdal, Scott; Patel, Manish; Parashar, Umesh; Lopman, Ben

    2016-05-01

    Ghana was among the first African nations to introduce monovalent rotavirus vaccine (RV1) into its childhood immunization schedule in April 2012. We aimed to assess the impact of vaccine introduction on rotavirus and acute gastroenteritis (AGE) hospitalizations and to estimate vaccine effectiveness (VE). Using data from 2 teaching hospitals, monthly AGE and rotavirus admissions by age were examined 40 months before and 31 months after RV1 introduction using interrupted time-series analyses. From January 2013, we enrolled children vaccination by rotavirus case-patient status, controlling for potential confounders. Vaccine coverage ranged from 95% to 100% for dose 1 and 93% to 100% for dose 2. In the first 3 years after vaccine introduction, the percentage of hospital admissions positive for rotavirus fell from 48% in the prevaccine period to 28% (49% adjusted rate reduction; 95% confidence interval [CI], 32%-63%) postvaccination among vaccine coverage, it was not possible to arrive at robust VE estimates; any-dose VE against rotavirus hospitalization was estimated at 60% (95% CI, -2% to 84%;P= .056). Results from the first 3 years following RV1 introduction suggest substantial reductions of pediatric diarrheal disease as a result of vaccination. Our VE estimate is consistent with the observed rotavirus decrease and with efficacy estimates from elsewhere in sub-Saharan Africa. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  16. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu; Tian, Qiwei; Dong, Xinglong; Liu, Zhaohui; Basset, Jean-Marie; Saih, Youssef; Sun, Miao; Xu, Wei; Shaikh, Sohel

    2017-01-01

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  17. The cation-π interaction.

    Science.gov (United States)

    Dougherty, Dennis A

    2013-04-16

    The chemistry community now recognizes the cation-π interaction as a major force for molecular recognition, joining the hydrophobic effect, the hydrogen bond, and the ion pair in determining macromolecular structure and drug-receptor interactions. This Account provides the author's perspective on the intellectual origins and fundamental nature of the cation-π interaction. Early studies on cyclophanes established that water-soluble, cationic molecules would forego aqueous solvation to enter a hydrophobic cavity if that cavity was lined with π systems. Important gas phase studies established the fundamental nature of the cation-π interaction. The strength of the cation-π interaction (Li(+) binds to benzene with 38 kcal/mol of binding energy; NH4(+) with 19 kcal/mol) distinguishes it from the weaker polar-π interactions observed in the benzene dimer or water-benzene complexes. In addition to the substantial intrinsic strength of the cation-π interaction in gas phase studies, the cation-π interaction remains energetically significant in aqueous media and under biological conditions. Many studies have shown that cation-π interactions can enhance binding energies by 2-5 kcal/mol, making them competitive with hydrogen bonds and ion pairs in drug-receptor and protein-protein interactions. As with other noncovalent interactions involving aromatic systems, the cation-π interaction includes a substantial electrostatic component. The six (four) C(δ-)-H(δ+) bond dipoles of a molecule like benzene (ethylene) combine to produce a region of negative electrostatic potential on the face of the π system. Simple electrostatics facilitate a natural attraction of cations to the surface. The trend for (gas phase) binding energies is Li(+) > Na(+) > K(+) > Rb(+): as the ion gets larger the charge is dispersed over a larger sphere and binding interactions weaken, a classical electrostatic effect. On other hand, polarizability does not define these interactions. Cyclohexane is

  18. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  19. Combined theoretical and experimental study of the site-specificity of vibrational dynamics of CO adsorbed on monovalent metal cations in zeolites

    Czech Academy of Sciences Publication Activity Database

    Bludský, Ota; Nachtigallová, Dana; Bulánek, R.; Nachtigall, Petr

    2005-01-01

    Roč. 158, - (2005), s. 625-632 ISSN 0167-2991 R&D Projects: GA MŠk(CZ) LC512 Institutional research plan: CEZ:AV0Z4055905 Keywords : IR spectra * FER zeolite * carbon-monoxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.307, year: 2005

  20. Guillain-Barré syndrome following receipt of influenza A (H1N1) 2009 monovalent vaccine in Korea with an emphasis on Brighton Collaboration case definition.

    Science.gov (United States)

    Choe, Young June; Cho, Heeyeon; Bae, Geun-Ryang; Lee, Jong-Koo

    2011-03-03

    In 2009-2010 season, with ongoing of influenza A (H1N1), employment of mass vaccination has generated concerns in issue of adverse events following immunization (AEFI). This study investigates the clinical and laboratory data of reported cases of Guillain-Barré syndrome (GBS) and Fisher syndrome (FS) following receipt of influenza A (H1N1) 2009 monovalent vaccine to the National Vaccine Injury Compensation Program (NVICP) in Korea, with all cases reviewed under case definition developed by Brighton Collaboration GBS Working Group. Retrospective review of medical records for all suspected cases of GBS ad FS following receipt of influenza A (H1N1) monovalent vaccine reported to NVICP from December 1, 2009, through April 28, 2010 was conducted. Additional analyses were performed for identification of levels of diagnostic certainty according to Brighton Collaboration case definition. Of 29 reported cases, 22 were confirmed to meet Brighton criteria level 1, 2, or 3 for GBS (21) or FS (1). Of those, 2 (9.1%) met level 1, 9 (40.9%) met level 2, and 11 (50.0%) met level 3. The male to female ratio was 2:0 in cases with level 1, 8:1 in cases with level 2, and 3:8 in cases with level 3. The mean age was older in cases with level 1 (54.0 ± 26.9) than that of cases with level 2 (25.6 ± 22.8), and level 3 (13.6 ± 2.4, P=0.005). The median onset interval was longer in cases with level 1 (16 days) than that of cases that met level 2 (12.44 days), and 3 (1.09 days, P=0.019). The Brighton case definition was used to improve the quality of AEFI data in Korea, and was applicable in retrospective review of medical records in cases with GBS and FS after influenza A (H1N1) vaccination. These findings suggest that standardized case definition was feasible in clarifying the AEFI data, and to further increase the understanding of possible relationship of influenza vaccine and GBS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Cation disorder in Ga1212.

    Science.gov (United States)

    Greenwood, K B; Ko, D; Vander Griend, D A; Sarjeant, G M; Milgram, J W; Garrity, E S; DeLoach, D I; Poeppelmeier, K R; Salvador, P A; Mason, T O

    2000-07-24

    Substitution of calcium for strontium in LnSr2-xCaxCu2GaO7 (Ln = La, Pr, Nd, Gd, Ho, Er, Tm, and Yb) materials at ambient pressure and 975 degrees C results in complete substitution of calcium for strontium in the lanthanum and praseodymium systems and partial substitution in the other lanthanide systems. The calcium saturation level depends on the size of the Ln cation, and in all cases, a decrease in the lattice parameters with calcium concentration was observed until a common, lower bound, average A-cation size is reached. Site occupancies from X-ray and neutron diffraction experiments for LnSr2-xCaxCu2GaO7 (x = 0 and x = 2) confirm that the A-cations distribute between the two blocking-layer sites and the active-layer site based on size. A quantitative link between cation distribution and relative site-specific cation enthalpy for calcium, strontium, and lanthanum within the gallate structure is derived. The cation distribution in other similar materials can potentially be modeled.

  2. Paralytic poliomyelitis associated with Sabin monovalent and bivalent oral polio vaccines in Hungary.

    Science.gov (United States)

    Estívariz, Concepción F; Molnár, Zsuzsanna; Venczel, Linda; Kapusinszky, Beatrix; Zingeser, James A; Lipskaya, Galina Y; Kew, Olen M; Berencsi, György; Csohán, Agnes

    2011-08-01

    Historical records of patients with vaccine-associated paralytic poliomyelitis (VAPP) in Hungary during 1961-1981 were reviewed to assess the risk of VAPP after oral polio vaccine (OPV) administration. A confirmed VAPP case was defined as a diagnosis of paralytic poliomyelitis and residual paralysis at 60 days in a patient with an epidemiologic link to the vaccine. Archived poliovirus isolates were retested using polymerase chain reaction and sequencing of the viral protein 1 capsid region. This review confirmed 46 of 47 cases previously reported as VAPP. Three cases originally linked to monovalent OPV (mOPV) 3 and one case linked to mOPV1 presented after administration of bivalent OPV 1 + 3 (bOPV). The adjusted VAPP risk per million doses administered was 0.18 for mOPV1 (2 cases/11.13 million doses), 2.96 for mOPV3 (32 cases/10.81 million doses), and 12.82 for bOPV (5 cases/390,000 doses). Absence of protection from immunization with inactivated poliovirus vaccine or exposure to OPV virus from routine immunization and recent injections could explain the higher relative risk of VAPP in Hungarian children. In polio-endemic areas in which mOPV3 and bOPV are needed to achieve eradication, the higher risk of VAPP would be offset by the high risk of paralysis due to wild poliovirus and higher per-dose efficacy of mOPV3 and bOPV compared with trivalent OPV.

  3. The structural and electronic properties of monovalent sidewall functionalized double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Jalili, Seifollah; Jamali, Maryam

    2012-01-01

    Highlights: ► (6,0)-(13,0) DWCNT, built from (6,0) and (13,0) SWCNTs, is a metallic nanotubes. ► NH 2 /(6,0)-(13,0) and COOH/(6,0)-(13,0) is semimetal and semiconductor, respectively. ► In NH 2 /(6,0)-(13,0) electrons transferred mainly from inner tube to NH 2 group. - Abstract: The structural and electronic properties of (6,0)-(13,0) double-walled carbon nanotubes (DWCNTs) and monovalent sidewall functionalized DWCNTs with –NH 2 and –COOH groups were studied using density functional theory. The results show that pure (6,0)-(13,0) DWCNTs are metallic. However, by functionalizing a DWCNT, local distortions are induced in the outer tube sidewall along the radial direction. The resulting structures, NH 2 /(6,0)-(13,0) and COOH/(6,0)-(13,0) DWCNTs, exhibit significant structural changes, and are semimetal with no energy gap and semiconducting with a small energy gap, respectively. In NH 2 /(6,0)-(13,0) DWCNTs, new electronic states are created and distributed on the outer wall and NH 2 group by electron transfer from the inner tube to the NH 2 group. In COOH/(6,0)-(13,0) DWCNTs, new states are created and distributed on the inner wall, but there is insignificant charge transfer between the inner tube and the COOH group. These results confirm that local atomic structural distortion on DWCNTs caused by sidewall functionalization can modify the electronic structures of DWCNTs.

  4. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  5. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  6. Role of monovalent alkali ions in the Yb{sup 3+} centers of CaF{sub 2} laser crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hraiech, Sana [Physical Chemistry of Luminescent Materials (LPCML), University of Lyon, Claude Bernard/Lyon 1 University, UMR 5620 CNRS, La Doua, 69622 Villeurbanne (France); Jouini, Anis [Physical Chemistry of Luminescent Materials (LPCML), University of Lyon, Claude Bernard/Lyon 1 University, UMR 5620 CNRS, La Doua, 69622 Villeurbanne (France); IMRAM, Tohoku University, 2-1-1, Katahira, Sendai 980-8577 (Japan); Jin Kim, Kyoung [IMRAM, Tohoku University, 2-1-1, Katahira, Sendai 980-8577 (Japan); Guyot, Yannick [Physical Chemistry of Luminescent Materials (LPCML), University of Lyon, Claude Bernard/Lyon 1 University, UMR 5620 CNRS, La Doua, 69622 Villeurbanne (France); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1, Katahira, Sendai 980-8577 (Japan); Boulon, Georges, E-mail: georges.boulon@pcml.univ-lyon1.f [Physical Chemistry of Luminescent Materials (LPCML), University of Lyon, Claude Bernard/Lyon 1 University, UMR 5620 CNRS, La Doua, 69622 Villeurbanne (France)

    2010-03-15

    Yb{sup 3+} and M{sup +} monovalent alkali ions (M{sup +} = Li{sup +}, Na{sup +}, K{sup +})-co-doped CaF{sub 2} cubic laser crystals were grown by the micro-pulling-down method ({mu}-PD) under CF{sub 4} atmosphere. Structural and spectroscopic characterizations of Yb{sup 3+} in substitution of Ca{sup 2+} (absorption, emission and decay curves) were carried out to study the effect of M{sup +} ions as charge compensators.

  7. Conception and synthesis of new molecular platforms based on cryptophanes. Application for the encapsulation of xenon and metallic cations in aqueous solution

    International Nuclear Information System (INIS)

    Chapellet, Laure-Lise

    2015-01-01

    Cryptophanes are molecular receptors known for their complexation properties of various substrates. Over the last fifteen years, cryptophanes were the subject of numerous studies for they can be used to obtain biosensors for xenon MRI. This field has experienced significant growth and advances to the point were in vivo applications are now envisioned, provided that large amounts of biosensors can be synthesized. More recently, polyphenolic cryptophanes have been studied for their ability to encapsulate monovalent metallic cations like Cs"+ and Tl"+ in aqueous solution. This could lead to applications for depollution of contaminated water sources but would require, once again, the synthesis of large amounts of cryptophanes.The work carried out during this thesis focus on the conception and the synthesis of new molecular platforms that could either be used to obtain new hyper-polarized xenon biosensors or to encapsulate monovalent metallic cations as Cs"+ and Tl"+. Synthetic routes have been developed to produce good amounts of a variety of new hydrosoluble molecular platforms designed for each application. The encapsulation properties of these new host molecules were studied through NMR of the encapsulated nucleus, circular dichroism or isothermal calorimetry. In each case, the new platforms meet the expected requirements thus opening the door for the envisioned applications. (author)

  8. Selective crystallization of cations with crown ethers; Selektive Kristallisation von Kationen mit Kronenethern

    Energy Technology Data Exchange (ETDEWEB)

    Heffels, Dennis Egidius

    2014-07-04

    The aim of this work was to study the selectivity and preferences of the incorporation of differently sized cations in the cavities of various crown ethers and the characterization of the resulting compounds. The coordination preferences of crown ethers with different cavities have long been known, and the impact of other effects on the structure formation have increasingly become the focus of attention. In this work a comparative overview of the coordination preferences depending on various factors was undertaken. The focus was mainly on the variation of the cavity of the crown ether in the presence of differently sized cations. In addition, the effects of the solvent and differently coordinating anions have been investigated. Within the framework of this work, basic coordination preferences could be detected with rare earth nitrates, which are affected particularly by the choice of the solvent. The formation of different types of structures could be controlled by varying the conditions such that the incorporation of the cation in the cavity of the crown ether was influenced and the formation of a particular type of structure can be influenced partly by the choice of solvent. In this case no direct preferences for the incorporation into the cavity of the crown ether in relation to the cation size were observed for rare earth cations. However, the coordination of the crown ether leads in each case - for lanthanides - to rather high coordination numbers. A total of five new rare earth complexes and two structural variants could be observed with crown ethers. In the study of the selectivity of the incorporation into the cavity, known structures were also reproduced and further structures were characterized but the crystal structures not entirely solved. With the use of monovalent cations such as potassium, lithium or silver a total of nine new compounds could be synthesized, while no clear preferences for the incorporation of certain cations were detected. The

  9. Inversion of membrane surface charge by trivalent cations probed with a cation-selective channel.

    Science.gov (United States)

    Gurnev, Philip A; Bezrukov, Sergey M

    2012-11-13

    We demonstrate that the cation-selective channel formed by gramicidin A can be used as a reliable sensor for studying the multivalent ion accumulation at the surfaces of charged lipid membranes and the "charge inversion" phenomenon. In asymmetrically charged membranes with the individual leaflets formed from pure negative and positive lipids bathed by 0.1 M CsCl solutions the channel exhibits current rectification, which is comparable to that of a typical n/p semiconductor diode. We show that even at these highly asymmetrical conditions the channel conductance can be satisfactorily described by the electrodiffusion equation in the constant field approximation but, due to predictable limitations, only when the applied voltages do not exceed 50 mV. Analysis of the changes in the voltage-dependent channel conductance upon addition of trivalent cations allows us to gauge their interactions with the membrane surface. The inversion of the sign of the effective surface charge takes place at the concentrations, which correlate with the cation size. Specifically, these concentrations are close to 0.05 mM for lanthanum, 0.25 mM for hexaamminecobalt, and 4 mM for spermidine.

  10. Conventional resin cation exchangers versus EDI for CACE measurement in power plants. Feasibility and practical field results

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, Manuel [Swan Systeme AG, Hinwil (Switzerland)

    2017-10-15

    The conductivity measurement after a cation exchanger in power plants with steam turbines was introduced soon after 1950 by Larson and Lane. Due to the simple measuring principle, the sensitivity to ionic contaminations and to its high reliability, the conductivity measurement after a cation exchanger (CACE) has become the most commonly used online analytical method in power plants with steam generators. Swan has investigated electro deionisation (EDI) as substitution of the conventional cation exchange resin and has developed a new conductivity instrument using this principle. This paper provides a description of the conventional method for cation conductivity measurements as well as of the new AMI CACE using EDI method.

  11. Conventional resin cation exchangers versus EDI for CACE measurement in power plants. Feasibility and practical field results

    International Nuclear Information System (INIS)

    Sigrist, Manuel

    2017-01-01

    The conductivity measurement after a cation exchanger in power plants with steam turbines was introduced soon after 1950 by Larson and Lane. Due to the simple measuring principle, the sensitivity to ionic contaminations and to its high reliability, the conductivity measurement after a cation exchanger (CACE) has become the most commonly used online analytical method in power plants with steam generators. Swan has investigated electro deionisation (EDI) as substitution of the conventional cation exchange resin and has developed a new conductivity instrument using this principle. This paper provides a description of the conventional method for cation conductivity measurements as well as of the new AMI CACE using EDI method.

  12. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl-/SO42- separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl-/SO42- permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  13. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  14. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-01-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl−/SO42− separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl−/SO42− permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later. PMID:27853255

  15. New double-cation borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Lindemann, Inge; Domenech Ferrer, Roger; Schultz, Ludwig; Gutfleisch, Oliver [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, 01171 Dresden (Germany); Filinchuk, Yaroslav [Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Hagemann, Hans; Cerny, Radovan [Department of Physical Chemistry and Crystallography, University of Geneva, 1211 Geneva (Switzerland)

    2011-07-01

    Complex hydrides are under consideration for on-board hydrogen storage due to their high hydrogen density. However, up to now conventional borohydrides are either too stable or unstable for applications as in PEM fuel cells (60-120 C). Recently, double-cation borohydride systems have attracted great interest. The desorption temperature of the borohydrides decreases with increasing electronegativity of the cation. Consequently, it is possible to tailor a feasible on-board hydrogen storage material by the combination of appropriate cations. The stability was found to be intermediate between the single-cation borohydride systems. Two combinations were sucessfully synthesised by metathesis reaction via high energy ball milling. Al-Li-borohydride shows desorption at about 70 C combined with a very high hydrogen density (17.2 wt.%) and the Na-Al-borohydride (14.2 wt.%) decomposes around 90 C. Both desorption temperatures are in the target range for applications. The decomposition pathways were observed by in-situ-Raman spectroscopy, DSC (Differential Scanning Calorimetry), TG (Thermogravimetry) and thermal desorption measurements.

  16. Case study II: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-using alternatives to sodium-based chemicals.

    Science.gov (United States)

    Higgins, Matthew J; Sobeck, David C; Owens, Steven J; Szabo, Lynn M

    2004-01-01

    The objective of this study was to investigate the application of the divalent cation bridging theory (DCBT) as a tool in the chemical selection process at an activated sludge plant to improve settling, dewatering, and effluent quality. According to the DCBT, to achieve improvements, the goal of chemical selection should be to reduce the ratio of monovalent-to-divalent (M/D) cations. A study was conducted to determine the effect of using magnesium hydroxide [Mg(OH)2] as an alternative to sodium hydroxide (NaOH) at a full-scale industrial wastewater treatment plant. Floc properties and treatment plant performance were measured for approximately one year during two periods of NaOH addition and Mg(OH)2 addition. A cost analysis of plant operation during NaOH and Mg(OH)2 use was also performed. During NaOH addition, the M/D ratio was 48, while, during Mg(OH)2 addition, this ratio was reduced to an average of approximately 0.1. During the Mg(OH)2 addition period, the sludge volume index, effluent total suspended solids, and effluent chemical oxygen demand were reduced by approximately 63, 31, and 50%, respectively, compared to the NaOH addition period. The alum and polymer dose used for clarification was reduced by approximately 50 and 60%, respectively, during Mg(OH)2 addition. The dewatering properties of the activated sludge improved dewatering as measured by decreased capillary suction time and specific resistance to filtration (SRF), along with an increase in cake solids from the SRF test. This corresponded to a reduction in the volume of solids thickened by centrifuges at the treatment plant, which reduced the disposal costs of solids. Considering the costs for chemicals and solids disposal, the annual cost of using Mg(OH)2 was approximately 30,000 dollars to 115,000 dollars less than using NaOH, depending on the pricing of NaOH. The results of this study confirm that the DCBT is a useful tool for assessing chemical-addition strategies and their potential effect

  17. Cationic mobility in polystyrene sulfone exchangers - Application to the elution of a cation on an exchange column

    International Nuclear Information System (INIS)

    Menin, Jean-Pierre

    1969-01-01

    The aim of this work is to improve elutions and separations carried out on inorganic exchangers by selective electromigration of the ionic species to be displaced. To do this, it has been found indispensable to make a fundamental study of the mobility of cations in exchangers. As the field for this research we have chosen those organic exchangers whose structure and behaviour with respect to ion-exchange are much better known that in the case of their inorganic equivalents. We have related the idea of the equivalent conductivity to that of the cation mobility in the exchanger, and this has entailed determining the specific conductivity of the exchanger and the cation concentration in the resin. The results obtained have allowed us to draw up a hypothesis concerning the cation migration mechanism in the exchanger. The third part of our work has been the application of the preceding results to an operation on an ion-exchange column, viz. the elution by an acid solution of a single fixed ion, magnesium or strontium. This work has enabled us to show that the electromigration of a cation during its elution can markedly accelerate or retard this elution. (author) [fr

  18. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  19. 2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size

    Science.gov (United States)

    Köhler, Mateus Henrique; Bordin, José Rafael; Barbosa, Marcia C.

    2018-06-01

    Using molecular dynamic simulations, we show that single-layers of molybdenum disulfide (MoS2) and graphene can effectively reject ions and allow high water permeability. Solutions of water and three cations with different valencies (Na+, Zn2+, and Fe3+) were investigated in the presence of the two types of membranes, and the results indicate a high dependence of the ion rejection on the cation charge. The associative characteristic of ferric chloride leads to a high rate of ion rejection by both nanopores, while the monovalent sodium chloride induces lower rejection rates. Particularly, MoS2 shows 100% of Fe3+ rejection for all pore sizes and applied pressures. On the other hand, the water permeation does not vary with the cation valence, having dependence only with the nanopore geometric and chemical characteristics. This study helps us to understand the fluid transport through a nanoporous membrane, essential for the development of new technologies for the removal of pollutants from water.

  20. A second component of the SltA-dependent cation tolerance pathway in Aspergillus nidulans.

    Science.gov (United States)

    Mellado, Laura; Calcagno-Pizarelli, Ana Maria; Lockington, Robin A; Cortese, Marc S; Kelly, Joan M; Arst, Herbert N; Espeso, Eduardo A

    2015-09-01

    The transcriptional response to alkali metal cation stress is mediated by the zinc finger transcription factor SltA in Aspergillus nidulans and probably in other fungi of the pezizomycotina subphylum. A second component of this pathway has been identified and characterized. SltB is a 1272 amino acid protein with at least two putative functional domains, a pseudo-kinase and a serine-endoprotease, involved in signaling to the transcription factor SltA. Absence of SltB activity results in nearly identical phenotypes to those observed for a null sltA mutant. Hypersensitivity to a variety of monovalent and divalent cations, and to medium alkalinization are among the phenotypes exhibited by a null sltB mutant. Calcium homeostasis is an exception and this cation improves growth of sltΔ mutants. Moreover, loss of kinase HalA in conjunction with loss-of-function sltA or sltB mutations leads to pronounced calcium auxotrophy. sltA sltB double null mutants display a cation stress sensitive phenotype indistinguishable from that of single slt mutants showing the close functional relationship between these two proteins. This functional relationship is reinforced by the fact that numerous mutations in both slt loci can be isolated as suppressors of poor colonial growth resulting from certain null vps (vacuolar protein sorting) mutations. In addition to allowing identification of sltB, our sltB missense mutations enabled prediction of functional regions in the SltB protein. Although the relationship between the Slt and Vps pathways remains enigmatic, absence of SltB, like that of SltA, leads to vacuolar hypertrophy. Importantly, the phenotypes of selected sltA and sltB mutations demonstrate that suppression of null vps mutations is not dependent on the inability to tolerate cation stress. Thus a specific role for both SltA and SltB in the VPS pathway seems likely. Finally, it is noteworthy that SltA and SltB have a similar, limited phylogenetic distribution, being restricted to

  1. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  3. Cationic electrodepositable coating composition comprising lignin

    Science.gov (United States)

    Fenn, David; Bowman, Mark P; Zawacky, Steven R; Van Buskirk, Ellor J; Kamarchik, Peter

    2013-07-30

    A cationic electrodepositable coating composition is disclosed. The present invention in directed to a cationic electrodepositable coating composition comprising a lignin-containing cationic salt resin, that comprises (A) the reaction product of: lignin, an amine, and a carbonyl compound; (B) the reaction product of lignin, epichlorohydrin, and an amine; or (C) combinations thereof.

  4. Evaluation of radioiodinated and radiocopper labeled monovalent fragments of monoclonal antibody chCE7 for targeting of neuroblastoma

    International Nuclear Information System (INIS)

    Carrel, Francois; Amstutz, Hanspeter; Novak-Hofer, Ilse; Schubiger, P. August

    1997-01-01

    Monovalent fragments of antineuroblastoma antibody mAb chCE7 were evaluated for their in vitro and in vivo tumor cell binding properties. Single chain fragments were constructed from the variable region genes cloned from hybridoma cells, expressed in E.coli and purified by metal chelate affinity chromatography. Radioiodinated CE7-scFv fragments were found to bind with high affinity (K d ∼10 -9 M) to target cells in vitro but formed aggregates at 37 deg. C, and bound to serum proteins in vitro and in vivo. Circular Dichroism spectra revealed the protein to be in a conformationally altered form and no permanent 'refolding' could be achieved. In contrast, chCE7-Fab fragments were found to bind to target tumor cells with similar affinity than the parent mAb chCE7 (K d ∼10 -10 M), showed no tendency to aggregate and were stable in serum both in vitro and in vivo. Kinetics of association and dissociation of radioiodinated scFv and Fab fragments were found to be rapid. Radioiodination with the Iodogen method led to impaired immunoreactivity which was found to further increase the off- rates of radioiodinated fragments from tumor cells. Radioiodination with the Bolton-Hunter reagent as well as labeling of chCE7-Fab fragments with 67 Cu via the macrocyclic CPTA ligand led to fully immunoreactive Fab fragments. Radioiodinated and radiocopper labeled monovalent CE7 fragments did not internalize into target tumor cells as the parent mAb and its F(ab') 2 fragment. A comparison of the biodistribution in tumor bearing nude mice of the radiocopper labeled monovalent, non internalizing Fab fragments with the internalizing divalent F(ab') 2 fragments showed in both cases high levels of radioactivity in the kidneys. Concerning tumor uptake, radioactivity from both internalizing and non internalizing fragments remained associated with tumor tissue for longer times than in case of the corresponding radioiodinated fragments. When compared with the radioiodinated forms, tumor uptake

  5. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    The employment of metal salts is quite limited in asymmetric catalysis, although it would provide an additional arsenal of safe and inexpensive reagents to create molecular functions with high optical purity. Cation chelation by polyethers increases the salts' solubility in conventional organic...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...... highly enantioselective silylation reactions in polyether-generated chiral environments, and leading to a record-high turnover in asymmetric organocatalysis. This can lead to further applications by the asymmetric use of other inorganic salts in various organic transformations....

  6. Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications

    DEFF Research Database (Denmark)

    Holtappels, P.; Poulsen, F.W.; Mogensen, Mogens Bjerg

    2000-01-01

    Pyrochlores with praseodymium as the A-site cation and zirconium, tin, cerium and manganese cations on the B-site were prepared in air and their electrical conductivities were investigated as a function of oxygen partial pressure and temperature. Pure Pr2Zr2O7+/-delta as well as samples modified...

  7. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Berbers GAM; Labadie J; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW van; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report describes the results with respect to immunogenicity as well as reactogenicity of a monovalent P1.7h,4 OMV vaccine (MonoMen) used as booster vaccination in children previously vaccinated with a hexavalent MenB vaccine. The participants in this study were immunised in 1995-1996 with

  8. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  9. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism.

    Science.gov (United States)

    Liu, Zhi; Leng, Esther C; Gunasekaran, Kannan; Pentony, Martin; Shen, Min; Howard, Monique; Stoops, Janelle; Manchulenko, Kathy; Razinkov, Vladimir; Liu, Hua; Fanslow, William; Hu, Zhonghua; Sun, Nancy; Hasegawa, Haruki; Clark, Rutilio; Foltz, Ian N; Yan, Wei

    2015-03-20

    Producing pure and well behaved bispecific antibodies (bsAbs) on a large scale for preclinical and clinical testing is a challenging task. Here, we describe a new strategy for making monovalent bispecific heterodimeric IgG antibodies in mammalian cells. We applied an electrostatic steering mechanism to engineer antibody light chain-heavy chain (LC-HC) interface residues in such a way that each LC strongly favors its cognate HC when two different HCs and two different LCs are co-expressed in the same cell to assemble a functional bispecific antibody. We produced heterodimeric IgGs from transiently and stably transfected mammalian cells. The engineered heterodimeric IgG molecules maintain the overall IgG structure with correct LC-HC pairings, bind to two different antigens with comparable affinity when compared with their parental antibodies, and retain the functionality of parental antibodies in biological assays. In addition, the bispecific heterodimeric IgG derived from anti-HER2 and anti-EGF receptor (EGFR) antibody was shown to induce a higher level of receptor internalization than the combination of two parental antibodies. Mouse xenograft BxPC-3, Panc-1, and Calu-3 human tumor models showed that the heterodimeric IgGs strongly inhibited tumor growth. The described approach can be used to generate tools from two pre-existent antibodies and explore the potential of bispecific antibodies. The asymmetrically engineered Fc variants for antibody-dependent cellular cytotoxicity enhancement could be embedded in monovalent bispecific heterodimeric IgG to make best-in-class therapeutic antibodies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    Science.gov (United States)

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  11. Epidemiological and Economic Impact of Monovalent and Pentavalent Rotavirus Vaccines in Low and Middle Income Countries: A Cost-effectiveness Modeling Analysis.

    Science.gov (United States)

    Paternina-Caicedo, Angel; De la Hoz-Restrepo, Fernando; Alvis-Guzmán, Nelson

    2015-07-01

    The competing choices of vaccination with either RV1 or RV5, the potential budget impact of vaccines on the EPI with different prices and new evidence make important an updated analysis for health decision makers in each country. The objective of this study is to assess cost-effectiveness of the monovalent and pentavalent rotavirus vaccines and impact on children deaths, inpatient and outpatient visits in 116 low and middle income countries that represent approximately 99% of rotavirus mortality. A decision tree model followed hypothetical cohorts of children from birth up to 5 years of age for each country in 2010. Inputs were gathered from international databases and previous research on incidence and effectiveness of monovalent and pentavalent vaccines. Costs were expressed in 2010 international dollars. Outcomes were reported in terms of cost per disability-adjusted life-year averted, comparing no vaccination with either monovalent or pentavalent mass introduction. Vaccine price was assumed fixed for all world low-income and middle-income countries. Around 292,000 deaths, 3.34 million inpatient cases and 23.09 million outpatient cases would occur with no vaccination. In the base-case scenario, monovalent vaccination would prevent 54.7% of inpatient cases and 45.4% of deaths. Pentavalent vaccination would prevent 51.4% of inpatient cases and 41.1% of deaths. The vaccine was cost-effective in all world countries in the base-case scenario for both vaccines. Cost per disability-adjusted life-year averted in all selected countries was I$372 for monovalent, and I$453 for pentavalent vaccination. Rotavirus vaccine is cost-effective in most analyzed countries. Despite cost-effectiveness analysis is a useful tool for decision making in middle-income countries, for low-income countries health decision makers should also assess the impact of introducing either vaccine on local resources and budget impact analysis of vaccination.

