WorldWideScience

Sample records for monovalent cation binding

  1. Circular Dichroism is Sensitive to Monovalent Cation Binding in Monensin Complexes.

    Science.gov (United States)

    Nedzhib, Ahmed; Kessler, Jiří; Bouř, Petr; Gyurcsik, Béla; Pantcheva, Ivayla

    2016-05-01

    Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li(+) , Na(+) , K(+) , Rb(+) , Ag(+) , and Et4 N(+) ) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178-192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time-dependent Density Functional Theory (TDDFT) simulations did not allow band-to-band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420-428, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Regulation of formyl peptide receptor binding to rabbit neutrophil plasma membranes. Use of monovalent cations, guanine nucleotides, and bacterial toxins to discriminate among different states of the receptor

    Energy Technology Data Exchange (ETDEWEB)

    Feltner, D.E.; Marasco, W.A.

    1989-06-01

    The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of (3H)FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM (3H)FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. (3H)FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of (3H)FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM (3H)FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.

  3. Activation and inhibition of histone deacetylase 8 by monovalent cations.

    Science.gov (United States)

    Gantt, Stephanie L; Joseph, Caleb G; Fierke, Carol A

    2010-02-26

    The metal-dependent histone deacetylases (HDACs) catalyze hydrolysis of acetyl groups from acetyllysine side chains and are targets of cancer therapeutics. Two bound monovalent cations (MVCs) of unknown function have been previously observed in crystal structures of HDAC8; site 1 is near the active site, whereas site 2 is located > 20 A from the catalytic metal ion. Here we demonstrate that one bound MVC activates catalytic activity (K(1/2) = 3.4 mM for K(+)), whereas the second, weaker-binding MVC (K(1/2) = 26 mM for K(+)) decreases catalytic activity by 11-fold. The weaker binding MVC also enhances the affinity of the HDAC inhibitor suberoylanilide hydroxamic acid by 5-fold. The site 1 MVC is coordinated by the side chain of Asp-176 that also forms a hydrogen bond with His-142, one of two histidines important for catalytic activity. The D176A and H142A mutants each increase the K(1/2) for potassium inhibition by > or = 40-fold, demonstrating that the inhibitory cation binds to site 1. Furthermore, the MVC inhibition is mediated by His-142, suggesting that this residue is protonated for maximal HDAC8 activity. Therefore, His-142 functions either as an electrostatic catalyst or a general acid. The activating MVC binds in the distal site and causes a time-dependent increase in activity, suggesting that the site 2 MVC stabilizes an active conformation of the enzyme. Sodium binds more weakly to both sites and activates HDAC8 to a lesser extent than potassium. Therefore, it is likely that potassium is the predominant MVC bound to HDAC8 in vivo.

  4. Independent adsorption of monovalent cations and cationic polymers at PE/PG lipid membranes

    Science.gov (United States)

    Khomich, Daria A.; Nesterenko, Alexey M.; Kostritskii, Andrei Yu; Kondinskaia, Diana A.; Ermakov, Yuri A.; Gurtovenko, Andrey A.

    2017-01-01

    Synthetic cationic polymers constitute a wide class of polymeric biocides. Commonly their antimicrobial effect is associated to their interaction with bacterial membranes. In the present study we analyze the interaction of various cationic polymers with model bacterial membranes comprised of a mixture of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). We describe a polymer-membrane interaction as a process of modification of the surface charge. It is well known that small monovalent inorganic cations (Na+, K+) cannot overcharge the surface of a bilayer containing anionic lipids. In contrast, polycations are able to overcharge anionic membranes and demonstrate a very large input to the electric field distribution at the membrane-water interface. We aimed here to study the electrostatic effects associated with the interaction of polycations of different types with a model lipid membrane whose composition closely resembles that of bacterial membranes (PE:PG = 1:4). Four different cationic polymers (polyvinylamine, polyallylamine, poly-L-lysine and polyethylenimine) were adsorbed at a model PE/PG bilayer in MD simulations. Adsorption of sodium cations was inspected separately for PE/PG bilayers of different composition and cation’s binding parameters were determined. From computational experiments and consequent theoretical analysis we concluded that sodium adsorption at anionic binding sites does not depend on the presence of polycations. Therefore, we hypothesize that antimicrobial activity of the studied cationic polymers should depend on the ionic composition of the medium.

  5. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.

    Science.gov (United States)

    Padlan, Camille S; Malashkevich, Vladimir N; Almo, Steve C; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E

    2014-04-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four base pairs (Lys1.2minF) without compromising binding affinity, yielding a 45-nucleotide aptamer whose structure may be an adaptable protein binding platform.

  6. The Mrp system: a giant among monovalent cation/proton antiporters?

    Science.gov (United States)

    Swartz, Talia H; Ikewada, Sayuri; Ishikawa, Osamu; Ito, Masahiro; Krulwich, Terry Ann

    2005-10-01

    Mrp systems are a novel and broadly distributed type of monovalent cation/proton antiporter of bacteria and archaea. Monovalent cation/proton antiporters are membrane transport proteins that catalyze efflux of cytoplasmic sodium, potassium or lithium ions in exchange for external hydrogen ions (protons). Other known monovalent cation antiporters are single gene products, whereas Mrp systems have been proposed to function as hetero-oligomers. A mrp operon typically has six or seven genes encoding hydrophobic proteins all of which are required for optimal Mrp-dependent sodium-resistance. There is little sequence similarity of Mrp proteins to other antiporters but three of these proteins have significant sequence similarity to membrane embedded subunits of ion-translocating electron transport complexes. Mrp antiporters have essential roles in the physiology of alkaliphilic and neutralophilic Bacillus species, nitrogen-fixing Sinorhizobium meliloti and in the pathogen Staphylococcus aureus, although these bacteria contain multiple monovalent cation/proton antiporters. The wide distribution of Mrp systems leads to the anticipation of important roles in an even wider variety of pathogens, extremophiles and environmentally important organisms. Here, the distribution, established physiological roles and catalytic activities of Mrp systems are reviewed, hypotheses regarding their complexity are discussed and major open questions about their function are highlighted.

  7. Incorporation of Monovalent Cations in Sulfate Green Rust

    DEFF Research Database (Denmark)

    Christiansen, B. C.; Dideriksen, K.; Katz, A.;

    2014-01-01

    Green rust is a naturally occurring layered mixed-valent ferrous-ferric hydroxide, which can react with a range of redox-active compounds. Sulfate-bearing green rust is generally thought to have interlayers composed of sulfate and water. Here, we provide evidence that the interlayers also contain...... with water showed that Na+ and K+ were structurally fixed in the interlayer, whereas Rb+ and Cs+ could be removed, resulting in a decrease in the basal layer spacing. The incorporation of cations in the interlayer opens up new possibilities for the use of sulfate green rust for exchange reactions with both...

  8. Effects of monovalent cations on folding kinetics of G-quadruplexes.

    Science.gov (United States)

    You, Jing; Li, Hui; Lu, Xi-Ming; Li, Wei; Wang, Peng-Ye; Dou, Shuo-Xing; Xi, Xu-Guang

    2017-08-31

    G-quadruplexes are special structures existing at the ends of human telomeres, the folding kinetics of which are essential for their functions, such as in the maintenance of genome stability and the protection of chromosome ends. In the present study, we investigated the folding kinetics of G-quadruplex in different monovalent cation environments and determined the detailed kinetic parameters for Na(+)- and K(+)-induced G-quadruplex folding, and for its structural transition from the basket-type Na(+) form to the hybrid-type K(+) form. More interestingly, although Li(+) was often used in previous studies of G-quadruplex folding as a control ion supposed to have no effect, we have found that Li(+) can actually influence the folding kinetics of both Na(+)- and K(+)-induced G-quadruplexes significantly and in different ways, by changing the folding fraction of Na(+)-induced G-quadruplexes and greatly increasing the folding rates of K(+)-induced G-quadruplexes. The present study may shed new light on the roles of monovalent cations in G-quadruplex folding and should be useful for further studies of the underlying folding mechanism. © 2017 The Author(s).

  9. Asymmetric cation-binding catalysis

    DEFF Research Database (Denmark)

    Oliveira, Maria Teresa; Lee, Jiwoong

    2017-01-01

    and KCN, are selectively bound to the catalyst, providing exceptionally high enantioselectivities for kinetic resolutions, elimination reactions (fluoride base), and Strecker synthesis (cyanide nucleophile). Asymmetric cation-binding catalysis was recently expanded to silicon-based reagents, enabling...... solvents, thus increasing their applicability in synthesis. The expansion of this concept to chiral polyethers led to the emergence of asymmetric cation-binding catalysis, where chiral counter anions are generated from metal salts, particularly using BINOL-based polyethers. Alkali metal salts, namely KF...

  10. Influence of competing inorganic cations on the ion exchange equilibrium of the monovalent organic cation metoprolol on natural sediment.

    Science.gov (United States)

    Niedbala, Anne; Schaffer, Mario; Licha, Tobias; Nödler, Karsten; Börnick, Hilmar; Ruppert, Hans; Worch, Eckhard

    2013-02-01

    The aim of this study was to systematically investigate the influence of the mono- and divalent inorganic ions Na(+) and Ca(2+) on the sorption behavior of the monovalent organic cation metoprolol on a natural sandy sediment at pH=7. Isotherms for the beta-blocker metoprolol were obtained by sediment-water batch tests over a wide concentration range (1-100000 μg L(-1)). Concentrations of the competing inorganic ions were varied within freshwater relevant ranges. Data fitted well with the Freundlich sorption model and resulted in very similar Freundlich exponents (n=0.9), indicating slightly non-linear behavior. Results show that the influence of Ca(2+) compared to Na(+) is more pronounced. A logarithmic correlation between the Freundlich coefficient K(Fr) and the concentration or activity of the competing inorganic ions was found allowing the prediction of metoprolol sorption on the investigated sediment at different electrolyte concentrations. Additionally, the organic carbon of the sediment was completely removed for investigating the influence of organic matter on the sorption of metoprolol. The comparison between the experiments with and without organic carbon removal revealed no significant contribution of the organic carbon fraction (0.1%) to the sorption of metoprolol on the in this study investigated sediment. Results of this study will contribute to the development of predictive models for the transport of organic cations in the subsurface.

  11. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.

    Science.gov (United States)

    Medda, P; Fassold, E; Hasselbach, W

    1987-06-01

    The coupling of Ca2+ movements and phosphate fluxes as well as the time-dependent occurrence of sequential reaction intermediates in the forward mode of the Ca,Mg-dependent ATPase reaction have been investigated using leaky vesicles (A23187) in the presence of varying Ca2+, Mg2+, and K+ concentrations. The employed ATP concentration of 2 microM does not allow more than one reaction cycle to occur. The respective fractions of ADP-sensitive and ADP-insensitive phosphoenzyme have been determined. The chosen experimental conditions (0-1 degree C, pH 6.0, absence of solubilizers) allow a prolonged time of observation and exclude interfering alterations of coupling and binding parameters, respectively. It is shown that under the experimental conditions K+ interacts with at least four different reaction steps (phosphoenzyme formation, E1P----E2P transition, E2P hydrolysis, and E2----E1 transformation). Mg2+ represents the sole ionic co-factor for the formation of the substrate MgATP if it is present in high concentrations (5 mM). Additional Ca2+ is bound to the substrate as well as to unspecific sites otherwise occupied by Mg2+ if Mg2+ is reduced to 0.1 mM. In this case the E1P----E2P transition rate (including Ca2+ translocation and Ca2+ release from low-affinity sites) is little diminished. If, in the absence of K+, both Mg2+ and Ca2+ are deficient E2P hydrolysis is vastly retarded. We find Ca2+ release to occur time-coincidently with E1P formation and not concomitantly with the comparably slow appearance of E2P; the molar amount of Ca2+ released, however, rather agreed with that of E2P formed. This suggests that under the prevailing conditions of a high proton concentration, phosphoenzyme states containing occluded Ca2+ or Ca2+ bound to low-affinity sites are transitional and not detectable. Preliminary findings on this subject have been published by us and colleagues from this laboratory [Hasselbach, W., Agostini, B., Medda, P., Migala, A. & Waas, W. (1985) in The

  12. Single crystal structures of thallium (I) thorium fluorides and crystal chemistry of monovalent tetravalent cation pentafluorides

    Science.gov (United States)

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Jouffret, Laurent; Avignant, Daniel

    2015-12-01

    Two thallium (I) thorium (IV) fluorides, TlTh3F13 and TlThF5 were obtained by solid state synthesis and their crystal structures determined from single crystal X-ray diffraction data recorded at room temperature with an APEX-II CCD diffractometer. TlTh3F13 is orthorhombic, space group Pmc21, with a=8.1801(2) Å, b=7.4479(2) Å, c=8.6375(2) Å, V=526.24(2) Å3, Z=2 and TlThF5 is monoclinic, space group P21/n, with a=8.1128(5) Å, b=7.2250(4) Å, c=8.8493(6) Å, β=116.683(3)°, V=463.46(5) Å3, Z=4. The structure of TlTh3F13 comprises layers of corner and edge-sharing ThF9 polyhedra further linked by chains of trans connected tricapped trigonal prisms ThF9 through corners and edges. The three dimensional thorium frameworks delimits channels parallel to [0 0 1] where the 11-coordinated Tl+ ions are arranged into double columns located in mirror planes of the structure. TlTh3F13 is isotypic with RbTh3F13, RbU3F13 and with one of the two polymorphs of CsTh3F13. The structure of TlThF5 may be regarded as a layer structure built up from the regular succession of 2∞[ M ‧F5 ] - corrugated layers further held by the Tl+ ions along the [1 0 1 ̅] direction. The layers are built up from edge and corner-sharing thorium polyhedra where each (ThF9)5- monocapped square antiprism is connected to five others by sharing three edges and two corners. TlThF5 is isostructural with β-NH4UF5 and with one of the polymorphs of CsThF5. A comparison of the different structural types of MM‧F5 pentafluorides is presented and a diagram of repartition of their structures is given. From the comparison of the Tl structures with their Rb or Cs homologs, where very similar monovalent cation environments are observed it should be concluded to a stereochemically inactivity of the 6s2 lone pair of Tl(I) in both TlTh3F13 and TlThF5, contrary to what is observed in richer Tl(I) content Tl3ThF7 fluorothorate.

  13. Monovalent Cation Doping of CH3NH3PbI3 for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Dar, M Ibrahim; Sadhanala, Aditya; Senanayak, Satyaprasad P; Grätzel, Michael; Friend, Richard H

    2017-03-19

    Here, we demonstrate the incorporation of monovalent cation additives into CH3NH3PbI3 perovskite in order to adjust the optical, excitonic, and electrical properties. The possibility of doping was investigated by adding monovalent cation halides with similar ionic radii to Pb(2+), including Cu(+), Na(+), and Ag(+). A shift in the Fermi level and a remarkable decrease of sub-bandgap optical absorption, along with a lower energetic disorder in the perovskite, was achieved. An order-of-magnitude enhancement in the bulk hole mobility and a significant reduction of transport activation energy within an additive-based perovskite device was attained. The confluence of the aforementioned improved properties in the presence of these cations led to an enhancement in the photovoltaic parameters of the perovskite solar cell. An increase of 70 mV in open circuit voltage for AgI and a 2 mA/cm(2) improvement in photocurrent density for NaI- and CuBr-based solar cells were achieved compared to the pristine device. Our work paves the way for further improvements in the optoelectronic quality of CH3NH3PbI3 perovskite and subsequent devices. It highlights a new avenue for investigations on the role of dopant impurities in crystallization and controls the electronic defect density in perovskite structures.