  12. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  13. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  14. Thermodynamics and Cation Diffusion in the Oxygen Ion Conductor Lsgm

    Science.gov (United States)

    Martin, M.; Schulz, O.

    Perovskite type oxides based on LaGaO3 are of large technical interest because of their high oxygen-ion conductivity. Lanthanum gallate doped with Sr on A- and Mg on B-sites, La1-xSrxGa1-yMgyO3-(x+y)/2 (LSGM), reaches higher oxygen-ion conductivities than yttria-doped zirconia (YSZ). Thus LSGM represents a promising alternative for YSZ as electrolyte in solid oxide fuel cells (SOFC). Cells using thin LSGM-layers as electrolyte are expected to operate at intermediate temperatures around 700°C for more than 30000 hours without severe degradation. A potential long term degradation effect of LSGM is kinetic demixing of the electrolyte, caused by different cation diffusion coefficients. In this paper we report on experimental studies concerning the phase diagram of LSGM and the diffusion of cations. Cation self-diffusion of 139La, 84Sr and 25Mg and cation impurity diffusion of 144Nd, 89Y and 56Fe in polycrystalline LSGM samples was investigated by secondary ion mass spectrometry (SIMS) for temperatures between 900°C and 1400°C. It was found that diffusion occurs by means of bulk and grain boundaries. The bulk diffusion coefficients are similar for all cations with activation energies which are strongly dependent on temperature. At high temperatures, the activation energies are about 5 eV, while at low temperatures values of about 2 eV are found. These results are explained by a frozen in defect structure at low temperatures. This means that the observed activation energy at low temperatures represents only the migration energy of the different cations while the observed activation energy at high temperatures is the sum of the defect formation energy and the migration energy. The migration energies for all cations are nearly identical, although 139La, 84Sr and 144Nd are occupying A-sites while 25Mg and 56Fe are occupying B-sites in the perovskite-structure. To explain these experimental findings we propose a defect cluster containing cation vacancies in both the A

  15. Cation-Coupled Bicarbonate Transporters

    OpenAIRE

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 ...

  16. Cation disorder in shocked orthopyroxene.

    Science.gov (United States)

    Dundon, R. W.; Hafner, S. S.

    1971-01-01

    The study of cation distributions over nonequivalent lattice sites in minerals may reveal information on the history of temperature and pressure in rocks. Chemically homogeneous orthopyroxene specimens were shocked under well-controlled conditions in the laboratory in order to provide a basis for the interpretation of more complex natural materials. As a result of the investigation it is concluded that the distribution of magnesium and iron over the M1 and M2 positions in Bamle enstatite shocked at 1 megabar is highly disordered. It corresponds to an equilibrium distribution of at least 1000 C.

  17. Cation coordination in oxychloride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J A [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Holland, D [Physics Department, Warwick University, Coventry (United Kingdom); Bland, J [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom); Johnson, C E [Physics Department, Northern Illinois University, DeKalb, IL (United States); Thomas, M F [Physics Department, University of Liverpool, PO Box 147, Liverpool (United Kingdom)

    2003-02-19

    Glasses containing mixtures of cations and anions of nominal compositions [Sb{sub 2}O{sub 3}]{sub x} - [ZnCl{sub 2}]{sub 1-x} where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb){sub 2}(OZn)] and [Zn(ClZn){sub 2}(OSb){sub 2}].

  18. Cation coordination in oxychloride glasses

    International Nuclear Information System (INIS)

    Johnson, J A; Holland, D; Bland, J; Johnson, C E; Thomas, M F

    2003-01-01

    Glasses containing mixtures of cations and anions of nominal compositions [Sb 2 O 3 ] x - [ZnCl 2 ] 1-x where x = 0.25, 0.50, 0.75, and 1.00, have been studied by means of neutron diffraction and Raman and Moessbauer spectroscopy. There is preferential bonding within the system with the absence of Sb-Cl bonds. Antimony is found to be threefold coordinated to oxygen, and zinc fourfold coordinated. The main contributing species are of the form [Sb(OSb) 2 (OZn)] and [Zn(ClZn) 2 (OSb) 2

  19. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  20. Relative Free Energies for Hydration of Monovalent Ions from QM and QM/MM Simulations.

    Science.gov (United States)

    Lev, Bogdan; Roux, Benoît; Noskov, Sergei Yu

    2013-09-10

    Methods directly evaluating the hydration structure and thermodynamics of physiologically relevant cations (Na(+), K(+), Cl(-), etc.) have wide ranging applications in the fields of inorganic, physical, and biological chemistry. All-atom simulations based on accurate potential energy surfaces appear to offer a viable option for assessing the chemistry of ion solvation. Although MD and free energy simulations of ion solvation with classical force fields have proven their usefulness, a number of challenges still remain. One of them is the difficulty of force field benchmarking and validation against structural and thermodynamic data obtained for a condensed phase. Hybrid quantum mechanical/molecular mechanical (QM/MM) models combined with sampling algorithms have the potential to provide an accurate solvation model and to incorporate the effects from the surrounding, which is often missing in gas-phase ab initio computations. Herein, we report the results from QM/MM free energy simulations of Na(+)/K(+) and Cl(-)/Br(-) hydration where we simultaneously characterized the relative thermodynamics of ion solvation and changes in the solvation structure. The Flexible Inner Region Ensemble Separator (FIRES) method was used to impose a spatial separation between QM region and the outer sphere of solvent molecules treated with the CHARMM27 force field. FEP calculations based on QM/MM simulations utilizing the CHARMM/deMon2k interface were performed with different basis set combinations for K(+)/Na(+) and Cl(-)/Br(-) perturbations to establish the dependence of the computed free energies on the basis set level. The dependence of the computed relative free energies on the size of the QM and MM regions is discussed. The current methodology offers an accurate description of structural and thermodynamic aspects of the hydration of alkali and halide ions in neat solvents and can be used to obtain thermodynamic data on ion solvation in condensed phase along with underlying

  1. ADSORPTION METHOD FOR SEPARATING METAL CATIONS

    Science.gov (United States)

    Khym, J.X.

    1959-03-10

    The chromatographic separation of fission product cations is discussed. By use of this method a mixture of metal cations containing Zr, Cb, Ce, Y, Ba, and Sr may be separated from one another. Mentioned as preferred exchange adsorbents are resins containing free sulfonic acid groups. Various eluants, such as tartaric acid, HCl, and citric acid, used at various acidities, are employed to effect the selective elution and separation of the various fission product cations.

  2. Electronic spectra of astrophysically interesting cations

    Energy Technology Data Exchange (ETDEWEB)

    Maier, John P., E-mail: j.p.maier@unibas.ch; Rice, Corey A., E-mail: j.p.maier@unibas.ch; Mazzotti, Fabio J., E-mail: j.p.maier@unibas.ch; Johnson, Anatoly, E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, CH-4056 Basel (Switzerland)

    2015-01-22

    The electronic spectra of polyacetylene cations were recorded at 20K in the laboratory in an ion trap instrument. These can then be compared with diffuse interstellar band (DIB) absorptions. Examination of recently published data shows that the attribution of a weak DIB at ∼506.9 nm to diacetylene cation is not justified. Study of the higher excited electronic states of polyacetylene cations shows that their widths can still be sufficiently narrow for consideration as DIB carriers.

  3. Safety evaluation of cation-exchange resins

    International Nuclear Information System (INIS)

    Kalkwarf, D.R.

    1977-08-01

    Results are presented of a study to evaluate whether sufficient information is available to establish conservative limits for the safe use of cation-exchange resins in separating radionuclides and, if not, to recommend what new data should be acquired. The study was also an attempt to identify in-line analytical techniques for the evaluation of resin degradation during radionuclide processing. The report is based upon a review of the published literature and upon discussions with many people engaged in the use of these resins. It was concluded that the chief hazard in the use of cation-exchange resins for separating radionuclides is a thermal explosion if nitric acid or other strong oxidants are present in the process solution. Thermal explosions can be avoided by limiting process parameters so that the rates of heat and gas generation in the system do not exceed the rates for their transfer to the surroundings. Such parameters include temperature, oxidant concentration, the amounts of possible catalysts, the radiation dose absorbed by the resin and the diameter of the resin column. Current information is not sufficient to define safe upper limits for these parameters. They can be evaluated, however, from equations derived from the Frank-Kamenetskii theory of thermal explosions provided the heat capacities, thermal conductivities and rates of heat evolution in the relevant resin-oxidant mixtures are known. It is recommended that such measurements be made and the appropriate limits be evaluated. A list of additional safety precautions are also presented to aid in the application of these limits and to provide additional margins of safety. In-line evaluation of resin degradation to assess its safety hazard is considered impractical. Rather, it is recommended that the resin be removed from use before it has received the limiting radiation dose, evaluated as described above

  4. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes

    Directory of Open Access Journals (Sweden)

    Samadikhah HR

    2011-10-01

    magnetic characteristic for conduction of genes or drugs to target organs. Keywords: transfection efficiency, magnetic nanoparticles, luciferase, cationic liposome

  5. Cation-π interactions in structural biology

    OpenAIRE

    Gallivan, Justin P.; Dougherty, Dennis A.

    1999-01-01

    Cation-pi interactions in protein structures are identified and evaluated by using an energy-based criterion for selecting significant sidechain pairs. Cation-pi interactions are found to be common among structures in the Protein Data Bank, and it is clearly demonstrated that, when a cationic sidechain (Lys or Arg) is near an aromatic sidechain (Phe, Tyr, or Trp), the geometry is biased toward one that would experience a favorable cation-pi interaction. The sidechain of Arg is more likely tha...

  6. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  7. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    Science.gov (United States)

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  8. Internal cation mobilities in molten lithium. Potassium fluoride

    International Nuclear Information System (INIS)

    Matsuura, Haruaki; Ohashi, Ryo; Chou, Pao-Hwa; Takagi, Ryuzo

    2006-01-01

    Relative differences between internal cation mobilities in molten (Li, K) F have been measured by countercurrent electromigration (Klemm method) at 1023 K. Internal mobilities of K + are larger than those of Li + in all composition on which we have measured so far. More striking feature is that the isotherms have minimum of mobilities at ca. x K =0.5. The local structural parameters would be highly related to the ionic conduction behavior in molten fluorides. (author)

  9. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  10. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH 3 NH 3 PbI 3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb 2+ -need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb 2+ ions into one monovalent M + and one trivalent M 3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  11. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  12. Cationic polymers and their therapeutic potential

    NARCIS (Netherlands)

    Samal, S.K.; Dash, M.; van Vlierberghe, S.; Kaplan, D.; Chiellini, E.; van Blitterswijk, Clemens; Moroni, Lorenzo; Dubruel, P.

    2012-01-01

    The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent

  13. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  14. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2018-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope of the...

  15. In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand

    Directory of Open Access Journals (Sweden)

    Muhamad Rusdi Ahmad Rusmili

    2014-03-01

    Full Text Available Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  16. Structural and energetic study of cation-π-cation interactions in proteins.

    Science.gov (United States)

    Pinheiro, Silvana; Soteras, Ignacio; Gelpí, Josep Lluis; Dehez, François; Chipot, Christophe; Luque, F Javier; Curutchet, Carles

    2017-04-12

    Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.

  17. Cross-reactivity and neutralization of Indian King cobra (Ophiophagus hannah) venom by polyvalent and monovalent antivenoms.

    Science.gov (United States)

    Gowtham, Yashonandana J; Mahadeswaraswamy, Y H; Girish, K S; K, Kemparaju

    2014-07-01

    The venom of the largest venomous snake, the king cobra (Ophiophagus hannah), is still out of league for the production of therapeutic polyvalent antivenom nor it is characterized immunologically in the Indian subcontinent. In the present study, the king cobra venom is comparatively studied for the cross-reactivity/reactivity and toxicity neutralization by the locally available equine therapeutic polyvalent BSV and VB antivenoms, and monovalent antivenom (OH-IgG) prepared in rabbit. None of the two therapeutic antivenoms procured from two different firms showed any signs of cross-reactivity in terms of antigen-antibody precipitin lines in immunodouble diffusion assay; however, a weak and an insignificant cross-reactivity pattern was observed in ELISA and Western blot studies. Further, both BSV and VB antivenoms failed to neutralize proteolytic, hyaluronidase and phospholipase activities as well as toxic properties such as edema, myotoxicity and lethality of the venom. As expected, OH-IgG showed strong reactivity in immunodouble diffusion, ELISA and in Western blot analysis and also neutralized both enzyme activities as well as the toxic properties of the venom. Thus, the study provides insight into the likely measures that are to be taken in cases of accidental king cobra bites for which the Indian subcontinent is still not prepared for. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification.

    Science.gov (United States)

    Liu, Hui F; McCooey, Beth; Duarte, Tiago; Myers, Deanna E; Hudson, Terry; Amanullah, Ashraf; van Reis, Robert; Kelley, Brian D

    2011-09-28

    Cation exchange chromatography using conventional resins, having either diffusive or perfusive flow paths, operated in bind-elute mode has been commonly employed in monoclonal antibody (MAb) purification processes. In this study, the performance of diffusive and perfusive cation exchange resins (SP-Sepharose FF (SPSFF) and Poros 50HS) and a convective cation exchange membrane (Mustang S) and monolith (SO(3) Monolith) were compared. All matrices were utilized in an isocratic state under typical binding conditions with an antibody load of up to 1000 g/L of chromatographic matrix. The dynamic binding capacity of the cation exchange resins is typically below 100 g/L resin, so they were loaded beyond the point of anticipated MAb break through. All of the matrices performed similarly in that they effectively retained host cell protein and DNA during the loading and wash steps, while antibody flowed through each matrix after its dynamic binding capacity was reached. The matrices differed, though, in that conventional diffusive and perfusive chromatographic resins (SPSFF and Poros 50HS) demonstrated a higher binding capacity for high molecular weight species (HMW) than convective flow matrices (membrane and monolith); Poros 50HS displayed the highest HMW binding capacity. Further exploration of the conventional chromatographic resins in an isocratic overloaded mode demonstrated that the impurity binding capacity was well maintained on Poros 50HS, but not on SPSFF, when the operating flow rate was as high as 36 column volumes per hour. Host cell protein and HMW removal by Poros 50HS was affected by altering the loading conductivity. A higher percentage of host cell protein removal was achieved at a low conductivity of 3 mS/cm. HMW binding capacity was optimized at 5 mS/cm. Our data from runs on Poros 50HS resin also showed that leached protein A and cell culture additive such as gentamicin were able to be removed under the isocratic overloaded condition. Lastly, a MAb

  19. Cation transport in isomeric pentanes

    International Nuclear Information System (INIS)

    Gyoergy, Istvan; Gee, Norman; Freeman, G.R.

    1985-01-01

    The cation mobility μsub(+) is measured in n-pentane, isopentane, neo-pentane, and mixtures of n- and neo-pentane over conditions from the normal liquid, through the critical fluid, to the low density gas. Most of the liquid data correlate with the reduced temperature T/Tsub(c). The T/Tsub(c) reflects free volume and viscosity changes. Comparison is made to neutral molecule diffusion. The transition from viscosity control of mobility in the liquid to density control in the dilute gas occurs over the reduced viscosity region 3 > eta/etasub(c) > 0.6, which corresponds to the reduced density region 1.9 > eta/etasub(c) > 0.5. In the saturated gas etaμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average gas nμsub(+) is similar in all pentanes, but iso- approximately> n- > neo-pentane. At constant density dμsub(+)/dT >= 0 for gases. The average momentum transfer cross sections in the n-/neo-pentane mixtures are similar to those in neo-pentane at low T but similar to those in n-pentane at high T. The present findings are combined with previous electron mobility data in addressing the effect of hydrocarbon molecular (external) shape on the electric breakdown strength of gases

  20. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  1. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...... temperature, but ethanesulfonate imidazolium and pyridinium oligomeric ionic liquids form a low melting crystalline phase. The proton conductivities of the oligomeric ionic liquids are determined by the type of cation in the temperature range 80-120 degrees C under anhydrous conditions and vary within five...

  2. Stressor states and the cation crossroads.

    Science.gov (United States)

    Weber, Karl T; Bhattacharya, Syamal K; Newman, Kevin P; Soberman, Judith E; Ramanathan, Kodangudi B; McGee, Jesse E; Malik, Kafait U; Hickerson, William L

    2010-12-01

    Neurohormonal activation involving the hypothalamic-pituitary-adrenal axis and adrenergic nervous and renin-angiotensin-aldosterone systems is integral to stressor state-mediated homeostatic responses. The levels of effector hormones, depending upon the degree of stress, orchestrate the concordant appearance of hypokalemia, ionized hypocalcemia and hypomagnesemia, hypozincemia, and hyposelenemia. Seemingly contradictory to homeostatic responses wherein the constancy of extracellular fluid would be preserved, upregulation of cognate-binding proteins promotes coordinated translocation of cations to injured tissues, where they participate in wound healing. Associated catecholamine-mediated intracellular cation shifts regulate the equilibrium between pro-oxidants and antioxidant defenses, a critical determinant of cell survival. These acute and chronic stressor-induced iterations in extracellular and intracellular cations are collectively referred to as the cation crossroads. Intracellular cation shifts, particularly excessive accumulation of Ca2+, converge on mitochondria to induce oxidative stress and raise the opening potential of their inner membrane permeability transition pores (mPTPs). The ensuing loss of cationic homeostasis and adenosine triphosphate (ATP) production, together with osmotic swelling, leads to organellar degeneration and cellular necrosis. The overall impact of iterations in extracellular and intracellular cations and their influence on cardiac redox state, cardiomyocyte survival, and myocardial structure and function are addressed herein.

  3. Radical Cations and Acid Protection during Radiolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zarzana, Christopher A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stephen P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-09

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  4. Radical Cations and Acid Protection during Radiolysis

    International Nuclear Information System (INIS)

    Mincher, Bruce J.; Zarzana, Christopher A.; Mezyk, Stephen P.

    2016-01-01

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade in pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO 3 . It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.

  5. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  6. Radioimmunoassay of human eosinophil cationic protein

    International Nuclear Information System (INIS)

    Venge, P.; Roxin, L.E.; Olsson, I.

    1977-01-01

    A radioimmunosorbent assay has been developed which allows the detection in serum of a cationic protein derived from eosinophil granulocytes. In 34 healthy individuals the mean level was 31 μg/l. with a range of 5 to 55 μg/l. The serum concentration of 'eosinophil' cationic protein was correlated (P<0.001) to the number of eosinophil granulocytes in peripheral blood. Quantitiation of 'eosinophil' cationic protein in serum might be useful in the study of eosinophil granulocyte turnover and function in vivo. (author)

  7. Active surveillance for intussusception in a phase III efficacy trial of an oral monovalent rotavirus vaccine in India.

    Science.gov (United States)

    John, Jacob; Kawade, Anand; Rongsen-Chandola, Temsunaro; Bavdekar, Ashish; Bhandari, Nita; Taneja, Sunita; Antony, Kalpana; Bhatnagar, Veereshwar; Gupta, Arun; Kabra, Madhulika; Kang, Gagandeep

    2014-08-11

    Post licensure studies have identified an increased risk of intussusception following vaccination with currently licensed rotavirus vaccines, raising safety concerns generic to all rotavirus vaccines. We describe the surveillance for intussusception in a phase III clinical trial with an oral monovalent rotavirus vaccine developed from the neonatal 116E strain. Using broad screening criteria and active surveillance, the incidence of intussusception between 6 weeks and 2 years of age was measured in 4532 children who received three doses of vaccine and 2267 children who received a placebo in the clinical trial. Possible intussusceptions were evaluated with a screening ultrasonogram. An independent intussusception case adjudication committee reviewed all intussusceptions and graded them on Brighton Collaboration criteria for diagnostic certainty. We identified twenty-three intussusceptions on ultrasound from 1361 evaluated sentinel events. Eleven were of level 1 diagnostic certainty as determined by the independent intussusception case adjudication committee. None required surgical intervention, and the earliest identified intussusception was at 36 days following the third dose in a placebo recipient. Among vaccine recipients the first event of intussusception occurred 112 days after the third dose. The incidence of ultrasound-diagnosed intussusception was 200/100,000 child-years (95% CI, 120, 320) among those receiving the vaccine and 141/100,000 child-years (95% CI, 50, 310) among those receiving the placebo. The incidence rate of confirmed intussusception among vaccine recipients was 94/100,000 child-years (95% CI, 41, 185) and 71/100,000 child-years (95% CI, 15, 206) among those receiving the placebo. In this licensure study, 23 cases of intussusception were identified through an active surveillance system, but there was no temporal association with rotavirus vaccination. The use of active surveillance with broad criteria intended for ensuring safety of children

  8. Conducting Polymers

    Indian Academy of Sciences (India)

    would exhibit electronic conductivity, their conductivities (of compressed pellets) were indeed measured by others, and were found to be .... Polyaniline. Polyphenylene. Polypheny lene- vinylene. Table 1. G!NeRAl I ARTICl! structure. Maximum conductivity Stem Stability. Processability. ~. 1.5 x 105. Reacts with Film not n air.

  9. Cationization of heparin for film applications

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Mendichi, R.; Kelnar, Ivan; Filip, J.; Hricovíni, M.

    2015-01-01

    Roč. 115, 22 January (2015), s. 551-558 ISSN 0144-8617 Institutional support: RVO:61389013 Keywords : heparin * cationization * NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.219, year: 2015

  10. Test procedure for cation exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    The purpose of this test plan is to demonstrate the synthesis of inorganic antimonate ion exchangers and compare their performance against the standard organic cation exchangers. Of particular interest is the degradation rate of both inorganic and organic cation exchangers. This degradation rate will be tracked by determining the ion exchange capacity and thermal stability as a function of time, radiation dose, and chemical reaction

  11. Cycloaliphatic epoxide resins for cationic UV - cure

    International Nuclear Information System (INIS)

    Verschueren, K.; Balwant Kaur

    1999-01-01

    This paper introduces the cyclo - aliphatic epoxide resins used for the various applications of radiation curing and their comparison with acrylate chemistry. Radiation curable coatings and inks are pre - dominantly based on acrylate chemistry but over the last few years, cationic chemistry has emerged successfully with the unique properties inherent with cyclo - aliphatic epoxide ring structures. Wide variety of cationic resins and diluents, the formulation techniques to achieve the desired properties greatly contributes to the advancement of UV - curing technology

  12. Chemical reactivity of cation-exchanged zeolites

    OpenAIRE

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed by Brønsted acid sites in the hydrogen forms of zeolites, the nature of chemical reactivity, and related, the structure of the metal-containing ions in cation-exchanged zeolites remains the subject...

  13. Ammonia vapor sensing properties of polyaniline-titanium(IV)phosphate cation exchange nanocomposite.

    Science.gov (United States)

    Khan, Asif Ali; Baig, Umair; Khalid, Mohd

    2011-02-28

    In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Formation of radical cations of diaryloxadiazoles

    International Nuclear Information System (INIS)

    Helmstreit, W.

    1988-01-01

    The nature of the formation of the radical cation of the 2,5-bis-(p-diethylaminophenyl)-1,3,4-oxadiazole (PC) in liquid n-butyl chloride and acetonitrile has been investigated by observing excited state fluorescence and transient absorption using nanosecond pulse radiolysis and laser flash photolysis. The formation of solute oxonium ions has also been observed. At concentrations -4 mol dm -3 the growth time at which the transient absorption of the radical cation reaches the maximum follows the rise time of the electron pulse ( 2 laser yields the solute radical cation in an acetonitrile solution of 2 x 10 -4 mol dm -3 PC via an electronically excited state. Here, the generation time was smaller than 5 ns. The yield of the cation is increased by addition of CCl 4 . A reaction mechanism is proposed that explains the fast cation formation in terms of an exciplex formed by interaction between an electronically excited state of diaryloxadiazole and the ground state of the solvent. This exciplex yields the solute radical cation. (author)

  15. Review on cation exchange selectivity coefficients for MX-80 bentonite

    International Nuclear Information System (INIS)

    Domenech, C.; Arcos, D.; Duro, L.; Sellin, P.

    2005-01-01

    Full text of publication follows: Bentonite is considered as engineered barrier in the near field of a nuclear waste repository due to its low permeability, what impedes groundwater flow to the nuclear waste, and its high retention capacity (sorption) of radionuclides in the eventuality of groundwater intrusion. One of the main retention processes occurring at the bentonite surface is ion exchange. This process may exert a strong control on the mobility of major pore water cations. Changes in major cation concentration, especially calcium, can affect the dissolution-precipitation of calcite, which in turn controls one of the key parameters in the system: pH. The cation exchange process is usually described according to the Gaines-Thomas convention: Ca 2+ + 2 NaX = CaX 2 + 2 Na + , K Ca = (N Ca x a 2 Na + )/(N 2 Na x a Ca 2+ ) where K Ca is the selectivity coefficient for the Ca by Na exchange, ai is the activity of cation 'i' in solution and NJ the equivalent fractional occupancy of cation 'J' in bentonite. Parameters such as solid to liquid (S:L) ratio and dry density of the solid have an important influence on the value of selectivity coefficients (K ex ). Although in most geochemical modelling works, K ex values are directly taken from experiments conducted at low S:L ratios and low dry densities, the expected conditions in a deep geological nuclear waste repository are higher S:L and higher bentonite density (1.6 g.cm -3 in the SKB design to obtain a fully water saturated density of around 2.0 g.cm -3 ). Experiments focused at obtaining selectivity coefficients under the conditions of interest face the difficulty of achieving a proper extraction and analyses of pore water without disturbing the system by the sampling method itself. In this work we have conducted a complete analyses of published data on MX-80 bentonite cationic exchange in order to assess the effect of the S:L ratio and dry density on the value of the selectivity coefficients determined so far

  16. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    Tweedle, M.F.

    1985-01-01

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99m Tc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  17. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  18. The risk of intussusception following monovalent rotavirus vaccination in England: A self-controlled case-series evaluation.

    Science.gov (United States)

    Stowe, Julia; Andrews, Nick; Ladhani, Shamez; Miller, Elizabeth

    2016-07-12

    To investigate the risk of intussusception after monovalent rotavirus vaccine (RV1) given to infants aged 2 and 3 months in England. Hospital Episode Statistics (HES) were used to identify infants aged 48-183 days admitted between 11/03/2013 and 31/10/2014 with intussusception. Diagnosis was confirmed from medical records and HES procedure codes. Vaccination status was obtained from general practitioners. The risk of admission within 1-7 and 8-21 days of vaccination was analysed using the self-controlled case-series (SCCS) method with age effect adjustment by including historical data before RVI introduction in July 2013. A total of 119 cases were identified during the study period and intussusception confirmed in 95 of whom 39 were vaccinated 1-21 days before onset. An increased relative incidence (RI) in this period was found, 4.53 (95% confidence interval 2.34-8.58) and 2.60 (1.43-4.81) respectively after the 1st and 2nd doses with an attributable risk of 1.91 and 1.49 per 100,000 doses respectively. The peak risk was 1-7 days after the first dose, RI 13.81 (6.44-28.32), with an estimated 93% of the 15 cases being vaccine-attributable. Mean interval between onset and admission, and clinical features were similar between vaccine-associated and background cases. Despite intussusception being a contraindication to rotavirus vaccination, 10 infants received a further dose; none had a recurrence. The RIs in a meta-analysis combing our results with Australia, Mexico, Brazil and Singapore using RV1, a 2, 4 month schedule and SCCS gave pooled RI estimates of 2.35 (1.45-3.8) and 1.77 (1.29-2.43) in the 21 day period after the 1st and 2nd doses, respectively. The earlier age at the 2nd dose in England did not affect the risk. We estimate that the RVI programme causes around 21 intussusception admissions annually in England but, since it prevents around 25,000 gastro-intestinal infection admissions, its benefit/risk profile remains strongly positive. Crown Copyright

  19. Assessment of epicutaneous testing of a monovalent Influenza A (H1N1 2009 vaccine in egg allergic patients

    Directory of Open Access Journals (Sweden)

    Pitt Tracy

    2011-02-01

    Full Text Available Abstract Background H1N1 is responsible for the first influenza pandemic in 41 years. In the fall of 2009, an H1N1 vaccine became available in Canada with the hopes of reducing the overall effect of the pandemic. The purpose of this study was to assess the safety of administering 2 different doses of a monovalent split virus 2009 H1N1 vaccine in egg allergic patients. Methods Patients were skin tested to the H1N1 vaccine in the outpatient paediatric and adult allergy and immunology clinics of the Health Sciences Centre and Children's Hospital of Winnipeg, Manitoba Canada. Individuals Results A total of 61 patients with egg allergy (history of an allergic reaction to egg with either positive skin test &/or specific IgE to egg >0.35 Ku/L were referred to our allergy clinics for skin testing to the H1N1 vaccine. 2 patients were excluded, one did not have a skin prick test to the H1N1 vaccine (only vaccine administration and the other passed an egg challenge during the study period. Ages ranged from 1 to 27 years (mean 5.6 years. There were 41(69.5% males and 18(30.5% females. All but one patient with a history of egg allergy, positive skin test to egg and/or elevated specific IgE level to egg had negative skin tests to the H1N1 vaccine. The 58 patients with negative skin testing to the H1N1 vaccine were administered the vaccine and observed for 30 minutes post vaccination with no adverse results. The patient with the positive skin test to the H1N1 vaccine was also administered the vaccine intramuscularly with no adverse results. Conclusions Despite concern regarding possible anaphylaxis to the H1N1 vaccine in egg allergic patients, in our case series 1/59(1.7% patients with sensitization to egg were also sensitized to the H1N1 vaccine. Administration of the H1N1 vaccine in egg allergic patients with negative H1N1 skin tests and observation is safe. Administering the vaccine in a 1 or 2 dose protocol without skin testing is a reasonable alternative

  20. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    Directory of Open Access Journals (Sweden)

    Thomas E Delea

    Full Text Available Public health programs to prevent invasive meningococcal disease (IMD with monovalent serogroup C meningococcal conjugate vaccine (MCV-C and quadrivalent meningococcal conjugate vaccines (MCV-4 in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology.A cohort model was developed to estimate the clinical burden and costs (CAN$2014 of IMD in the Canadian population over a 100-year time horizon for three strategies: (1 MCV-C in infants and adolescents (MCV-C/C; (2 MCV-C in infants and MCV-4 in adolescents (MCV-C/4; and (3 MCV-4 in infants (2 doses and adolescents (MCV-4/4. The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends.Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16% and IMD deaths by 161 (13%. Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million.If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  1. Cost-effectiveness of alternate strategies for childhood immunization against meningococcal disease with monovalent and quadrivalent conjugate vaccines in Canada.

    Science.gov (United States)

    Delea, Thomas E; Weycker, Derek; Atwood, Mark; Neame, Dion; Alvarez, Fabián P; Forget, Evelyn; Langley, Joanne M; Chit, Ayman

    2017-01-01

    Public health programs to prevent invasive meningococcal disease (IMD) with monovalent serogroup C meningococcal conjugate vaccine (MCV-C) and quadrivalent meningococcal conjugate vaccines (MCV-4) in infancy and adolescence vary across Canadian provinces. This study evaluated the cost-effectiveness of various vaccination strategies against IMD using current and anticipated future pricing and recent epidemiology. A cohort model was developed to estimate the clinical burden and costs (CAN$2014) of IMD in the Canadian population over a 100-year time horizon for three strategies: (1) MCV-C in infants and adolescents (MCV-C/C); (2) MCV-C in infants and MCV-4 in adolescents (MCV-C/4); and (3) MCV-4 in infants (2 doses) and adolescents (MCV-4/4). The source for IMD incidence was Canadian surveillance data. The effectiveness of MCV-C was based on published literature. The effectiveness of MCV-4 against all vaccination regimens was assumed to be the same as for MCV-C regimens against serogroup C. Herd effects were estimated by calibration to estimates reported in prior analyses. Costs were from published sources. Vaccines prices were projected to decline over time reflecting historical procurement trends. Over the modeling horizon there are a projected 11,438 IMD cases and 1,195 IMD deaths with MCV-C/C; expected total costs are $597.5 million. MCV-C/4 is projected to reduce cases of IMD by 1,826 (16%) and IMD deaths by 161 (13%). Vaccination costs are increased by $32 million but direct and indirect IMD costs are projected to be reduced by $46 million. MCV-C/4 is therefore dominant vs. MCV-C/C in the base case. Cost-effectiveness of MCV-4/4 was $111,286 per QALY gained versus MCV-C/4 (2575/206 IMD cases/deaths prevented; incremental costs $68 million). If historical trends in Canadian vaccines prices continue, use of MCV-4 instead of MCV-C in adolescents may be cost-effective. From an economic perspective, switching to MCV-4 as the adolescent booster should be considered.

  2. Gas phase chemistry of N-benzylbenzamides with silver(I) cations: characterization of benzylsilver cation.

    Science.gov (United States)

    Sun, Hezhi; Jin, Zhe; Quan, Hong; Sun, Cuirong; Pan, Yuanjiang

    2015-03-07

    The benzylsilver cation which emerges from the collisional dissociation of silver(I)-N-benzylbenzamide complexes was characterized by deuterium-labeling experiments, theoretical calculations, breakdown curves and substituent effects. The nucleophilic attack of the carbonyl oxygen on an α-hydrogen results in the generation of the benzylsilver cation, which is competitive to the AgH loss with the α-hydrogen.

  3. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  4. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  5. Conduct Disorder

    Science.gov (United States)

    ... objections runs away from home often truant from school Children who exhibit these behaviors should receive a comprehensive evaluation by an experience mental health professional. Many children with a conduct disorder may ...

  6. Resistivity Effects of Cation Ordering in Highly-Doped La2-xSrxCu4 Epitaxial Thin Films

    Science.gov (United States)

    Burquest, Franklin; Marmol, Rodrigo; Cox, Nicholas; Nelson-Cheeseman, Brittany

    Highly-doped La2-xSrxCuO4 (LSCO) films (0.5 causes internal polar electrostatic forces, which have been shown to cause stretching of the apical oxygen bond in analogous epitaxial nickelate films. Thin film samples are grown concurrently to minimize extraneous effects on film structure and properties. Atomic force microscopy and x-ray reflectivity demonstrate that the films are single crystalline, epitaxial, and smooth. X-ray diffraction is used to measure the c-axis of the films as a function of doping and dopant cation ordering. Electrical transport data of the ordered samples is compared with transport data of conventional disordered cation samples. Preliminary data indicates significant differences in resistivity at both 300K and 10K between the cation-ordered and cation-disordered samples. This work indicates that dopant cation ordering within the layered cuprates could significantly modify the conduction mechanisms at play in these materials.

  7. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL; Klingler, Robert J [Westmont, IL

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  8. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    Science.gov (United States)

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  9. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  10. Seroprevalence of influenza A H1N1 and seroconversion of mothers and infants induced by a single dose of monovalent vaccine.

    Science.gov (United States)

    Chao, Anne; Huang, Yhu-Chering; Chang, Yao-Lung; Wang, Tzu-Hao; Chang, Shuenn-Dyh; Wu, Ting-Shu; Wu, Tsu-Lan; Chao, An-Shine

    2013-09-01

    To determine the prevalence of preexisting antibodies against the pandemic 2009 Influenza A (H1N1) virus in pregnant women and to evaluate the seroprotection of the mothers and infants by a single injection of monovalent vaccine during the pandemic. Seropositivity rate of H1N1 among the nonvaccinated were compared with the vaccinated women. A single dose of vaccine, either nonadjuvanted AdimFlu-S or MF59-adjuvanted vaccine, was injected to the voluntarily vaccinated group. Maternal and cord blood sera were collected to evaluate the antibody response of the H1N1 virus. Seropositivity was defined as a hemagglutination inhibition titer to H1N1 (A/Taiwan/126/09) ≥ 1:40. A total of 210 healthy, singleton, pregnant women were enrolled between January 2010 and May 2010. Seropositivity (≥ 1:40) of maternal hemagglutination inhibition was significantly higher in the vaccinated group (78%) than the nonvaccinated group (9.5%); 41.6% (20/48) of seropositive titers were >1:80. In nine vaccinated cases resulting in negative serum titers (75% could be achieved in the paired maternal and cord serum samples by a single injection of monovalent H1N1 vaccine. Copyright © 2013. Published by Elsevier B.V.

  11. Electron magnetic resonance study of monovalent Na doping in Pr0.6Sr0.4−xNaxMnO3 manganites

    International Nuclear Information System (INIS)

    Thaljaoui, Rachid; Boujelben, Wahiba; Pękała, Marek; Szydłowska, Jadwiga; Cheikhrouhou, Abdelwaheb

    2012-01-01

    Highlights: ► New monovalent doped manganites Pr 0.6 Sr 0.4−x Na x MnO 3 (x = 0, 0.05). ► Comparison of electron magnetic resonance spectra in ferro- and paramagnetic phases. ► Double exchange interactions weakened by Na doping as indicated by activation energy. ► Magnetic susceptibility derived from resonance intensity obeys Curie–Weiss law. - Abstract: Effect of monovalent Na doping on the magnetic properties is studied in Pr 0.6 Sr 0.4−x Na x MnO 3 system (x = 0, 0.05) using X-band electron magnetic resonance and magnetization measurements. Temperature variation of magnetic resonance spectra of doped and undoped manganites is analyzed for paramagnetic and ferromagnetic states and compared to similar systems. In paramagnetic phase the magnetic susceptibility proportional to resonance signal intensity is found to obey the Curie–Weiss law. The effective magnetic moment becomes smaller in doped manganite. The paramagnetic Curie temperature derived from signal intensity equals to 312 and 306 K for the undoped and doped manganites, respectively, and is close to values obtained from magnetization variation in paramagnetic phase. The activation energy determined using the adiabatic small polaron hopping model is higher for the undoped than the doped manganite, which proves that the Na doping slightly reduces the Mn 3+ /Mn 4+ double exchange interactions.

  12. Examination of the effect of the annealing cation on higher order structures containing guanine or isoguanine repeats

    Science.gov (United States)

    Pierce, Sarah E.; Wang, Junmei; Jayawickramarajah, Janarthanan; Hamilton, Andrew D.; Brodbelt, Jennifer S.

    2010-01-01

    Isoguanine (2-oxo-6-amino-guanine), a natural but non-standard base, exhibits unique self-association properties compared to its isomer, guanine, and results in formation of different higher order DNA structures. In this work, the higher order structures formed by oligonucleotides containing guanine repeats or isoguanine repeats after annealing in solutions containing various cations are evaluated by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. The guanine-containing strand (G9) consistently formed quadruplexes upon annealing, whereas the isoguanine strand (Ig9) formed both pentaplexes and quadruplexes depending on the annealing cation. Quadruplex formation with G9 showed some dependence on the identity of the cation present during annealing with high relative quadruplex formation detected with six of ten cations. Analogous annealing experiments with Ig9 resulted in complex formation with all ten cations, and the majority of the resulting complexes were pentaplexes. CD results indicated most of the original complexes survived the desalting process necessary for ESI-MS analysis. In addition, several complexes, especially the pentaplexes, were found to be capable of cation exchange with ammonium ions. Ab initio calculations were conducted for isoguanine tetrads and pentads coordinated with all ten cations to predict the most energetically stable structures of the complexes in the gas phase. The observed preference of forming quadruplexes versus pentaplexes as a function of the coordinated cation can be interpreted by the calculated reaction energies of both the tetrads and pentads in combination with the distortion energies of tetrads. PMID:19746468

  13. Structural, magnetic and magneto-transport properties of monovalent doped manganite Pr{sub 0.55}K{sub 0.05}Sr{sub 0.4}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thaljaoui, R., E-mail: thaljaoui@gmail.com [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland); Pękała, K.; Antonowicz, J. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Fagnard, J.-F.; Vanderbemden, Ph. [SUPRATECS, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Dąbrowska, S. [Warsaw University of Technology, Faculty of Materials Science, ul. Wołoska 141, 02-507 Warsaw (Poland); Mucha, J. [Institute of Low Temperature Physics and Structural Research, 50-422 Wrocław (Poland)

    2014-10-25

    Highlights: • Investigation of a new monovalent doped manganite Pr{sub 0.55}K{sub 0.05}Sr{sub 0.4}MnO{sub 3}. • The stability of the sample has been carried by using the DTA analysis. • Magnetic entropy change around 2.26 J kg{sup −1} K{sup −1} resulting RCP value of 70 J/kg for an applied magnetic field of 2 T. • Second order phase transition is confirmed by Arrott plots: A and B Landau coefficients. • Thermal conductivity values are found to be higher for sample with the largest crystallite sizes. - Abstract: Pr{sub 0.55}K{sub 0.05}Sr{sub 0.4}MnO{sub 3} sample have been synthesized using the conventional solid state reaction. Rietveld refinements of the X-ray diffraction patterns at room temperature confirm that the sample is single phase and crystallizes in the orthorhombic structure with Pnma space group; the crystallite size is around 70 nm. The SEM images show that grain size spreads around 1000–1200 nm. DTA analysis does not reveal any clear transition in temperature range studied. The low-temperature DSC indicates that Curie temperature is around 297 K. Magnetization measurements in a magnetic applied field of 0.01 T exhibit a paramagnetic–ferromagnetic transition at the Curie temperature T{sub C} = 303 K. A magnetic entropy change under an applied magnetic field of 2 T is found to be 2.26 J kg{sup −1} K{sup −1}, resulting in a large relative cooling power around 70 J/kg. Electrical resistivity measurements reveal a transition from semiconductor to metallic phase. The thermal conductivity is found to be higher than that reported for undoped and Na doped manganites reported by Thaljaoui et al. (2013)

  14. Molecular design of high performance fused heteroacene radical cations: A DFT study

    International Nuclear Information System (INIS)

    Kawabata, Hiroshi; Ohmori, Shigekazu; Matsushige, Kazumi; Tachikawa, Hiroto

    2008-01-01

    Hybrid density functional theory (DFT) calculations have been carried out for neutral and radical cation of fused furan oligomer, denoted by F(n) where n means number of furan rings in the oligomer, to elucidate the electronic structures at ground and low-lying excited states. A polymer of fused furan was also investigated using one-dimensional periodic boundary condition (PBC) for comparison. It was found that the reorganization energy of radical cation of F(n) from vertical hole trapping point to its relaxed structure is significantly small. Also, the reorganization energy decreased gradually with increasing n, indicating that F(n) has an effective hole transport property. It was found that the cation radical of F(n) has a low energy band at near IR region, which is strongly correlated to hole conductivity. The relation between the electronic states and hole conductivity was discussed on the basis of theoretical calculations

  15. Conductance of single-atom platinum contacts: Voltage dependence of the conductance histogram

    DEFF Research Database (Denmark)

    Nielsen, S.K.; Noat, Y.; Brandbyge, Mads

    2003-01-01

    The conductance of a single-atom contact is sensitive to the coupling of this contact atom to the atoms in the leads. Notably for the transition metals this gives rise to a considerable spread in the observed conductance values. The mean conductance value and spread can be obtained from the first...... peak in conductance histograms recorded from a large set of contact-breaking cycles. In contrast to the monovalent metals, this mean value for Pt depends strongly on the applied voltage bias and other experimental conditions and values ranging from about 1 G(0) to 2.5 G(0) (G(0)=2e(2)/h) have been...... reported. We find that at low bias the first peak in the conductance histogram is centered around 1.5 G(0). However, as the bias increases past 300 mV the peak shifts to 1.8 G(0). Here we show that this bias dependence is due to a geometric effect where monatomic chains are replaced by single-atom contacts...

  16. Conduct disorders

    NARCIS (Netherlands)

    Buitelaar, J.K.; Smeets, K.C.; Herpers, P.; Scheepers, F.; Glennon, J.; Rommelse, N.N.J.

    2013-01-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic

  17. Environmentally-relevant concentrations of Al(III) and Fe(III) cations induce aggregation of free DNA by complexation with phosphate group.

    Science.gov (United States)

    Qin, Chao; Kang, Fuxing; Zhang, Wei; Shou, Weijun; Hu, Xiaojie; Gao, Yanzheng

    2017-10-15

    Environmental persistence of free DNA is influenced by its complexation with other chemical species and its aggregation mechanisms. However, it is not well-known how naturally-abundant metal ions, e.g., Al(III) and Fe(III), influence DNA aggregation. This study investigated aggregation behaviors of model DNA from salmon testes as influenced by metal cations, and elucidated the predominant mechanism responsible for DNA aggregation. Compared to monovalent (K + and Na + ) and divalent (Ca 2+ and Mg 2+ ) cations, Al(III) and Fe(III) species in aqueous solution caused rapid DNA aggregations. The maximal DNA aggregation occurred at 0.05 mmol/L Al(III) or 0.075 mmol/L Fe(III), respectively. A combination of atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed that Al(III) and Fe(III) complexed with negatively charged phosphate groups to neutralize DNA charges, resulting in decreased electrostatic repulsion and subsequent DNA aggregation. Zeta potential measurements and molecular computation further support this mechanism. Furthermore, DNA aggregation was enhanced at higher temperature and near neutral pH. Therefore, DNA aggregation is collectively determined by many environmental factors such as ion species, temperature, and solution pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Adsorption of cationic amylopectin on microcrystalline cellulose.

    NARCIS (Netherlands)

    Steeg, van de H.G.M.; Keizer, de A.; Cohen Stuart, M.A.; Bijsterbosch, B.H.

    1993-01-01

    The effects of electrolyte concentration and pH on the adsorption of cationic amylopectin on microcrystalline cellulose were investigated. The adsorbed amount in the pseudo-plateau of the isotherm showed a maximum as a function of the electrolyte concentration. We compared the data with a recent

  19. Alkynylcarbenium ions and related unsaturated cations

    Energy Technology Data Exchange (ETDEWEB)

    Lukyanov, Sergey M; Koblik, Alla V; Muradyan, Lyudmila A [Institute of Physical and Organic Chemistry, Rostov State University, Rostov-on-Don (Russian Federation)

    1998-10-31

    Published data on carbenium ions containing carbon-carbon triple bonds both directly conjugated with the carbenium centre and separated from it are surveyed and described systematically. Ammonium, diazonium, iminium, phosphonium and iodonium cations containing alkynyl groups, which can be regarded as heteroanalogues of alkynylcarbenium ions, are also considered. The bibliography includes 283 references.

  20. Alkynylcarbenium ions and related unsaturated cations

    International Nuclear Information System (INIS)

    Lukyanov, Sergey M; Koblik, Alla V; Muradyan, Lyudmila A

    1998-01-01

    Published data on carbenium ions containing carbon-carbon triple bonds both directly conjugated with the carbenium centre and separated from it are surveyed and described systematically. Ammonium, diazonium, iminium, phosphonium and iodonium cations containing alkynyl groups, which can be regarded as heteroanalogues of alkynylcarbenium ions, are also considered. The bibliography includes 283 references

  1. Effect of cations on the hydrated proton.

    Science.gov (United States)

    Ottosson, Niklas; Hunger, Johannes; Bakker, Huib J

    2014-09-17

    We report on a strong nonadditive effect of protons and other cations on the structural dynamics of liquid water, which is revealed using dielectric relaxation spectroscopy in the frequency range of 1-50 GHz. For pure acid solutions, protons are known to have a strong structuring effect on water, leading to a pronounced decrease of the dielectric response. We observe that this structuring is reduced when protons are cosolvated with salts. This reduction is exclusively observed for combinations of protons with other ions; for all studied solutions of cosolvated salts, the effect on the structural dynamics of water is observed to be purely additive, even up to high concentrations. We derive an empirical model that quantitatively describes the nonadditive effect of cosolvated protons and cations. We argue that the effect can be explained from the special character of the proton in water and that Coulomb fields exerted by other cations, in particular doubly charged cations like Mg(2+)aq and Ca(2+)aq, induce a localization of the H(+)aq hydration structures.

  2. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  3. Cationic flotation of some lithium ores

    International Nuclear Information System (INIS)

    Valadao, G.E.S.; Peres, A.E.C.; Silva, H.C. da

    1984-01-01

    The cationic flotation of some lithium ores (spodumene, amblygonite, petalite, lepidolite) is studied by the measure of zeta potential and micro-flotation tests in Hallimond tube. The effect of some modifier agents (corn starch, meta sodium silicate) on the lithium flotation is studied. (M.A.C.) [pt

  4. Letter: OCCO*+, NNCO*+ and NNNN*+ radical cations.

    Science.gov (United States)

    Flammang, R; Srinivas, R; Nguyen, M T; Gerbaux, P

    2007-01-01

    Chemical ionization of a mixture of nitrogen and carbon monoxide produces three stable isobaric species at m/z 56: OCCO, OCNN and NNNN radical cations. Separated at increased resolution, these ions are readily identified by collisional activation. Neutralization-reionization experiments performed on two different mass spectrometers have not allowed the detection of any recovery signals for the corresponding neutrals.

  5. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chemical reactivity of cation-exchanged zeolites

    NARCIS (Netherlands)

    Pidko, E.A.

    2008-01-01

    Zeolites modified with metal cations have been extensively studied during the last two decades because of their wide application in different technologically important fields such as catalysis, adsorption and gas separation. Contrary to the well-understood mechanisms of chemical reactions catalyzed

  7. [Noncovalent cation-π interactions--their role in nature].

    Science.gov (United States)

    Fink, Krzysztof; Boratyński, Janusz

    2014-11-07

    Non-covalent interactions play an extremely important role in organisms. The main non-covalent interactions in nature are: ion-ion interactions, dipole-dipole interactions, hydrogen bonds, and van der Waals interactions. A new kind of intermolecular interactions--cation-π interactions--is gaining increasing attention. These interactions occur between a cation and a π system. The main contributors to cation-π interactions are electrostatic, polarization and, to a lesser extent, dispersion interactions. At first, cation-π interactions were studied in a gas phase, with metal cation-aromatic system complexes. The characteristics of these complexes are as follows: an increase of cation atomic number leads to a decrease of interaction energy, and an increase of cation charge leads to an increase of interaction energy. Aromatic amino acids bind with metal cations mainly through interactions with their main chain. Nevertheless, cation-π interaction with a hydrophobic side chain significantly enhances binding energy. In water solutions most cations preferentially interact with water molecules rather than aromatic systems. Cation-π interactions occur in environments with lower accessibility to a polar solvent. Cation-π interactions can have a stabilizing role on the secondary, tertiary and quaternary structure of proteins. These interactions play an important role in substrate or ligand binding sites in many proteins, which should be taken into consideration when the screening of effective inhibitors for these proteins is carried out. Cation-π interactions are abundant and play an important role in many biological processes.

  8. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  9. Conductivity Probe

    Science.gov (United States)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air. The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air. The needles on the probe are 15 millimeters (0.6 inch) long. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  10. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.

    Science.gov (United States)

    Paecharoenchai, Orapan; Niyomtham, Nattisa; Apirakaramwong, Auayporn; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Yingyongnarongkul, Boon-ek; Opanasopit, Praneet

    2012-12-01

    The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.

  11. Identification of Loop D Domain Amino Acids in the Human Aquaporin-1 Channel Involved in Activation of the Ionic Conductance and Inhibition by AqB011

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2018-04-01

    Full Text Available Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1 channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 μM and AqB011 (IC50 14 μM. In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5, but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A, and mutants with proline substituted for single residues threonine (T157P, aspartate (D158P, arginine (R159P, R160P, or glycine (G165P were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 μM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the

  12. Fluconazole affects the alkali-metal-cation homeostasis and susceptibility to cationic toxic compounds of Candida glabrata.

    Science.gov (United States)

    Elicharova, Hana; Sychrova, Hana

    2014-08-01

    Candida glabrata is a salt-tolerant and fluconazole (FLC)-resistant yeast species. Here, we analyse the contribution of plasma-membrane alkali-metal-cation exporters, a cation/proton antiporter and a cation ATPase to cation homeostasis and the maintenance of membrane potential (ΔΨ). Using a series of single and double mutants lacking CNH1 and/or ENA1 genes we show that the inability to export potassium and toxic alkali-metal cations leads to a slight hyperpolarization of the plasma membrane of C. glabrata cells; this hyperpolarization drives more cations into the cells and affects cation homeostasis. Surprisingly, a much higher hyperpolarization of C. glabrata plasma membrane was produced by incubating cells with subinhibitory concentrations of FLC. FLC treatment resulted in a substantially increased sensitivity of cells to various cationic drugs and toxic cations that are driven into the cell by negative-inside plasma-membrane potential. The effect of the combination of FLC plus cationic drug treatment was enhanced by the malfunction of alkali-metal-cation transporters that contribute to the regulation of membrane potential and cation homeostasis. In summary, we show that the combination of subinhibitory concentrations of FLC and cationic drugs strongly affects the growth of C. glabrata cells. © 2014 The Authors.

  13. (4 + 3) Cycloadditions of Nitrogen-Stabilized Oxyallyl Cations

    Science.gov (United States)

    Lohse, Andrew G.; Hsung, Richard P.

    2011-01-01

    The use of heteroatom-substituted oxyallyl cations in (4 + 3) cycloadditions has had a tremendous impact on the development of cycloaddition chemistry. Extensive efforts have been exerted toward investigating the effect of oxygen-, sulfur-, and halogen-substituents on the reactivity of oxyallyl cations. Most recently, the use of nitrogen-stabilized oxyallyl cations has gained prominence in the area of (4 + 3) cycloadditions. The following article will provide an overview of this concept utilizing nitrogen-stabilized oxyallyl cations. PMID:21384451

  14. Evaluation of long-acting oxytetracycline and a commercial monovalent vaccine for the control of Campylobacter fetus subsp. venerealis infection in beef bulls.

    Science.gov (United States)

    Erickson, Nathan E N; Lanigan, Emily; Waugh, Taryn; Gesy, Karen; Waldner, Cheryl

    2017-10-01

    A blinded randomized controlled trial was used to evaluate a multi-modal therapeutic regime for treatment of beef bulls infected with Campylobacter fetus subsp. venerealis (Cfv) . Treatment included 2 doses of a commercially available monovalent vaccine and long-acting oxytetracycline applied twice at a 2-week interval with treatment completed 2 weeks before post-treatment observation. Fifteen confirmed Cfv infected bulls were randomly allocated to control ( n = 8) or treatment groups ( n = 7). Preputial scrapings were collected each week from before infection to 11 weeks following the last treatment. When the polymerase chain reaction (PCR) results for both culture and preputial scrapings were interpreted in parallel, there were no significant differences between treated and untreated bulls. Regardless of the type of diagnostic testing considered, treatment with 2 label doses of this regime did not stop shedding of Cfv in all treated bulls and is, therefore, not recommended as an effective management strategy.

  15. Selective alkylation by photogenerated aryl and vinyl cation

    NARCIS (Netherlands)

    Slegt, Micha

    2006-01-01

    Seven para-substituted phenyl cations and the parent phenyl cation were prepared from iodonium salt precursors. Product studies revealed remarkable chemoselectivity and regioselectivity that could be related to the spin multiplicity of the cations. Also an universal method to fingerprint singlet and

  16. Esterification of phenyl acetic acid with p-cresol using metal cation exchanged montmorillonite nanoclay catalysts.

    Science.gov (United States)

    Bhaskar, M; Surekha, M; Suma, N

    2018-02-01

    The liquid phase esterification of phenyl acetic acid with p -cresol over different metal cation exchanged montmorillonite nanoclays yields p -cresyl phenyl acetate. Different metal cation exchanged montmorillonite nanoclays (M n +  = Al 3+ , Zn 2+ , Mn 2+ , Fe 3+ , Cu 2+ ) were prepared and the catalytic activity was studied. The esterification reaction was conducted by varying molar ratio of the reactants, reaction time and catalyst amount on the yield of the ester. Among the different metal cation exchanged catalysts used, Al 3+ -montmorillonite nanoclay was found to be more active. The characterization of the material used was studied under different techniques, namely X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. The product obtained, p -cresyl phenyl acetate, was identified by thin-layer chromotography and confirmed by Fourier transform infrared, 1 H NMR and 13 C NMR. The regeneration activity of used catalyst was also investigated up to fourth generation.

  17. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maciej Milanowski

    Full Text Available The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma-mass spectrometry (ICP-MS was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs extracted from bacterial cells was performed.

  18. Balance of unidirectional monovalent ion fluxes in cells undergoing apoptosis: why does Na+/K+ pump suppression not cause cell swelling?

    Science.gov (United States)

    Yurinskaya, Valentina E; Rubashkin, Andrey A; Vereninov, Alexey A

    2011-05-01

    Cells dying according to the apoptotic program, unlike cells dying via an unprogrammed mode, are able to avoid swelling and osmotic bursting with membrane disruption.There are indications that apoptosis is accompanied by suppression of the Na+/K+ pump and changes in the K+ and Cl− channels. It remains unclear how ion fluxes through individual ion pathways are integrated so as to induce loss of intracellular ions and concomitant apoptotic volume decrease. A decrease in activity of the sodium pump during apoptosis should cause cell swelling rather than shrinkage. We have made the first systemic analysis of the monovalent ion flux balance in apoptotic cells. Experimental data were obtained for human U937 cells treated with staurosporine for 4–5 h, which is known to induce apoptosis. The data include cellular Cl− content and fluxes, K+, Na+, water content and ouabain-sensitive and -resistant Rb+ fluxes.Unidirectional monovalent ion fluxeswere calculated using these data and a cell model comprising the double Donnan system with the Na+/K+ pump, Cl−, K+, Na+ channels, the Na+–K+–2Cl−cotransporter (NKCC), the Na+–Cl− cotransporter (NC), and the equivalent Cl−/Cl− exchange.Apoptotic cell shrinkage was found to be caused, depending on conditions, either by an increase in the integral channel permeability of membrane for K+ or by suppression of the pump coupledwith a decrease in the integral channel permeability of membrane for Na+. The decrease in the channel permeability of membrane for Na+ plays a crucial role in cell dehydration in apoptosis accompanied by suppression of the pump. Supplemental Table S1 is given for easy calculating flux balance under specified conditions.

  19. Near-UV sensitized 1.06 μm emission of Nd{sup 3+} ions via monovalent copper in phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu [Department of Chemistry, University of North Florida, Jacksonville, FL 32224 (United States); Sendova, Mariana [Optical Spectroscopy & Nano-Materials Lab, New College of Florida, Sarasota, FL 34243 (United States)

    2015-07-15

    Monovalent copper ions effectively incorporated in Nd-containing phosphate glass by a single-step melt-quench method have been established as near-ultraviolet (UV) sensitizers of Nd{sup 3+} ions, resulting in a remarkable {sup 4}F{sub 3/2} → {sup 4}I{sub 11/2} emission at 1.06 μm. The spectroscopic data indicates an efficient energy conversion process. The Cu{sup +} ions first absorb photons broadly around 360 nm, and subsequently transfer the energy from the Stokes-shifted emitting states to resonant Nd{sup 3+} energy levels in the visible. Ultimately, the Nd{sup 3+} electronic excited states decay and the upper lasing state {sup 4}F{sub 3/2} is populated, leading to the enhanced emission at 1.06 μm. The characteristic features of the Cu{sup +} visible emission spectra and the reduced lifetime of the corresponding Cu{sup +} donor states indicate an efficient non-radiative transfer. The Cu{sup +}/Nd{sup 3+} co-doped phosphate glass appears suitable as solid-state laser material with enhanced pump range in the near-UV part of the spectrum and for solar spectral conversion in photovoltaic cells. - Graphical abstract: Display Omitted - Highlights: • Monovalent copper ions effectively stabilized in Nd{sup 3+}-containing phosphate glass. • Enhanced Nd{sup 3+} near-infrared emission observed upon the Cu{sup +} ions incorporation. • Cu{sup +} → Nd{sup 3+} non-radiative energy transfer efficiencies and likely energy transfer pathways evaluated. • Potential for solid-state lasers and solar spectral conversion suggested.

  20. Colloid Facilitated Transport of Radioactive Cations in the Vadose Zone: Field Experiments Oak Ridge

    Energy Technology Data Exchange (ETDEWEB)

    James E. Saiers

    2012-09-20

    The overarching goal of this study was to improve understanding of colloid-facilitated transport of radioactive cations through unsaturated soils and sediments. We conducted a suite of laboratory experiments and field experiments on the vadose-zone transport of colloids, organic matter, and associated contaminants of interest to the U.S. Department of Energy (DOE). The laboratory and field experiments, together with transport modeling, were designed to accomplish the following detailed objectives: 1. Evaluation of the relative importance of inorganic colloids and organic matter to the facilitation of radioactive cation transport in the vadose zone; 2. Assessment of the role of adsorption and desorption kinetics in the facilitated transport of radioactive cations in the vadose zone; 3. Examination of the effects of rainfall and infiltration dynamics and in the facilitated transport of radioactive cations through the vadose zone; 4. Exploration of the role of soil heterogeneity and preferential flow paths (e.g., macropores) on the facilitated transport of radioactive cations in the vadose zone; 5. Development of a mathematical model of facilitated transport of contaminants in the vadose zone that accurately incorporates pore-scale and column-scale processes with the practicality of predicting transport with readily available parameters.

  1. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

    Science.gov (United States)

    Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.

    2010-01-01

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  2. Radiation chemistry of aromatic dimer radical cations

    International Nuclear Information System (INIS)

    Okamoto, Kazumasa; Tagawa, Seiichi

    2009-01-01

    π-π Interactions of aromatic molecules are paid attention much in many fields, especially biology, chemistry, and applied physics, represented as protein, DNA, electron donor-accepter complexes, charge transfers, and self assembly molecules. Aromatic molecules including benzene rings are the simplest case to study the π-π interactions. To interpret the charge resonance (CR) structure in the dimer radical cations, spectroscopic and ESR methods have been carried out. The spectroscopic study on the dimer radical ion of molecules with two chromophores would be profitable to identify the electronic and configurational properties. In this article, dynamics of the dimer radical cation of benzenes, polystyrenes, and resist polymers is described on the basis of direct observation of CR band by the nanosecond pulse radiolysis and low temperature γ-radiolysis methods. (author)

  3. Electronic spectrum of 9-methylanthracenium radical cation

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, Gerard D.; Schmidt, Timothy W., E-mail: timothy.schmidt@unsw.edu.au [School of Chemistry, UNSW Sydney, New South Wales 2052 (Australia); Sanelli, Julian A.; Dryza, Vik; Bieske, Evan J. [School of Chemistry, The University of Melbourne, Victoria 3010 (Australia)

    2016-04-21

    The predissociation spectrum of the cold, argon-tagged, 9-methylanthracenium radical cation is reported from 8000 cm{sup −1} to 44 500 cm{sup −1}. The reported spectrum contains bands corresponding to at least eight electronic transitions ranging from the near infrared to the ultraviolet. These electronic transitions are assigned through comparison with ab initio energies and intensities. The infrared D{sub 1}←D{sub 0} transitions exhibit significant vibronic activity, which is assigned through comparison with TD-B3LYP excited state frequencies and intensities, as well as modelled vibronic interactions. Dissociation of 9-methylanthracenium is also observed at high visible-photon energies, resulting in the loss of either CH{sub 2} or CH{sub 3}. The relevance of these spectra, and the spectra of other polycyclic aromatic hydrocarbon radical cations, to the largely unassigned diffuse interstellar bands, is discussed.

  4. Photodissociation of spatially aligned acetaldehyde cations.

    Science.gov (United States)

    Lee, Suk Kyoung; Silva, Ruchira; Kim, Myung Hwa; Shen, Lei; Suits, Arthur G

    2007-07-26

    Photofragment translational energy and angular distributions are reported for the photodissociation of acetaldehyde cations in the wavelength range 354-363 nm obtained using the DC slice ion imaging technique. Vibrationally selected parent ions were produced by 2+1 resonance-enhanced multiphoton ionization (REMPI) via the 3sCH3CO+, and CH4+. The angular distributions reveal that all product channels have a predominantly parallel recoil anisotropy although the lower beta2 parameter of CH3CO+ indicates the concomitant presence of a perpendicular component. Furthermore, the distinct angular distribution of the CH3CO+ fragments shows a large value of the higher order Legendre polynomial term, providing evidence that acetaldehyde cations are spatially aligned during the ionization process.