  14. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity.

    Science.gov (United States)

    Boder, E T; Midelfort, K S; Wittrup, K D

    2000-09-26

    Single-chain antibody mutants have been evolved in vitro with antigen-binding equilibrium dissociation constant K(d) = 48 fM and slower dissociation kinetics (half-time > 5 days) than those for the streptavidin-biotin complex. These mutants possess the highest monovalent ligand-binding affinity yet reported for an engineered protein by over two orders of magnitude. Optimal kinetic screening of randomly mutagenized libraries of 10(5)-10(7) yeast surface-displayed antibodies enabled a >1,000-fold decrease in the rate of dissociation after four cycles of affinity mutagenesis and screening. The consensus mutations are generally nonconservative by comparison with naturally occurring mouse Fv sequences and with residues that do not contact the fluorescein antigen in the wild-type complex. The existence of these mutants demonstrates that the antibody Fv architecture is not intrinsically responsible for an antigen-binding affinity ceiling during in vivo affinity maturation.

  15. Effect of primycin on monovalent cation transport of erythrocyte membrane and lipid bilayer.

    Science.gov (United States)

    Blaskó, K; Györgyi, S; Horváth, I

    1979-04-01

    The effects of primycin were investigated on the alkali-cation transport of human erythrocytes and on the electric conduction of bimolecular lipid membranes. In the concentration range of 3.10(-6) approximately 10(-5) M primycin increased the permeability of erythrocytes to alkali-cations according to the sequences Cs+ greater than Rb+ approximately K+ greater than Na+, while the conductance of the negatively charged phosphatidylserine bimolecular lipid membrane increased by 2 approximately 3 orders of magnitude. The resistance-lowering effect of primycin strongly depended on the cationic species applied and a selectivity order Na+ greater than K+ greater than Rb+ greater than Cs+ was found. A possible mechanism of the primycin-membrane interaction is suggested on the basis of experimental data.

  16. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Susanne Gerber

    2016-01-01

    Full Text Available Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport or by ATP consumption (ATPases. The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  17. A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Gerber, Susanne; Fröhlich, Martina; Lichtenberg-Fraté, Hella; Shabala, Sergey; Shabala, Lana; Klipp, Edda

    2016-01-01

    Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the electrochemical potential differences, but also primary or secondary active transport processes driven by the inter- play of different ions (symport, antiport) or by ATP consumption (ATPases). The model-confronted with experimental data-reproduces the experimentally observed potassium and proton fluxes induced by the external stimuli KCl and glucose. The estimated phenomenological constants combine kinetic parameters and transport coefficients. These are in good agreement with the biological understanding of the transporters thus providing a better understanding of the control exerted by the coupled fluxes. The model predicts the flux of additional ion species, like e.g. chloride, as a potential candidate for counterbalancing positive charges. Furthermore, the effect of a second KCl stimulus is simulated, predicting a reduced cellular response for cells that were first exposed to a high KCl stimulus compared to cells pretreated with a mild KCl stimulus. By describing the generalized forces that are responsible for a given flow, the model provides information and suggestions for new experiments. Furthermore, it can be extended to other systems such as e.g. Candida albicans, or selected plant cells.

  18. Ring-Puckering Potential Energy Functions for Trimethylene Sulfide and Its Monovalent Cation.

    Science.gov (United States)

    Chun, Hye Jin; Ocola, Esther J; Laane, Jaan

    2017-04-13

    The spectra and ring-puckering potential energy function for trimethylene sulfide cation (TMS(+)) from vacuum ultraviolet mass-analyzed threshold ionization spectra have recently been reported. To provide an in-depth comparison of the potential function with that of trimethylene sulfide (TMS) itself, we have used ab initio MP2/cc-pVTZ calculations and DFT B3LYP/cc-pVTZ calculations to predict the structures of both TMS and TMS(+) and then used these to calculate coordinate-dependent ring-puckering kinetic energy functions for both species. These kinetic energy functions allowed us to calculate refined potential energy functions of the puckering for both molecules based on the previously published spectra. TMS has an experimental barrier of 271 cm(-1) and energy minima at ring-puckering angles of ±29°. For TMS(+) the barrier is 60 cm(-1) and the energy minima correspond to ring-puckering angles of ±21°. The lower barrier for the cation reflects the smaller amount of angle strain in the ring angles for TMS(+).

  19. Competitive interaction of monovalent cations with DNA from 3D-RISM

    OpenAIRE

    Giambaşu, George M.; Gebala, Magdalena K.; Panteva, Maria T.; Luchko, Tyler; Case, David A.; York, Darrin M.

    2015-01-01

    The composition of the ion atmosphere surrounding nucleic acids affects their folding, condensation and binding to other molecules. It is thus of fundamental importance to gain predictive insight into the formation of the ion atmosphere and thermodynamic consequences when varying ionic conditions. An early step toward this goal is to benchmark computational models against quantitative experimental measurements. Herein, we test the ability of the three dimensional reference interaction site mo...

  20. Simultaneous Analysis of Monovalent Anions and Cations with a Sub-Microliter Dead-Volume Flow-Through Potentiometric Detector for Ion Chromatography.

    Science.gov (United States)

    Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim

    2016-04-01

    A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na(+)), potassium (K(+)), ammonium (NH4 (+)), chloride (Cl(-)) and nitrate (NO3 (-)) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples.

  1. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Cation Mediation on Asp Adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chunya [Harbin Institute of Technology; Skelton, Adam [Vanderbilt University; Chen, Mingjun [Harbin Institute of Technology; Vlcek, Lukas [ORNL; Cummings, Peter T [ORNL

    2012-01-01

    The binding of a negatively charged residue, aspartic acid (Asp) in tripeptide arginine-glycine-aspartic acid, onto a negatively charged hydroxylated rutile (110) surface in aqueous solution, containing divalent (Mg{sup 2+}, Ca{sup 2+}, or Sr{sup 2+}) or monovalent (Na{sup +}, K{sup +}, or Rb{sup +}) cations, was studied by molecular dynamics (MD) simulations. The results indicate that ionic radii and charges will significantly affect the hydration, adsorption geometry, and distance of cations from the rutile surface, thereby regulating the Asp/rutile binding mode. The adsorption strength of monovalent cations on the rutile surface in the order Na{sup +} > K{sup +} > Rb{sup +} shows a 'reverse' lyotropic trend, while the divalent cations on the same surface exhibit a 'regular' lyotropic behavior with decreasing crystallographic radii (the adsorption strength of divalent cations: Sr{sup 2+} > Ca{sup 2+} > Mg{sup 2+}). The Asp side chain in NaCl, KCl, and RbCl solutions remains stably H-bonded to the surface hydroxyls and the inner-sphere adsorbed compensating monovalent cations act as a bridge between the COO{sup -} group and the rutile, helping to 'trap' the negatively charged Asp side chain on the negatively charged surface. In contrast, the mediating divalent cations actively participate in linking the COO{sup -} group to the rutile surface; thus the Asp side chain can remain stably on the rutile (110) surface, even if it is not involved in any hydrogen bonds with the surface hydroxyls. Inner- and outer-sphere geometries are all possible mediation modes for divalent cations in bridging the peptide to the rutile surface.

  2. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    OpenAIRE

    Fitzgerald, M. M.; Trester, M. L.; Jensen, G M; McRee, D. E.; Goodin, D B

    1995-01-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent...

  3. Asymmetric Aminalization via Cation-Binding Catalysis

    DEFF Research Database (Denmark)

    Park, Sang Yeon; Liu, Yidong; Oh, Joong Suk

    2017-01-01

    Asymmetric cation-binding catalysis, in principle, can generate "chiral" anionic nucleophiles, where the counter cations are coordinated within chiral environments. Nitrogen-nucleophiles are intrinsically basic, therefore, its use as nucleophiles is often challenging and limiting the scope...... of the reaction. Particularly, a formation of configurationally labile aminal centers with alkyl substituents has been a formidable challenge due to the enamine/imine equilibrium of electrophilic substrates. Herein, we report enantioselective nucleophilic addition reactions of potassium phthalimides to Boc......-protected alkyl- and aryl-substituted α-amido sulfones. In-situ generated imines smoothly reacted with the nitrogen nucleophiles to corresponding aminals with good to excellent enantioselectivitiy under mild reaction conditions. In addition, transformation of aminal products gave biologically relevant...

  4. Yeast Kch1 and Kch2 membrane proteins play a pleiotropic role in membrane potential establishment and monovalent cation homeostasis regulation.

    Science.gov (United States)

    Felcmanova, Kristina; Neveceralova, Petra; Sychrova, Hana; Zimmermannova, Olga

    2017-08-01

    The Kch1 and Kch2 plasma-membrane proteins were identified in Saccharomyces cerevisiae as being essential for the activation of a high-affinity Ca2+ influx system. We searched for Kch proteins roles in the maintenance of cation homeostasis and tested the effect of kch1 and/or kch2 deletions on various physiological parameters. Compared to wild-type, kch1 kch2 mutant cells were smaller, relatively hyperpolarised, grew better under limited K+ conditions and exhibited altered growth in the presence of monovalent cations. The absence of Kch1 and Kch2 did not change the intracellular pH in cells growing at low potassium or the tolerance of cells to divalent cations, high concentration of sorbitol or extreme external pH. The overexpression of KCH1 only increased the intracellular pH in the presence of elevated K+ in media. None of the phenotypes associated with the deletion of KCH1 and KCH2 in wild type were observed in a strain lacking KCH genes and main K+ uptake systems Trk1 and Trk2. The role of the Kch homologue in cation homeostasis was also tested in Candida albicans cells. Our data demonstrate that Kch proteins significantly contribute to the maintenance of optimal cation homeostasis and membrane potential in S. cerevisiae but not in C. albicans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  6. Differential effect of HOE642 on two separate monovalent cation transporters in the human red cell membrane

    DEFF Research Database (Denmark)

    Bernhardt, Ingolf; Weiss, Erwin; Robinson, Hannah C

    2007-01-01

    Residual K(+) fluxes in red blood cells can be stimulated in conditions of low ionic strength. Previous studies have identified both the non-selective, voltage-dependent cation (NSVDC) channel and the K(+)(Na(+))/H(+) exchanger as candidate pathways mediating this effect, although it is possible...... blood cell apoptosis (eryptosis) and disease....

  7. Preparation and characterisation of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.; Krupenko, O.; Punt, I.G.M.; Stamatialis, D.; Wessling, M.

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly cha

  8. A monovalent ion-selective cation current activated by noradrenaline in smooth muscle cells of rabbit ear artery.

    Science.gov (United States)

    Wang, Q; Hogg, R C; Large, W A

    1993-04-01

    Membrane currents were recorded with the perforated-patch method with a low-chloride (35 mM) pipette solution in isolated smooth muscle cells of the rabbit ear artery. At a holding potential of -50 mV in potassium-free conditions spontaneous inward single-channel currents were observed and noradrenaline evoked a noisy inward current, which appeared to be comprised of the spontaneous currents. The reversal potential (Vr) of the spontaneous channel and noradrenaline-induced current was not affected in anion-substitution experiments but Vr was altered when external Na+ was replaced with choline or TRIS. The relationship between clamp potential and spontaneous single-channel current amplitude was linear and the mean unitary conductance was 28 pS. Caffeine, which releases calcium from the sarcoplasmic reticulum, and the calcium ionophore ionomycin activated the cation current and also blocked the response to noradrenaline. Spontaneous channel current activity and the noradrenaline-induced current were blocked when external NaCl was replaced with 89 mM CaCl2. The response to noradrenaline was blocked by prazosin but was not affected by yohimbine and therefore the response is mediated by alpha 1-adrenoceptors. It is concluded that in rabbit ear artery smooth muscle cells there is a calcium-activated cation channel of 28 pS conductance, which is relatively impermeable to calcium but can be activated by noradrenaline.

  9. Influence of monovalent alkaline metal cations on binder-free nano-zeolite X in para-xylene separation

    Institute of Scientific and Technical Information of China (English)

    Milad Rasouli; Nakisa Yaghobi; Hossein Atashi; Majid Rasouli

    2015-01-01

    The adsorption process was studied for separating para-xylene from xylene mixture on modified nano-zeolite X in a breakthrough system. Nano-zeolitic adsorbent with different ratios of SiO2/Al2O3 was synthesized through hydrothermal process and ion-exchanged with alkaline metal cations like lithium, sodium and potassium. The product was characterized by X-ray diffraction, scanning electron microscopy (SEM), nitrogen adsorption, transform electron microscopy (TEM) and in situ Fourier transform infrared (FTIR) spectroscopy. The influence of nano-zeolite water content and desorbent type on the selectivity of para-xylene toward other C8 aromatic isomers was studied. The optimization of adsorption process was also investigated under variable operation conditions. The isotherm for each isomer of C8 aromatics and the desorbents possess the adsorption characteristics of Langmuir type. The selectivity factor of para-xylene relative to each of meta-xylene, ortho-xylene and ethylben-zene under the optimum conditions obtained to be 5.36, 2.43 and 3.22, in the order given.

  10. Predictive model of cationic surfactant binding to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2011-01-01

    The humic substances (HS) have a high reactivity with other components in the natural environment. An important factor for the reactivity of HS is their negative charge. Cationic surfactants bind strongly to HS by electrostatic and specific interaction. Therefore, a surfactant binding model is devel

  11. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Science.gov (United States)

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens

    2016-04-01

    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  12. Cation binding site of cytochrome c oxidase: progress report.

    Science.gov (United States)

    Vygodina, Tatiana V; Kirichenko, Anna; Konstantinov, Alexander A

    2014-07-01

    Cytochrome c oxidase from bovine heart binds Ca(2+) reversibly at a specific Cation Binding Site located near the outer face of the mitochondrial membrane. Ca(2+) shifts the absorption spectrum of heme a, which allowed earlier the determination of the kinetic and equilibrium characteristics of the binding, and, as shown recently, the binding of calcium to the site inhibits cytochrome oxidase activity at low turnover rates of the enzyme [Vygodina, Т., Kirichenko, A., Konstantinov, A.A (2013). Direct Regulation of Cytochrome c Oxidase by Calcium Ions. PloS ONE 8, e74436]. This paper summarizes further progress in the studies of the Cation Binding Site in this group presenting the results to be reported at 18th EBEC Meeting in Lisbon, 2014. The paper revises specificity of the bovine oxidase Cation Binding Site for different cations, describes dependence of the Ca(2+)-induced inhibition on turnover rate of the enzyme and reports very high affinity binding of calcium with the "slow" form of cytochrome oxidase. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  13. Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiporter system from the moderate halophile Halomonas zhaodongensis.

    Science.gov (United States)

    Meng, Lin; Hong, Shan; Liu, Henan; Huang, Haipeng; Sun, Hao; Xu, Tong; Jiang, Juquan

    2014-11-01

    The novel species Halomonas zhaodongensis NEAU-ST10-25(T) recently identified by our group is a moderate halophile which can grow at the range of 0-2.5 M NaCl (optimum 0.5 M) and pH 6-12 (optimum pH 9). To explore its halo-alkaline tolerant mechanism, genomic DNA was screened from NEAU-ST10-25(T) in this study for Na(+)(Li(+))/H(+) antiporter genes by selection in Escherichia coli KNabc lacking three major Na(+)(Li(+))/H(+) antiporters. One mrp operon could confer tolerance of E. coli KNabc to 0.8 M NaCl and 100 mM LiCl, and an alkaline pH. This operon was previously mainly designated mrp (also mnh, pha or sha) due to its multiple resistance and pH-related activity. Here, we will also use mrp to designate the homolog from H. zhaodongensis (Hz_mrp). Sequence analysis and protein alignment showed that Hz_mrp should belong to Group 1 mrp operons. Further phylogenetic analysis reveals that Hz_Mrp system should represent a novel sub-class of Group 1 Mrp systems. This was confirmed by a significant difference in pH-dependent activity profile or the specificity and affinity for the transported monovalent cations between Hz_Mrp system and all the known Mrp systems. Therefore, we propose that Hz_Mrp should be categorized as a novel Group 1 Mrp system.

  14. Cations bind only weakly to amides in aqueous solutions.

    Science.gov (United States)

    Okur, Halil I; Kherb, Jaibir; Cremer, Paul S

    2013-04-01

    We investigated salt interactions with butyramide as a simple mimic of cation interactions with protein backbones. The experiments were performed in aqueous metal chloride solutions using two spectroscopic techniques. In the first, which provided information about contact pair formation, the response of the amide I band to the nature and concentration of salt was monitored in bulk aqueous solutions via attenuated total reflection Fourier transform infrared spectroscopy. It was found that molar concentrations of well-hydrated metal cations (Ca(2+), Mg(2+), Li(+)) led to the rise of a peak assigned to metal cation-bound amides (1645 cm(-1)) and a decrease in the peak associated with purely water-bound amides (1620 cm(-1)). In a complementary set of experiments, the effect of cation identity and concentration was investigated at the air/butyramide/water interface via vibrational sum frequency spectroscopy. In these studies, metal ion-amide binding led to the ordering of the adjacent water layer. Such experiments were sensitive to the interfacial partitioning of cations in either a contact pair with the amide or as a solvent separated pair. In both experiments, the ordering of the interactions of the cations was: Ca(2+) > Mg(2+) > Li(+) > Na(+) ≈ K(+). This is a direct cationic Hofmeister series. Even for Ca(2+), however, the apparent equilibrium dissociation constant of the cation with the amide carbonyl oxygen was no tighter than ∼8.5 M. For Na(+) and K(+), no evidence was found for any binding. As such, the interactions of metal cations with amides are far weaker than the analogous binding of weakly hydrated anions.

  15. Binding of cationic surfactants to humic substances

    NARCIS (Netherlands)

    Ishiguro, M.; Tan, W.; Koopal, L.K.

    2007-01-01

    Commercial surfactants are introduced into the environment either through waste products or site-specific contamination. The amphiphilic nature of both surfactants and humic substances (HS) leads to their mutual attraction especially when surfactant and HS are oppositely charged. Binding of the cati

  16. Interaction between alginates and manganese cations: identification of preferred cation binding sites.

    Science.gov (United States)

    Emmerichs, N; Wingender, J; Flemming, H-C; Mayer, C

    2004-04-01

    Algal and bacterial alginates have been studied by means of 13C NMR spectroscopy in presence of paramagnetic manganese ions in order to reveal the nature of their interaction with bivalent cations. It is found that the mannuronate blocks bind manganese cations externally near their carboxylate groups, while guluronate blocks show the capability to integrate Mn2+ into pocket-like structures formed by adjacent guluronate residues. In alternating mannuronate-guluronate blocks, manganese ions preferentially locate in a concave structure formed by guluronate-mannuronate pairs. Partial acetylation of the alginate generally reduces its capability to interact with bivalent cations, however, the selectivity of the binding geometry is conserved. The results may serve as a hint for the better understanding of the alginate gelation in presence of calcium ions.

  17. The role of aspartate-235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase.

    Science.gov (United States)

    Fitzgerald, M M; Trester, M L; Jensen, G M; McRee, D E; Goodin, D B

    1995-09-01

    The activated state of cytochrome c peroxidase, compound ES, contains a cation radical on the Trp-191 side chain. We recently reported that replacing this tryptophan with glycine creates a buried cavity at the active site that contains ordered solvent and that will specifically bind substituted imidazoles in their protonated cationic forms (Fitzgerald MM, Churchill MJ, McRee DE, Goodin DB, 1994, Biochemistry 33:3807-3818). Proposals that a nearby carboxylate, Asp-235, and competing monovalent cations should modulate the affinity of the W191G cavity for ligand binding are addressed in this study. Competitive binding titrations of the imidazolium ion to W191G as a function of [K+] show that potassium competes weakly with the binding of imidazoles. The dissociation constant observed for potassium binding (18 mM) is more than 3,000-fold higher than that for 1,2-dimethylimidazole (5.5 microM) in the absence of competing cations. Significantly, the W191G-D235N double mutant shows no evidence for binding imidazoles in their cationic or neutral forms, even though the structure of the cavity remains largely unperturbed by replacement of the carboxylate. Refined crystallographic B-values of solvent positions indicate that the weakly bound potassium in W191G is significantly depopulated in the double mutant. These results demonstrate that the buried negative charge of Asp-235 is an essential feature of the cation binding determinant and indicate that this carboxylate plays a critical role in stabilizing the formation of the Trp-191 radical cation.

  18. Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process.

    Science.gov (United States)

    Reshetnikov, Roman V; Sponer, Jiri; Rassokhina, Olga I; Kopylov, Alexei M; Tsvetkov, Philipp O; Makarov, Alexander A; Golovin, Andrey V

    2011-12-01

    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange.

  19. Cations and anions as modifiers of ryanodine binding to the skeletal muscle calcium release channel.

    Science.gov (United States)

    Hasselbach, W; Migala, A

    1998-08-01

    Rate and equilibrium measurements of ryanodine binding to terminal cysternae fractions of heavy sarcoplasmic reticulum vesicles demonstrate that its activation by high concentrations of monovalent salts is based on neither elevated osmolarity nor ionic strength. The effect of the ions specifically depends on their chemical nature following the Hofmeister ion series for cations (Li+ < NH+4 < K- approximately Cs+ binding rates between 40,000 and 80,000 (m-1 x sec-1) were obtained for chlorides and nitrates of 1a group alkali ions with the exception of lithium supporting only rates of maximally 10,000 (M-1 x sec-1). The nitrogen bases, NH+4 and Tris+, in combination with chloride or nitrate, behave divergently. High maximal binding rates were achieved only with NH4NO3. The dissociation constants for the ryanodine-protein complexes obtained by measurements at equilibrium proved to depend differently on salt concentration, yet, converging to 1-3 nm for the applied salts at saturating concentrations. The salts do not affect dissociation of the ryanodine protein complex proving that the effect of salts on the protein's affinity for ryanodine is determined by their effect on the on-rate of ryanodine binding. ATP and its analogues modify salt action resulting in elevated maximal binding rates and reduction or abolition of binding cooperativity. Linear relations have been obtained by comparing the rates of ryanodine binding at different salt concentrations with the rates or the initial amplitudes (15 sec) of salt induced calcium release from actively

  20. Role of carboxyl residues and membrane lipids in cation binding to bacteriorhodopsin.

    Science.gov (United States)

    Hrabeta-Robinson, E; Semadeni, M; Packer, L

    1989-03-01

    To investigate the site specificity of cation binding to bacteriorhodopsin, carboxyl groups were chemically modified in purple membrane preparations from Halobacterium halobium. Cation binding followed by EPR and visible spectroscopy has led us to the conclusion that two cations bind to the surface regions and that at least one cation binds to carboxyl groups in the protein interior. Conformational freedom is necessary for the cooperative conversion of deionized blue species to cation-reconstituted purple species. Studies of white membranes from the JW-5 strain showed that a higher content of charged lipids results in the binding of approximately 100 more color-regulating cations and in negative cooperativity in the blue-to-purple species conversion. A greater dependence of protein structure on these bound cations suggests a role for cations in the modulation of opsin-lipid interaction.

  1. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  2. Effects of monovalent cation doping on the structure, microstructure, lattice distortion and magnetic behavior of single crystalline NdMnO3 compounds.

    Science.gov (United States)

    Nandy, Anshuman; Pradhan, S K

    2015-10-21

    Pure and 15 mol% Na, K-doped NdMnO3 compounds with perovskite structures are prepared by sol-gel method. Tiny single crystals are formed after sintering the compounds at 1000 °C. The effect of Na and K doping as well as the effect of sintering temperature on the formation and microstructure of NdMnO3 are studied in detail by the Rietveld refinement technique using X-ray powder diffraction data. Single phase formation and single crystalline growth are also confirmed by high resolution transmission electron microscopy (HRTEM). Bond angles and bond lengths are calculated and shown by 3D diagrams. Monovalent doping induces noticeable changes in the microstructure and yields better structural stability in these compounds. Doping results in the change of Mn-O, Nd-O and Mn-O-Mn bond lengths which in turn reduces the lattice and octahedral distortion in the system along with an increase in the tolerance factor. The magnetic properties of these compounds are also modified as a result of doping. The temperature dependent magnetization results show that the Neel temperature of antiferromagnetic NdMnO3 compound is 67.2 K and the Curie temperatures of ferromagnetic Nd0.85Na0.15MnO3 and Nd0.85K0.15MnO3 compounds are 99.1 K and 98.6 K respectively. Both 15% Na and K doping results in a similar TC in doped NdMnO3 compounds.

  3. The Geometry and Structural Properties of the 4,8,12-Trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyrene System in the Cationic State. Structures of a Planar Organic Cation with Various Monovalent- and Divalent Anions

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Laursen, Bo W.; Johannsen, Ib

    1999-01-01

    The geometry of the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo[cd,mn]pyrene system in the cationic state was established by X-ray structural resolution of the salts formed between the cationand various anions. The geometry was found to be planar for the 4,8,12-trioxa-4,8,12,12c- tetrahydrodibenzo...... [cd,mn]pyrenylium and 2,6,10-tri (tert-butyl)-4,8,12-trioxa-4,8,12,12c-tetrahydrodibenzo[cd,mn]pyre nylium cations with the monovalentanions I-, BF4-, PF6- AsF6-, HNO3. NO3- and CF3SO3-, and the divalent anions S2O62- and Mo6Cl142-. The salts were found to crystallize in distinct space groups...... following a characteristic pattern. Mixed cation-anion stacking resulted in space groups with high symmetry: Pbca in three cases and R (3) over bar c in one; a temperature study of the latter was made at ten different temperatures. The formation of dimers of anions and cations resulted in lower...

  4. Alkali metal cation-hexacyclen complexes: effects of alkali metal cation size on the structure and binding energy.

    Science.gov (United States)

    Austin, C A; Rodgers, M T

    2014-07-24

    Threshold collision-induced dissociation (CID) of alkali metal cation-hexacyclen (ha18C6) complexes, M(+)(ha18C6), with xenon is studied using guided ion beam tandem mass spectrometry techniques. The alkali metal cations examined here include: Na(+), K(+), Rb(+), and Cs(+). In all cases, M(+) is the only product observed, corresponding to endothermic loss of the intact ha18C6 ligand. The cross-section thresholds are analyzed to extract zero and 298 K M(+)-ha18C6 bond dissociation energies (BDEs) after properly accounting for the effects of multiple M(+)(ha18C6)-Xe collisions, the kinetic and internal energy distributions of the M(+)(ha18C6) and Xe reactants, and the lifetimes for dissociation of the activated M(+)(ha18C6) complexes. Ab initio and density functional theory calculations are used to determine the structures of ha18C6 and the M(+)(ha18C6) complexes, provide molecular constants necessary for the thermodynamic analysis of the energy-resolved CID data, and theoretical estimates for the M(+)-ha18C6 BDEs. Calculations using a polarizable continuum model are also performed to examine solvent effects on the binding. In the absence of solvent, the M(+)-ha18C6 BDEs decrease as the size of the alkali metal cation increases, consistent with the noncovalent nature of the binding in these complexes. However, in the presence of solvent, the ha18C6 ligand exhibits selectivity for K(+) over the other alkali metal cations. The M(+)(ha18C6) structures and BDEs are compared to those previously reported for the analogous M(+)(18-crown-6) and M(+)(cyclen) complexes to examine the effects of the nature of the donor atom (N versus O) and the number donor atoms (six vs four) on the nature and strength of binding.

  5. Influence of hydration and cation binding on parvalbumin dynamics

    Science.gov (United States)

    Zanotti, J.-M.; Parello, J.; Bellissent-Funel, M.-C.

    Due to structural characteristics, parvalbumin exerts a major role in intracellular Mg2+ and Ca2+ concentration regulation during the muscular contraction-relieving cycle. This structure-function relationship being established, we are investigating the structure-dynamics-function relationship to take into account the protein dynamics. Because of the strong incoherent neutron scattering cross section of hydrogen and of the abundance of this element in proteins, incoherent inelastic neutron scattering is a unique probe to study vibrations and localised motions in biological macromolecules. We take advantage of the complementarities in energy or time resolution of various neutron spectrometers (time of flight, backscattering, spin-echo) to probe the parvalbumin dynamics from a fraction of a picosecond to a few nanoseconds. Influences of hydration and of the nature of the cation on parvalbumin dynamics are discussed.

  6. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    Science.gov (United States)

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oakacid pH range was smallest for hornbeam and oak, and largest for spruce and pine soils. This was supported by the apparent dissociation constant (pKapp) values of SOM, which were largest in soils under oak. The maximum values of Al saturation were similar between the stands. However, maximum Al bonding to SOM occurred at higher pH values in soils under pine and spruce than under oak. Therefore, at any value in the acid pH range, the SOM in pine soil has less Al complexed and more adsorbed H+ than SOM from oak soils. Such differences in Al and H bonding are not only important for pH buffering and metal solubility controls, but also for stabilization of SOM via saturation of functional groups by Al and H. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-02-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways.