  5. Mechanism of adsorption of cations onto rocks

    International Nuclear Information System (INIS)

    Kitamura, Akira; Yamamoto, Tadashi; Fujiwara, Kenso; Nishikawa, Sataro; Moriyama, Hirotake

    1999-01-01

    Adsorption behavior of cations onto granite was investigated. The distribution coefficient (K d ) of Sr 2+ and Ba 2+ onto granite was determined in the solution of which pH was ranged from 3.5 to 11.3 and ionic strength was set at 10 -2 and 10 -1 . The K d values were found to increase with increasing pH and with deceasing ionic strength. The obtained data were successfully analyzed by applying an electrical double layer model. The optimum parameter values of the double layer electrostatics and adsorption reactions were obtained, and the mechanism of adsorption of cations onto granite was discussed. Feldspar was found to play an important role in their adsorption. (author)

  6. Conduct disorders.

    Science.gov (United States)

    Buitelaar, Jan K; Smeets, Kirsten C; Herpers, Pierre; Scheepers, Floor; Glennon, Jeffrey; Rommelse, Nanda N J

    2013-02-01

    Conduct disorder (CD) is a frequently occurring psychiatric disorder characterized by a persistent pattern of aggressive and non-aggressive rule breaking antisocial behaviours that lead to considerable burden for the patients themselves, their family and society. This review paper updates diagnostic and therapeutic approaches to CD in the light of the forthcoming DSM-5 definition. The diagnostic criteria for CD will remain unchanged in DSM-5, but the introduction of a specifier of CD with a callous-unemotional (CU) presentation is new. Linked to this, we discuss the pros and cons of various other ways to subtype aggression/CD symptoms. Existing guidelines for CD are, with few exceptions, already of a relatively older date and emphasize that clinical assessment should be systematic and comprehensive and based on a multi-informant approach. Non-medical psychosocial interventions are recommended as the first option for the treatment of CD. There is a role for medication in the treatment of comorbid syndromes and/or in case of insufficient response to psychosocial interventions and severe and dangerous aggressive and violent behaviours.

  7. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  8. Reducible cationic lipids for gene transfer.

    Science.gov (United States)

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  9. Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes

    Directory of Open Access Journals (Sweden)

    Carlos Bernuy-Lopez

    2018-01-01

    Full Text Available The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3−δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3−δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3−δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm2 at 400 °C and 0.16 and 0.32 Ω·cm2 at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3−δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration.

  10. Caffeine inhibits nonselective cationic currents in interstitial cells of Cajal from the murine jejunum.

    Science.gov (United States)

    Jin, Nan Ge; Koh, Sang Don; Sanders, Kenton M

    2009-10-01

    Interstitial cells of Cajal (ICC) discharge unitary potentials in gastrointestinal muscles that constitute the basis for pacemaker activity. Caffeine has been used to block unitary potentials, but the ionic conductance responsible for unitary potentials is controversial. We investigated currents in cultured ICC from murine jejunum that may underlie unitary potentials and studied the effects of caffeine. Networks of ICC generated slow wave events under current clamp, and these events were blocked by caffeine in a concentration-dependent manner. Single ICC generated spontaneous transient inward currents (STICs) under voltage clamp at -60 mV and noisy voltage fluctuations in current clamp. STICs were unaffected when the equilibrium potential for Cl- (ECl) was set to -60 mV (excluding Cl- currents) and reversed at 0 mV, demonstrating that a nonselective cationic conductance, and not a Cl- conductance, is responsible for STICs in ICC. Caffeine inhibited STICs in a concentration-dependent manner. Reduced intracellular Ca2+ and calmidazolium (CMZ; 1 microM) activated persistent inward, nonselective cation currents in ICC. Currents activated by CMZ and by dialysis of cells with 10 mM BAPTA were also inhibited by caffeine. Excised inside-out patches contained channels that exhibited spontaneous openings, and resulting currents reversed at 0 mV. Channel openings were increased by reducing Ca2+ concentration from 10(-6) M to 10(-8) M. CMZ (1 microM) also increased openings of nonselective cation channels. Spontaneous currents and channels activated by CMZ were inhibited by caffeine (5 mM). The findings demonstrate that the Ca2+-inhibited nonselective cation channels that generate STICs in ICC are blocked directly by caffeine. STICs are responsible for unitary potentials in intact muscles, and the block of these events by caffeine is consistent with the idea that a nonselective cation conductance underlies unitary potentials in ICC.

  11. Dual cell conductivity during ionic exchange processes: the intelligent transmitter EXA DC 400

    International Nuclear Information System (INIS)

    Mier, A.

    1997-01-01

    Why is differential conductivity important versus standard conductivity measurement? That entirely depends on the application. If we have a process where the conductivity changes ge.. Cation exchanger, then standard conductivity measurement is not appropriate. With dual cell conductivity we can rate the process and eliminate conductivity changes outside the process. Therefore we achieve more precise control or monitoring of that process. (Author)

  12. Anchoring cationic amphiphiles for nucleotide delivery: significance of DNA release from cationic liposomes for transfection.

    Science.gov (United States)

    Hirashima, Naohide; Minatani, Kazuhiro; Hattori, Yoshifumi; Ohwada, Tomohiko; Nakanishi, Mamoru

    2007-06-01

    We have designed and synthesized lithocholic acid-based cationic amphiphile molecules as components of cationic liposomes for gene transfection (lipofection). To study the relationship between the molecular structures of those amphiphilic molecules, particularly the extended hydrophobic appendant (anchor) at the 3-hydroxyl group, and transfection efficiency, we synthesized several lithocholic and isolithocholic acid derivatives, and examined their transfection efficiency. We also compared the physico-chemical properties of cationic liposomes prepared from these derivatives. We found that isolithocholic acid derivatives exhibit higher transfection efficiency than the corresponding lithocholic acid derivatives. This result indicates that the orientation and extension of hydrophobic regions influence the gene transfection process. Isolithocholic acid derivatives showed a high ability to encapsulate DNA in a compact liposome-DNA complex and to protect it from enzymatic degradation. Isolithocholic acid derivatives also facilitated the release of DNA from the liposome-DNA complex, which is a crucial step for DNA entry into the nucleus. Our results show that the transfection efficiency is directly influenced by the ability of the liposome complex to release DNA, rather than by the DNA-encapsulating ability. Molecular modeling revealed that isolithocholic acid derivatives take relatively extended conformations, while the lithocholic acid derivatives take folded structures. Thus, the efficiency of release of DNA from cationic liposomes in the cytoplasm, which contributes to high transfection efficiency, appears to be dependent upon the molecular shape of the cationic amphiphiles.

  13. Fractionation of lithium isotopes in cation-exchange chromatography

    International Nuclear Information System (INIS)

    Oi, Takao; Kawada, Kazuhiko; Kakihana, Hidetake; Hosoe, Morikazu

    1991-01-01

    Various methods for lithium isotope separation have been developed, and their applicability to large-scale enriched lithium isotope production has been assessed. Ion-exchange chromatography is one such method. Cation-exchange chromatography of lithium was carried out to investigate the lithium isotope effect in aqueous ion-exchange systems. The heavier isotope. 7 Li, was preferentially fractionated into the resin phase in every experiment conducted, and this result is consistent with the results of previous work. The value of the separation factor was 1.00089-1.00171 at 25C. A comparison of lithium isotope effect with those of potassium and rubidium indicated that the isotope effect originating from hydration is larger than the effect due to phase change for lithium, while the opposite is the case with potassium and rubidium

  14. Radical cations of quadricyclane and norbornadiene in polar ZSM-5 matrices: Radical cation photochemical transformations without photons

    International Nuclear Information System (INIS)

    Barnabas, M.V.; Trifunac, A.D.

    1994-01-01

    Radical cations of quadricyclane (Q) and norbornadiene (NBD) are produced by γ-radiolysis in zeolites. In polar ZSM-5, only one radical cation is initially observed below 100K. Increasing the temperature above 200K gives rise to the cyclopentadiene radical cation. Higher temperatures (>360K) give rise to the cyclopenten-4-yl radical. The observation of cyclopentadiene radical cation implies the occurrence of the reverse Diels-Alder reaction. This is a thermally forbidden, photochemically allowed, process, which is made possible by the interaction of the polar zeolite matrix sites with parent NBD and Q radical cations

  15. Ion motion and conductivity in rubidium and cesium hexafluorotitanates

    International Nuclear Information System (INIS)

    Moskvich, Yu.N.; Cherkasov, B.I.; Sukhovskij, A.A.; Davidovich, R.L.; AN SSSR, Vladivostok. Inst. Khimii)

    1988-01-01

    Relaxation times for 19 F nuclei and electric conductivity in Rb 2 TiF 6 and Cs 2 TiF 6 polycrystals are measured. The parameters of reoriented anion motion and diffusion cation motion are determined according to the NMR data. The effect of phase transition to the cubic phase on the parameters of these motions are studied. High conductivity reaching values σ∼10 -2 -10 -3 Ohm -1 xm -1 is detected at high temperatures. The electric conductivity observed is shown to be caused by the diffusion motion of Rb + and Cs + cations

  16. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  17. Cation mobility in H+/Na+ ion exchange products of acid tantalum and zirconium phosphates

    International Nuclear Information System (INIS)

    Tarnopol'skij, V.A.; Yaroslavtsev, A.B.

    2000-01-01

    Ionic conductivity of Na + /H + exchange products on acid zirconium phosphate with different substitution degree and on acid tantalum phosphate, where ion exchange occurs via formation of a continuous series of solid solutions, was studied by the method of conductometry. It was ascertained that ionic conductivity decreases monotonously with growth in substitution degree of H + for Na + in acid tantalum phosphate. Anomalous increase in ionic conductivity of ion exchange products on acid zirconium phosphate with a low substitution degree has been detected for the first time. Formation of a double electric layer with a high concentration of cationic defects on the interface surface is the reason for increase in ionic conductivity [ru

  18. Cation-Cation Complexes of Pentavalent Uranyl: From Disproportionation Intermediates to Stable Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Horeglad, Pawel; Nocton, Gregory; Pecaut, Jacques; Mazzanti, Marinella [CEA, INAC, SCIB, Laboratoire de Reconnaissance Ionique et Chimie de Coordination, CEA-Grenoble, 38054 GRENOBLE, Cedex 09 (France)

    2010-07-01

    Three new cation cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO{sub 2}py{sub 5})-(KI{sub 2}py{sub 2})]{sub n} (1) with the Schiff base ligands salen{sup 2-}, acacen{sup 2-}, and salophen{sup 2-} (H{sub 2}salen N, N'-ethylene-bis(salicylidene-imine), H{sub 2}acacen=-N, N'-ethylenebis(acetylacetone-imine), H{sub 2}salophen=N, N'-phenylene-bis(salicylidene-imine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen{sup 2-} in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetra-nuclear complexes ([UO{sub 2}-(acacen)]{sub 4}[{mu}{sub 8}-]{sub 2}[K([18]C-6)(py)]{sub 2}) (3) and ([UO{sub 2}(acacen)](4)[{mu}{sub 8}-]).2[K([222])(py)] (4) ([UO{sub 2}(salophen)](4)[{mu}{sub 8}-K]{sub 2}[mu(5)-KI]{sub 2}[(K([18]C-6)]).2 [K([18]C-6)-(thf){sub 2}].2I (5), and ([UO{sub 2}(salen)(4)][{mu}{sub 8}-Rb]{sub 2}[Rb([18]C-6)]{sub 2}) (9) ([222] = [222]cryptand, py =pyridine), presenting a T-shaped cation cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetra-nuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U{sup V}O{sub 2}(salen)(py)][Cp*{sub 2}Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation cation complexes. The nature of the cation plays a key role in the preparation of stable cation cation complexes. Stable tetra-nuclear complexes form in the presence of K

  19. Complexes of natural carbohydrates with metal cations

    International Nuclear Information System (INIS)

    Alekseev, Yurii E; Garnovskii, Alexander D; Zhdanov, Yu A

    1998-01-01

    Data on the interaction of natural carbohydrates (mono-, oligo-, and poly-saccharides, amino sugars, and natural organic acids of carbohydrate origin) with metal cations are surveyed and described systematically. The structural diversity of carbohydrate metal complexes, caused by some specific features of carbohydrates as ligands, is demonstrated. The influence of complex formation on the chemical properties of carbohydrates is discussed. It is shown that the formation of metal complexes plays an important role in the configurational and conformational analysis of carbohydrates. The practical significance of the coordination interaction in the series of carbohydrate ligands is demonstrated. The bibliography includes 571 references.

  20. Homogeneous cation exchange membrane by radiation grafting

    International Nuclear Information System (INIS)

    Kolhe, Shailesh M.; G, Agathian; Ashok Kumar

    2001-01-01

    Preparation of a strong cation exchange membrane by radiation grafting of styrene on to polyethylene (LDPE) film by mutual irradiation technique in the presence of air followed by sulfonation is described. The grafting has been carried out in the presence of air and without any additive. Low dose rate has been seen to facilitate the grafting. Further higher the grafting percentage more is the exchange capacity. The addition of a swelling agent during the sulfonation helped in achieving the high exchange capacity. The TGA-MASS analysis confirmed the grafting and the sulfonation. (author)

  1. Cationic polymers in water treatment: Part 1: Treatability of water with cationic polymers

    Czech Academy of Sciences Publication Activity Database

    Polasek, P.; Mutl, Silvestr

    2002-01-01

    Roč. 28, č. 1 (2002), s. 69-82 ISSN 0378-4738 R&D Projects: GA AV ČR KSK2067107 Keywords : cationic polymers * treatability * water quality Subject RIV: BK - Fluid Dynamics Impact factor: 0.481, year: 2002

  2. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism.

    Science.gov (United States)

    Boughlala, Zakaria; Fonseca Guerra, Célia; Bickelhaupt, F Matthias

    2016-06-01

    We have analyzed the structure and bonding of gas-phase Cl-X and [HCl-X](+) complexes for X(+)= H(+), CH3 (+), Li(+), and Na(+), using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl(-) and HCl for the various cations. The Cl-X bond becomes longer and weaker along X(+) = H(+), CH3 (+), Li(+), and Na(+). Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn-Sham molecular orbital (KS-MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities.

  3. Cobalt 60 cation exchange with mexican clays

    International Nuclear Information System (INIS)

    Nava Galve, R.G.

    1993-01-01

    Mexican clays can be used to remove radioactive elements from contaminated aqueous solutions. Cation exchange experiments were performed with 60 Co radioactive solution. In the present work the effect of contact time on the sorption of Co 2+ was studied. The contact time in hydrated montmorillonite was from 5 to 120 minutes and in dehydrated montmorillonite 5 to 1400 minutes. The Co 2+ uptake value was, in hydrated montmorillonite, between 0.3 to 0.85 m eq/g and in dehydrated montmorillonite, between 0.6 to 1.40 m eq/g. The experiments were done in a pH 5.1 to 5.7 and normal conditions. XRD patterns were used to characterize the samples. The crystallinity was determined by X-ray Diffraction and it was maintained before and after the cation exchange. DTA thermo grams showed the temperatures of the lost humidity and crystallization water. Finally, was observed that dehydrated montmorillonite adsorb more cobalt than hydrated montmorillonite. (Author)

  4. Cationic antimicrobial peptides in penaeid shrimp.

    Science.gov (United States)

    Tassanakajon, Anchalee; Amparyup, Piti; Somboonwiwat, Kunlaya; Supungul, Premruethai

    2011-08-01

    Penaeid shrimp aquaculture has been consistently affected worldwide by devastating diseases that cause a severe loss in production. To fight a variety of harmful microbes in the surrounding environment, particularly at high densities (of which intensive farming represents an extreme example), shrimps have evolved and use a diverse array of antimicrobial peptides (AMPs) as part of an important first-line response of the host defense system. Cationic AMPs in penaeid shrimps composed of penaeidins, crustins, and anti-lipopolysaccharide factors are comprised of multiple classes or isoforms and possess antibacterial and antifungal activities against different strains of bacteria and fungi. Shrimp AMPs are primarily expressed in circulating hemocytes, which is the main site of the immune response, and hemocytes expressing AMPs probably migrate to infection sites to fight against pathogen invasion. Indeed, most AMPs are produced as early as the nauplii developmental stage to protect shrimp larvae from infections. In this review, we discuss the sequence diversity, expression, gene structure, and antimicrobial activities of cationic AMPs in penaeid shrimps. The information available on antimicrobial activities indicates that these shrimp AMPs have potential therapeutic applications in the control of disease problems in aquaculture.

  5. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  6. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  7. Basic exchangeable cations in Finnish mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1972-09-01

    Full Text Available The content of exchangeable Ca, Mg, K and Na replaced by neutral ammonium acetate was determined in 470 samples of mineral soils from various parts of Finland, except from Lapland. The amount of all these cations tended to increase with an increase in the clay content, but variation within each textural class was large, and the ranges usually overlapped those of the other classes. The higher acidity of virgin surface soils was connected with a lower average degree of saturation by Ca as compared with the corresponding textural classes of cultivated soils. No significant difference in the respective contents of other cations was detected. The samples of various textural groups from deeper layers were usually poorer in exchangeable Ca and K than the corresponding groups of plough layer. The mean content of exchangeable Mg was equal or even higher in the samples from deeper layers than in the samples from plough layer, except in the group of sand soils. The percentage of Mg of the effective CEC increased, as an average, from 9 in the sand and fine sand soils of plough layer to 30 in the heavy clay soils; in the heavy clay soils from deeper layers its mean value was 38 ± 4 %. In the samples of plough layer, the mean ratio of Ca to Mg in sand and fine sand soils was about 9, in silt and loam soils about 6, in the coarser clay soils about 4, and in heavy clay about 2.

  8. Radiochemical study of isomerization of free butyl cations

    International Nuclear Information System (INIS)

    Sinotova, E.N.; Nefedov, V.D.; Skorokhodov, S.S.; Arkhipov, Yu.M.

    1987-01-01

    Ion-molecular reactions of free butyl cations, generated by nuclear chemical method, with carbon monoxide containing small quantities of ethanol vapors are studied. Carbon monoxide was used to fix instable butyl cations in the form of corresponding acyl ions. Ester of α-methyl-butyric acid appears to be the only product of free butyl cation interaction with carbon monoxide in the presence of ethanol vapors. That means, that up to the moment of butyl cation reaction with carbon monoxide, the primary butyl cations are almost completely isomerized into secondary in agreement with results of previous investigations. This allows one to study free butyl cation isomerization process according to ion-molecular reaction product isomeric composition

  9. Stability and recovery of DNA origami structure with cation concentration

    Science.gov (United States)

    Chen, Yi; Wang, Ping; Liu, Yang; Liu, Ting; Xu, Yan; Zhu, Shanshan; Zhu, Jun; Ye, Kai; Huang, Guang; Dannong, He

    2018-01-01

    We synthesized triangular and rectangular DNA origami nanostructures and investigated the stability and recovery of them under low cation concentration. Our results demonstrated that the origami nanostructures would melt when incubated in low cation concentration, and recover whilst kept in the concentration for less than 10 min. However, extending the incubation time would lead to irreversible melting. Our results show the possibility of application of DNA origami nanostructures for things such as a sensor for cation concentration response, etc.

  10. Effect of competing cations on strontium sorption to surficial sediments

    International Nuclear Information System (INIS)

    Bunde, R.L.; Rosentreter, J.J.

    1995-01-01

    The following study was conducted to determine strontium distribution coefficients (K d 'S) of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine K d 's which describe the partitioning of a solute between the solution and solid phase. A surficial sediment was mixed with synthesized aqueous solutions designed to chemically simulate wastewater disposed to infiltrations ponds near the Idaho Chemical Processing Plant at the INEL with respect to major ionic character and pH. The effects of variable concentrations of competing cations (sodium, potassium, calcium and magnesium) on strontium sorption were investigated at a fixed pH of 8.00. The pH of the natural system shows no appreciable variation, whereas a marked variability in cation concentration has been noted. Strontium sorption was impacted to a greater degree by the concentration of calcium and magnesium in solution than by the presence of sodium or potassium. However, extreme sodium solution concentrations of 1.0 to 5.0 g/L dramatically reduced strontium sorption. In all cases, strontium K d 's decreased as the concentration of calcium and magnesium in solution increased. Linear isotherm model K d 's ranged from 12.0 to 84.7 mL/g. Analysis of data from these experiments indicated that moderate concentrations of calcium and magnesium (less than 40 mg/L) and high concentrations of sodium (1.0 to 5.0 g/L) in wastewater increase strontium mobility by decreasing the sorption of strontium on surficial sediments beneath infiltration ponds at the INEL

  11. Studies of Fe-Co based perovskite cathodes with different A-site cations

    DEFF Research Database (Denmark)

    Kammer Hansen, K.

    2006-01-01

    Iron-cobalt based perovskite cathodes with different A-site cations ((Ln(0.6)Sr(0.4))(0.99)Fe0.8Co0.2O3-delta, where Ln is La, Pr, Sm or Gd) have been synthesised, characterised by a powder XRD, dilatometry, 4-point DC conductivity measurements, and electrochemical impedance spectroscopy (EIS......) on cone shaped electrodes. In addition to this scanning electron microscopy (SEM) was used to characterise the bars. XRD revealed that only the La-containing perovskite was hexagonal. The Pr and Sm perovskites were orthorhombic. The gadolinium-based perovskite was a two phase system consisting...... of an orthorhombic and a cubic perovskite phase. The thermal expansion coefficient (TEC) increased systematically with a decrease in the size of the A-site cation until the gadoliniurn-containing perovskite where the TEC decreases abruptly. The total electric conductivity was the highest for the La-based perovskite...

  12. A Cation-containing Polymer Anion Exchange Membrane based on Poly(norbornene)

    Science.gov (United States)

    Beyer, Frederick; Price, Samuel; Ren, Xiaoming; Savage, Alice

    Cation-containing polymers are being studied widely for use as anion exchange membranes (AEMs) in alkaline fuel cells (AFCs) because AEMs offer a number of potential benefits including allowing a solid state device and elimination of the carbonate poisoning problem. The successful AEM will combine high performance from several orthogonal properties, having robust mechanical strength even when wet, high hydroxide conductivity, and the high chemical stability required for long device lifetimes. In this study, we have synthesized a model cationic polymer that combines three of the key advantages of Nafion. The polymer backbone based on semicrystalline atactic poly(norbornene) offers good mechanical properties. A flexible, ether-based tether between the backbone and fixed cation charged species (quaternary ammonium) should provide the low-Tg, hydrophilic environment required to facilitate OH- transport. Finally, methyl groups have been added at the beta position relative to the quaternary ammonium cation to prevent Hoffman elimination, one mechanism by which AEMs are neutralized in a high pH environment. In this poster, we will present our findings on mechanical properties, morphology, charge transport, and chemical stability of this material.

  13. On the use of dimensionless parameters in acid-base theory: VI. The buffer capacities of equimolar binary mixtures of monovalent weak protolytes as compared to that of bivalent protolytes.

    Science.gov (United States)

    Rilbe, H

    1994-05-01

    The general equation for the relative molar buffer capacity, earlier shown to be valid for bivalent acids, bases, and ampholytes, is shown to hold also for equimolar, binary mixtures of monovalent protolytes if only the parameter s = square root of K1'/4K2' is exchanged for t = s + 1/4s. The same applies to the equations for the mean valence of the two classes of protolytes. As a consequence thereof, the titration and buffer capacity curves of a bivalent protolyte are identical with those of a monovalent protolyte with a pK' value equal to the with those of a monovalent protolyte with a pK' value equal to square root of K1'K2' of the bivalent one (the isoprotic point of an ampholyte). For a hypothetical bivalent acid, base, or ampholyte with s = 1, delta pK' = log 4, this implies that the intrinsic rather than the hybrid dissociation constants are responsible for the titration and buffer capacity curves.

  14. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    OpenAIRE

    Joiner, C H; Platt, O S; Lux, S E

    1986-01-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blo...

  15. CLINICAL STUDIES OF REACTOGENICITY, SAFETY AND IMMUNOGENICITY OF LIVE MONOVALENT INFLUENZA VACCINE (STRAIN А/17/CALIFORNIA/2009/38 — H1N1 IN CHILDREN

    Directory of Open Access Journals (Sweden)

    D.S. Bushmenkov

    2010-01-01

    Full Text Available Results of performed pre-clinical and clinical studies with volunteers 18-60 years old allowed registration of vaccine «INFLUVIR» (live monovalent vaccine for the prophylaxis of influenza A/H1N1, strain A/17/California/2009/38 (H1N1, developed by NPO «Microgen» in Russian Federation so timely vaccination campaign was performed. As a result, the level of morbidity with influenza A/H1N1 in Russia was decreased, and development of complication was prevented. Clinical studies in different groups of children were performed for the purpose of widening indications for vaccine «INFLUVIR» administration. According to the results of studies vaccine «INFLUVIR» has good tolerability and safety, low reactogenicity, and significant immunogenicity. This fact will allow changing of present normative documentation and administration of «INFLUVIR» in children of different age for prophylaxis of influenza A/H1N1.Key words: children, influenza, virus A/H1N1, live influenza vaccine, tolerability, safety, immunogenicity.(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(4:101-105

  16. A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force

    Science.gov (United States)

    Bano, Fouzia; Banerji, Suneale; Howarth, Mark; Jackson, David G.; Richter, Ralf P.

    2016-09-01

    Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG·protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG·protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices.

  17. Effect of dietary cation-anion balance on milk production and blood ...

    African Journals Online (AJOL)

    This study was conducted to evaluate the effects of three diets with different cation-anion differences ((DCAD: mEq[(Na + K) − (Cl + S)]/100 g of dry matter)) in far-off and close-up period, on milk production and blood mineral of Holstein cows. Eighteen pregnant cows (220 - 225 d) were fed a base diet with three DCAD (+13 ...

  18. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    International Nuclear Information System (INIS)

    Luca, Vittorio; Bianchi, Hugo L.; Manzini, Alberto C.

    2012-01-01

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs + , Sr 2+ , Co 2+ , Ni 2+ in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH 4 ) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 °C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200–600 °C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 °C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 °C reached a plateau or steady-state within the first 24 h increasing only

  19. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (K d ). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (K d ) decreasing as follows: K d Na + > K d NH 4 + ≥ K d K + > K d Ca 2+ ≥ K d Mg 2+ > K d Al 3+ . This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium K d values, allowed for

  20. Computational study of cation substitutions in apatites

    International Nuclear Information System (INIS)

    Tamm, Toomas; Peld, Merike

    2006-01-01

    Density-functional theory plane-wave modeling of fluor- and hydroxyapatites has been performed, where one or two calcium ions per unit cell were replaced with cadmium or zinc cations. It was found that cadmium ions favor Ca(1) positions in fluorapatites and Ca(2) positions in hydroxyapatites, in agreement with experiment. A similar pattern is predicted for zinc substitutions. In the doubly substituted cases, where only hydroxyapatites were modeled, a preference for the substituting ions to be located in Ca(2) position was also observed. Displacement of the hydroxide ions from their symmetrical positions on the hexagonal axis can be used to explain the preferred configurations of substituting ions around the axis. -- Deformation of the hydroxide ion chain due to substitutions around the ion channel in substituted hydroxyapatites

  1. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  2. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  3. A Cationic Smart Copolymer for DNA Binding

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2017-11-01

    Full Text Available A new block copolymer with a temperature-responsive block and a cationic block was prepared by reversible addition-fragmentation chain transfer (RAFT polymerization, with good control of its size and composition. The first block is composed by di(ethylene glycol methyl ether methacrylate (DEGMA and oligo(ethylene glycol methyl ether methacrylate (OEGMA, with the ratio DEGMA/OEGMA being used to choose the volume phase transition temperature of the polymer in water, tunable from ca. 25 to above 90 °C. The second block, of trimethyl-2-methacroyloxyethylammonium chloride (TMEC, is positively charged at physiological pH values and is used for DNA binding. The coacervate complexes between the block copolymer and a model single strand DNA are characterized by fluorescence correlation spectroscopy and fluorescence spectroscopy. The new materials offer good prospects for biomedical application, for example in controlled gene delivery.

  4. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  5. Calixarenes synthesized for seducing and trapping cations

    International Nuclear Information System (INIS)

    Dozol, J.F.

    1997-01-01

    Calixarenes are known to be selective extractants for cesium radioactive cations. This liquid-liquid extraction is still to be studied and would allow to reduce the volume of years living radioactive wastes before they were stored and perhaps to remove then the cesium by transmutation. Calixarenes are macrocycles with phenolic units bridged by methylene groups. They have the important property to have a flexible structure. On this basic structure, all kinds of chemical functions can be branched. They thus confer particular properties to the molecule. A computerized virtual construction phase of molecules is actually studied in order to optimize the extraction. It is currently known that with small modifications it will be possible to selectively extract heavy metals (Hg, Cd..) coming from industrial pollution. (O.M.)

  6. Effect of nature of base cation on surface conductivity of H forms of stratified silicates

    International Nuclear Information System (INIS)

    Vasil'ev, N.G.; Ovcharenko, F.D.; Savkin, A.G.

    1976-01-01

    Interpretation has been proposed for curves of conductometric titration of diluted suspensions of natural silicates in hydrogen forms with solutions of alkalies and organic bases. The curves of conductometric are presented for suspensions of H-form of montmorillonite with solutions of alkali metal hydroxides and with Ba(OH) 2 . A linear decrease in electroconductiv;ty of the system is observed when H-mineral is neutralized with LIOH and NaOH solution. If hydroxides of other metals are added to such a system, the titration curves have an anomalous character. It is especially pronounced when H-mineral is titrated with RbOH and CsOH solutions. When these solutions are added to the suspension of h H-mineral, an additional amount of highly mobile H+-ions is formed which increases electroconductivity of the system. When all the exchange protons in a flat double layer are replaced by Rb 1 or Cs 1 ions, electroconductivity decreases which is related to neutralization of protons in the diffusion part of the layer

  7. Anaerobic toxicity of cationic silver nanoparticles

    International Nuclear Information System (INIS)

    Gitipour, Alireza; Thiel, Stephen W.; Scheckel, Kirk G.; Tolaymat, Thabet

    2016-01-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag"+ under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L"−"1, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L"−"1 as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag"+. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L"−"1 as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L"−"1), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  8. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Science.gov (United States)

    Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezső

    2018-02-01

    The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ɛ = 78.5), and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson's equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 - 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm-2. The anions are monovalent with a fixed diameter d- = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K). We provide all the raw data in the supplementary material (ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-8-084802">supplementary material).

  9. A systematic Monte Carlo simulation study of the primitive model planar electrical double layer over an extended range of concentrations, electrode charges, cation diameters and valences

    Directory of Open Access Journals (Sweden)

    Mónika Valiskó

    2018-02-01

    Full Text Available The purpose of this study is to provide data for the primitive model of the planar electrical double layer, where ions are modeled as charged hard spheres, the solvent as an implicit dielectric background (with dielectric constant ϵ = 78.5, and the electrode as a smooth, uniformly charged, hard wall. We use canonical and grand canonical Monte Carlo simulations to compute the concentration profiles, from which the electric field and electrostatic potential profiles are obtained by solving Poisson’s equation. We report data for an extended range of parameters including 1:1, 2:1, and 3:1 electrolytes at concentrations c = 0.0001 − 1 M near electrodes carrying surface charges up to σ = ±0.5 Cm−2. The anions are monovalent with a fixed diameter d− = 3 Å, while the charge and diameter of cations are varied in the range z+ = 1, 2, 3 and d+ = 1.5, 3, 6, and 9 Å (the temperature is 298.15 K. We provide all the raw data in the supplementary material.