  8. How Native and Alien Metal Cations Bind ATP: Implications for Lithium as a Therapeutic Agent

    Science.gov (United States)

    Dudev, Todor; Grauffel, Cédric; Lim, Carmay

    2017-01-01

    Adenosine triphosphate (ATP), the major energy currency of the cell, exists in solution mostly as ATP-Mg. Recent experiments suggest that Mg2+ interacts with the highly charged ATP triphosphate group and Li+ can co-bind with the native Mg2+ to form ATP-Mg-Li and modulate the neuronal purine receptor response. However, it is unclear how the negatively charged ATP triphosphate group binds Mg2+ and Li+ (i.e. which phosphate group(s) bind Mg2+/Li+) and how the ATP solution conformation depends on the type of metal cation and the metal-binding mode. Here, we reveal the preferred ATP-binding mode of Mg2+/Li+ alone and combined: Mg2+ prefers to bind ATP tridentately to each of the three phosphate groups, but Li+ prefers to bind bidentately to the terminal two phosphates. We show that the solution ATP conformation depends on the cation and its binding site/mode, but it does not change significantly when Li+ binds to Mg2+-loaded ATP. Hence, ATP-Mg-Li, like Mg2+-ATP, can fit in the ATP-binding site of the host enzyme/receptor, activating specific signaling pathways. PMID:28195155

  9. Impact of the associated cation on chloride binding of Portland cement paste

    Energy Technology Data Exchange (ETDEWEB)

    De Weerdt, K., E-mail: klaartje.d.weerdt@ntnu.no [Department of Structural Engineering, Norwegian University of Science and Technology (Norway); Department of Engineering and Applied Sciences, University of Bergamo (Italy); Colombo, A. [Department of Structural Engineering, Norwegian University of Science and Technology (Norway); Department of Engineering and Applied Sciences, University of Bergamo (Italy); Coppola, L. [Department of Engineering and Applied Sciences, University of Bergamo (Italy); Justnes, H. [SINTEF Building and Infrastructure, Trondheim (Norway); Geiker, M.R. [Department of Structural Engineering, Norwegian University of Science and Technology (Norway)

    2015-02-15

    Well hydrated cement paste was exposed to MgCl{sub 2}, CaCl{sub 2} and NaCl solutions at 20 °C. The chloride binding isotherms for free chloride concentrations ranging up to 1.5 mol/l were determined experimentally. More chlorides were found to be bound when the associated cation was Mg{sup 2} {sup +} or Ca{sup 2} {sup +} compared to Na{sup +}. The chloride binding capacity of the paste appeared to be related to the pH of the exposure solution. In order to explain the cation dependency of the chloride binding a selection of samples was investigated in detail using experimental techniques such as TG, XRD and SEM–EDS to identify the phases binding the chlorides. The experimentally obtained data were compared with the calculations of a thermodynamic model, GEMS. It was concluded that the measured change in chloride binding depending on the cation was mainly governed by the pH of the exposure solution and thereby the binding capacity of the C-S-H.

  10. Energy-resolved collision-induced dissociation studies of 1,10-phenanthroline complexes of the late first-row divalent transition metal cations: determination of the third sequential binding energies.

    Science.gov (United States)

    Nose, Holliness; Chen, Yu; Rodgers, M T

    2013-05-23

    The third sequential binding energies of the late first-row divalent transition metal cations to 1,10-phenanthroline (Phen) are determined by energy-resolved collision-induced dissociation (CID) techniques using a guided ion beam tandem mass spectrometer. Five late first-row transition metal cations in their +2 oxidation states are examined including: Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). The kinetic energy dependent CID cross sections for loss of an intact Phen ligand from the M(2+)(Phen)3 complexes are modeled to obtain 0 and 298 K bond dissociation energies (BDEs) after accounting for the effects of the internal energy of the complexes, multiple ion-neutral collisions, and unimolecular decay rates. Electronic structure theory calculations at the B3LYP, BHandHLYP, and M06 levels of theory are employed to determine the structures and theoretical estimates for the first, second, and third sequential BDEs of the M(2+)(Phen)x complexes. B3LYP was found to deliver results that are most consistent with the measured values. Periodic trends in the binding of these complexes are examined and compared to the analogous complexes to the late first-row monovalent transition metal cations, Co(+), Ni(+), Cu(+), and Zn(+), previously investigated.

  11. Polyelectrolyte-like behaviour of poly(ethylene-oxide) solutions with added monovalent salt

    Science.gov (United States)

    Lal, Jyotsana; Hakem, Ilhem-Faiza

    2004-03-01

    Solvent effects on the conformation of poly(ethylene-oxide) (PEO) and complexation of PEO by monovalent cations, have been examined by using small-angle neutron scattering. In methanol and acetonitrile, a big change in interchain interaction, osmotic compressibility and local chain conformation have been observed upon addition of small amounts of potassium iodide. The amplitude of the total intensity decreases significantly and a peak at a certain value of the wavevector q* appears as signature of a polyelectrolyte-like behaviour. With further addition of salt, the ionic strength of the solution increases and potassium binding becomes less favorable: the binding constant decreases with the ionic strength and PEO behaves as a neutral polymer with excluded volume. No association between PEO and potassium iodide was observed in aqueous solutions. Reference: I.F. Hakem and J. Lal. Europhysics letters, 64 (2), 204, 2003

  12. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B

    2006-11-15

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  13. Binding interaction of cationic phenazinium dyes with calf thymus DNA: a comparative study.

    Science.gov (United States)

    Sarkar, Deboleena; Das, Paramita; Basak, Soumen; Chattopadhyay, Nitin

    2008-07-31

    Absorption, steady-state fluorescence, steady-state fluorescence anisotropy, and intrinsic and induced circular dichroism (CD) have been exploited to explore the binding of calf thymus DNA (ctDNA) with three cationic phenazinium dyes, viz., phenosafranin (PSF), safranin-T (ST), and safranin-O (SO). The absorption and fluorescence spectra of all the three dyes reflect significant modifications upon interaction with the DNA. A comparative study of the dyes with respect to modification of fluorescence and fluorescence anisotropy upon binding, effect of urea, iodide-induced fluorescence quenching, and CD measurements reveal that the dyes bind to the ctDNA principally in an intercalative fashion. The effect of ionic strength indicates that electrostatic attraction between the cationic dyes and ctDNA is also an important component of the dye-DNA interaction. Intrinsic and induced CD studies help to assess the structural effects of dyes binding to DNA and confirm the intercalative mode of binding as suggested by fluorescence and other studies. Finally it is proposed that dyes with bulkier substitutions are intercalated into the DNA to a lesser extent.

  14. Thermodynamics of cationic lipid binding to DNA and DNA condensation: roles of electrostatics and hydrophobicity.

    Science.gov (United States)

    Matulis, Daumantas; Rouzina, Ioulia; Bloomfield, Victor A

    2002-06-26

    Alkylammonium binding to DNA was studied by isothermal titration calorimetry. Experimental data, obtained as functions of alkyl chain length, salt concentration, DNA concentration, and temperature, provided a detailed thermodynamic description of lipid-DNA binding reactions leading to DNA condensation. Lipid binding, counterion displacement, and DNA condensation were highly cooperative processes, driven by a large increase in entropy and opposed by a relatively small endothermic enthalpy at room temperature. Large negative heat capacity change indicated a contribution from hydrophobic interactions between aliphatic tails. An approximation of lipid-DNA binding as dominated by two factors-ionic and hydrophobic interactions-yielded a model that was consistent with experimental data. Chemical group contributions to the energetics of binding were determined and could be used to predict energetics of other lipid binding to DNA. Electrostatic and hydrophobic contributions to Gibbs free energy, enthalpy, entropy, and heat capacity could be distinguished by applying additivity principles. Binding of lipids with two, three, and four aliphatic tails was investigated and compared to single-tailed lipid binding. Structurally, the model suggests that lipid cationic headgroups and aliphatic tails distribute evenly and lay down on DNA surface without the formation of micelles.

  15. Interaction of polyamines with proteins of photosystem II: Cation binding and photosynthetic oxygen evolution

    Science.gov (United States)

    Beauchemin, R.; Harnois, J.; Rouillon, R.; Tajmir-Riahi, H. A.; Carpentier, R.

    2007-05-01

    Polyamines are organic cations that function in diverse physiological processes that share as a common thread a close relationship to cell proliferation and growth. Polyamines also affect photosynthetic oxygen evolution and therefore, this study was designed to investigate the interaction of 1,3-diaminopropane, 1,4-diaminobutane (putrescine), and 1,5-diaminopentane (cadaverine) cations with proteins of photosystem II (PSII) using PSII-enriched submembrane fractions with diamine concentrations between 0.01 and 20 mM. Fourier transformed infrared (FTIR) difference spectroscopy with its self-deconvolution and second derivative resolution enhancement, as well as curve-fitting procedures were applied in order to determine the diamine binding mode, the protein conformational changes, and the structural properties of diamine-protein complexes. Spectroscopic evidence showed that diamines interact with proteins (H-bonding) through polypeptide C dbnd O groups with no major perturbations of protein secondary structure. At very low diamine concentration (0.01 mM), no inhibition of oxygen-evolution occurred, while at higher diamine content (5-10 mM), 100% inhibition was observed. Chorophyll fluorescence measurements demonstrated that the inhibition mainly affects the oxygen evolving complex of PSII. Comparisons of the effects of these dipositive organic cations with divalent metal cations on one hand and with polyvalent spermine and spermidine on the other hand, show major alterations of the protein secondary structure as positive charge increases.

  16. Titration kinetics of Asp-85 in bacteriorhodopsin: exclusion of the retinal pocket as the color-controlling cation binding site.

    Science.gov (United States)

    Fu, X; Bressler, S; Ottolenghi, M; Eliash, T; Friedman, N; Sheves, M

    1997-10-20

    The spectrum (the purple blue transition) and function of the light-driven proton pump bacteriorhodopsin are determined by the state of protonation of the Asp-85 residue located in the vicinity of the retinal chromophore. The titration of Asp-85 is controlled by the binding/unbinding of one or two divalent metal cations (Ca2+ or Mg2+). The location of such metal binding site(s) is approached by studying the kinetics of the cation-induced titration of Asp-85 using metal ions and large molecular cations, such as quaternary ammonium ions, R4N+ (R = Et, Pr, a divalent 'bolaform ion' [Et3N+-(CH2)4-N+Et3] and the 1:3 molecular complex formed between Fe2+ and 1,10-phenanthroline (OP). The basic multi-component kinetic features of the titration, extending from 10(-2) to 10(4) s, are unaffected by the charge and size of the cation. This indicates that cation binding to bR triggers the blue --> purple titration in a fast step, which is not rate-determining. In view of the size of the cations involved, these observations indicate that the cation binding site is in an exposed location on, or close to, the membrane surface. This excludes previous models, which placed the color-controlling Ca2+ ion in the retinal binding pocket.

  17. Binding of single stranded nucleic acids to cationic ligand functionalized gold nanoparticles.

    Science.gov (United States)

    Nash, Jessica A; Tucker, Tasha L; Therriault, William; Yingling, Yaroslava G

    2016-11-11

    The interactions of nanoparticles (NPs) with single stranded nucleic acids (NAs) have important implications in gene delivery, and nanotechnological and biomedical applications. Here, the complexation of cationic ligand functionalized gold nanoparticles with single stranded deoxyribose nucleic acid (DNA) and ribonucleic acid (RNA) are examined using all atom molecular dynamics simulations. The results indicated that complexation depends mostly on charge of nanoparticle, and, to lesser extent, sequence and type of nucleic acid. For cationic nanoparticles, electrostatic interactions between charged ligands and the nucleic acid backbone dominate binding regardless of nanoparticle charge. Highly charged nanoparticles bind more tightly and cause compaction of the single-stranded NAs through disruption of intrastrand π-π stacking and hydrogen bonding. However, poly-purine strands (polyA-DNA, polyA-RNA) show less change in structure than poly-pyrimidine strands (polyT-DNA, polyU-RNA). Overall, the results show that control over ssNA structure may be achieved with cationic NPs with a charge of more than 30, but the extent of the structural changes depends on sequence.

  18. High sensitivity electron diffraction analysis. A study of divalent cation binding to purple membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, A.K.; Stroud, R.M. (Univ. of California, San Francisco (USA))

    1990-02-01

    A sensitive high-resolution electron diffraction assay for change in structure is described and harnessed to analyze the binding of divalent cations to the purple membrane (PM) of Halobacterium halobium. Low-dose electron diffraction patterns are subject to a matched filter algorithm. to extract accurate values of reflection intensities. This, coupled with a scheme to account for twinning and specimen tilt in the microscope, yields results that are sensitive enough to rapidly quantitate any structure change in PM brought about by site-directed mutagenesis to the level of less than two carbon atoms. Removal of tightly bound divalent cations (mainly Ca2+ and Mg2+) from PM causes a color change to blue and is accompanied by a severely altered photocycle of the protein bacteriohodopsin (bR), a light-driven proton pump. We characterize the structural changes that occur upon association of 3:1 divalent cation to PM, versus membranes rendered purple by addition of excess Na+. High resolution, low dose electron diffraction data obtained from glucose-embedded samples of Pb2+ and Na+ reconstituted PM preparations at room temperature identify several sites with total occupancy of 2.01 +/- 0.05 Pb2+ equivalents. The color transition as a function of ion concentration for Ca2+ or Mg2+ and Pb2+ are strictly comparable. A (Pb2(+)-Na+) PM Fourier difference map in projection was synthesized at 5 A using the averaged data from several nominally untilted patches corrected for twinning and specimen tilt. We find six major sites located on helices 7, 5, 4, 3, 2 in close association with bR. These partially occupied sites (0.55-0.24 Pb2+ equivalents) represent preferential sites of binding for divalent cations and complements our earlier result by x-ray diffraction.

  19. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P;

    2008-01-01

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains pr...

  20. The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.

    Science.gov (United States)

    Morgenthau, Ari; Partha, Sarathy K; Adamiak, Paul; Schryvers, Anthony B

    2014-10-01

    A variety of Gram-negative pathogens possess host-specific lactoferrin (Lf) receptors that mediate the acquisition of iron from host Lf. The integral membrane protein component of the receptor, lactoferrin binding protein A specifically binds host Lf and is required for acquisition of iron from Lf. In contrast, the role of the bi-lobed surface lipoprotein, lactoferrin binding protein B (LbpB), in Lf binding and iron acquisition is uncertain. A common feature of LbpBs from most species is the presence of clusters of negatively charged amino acids in the protein's C-terminal lobe. Recently it has been shown that the negatively charged regions from the Neisseria meningitidis LbpB are responsible for protecting against an 11 amino acid cationic antimicrobial peptide (CAP), lactoferricin (Lfcin), derived from human Lf. In this study we investigated whether the LbpB confers resistance to other CAPs since N. meningitidis is likely to encounter other CAPs from the host. LbpB provided protection against the cathelicidin derived peptide, cathelicidin related antimicrobial peptide (mCRAMP), but did not confer protection against Tritrp 1 or LL37 under our experimental conditions. When tested against a range of rationally designed synthetic peptides, LbpB was shown to protect against IDR-1002 and IDR-0018 but not against HH-2 or HHC10.

  1. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    Science.gov (United States)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  2. High sensitivity electron diffraction analysis. A study of divalent cation binding to purple membrane.