  10. Organic cation rhodamines for screening organic cation transporters in early stages of drug development.

    Science.gov (United States)

    Ugwu, Malachy C; Oli, Angus; Esimone, Charles O; Agu, Remigius U

    The aim of this study was to investigate the suitability of rhodamine-123, rhodamine-6G and rhodamine B as non-radioactive probes for characterizing organic cation transporters in respiratory cells. Fluorescent characteristics of the compounds were validated under standard in vitro drug transport conditions (buffers, pH, and light). Uptake/transport kinetics and intracellular accumulation of the compounds were investigated. Uptake/transport mechanisms were investigated by comparing the effect of pH, temperature, concentration, polarity, OCTs/OCTNs inhibitors/substrates, and metabolic inhibitors on the cationic dyes uptake in Calu-3 cells. Fluorescence stability and intensity of the compounds were altered by buffer composition, light, and pH. Uptake of the dyes was concentration-, temperature- and pH-dependent. OCTs/OCTNs inhibitors significantly reduced intracellular accumulation of the compounds. Whereas rhodamine-B uptake was sodium-dependent, pH had no effect on rhodamine-123 and rhodamine-6G uptake. Transport of the dyes across the cells was polarized: (AP→BL>BL→AP transport) and saturable: {V max =14.08±2.074, K m =1821±380.4 (rhodamine-B); V max =6.555±0.4106, K m =1353±130.4 (rhodamine-123) and V max =0.3056±0.01402, K m =702.9±60.97 (rhodamine-6G)}. The dyes were co-localized with MitoTracker®, the mitochondrial marker. Cationic rhodamines, especially rhodamine-B and rhodamine- 6G can be used as organic cation transporter substrates in respiratory cells. During such studies, buffer selection, pH and light exposure should be taken into consideration. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effects of metallic cations in the beryl flotation

    International Nuclear Information System (INIS)

    Lima Leonel, C.M. de; Peres, A.E.C.

    1984-01-01

    The beryl zeta potential in microelectrophoretic cell is studied in the presence of neutral electrolyte, cations of calcium, magnesium and iron. The petroleum sulfonate is used how collector in Hallimond tube. Hydroxy complex of metallic cations seems activate the ore and precipitates of colloidal metallic hidroxies seems lower him when added to the mixture. (M.A.C.) [pt

  12. Stable polyfluorinated cycloalkenyl cations and their NMR spectra

    International Nuclear Information System (INIS)

    Snegirev, V.F.; Galakhov, M.V.; Makarov, K.N.; Bakhmutov, V.I.

    1986-01-01

    New stable 1-methoxyperfluoro-2-ethylcyclobutenyl, 1-methoxyperfluoro-2-methylcyclo-pentenyl, and 1-methoxyperfluoro-2-ethylcyclohexenyl cations were obtained by the action of antimony pentafluoride on the corresponding olefins. The distribution of the charges in the investigated polyfluorinated cycloalkenyl cations was investigated by 13 C NMR method

  13. Synthesis of Cationic Core-Shell Latex Particles

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2006-01-01

    Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells

  14. Cationic antimicrobial peptides inactivate Shiga toxin-encoding bacteriophages

    Science.gov (United States)

    Del Cogliano, Manuel E.; Hollmann, Axel; Martinez, Melina; Semorile, Liliana; Ghiringhelli, Pablo D.; Maffía, Paulo C.; Bentancor, Leticia V.

    2017-12-01

    Shiga toxin (Stx) is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC) infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs) are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: 1) direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, 2) cationic properties are necessary but not sufficient for bacteriophage inactivation, and 3) inactivation by cationic peptides could be sequence (or structure) specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  15. CATION EXCHANGE METHOD FOR THE RECOVERY OF PROTACTINIUM

    Science.gov (United States)

    Studier, M.H.; Sullivan, J.C.

    1959-07-14

    A cation exchange prccess is described for separating protactinium values from thorium values whereby they are initially adsorbed together from an aqueous 0.1 to 2 N hydrochloric acid on a cation exchange resin in a column. Then selectively eluting the thorium by an ammonium sulfate solution and subsequently eluting the protactinium by an oxalate solution.

  16. pi-Dimers of end-capped oligopyrrole cation radicals

    NARCIS (Netherlands)

    Haare, van J.A.E.H.; Groenendaal, L.; Havinga, E.E.; Janssen, R.A.J.; Meijer, E.W.

    1996-01-01

    In two consecutive one-electron oxidations, oligopyrroles substituted with phenyl capping groups (PhPynPh, n = 2–4) can be oxidized reversibly to give stable cation radicals and dications. Spectroelectrochemical studies give direct evidence that diamagnetic p-dimers of cation radicals are formed in

  17. Cation exchange of 53 elements in nitric acid

    International Nuclear Information System (INIS)

    Marsh, S.F.; Alarid, J.E.; Hamond, C.F.; McLeod, M.J.; Roensch, F.R.; Rein, J.E.

    1978-02-01

    Cation-exchange distribution data are presented for 53 elements from 3 to 12M HNO 3 for three strong-acid resins, having cross-linkages of 8%, 4%, and macroporous. Data obtained by 16- to 18-h dynamic batch contacts are compared to cation-exchange distribution data from strong HCl and HClO 4

  18. Base Cation Leaching From the Canopy of a Rubber ( Hevea ...

    African Journals Online (AJOL)

    Base cations are essential to the sustainability of forest ecosystems. They are important for neutralizing the acidifying effects of atmospheric deposition. There is the need for in-depth understanding of base cation depletion and leaching from forest canopy. This is important particularly due to the increasing acidification and ...

  19. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  20. Cation substitution induced blue-shift of optical band gap

    Indian Academy of Sciences (India)

    Cation substitution induced blue-shift of optical band gap in nanocrystalline Zn ( 1 − x ) Ca x O thin films deposited by sol–gel dip coating technique ... thin films giving 13.03% enhancement in theenergy gap value due to the electronic perturbation caused by cation substitution as well as deterioration in crystallinity.

  1. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the las...

  2. Cation binding at the node of Ranvier: I. Localization of binding sites during development.

    Science.gov (United States)

    Zagoren, J C; Raine, C S; Suzuki, K

    1982-06-17

    Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.

  3. Cation interdiffusion in polycrystalline calcium and strontium titanate

    International Nuclear Information System (INIS)

    Butler, E.P.; Jain, H.; Smyth, D.M.

    1991-01-01

    This paper discusses a method that has been developed to study bulk lattice interdiffusion between calcium and strontium titanate by fabrication of a diffusion couple using cosintering. The measured interdiffusion coefficients, D(C), indicate that strontium impurity diffusion in calcium titanate occurs at a faster rate than calcium impurity diffusion in strontium titanate. These interdiffusion coefficients are composition independent when the concentration of the calcium cation exceeds that of the strontium cation; otherwise D(C) is strongly composition dependent. Investigations into the effect of cation nonstoichiometry give results that are consistent with a defect incorporation reaction in which excess TiO 2 , within the solid solubility limit, produces A-site cation vacancies as compensating defects. The interdiffusion coefficients increase with increasing concentrations of TiO 2 , so it is concluded that interdiffusion of these alkaline-earth cations in their titanates occurs via a vacancy mechanism

  4. Thermochemical stability of Soviet macroporous sulfonated cation-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rukhlyada, N.N.; Plotnikova, V.P.; Roginskaya, B.S.; Znamenskii, Yu.P.; Zavodovskaya, A.S.; Dobrova, E.I.

    1988-10-20

    The purpose of this work was to study the influence of macroporosity on the thermochemical stability of sulfonated cation-exchangers. The investigations were carried out on commercial macroporous sulfonated cation-exchangers based on styrene-divinylbenzene copolymers. Study of the thermochemical stability of macroporous sulfonated cation-exchangers in dilute hydrogen peroxide solutions showed that the type of macroporosity has virtually no influence on their stability. The determining factor in thermal stability of macroporous cation-exchangers, as of the gel type, is the degree of cross-linking of the polymer matrix. The capacity loss of macroporous cation-exchangers during oxidative thermolysis is caused by destruction of the macromolecular skeleton and elution of fragments of polar chains containing sulfo groups into the solution.

  5. Characterization of guinea pig myocardial leukotriene C4 binding sites. Regulation by cations and sulfhydryl-directed reagents

    International Nuclear Information System (INIS)

    Hogaboom, G.K.; Mong, S.; Stadel, J.M.; Crooke, S.T.

    1985-01-01

    Using [ 3 H]leukotriene C4 (LTC4) and radioligand-binding techniques, specific leukotriene C4 binding sites have been identified in membranes derived from guinea pig ventricular myocardium. High performance liquid chromatography analyses indicated that, in the presence of the gamma-glutamyl transpeptidase inhibitor L-serine-borate (80 mM), less than 2% of membrane-bound [ 3 H]LTC4 was converted at 20 degrees to [ 3 H]leukotriene D4 or [ 3 H]leukotriene E4. The specific binding of 4 nM [ 3 H]LTC4, in the presence of 80 mM L-serine-borate, reached a stable steady state within 15 min at 20 degrees (pH 7.5). A monophasic Scatchard plot of saturation binding data yielded a dissociation constant (Kd) of 27.5 +/- 6.0 nM and a maximum number of binding sites (Bmax) of 19.9 +/- 5.2 pmol/mg of membrane protein. Competition binding studies of [ 3 H]LTC4 with synthetic leukotriene C4, leukotriene D4, and leukotriene E4 and the putative peptidoleukotriene antagonists FPL 55712, SKF 88046, and 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid revealed an order of potency of leukotriene C4 much greater than 4R-hydroxy-5S-1-cysteinylglycine-6Z-nonadecanoic acid greater than SKF 88046 greater than LTE4 greater than LTD4 greater than FPL 55712. The specific [ 3 H]LTC4 binding was stimulated by the divalent cations Ca2+, Mg2+, and Mn2+ and to a lesser degree by the monovalent cations Na+, K+, Li+, and NH4+. CaCl2 (3 mM) and NaCl (150 mM) stimulated the LTC4 binding by increasing the Bmax to 42.6 +/- 5.9 and 35.0 +/- 2.0 pmol/mg, respectively, but had minimal effects on Kd

  6. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  7. Increasing Base Cations in Streams: Another Legacy of Deicing Salts?

    Science.gov (United States)

    Helton, A. M.; Barclay, J. R.; Bellucci, C.; Rittenhouse, C.

    2017-12-01

    Elevated use of deicing salts directly increases sodium chloride inputs to watersheds. Sodium can accumulate in soils over time and has the potential to leach other cations (e.g., calcium, magnesium, and potassium) from the soil through cation exchange. We hypothesize that increased use of deicing salts results in a legacy of soils depleted in non-sodium base cations with loss of cations to receiving waters. The goal of this project is to quantify temporal trends in base cations and chloride in streams and rivers across the United States. We used Weighted Regressions on Time, Discharge, and Season (WRTDS) to analyze trends in base cations. Our preliminary analysis of 10 rivers in Connecticut with chemical periods of record ranging from 24 - 64 years (median = 55 years), shows that the flux of base cations is increasing in all sites (25 - 366 103 meq ha-1 yr-1 yr-1), driven largely by increases in sodium (23 - 222 103 meq ha-1 yr-1 yr-1), the dominant cation in 7 of the sites. Chloride is also increasing at all sites (26 - 261 103 meq ha-1 yr-1 yr-1), which, in combination with salt use trends, suggests a road salt source for the increased sodium. Non-sodium cations are also increasing in 9 of the sites (8 - 54 103 meq ha-1 yr-1 yr-1), though they are not directly added with most deicing salts. We will compare these trends to other long-term sites across the United States, and quantify relationships between cation trends and land cover, road density, and snowfall.

  8. Thermodynamics and defect chemistry of substitutional and interstitial cation doping in layered α-V2O5.

    Science.gov (United States)

    McColl, Kit; Johnson, Ian; Corà, Furio

    2018-05-25

    A systematic study of the location and energetics of cation dopants in α-V2O5 has been conducted using pair-potential methods, supplemented by first-principles calculations. The consequences of doping on intrinsic defect equilibria have been discussed and the effects of selected dopants on Li+ and Mg2+ diffusion energy barriers have been investigated.

  9. Cation and anion dependence of stable geometries and stabilization energies of alkali metal cation complexes with FSA(-), FTA(-), and TFSA(-) anions: relationship with physicochemical properties of molten salts.

    Science.gov (United States)

    Tsuzuki, Seiji; Kubota, Keigo; Matsumoto, Hajime

    2013-12-19

    Stable geometries and stabilization energies (Eform) of the alkali metal complexes with bis(fluorosulfonyl)amide, (fluorosulfonyl)(trifluoromethylslufonyl)amide and bis(trifluoromethylsulfonyl)amide (FSA(-), FTA(-) and TFSA(-)) were studied by ab initio molecular orbital calculations. The FSA(-) complexes prefer the bidentate structures in which two oxygen atoms of two SO2 groups have contact with the metal cation. The FTA(-) and TFSA(-) complexes with Li(+) and Na(+) prefer the bidentate structures, while the FTA(-) and TFSA(-) complexes with Cs(+) prefer tridentate structures in which the metal cation has contact with two oxygen atoms of an SO2 group and one oxygen atom of another SO2 group. The two structures are nearly isoenergetic in the FTA(-) and TFSA(-) complexes with K(+) and Rb(+). The magnitude of Eform depends on the alkali metal cation significantly. The Eform calculated for the most stable TFSA(-) complexes with Li(+), Na(+), K(+), Rb(+) and Cs(+) cations at the MP2/6-311G** level are -137.2, -110.5, -101.1, -89.6, and -84.1 kcal/mol, respectively. The viscosity and ionic conductivity of the alkali TFSA molten salts have strong correlation with the magnitude of the attraction. The viscosity increases and the ionic conductivity decreases with the increase of the attraction. The melting points of the alkali TFSA and alkali BETA molten salts also have correlation with the magnitude of the Eform, which strongly suggests that the magnitude of the attraction play important roles in determining the melting points of these molten salts. The anion dependence of the Eform calculated for the complexes is small (less than 2.9 kcal/mol). This shows that the magnitude of the attraction is not the cause of the low melting points of alkali FTA molten salts compared with those of corresponding alkali TFSA molten salts. The electrostatic interactions are the major source of the attraction in the complexes. The electrostatic energies for the most stable TFSA

  10. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    Science.gov (United States)

    Joiner, C H; Platt, O S; Lux, S E

    1986-12-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.

  11. Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides

    NARCIS (Netherlands)

    Van Montfoort, JE; Muller, M; Groothuis, GMM; Meijer, DKF; Koepsell, H; Meier, PJ

    Previous inhibition studies with taurocholate and cardiac glycosides suggested the presence of separate uptake systems for small "type I" (system1) and for bulky "type II" (system2) organic cations in rat hepatocytes. To identify the transport systems involved in type I and type II organic cation

  12. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  13. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  14. Vibrational Spectroscopy of Cation and Anion Channelrhodopsins

    Science.gov (United States)

    Yi, Adrian S.

    Optogenetics is a technique to control and monitor cell activity with light by expression of specific microbial rhodopsins. Cation channelrhodopsins (CCRs) and anion channelrhodopsins (ACRs) have been demonstrated to activate and silence cell activity, respectively. In this dissertation, the molecular mechanisms of two channelrhodopsins are studied: a CCR from Chlamydomonas augustae (CaChR1) and an ACR from Guillardia theta (GtACR1). The recently discovered GtACR1is especially interesting, as it achieves neural silencing with 1/1000th of the light intensity compared to previous microbial rhodopsin silencing ion pumps. Static and time-resolved resonance Raman, FTIR difference, and UV-visible spectroscopies were utilized in addition to various biochemical and genetic techniques to explore the molecular mechanisms of these channelrhodopsins. In CaChR1, Glu169 and Asp299 residues are located nearby the Schiff base (SB) similar to the homologous residues Asp85 and Asp212, which exist in an ionized state in unphotolyzed bacteriorhodopsin (BR) and play a key role in proton pumping. We observe significant changes in the protonation states of the SB, Glu169, and Asp299 of CaChR1 leading up to the open-channel P2 state, where all three groups exist in a charge neutral state. This unusual charge neutrality along with the position of these groups in the CaChR1 ion channel suggests that charge neutrality plays an important role in cation gating and selectivity in these low efficiency CCRs. Significant differences exist in the photocycle and protonation/hydrogen bonding states of key residues inGtACR1compared to BR and CaChR1. Resonance Raman studies reveal that in the unphotolyzed state of GtACR1, residues Glu68, Ser97 (BR Asp85 homolog), and Asp234 (BR Asp212 homolog) located near the SB exist in charge neutral states. Furthermore, upon K formation, these residues do not change their protonation states. At room temperature, a slow decay of the red-shifted K intermediate is

  15. Cation-π interaction of the univalent sodium cation with [2.2.2]paracyclophane: Experimental and theoretical study

    Science.gov (United States)

    Makrlík, Emanuel; Sýkora, David; Böhm, Stanislav; Vaňura, Petr

    2018-02-01

    By employing electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent sodium cation (Na+) forms with [2.2.2]paracyclophane (C24H24) the cationic complex [Na(C24H24)]+. Further, applying quantum chemical DFT calculations, the most probable structure of the [Na(C24H24)]+ complex was derived. In the resulting complex with a symmetry very close to C3, the "central" cation Na+, fully located in the cavity of the parent [2.2.2]paracyclophane ligand, is bound to all three benzene rings of [2.2.2]paracyclophane via cation-π interaction. Finally, the interaction energy, E(int), of the considered cation-π complex [Na(C24H24)]+ was found to be -267.3 kJ/mol, confirming the formation of this fascinating complex species as well.

  16. Immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine in infants: a comparative, observer-blind, randomised, controlled trial.

    Science.gov (United States)

    Sáez-Llorens, Xavier; Clemens, Ralf; Leroux-Roels, Geert; Jimeno, José; Clemens, Sue Ann Costa; Weldon, William C; Oberste, M Steven; Molina, Natanael; Bandyopadhyay, Ananda S

    2016-03-01

    Following the proposed worldwide switch from trivalent oral poliovirus vaccine (tOPV) to bivalent types 1 and 3 OPV (bOPV) in 2016, inactivated poliovirus vaccine (IPV) will be the only source of protection against poliovirus type 2. With most countries opting for one dose of IPV in routine immunisation schedules during this transition because of cost and manufacturing constraints, optimisation of protection against all poliovirus types will be a priority of the global eradication programme. We assessed the immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine (mIPV2HD) in infants. This observer-blind, comparative, randomised controlled trial was done in a single centre in Panama. We enrolled healthy infants who had not received any previous vaccination against poliovirus. Infants were randomly assigned (1:1) by computer-generated randomisation sequence to receive a single dose of either mIPV2HD or standard trivalent IPV given concurrently with a third dose of bOPV at 14 weeks of age. At 18 weeks, all infants were challenged with one dose of monovalent type 2 OPV (mOPV2). Primary endpoints were seroconversion and median antibody titres to type 2 poliovirus 4 weeks after vaccination with mIPV2HD or IPV; and safety (as determined by the proportion and nature of serious adverse events and important medical events for 8 weeks after vaccination). The primary immunogenicity analyses included all participants for whom a post-vaccination blood sample was available. All randomised participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02111135. Between April 14 and May 9, 2014, 233 children were enrolled and randomly assigned to receive mIPV2HD (117 infants) or IPV (116 infants). 4 weeks after vaccination with mIPV2HD or IPV, seroconversion to poliovirus type 2 was recorded in 107 (93·0%, 95% CI 86·8-96·9) of 115 infants in the mIPV2HD group compared with 86 (74·8%, 65·8

  17. Kinetic Monte Carlo Simulation of Cation Diffusion in Low-K Ceramics

    Science.gov (United States)

    Good, Brian

    2013-01-01

    Low thermal conductivity (low-K) ceramic materials are of interest to the aerospace community for use as the thermal barrier component of coating systems for turbine engine components. In particular, zirconia-based materials exhibit both low thermal conductivity and structural stability at high temperature, making them suitable for such applications. Because creep is one of the potential failure modes, and because diffusion is a mechanism by which creep takes place, we have performed computer simulations of cation diffusion in a variety of zirconia-based low-K materials. The kinetic Monte Carlo simulation method is an alternative to the more widely known molecular dynamics (MD) method. It is designed to study "infrequent-event" processes, such as diffusion, for which MD simulation can be highly inefficient. We describe the results of kinetic Monte Carlo computer simulations of cation diffusion in several zirconia-based materials, specifically, zirconia doped with Y, Gd, Nb and Yb. Diffusion paths are identified, and migration energy barriers are obtained from density functional calculations and from the literature. We present results on the temperature dependence of the diffusivity, and on the effects of the presence of oxygen vacancies in cation diffusion barrier complexes as well.

  18. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines.

    Science.gov (United States)

    Dodd, Caitlin N; Romio, Silvana A; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S K; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Gimenez-Sanchez, Francisco; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-09-13

    The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which has been an influenza vaccine safety concern since the swine flu pandemic of 1976, using a common protocol among high and middle-income countries. The primary objective of this project was to demonstrate the feasibility and utility of global collaboration in the assessment of vaccine safety, including countries both with and without an established infrastructure for vaccine active safety surveillance. A second objective, included a priori, was to assess the risk of GBS following pH1N1 vaccination. The primary analysis used the self-controlled case series (SCCS) design to estimate the relative incidence (RI) of GBS in the 42 days following vaccination with pH1N1 vaccine in a pooled analysis across databases and in analysis using a meta-analytic approach. We found a relative incidence of GBS of 2.42 (95% CI 1.58-3.72) in the 42 days following exposure to pH1N1 vaccine in analysis of pooled data and 2.09 (95% CI 1.28-3.42) using the meta-analytic approach. This study demonstrates that international collaboration to evaluate serious outcomes using a common protocol is feasible. The significance and consistency of our findings support a conclusion of an association between 2009 H1N1 vaccination and GBS. Given the rarity of the event the relative incidence found does not provide evidence in contradiction to international recommendations for the continued use of influenza vaccines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Removal of radiocesium using cation exchange resin

    International Nuclear Information System (INIS)

    Morita-Murase, Yuko; Mizumura, Ryosuke; Tachibana, Yoshitaka; Kanazawa, Hideko

    2013-01-01

    Cation exchange resins (calcium polystyrene sulfonate, Ca-resin and sodium polystyrene sulfonate, Na-resin) have been used as agents to improve hyperkerlemia. For removing 137 Cs from the human body, the adsorption ability of the resin for 137 Cs was examined and evaluated. Resin (0.03 g) and 137 Cs (ca.1 kBq) were introduced into 3 mL of water, the Japanese Pharmacopoeia 1st fluid for a dissolution test (pH 1.2) and 2nd fluid (pH 6.8), respectively, and shaken. After 1-3 hours, the 137 Cs adsorption (%) of Na-resin was 99% in water, 60% in a pH 1.2 fluid and, 66% in a pH 6.8 fluid. By adding potassium, the 137 Cs adsorption (%) of Ca-resin was reduced. However, the 137 Cs adsorption (%) of Na-resin was almost unchanged. These results show that both resins have adsorption ability for 137 Cs in the stomach and the intestines. Therefore, the proposed method will be an effective means in the case of a radiological emergency due to 137 Cs. (author)

  20. Cyanide ion complexation by a cationic borane.

    Science.gov (United States)

    Chiu, Ching-Wen; Gabbaï, François P

    2008-02-14

    While we have previously reported that [1-(Mes2B)-8-(Me3NCH2)-C10H6]+ ([2]+) complexes fluoride ions to form [1-(Mes2FB)-8-(Me3NCH2)-C10H6] (2-F), we now show that this cationic borane also complexes cyanide to form [1-(Mes2(NC)B)-8-(Me3NCH2)-C10H6] (2-CN). This reaction also occurs under biphasic conditions (H2O-CHCl3) and may serve to transport cyanide in organic phases. The zwitterionic cyanoborate 2-CN has been fully characterized and its crystal structure determined. UV-vis titration experiments carried out in THF indicate that [2]+ has a higher affinity for fluoride (K > 10(8) M(-1)) than cyanide (K = 8.0 (+/-0.5) x 10(5) M(-1)). Steric effects which impede cyanide binding to the sterically congested boron center of [2]+ are most likely at the origin of this selectivity. Finally, electrochemical studies indicate that [2]+ is significantly more electrophilic than its neutral precursor 1-(Mes2B)-8-(Me2NCH2)-(C10H6) (1). These studies also show that reduction of [2]+ is irreversible, possibly because of elimination of the NMe3 moiety under reductive conditions. In fact, [2]OTf reacts with NaBH4 to afford 1-(Mes2B)-8-(CH3)-(C10H6) (4) which has also been fully characterized.

  1. Interaction of cationic drugs with liposomes.

    Science.gov (United States)

    Howell, Brett A; Chauhan, Anuj

    2009-10-20

    Interactions between cationic drugs and anionic liposomes were studied by measuring binding of drugs and the effect of binding on liposome permeability. The measurements were analyzed in the context of a continuum model based on electrostatic interactions and a Langmuir isotherm. Experiments and modeling indicate that, although electrostatic interactions are important, the fraction of drug sequestered in the double-layer is negligible. The majority of drug enters the bilayer with the charged regions interacting with the charged lipid head groups and the lipophilic regions associated with the bilayer. The partitioning of the drug can be described by a Langmuir isotherm with the electrostatic interactions increasing the sublayer concentration of the drug. The binding isotherms are similar for all tricyclic antidepressants (TCA). Bupivacaine (BUP) binds significantly less compared to TCA because its structure is such that the charged region has minimal interactions with the lipid heads once the BUP molecule partitions inside the bilayer. Conversely, the TCAs are linear with distinct hydrophilic and lipophilic regions, allowing the lipophilic regions to lie inside the bilayer and the hydrophilic regions to protrude out. This conformation maximizes the permeability of the bilayer, leading to an increased release of a hydrophilic fluorescent dye from liposomes.

  2. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    Science.gov (United States)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  3. Electrochemical insertion in solid media of alkali cations in carbonated host structures (polyacetylene, fullerene and graphite)

    International Nuclear Information System (INIS)

    Lemont, Sylvain

    1994-01-01

    This research thesis reports the investigation of electrochemical insertion of alkali cations in different host carbon containing structures (polyacetylene, fullerene, graphite). After a recall of the main characteristics of the three considered compounds, the author reports a bibliographical survey, describes the different compounds which can be used as solid electrolytes and explains the choice of the studied compounds with respect to their phase diagrams, ionic conductivity, electrochemical stability range. He describes the experimental methods, discusses the results obtained by intercalation of alkali cations (Li + , Na + , K + ) in polyacetylene. He discusses the electrochemical and structural results obtained on intercalation compounds of lithium and sodium ions in fullerene. The structures of several phases have been obtained by electron diffraction. Preliminary studies of electron energy loss spectrometry (EELS) are reported. The last part compares the results obtained on two types of graphite: pellets and spherules [fr

  4. Improvement in ionic conductivities of poly-(2-vinylpyridine) by ...

    Indian Academy of Sciences (India)

    cal properties, easy fabrication into thin films of desired sizes and their ability to ... liquid state can be used for electroplating and water purifi- cation. The merits of ... that its ionic conductivity increases very appreciably and. P-2VP-HI proved to ...

  5. Codes of conduct in public schools: a legal perspective

    African Journals Online (AJOL)

    Erna Kinsey

    cation change in South Africa, particularly the transformation of public schools ... been granted legal personality to act as "juristic persons" (i.e. legal persons ..... cess, a decision is made to amend, or repeal, the code of conduct, de- pending on ...

  6. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    Science.gov (United States)

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  7. Effect of alkali metal cations on anodic dissolution of gold in cyanide solutions. Potentiodynamic measurement

    International Nuclear Information System (INIS)

    Bek, R.Yu.; Rogozhnikov, N.A.; Kosolapov, G.V.

    1998-01-01

    It is shown that gold dissolution rate in cyanic solutions in Li + , Na + , K + , Cs + cation series increases basically and decreases under cation concentration increasing. Cation effect on current value is caused by cations drawing in dense layer. A model of dense part of double layer with two Helmholtz planes (anion and cation) is suggested. Effect of nature and concentration of alkali metal cations on gold dissolution rate is explained on the base of the model [ru

  8. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  9. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1995-04-01

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  10. Microscopic theory of cation exchange in CdSe nanocrystals.

    Science.gov (United States)

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  11. Cation Exchange Capacity of Biochar: An urgent method modification

    Science.gov (United States)

    Munera, Jose; Martinsen, Vegard; Mulder, Jan; Tau Strand, Line; Cornelissen, Gerard

    2017-04-01

    A better understanding of the cation exchange capacity (CEC) values of biochar and its acid neutralizing capacity (ANC) is crucial when tailoring a single biochar for a particular soil and crop. Literature values for the CEC of biochar are surprisingly variable, commonly ranging from 5 to 50 cmol+/Kg even as high as 69 to 204 cmol+/Kg and often poorly reproducible, suggesting methodological problems. Ashes and very fine pores in biochar may complicate the analysis and thus compromise the results. Here, we modify and critically assess different steps in a common method for CEC determination in biochar and investigate how the measured CEC may be affected by slow cation diffusion from micro-pores. We modified the existing ammonium acetate (NH4-OAc) method (buffered at pH 7), based on displaced ammonium (NH4+) in potassium chloride (KCl) extracts after removing excess NH4-OAc with alcohol in batch mode. We used pigeon pea biochar (produced at 350 ˚C; particle size 0.5mm to 2mm) to develop the method and we tested its reproducibility in biochars with different ANC. The biochar sample (1.00g) was pH-adjusted to 7 after 2 days of equilibration, using hydrochloric acid (HCl), and washed with water until the conductivity of the water was modified method were highly reproducible and that 1 day shaking with NH4OAc and KCl is enough to saturate the exchange sites with NH4+ and subsequently with K+. The biochar to NH4OAc solution ratio did not affect the measured CEC. Three washings with at least 15 ml alcohol are required to remove excess NH4-OAc. We found the CEC of biochar with the displacement method from pigeon pea, corncob, rice husk and cacao shell to be 26.4(±0.3), 19.2(±0.5), 20.5(±0.4), 46.5±(0.2) cmol+/Kg, respectively. The selected batch experiment allows a large sample throughput, less laboratory equipment is needed and shaking ensures better contact between the extracting solution and the exchange sites.

  12. Quantitative imaging of cation adsorption site densities in undisturbed soil

    Science.gov (United States)

    Keck, Hannes; Strobel, Bjarne W.; Gustafsson, Jon-Petter; Koestel, John

    2017-04-01

    The vast majority of present soil system models assume a homogeneous distribution and accessibility of cation adsorption sites (CAS) within soil structural units like e.g. soil horizons. This is however in conflict with several recent studies finding that CAS in soils are not uniformly but patchily distributed at and below the cm-scale. It is likely that the small-scale distribution of CAS has significant impact on the performance of these models. However, systematic approaches to map CAS densities in undisturbed soil with 3-D resolution that could lead to respective model improvements are still lacking. We therefore investigated the 3-D distribution of the CAS in undisturbed soils using X-ray scanning and barium ions as a contrast agent. We appraised the validity of the approach by comparing X-ray image-derived cation exchange coefficients (CEC) with ones obtained using the ammonium acetate method. In the process, we evaluated whether there were larger CAS concentrations at aggregate and biopore boundaries as it is often hypothesized. We sampled eight small soil cores (approx. 10 ccm) from different locations with contrasting soil texture and organic matter contents. The samples were first saturated with a potassium chloride solution (0.1 mol per liter), whereupon a 3-D X-ray image was taken. Then, the potassium chloride solution was flushed out with a barium chloride solution (0.3 mol per liter) with barium replacing the potassium from the CAS due to its larger exchange affinity. After X-ray images as well as electrical conductivity in the effluent indicated that the entire sample had been saturated with the barium chloride, the sample was again rinsed using the potassium chloride solution. When the rinsing was complete a final 3-D X-ray image was acquired. The difference images between final and initial 3-D X-ray images were interpreted as depicting the adsorbed barium as the density of barium exceeds the one of potassium by more than 2 times. The X-ray image

  13. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    OpenAIRE

    Boughlala, Z.; Guerra, C.F.; Bickelhaupt, F.M.

    2016-01-01

    Abstract We have analyzed the structure and bonding of gas?phase Cl?X and [HCl?X]+ complexes for X+=?H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl? and HCl for the various cations. The Cl?X bond becomes longer and weaker along X+?=?H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence ...

  14. Converting Hg-1212 to Tl-2212 via Tl-Hg cation exchange in combination with Tl cation intercalation

    International Nuclear Information System (INIS)

    Zhao Hua; Wu, Judy Z

    2007-01-01

    In a cation exchange process developed recently for epitaxy of HgBa 2 CaCu 2 O 6 (Hg-1212) thin films, TlBa 2 CaCu 2 O 7 (Tl-1212) or Tl 2 Ba 2 CaCu 2 O 9 (Tl-2212) precursor films were employed as the precursor matrices and Hg-1212 was obtained by replacing Tl cations on the precursor lattice with Hg cations. The reversibility of the cation exchange dictates directly the underlying mechanism. Following our recent success in demonstrating a complete reversibility within '1212' structure, we show the conversion from Hg-1212 to Tl-2212 can be achieved via two steps: conversion from Hg-1212 to Tl-1212 followed by Tl intercalation to form double Tl-O plans in each unit cell. The demonstrated reversibility of the cation exchange process has confirmed the process is a thermal perturbation of weakly bonded cations on the lattice and the direction of the process is determined by the population ratio between the replacing cations and that to be replaced

  15. Endomembrane Cation Transporters and Membrane Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Sze, Heven [Univ. of Maryland, College Park, MD (United States). Dept. of Cell Biology & Molecular Genetics

    2017-04-01

    Multicellular, as well as unicellular, organisms have evolved mechanisms to regulate ion and pH homeostasis in response to developmental cues and to a changing environment. The working hypothesis is that the balance of fluxes mediated by diverse transporters at the plasma membrane and in subcellular organelles determines ionic cellular distribution, which is critical for maintenance of membrane potential, pH control, osmolality, transport of nutrients, and protein activity. An emerging theme in plant cell biology is that cells respond and adapt to diverse cues through changes of the dynamic endomembrane system. Yet we know very little about the transporters that might influence the operation of the secretory system in plants. Here we focus on transporters that influence alkali cation and pH homeostasis, mainly in the endomembrane/ secretory system. The endomembrane system of eukaryote cells serves several major functions: i) sort cargo (e.g. enzymes, transporters or receptors) to specific destinations, ii) modulate the protein and lipid composition of membrane domains through remodeling, and iii) determine and alter the properties of the cell wall through synthesis and remodeling. We had uncovered a novel family of predicted cation/H+ exchangers (CHX) and K+ efflux antiporters (KEA) that are prevalent in higher plants, but rare in metazoans. We combined phylogenetic and transcriptomic analyses with molecular genetic, cell biological and biochemical studies, and have published the first reports on functions of plant CHXs and KEAs. CHX studied to date act at the endomembrane system where their actions are distinct from the better-studied NHX (Na/K-H+ exchangers). Arabidopsis thaliana CHX20 in guard cells modulate stomatal opening, and thus is significant for vegetative survival. Other CHXs ensure reproductive success on dry land, as they participate in organizing pollen walls, targeting of pollen tubes to the ovule or promoting

  16. Conducting single-molecule magnet materials.

    Science.gov (United States)

    Cosquer, Goulven; Shen, Yongbing; Almeida, Manuel; Yamashita, Masahiro

    2018-05-11

    Multifunctional molecular materials exhibiting electrical conductivity and single-molecule magnet (SMM) behaviour are particularly attractive for electronic devices and related applications owing to the interaction between electronic conduction and magnetization of unimolecular units. The preparation of such materials remains a challenge that has been pursued by a bi-component approach of combination of SMM cationic (or anionic) units with conducting networks made of partially oxidized (or reduced) donor (or acceptor) molecules. The present status of the research concerning the preparation of molecular materials exhibiting SMM behaviour and electrical conductivity is reviewed, describing the few molecular compounds where both SMM properties and electrical conductivity have been observed. The evolution of this research field through the years is discussed. The first reported compounds are semiconductors in spite being able to present relatively high electrical conductivity, and the SMM behaviour is observed at low temperatures where the electrical conductivity of the materials is similar to that of an insulator. During the recent years, a breakthrough has been achieved with the coexistence of high electrical conductivity and SMM behaviour in a molecular compound at the same temperature range, but so far without evidence of a synergy between these properties. The combination of high electrical conductivity with SMM behaviour requires not only SMM units but also the regular and as far as possible uniform packing of partially oxidized molecules, which are able to provide a conducting network.

  17. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. © The Author(s) 2011. Published by Oxford University Press.

  18. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Science.gov (United States)

    Reshetnikov, Roman V.; Sponer, Jiri; Rassokhina, Olga I.; Kopylov, Alexei M.; Tsvetkov, Philipp O.; Makarov, Alexander A.; Golovin, Andrey V.

    2011-01-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange. PMID:21893589

  19. Use of marker ion and cationic surfactant plastic membrane electrode for potentiometric titration of cationic polyelectrolytes.

    Science.gov (United States)

    Masadome, Takashi; Imato, Toshihiko

    2003-07-04

    A plasticized poly (vinyl chloride) (PVC) membrane electrode sensitive to stearyltrimethylammonium (STA) ion is applied to the determination of cationic polyelectrolytes such as poly (diallyldimethylammonium chloride) (Cat-floc) by potentiometric titration, using a potassium poly (vinyl sulfate) (PVSK) solution as a titrant. The end-point of the titration is detected as the potential change of the plasticized PVC membrane electrode caused by decrease in the concentration of STA ion added to the sample solution as a marker ion due to the ion association reaction between the STA ion and PVSK. The effects of the concentration of STA ion, coexisting electrolytes in the sample solution and pH of the sample on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of cationic polyelectrolyte and the end-point volume of the titrant exists in the concentration range from 2x10(-5) to 4x10(-4) N for Cat-floc, glycol chitosan, and methylglycol chitosan.

  20. Chemical bonding and structural ordering of cations in silicate glasses

    International Nuclear Information System (INIS)

    Calas, G.; Cormier, L.; Galoisy, L.; Ramos, A.; Rossano, St.

    1997-01-01

    The specific surrounding of cations in multicomponent silicate glasses is briefly presented. Information about interatomic distances and site geometry may be gained by using spectroscopic methods among which x-ray absorption spectroscopy may be used for the largest number of glass components. Scattering of x-rays and neutrons may also be used to determine the importance of medium range order around specific cations. All the existing data show that cations occur in sites with a well-defined geometry, which are in most cases connected to the silicate polymeric network. Medium range order has been detected around cations such as Ti, Ca and Ni, indicating that these elements have an heterogeneous distribution within the glassy matrix. (authors)

  1. Dynamics of photoexcited Ba+ cations in 4He nanodroplets

    International Nuclear Information System (INIS)

    2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" >Leal, Antonio; 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain))" >Pi, Martí; Zhang, Xiaohang; Drabbels, Marcel; 2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France))" data-affiliation=" (Departament ECM, Facultat de Física, and IN2UB, Universitat de Barcelona, Diagonal 645, 08028 Barcelona (Spain); Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRS et Université Paul Sabatier-Toulouse 3, 118 route de Narbonne, F-31062 Toulouse Cedex 09 (France))" >Barranco, Manuel; Cargnoni, Fausto; Hernando, Alberto; Mateo, David; Mella, Massimo

    2016-01-01

    We present a joint experimental and theoretical study on the desolvation of Ba + cations in 4 He nanodroplets excited via the 6p ← 6s transition. The experiments reveal an efficient desolvation process yielding mainly bare Ba + cations and Ba + He n exciplexes with n = 1 and 2. The speed distributions of the ions are well described by Maxwell-Boltzmann distributions with temperatures ranging from 60 to 178 K depending on the excitation frequency and Ba + He n exciplex size. These results have been analyzed by calculations based on a time-dependent density functional description for the helium droplet combined with classical dynamics for the Ba + . In agreement with experiment, the calculations reveal the dynamical formation of exciplexes following excitation of the Ba + cation. In contrast to experimental observation, the calculations do not reveal desolvation of excited Ba + cations or exciplexes, even when relaxation pathways to lower lying states are included.

  2. Aggregation of trypsin and trypsin inhibitor by Al cation.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-04-01

    Al cation may trigger protein structural changes such as aggregation and fibrillation, causing neurodegenerative diseases. We report the effect of Al cation on the solution structures of trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis, UV-Visible, Fourier transform infrared (FTIR) spectroscopic methods and atomic force microscopy (AFM). Thermodynamic parameters showed Al-protein bindings occur via H-bonding and van der Waals contacts for trypsin and trypsin inhibitor. AFM showed that Al cations are able to force trypsin into larger or more robust aggregates than trypsin inhibitor, with trypsin 5±1 SE (n=52) proteins per aggregate and for trypsin inhibitor 8.3±0.7 SE (n=118). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced more alterations of trypsin inhibitor conformation than trypsin. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Significant role of cationic polymers in drug delivery systems.

    Science.gov (United States)

    Farshbaf, Masoud; Davaran, Soodabeh; Zarebkohan, Amir; Annabi, Nasim; Akbarzadeh, Abolfazl; Salehi, Roya

    2017-11-06

    Cationic polymers are characterized as the macromolecules that possess positive charges, which can be either inherently in the polymer side chains and/or its backbone. Based on their origins, cationic polymers are divided in two category including natural and synthetic, in which the possessed positive charges are as result of primary, secondary or tertiary amine functional groups that could be protonated in particular situations. Cationic polymers have been employed commonly as drug delivery agents due to their superior encapsulation efficacy, enhanced bioavailability, low toxicity and improved release profile. In this paper, we focus on the most prominent examples of cationic polymers which have been revealed to be applicable in drug delivery systems and we also discuss their general synthesis and surface modification methods as well as their controlled release profile in drug delivery.

  4. Changing certain dietary cationic and anionic minerals: Impact on ...

    African Journals Online (AJOL)

    Changing certain dietary cationic and anionic minerals: Impact on blood chemistry, milk ... Increased blood pH and serum HCO3 were noticed in buffaloes fed with LC ... Serum calcium and chloride increased with decreased DCAD level while ...

  5. Mercury release from deforested soils triggered by base cation enrichment

    International Nuclear Information System (INIS)

    Farella, N.; Lucotte, M.; Davidson, R.; Daigle, S.

    2006-01-01

    The Brazilian Amazon has experienced considerable colonization in the last few decades. Family agriculture based on slash-and-burn enables millions of people to live in that region. However, the poor nutrient content of most Amazonian soils requires cation-rich ashes from the burning of the vegetation biomass for cultivation to be successful, which leads to forest ecosystem degradation, soil erosion and mercury contamination. While recent studies have suggested that mercury present in soils was transferred towards rivers upon deforestation, little is known about the dynamics between agricultural land-use and mercury leaching. In this context, the present study proposes an explanation that illustrates how agricultural land-use triggers mercury loss from soils. This explanation lies in the competition between base cations and mercury in soils which are characterized by a low adsorption capacity. Since these soils are naturally very poor in base cations, the burning of the forest biomass suddenly brings high quantities of base cations to soils, destabilizing the previous equilibrium amongst cations. Base cation enrichment triggers mobility in soil cations, rapidly dislocating mercury atoms. This conclusion comes from principal component analyses illustrating that agricultural land-use was associated with base cation enrichment and mercury depletion. The overall conclusions highlight a pernicious cycle: while soil nutrient enrichment actually occurs through biomass burning, although on a temporary basis, there is a loss in Hg content, which is leached to rivers, entering the aquatic chain, and posing a potential health threat to local populations. Data presented here reflects three decades of deforestation activities, but little is known about the long-term impact of such a disequilibrium. These findings may have repercussions on our understanding of the complex dynamics of deforestation and agriculture worldwide

  6. Isomerizations of the Nitromethane Radical Cation in the Gas Phase

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Carlsen, Lars; Elbel, Susanne

    1986-01-01

    The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane/aci-nitromethane tauto......The concurrent isomerizations of the nitromethane radical cation to its aci-nitromethane and methylnitrite isomers, respectively, has been established based on metastable ion studies and collision activation mass spectrometry. The energy diagram for the ionized nitromethane...

  7. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Meihui [Univ. of California, Berkeley, CA (United States)

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na2S4 and Na2S5 were measured as a function of temperature (range: 300 to 360°C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  8. The electrical conductivity of sodium polysulfide melts

    Energy Technology Data Exchange (ETDEWEB)

    Meihui Wang.

    1992-06-01

    The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

  9. Tunable states of interlayer cations in two-dimensional materials

    International Nuclear Information System (INIS)

    Sato, K.; Numata, K.; Dai, W.; Hunger, M.

    2014-01-01

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of 23 Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and 23 Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed

  10. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  11. Separation of cations of heavy metalsfrom concentrated galvanic drains

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2018-01-01

    Full Text Available When applying galvanic coatings, soluble salts of heavy metals such as iron, copper, nickel, zinc, cadmium, chromium and other metals are used, toxic cations enter the water, with subsequent migration to the biosphere. To date, many methods have been developed for cleaning galvanic sewage, which cannot be considered sufficiently effective. The joint sorption of divalent cations of copper, nickel and cadmium from concentrated aqueous solutions was investigated. Calculation and experimental methods were used to determine the separation conditions of the bivalent ion systems that differed and close in sorption properties on the aminophosphonic polyampholyte Purolite S950 in a natrium form. It is shown that the cadmium (II cations can be isolated from solutions containing copper (II or nickel (II cations even at the height of the sorption layer of 0.13 m due to the difference in the defining characteristics of the cations. This layer height can be used not only in a chromatographic column, but also in a concentrating cartridge. Separation of the copper (II and nickel (II close to the sorption properties requires an absorbing layer of 0.76 m, which can only be used in a chromatographic column, but not for a concentrating cartridge. In this paper, the degrees of ion separation in various sorption conditions are calculated. The applicability of the conductometric method for controlling the ion exchange process is shown not only when the free cations are isolated from aqueous solutions but also bound to complexes.

  12. Cations-clays interactions: the Fe(II) case; application to the problematic of the French deep nuclear repository field concept

    International Nuclear Information System (INIS)

    Tournassat, Ch.

    2003-07-01

    Solute Fe(II) - montmorillonite interactions are studied in anoxic conditions and at room temperature for reaction times from hour to week. Fe 2+ is shown to be sorbed on cation exchange site with the same affinity than Ca 2+ . In chloride anionic medium, Fe(II) form ionic pairs - FeCl + - which is sorbed with almost the same affinity than CaCl + and MgCl + are. The exchange thermodynamics constants derived from this study are used to simulate the change in the exchanger composition as clay river particles enter seawater. In high concentration chloride medium, as seawater, monovalent ions (Na + and CaCl + , MgCl + ionic pairs) are shown to be the major species of the exchanger. Fe 2+ is sorbed specifically on the montmorillonite edge surfaces with a very high affinity. Simple complexation model are able to model the sorption data and show that the Fe 2+ affinity for clay edge surfaces is ∼ 1000 times higher than the Zn 2+ one. Moessbauer experiments combined to sorption, titration and dissolution experiments show that the Fe 2+ sorption is due to several different reactions: - effective competitive sorption with replacement of previously sorbed or structural cations (Zn 2+ , Mg 2+ ); - cooperative sorption together with H 4 SiO 4 , in agreement with a possible surface precipitation of a Fe - Si phase; - a sorption mechanism followed by an oxidation reaction, with a release of two H + in solution per Fe(II) sorbed, and a product (Fe(Ill)) fitting better octahedral surface 'sites'. All these phenomena can not be taken into account in a classical surface complexation model. Hence, an innovative model is developed to model clay - solute interactions, based on a morphological and structural approach. Montmorillonite edge surface area was determined using two independent methods, AFM measurement and low-pressure gas adsorption, that give the same value for this area, i.e. 8.5 m 2 g -1 . The clay - solute interface was found to be constituted by a mix of, at least, 27

  13. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling.

    Science.gov (United States)

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm(4+) > Spd(3+) > Put(2+). On the contrary, effects of polyamines on the plasma membrane (PM) cation and K(+)-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H(+) pumps and Ca(2+) pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca(2+) influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment.

  14. Radiation induced graft copolymerization for preparation of cation exchange membranes: a review

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef; Hamdani Saidi; Hussin Mohd Nor

    1999-01-01

    Cation exchange membranes are regarded as the ideal solid polymer electrolyte materials for the development of various electrochemical energy conversion applications where significant improvements in the current density are required. Such membranes require special polymers and preparation techniques to maintain high chemical , mechanical and thermal stability in addition to high ionic conductivity and low resistance. A lot of different techniques have been proposed in the past to prepare such membranes. Radiation-induced graft copolymerization provides an attractive ft method for modification of chemical and physical properties of polymeric materials and is of particular interest in achieving specially desired cation exchange membranes as well as excellent membrane properties. This is due to the ability to control the membrane compositions as well as properties by proper selection of grafting conditions. Therefore numerous parameters have to be investigated to properly select the right polymeric materials, radiation grafting technique and the grafting conditions to be employed. In this paper a state-of-the-art of radiation-induced graft copolymerization for preparation of cation exchange membranes and their applications are briefly reviewed. (Author)

  15. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  16. Benzannulated tris(2-mercapto-1-imidazolyl)hydroborato ligands: tetradentate κ4-S3H binding and access to monomeric monovalent thallium in an [S3] coordination environment.

    Science.gov (United States)

    Rong, Yi; Palmer, Joshua H; Parkin, Gerard

    2014-01-21

    The benzannulated tris(mercaptoimidazolyl)borohydride sodium complex, [Tm(Bu(t)Benz)]Na, has been synthesized via the reaction of NaBH4 with 1-tert-butyl-1,3-dihydro-2H-benzimidazole-2-thione, while [Tm(MeBenz)]K has been synthesized via the reaction of KBH4 with 1-methyl-1,3-dihydro-2H-benzimidazole-2-thione. The molecular structures of the solvated adducts, {[Tm(Bu(t)Benz)]Na(THF)}2(μ-THF)2 and [Tm(MeBenz)]K(OCMe2)3, have been determined by X-ray diffraction, which demonstrates that the [Tm(R)] ligands in these complexes adopt different coordination modes to that in {[Tm(MeBenz)]Na}2(μ-THF)3. Specifically, while the [Tm(MeBenz)] ligand of the sodium complex {[Tm(MeBenz)]Na}2(μ-THF)3 adopts a κ(3)-S3 coordination mode, the potassium complex [Tm(MeBenz)]K(OCMe2)3 adopts a most uncommon inverted κ(4)-S3H coordination mode in which the potassium binds to all three sulfur donors and the hydrogen of the B-H group in a linear KH-B manner. Furthermore, the [Tm(Bu(t)Benz)] ligand of {[Tm(Bu(t)Benz)]Na(THF)}2(μ-THF)2 adopts a κ(3)-S2H coordination mode, thereby demonstrating the flexibility of this ligand system. The monovalent thallium compounds, [Tm(MeBenz)]Tl and [Tm(Bu(t)Benz)]Tl, have been obtained via the corresponding reactions of [Tm(MeBenz)]Na and [Tm(Bu(t)Benz)]Na with TlOAc. X-ray diffraction demonstrates that the three sulfur donors of the [Tm(RBenz)] ligands of both [Tm(MeBenz)]Tl and [Tm(Bu(t)Benz)]Tl chelate to thallium. This coordination mode is in marked contrast to that in other [Tm(R)]Tl compounds, which exist as dinuclear molecules wherein two of the sulfur donors coordinate to different thallium centers. As such, this observation provides further evidence that benzannulation promotes κ(3)-S3 coordination in this system.

  17. Efficacy of a Monovalent Human-Bovine (116E) Rotavirus Vaccine in Indian Infants: A Randomised Double Blind Placebo Controlled Trial

    Science.gov (United States)

    Bhandari, Nita; Rongsen-Chandola, Temsunaro; Bavdekar, Ashish; John, Jacob; Antony, Kalpana; Taneja, Sunita; Goyal, Nidhi; Kawade, Anand; Kang, Gagandeep; Rathore, Sudeep Singh; Juvekar, Sanjay; Muliyil, Jayaprakash; Arya, Alok; Shaikh, Hanif; Abraham, Vinod; Vrati, Sudhanshu; Proschan, Michael; Kohberger, Robert; Thiry, Georges; Glass, Roger; Greenberg, Harry B; Curlin, George; Mohan, Krishna; Harshavardhan, GVJA; Prasad, Sai; Rao, TS; Boslego, John; Bhan, Maharaj Kishan

    2015-01-01

    , the minimum interval between dosing and intussusception was 112 and 36 days, respectively. Interpretation The monovalent human-bovine (116E) rotavirus vaccine is effective and well-tolerated in Indian infants. PMID:24629994

  18. How the cation-cation π-π stacking occurs: A theoretical investigation into ionic clusters of imidazolium.

    Science.gov (United States)

    Gao, Wei; Tian, Yong; Xuan, Xiaopeng

    2015-07-01

    The cation-cation π-π stacking is uncommon but it is essential for the understanding of some supramolecular structures. We explore theoretically the nature of non-covalent interaction occurring in the stacked structure within modeled clusters of 1,3-dimethylimidazolium and halide. The evidences of the energy decomposition analysis (EDA) and reduced density gradient (RDG) approach are different from those of common π-π interaction. Isosurfaces with RDG also illustrate the strength of the titled π-π interaction and their region. Additionally, we find that the occurrence of this interaction is attributed to a few C-H···X interactions, as depicted using atom in molecule (AIM) method. This work presents a clear picture of the typical cation-cation π-π interaction and can serve to advance the understanding of this uncommon interaction. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Novel Reactivity Of The Cationic Complex

    International Nuclear Information System (INIS)

    Wang, J.; Dash, A.K.; Eisen, AM.; Berthet, J.C.; Ephritikhine, M.

    2002-01-01

    The catalytic chemistry of electrophilic d 0 /f organometallic complexes is nowadays under intense investigation, reaching a high level of sophistication. General aspects concerning these complexes are concentrated for most studies to the functionalization of unsaturated organic molecules. To cite an instance, the actinide-promoted oligomerization of terminal alkynes is of essential present concern since it may introduce to a diversity of organic enynes and oligoacetylene products that are valuable synthons for the synthesis of natural products. Enynes are the simplest oligomerization products of alkynes. We have demonstrated that organoactinides complexes of the type [Cp* 2 AnMe 2 AnMe 2 ] (Cp* = C 5 Me 5 ; An = U, Th) are active catalysts for the linear oligomerization of terminal alkynes and the extent of oligomerization was found to be strongly dependent on the electronic and steric properties of the alkyne substituents. Bulky alkynes were reacted with high regioselectivity toward dimer and/or trimers whereas for non-bulky alkynes, these compounds were transformed into oligomers with a total deficiency of regioselectivity. The addition of primary amines to the catalytic cycle, for An = Th, granted the chemoselective formation of dimers, chemoselectively, whereas for An = U, this control was not succeeded. In distinction to the neutral organoactinide complexes, homogeneous cationic d 0 /f n actinide complexes have been used as in the homogeneous polymerization of olefins as extremely active catalysts. Hence, the catalytic alkyne oligomerization is a opportune route to explore insertions and σ-bond metathesis reactivity of complexes. We have recently shown that the reaction of terminal alkynes (RC≡CH), promoted by [(Et 2 N) 3 U][BPh 4 ], in toluene, produces efficiently mostly the gem dimers (for R = Me, i Pr and n Bu) as the major products, whereas for bulky alkynes (R = t MS or t Bu) small amounts of the cis dimer was concomitantly obtained. A plausible

  20. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.

    Science.gov (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B

    2013-09-28

    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  1. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    Science.gov (United States)

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  2. (Cationic + nonionic) mixed surfactant aggregates for solubilisation of curcumin

    International Nuclear Information System (INIS)

    Kumar, Arun; Kaur, Gurpreet; Kansal, S.K.; Chaudhary, G.R.; Mehta, S.K.

    2016-01-01

    Highlights: • Critical micelle concentration of mixed surfactant has been measured. • Aqueous solubility and alkaline stability of curcumin has been significantly improved. • Location of curcumin within micelles has been evaluated. • Scavenging activity of curcumin has been improved. • Non-intercalative binding with ct-DNA has been observed. - Abstract: Curcumin is a potential drug for variety of diseases. Major limitations of curcumin are low water solubility, rapid hydrolytic degradation in alkaline medium and poor bioavailability. To overcome these limitations, highly potential mixed micellar system has been prepared. In order to reduce inter ionic repulsion and precipitation of surfactants, (cationic + non-ionic) mixed system have been chosen that directly influence its applicability. Hydrophobic chain of non-ionic surfactant significantly influences the cmc of mixed surfactant system as indicated by fluorescence and conductivity data. UV–visible spectroscopy analyses show that solubility, stability and antioxidant property of the curcumin is remarkably improved depending on cmc and aggregation number (N_a_g_g) of mixed surfactants, where N_a_g_g plays crucial role. Generally, curcumin undergoes complete degradation in slight basic medium, but stability has been maintained up to 8 h at pH-13 using formulated mixed micelles (only (20 to 25)% degraded). Location of curcumin which is monitored using emission spectroscopy, fluorescence quenching and "1H NMR spectroscopy techniques play the most important role. Observed results show that the major population of curcumin is located at the polar region and some are in hydrophobic region of the mixed micelles. To ensure the effect of mixed surfactants and curcumin loaded mixed surfactants on DNA, the interaction parameter indicates non-interclative interactions.

  3. ETUDE DE LA DISTRIBUTION DES CATIONS ECHANGEABLES

    African Journals Online (AJOL)

    SEI Joseph

    Belgium. In this work we are interested in studying the causes of deterioration of reinforced concrete pipeline in the region of east Morocco. This pipe is used for transporting drinking water. The alteration of the pipe was found damaged by corrosion way on a section well-defined. For this we conducted a sampling of section.

  4. Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu

    2018-01-01

    Abstract As a promising candidate for low‐cost and environmentally friendly thin‐film photovoltaics, the emerging kesterite‐based Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se2 (CIGS) and CdTe thin‐film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open‐circuit voltage (V OC) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth‐abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe‐based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending. PMID:29721421

  5. Cation Substitution in Earth-Abundant Kesterite Photovoltaic Materials.

    Science.gov (United States)

    Li, Jianjun; Wang, Dongxiao; Li, Xiuling; Zeng, Yu; Zhang, Yi

    2018-04-01

    As a promising candidate for low-cost and environmentally friendly thin-film photovoltaics, the emerging kesterite-based Cu 2 ZnSn(S,Se) 4 (CZTSSe) solar cells have experienced rapid advances over the past decade. However, the record efficiency of CZTSSe solar cells (12.6%) is still significantly lower than those of its predecessors Cu(In,Ga)Se 2 (CIGS) and CdTe thin-film solar cells. This record has remained for several years. The main obstacle for this stagnation is unanimously attributed to the large open-circuit voltage ( V OC ) deficit. In addition to cation disordering and the associated band tailing, unpassivated interface defects and undesirable energy band alignment are two other culprits that account for the large V OC deficit in kesterite solar cells. To capture the great potential of kesterite solar cells as prospective earth-abundant photovoltaic technology, current research focuses on cation substitution for CZTSSe-based materials. The aim here is to examine recent efforts to overcome the V OC limit of kesterite solar cells by cation substitution and to further illuminate several emerging prospective strategies, including: i) suppressing the cation disordering by distant isoelectronic cation substitution, ii) optimizing the junction band alignment and constructing a graded bandgap in absorber, and iii) engineering the interface defects and enhancing the junction band bending.

  6. THERMODYNAMICS OF ETHANOLAMMONIUM CATIONES DISSOCIATION IN AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    R. E. Khoma

    2017-03-01

    Full Text Available The literature data on the thermodynamics of ethanolamines onium cations dissociation have been systematized and generalized. The correlation between these cations dissociation thermodynamic functions (DH and DS and physicochemical properties (Tmp., Tbp, Pp, lgPow et al. has been revealed. There was a correlation between lipophilicity determined experimentally and calculated by QSAR. For monoethanolammonium, diethanolammonium, and their N-methyl and N-ethyl derivatives it was found dissociation thermodynamic functions to depend on bases lgPow. Acid-base dissociation of TRIS and triethanolamine onium cations does not correspond to said relationship because TRIS (primary amine, TEA (tertiary amine act differently on aqueous solutions of SO2. TEA, unlike MEA, DEA and MMEA, has a salting out effect towards sulfur dioxide because of competing hydration that promotes sulfite «onium» salts hydrolysis. TRIS promotes S(IV → S(VI sulphooxidation, in contrast to another ethanolamines. Enthalpy–enthropy compensation with isothermodynamic temperature 303 K has been recorded. The revealed correlations may be useful in developing of procedures for air sanitary cleaning from acidic gases; chemisorbents immobilized for gas and ion exchange chromatography; potentiometric methods for fluorocomplex acids determinations. The use of monoethanolamine is most promising to obtain chemisorbents because the thermodynamic functions of its onium cation acid-base dissociation are least dependent on temperature compared to other etanolammonium cations.

  7. Electrospray ionization tandem mass spectrometry of ammonium cationized polyethers.

    Science.gov (United States)

    Nasioudis, Andreas; Heeren, Ron M A; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers. © American Society for Mass Spectrometry, 2011

  8. Cation-enhanced capillary electrophoresis separation of atropoisomer anions.

    Science.gov (United States)

    Na, Yun-Cheol; Berthod, Alain; Armstrong, Daniel W

    2015-12-01

    CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba(2+) , and Pb(2+) were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6-cation-binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies.

    Science.gov (United States)

    Smolensky Koganov, Elena; Leitus, Gregory; Rozin, Rinat; Weiner, Lev; Friedman, Noga; Sheves, Mordechai

    2017-05-04

    Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn 2+ and Ca 2+ , to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn 2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn 2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn 2+ cations to xR is due to the formation of Mn 2+ clusters. Our data demonstrate that Ca 2+ cations bind to DI-xR with a lower affinity than Mn 2+ , supporting the assumption that binding of Mn 2+ occurs through cluster formation, because Ca 2+ cations cannot form clusters in contrast to Mn 2+ .

  10. Cationic polymerization of styrene by means of pulse radiolysis

    International Nuclear Information System (INIS)

    Egusa, S.; Arai, S.; Kira, A.; Imamura, M.; Tabata, Y.

    1977-01-01

    The radiation-induced cationic polymerization of styrene has been studied by microsecond pulse radiolysis. It was possible to observe absorption bands of a monomer cation radical (St. + ) at 630 nm and at 350 nm in a mixture of isopentane and n-butyl chloride at - 165 0 C. Three absorption bands, around 1600 nm, at 600 nm and at 450 nm, grew in parallel with the decay of St. + after pulse. The 1600-nm and 600-nm bands were assigned to an associated dimer cation radical (St 2 . + ), and the 450-nm band to a bonded dimer cation radical (St-St. + ) by comparison of absorption spectra of α-methylstyrene, 1,2-dihydronaphthalene and trans-β-methylstyrene. The kinetic behaviour of these species suggests that St-St. + and a part of St 2 . + are formed by the reaction of St. + with a styrene monomer, and the rest of St 2 . + may be formed by positive charge transfer from a solvent cation radical to an auto-associated neutral dimer of styrene. A long-lived absorption band at 340 nm grew with the decay of St-St. + . This band is considered due to a growing polymer carbonium ion. (author)

  11. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter.

    Science.gov (United States)

    Schophuizen, Carolien M S; Wilmer, Martijn J; Jansen, Jitske; Gustavsson, Lena; Hilgendorf, Constanze; Hoenderop, Joost G J; van den Heuvel, Lambert P; Masereeuw, Rosalinde

    2013-12-01

    Several organic cations, such as guanidino compounds and polyamines, have been found to accumulate in plasma of patients with kidney failure due to inadequate renal clearance. Here, we studied the interaction of cationic uremic toxins with renal organic cation transport in a conditionally immortalized human proximal tubule epithelial cell line (ciPTEC). Transporter activity was measured and validated in cell suspensions by studying uptake of the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium-iodide (ASP(+)). Subsequently, the inhibitory potencies of the cationic uremic toxins, cadaverine, putrescine, spermine and spermidine (polyamines), acrolein (polyamine breakdown product), guanidine, and methylguanidine (guanidino compounds) were determined. Concentration-dependent inhibition of ASP(+) uptake by TPA, cimetidine, quinidine, and metformin confirmed functional endogenous organic cation transporter 2 (OCT2) expression in ciPTEC. All uremic toxins tested inhibited ASP(+) uptake, of which acrolein required the lowest concentration to provoke a half-maximal inhibition (IC50 = 44 ± 2 μM). A Dixon plot was constructed for acrolein using three independent inhibition curves with 10, 20, or 30 μM ASP(+), which demonstrated competitive or mixed type of interaction (K i = 93 ± 16 μM). Exposing the cells to a mixture of cationic uremic toxins resulted in a more potent and biphasic inhibitory response curve, indicating complex interactions between the toxins and ASP(+) uptake. In conclusion, ciPTEC proves a suitable model to study cationic xenobiotic interactions. Inhibition of cellular uptake transport was demonstrated for several uremic toxins, which might indicate a possible role in kidney disease progression during uremia.