    Science.gov (United States)

    Mitra, A K; Stroud, R M

    1990-02-01

    A sensitive high-resolution electron diffraction assay for change in structure is described and harnessed to analyze the binding of divalent cations to the purple membrane (PM) of Halobacterium halobium. Low-dose electron diffraction patterns are subject to a matched filter algorithm (Spencer, S. A., and A. A. Kossiakoff. 1980. J. Appl. Crystallogr. 13:563-571). to extract accurate values of reflection intensities. This, coupled with a scheme to account for twinning and specimen tilt in the microscope, yields results that are sensitive enough to rapidly quantitate any structure change in PM brought about by site-directed mutagenesis to the level of less than two carbon atoms. Removal of tightly bound divalent cations (mainly Ca2+ and Mg2+) from PM causes a color change to blue and is accompanied by a severely altered photocycle of the protein bacteriohodopsin (bR), a light-driven proton pump. We characterize the structural changes that occur upon association of 3:1 divalent cation to PM, versus membranes rendered purple by addition of excess Na+. High resolution, low dose electron diffraction data obtained from glucose-embedded samples of Pb2+ and Na+ reconstituted PM preparations at room temperature identify several sites with total occupancy of 2.01 +/- 0.05 Pb2+ equivalents. The color transition as a function of ion concentration for Ca2+ or Mg2+ and Pb2+ are strictly comparable. A (Pb2(+)-Na+) PM Fourier difference map in projection was synthesized at 5 A using the averaged data from several nominally untilted patches corrected for twinning and specimen tilt. We find six major sites located on helices 7, 5, 4, 3, 2 (nomenclature of Engelman et al. 1980. Proc. Natl. Acad. Sci. USA. 77:2023-2027) in close association with bR. These partially occupied sites (0.55-0.24 Pb2+ equivalents) represent preferential sites of binding for divalent cations and complements our earlier result by x-ray diffraction (Katre et al. 1986. Biophys. J. 50:277-284).

  3. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is

  4. Interaction of Sodium Hyaluronate with a Biocompatible Cationic Surfactant from Lysine: A Binding Study.

    Science.gov (United States)

    Bračič, Matej; Hansson, Per; Pérez, Lourdes; Zemljič, Lidija F; Kogej, Ksenija

    2015-11-10

    Mixtures of natural and biodegradable surfactants and ionic polysaccharides have attracted considerable research interest in recent years because they prosper as antimicrobial materials for medical applications. In the present work, interactions between the lysine-derived biocompatible cationic surfactant N(ε)-myristoyl-lysine methyl ester, abbreviated as MKM, and the sodium salt of hyaluronic acid (NaHA) are investigated in aqueous media by potentiometric titrations using the surfactant-sensitive electrode and pyrene-based fluorescence spectroscopy. The critical micelle concentration in pure surfactant solutions and the critical association concentration in the presence of NaHA are determined based on their dependence on the added electrolyte (NaCl) concentration. The equilibrium between the protonated (charged) and deprotonated (neutral) forms of MKM is proposed to explain the anomalous binding isotherms observed in the presence of the polyelectrolyte. The explanation is supported by theoretical model calculations of the mixed-micelle equilibrium and the competitive binding of the two MKM forms to the surface of the electrode membrane. It is suggested that the presence of even small amounts of the deprotonated form can strongly influence the measured electrode response. Such ionic-nonionic surfactant mixtures are a special case of mixed surfactant systems where the amount of the nonionic component cannot be varied independently as was the case for some of the earlier studies.

  5. Solution conformation of the C-terminal domain of skeletal troponin C. Cation, trifluoperazine and troponin I binding effects.

    Science.gov (United States)

    Drabikowski, W; Dalgarno, D C; Levine, B A; Gergely, J; Grabarek, Z; Leavis, P C

    1985-08-15

    Proton magnetic resonance spectroscopy has been used to study the cation (Mg2+, Ca2+)-dependent conformational states of the C-terminal domain of rabbit skeletal troponin C under a variety of solution conditions. Nuclear Overhauser data and paramagnetic probe observations provide definition of the configuration of this region of troponin C. Comparative study of homologous proteins identify common features of the tertiary structure relevant to the cation binding reaction. Complex formation with troponin I and the drug trifluoperazine is observed to adjust the solution conformation of the C-terminal domain of troponin C. The interactive conformational response to cation coordination and the binding of the drug and troponin I are discussed.

  6. Light-induced geometric isomerization of 1,2-diphenylcyclopropanes included within Y zeolites: role of cation-guest binding.

    Science.gov (United States)

    Kaanumalle, Lakshmi S; Sivaguru, J; Sunoj, R B; Lakshminarasimhan, P H; Chandrasekhar, J; Ramamurthy, V

    2002-12-13

    Through a systematic study of several diphenylcyclopropane derivatives, we have inferred that the cations present within a zeolite control the excited-state chemistry of these systems. In the parent 1,2-diphenylcylopropane, the cation binds to the two phenyl rings in a sandwich-type arrangement, and such a mode of binding prevents cis-to-trans isomerization. Once an ester or amide group is introduced into the system (derivatives of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid), the cation binds to the carbonyl group present in these chromophores and such a binding has no influence on the cis-trans isomerization process. Cation-reactant structures computed at density functional theory level have been very valuable in rationalizing the observed photochemical behavior of diphenylcyclopropane derivatives included in zeolites. While the parent system, 1,2-diphenylcylopropane, has been extensively investigated in the context of chiral induction in solution, owing to its failure to isomerize from cis to trans, the same could not be investigated in zeolites. However, esters of 2beta,3beta-diphenylcyclopropane-1alpha-carboxylic acid could be studied within zeolites in the context of chiral induction. Chiral induction as high 20% ee and 55% de has been obtained with selected systems. These numbers, although low, are much higher than what has been obtained in solution with the same system or with the parent system by other investigators (maximum approximately 10% ee).

  7. PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4.

    NARCIS (Netherlands)

    Cuajungco, M.P.; Grimm, C.; Oshima, K.; D'hoedt, D.; Nilius, B.; Mensenkamp, A.R.; Bindels, R.J.M.; Plomann, M.; Heller, S.

    2006-01-01

    TRPV4 is a cation channel that responds to a variety of stimuli including mechanical forces, temperature, and ligand binding. We set out to identify TRPV4-interacting proteins by performing yeast two-hybrid screens, and we isolated with the avian TRPV4 amino terminus the chicken orthologues of mamma

  8. Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, R.; Ebrey, T.G. (Univ. of Illinois, Urbana (United States))

    1991-01-01

    The authors have characterized a unique divalent cation binding site on bacteriorhodopsin which controls the blue-to-purple transition in the purple membrane of Halobacterium halobiu. To identify this site they first showed the correlation between the binding of one Ca{sup 2+} per bacteriorhodopsin and the amount of blue membrane converted to purple membrane. When the free Ca{sup 2+} was reduced below 1 {mu}M, and the pH was set below 5.0 with 0.5 mM citrate, only binding to this high-affinity site was observed, and we could separate its effect from the effect of other divalent cations binding to the membrane under other conditions. Second, the titration of purple membrane showed that protons are taken up in two distinct steps, about 13 with a pK{sub a} of 4-5 and an additional 2 protons with a pK{sub a} for the purple-to-blue transition in 5mM MgSO{sub 4}. Taken together, these observations strongly suggest a direct role for cations in the regulation of the bacteriorhodopsin color under normal conditions. They also found that the intrinsic pK{sub a} for the purple-to-blue transition is about 2.05, suggesting this is the pK{sub a} of the group or groups that, when protonated, lead to the blue membrane. Previously published data can now be interpreted to suggest that the cation regulates an active site near the retinal chromophore. A binding site for the divalent cation that includes Asp-212 and interactions with the protonated Schiff base, Asp-85, Tyr-57, Tyr-185, and Arg-82 is proposed.

  9. Binding of a single divalent cation directly correlates with the blue-to-purple transition in bacteriorhodopsin.

    Science.gov (United States)

    Jonas, R; Ebrey, T G

    1991-01-01

    We have characterized a unique divalent cation binding site on bacteriorhodopsin which controls the blue-to-purple transition in the purple membrane of Halobacterium halobium. To identify this site we first showed the correlation between the binding of one Ca2+ per bacteriorhodopsin and the amount of blue membrane converted to purple membrane. When the free Ca2+ was reduced below 1 microM, and the pH was set below 5.0 with 0.5 mM citrate, only binding to this high-affinity site was observed, and we could separate its effect from the effect of other divalent cations binding to the membrane under other conditions. Second, the titration of purple membrane showed that protons are taken up in two distinct steps, about 13 with a pKa of 4-5 and an additional 2 protons with a pKa of 2.75, in 5 mM MgSO4. The latter is identical to the pKa for the purple-to-blue transition in 5 mM MgSO4. Taken together, these observations strongly suggest a direct role for cations in the regulation of the bacteriorhodopsin color under normal conditions. We have also found that the intrinsic pKa for the purple-to-blue transition is about 2.05, suggesting this is the pKa of the group or groups that, when protonated, lead to the blue membrane. Previously published data can now be interpreted to suggest that the cation regulates an active site near the retinal chromophore. A binding site for the divalent cation that includes Asp-212 and interactions with the protonated Schiff base, Asp-85, Tyr-57, Tyr-185, and Arg-82 is proposed.

  10. Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2008-01-08

    We describe an approach for characterizing selective binding between oppositely charged ionic functional groups under biologically relevant conditions. Relative shifts in K-shell x-ray absorption spectra of aqueous cations and carboxylate anions indicate the corresponding binding strengths via perturbations of carbonyl antibonding orbitals. XAS spectra measured for aqueous formate and acetate solutions containing lithium, sodium, and potassium cations reveal monotonically stronger binding of the lighter metals, supporting recent results from simulations and other experiments. The carbon K-edge spectra of the acetate carbonyl feature centered near 290 eV clearly indicate a preferential interaction of sodium versus potassium, which was less apparent with formate. These results are in accord with the Law of Matching Water Affinities, relating relative hydration strengths of ions to their respective tendencies to form contact ion pairs. Density functional theory calculations of K-shell spectra support the experimental findings.

  11. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin.

    Science.gov (United States)

    Zavyalova, Elena; Tagiltsev, Grigory; Reshetnikov, Roman; Arutyunyan, Alexander; Kopylov, Alexey

    2016-10-01

    Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K(+), Na(+), NH4(+), Ba(2+), and Sr(2+); on the contrary, Mn(2+) was coordinated in the grooves, outside the G-quadruplex. K(+) or Na(+) coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K(+) coordination provided the well-known high inhibitory activity of the aptamer, whereas Na(+) coordination supported low activity. Although NH4(+) coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba(2+) and Sr(2+) coordination. Mn(2+) coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a

  12. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector

    KAUST Repository

    He, Zhijian

    2015-04-02

    © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.

  13. Anion recognition and cation-induced molecular motion in a heteroditopic [2]rotaxane.

    Science.gov (United States)

    Leontiev, Alexandre V; Jemmett, Charlotte A; Beer, Paul D

    2011-01-17

    A heteroditopic [2]rotaxane consisting of a calix[4]diquinone-isophthalamide macrocycle and 3,5-bis-amide pyridinium axle components with the capability of switching between two positional isomers in response to barium cation recognition is synthesised. The anion binding properties of the rotaxane's interlocked cavity together with Na(+) , K(+) , NH(4) (+) and Ba(2+) cation recognition capabilities are elucidated by (1) H NMR and UV-visible spectroscopic titration experiments. Upon binding of Ba(2+) , molecular displacement of the axle's positively charged pyridinium group from the rotaxane's macrocyclic cavity occurs, whereas the monovalent cations Na(+) , K(+) and NH(4) (+) are bound without causing significant co-conformational change. The barium cation induced shuttling motion can be reversed on addition of tetrabutylammonium sulfate.

  14. Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.

    Science.gov (United States)

    Xu, Pei; Capito, Marissa; Cath, Tzahi Y

    2013-09-15

    Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density.

  15. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.; Laskin, Julia

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cy ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important

  16. A cation-π interaction at a phenylalanine residue in the glycine receptor binding site is conserved for different agonists

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Hanek, Ariele P; Price, Kerry L

    2011-01-01

    . In the current study, we investigated whether the lower efficacy agonists of the human GlyR β-alanine and taurine also form cation-π interactions with Phe159. By incorporating a series of unnatural amino acids, we found cation-π interactions between Phe159 and the amino groups of β-alanine and taurine....... The strengths of these interactions were significantly weaker than for glycine. Modeling studies suggest that β-alanine and taurine are orientated subtly differently in the binding pocket, with their amino groups further from Phe159 than that of glycine. These data therefore show that similar agonists can have...... similar but not identical orientations and interactions in the binding pocket and provide a possible explanation for the lower potencies of β-alanine and taurine....

  17. Characterization of the cation binding sites of the purple membrane. Electron spin resonance and flash photolysis studies

    Energy Technology Data Exchange (ETDEWEB)

    Dunach, M.; Seigneuret, M.; Rigaud, J.L.; Padros, E.

    1987-02-24

    The binding of Mn/sup 2 +/ and La/sup 3 +/ to the blue membrane prepared by deionization of the Halobacterium halobium purple membrane has been studied by electron spin resonance (ESR) spectroscopy, visible absorption spectroscopy, and flash photolysis. ESR studies indicated that 10 Mn/sup 2 +/ binding sites are present per bacteriorhodopsin monomer. Five high- and medium-affinity sites, normally occupied by Ca/sup 2 +/ and Mg/sup 2 +/ in the purple membrane, as well as five low-affinity sites were found. Proteolysis and chemical modification experiments indicated that the low-affinity sites are located on the bacteriorhodopsin C-terminal segment, while the high- and medium-affinity sites involve other carboxyl groups of the protein. Competition experiments indicated that La/sup 2 +/ binds much more strongly than Mn/sup 2 +/ to these sites. Visible absorption spectroscopy and flash photolysis experiments indicated that binding of Mn/sup 2 +/ or La/sup 3 +/ regenerates both the purple color and formation of the M/sub 4//sup 12/ intermediate. The effect occurs progressively as cations bind to the high- and medium-affinity sites, bound La/sup 3 +/ being more effective than bound Mn/sup 2 +/. It is suggested that divalent cations support both the purple color and proton-pumping activity by rendering less negative the surface potential of the purple membrane. This process may promote deprotonation of the counterion of the retinal Schiff base and possibly of other functional groups. On the other hand, it is proposed that the inhibitory effect of La/sup 3 +/ is mainly due to binding to a site distinct from those of divalent cations.

  18. Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme.

    Science.gov (United States)

    Krasovska, Maryna V; Sefcikova, Jana; Réblová, Kamila; Schneider, Bohdan; Walter, Nils G; Sponer, Jirí

    2006-07-15

    The hepatitis delta virus (HDV) ribozyme is an RNA enzyme from the human pathogenic HDV. Cations play a crucial role in self-cleavage of the HDV ribozyme, by promoting both folding and chemistry. Experimental studies have revealed limited but intriguing details on the location and structural and catalytic functions of metal ions. Here, we analyze a total of approximately 200 ns of explicit-solvent molecular dynamics simulations to provide a complementary atomistic view of the binding of monovalent and divalent cations as well as water molecules to reaction precursor and product forms of the HDV ribozyme. Our simulations find that an Mg2+ cation binds stably, by both inner- and outer-sphere contacts, to the electronegative catalytic pocket of the reaction precursor, in a position to potentially support chemistry. In contrast, protonation of the catalytically involved C75 in the precursor or artificial placement of this Mg2+ into the product structure result in its swift expulsion from the active site. These findings are consistent with a concerted reaction mechanism in which C75 and hydrated Mg2+ act as general base and acid, respectively. Monovalent cations bind to the active site and elsewhere assisted by structurally bridging long-residency water molecules, but are generally delocalized.

  19. Compositional tuning of epoxide-polyetheramine "click" reaction toward cytocompatible, cationic hydrogel particles with antimicrobial and DNA binding activities.

    Science.gov (United States)

    Tang, Shuangcheng; Huang, Lu; Daniels-Mulholland, Robert J; Dlugosz, Elizabeth; Morin, Emily A; Lenaghan, Scott; He, Wei

    2016-10-01

    The "click" characteristics of nucleophilic opening of epoxide have recently been exploited for the development of a functional hydrogel particle system based on commercially available bisepoxide and triamine polyetheramine monomers. Key features of these particles include high cationic charges and responsiveness to temperature, pH, and oxidation. Despite these advantages, the cytocompatibility of these particles must be considered prior to use in biomedical applications. Here we demonstrate that, by introducing a diamine polyetheramine as a comonomer in the "click" reaction, and tuning its molar ratio with the triamine monomer, cationic nanoparticles with improved cytocompatibility can be prepared. The reduced cytotoxicity is primarily due to the hydrophilic backbone of the diamine comonomer, which has polyethylene glycol as a primary component. The resulting nanoparticles formed from the diamine comonomer exhibited a lower surface charge, while maintaining a comparable size. In addition, the responsiveness of the nanoparticles to temperature, pH, and oxidation was conserved, while achieving greater colloidal stability at basic pH. Results from this study further demonstrated that the nanoparticles were able to encapsulate Nile red, a model for hydrophobic drug molecules, were effective against the bacteria Staphylococcus aureus, and were capable of binding DNA through ionic complexation. Based on the results from this work, the use of diamine comonomers significantly reduces the cytotoxicity of similarly developed hydrogel nanoparticles, allowing for numerous biomedical applications, including nanocarriers for therapeutic agents with poor water solubility, treatment of bacterial infection, and non-viral vectors for gene therapy. In recent years significant attention has been placed on the development of nanocarriers for numerous biomedical applications. Of particular interest are cationic polymers, which contain high positive surface charges that allow binding of

  20. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  1. Attraction between like-charged monovalent ions

    Science.gov (United States)

    Zangi, Ronen

    2012-05-01

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  2. Attraction between like-charged monovalent ions.

    Science.gov (United States)

    Zangi, Ronen

    2012-05-14

    Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.

  3. Binding of organic cations to gramicidin A channel studied with AutoDock and molecular dynamics simulations.

    Science.gov (United States)

    Patra, Swarna M; Baştug, Turgut; Kuyucak, Serdar

    2007-09-27

    The accurate description of protein-ligand binding energies and configurations is an important problem in molecular biology with many applications in medicine and pharmacology. Molecular dynamics (MD) simulations provide the required accuracy but they are too slow for searching binding positions. Conversely, docking methods are much faster but have limited accuracy. An appropriate combination of the two methods could avoid the shortcomings associated with each, thus offering a better approach to the protein-ligand binding problem. Here we investigate the feasibility of such a combined docking-MD approach in a well-defined system: binding of organic cations to the gramicidin A channel. We use the AutoDock program to generate a set of protein-ligand binding configurations, which are then refined in MD simulations. For each system, we examine the binding configuration in detail and calculate the binding free energy by constructing the potential of mean force for the ligand. Our results show that AutoDock provides suitable initial configurations, which can be used profitably in MD simulations to obtain an accurate description of protein-ligand binding with a reasonable computational effort.

  4. Selective enrichment of metal-binding proteins based on magnetic core/shell microspheres functionalized with metal cations.

    Science.gov (United States)

    Fang, Caiyun; Zhang, Lei; Zhang, Xiaoqin; Lu, Haojie

    2015-06-21

    Metal binding proteins play many important roles in a broad range of biological processes. Characterization of metal binding proteins is important for understanding their structure and biological functions, thus leading to a clear understanding of metal associated diseases. The present study is the first to investigate the effectiveness of magnetic microspheres functionalized with metal cations (Ca(2+), Cu(2+), Zn(2+) and Fe(3+)) as the absorbent matrix in IMAC technology to enrich metal containing/binding proteins. The putative metal binding proteins in rat liver were then globally characterized by using this strategy which is very easy to handle and can capture a number of metal binding proteins effectively. In total, 185 putative metal binding proteins were identified from rat liver including some known less abundant and membrane-bound metal binding proteins such as Plcg1, Acsl5, etc. The identified proteins are involved in many important processes including binding, catalytic activity, translation elongation factor activity, electron carrier activity, and so on.

  5. Pulse radiolysis and spectrophotometric studies on the binding of organic cations with heparin

    Science.gov (United States)

    Jakubowska, Małgorzata; Adamus, Jan; Gębicki, Jerzy; Marcinek, Andrzej; Sikora, Adam

    2014-06-01

    Here we present the spectroscopic and pulse radiolysis studies of the interactions of heparin and some organic cations:methylene blue (MB), 1-methylnicotinamide (MNA+), and its dimer 1,3-bis(1-methylnicotinamide)propane (bis(MNA+)).

  6. Monovalent plasmonic nanoparticles for biological applications

    Science.gov (United States)

    Seo, Daeha; Lee, Hyunjung; Lee, Jung-uk; Haas, Thomas J.; Jun, Young-wook

    2016-03-01

    The multivalent nature of commercial nanoparticle imaging agents and the difficulties associated with producing monovalent nanoparticles challenge their use in biology, where clustering of target biomolecules can perturb dynamics of biomolecular targets. Here, we report production and purification of monovalent gold and silver nanoparticles for their single molecule imaging application. We first synthesized DNA-conjugated 20 nm and 40 nm gold and silver nanoparticles via conventional metal-thiol chemistry, yielding nanoparticles with mixed valency. By employing an anion-exchange high performance liquid chromatography (AE-HPLC) method, we purified monovalent nanoparticles from the mixtures. To allow efficient peak-separation resolution while keeping the excellent colloidal stability of nanoparticles against harsh purification condition (e.g. high NaCl), we optimized surface properties of nanoparticles by modulating surface functional groups. We characterized the monovalent character of the purified nanoparticles by hybridizing two complementary conjugates, forming dimers. Finally, we demonstrate the use of the monovalent plasmonic nanoprobes as single molecule imaging probes by tracking single TrkA receptors diffusing on the cell membrane and compare to monovalent quantum dot probes.

  7. Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification.

    Science.gov (United States)

    Yaseen, Zahid; Banday, Abdul Rouf; Hussain, Mohammed Aamir; Tabish, Mohammad; Kabir-ud-Din

    2014-03-25

    Understanding the mechanism of drug-DNA binding is crucial for predicting the potential genotoxicity of drugs. Agarose gel electrophoresis, absorption, steady state fluorescence, and circular dichroism have been used in exploring the interaction of cationic amphiphilic drugs (CADs) such as amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMP), and promethazine hydrochloride (PMT) with calf thymus or pUC19 DNA. Agarose gel electrophoresis assay, along with absorption and steady state fluorescence studies, reveal interaction between the CADs and DNA. A comparative study of the drugs with respect to the effect of urea, iodide induced quenching, and ethidium bromide (EB) exclusion assay reflects binding of CADs to the DNA primarily in an intercalative fashion. Circular dichroism data also support the intercalative mode of binding. Besides quenching, there is fluorescence exchange energy transfer (FRET) in between CADs and EB using DNA as a template.

  8. Influence of cations on the blue to purple transition of bacteriorhodopsin. Comparison of Ca2+ and Hg2+ binding and their effect on the surface potential.

    Science.gov (United States)

    Duñach, M; Seigneuret, M; Rigaud, J L; Padrós, E

    1988-11-25

    We have investigated the effect of Ca2+ and Hg2+ binding on various properties of the blue membrane prepared by deionization of the Halobacterium halobium purple membrane. Binding of radioactive 45Ca2+ and 203Hg2+ was monitored by a filtration technique. Five high and medium affinity sites for Ca2+ and seven low affinity sites for Hg2+ were found per bacteriorhodopsin. Competitive binding was observed only for three Ca2+ and three Hg2+. Visible absorption studies indicated that Ca2+ binding could restore the purple color of bacteriorhodopsin while Hg2+ was inefficient. Hg2- could partially reverse to blue the Ca2+-regenerated purple membrane in parallel with the displacement of three Ca2+. Effects of cation binding on the surface potential of the membrane were measured by Electron Spin Resonance spectroscopy using a cationic spin-labeled amphiphile. Cations such as La3+, Ca2+, Mg2+, or Na+ strongly increased (i.e. rendered less negative) the surface potential. An univocal correlation was found between the cation-induced variation of surface potential and the extent of regeneration of the purple color. Hg2+ induced a smaller increase in surface potential than that corresponding to the effective divalent cations. This lower effect appears to be due to binding to sites not related to those of other cations.

  9. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  10. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  11. Cold gelation of alginates induced by monovalent cations.

    Science.gov (United States)

    Karakasyan, C; Legros, M; Lack, S; Brunel, F; Maingault, P; Ducouret, G; Hourdet, D

    2010-11-08

    A new reversible gelation pathway is described for alginates in aqueous media. From various samples differing by their mannuronic/guluronic content (M/G), both enthalpic and viscoelastic experiments demonstrate that alginates having a high M content are able to form thermoreversible assemblies in the presence of potassium salts. The aggregation behavior is driven by the low solubility of M-blocks at low temperature and high ionic strength. In semidilute solutions, responsive assemblies induce a strong increase of the viscosity below a critical temperature. A true physical gel is obtained in the entangled regime, although the length scale of specific interactions between M-blocks decreases with increasing density of entanglements. Cold setting takes place at low temperatures, below 0 °C for potassium concentrations lower than 0.2 mol/kg, but the aggregation process can be easily shifted to higher temperatures by increasing the salt concentration. The self-assembling process of alginates in solution of potassium salts is characterized by a sharp gelation exotherm and a broad melting endotherm with a large hysteresis of 20-30 °C between the transition temperatures. The viscoelastic properties of alginate gels in potassium salts closely depend on thermal treatment (rate of cooling, time, and temperature of storage), polymer and salt concentrations, and monomer composition as well. In the case of alginates with a high G content, a similar aggregation behavior is also evidenced at higher salt concentrations, but the extent of the self-assembling process remains too weak to develop a true gelation behavior in solution.

  12. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA

    NARCIS (Netherlands)

    Olbrich, C; Bakowsky, U; Muller, RH; Kneuer, C

    2001-01-01

    The suitability of cationically modified solid-lipid nanoparticles (SLN) as a novel transfection agent was investigated. SLN were produced by hot homogenisation using either Compritol ATO 888 or paraffin as matrix lipid, a mixture of Tween 80 and Span 85 as tenside and either EQ1 (NN-di-(beta-steaor

  13. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  14. Unravelling Mg2+-RNA binding with atomistic molecular dynamics.

    Science.gov (United States)

    Cunha, Richard A; Bussi, Giovanni

    2017-02-01

    Interaction with divalent cations is of paramount importance for RNA structural stability and function. We here report a detailed molecular dynamics study of all the possible binding sites for Mg(2+) on a RNA duplex, including both direct (inner sphere) and indirect (outer sphere) binding. In order to tackle sampling issues, we develop a modified version of bias-exchange metadynamics which allows us to simultaneously compute affinities with previously unreported statistical accuracy. Results correctly reproduce trends observed in crystallographic databases. Based on this, we simulate a carefully chosen set of models that allows us to quantify the effects of competition with monovalent cations, RNA flexibility, and RNA hybridization. Our simulations reproduce the decrease and increase of Mg(2+) affinity due to ion competition and hybridization respectively, and predict that RNA flexibility has a site dependent effect. This suggests a non trivial interplay between RNA conformational entropy and divalent cation binding.

  15. Changes in BQCA Allosteric Modulation of [(3)H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations.

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-05-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [(3)H]pirenzepine binding. Surprisingly, there was no change in [(3)H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [(3)H]pirenzepine and [(3)H]NMS binding to human cortex and showed total [(3)H]pirenzepine and [(3)H]NMS binding was reduced by Zn(2+), acetylcholine displacement of [(3)H]NMS binding was enhanced by Mg(2+) and Zn(2+), acetylcholine displacement of [(3)H]pirenzepine was reduced by Mg(2+) and enhanced by Zn(2+), whereas BQCA effects on [(3)H]NMS, but not [(3)H]pirenzepine, binding was enhanced by Mg(2+) and Zn(2+). These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia.

  16. Changes in BQCA Allosteric Modulation of [3H]NMS Binding to Human Cortex within Schizophrenia and by Divalent Cations

    Science.gov (United States)

    Dean, Brian; Hopper, Shaun; Conn, P Jeffrey; Scarr, Elizabeth

    2016-01-01

    Stimulation of the cortical muscarinic M1 receptor (CHRM1) is proposed as a treatment for schizophrenia, a hypothesis testable using CHRM1 allosteric modulators. Allosteric modulators have been shown to change the activity of CHRMs using cloned human CHRMs and CHRM knockout mice but not human CNS, a prerequisite for them working in humans. Here we show in vitro that BQCA, a positive allosteric CHRM1 modulator, brings about the expected change in affinity of the CHRM1 orthosteric site for acetylcholine in human cortex. Moreover, this effect of BQCA is reduced in the cortex of a subset of subjects with schizophrenia, separated into a discrete population because of a profound loss of cortical [3H]pirenzepine binding. Surprisingly, there was no change in [3H]NMS binding to the cortex from this subset or those with schizophrenia but without a marked loss of cortical CHRM1. Hence, we explored the nature of [3H]pirenzepine and [3H]NMS binding to human cortex and showed total [3H]pirenzepine and [3H]NMS binding was reduced by Zn2+, acetylcholine displacement of [3H]NMS binding was enhanced by Mg2+ and Zn2+, acetylcholine displacement of [3H]pirenzepine was reduced by Mg2+ and enhanced by Zn2+, whereas BQCA effects on [3H]NMS, but not [3H]pirenzepine, binding was enhanced by Mg2+ and Zn2+. These data suggest the orthosteric and allosteric sites on CHRMs respond differently to divalent cations and the effects of allosteric modulation of the cortical CHRM1 is reduced in a subset of people with schizophrenia, a finding that may have ramifications for the use of CHRM1 allosteric modulators in the treatment of schizophrenia. PMID:26511338

  17. Effect of curcumin on the binding of cationic, anionic and nonionic surfactants with myoglobin

    Science.gov (United States)

    Mondal, Satyajit; Ghosh, Soumen

    2017-04-01

    Interaction of a globular protein, myoglobin and different surfactants has been studied in the absence and presence of curcumin in phosphate buffer at pH = 7.4 by UV-VIS spectrophotometry, fluorimetry and fluorescence polarization anisotropy methods. Results show that heme environment of myoglobin is changed by cationic cetyltrimethylammonium bromide (CTAB) and sodium N-dodecanoyl sarcosinate (SDDS). In the presence of curcumin, CTAB cannot change the heme; but SDDS can make change. Nonionic surfactant N-decanoyl-N-methylglucamine (Mega 10) cannot change the heme environment. Protein is unfolded by the surfactant. Curcumin can prevent the unfolding of protein in the low concentration region of ionic surfactants such as CTAB and SDDS. In nonionic surfactant media, curcumin accelerates the denaturation process. Due to myoglobin-curcumin complex formation, rotational motion of curcumin decreases in surfactant media and so anisotropy increases.