  12. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  13. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  14. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  15. Comparison contemporary methods of regeneration sodium-cationic filters

    Science.gov (United States)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  16. Gamma-irradiated cationic starches: Paper surface-sizing agents

    International Nuclear Information System (INIS)

    Hofreiter, B.T.; Heath, H.D.; Schulte, M.I.; Phillips, B.S.

    1981-01-01

    Cationic starches, precisely depolymerized by gamma-irradiation ( 60 Co), were dispersed in mild alkali and evaluated as surface sizes for bond paper on a pilot paper machine. The irradiated products had excellent dispersion properties, were well retained on fibers when sized wastepaper (broke) was repulped and had an ability to enhance paper properties that was comparable to that of starch-based materials used commercially. A yellow corn flour, cationized by an essentially dry reaction process recently developed at this Center, was also radiolyzed and evaluated as a size. This latter product was unique in that all drying steps were eliminated in the preparation of a cationic ceral product of reduced viscosity. (orig.) [de

  17. Nanoscale encapsulation: the structure of cations in hydrophobic microporous aluminosilicates

    International Nuclear Information System (INIS)

    Wasserman, S.R.; Yuchs, S.E.; Giaquinta, D.; Soderholm, L.; Song, Kang.

    1996-01-01

    Hydrophobic microporous aluminosilicates, created by organic surface modification of inherently hydrophilic materials such as zeolites and clays, are currently being investigated as storage media for hazardous cations. Use of organic monolayers to modify the surface of an aluminosilicate after introducing an ion into the zeolite/clay reduces the interaction of water with the material. Resulting systems are about 20 times more resistant to leaching of stored ion. XAS spectra from the encapsulated ion demonstrate that byproducts from the organic modifier can complex with the stored cation. This complexation can result in a decreased affinity of the cation for the aluminosilicate matrix. Changing the organic modifier eliminates this problem. XAS spectra also indicate that the reactivity and speciation of the encapsulated ion may change upon application of the hydrophobic layer

  18. Radical Addition to Iminium Ions and Cationic Heterocycles

    Directory of Open Access Journals (Sweden)

    Johannes Tauber

    2014-10-01

    Full Text Available Carbon-centered radicals represent highly useful reactive intermediates in organic synthesis. Their nucleophilic character is reflected by fast additions to electron deficient C=X double bonds as present in iminium ions or cationic heterocycles. This review covers diverse reactions of preformed or in situ-generated cationic substrates with various types of C-radicals, including alkyl, alkoxyalkyl, trifluoromethyl, aryl, acyl, carbamoyl, and alkoxycarbonyl species. Despite its high reactivity, the strong interaction of the radical’s SOMO with the LUMO of the cation frequently results in a high regioselectivity. Intra- and intermolecular processes such as the Minisci reaction, the Porta reaction, and the Knabe rearrangement will be discussed along with transition metal and photoredox catalysis or electrochemical methods to generate the odd-electron species.

  19. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  20. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  1. Intracrystalline cation order in a lunar crustal troctolite

    Science.gov (United States)

    Smyth, J. R.

    1975-01-01

    Lunar sample 76535 appears to be one of the most slowly cooled bits of silicate material yet studied. It provides, therefore, a unique opportunity for the study of ordering processes in the minerals present. A better understanding of these processes may permit better characterization of the thermal history of this and similar rocks. The cation ordering in the olivine is consistent with terrestrial olivines favoring the interpretation that ordering in olivines increases with increasing temperature. In low bronzite, the deviations from the common orthopyroxene space group appear to be caused by cation order on the basis of four M sites instead of two. The degree of cation order in each of these minerals is consistent with the rock having been excavated from its depth of formation by tectonic or impact processes without being reheated above 300 C.

  2. Structure and Intramolecular Proton Transfer of Alanine Radical Cations

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2012-01-01

    The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the NH 2 group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [NH 3 + -CHCH 3 -COO·], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol

  3. Monovalent type-1 oral poliovirus vaccine given at short intervals in Pakistan: a randomised controlled, four-arm, open-label, non-inferiority trial.

    Science.gov (United States)

    Mir, Fatima; Quadri, Farheen; Mach, Ondrej; Ahmed, Imran; Bhatti, Zaid; Khan, Asia; Rehman, Najeeb Ur; Durry, Elias; Salama, Maha; Oberste, Steven M; Weldon, William C; Sutter, Roland W; Zaidi, Anita K M

    2015-08-01

    Supplementary immunisation activities with oral poliovirus vaccines (OPVs) are usually separated by 4 week intervals; however, shorter intervals have been used in security-compromised areas and for rapid outbreak responses. We assessed the immunogenicity of monovalent type-1 oral poliovirus vaccine (mOPV1) given at shorter than usual intervals in Karachi, Pakistan. This was a multicentre, randomised, controlled, four-arm, open-label, non-inferiority trial done at five primary health-care centres in low-income communities in and around Karachi, Pakistan. Eligible participants were healthy newborn babies with a birthweight of at least 2·5 kg, for whom informed consent was provided by their parent or guardian, and lived less than 30 km from the study clinic. After receiving a birth dose of trivalent OPV, we enrolled and randomly assigned newborn babies (1:1:1:1) to receive two doses of mOPV1 with an interval of 1 week (mOPV1-1 week), 2 weeks (mOPV1-2 weeks), or 4 weeks (mOPV1-4 weeks) between doses, or two doses of bivalent OPV (bOPV) with an interval of 4 weeks between doses (bOPV-4 weeks). We gave the first study dose of OPV at age 6 weeks. We did the randomisation with a centrally generated, computerised allocation sequence with blocks of 16; participants' families and study physicians could not feasibly be masked to the allocations. Trial participants were excluded from local supplementary immunisation activities during the study period. The primary outcome was non-inferiority (within a 20% margin) between groups in seroconversion to type-1 poliovirus. The primary and safety analyses were done in the per-protocol population of infants who received all three doses of vaccine. This trial is registered with ClinicalTrials.gov, number NCT01586572, and is closed to new participants. Between March 1, 2012, and May 31, 2013, we enrolled 1009 newborn babies, and randomly assigned 829 (82%) to treatment. 554 (67%) of the 829 babies were included in the per

  4. Immunogenicity of type 2 monovalent oral and inactivated poliovirus vaccines for type 2 poliovirus outbreak response: an open-label, randomised controlled trial.

    Science.gov (United States)

    Zaman, Khalequ; Estívariz, Concepción F; Morales, Michelle; Yunus, Mohammad; Snider, Cynthia J; Gary, Howard E; Weldon, William C; Oberste, M Steven; Wassilak, Steven G; Pallansch, Mark A; Anand, Abhijeet

    2018-03-20

    Monovalent type 2 oral poliovirus vaccine (mOPV2) and inactivated poliovirus vaccine (IPV) are used to respond to type 2 poliovirus outbreaks. We aimed to assess the effect of two mOPV2 doses on the type 2 immune response by varying the time interval between mOPV2 doses and IPV co-administration with mOPV2. We did a randomised, controlled, parallel, open-label, non-inferiority, inequality trial at two study clinics in Dhaka, Bangladesh. Healthy infants aged 6 weeks (42-48 days) at enrolment were randomly assigned (1:1:1:1) to receive two mOPV2 doses (each dose consisting of two drops [0·1 mL in total] of about 10 5 50% cell culture infectious dose of type 2 Sabin strain) at intervals of 1 week, 2 weeks, 4 weeks (standard or control group), or 4 weeks with IPV (0·5 mL of type 1 [Mahoney, 40 D-antigen units], type 2 [MEF-1, 8 D-antigen units], and type 3 [Saukett, 32 D-antigen units]) administered intramuscularly with the first mOPV2 dose. We used block randomisation, randomly selecting blocks of sizes four, eight, 12, or 16 stratified by study sites. We concealed randomisation assignment from staff managing participants in opaque, sequentially numbered, sealed envelopes. Parents and clinic staff were unmasked to assignment after the randomisation envelope was opened. Laboratory staff analysing sera were masked to assignment, but investigators analysing data and assessing outcomes were not. The primary outcome was type 2 immune response measured 4 weeks after mOPV2 administration. The primary modified intention-to-treat analysis included participants with testable serum samples before and after vaccination. A non-inferiority margin of 10% and p=0·05 (one-tailed) was used. This trial is registered at ClinicalTrials.gov, number NCT02643368, and is closed to accrual. Between Dec 7, 2015, and Jan 5, 2016, we randomly assigned 760 infants to receive two mOPV2 doses at intervals of 1 week (n=191), 2 weeks (n=191), 4 weeks (n=188), or 4 weeks plus IPV (n=190). Immune

  5. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian infants: a randomised, double-blind, placebo-controlled trial.

    Science.gov (United States)

    Bhandari, Nita; Rongsen-Chandola, Temsunaro; Bavdekar, Ashish; John, Jacob; Antony, Kalpana; Taneja, Sunita; Goyal, Nidhi; Kawade, Anand; Kang, Gagandeep; Rathore, Sudeep Singh; Juvekar, Sanjay; Muliyil, Jayaprakash; Arya, Alok; Shaikh, Hanif; Abraham, Vinod; Vrati, Sudhanshu; Proschan, Michael; Kohberger, Robert; Thiry, Georges; Glass, Roger; Greenberg, Harry B; Curlin, George; Mohan, Krishna; Harshavardhan, G V J A; Prasad, Sai; Rao, T S; Boslego, John; Bhan, Maharaj Kishan

    2014-06-21

    Rotavirus is the most common cause of severe dehydrating gastroenteritis in developing countries. Safe, effective, and affordable rotavirus vaccines are needed in these countries. We aimed to assess the efficacy and tolerability of a monovalent human-bovine rotavirus vaccine for severe rotavirus gastroenteritis in low-resource urban and rural settings in India. We did a randomised double-blind, placebo-controlled, multicentre trial at three sites in Delhi (urban), Pune (rural), and Vellore (urban and rural) between March 11, 2011, and Nov 5, 2012. Infants aged 6-7 weeks were randomly assigned (2:1), via a central interactive voice or web response system with a block size of 12, to receive either three doses of oral human-bovine natural reassortant vaccine (116E) or placebo at ages 6-7 weeks, 10 weeks, and 14 weeks. Infants' families, study investigators, paediatricians in referral hospitals, laboratory staff, and committee members were all masked to treatment allocation. The primary outcome was incidence of severe rotavirus gastroenteritis (≥11 on the Vesikari scale). Efficacy outcomes and adverse events were ascertained through active surveillance. Analysis was by intention to treat and per protocol. The trial is registered with Clinical Trial Registry-India (CTRI/2010/091/000102) and ClinicalTrials.gov (NCT01305109). 4532 infants were assigned to receive the 116E vaccine and 2267 to receive placebo, of whom 4354 (96%) and 2187 (96%) infants, respectively, were included in the primary per-protocol efficacy analysis. 71 events of severe rotavirus gastroenteritis were reported in 4752 person-years in infants in the vaccine group compared with 76 events in 2360 person-years in those in the placebo group; vaccine efficacy against severe rotavirus gastroenteritis was 53·6% (95% CI 35·0-66·9; p=0·0013) and 56·4% (36·6-70·1; protavirus gastroenteritis episode was 55 (95% CI 37-97). The incidence of severe rotavirus gastroenteritis per 100 person-years was 1·5

  6. Effect of cation exchange of major cation chemistry in the large scale redox experiment at Aespoe. Revision 1

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1996-06-01

    Geochemical modeling was used to test the hypothesis that cation exchange with fracture-lining clays during fluid mixing in the Aespoe Hard Rock Laboratory can significantly affect major element chemistry. Conservative mixing models do not adequately account for changes in Na, Ca and Mg concentrations during mixing. Mixing between relatively dilute shallow waters and more concentrated waters at depth along fracture zones was modeled using the EQ3/6 geochemical modeling package. A cation exchange model was added to the code to describe simultaneously aqueous speciation, mineral precipitation/dissolution, and equilibration between a fluid and a cation exchanger. Fluid chemistries predicted to result from mixing were compared with those monitored from boreholes intersecting the fracture zone. Modeling results suggest that less than 0.1 equivalent of a smectite exchanger per liter of groundwater is necessary to account for discrepancies between predictions from a conservative mixing model and measured Na and Ca concentrations. This quantity of exchanger equates to an effective fracture coating thickness of 20 microm or less given a fracture aperture width of 1,000 microm or less. Trends in cation ratios in the fluid cannot be used to predict trends in cation ratios on the exchanger because of the influence of ionic strength on heterovalent exchange equilibrium. It is expected that Na for Ca exchange will dominate when shallow waters such as HBHO2 are mixed with deeper waters. In contrast, Na for Mg exchange will dominate mixing between deeper waters

  7. Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

    Directory of Open Access Journals (Sweden)

    Olkowska Ewa

    2017-03-01

    Full Text Available Surface active agents (surfactants are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13 and cationic (alkylbenzyldimethylammonium (BDMA-C12-16, alkyl trimethyl ammonium (DTMA, hexadecyl piridinium chloride (HP chlorides surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs and conductivity (cationic SAAs detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

  8. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids.

    Science.gov (United States)

    Alozie, Nneka; Heaney, Natalie; Lin, Chuxia

    2018-07-15

    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Inward Cationic Diffusion and Percolation Transition in Glass-Ceramics

    DEFF Research Database (Denmark)

    Smedsklaer, Morten Mattrup; Yue, Yuanzheng; Mørup, Steen

    2010-01-01

    We show the quantitative correlation between the degree of crystallization and the cationic diffusion extent in iron-containing diopside glass–ceramics at the glass transition temperature. We find a critical degree of crystallization, above which the diffusion extent sharply drops with the degree...... of crystallization. Below the critical value, the diffusion extent decreases only slightly with the degree of crystallization. No cationic diffusion is observed in the fully crystalline materials. The critical value might be associated with a percolation transition from an interconnected to a disconnected glass...

  10. Radiation-induced cationic curing of vinyl ethers

    International Nuclear Information System (INIS)

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  11. Conductometric determination of solvation numbers of alkali metal cations

    International Nuclear Information System (INIS)

    Fialkov, Yu.Ya.; Gorbachev, V.Yu.; Chumak, V.L.

    1997-01-01

    Theories describing the interrelation of ion mobility with their effective radii in solutions are considered. Possibility of using these theories for determination the solvation numbers n s of some ions is estimated. According to conductometric data values of n s are calculated for alkali metal ions in propylene carbonate. The data obtained are compared with solvation numbers determined with the use of entropies of ions solvation. Change of n s values within temperature range 273.15-323.15 K is considered. Using literature data the effect of crystallographic radii of cations and medium permittivity on the the values of solvation numbers of cations are analyzed. (author)

  12. Membrane potential and cation channels in rat juxtaglomerular cells

    DEFF Research Database (Denmark)

    Friis, U G; Jørgensen, F; Andreasen, D

    2004-01-01

    The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK(Ca)) of the Z......The relationship between membrane potential and cation channels in juxtaglomerular (JG) cells is not well understood. Here we review electrophysiological and molecular studies of JG cells demonstrating the presence of large voltage-sensitive, calcium-activated potassium channels (BK...

  13. Mass spectral analysis of cationic and neutral technetium complexes

    International Nuclear Information System (INIS)

    Unger, S.E.; McCormick, T.J.; Nunn, A.N.; Treher, E.N.

    1986-01-01

    Cationic and neutral technetium compounds have been characterized by mass spectrometry using a variety of ionization methods. These compounds include octahedral cationic complexes containing phosphorous and arsenic ligands such as DIPHOS and DIARS and neutral complexes containing PnAO and dimethylglyoxime, DMG, or cyclohexanedione dioxime, CDO, ligands. Boronate esters incorporating methyl and butyl derivatives of the DMG and CDO dioximes represent a new class of seven-coordinate Tc radiopharmaceuticals whose characterization by mass spectrometry has not previously been described. These complexes show promise as myocardial imaging agents. (author)

  14. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  15. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  16. Novel 1,3-diacylamidopropane-2-[bis-(2-dimethylaminoethane)] carbamate pH-sensitive lipids for cationic liposome-mediated transfection

    Science.gov (United States)

    Spelios, Michael G.

    A novel series of 1,3-diacylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate analogs (1,3lb) were designed for cationic lipid-assisted transfection (lipofection). First, their physicochemical properties in self-assemblies with and without plasmid DNA (pDNA) were evaluated to examine the effects of hydrophobic tail length and degree of saturation on gene delivery and expression. Significant in vitro lipofection was induced at a nitrogen:phosphate ratio (N:P) of 4:1 by the dimyristoyl, dipalmitoyl, and dioleoyl analogs 1,3lb2, 1,3lb3, and 1,3lb5, respectively, without inclusion of neutral "lipofection enhancing" co-lipids in the cationic lipid formulations. Lipofection was reduced in the presence of co-lipids except for 1,3lb5 which maintained reporter gene expression levels at N:P 4:1 and yielded increased bioactivity at a lower NP of 2:1. Physicochemical characterization of the bioactive transfection agents (cytofectins) revealed: high hydration and in-plane elasticity of lipid monolayers by Langmuir film balance measurements; fluid lipid bilayers, with gel---liquid crystalline phase transitions below physiological temperature, by fluorescence anisotropy; lipid mixing with biomembrane-mimicking vesicles by fluorescence resonance energy transfer; efficient pDNA binding and compaction by ethidium bromide displacement; cationic liposome---nucleic acid complexes (lipoplexes) with large particle sizes (mean diameter ≥ 500 nm) and zeta potentials of positive values by dynamic light scattering and electrophoretic mobility, respectively. The results suggest that well hydrated and elastic cationic lipids forming fluid lamellar assemblies are extremely potent and minimally toxic cytofectins. Second, a comparison was made between 1,3lb2 and two derivatives, one an isomer with a shorter space between the myristoyl chains and the other the monovalent form, in an effort to delineate the biological effects of interchain distance and pH-induced polar headgroup expandability

  17. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    Science.gov (United States)

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  18. Conducting compositions of matter

    Science.gov (United States)

    Viswanathan, Tito (Inventor)

    2000-01-01

    The invention provides conductive compositions of matter, as well as methods for the preparation of the conductive compositions of matter, solutions comprising the conductive compositions of matter, and methods of preparing fibers or fabrics having improved anti-static properties employing the conductive compositions of matter.

  19. A theoretical study of complexes formed between cations and curved aromatic systems: electrostatics does not always control cation-π interaction.

    Science.gov (United States)

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús

    2017-04-19

    The present work studies the interaction of two extended curved π-systems (corannulene and sumanene) with various cations (sodium, potassium, ammonium, tetramethylammonium, guanidinium and imidazolium). Polyatomic cations are models of groups found in important biomolecules in which cation-π interaction plays a fundamental role. The results indicate an important size effect: with extended π systems and cations of the size of potassium and larger, dispersion is much more important than has been generally recognized for cation-π interactions. In most of the systems studied here, the stability of the cation-π complexes is the result of a balanced combination of electrostatic, induction and dispersion contributions. None of the systems studied here owes its stability to the electrostatic interaction more than 42%. Induction dominates stabilization in complexes with sodium, and in some of the potassium and ammonium complexes. In complexes with large cations and with flat cations dispersion is the major stabilizing contribution and can provide more than 50% of the stabilization energy. This implies that theoretical studies of the cation-π interaction involving large or even medium-size fragments require a level of calculation capable of properly modelling dispersion. The separation between the cation and the π system is another important factor to take into account, especially when the fragments of the cation-π complex are bound (for example, to a protein backbone) and cannot interact at the most favourable distance.

  20. Electrodeposition properties of modified cational epoxy resin-type photoresist

    International Nuclear Information System (INIS)

    Yong He; Yunlong Zhang; Feipeng Wu; Miaozhen Li; Erjian Wang

    1999-01-01

    Multi-component cationic epoxy and acrylic resin system for ED photoresist was used in this work, since they can provide better storage stability for ED emulsion and better physical and chemical properties of deposited film than one-component system. The cationic main resin (AE) was prepared from amine modified epoxy resins and then treated with acetic acid. The amination degree was controlled as required. The synthetic procedure of cationic main resins is described in scheme I. The ED photoresist (AME) is composed of cationic main resin (AE) and nonionic multifunctional acrylic crosslinkers (PETA), in combination with suitable photo-initiator. They can easily be dispersed in deionized water to form a stable ED emulsion. The exposed part of deposited film upon UV irradiation occurs crosslinking to produce an insoluble semi-penetrating network and the unexposed part remains good solubility in the acidic water solution. It is readily utilized for fabrication of fine micropattern. The electrodeposition are carried out on Cu plate at room temperature. To evaluate the electrodeposition properties of ED photoresist (AME), the different influences are examined

  1. Fusion Pore Diameter Regulation by Cations Modulating Local Membrane Anisotropy

    Directory of Open Access Journals (Sweden)

    Doron Kabaso

    2012-01-01

    Full Text Available The fusion pore is an aqueous channel that is formed upon the fusion of the vesicle membrane with the plasma membrane. Once the pore is open, it may close again (transient fusion or widen completely (full fusion to permit vesicle cargo discharge. While repetitive transient fusion pore openings of the vesicle with the plasma membrane have been observed in the absence of stimulation, their frequency can be further increased using a cAMP-increasing agent that drives the opening of nonspecific cation channels. Our model hypothesis is that the openings and closings of the fusion pore are driven by changes in the local concentration of cations in the connected vesicle. The proposed mechanism of fusion pore dynamics is considered as follows: when the fusion pore is closed or is extremely narrow, the accumulation of cations in the vesicle (increased cation concentration likely leads to lipid demixing at the fusion pore. This process may affect local membrane anisotropy, which reduces the spontaneous curvature and thus leads to the opening of the fusion pore. Based on the theory of membrane elasticity, we used a continuum model to explain the rhythmic opening and closing of the fusion pore.

  2. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Jen [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan (China); Li, Zhaohui, E-mail: li@uwp.edu [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Department of Geosciences, University of Wisconsin - Parkside, Kenosha, WI 53144 (United States); Jiang, Wei-Teh, E-mail: atwtj@mail.ncku.edu.tw [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Jean, Jiin-Shuh; Liu, Chia-Chuan [Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2010-11-15

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca{sup 2+} as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK{sub a2} (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d{sub 001}) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  3. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite

    International Nuclear Information System (INIS)

    Wang, Chih-Jen; Li, Zhaohui; Jiang, Wei-Teh; Jean, Jiin-Shuh; Liu, Chia-Chuan

    2010-01-01

    Exploring the interactions between antibiotics and soils/minerals is of great importance in resolving their fate, transport, and elimination in the environment due to their frequent detection in wastewater, river water, sewage sludge and soils. This study focused on determining the adsorption properties and mechanisms of interaction between antibiotic ciprofloxacin and montmorillonite (SAz-1), a swelling dioctahedral mineral with Ca 2+ as the main interlayer cation. In acidic and neutral aqueous solutions, a stoichiometric exchange between ciprofloxacin and interlayer cations yielded an adsorption capacity as high as 330 mg/g, corresponding to 1.0 mmol/g. When solution pH was above its pK a2 (8.7), adsorption of ciprofloxacin was greatly reduced due to the net repulsion between the negatively charged clay surfaces and the ciprofloxacin anion. The uptake of ciprofloxacin expanded the basal spacing (d 001 ) of montmorillonite from 15.04 to 17.23 A near its adsorption capacity, confirming cation exchange within the interlayers in addition to surface adsorption. Fourier transform infrared results further suggested that the protonated amine group of ciprofloxacin in its cationic form was electrostatically attracted to negatively charged sites of clay surfaces, and that the carboxylic acid group was hydrogen bonded to the basal oxygen atoms of the silicate layers. The results indicate that montmorillonite is an effective sorbent to remove ciprofloxacin from water.

  4. Stepwise radical cation Diels-Alder reaction via multiple pathways.

    Science.gov (United States)

    Shimizu, Ryo; Okada, Yohei; Chiba, Kazuhiro

    2018-01-01

    Herein we disclose the radical cation Diels-Alder reaction of aryl vinyl ethers by electrocatalysis, which is triggered by an oxidative SET process. The reaction clearly proceeds in a stepwise fashion, which is a rare mechanism in this class. We also found that two distinctive pathways, including "direct" and "indirect", are possible to construct the Diels-Alder adduct.

  5. Fabrication of Cationic Exchange Polystyrene Nanofibers for Drug ...

    African Journals Online (AJOL)

    Purpose: To prepare polystyrene nanofiber ion exchangers (PSNIE) with surface cation exchange functionality using a new method based on electrospinning and also to optimize crosslinking and sulfonation reactions to obtain PSNIE with maximum ion exchange capacity (IEC). Method: The nanofibers were prepared from ...

  6. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.

    Science.gov (United States)

    Mehta, Meera; Holthausen, Michael H; Mallov, Ian; Pérez, Manuel; Qu, Zheng-Wang; Grimme, Stefan; Stephan, Douglas W

    2015-07-06

    Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed ...

  8. Peak metamorphic temperatures from cation diffusion zoning in garnet

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik; Mezger, Klaus

    2013-01-01

    ) to develop a tool that uses the diffusion zoning of these cations in garnet to constrain peak temperature conditions for garnet-bearing rocks. The thermometric approach was externally tested by applying it to garnet crystals from various metamorphic terranes worldwide and comparing the results to published...

  9. Small angle neutron scattering studies on the interaction of cationic

    Indian Academy of Sciences (India)

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant ...

  10. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  11. Selective oxidation of propane over cation exchanged zeolites

    NARCIS (Netherlands)

    Xu, J.

    2005-01-01

    This thesis focuses on investigation of the fundamental knowledge on a new method for selective oxidation of propane with O2 at low temperature (< 100°C). The relation between propane catalytic selective oxidation and physicochemical properties of cation exchanged Y zeolite has been studied. An

  12. The exchangeable cations in soils flooded with sea water

    NARCIS (Netherlands)

    Molen, van der W.H.

    1958-01-01

    The changes in the exchangeable cations of soils flooded with sea-water were extensively studied in the Netherlands after the inundations of 1940, 1945 and 1953. A synopsis of the results was given, both from a theoretical and a practical viewpoint.

    Current formulae for ion-exchange tested in the

  13. Mutations of the cystic fibrosis gene, but not cationic trypsinogen gene, are associated with recurrent or chronic idiopathic pancreatitis.

    Science.gov (United States)

    Ockenga, J; Stuhrmann, M; Ballmann, M; Teich, N; Keim, V; Dörk, T; Manns, M P

    2000-08-01

    We investigated whether mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and cationic trypsinogen gene are associated with recurrent acute, or chronic idiopathic pancreatitis. Twenty patients with idiopathic pancreatitis (11 women, nine men; mean age, 30 yr) were studied for the presence of a CFTR mutation by screening the genomic DNA for more than 30 mutations and variants in the CFTR gene. Selected mutations of the cationic trypsinogen gene were screened by Afl III restriction digestion or by a mutation-specific polymerase chain reaction (PCR). In each patient exons 1, 2, and 3 of the cationic trypsinogen gene were sequenced. Patients with a CFTR mutation underwent evaluation of further functional electrophysiological test (intestinal current measurement). No mutation of the cationic trypsinogen gene was detected. A CFTR mutation was detected in 6/20 (30.0%) patients. Three patients (15.0%) had a cystic fibrosis (CF) mutation on one chromosome (deltaF508, I336K, Y1092X), which is known to cause phenotypical severe cystic fibrosis. One patient was heterozygous for the 5T allele. In addition, two possibly predisposing CFTR variants (R75Q, 1716G-->A) were detected on four patients, one of these being a compound heterozygous for the missense mutation I336K and R75Q. No other family member (maternal I336K; paternal R75Q; sister I1336K) developed pancreatitis. An intestinal current measurement in rectum samples of patients with a CFTR mutation revealed no CF-typical constellations. CFTR mutations are associated with recurrent acute, or chronic idiopathic pancreatitis, whereas mutations of the cationic trypsinogen mutation do not appear to be a frequent pathogenetic factor.

  14. Measurement of antioxidant activity with trifluoperazine dihydrochloride radical cation

    Directory of Open Access Journals (Sweden)

    M.N. Asghar

    2008-06-01

    Full Text Available A novel, rapid and cost-effective trifluoperazine dihydrochloride (TFPH decolorization assay is described for the screening of antioxidant activity. A chromogenic reaction between TFPH and potassium persulfate at low pH produces an orange-red radical cation with maximum absorption at 502 nm in its first-order derivative spectrum. TFPH was dissolved in distilled water to give a 100 mM solution. The TFPH radical cation solution was made by reacting 0.5 mL of the solution with K2S2O8 (final concentration: 0.1 mM and diluting to 100 mL with 4 M H2SO4 solution. A linear inhibition of color production was observed with linearly increasing amounts of antioxidants, with correlation coefficients (R² ranging from 0.999 to 0.983. The antioxidant capacity of standard solutions of an antioxidant was evaluated by comparing with the inhibition curve using Trolox as the standard. Comparison of antioxidant capacity determined with this newly developed TFPH assay and with the well-known 2,2'-azinobis-[3-ethylbenzthiazoline-6-sulfonic acid] (ABTS-persulfate decolorization assay indicated the efficacy and sensitivity of the procedure. The proposed assay is less expensive (costs about US$4 per 100 assays and requires only 20 min for preparation of radical cation solution in comparison with ABTS assay, in which almost 12-16 h are required for preparation of a stable ABTS radical cation solution. The present assay has the advantage over ABTS assay that it can be used to measure the antioxidant activity of the samples, which are naturally found at a pH as low as 1, because the radical cation itself has been stabilized at low pH.

  15. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  16. Gas-operated heat pump for monovalent space heating and tap water heating. A seizable contribution to carbon dioxide emission control; Gasbetriebene Waermepumpe zur monovalenten Raumbeheizung und Trinkwassererwaermung. Ein greifbarer Beitrag zur Reduktion der CO{sub 2}-Emissionen

    Energy Technology Data Exchange (ETDEWEB)

    Heikrodt, K.; Heckt, R. [Viessmann Werke GmbH und Co., Allendorf (Germany)

    1999-07-01

    The project had the objectives to develop a Vuilleumier heat pump for space heating and make an experimental study testing it as a heat generator for a heating system for one- and multi-family houses. Apart from monovalent operation, the following boundary conditions were defined: provision for connection to existing heating systems, even radiator heatings with 75 C/60 C, tap water heating, and air-source heat. Performance constant, manufacturing cost, freedom from maintenance, and service life were taken into consideration in the design, rating and construction of the unit. (orig.) [German] Ziel des Vorhabens war die Entwicklung einer Vuilleumier-Waermepumpe zur Raumbeheizung und deren experimentelle Untersuchung als Waermeerzeuger fuer ein Heizungssystem in Ein- und Mehrfamilienhaeusern. Als Rahmebedingungen wurden neben einer monovalenten Betriebsweise auch die moegliche Anbindung an bestehende Heizungssysteme, sogar Radiatorheizungen mit 75 C/60 C, Trinkwassererwaermung und Luft als Waermequelle festgelegt. Leistungszahl, Herstellkosten, Wartungsfreiheit und Lebensdauer wurden in Konzeption, Auslegung und Konstruktion beruecksichtigt. (orig.)