  18. Cooperative binding of primycin and gramicidin on erythrocyte membranes. A cation transport study.

    Science.gov (United States)

    Suga'r, I P; Blaskó, K; Györgyi, S; Shcagina, L V; Malev, V V; Lev, A A

    1989-01-01

    In this paper the authors present a comparative study of the actions of the antibiotics primycin and gramicidin on the erythrocyte membrane permeability. It has been found that both antibiotics have a nonlinear effect on the membrane permeability. Above a threshold antibiotic concentration, which is characteristic of the type of the antibiotic, the cation permeability of the erythrocyte membranes increases sharply. In the range of nonlinearity the transport-kinetic curves level off before achieving the equilibrium radioactive ion distribution between the extra- and intracellular spaces. A stochastic model of the cooperative and aspecific incorporation of antibiotic molecules into the membrane explains the experimental findings. The authors conclude that membrane permeability increases at the places where two or more antibiotic molecules form aggregates in the membrane.

  19. A new bile acid-derived lariat-ether: Design, synthesis and cation binding properties

    Indian Academy of Sciences (India)

    P Babu; Uday Maitra

    2003-10-01

    A new chola lariat ether (1, a 21-crown-6) was constructed from readily available precursors. The association constant of compound 1 with alkali metal picrates was measured using Cram’s extraction protocol. Evidence is presented for the involvement of the 3-methoxy group for the complexation. Energy minimised structures show that the A-ring gets slightly distorted upon metal ion binding.

  20. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    Science.gov (United States)

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  1. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites.

    Science.gov (United States)

    Lim, Dae-Woon; Chyun, Seung An; Suh, Myunghyun Paik

    2014-07-21

    To develop a metal-organic framework (MOF) for hydrogen storage, SNU-200 incorporating a 18-crown-6 ether moiety as a specific binding site for selected cations has been synthesized. SNU-200 binds K(+), NH4(+), and methyl viologen (MV(2+)) through single-crystal to single-crystal transformations. It exhibits characteristic gas-sorption properties depending on the bound cation. SNU-200 activated with supercritical CO2 shows a higher isosteric heat (Qst) of H2 adsorption (7.70 kJ mol(-1)) than other zinc-based MOFs. Among the cation inclusions, K(+) is the best for enhancing the isosteric heat of the H2 adsorption (9.92 kJ mol(-1)) as a result of the accessible open metal sites on the K(+) ion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Binding energy and preferred adsorption sites of CO on gold and silver-gold cluster cations: adsorption kinetics and quantum chemical calculations.

    Science.gov (United States)

    Neumaier, Marco; Weigend, Florian; Hampe, Oliver; Kappes, Manfred M

    2008-01-01

    We revisit the reactivity of trapped pure gold (Au(n)+, n cluster cations (Ag(m)Au(n)+, m + n metal as a function of cluster size and composition. Starting from results for pure gold cluster cations for which an overall decrease of CO binding energy with increasing cluster size was experimentally observed--from about 1.09 +/- 0.1 eV (for n = 6) to below 0.65 +/- 0.1 eV (for n > 26) we demonstrate that metal--CO bond energies correlate with the total electron density and with the energy of the lowest unoccupied molecular orbital (LUMO) on the bare metal cluster cation as obtained by density functional theory (DFT) computations. This is a consequence of the predominantly sigma-donating character of the CO-M bond. Further support for this concept is found by contrasting the predictions of binding energies to the experimental results for small alloy cluster cations (Ag(m)Au(n)+, 4 < m + n < 7) as a function of composition. Here, binding energy drops with increasing silver content, while CO still binds always in a head-on fashion to a gold atom. Finally we show how the CO stretch frequency of Ag(m)Au(n)CO+ may be used to identify possible adsorption sites and pre-screen favorable isomers.

  3. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-01

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  4. Regulation by divalent cations of /sup 3/H-baclofen binding to GABA/sub B/ sites in rat cerebellar membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K.; Goto, M.; Fukuda, H.

    1983-02-21

    When investigating the effects of divalent cations (Mg/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, Ba/sup 2 +/, Mn/sup 2 +/ and Ni/sup 2 +/) on /sup 3/H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of /sup 3/H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn/sup 2 +/ approx. = Ni/sup 2 +/ > Mg/sup 2 +/ > Ca/sup 2 +/ > Sr/sup 2 +/ > Ba/sup 2 +/. Scatchard analysis of the binding data revealed a single component of the binding sites in the presence of 2.5 mM MgCl/sub 2/, 2.5 mM CaCl/sub 2/ or 0.3 mM MnCl/sub 2/ whereas two components appeared in the presence of 2.5 mM MnCl/sub 2/ or 1 mM NiCl/sub 2/. In the former, divalent cations altered the apparent affinity (K/sub d/) without affecting density of the binding sites (B/sub max/). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg/sup 2 +/, Ca/sup 2 +/, Mn/sup 2 +/, and Ni/sup 2 +/) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABA/sub B/ sites, the affinity for (-), (+) and (+/-)baclofen, GABA and ..beta..-phenyl GABA increased 2 - 6 fold in the presence of 2.5 mM MnCl/sub 2/, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl/sub 2/ and 1.2 mM MgSO/sub 4/), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABA/sub B/ sites for its ligands is probably regulated by divalent cations, through common sites of action.

  5. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers.

    Science.gov (United States)

    Tulli, Ludovico G; Wang, Wenjie; Lindemann, William R; Kuzmenko, Ivan; Meier, Wolfgang; Vaknin, David; Shahgaldian, Patrick

    2015-03-03

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene (1) with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl2, CoCl2, MnCl2, and NiCl2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu(2+) ions. The interactions of 1-based monolayers with Co(2+) and Cu(2+) ions were further investigated by means of synchrotron radiation-based X-ray reflectivity (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu(2+) than Co(2+) ions. In the presence of relatively high concentrations of Cu(2+) ions in the subphase (1.4 × 10(-3) M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Both measurements suggest the formation of Cu(2+) clusters contiguous to the monolayer of 1.

  6. Electron transport through monovalent atomic wires

    DEFF Research Database (Denmark)

    Lee, Y. J.; Brandbyge, Mads; Puska, M. J.

    2004-01-01

    Using a first-principles density-functional method we model electron transport through linear chains of monovalent atoms between two bulk electrodes. For noble-metal chains the transport resembles that for free electrons over a potential barrier whereas for alkali-metal chains resonance states...... at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains...

  7. High DNA-Binding Affinity and Gene-Transfection Efficacy of Bioreducible Cationic Nanomicelles with a Fluorinated Core.

    Science.gov (United States)

    Wang, Long-Hai; Wu, De-Cheng; Xu, Hang-Xun; You, Ye-Zi

    2016-01-11

    During the last two decades, cationic polymers have become one of the most promising synthetic vectors for gene transfection. However, the weak interactions formed between DNA and cationic polymers result in low transfection efficacy. Furthermore, the polyplexes formed between cationic polymers and DNA generally exhibit poor stability and toxicity because of the large excess of cationic polymer typically required for complete DNA condensation. Herein, we report the preparation of a novel class of bioreducible cationic nanomicelles by the use of disulfide bonds to connect the cationic shell to the fluorocarbon core. These bioreducible nanomicelles form strong interactions with DNA and completely condense DNA at an N/P ratio of 1. The resulting nanomicelle/DNA polyplexes exhibited high biocompatibility and performed very effectively as a gene-delivery system.

  8. Production and targeting of monovalent quantum dots.

    Science.gov (United States)

    Seo, Daeha; Farlow, Justin; Southard, Kade; Jun, Young-Wook; Gartner, Zev J

    2014-10-23

    The multivalent nature of commercial quantum dots (QDs) and the difficulties associated with producing monovalent dots have limited their applications in biology, where clustering and the spatial organization of biomolecules is often the object of study. We describe here a protocol to produce monovalent quantum dots (mQDs) that can be accomplished in most biological research laboratories via a simple mixing of CdSe/ZnS core/shell QDs with phosphorothioate DNA (ptDNA) of defined length. After a single ptDNA strand has wrapped the QD, additional strands are excluded from the surface. Production of mQDs in this manner can be accomplished at small and large scale, with commercial reagents, and in minimal steps. These mQDs can be specifically directed to biological targets by hybridization to a complementary single stranded targeting DNA. We demonstrate the use of these mQDs as imaging probes by labeling SNAP-tagged Notch receptors on live mammalian cells, targeted by mQDs bearing a benzylguanine moiety.

  9. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  10. Binding of Cationic Bis-porphyrins Linked with p- or m-Xylylenediamine and Their Zinc(II Complexes to Duplex DNA

    Directory of Open Access Journals (Sweden)

    Tadayuki Uno

    2008-12-01

    Full Text Available Spectroscopic, viscometric, and molecular docking analysis of binding of cationic bis-porphyrins linked with p- or m-xylylenediamine (H2pXy and H2mXy and their zinc(II complexes (ZnpXy and ZnmXy to duplex DNA are described. H2pXy and H2mXy bound to calf thymus DNA (CTDNA stronger than unichromophoric H2TMPyP, and showed exciton-type induced circular dichroism spectra of their Soret bands. The H2TMPyP-like units of the metal-free bis-porphyrins did not intercalate into CTDNA, and thus the binding mode is outside binding with intramolecular stacking. ZnpXy showed favorable binding to A·T over G·C region, and should lie in the major groove of A·T region.

  11. Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H2O)n cluster cations with n ≤ 4

    Science.gov (United States)

    Schmies, Matthias; Miyazaki, Mitsuhiko; Fujii, Masaaki; Dopfer, Otto

    2014-12-01

    Infrared photodissociation (IRPD) spectra of mass-selected 4-aminobenzonitrile-(water)n cluster cations, ABN+-(H2O)n with n ≤ 4, recorded in the N-H and O-H stretch ranges are analyzed by quantum chemical calculations at the M06-2X/aug-cc-pVTZ level to determine the evolution of the initial microhydration process of this bifunctional aromatic cation in its ground electronic state. IRPD spectra of cold clusters tagged with Ar and N2 display higher resolution and allow for a clear-cut structural assignment. The clusters are generated in an electron impact source, which generates predominantly the most stable isomers. The IRPD spectra are assigned to single isomers for n = 1-3. The preferred cluster growth begins with sequential hydration of the two acidic NH protons of the amino group (n = 1-2), which is followed by attachment of secondary H2O ligands hydrogen-bonded to the first-shell ligands (n = 3-4). These symmetric and branched structures are more stable than those with a cyclic H-bonded solvent network. Moreover, in the size range n ≤ 4 the formation of a solvent network stabilized by strong cooperative effects is favored over interior ion hydration which is destabilized by noncooperative effects. The potential of the ABN+-H2O dimer is characterized in detail and supports the cluster growth derived from the IRPD spectra. Although the N-H bonds are destabilized by stepwise microhydration, which is accompanied by increasing charge transfer from ABN+ to the solvent cluster, no proton transfer to the solvent is observed for n ≤ 4.

  12. Microhydrated aromatic cluster cations: Binding motifs of 4-aminobenzonitrile-(H{sub 2}O){sub n} cluster cations with n ≤ 4

    Energy Technology Data Exchange (ETDEWEB)

    Schmies, Matthias; Dopfer, Otto, E-mail: dopfer@physik.tu-berlin.de [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Miyazaki, Mitsuhiko; Fujii, Masaaki [Chemical Resources Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2014-12-07

    Infrared photodissociation (IRPD) spectra of mass-selected 4-aminobenzonitrile-(water){sub n} cluster cations, ABN{sup +}-(H{sub 2}O){sub n} with n ≤ 4, recorded in the N–H and O–H stretch ranges are analyzed by quantum chemical calculations at the M06-2X/aug-cc-pVTZ level to determine the evolution of the initial microhydration process of this bifunctional aromatic cation in its ground electronic state. IRPD spectra of cold clusters tagged with Ar and N{sub 2} display higher resolution and allow for a clear-cut structural assignment. The clusters are generated in an electron impact source, which generates predominantly the most stable isomers. The IRPD spectra are assigned to single isomers for n = 1–3. The preferred cluster growth begins with sequential hydration of the two acidic NH protons of the amino group (n = 1–2), which is followed by attachment of secondary H{sub 2}O ligands hydrogen-bonded to the first-shell ligands (n = 3–4). These symmetric and branched structures are more stable than those with a cyclic H-bonded solvent network. Moreover, in the size range n ≤ 4 the formation of a solvent network stabilized by strong cooperative effects is favored over interior ion hydration which is destabilized by noncooperative effects. The potential of the ABN{sup +}-H{sub 2}O dimer is characterized in detail and supports the cluster growth derived from the IRPD spectra. Although the N–H bonds are destabilized by stepwise microhydration, which is accompanied by increasing charge transfer from ABN{sup +} to the solvent cluster, no proton transfer to the solvent is observed for n ≤ 4.

  13. Monovalent copper-activated oxygenated insulators

    Science.gov (United States)

    Parent, C.; Boutinaud, P.; Flem, G. Le; Moine, B.; Pedrini, C.; Garcia, D.; Faucher, M.

    1994-12-01

    The photoluminescence of monovalent copper in oxygenated insulators has been extensively studied. The spectroscopy and the excited states dynamics of Cu + ions were investigated as a function of the copper concentration and temperature in various glassy and crystallized materials, essentially borates and phosphates. The broad band fluorescences observed in the visible range under UV excitation arise from two main emitting centers: isolated Cu + ions and (Cu +) 2 pairs. The spectroscopic characteristics of isolated Cu + depend strongly on the local structure, whereas those of the copper pairs remain nearly unaltered whatever the host-matrix. Energy diagrams are proposed for both centers, using ab initio LCAO calculations, in connection with structural investigations involving XRD, ND and EXAFS spectroscopies. Borate glasses can be considered as potential laser sources for tunable output in the whole visible range.