  17. Cell shape changes induced by cationic anesthetics

    Science.gov (United States)

    1976-01-01

    The effects of local anesthetics on cultivated macrophages were studied in living preparations and recorded in still pictures and time-lapse cine-micrographs. Exposure to 12mM lidocaine or 1.5 mM tetracaine resulted in rounding in 10-15 min. Rounding was characterized by cell contraction, marked increase in retraction fibrils, withdrawal of cell processes, and, in late stages, pulsation-like activity and zeiosis. Cells showed appreciable membrane activity as they rounded. Respreading was complete within 15 min of perfusion in drug-free medium and entailed a marked increase in surface motility over control periods. As many as eight successive cycles of rounding and spreading were obtained with lidocaine without evidence of cell damage. The effects of anesthetics were similar to those observed with EDTA, but ethylene- glycol-bis(beta-aminoethylether)-N, N'-tetraacetic acid-Mg was ineffective. Rounding was also induced by benzocaine, an anesthetic nearly uncharged at pH 7.0. Quaternary (nondischargeable) compounds were of low activity, presumably because they are slow permeants. Lidocaine induced rounding at 10 degrees C and above but was less effective at 5 degrees C and ineffective at 0 degrees C. Rounding by the anesthetic was also obtained in media depleted or Na or enriched with 10 mM Ca or Mg. The latter finding, together with the failure of tetrodotoxin to induce rounding, suggests that the anesthetic effect is unrelated to inhibition of sodium conductance. It is possible that the drugs influence divalent ion fluxes or some component of the contractile cells' machinery, but a metabolic target of action cannot yet be excluded. PMID:814194

  18. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  19. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  20. The lack of age-pigments and the alterations in intracellular monovalent electrolytes in spontaneously hypertensive, stroke-prone (SHRsp) rats as revealed by electron microscopy and X-ray microanalysis

    International Nuclear Information System (INIS)

    Nagy, I.; Nagy, V.; Casoli, T.; Lustyik, G.

    1989-01-01

    Male, spontaneously hypertensive, stroke-prone (SHRsp) rats established by Okamoto et al. were studied. About 80% of the males of this strain have a particularly short life span (33-41 weeks); they display a considerable hypertension (above 220 mmHg) and a tendency for plurifocal brain strokes. Hypertension and strokes can be provoked in an accelerated and synchronized fashion by supplementing 1% NaCl into their drinking water. Symptoms of the appearance of brain strokes can be judged from characteristic signs of motor disorders, and can be established also by pathohistology. Since hypertension and arteriosclerosis are frequently involved in aging, the question we intended to answer was whether these animals may represent a model of the normal aging process or not. Two approaches are described: (1) Accumulation of lipofuscin granules in their brain, liver and myocardium was followed by transmission electron microscopy before and after the appearance of strokes. It has been established that these tissues do not show any typical accumulation of lipofuscin granules, although submicroscopic signs of an enhanced damage of cell organelles (especially of mitochondria in liver and brain cells, but not in myocardium) were encountered. (2) The intracellular monovalent composition in the brain and liver was measured by using bulk-specimen X-ray microanalysis. The intracellular Na-content (mEq/kg water) was significantly higher (170-200%) in both the brain and liver cells, whereas the K-content increased only moderately (118-130%). The results suggest that although the SHRsp rats do not represent a direct model for the normal aging process from the point of view of lipofuscin accumulation, the shifts of the monovalent electrolyte contents in the brain and liver cells observed already in the youngest ages, are similar to those observed in aged normal rats

  1. Silver Cation Coordination Study to AsW9 Ligand – A Trilacunar Arsenotungstate Compound

    Directory of Open Access Journals (Sweden)

    Berta Lavinia

    2017-06-01

    Full Text Available Objective: The main objective of this research is to find the coordination ratio between AsW9 and Ag+, as a preliminary study for synthesizing a new silver-arsenotungstate complex. Material and method: The ligand:cation molar ratio in complexes was determined by conductometric and potentiometric titrations of AsW9 with silver salts: CH3COOAg, AgNO3. Results: The ratio was obtained from the inflexion points of the curves when molar ratio was plotted versus conductivity, or from the equivalence point when silver added volume was plotted versus pH value. Each graphic shows one point of inflexion corresponding to 1:1.54 ratio of AsW9:Ag+. In the same manner, the equivalent volumes determined by graphical method gave the ratio 1:1.53. The spectral results confirmed that a AsW9:Ag+ complex was formed since the ligand absorption maxima values have been changed from 190 nm to 197 nm in the case of using AgNO3 and 196 nm for CH3COOAg corresponding to the W=Od bond, and from 246.5 nm to 274 nm (AgNO3 and 270 nm (CH3COO-Ag+ for the W-Ob,c-W bond. Conclusions: Silver cation exhibit a preference for AsW9 in a ratio of 3 to 2. This ratio can be associated to a sandwich type arrangement, with two trilacunary Keggin building blocks incorporating 3 metal cations in a tetrahedral geometry.

  2. Biocompatible water softening system using cationic protein from moringa oleifera extract

    Science.gov (United States)

    Nisha, R. R.; Jegathambal, P.; Parameswari, K.; Kirupa, K.

    2017-10-01

    In developing countries like India, the deciding factors for the selection of the specific water purification system are the flow rate, cost of implementation and maintenance, availability of materials for fabrication or assembling, technical manpower, energy requirement and reliability. But most of them are energy and cost intensive which necessitate the development of cost-effective water purification system. In this study, the feasibility of development of an efficient and cost-effective water purifier using Moringa oleifera cationic protein coated sand column to treat drinking water is presented. Moringa oleifera seeds contain cationic antimicrobial protein which acts as biocoagulant in the removal of turbidity and also aids in water softening. The main disadvantage of using Moringa seeds in water purification is that the dissolved organic matter (DOM) which is left over in the water contributes to growth of any pathogens that come into contact with the stored water. To overcome this limitation, the Moringa oleifera cationic protein coated sand (MOCP c-sand) is prepared in which the flocculant and antimicrobial properties of the MOCP are maintained and the DOM to be rinsed away. The efficiency of MOCP c-sand in removing suspended particles and reducing total hardness (TH), chloride, total dissolved solids (TDS), electrical conductivity (EC) was also studied. Also, it is shown that the functionalized sand showed the same treatment efficiency even after being stored dry and in dehydrated condition for 3 months. This confirms MOCP c-sand's potential as a locally sustainable water treatment option for developing countries since other chemicals used in water purification are expensive.

  3. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  4. Voltammetry of Lead Cations on a New Type of Silver Composite Electrode in the Presence of Other Cations

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šebková, Světlana; Kopanica, M.

    2004-01-01

    Roč. 379, - (2004), s. 294-301 ISSN 1618-2642 Grant - others:GIT(AR) 101/02/U111/CZ Institutional research plan: CEZ:AV0Z4040901 Keywords : voltammetry * silver composite electrode * lead cations Subject RIV: CG - Electrochemistry Impact factor: 2.098, year: 2004

  5. Cation-pi interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    Czech Academy of Sciences Publication Activity Database

    Polášek, Miroslav; Kvíčala, J.; Makrlík, E.; Křížová, Věra; Vaňura, P.

    2017-01-01

    Roč. 1130, FEB 2017 (2017), s. 408-413 ISSN 0022-2860 Grant - others:GA MŠk(CZ) 20/2015; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388955 Keywords : silver cation * meso-octamethylcalix[4]pyrrole * complexation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 1.753, year: 2016

  6. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayss, M. K.; Armentrout, P. B.; Oomens, J.; Schaefer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+,K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD spectra

  7. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size

    NARCIS (Netherlands)

    Drayß, M.K.; Armentrout, P.B.; Oomens, J.; Schäfer, M.

    2010-01-01

    Gas-phase structures of alkali metal cationized (Li+, Na+, K+, Rb+, and Cs+) proline (Pro) and N-methyl alanine have been investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser and computational modeling. Measured IRMPD

  8. Effect of cation competition on cadmium uptake from solution by the earthworm Eisenia fetida.

    NARCIS (Netherlands)

    Li, L.-Z.; Zhou, D.-M.; Wang, P.; Jin, S.-Y.; Peijnenburg, W.J.G.M.; Reinecke, A.J.; van Gestel, C.A.M.

    2009-01-01

    Metal speciation alone is insufficient to predict metal accumulation in aquatic and terrestrial organisms, because competition between cations can play an important role. In the present study, the effects of competing cations (Ca

  9. Electrically conductive composite material

    Science.gov (United States)

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  10. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    Science.gov (United States)

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure and size of ions electrochemically doped in conducting polymer

    Science.gov (United States)

    Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito

    2018-05-01

    Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.

  12. Metal cation dependence of interactions with amino acids: bond dissociation energies of Rb(+) and Cs(+) to the acidic amino acids and their amide derivatives.

    Science.gov (United States)

    Armentrout, P B; Yang, Bo; Rodgers, M T

    2014-04-24

    Metal cation-amino acid interactions are key components controlling the secondary structure and biological function of proteins, enzymes, and macromolecular complexes comprising these species. Determination of pairwise interactions of alkali metal cations with amino acids provides a thermodynamic vocabulary that begins to quantify these fundamental processes. In the present work, we expand a systematic study of such interactions by examining rubidium and cesium cations binding with the acidic amino acids (AA), aspartic acid (Asp) and glutamic acid (Glu), and their amide derivatives, asparagine (Asn) and glutamine (Gln). These eight complexes are formed using electrospray ionization and their bond dissociation energies (BDEs) are determined experimentally using threshold collision-induced dissociation with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations are conducted at the B3LYP, MP2(full), and M06 levels of theory using def2-TZVPPD basis sets, with results showing reasonable agreement with experiment. At 0 and 298 K, most levels of theory predict that the ground-state conformers for M(+)(Asp) and M(+)(Asn) involve tridentate binding of the metal cation to the backbone carbonyl, amino, and side-chain carbonyl groups, although tridentate binding to the carboxylic acid group and side-chain carbonyl is competitive for M(+)(Asn). For the two longer side-chain amino acids, Glu and Gln, multiple structures are competitive. A comparison of these results to those for the smaller alkali cations, Na(+) and K(+), provides insight into the trends in binding energies associated with the molecular polarizability and dipole moment of the side chain. For all four metal cations, the BDEs are inversely correlated with the size of the metal cation and follow the order Asp < Glu

  13. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Wen-Li Yuan

    2018-03-01

    Full Text Available The instructive structure-property relationships of ionic liquids (ILs can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN2], [C4m2im][N(CN2], N4442[N(CN2], and N8444[N(CN2] including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs, which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip, the diffusion coefficients (Do, the charge transfer rate constants (ks of Eu(III in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  14. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  15. Star-like superalkali cations featuring planar pentacoordinate carbon

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jin-Chang [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Tian, Wen-Juan; Zhao, Xue-Feng; Wu, Yan-Bo, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn; Li, Si-Dian, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Wang, Ying-Jin [Institute of Materials Science and Department of Chemistry, Xinzhou Teachers’ University, Xinzhou, Shanxi 034000 (China); Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhai, Hua-Jin, E-mail: wyb@sxu.edu.cn, E-mail: hj.zhai@sxu.edu.cn, E-mail: lisidian@sxu.edu.cn [Nanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006 (China); State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2016-06-28

    Superalkali cations, known to possess low vertical electron affinities (VEAs), high vertical detachment energies, and large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, are intriguing chemical species. Thermodynamically, such species need to be the global minima in order to serve as the promising targets for experimental realization. In this work, we propose the strategies of polyhalogenation and polyalkalination for designing the superalkali cations. By applying these strategies, the local-minimum planar pentacoordinate carbon (ppC) cluster CBe{sub 5} can be modified to form a series of star-like superalkali ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) cations containing a CBe{sub 5} moiety. Polyhalogenation and polyalkalination on the CBe{sub 5} unit may help eliminate the high reactivity of bare CBe{sub 5} molecule by covering the reactive Be atoms with noble halogen anions and alkali cations. Computational exploration of the potential energy surfaces reveals that the star-like ppC or quasi-ppC CBe{sub 5}X{sub 5}{sup +} (X = F, Cl, Br, Li, Na, K) clusters are the true global minima of the systems. The predicted VEAs for CBe{sub 5}X{sub 5}{sup +} range from 3.01 to 3.71 eV for X = F, Cl, Br and 2.12–2.51 eV for X = Li, Na, K, being below the lower bound of the atomic ionization potential of 3.89 eV in the periodic table. Large HOMO-LUMO energy gaps are also revealed for the species: 10.76–11.07 eV for X = F, Cl, Br and 4.99–6.91 eV for X = Li, Na, K. These designer clusters represent the first series of superalkali cations with a ppC center. Bonding analyses show five Be–X–Be three-center two-electron (3c-2e) σ bonds for the peripheral bonding, whereas the central C atom is associated with one 6c-2e π bond and three 6c-2e σ bonds, rendering (π and σ) double aromaticity. Born-Oppenheimer molecular dynamics simulations indicate that the CBe{sub 5} motif is robust in the

  16. Multi-State Vibronic Interactions in Fluorinated Benzene Radical Cations.

    Science.gov (United States)

    Faraji, S.; Köppel, H.

    2009-06-01

    Conical intersections of potential energy surfaces have emerged as paradigms for signalling strong nonadiabatic coupling effects. An important class of systems where some of these effects have been analyzed in the literature, are the benzene and benzenoid cations, where the electronic structure, spectroscopy, and dynamics have received great attention in the literature. In the present work a brief overview is given over our theoretical treatments of multi-mode and multi-state vibronic interactions in the benzene radical cation and some of its fluorinated derivatives. The fluorobenzene derivatives are of systematic interest for at least two different reasons. (1) The reduction of symmetry by incomplete fluorination leads to a disappearance of the Jahn-Teller effect present in the parent cation. (2) A specific, more chemical effect of fluorination consists in the energetic increase of the lowest σ-type electronic states of the radical cations. The multi-mode multi-state vibronic interactions between the five lowest electronic states of the fluorobenzene radical cations are investigated theoretically, based on ab initio electronic structure data, and employing the well-established linear vibronic coupling model, augmented by quadratic coupling terms for the totally symmetric vibrational modes. Low-energy conical intersections, and strong vibronic couplings are found to prevail within the set of tilde{X}-tilde{A} and tilde{B}-tilde{C}-tilde{D} cationic states, while the interactions between these two sets of states are found to be weaker and depend on the particular isomer. This is attributed to the different location of the minima of the various conical intersections occurring in these systems. Wave-packet dynamical simulations for these coupled potential energy surfaces, utilizing the powerful multi-configuration time-dependent Hartree method are performed. Ultrafast internal conversion processes and the analysis of the MATI and photo-electron spectra shed new light

  17. Forms of adsorption and transition states of oxidation of carbon monoxide by molecular oxygen and dissociation of nitrogen monooxide, catalyzed by monovalent copper

    Science.gov (United States)

    Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.

    With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.

  18. Influence of Sulfonated-Kaolin On Cationic Exchange Capacity Swelling Degree and Morphology of Chitosan/Kaolin Composites

    Directory of Open Access Journals (Sweden)

    Ozi Adi Saputra

    2016-06-01

    Full Text Available Preparation of sulfonated-kaolin (sKao has been conducted and used as filler on chitosan matrix via solution casting method, namely chitosan/sKao (Cs/sKao. Swelling degree, cationic exchange capacity and thermal stability were evaluated to determine chitosan/sKao membranes performance as proton exchange membrane in fuel cell. Functional group analysis of chitosan, sKao and synthesized products were studied using Fourier Transform Infra-Red (FTIR spectroscopy. In this study, swelling degree and swelling area of Cs/sKao are also studied to determine of membrane ability to swelling which compare to unmodified chitosan/kaolin (Cs/Kao. The presence of sKao in chitosan matrix was able to improve cationic exchange capacity (CEC which proved by morphological study of membrane surface after CEC test. Moreover, Thermal stability of Cs/sKao showed the membrane has meet requirement for PEM application.

  19. Spectroscopic and computer modelling studies of mixed-cation superionic fluorites

    CSIR Research Space (South Africa)

    Netshisaulu, TT

    2005-10-19

    Full Text Available into the local environments of the Cd and Pb cations (as a function of composition and temperature) in CdF2 (xPbF(2)) mixed-cation superionic fluorites. A high degree of disorder is shown around both cations. However, the extent of disorder is even larger around...

  20. Surface enhanced spectroscopic investigations of adsorption of cations on electrochemical interfaces.

    Science.gov (United States)

    Dunwell, M; Wang, Junhua; Yan, Y; Xu, B

    2017-01-04

    The adsorption of alkali and tetraalkylammonium cations on Pt is investigated using surface enhanced infrared absorption spectroscopy and carbon monoxide as a probe molecule. Alkali cations exhibit a stronger adsorption than organic cations, with potassium showing the strongest effect, followed by sodium and lithium.

  1. Facilitated transport of hydrophilic salts by mixtures of anion and cation carriers and by ditopic carriers

    NARCIS (Netherlands)

    Chrisstoffels, L.A.J.; de Jong, Feike; Reinhoudt, David; Sivelli, Stefano; Gazzola, Licia; Casnati, Alessandro; Ungaro, Rocco

    1999-01-01

    Anion transfer to the membrane phase affects the extraction efficiency of salt transport by cation carriers 1 and 3. Addition of anion receptors 5 or 6 to cation carriers 1, 3, or 4 in the membrane phase enhances the transport of salts under conditions in which the cation carriers alone do not

  2. Green sample preparation for liquid chromatography and capillary electrophoresis of anionic and cationic analytes.

    Science.gov (United States)

    Wuethrich, Alain; Haddad, Paul R; Quirino, Joselito P

    2015-04-21

    A sample preparation device for the simultaneous enrichment and separation of cationic and anionic analytes was designed and implemented in an eight-channel configuration. The device is based on the use of an electric field to transfer the analytes from a large volume of sample into small volumes of electrolyte that was suspended into two glass micropipettes using a conductive hydrogel. This simple, economical, fast, and green (no organic solvent required) sample preparation scheme was evaluated using cationic and anionic herbicides as test analytes in water. The analytical figures of merit and ecological aspects were evaluated against the state-of-the-art sample preparation, solid-phase extraction. A drastic reduction in both sample preparation time (94% faster) and resources (99% less consumables used) was observed. Finally, the technique in combination with high-performance liquid chromatography and capillary electrophoresis was applied to analysis of quaternary ammonium and phenoxypropionic acid herbicides in fortified river water as well as drinking water (at levels relevant to Australian guidelines). The presented sustainable sample preparation approach could easily be applied to other charged analytes or adopted by other laboratories.

  3. Promising silicones modified with cationic biocides for the development of antimicrobial medical devices.

    Science.gov (United States)

    Ghamrawi, Sarah; Bouchara, Jean-Philippe; Tarasyuk, Oksana; Rogalsky, Sergiy; Lyoshina, Lyudmila; Bulko, Olga; Bardeau, Jean-François

    2017-06-01

    We have tested silicones containing 2% or 5% of the cationic biocides polyhexamethylene guanidine dodecylbenzenesulfonate (PHMG-DBS), 1-octyl-3-methylimidazolium tetrafluoroborate (OMIM-BF 4 ) or 1-dodecyl-3-methylimidazolium tetrafluoroborate (DMIM-BF 4 ) against the major relevant bacterial and yeast species in health care-associated infections (HCAI). Study conducted according to the international standard ISO 22196 revealed that silicones containing 2% or 5% DMIM-BF 4 or 5% PHMG-DBS presented the highest antimicrobial activity, leading to a logarithmic growth reduction of 3.03 to 6.46 and 3.65 to 4.85 depending on the bacterial or fungal species. Heat-pretreated silicones containing 2% DMIM-BF 4 kept a high activity, with at least a 3-log reduction in bacterial growth, except against P. aeruginosa where there was only a 1.1-log reduction. After 33days, the release ratio of cationic biocide from silicone films containing 5% of DMIM-BF 4 was found to be 5.6% in pure water and 1.9% in physiological saline solution, respectively. No leaching of PHMG-DBS polymeric biocide was detected under the same conditions. These results demonstrate unambiguously that silicones containing 2% DMIM-BF 4 or 5% PHMG-DBS present high antimicrobial activity, as well as high leaching resistance and therefore may be good candidates for the development of safer medical devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Light-induced cation exchange for copper sulfide based CO2 reduction.

    Science.gov (United States)

    Manzi, Aurora; Simon, Thomas; Sonnleitner, Clemens; Döblinger, Markus; Wyrwich, Regina; Stern, Omar; Stolarczyk, Jacek K; Feldmann, Jochen

    2015-11-11

    Copper(I)-based catalysts, such as Cu2S, are considered to be very promising materials for photocatalytic CO2 reduction. A common synthesis route for Cu2S via cation exchange from CdS nanocrystals requires Cu(I) precursors, organic solvents, and neutral atmosphere, but these conditions are not compatible with in situ applications in photocatalysis. Here we propose a novel cation exchange reaction that takes advantage of the reducing potential of photoexcited electrons in the conduction band of CdS and proceeds with Cu(II) precursors in an aqueous environment and under aerobic conditions. We show that the synthesized Cu2S photocatalyst can be efficiently used for the reduction of CO2 to carbon monoxide and methane, achieving formation rates of 3.02 and 0.13 μmol h(-1) g(-1), respectively, and suppressing competing water reduction. The process opens new pathways for the preparation of new efficient photocatalysts from readily available nanostructured templates.

  5. Cation exchange removal of Cd from aqueous solution by NiO

    International Nuclear Information System (INIS)

    Mahmood, T.; Saddique, M.T.; Naeem, A.; Mustafa, S.; Dilara, B.; Raza, Z.A.

    2011-01-01

    Graphical abstract: Sorption of Cd on NiO particles is described by modified Langmuir adsorption isotherms. - Abstract: Detailed adsorption experiments of Cd from aqueous solution on NiO were conducted under batch process with different concentrations of Cd, time and temperature of the suspension. The solution pH is found to play a decisive role in the metal ions precipitation, surface dissolution and adsorption of metal ions onto the NiO. Preliminary adsorption experiments show that the selectivity of NiO towards different divalent metal ions follows the trend Pb > Zn > Co > Cd, which is related to their first hydrolysis equilibrium constant. The exchange between the proton from the NiO surface and the metal from solution is responsible for the adsorption. The cation/exchange mechanism essentially remains the same for Pb, Zn, Co and Cd ions. The sorption of Cd on NiO particles is described by the modified Langmuir adsorption isotherms. The isosteric heat of adsorption (ΔH) indicates the endothermic nature of the cation exchange process. Spectroscopic analyses provide evidence that Cd is chemisorbed onto the surface of NiO.

  6. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Comber, S.D.W. [Atkins Ltd, Chilbrook, Oasis Business Park, Eynsham, Oxford, OX29 4AH (United Kingdom)], E-mail: sean.comber@atkinsglobal.com; Rule, K.L. [Centre for Environmental Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom); Conrad, A.U. [Scottish Environmental Protection Agency, SEPA Corporate Office, Erskine Court Castle Business Park, Stirling FK9 4TR (United Kingdom); Hoess, S. [ECOSSA, Thierschstrasser 43, 80538 Muenchen (Germany); Webb, S.F. [Procter and Gamble, Temselaan 100, Strombeek-Bever B1853 (Belgium); Marshall, S. [Unilever Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom)

    2008-05-15

    Dimethyldioctadecylammonium chloride (DODMAC, CAS No. 107-64-2) is the principal active component of Di(hydrogenated tallow alkyl) dimethylammonium chloride (DHTDMAC, CAS No. 61789-80-8), a cationic surfactant formerly used principally in laundry fabric softeners. After discharge to water, DODMAC partitions strongly to sediment, therefore the assessment of the effects of DODMAC to benthic organisms is essential in any risk assessment. Chronic toxicity studies were conducted with Lumbriculus variegatus (Oligochaete), Tubifex tubifex (Oligochaete) and Caenorhabditis elegans (Nematode). NOECs were greater than 5738, 1515 and 1351 mg/kg dw, respectively, even for sub-lethal effects. Measurement of the route of uptake of DODMAC by L. variegatus demonstrated the relative importance of uptake via ingestion (86%) compared with direct contact with the sediment and via pore water (14%). The overall tendency of DODMAC to bioaccumulate, however, was low with measured accumulation factors of 0.22 and 0.78 for L. variegatus and T. tubifex, respectively. - The cationic surfactant, DODMAC, exhibits low bioavailability and toxicity to sediment dwelling organisms, with uptake dominated by ingestion.

  7. Bioaccumulation and toxicity of a cationic surfactant (DODMAC) in sediment dwelling freshwater invertebrates

    International Nuclear Information System (INIS)

    Comber, S.D.W.; Rule, K.L.; Conrad, A.U.; Hoess, S.; Webb, S.F.; Marshall, S.

    2008-01-01

    Dimethyldioctadecylammonium chloride (DODMAC, CAS No. 107-64-2) is the principal active component of Di(hydrogenated tallow alkyl) dimethylammonium chloride (DHTDMAC, CAS No. 61789-80-8), a cationic surfactant formerly used principally in laundry fabric softeners. After discharge to water, DODMAC partitions strongly to sediment, therefore the assessment of the effects of DODMAC to benthic organisms is essential in any risk assessment. Chronic toxicity studies were conducted with Lumbriculus variegatus (Oligochaete), Tubifex tubifex (Oligochaete) and Caenorhabditis elegans (Nematode). NOECs were greater than 5738, 1515 and 1351 mg/kg dw, respectively, even for sub-lethal effects. Measurement of the route of uptake of DODMAC by L. variegatus demonstrated the relative importance of uptake via ingestion (86%) compared with direct contact with the sediment and via pore water (14%). The overall tendency of DODMAC to bioaccumulate, however, was low with measured accumulation factors of 0.22 and 0.78 for L. variegatus and T. tubifex, respectively. - The cationic surfactant, DODMAC, exhibits low bioavailability and toxicity to sediment dwelling organisms, with uptake dominated by ingestion

  8. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  9. Complex conductivity of oil-contaminated clayey soils

    Science.gov (United States)

    Deng, Y.; Revil, A.; Shi, X.

    2017-12-01

    Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0

  10. Characterization of in vivo chemistry of cations in the heart

    International Nuclear Information System (INIS)

    Mousa, S.A.; Williams, S.J.; Sands, H.

    1987-01-01

    A variety of laboratory procedures can be used to define the chemistry and pharmacokinetics of myocardial cationic imaging agents. These methods are utilized to define the in vivo chemistry of cationic heart agents, in order to understand the kinetics and mechanisms of: tissue and cellular transport, subcellular distribution, and intracellular localization. Transport across cell membranes can be active, passive or facilitated. Studies performed in erythrocytes, heart cells, slices and isolated perfused hearts using methods for separation of metabolites have shown a high degree of myocardial specificity for [99mTc]hexakis alkyl isonitrile by an uptake mechanism different from 201 Tl. These studies demonstrate the importance of in vivo chemistry and pharmacokinetics in the development of new radiopharmaceuticals. 31 references

  11. Removal of cationic dye from water by activated pine cones

    Directory of Open Access Journals (Sweden)

    Momčilović Milan Z.

    2012-01-01

    Full Text Available Adsorption of a cationic phenothyazine dye methylene blueonto activated carbon prepared from pine cones was investigated with the variation in parameters of contact time, dye concentration and pH. The kinetic data were found to follow the pseudo-second-order kinetic modelclosely. The equilibrium data were best represented by the Langmuir isotherm with maximum adsorption capacity of 233.1 mg g-1. Adsorption was favored by using a higher solution pH. Textural analysis by nitrogen adsorption was used to determine specific surface area and pore structure of the obtained carbon. Boehm titrations revealed that carboxylic groups are present in the highest degree on the carbon surface. The results indicate that the presented method for activation of pine cones could yield activated carbon with significant porosity, developed surface reactivity and considerable adsorption affinity toward cationic dye methylene blue.

  12. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Y.M., E-mail: ymabbas@live.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Mansour, S.A.; Ibrahim, M.H. [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Ali, Shehab E., E-mail: shehab_physics@yahoo.com [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt)

    2011-11-15

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: > The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. > The transmission electronic microscope analysis confirmed the X-ray results. > The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  13. Microstructure characterization and cation distribution of nanocrystalline cobalt ferrite

    International Nuclear Information System (INIS)

    Abbas, Y.M.; Mansour, S.A.; Ibrahim, M.H.; Ali, Shehab E.

    2011-01-01

    Nanocrystalline cobalt ferrite has been synthesized using two different methods: ceramic and co-precipitation techniques. The nanocrystalline ferrite phase has been formed after 3 h of sintering at 1000 deg. C. The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction and the Rietveld method. The refinement result showed that the type of the cationic distribution over the tetrahedral and octahedral sites in the nanocrystalline lattice is partially an inverse spinel. The transmission electronic microscope analysis confirmed the X-ray results. The magnetic properties of the samples were characterized using a vibrating sample magnetometer. - Highlights: → The refinement result showed that the cationic distribution over the sites in the lattice is partially an inverse spinel. → The transmission electronic microscope analysis confirmed the X-ray results. → The magnetic properties of the samples were characterized using a vibrating sample magnetometer.

  14. Positron annihilation studies on nasicon analogues containing cation vacancies

    International Nuclear Information System (INIS)

    Sreeramalu, V.; Sreepad, H.R.; Chandrashekara, A.; Ravindrachary, V.; Gopal, S.

    1990-01-01

    Positron annihilation studies were carried out on the Nasicon analogue Na 2 (La, Al)Zr(PO 4 ) 3 compound for three different concentrations (2.2, 2.8 and 5.2 by wt.%) of ZrO 2 in the nutrient. Angular correlation study of annihilated photons reveals that the defect concentration is maximum for 2.8(wt.%) of ZrO 2 . Further, positron lifetime studies indicate that the positrons are trapped at cation vacancies. Application of a two state trapping model to this system made it possible to evaluate the lifetime of positrons in the Bloch state and of positrons trapped at cation vacancies. (author). 16 refs., 4 figs

  15. Removal of both cationic and anionic contaminants by amphoteric starch.

    Science.gov (United States)

    Peng, Huanlong; Zhong, Songxiong; Lin, Qintie; Yao, Xiaosheng; Liang, Zhuoying; Yang, Muqun; Yin, Guangcai; Liu, Qianjun; He, Hongfei

    2016-03-15

    A novel amphoteric starch incorporating quaternary ammonium and phosphate groups was applied to investigate the efficiency and mechanism of cationic and anionic contaminant treatment. Its flocculation abilities for kaolin suspension and copper-containing wastewater were evaluated by turbidity reduction and copper removal efficiency, respectively. And the kinetics of formation, breakage and subsequent re-formation of aggregates were monitored using a Photometric Dispersion Analyzer (PDA) and characterized by flocculation index (FI). The results showed that amphoteric starch possessed the advantages of being lower-dosages-consuming and being stronger in shear resistance than cationic starch, and exhibited a good flocculation efficiency over a wide pH range from 3.0 to 11.0. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Factors impacting the electro conductivity variations of clayey soils

    International Nuclear Information System (INIS)

    Ouhadi, V. R.; Goodarzi, A. R.

    2007-01-01

    The variation of pore fluid properties in soil has a major effect on soil behaviour. This effect is a function of pore fluid properties and soil mineralogy. Such variation usually happens in the reservoirs of dams or in some geotechnical projects. The electro conductivity measurement is a simple method to monitor any variation in the pore fluid of soils. electro conductivity is the ability of a material to transmit (conduct) an electrical current. This paper focuses attention on the effect of soil-pore fluid interaction on the electro conductivity of clayey soils. A set of physico-chemical experiments are performed and the role of different factors including soil pH, soil mineralogy, soil: water ratio, cation and anion effects are investigated. The results of this study indicate that for soil that has a relatively low CEC, the anion type is an important factor, while the cation type does not noticeably affect the electro conductivity of the soil-solution. However, for such soil, an electrolyte property, i.e. its solubility, is much more effective than the CEC of the soil. In addition, it was observed that in the presence of neutral salts such as pore fluid, the pH of the soil-solution decreases causing an increase in the electro conductivity of the soil sample

  17. Graphene Conductance Uniformity Mapping

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  18. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  19. Natural zeolite reactivity towards ozone: The role of compensating cations

    International Nuclear Information System (INIS)

    Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.

    2012-01-01

    Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.

  20. Radioiodinated Rhodamine-123: a potential cationic hepatobiliary imaging agent

    International Nuclear Information System (INIS)

    Moonen, P.; Gorree, G.C.M.; Hoekstra, A.

    1987-01-01

    The labelling of the cationic dye Rhodamine-123 with 125 I is described. The biodistribution of the iodinated Rhodamine-123 has been determined at different time intervals after intravenous injection into fasted rats. It turned out that the dye is predominantly cleared by the liver and discharged into the bile. The bile acid taurocholate did not enhance the rate of excretion of 125 I-Rhodamine-123. (author)