  14. Effects of monovalent and divalent salts on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp.

    Science.gov (United States)

    Miller, K J

    1986-09-01

    The phospholipid headgroup and fatty acid compositions of a halotolerant Planococcus sp. (strain A4a) were examined when cells were grown in the presence of high concentrations of a variety of salts. The fatty acid composition of Planococcus sp. strain A4a was altered primarily as a function of the osmolality of the growth medium. The phospholipid headgroup composition was influenced by both the osmolality of the growth medium and the nature of the cation species present. An increase in the cardiolipin/phosphatidylglycerol molar ratio was detected when cells were grown in the presence of high concentrations of monovalent cations.

  15. Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations

    DEFF Research Database (Denmark)

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.

    2014-01-01

    Despite being chemically inert as a bulk material, nanoscale gold can pose harmful side effects to living organisms. In particular, cationic Au nanoparticles (AuNP+) of 2 nm diameter or less permeate readily through plasma membranes and induce cell death. We report atomistic simulations of cationic...... Au nanoparticles interacting with realistic membranes and explicit solvent using a model system that comprises two cellular compartments, extracellular and cytosolic, divided by two asymmetric lipid bilayers. The membrane-AuNP+ binding and membrane reorganization processes are discovered...... to be governed by cooperative effects where AuNP+, counterions, water, and the two membrane leaflets all contribute. On the extracellular side, we find that the nanoparticle has to cross a free energy barrier of about 5 k(B)T prior forming a stable contact with the membrane. This results in a rearrangement...

  16. Neutralisation and binding of VHS virus by monovalent antibody fragments

    DEFF Research Database (Denmark)

    Cupit, P.M.; Lorenzen, Niels; Strachan, G.

    2001-01-01

    appeared to recognise a broader range of virus isolates. The variable domains of these two antibodies differ by only four residues (Lorenzen et al., 2000a. Fish Shellfish Immunol. 10, 129-142). To further study the mechanism of neutralisation, Fab fragments as well as a series of recombinant bacterial...... single chain antibody (scAb) fragments were generated from the three anti-VHSV Mabs and their variable domain genes, respectively. Fabs and scAbs derived from the neutralising Mabs were both able to neutralise the VHSV type 1 isolate DK-F1. In addition, a series of scAb fragments were produced using...... the 3F1H10 variable heavy (VH) chain and variable light (V kappa) chain domains but containing, either alone or in dual combination, each of the four different residues present in 3F1A2. The dissociation constants of Mabs 3F1H10 and 3F1A2 and their respective Fab and scAb fragments were measured...

  17. Divalent cation tolerance protein binds to β-secretase and inhibits the processing of amyloid precursor protein

    Institute of Scientific and Technical Information of China (English)

    Runzhong Liu; Haibo Hou; Xuelian Yi; Shanwen Wu; Huan Zeng

    2013-01-01

    The deposition of amyloid-beta is a pathological hallmark of Alzheimer's disease. Amyloid-beta is derived from amyloid precursor protein through sequential proteolytic cleavages by β-secretase (beta-site amyloid precursor protein-cleaving enzyme 1) and γ-secretase. To further elucidate the roles of beta-site amyloid precursor protein-cleaving enzyme 1 in the development of Alzheimer's disease, a yeast two-hybrid system was used to screen a human embryonic brain cDNA library for proteins directly interacting with the intracellular domain of beta-site amyloid precursor protein-cleaving enzyme 1. A potential beta-site amyloid precursor protein-cleaving enzyme 1- interacting protein identified from the positive clones was divalent cation tolerance protein. Immunoprecipitation studies in the neuroblastoma cell line N2a showed that exogenous divalent cation tolerance protein interacts with endogenous beta-site amyloid precursor protein-cleaving enzyme 1. The overexpression of divalent cation tolerance protein did not affect beta-site amyloid precursor protein-cleaving enzyme 1 protein levels, but led to increased amyloid precursor protein levels in N2a/APP695 cells, with a concomitant reduction in the processing product amyloid precursor protein C-terminal fragment, indicating that divalent cation tolerance protein inhibits the processing of amyloid precursor protein. Our experimental findings suggest that divalent cation tolerance protein negatively regulates the function of beta-site amyloid precursor protein-cleaving enzyme 1. Thus, divalent cation tolerance protein could play a protective role in Alzheimer's disease.

  18. Thermodynamic parameters associated with the binding of adrenalin and norephedrine to heparin

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ali, A.K.; Buchanan, J.D.; Power, D.M. (Salford Univ. (UK). Dept. of Biochemistry); Butler, J. (Christie Hospital and Holt Radium Inst., Manchester (UK). Paterson Labs.)

    1983-04-01

    Pulse radiolysis has been used to determine the thermodynamic parameters (..delta..G', ..delta..H' and ..delta..S') governing the binding of adrenalin and norephedrine to heparin. These complexes were completely dissociated by increasing concentrations of inorganic salts. Lower concentrations of divalent cations (e.g. Ca/sup 2 +/) than of monovalent cations (e.g. Na/sup +/) were necessary to effect dissociation of the complex. For each interaction an increase in drug binding occurred as the temperature was increased from ambient. However, a transition temperature was observed (48/sup 0/C) above which the drug was progressively released as the temperature was increased. These observations are discussed in terms of conformational changes induced in the polymer below and above its melting temperature.

  19. Synthetic cation-selective nanotube: Permeant cations chaperoned by anions

    Science.gov (United States)

    Hilder, Tamsyn A.; Gordon, Dan; Chung, Shin-Ho

    2011-01-01

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  20. Effects of Divalent Cations and Disulfide Bond Reducing Agents on Specific Binding of Growth Hormone to Liver Membrane Receptors from Snakehead Fish (Ophiocephalus argus, Cantor).

    Science.gov (United States)

    Sun, Xun; Zhang, Xin-Na; Zhu, Shang-Quan; Zheng, Han-Qi

    2000-01-01

    Divalent cations, Ca(2 ), Mg(2 ) and Mn(2 ) enhance the binding of bream growth hormone (brGH) to snakehead fish liver membrane, and their optimum concentration was found to be 8 12 mmol/L, at which Ca(2 ), Mg(2 ) and Mn(2 ) could increase, respectively, the specific binding to 230%, 180%, and 200%, compared with the binding in the absence of ions. The Eadie-Scatchard plot was used for the dynamic analysis of the Ca(2 ) binding site. A low affinity Ca(2 ) binding site was found in the GH-receptor complex with K(m)=0.384 mmol/L, and the affinity constant (K(a)) was increased from 1.045x10(9) L.mol(-1) to 1.295x10(9) L.mol(-1) by the addition of 10 mmol/L CaCl(2). The effects of disulfide bond reducing agents, DTT and ME, on (125)I-brGH binding to growth hormone receptor (GHR) on snakehead fish liver memebrane were also analyzed. The addition of 0.1 20 mmol/L DTT or 0.01% 1% ME to the radioreceptor assay system caused a significant dose dependent increase in the specific binding for (125)I-brGH. In the presence of 0.8 mmol/L DTT or 0.08% ME, the specific binding of (125)I-brGH was increased from 10.2% to 15.5% and 13.2% respectively, and the affinity constant was also increased from 1.265x10(9) L.mol(-1) to 2.185x10(9) L.mol(-1) and 1.625x10(9) L.mol(-1), respectively but no changes in the binding capacity were observed. Further studies showed that the effects of reductants on the specific binding of brGH were due in part to the ligand itself and in part to GHR. In addition, it was observed that one of the three disulfide bonds of brGH could be reduced by 0.8 mmol/L DTT.

  1. Poisson-Helmholtz-Boltzmann model of the electric double layer: analysis of monovalent ionic mixtures.

    Science.gov (United States)

    Bohinc, Klemen; Shrestha, Ahis; Brumen, Milan; May, Sylvio

    2012-03-01

    In the classical mean-field description of the electric double layer, known as the Poisson-Boltzmann model, ions interact exclusively through their Coulomb potential. Ion specificity can arise through solvent-mediated, nonelectrostatic interactions between ions. We employ the Yukawa pair potential to model the presence of nonelectrostatic interactions. The combination of Yukawa and Coulomb potential on the mean-field level leads to the Poisson-Helmholtz-Boltzmann model, which employs two auxiliary potentials: one electrostatic and the other nonelectrostatic. In the present work we apply the Poisson-Helmholtz-Boltzmann model to ionic mixtures, consisting of monovalent cations and anions that exhibit different Yukawa interaction strengths. As a specific example we consider a single charged surface in contact with a symmetric monovalent electrolyte. From the minimization of the mean-field free energy we derive the Poisson-Boltzmann and Helmholtz-Boltzmann equations. These nonlinear equations can be solved analytically in the weak perturbation limit. This together with numerical solutions in the nonlinear regime suggests an intricate interplay between electrostatic and nonelectrostatic interactions. The structure and free energy of the electric double layer depends sensitively on the Yukawa interaction strengths between the different ion types and on the nonelectrostatic interactions of the mobile ions with the surface.

  2. Multi-scale simulation studies on interaction between anionic surfactants and cations

    Directory of Open Access Journals (Sweden)

    Siwei Meng

    2014-12-01

    Full Text Available In this paper, a dissipative particle dynamics (DPD simulation method was used to investigate the impact of cations on the rheological properties of dodecyl sulfonate surfactant solutions. In order to obtain reasonable interaction between head groups of the surfactant, the geometric structure and interaction between dodecyl sulfonate and cations are optimized using density function theory (DFT at the B3LYP/6-31G level. The DFT calculated results indicate that α-methylene nearest the head group can be classified as a part of the polar head. After binding, the charge on polar head decreases, thus greatly reduces the repulsion between the head groups. It is found that the presence of counterions is one of induction factors on the formation of wormlike micelles, thus greatly enhances the viscosity of surfactant solution. With the increasing in shear strengthen, the wormlike micelles are gradually oriented in the x direction and then broken up into small spherical micelles. This process is also shown by the decrease of viscosity, which decreases quickly at the low shear rates, then keeps almost a constant at the moderate shear rates and at last decreases again at the shear rates larger than a critical value. Compared with monovalent cations, divalent cations have a stronger effect on the rheological properties of dodecyl sulfonate solutions.

  3. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?

    Science.gov (United States)

    Gebala, Magdalena; Bonilla, Steve; Bisaria, Namita; Herschlag, Daniel

    2016-08-31

    Electrostatics are central to all aspects of nucleic acid behavior, including their folding, condensation, and binding to other molecules, and the energetics of these processes are profoundly influenced by the ion atmosphere that surrounds nucleic acids. Given the highly complex and dynamic nature of the ion atmosphere, understanding its properties and effects will require synergy between computational modeling and experiment. Prior computational models and experiments suggest that cation occupancy in the ion atmosphere depends on the size of the cation. However, the computational models have not been independently tested, and the experimentally observed effects were small. Here, we evaluate a computational model of ion size effects by experimentally testing a blind prediction made from that model, and we present additional experimental results that extend our understanding of the ion atmosphere. Giambasu et al. developed and implemented a three-dimensional reference interaction site (3D-RISM) model for monovalent cations surrounding DNA and RNA helices, and this model predicts that Na(+) would outcompete Cs(+) by 1.8-2.1-fold; i.e., with Cs(+) in 2-fold excess of Na(+) the ion atmosphere would contain an equal number of each cation (Nucleic Acids Res. 2015, 43, 8405). However, our ion counting experiments indicate that there is no significant preference for Na(+) over Cs(+). There is an ∼25% preferential occupancy of Li(+) over larger cations in the ion atmosphere but, counter to general expectations from existing models, no size dependence for the other alkali metal ions. Further, we followed the folding of the P4-P6 RNA and showed that differences in folding with different alkali metal ions observed at high concentration arise from cation-anion interactions and not cation size effects. Overall, our results provide a critical test of a computational prediction, fundamental information about ion atmosphere properties, and parameters that will aid in the

  4. Monovalent metal ions play an essential role in catalysis and intersubunit communication in the tryptophan synthase bienzyme complex.

    Science.gov (United States)

    Woehl, E U; Dunn, M F

    1995-07-25

    This investigation shows that the alpha 2 beta 2 tryptophan synthase bienzyme complex from Salmonella typhimurium is subject to monovalent metal ion activation. The effects of the monovalent metal ions Na+ and K+ were investigated using rapid scanning stopped-flow (RSSF), single-wavelength stopped-flow (SWSF), and steady-state techniques. RSSF measurements of individual steps in the reaction of L-serine and indole to give L-trytophan (the beta-reaction) as well as the reaction of 3-indole-D-glycerol 3'-phosphate (IGP) with L-serine (the alpha beta-reaction) demonstrate that monovalent metal ions such as Na+ and K+ change the distribution of intermediates in both the transient and steady states. Therefore the metal ion effect alters relative ground-state energies and the relative positions of ground- and transition-state energies. The RSSF spectra and SWSF time courses show that the turnover of indole is significantly reduced in the absence of either Na+ or K+. The alpha-aminoacrylate Schiff base species, E(A-A), is in a less active state in the absence of monovalent metal ions. Na+ decreases the steady-state rate of IGP cleavage (the alpha-reaction) to about 30% of the value obtained in the absence of metal ions. Steady-state investigations show that in the absence of monovalent metal ions the alpha- and alpha beta-reactions have the same activity. Na+ binding gives a 30-fold stimulation of the alpha-reaction when the beta-site is in the E(A-A) form.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  6. Dressed counterions: Polyvalent and monovalent ions at charged dielectric interfaces

    Science.gov (United States)

    Kanduč, Matej; Naji, Ali; Forsman, Jan; Podgornik, Rudolf

    2011-07-01

    We investigate the ion distribution and overcharging at charged interfaces with dielectric inhomogeneities in the presence of asymmetric electrolytes containing polyvalent and monovalent ions. We formulate an effective “dressed counterion” approach by integrating out the monovalent salt degrees of freedom and show that it agrees with results of explicit Monte Carlo simulations. We then apply the dressed counterion approach within the framework of the generalized strong-coupling theory, valid for polyvalent ions at low concentrations, which enables an analytical description for salt effects as well as dielectric inhomogeneities in the limit of strong Coulomb interactions. Limitations and applicability of this theory are examined by comparing the results with simulations.

  7. Kinetic and thermodynamic consequences of the substitution of SMe for OMe substituents of cryptophane hosts on the binding of neutral and cationic guests.

    Science.gov (United States)

    Garcia, Chantal; Humilière, Delphine; Riva, Nathalie; Collet, André; Dutasta, Jean-Pierre

    2003-06-21

    To investigate the origin of the high selectivity of cryptophane-E (1) towards Me3NH+, Me4N+, and CHCl3, and particularly to discriminate the different contributions that stabilize the supramolecular complexes, we have synthesized the new cryptophane 2 bearing six MeS groups instead of MeO groups in 1. This led to a decrease of the negative charge density in the equatorial region of 2 without affecting notably the size of the molecular cavity. The binding properties of 1 and 2 towards the three guests were examined in solution and showed a slight decrease of the deltaGa favoring the complexes of 1, accompanied by a significant modification of the deltaHa vs. deltaSa balance. The binding of the ammonium guests to 1 and 2 was strongly entropy driven, while that of CHCl3 was purely enthalpy driven. A combination of spectroscopic and computational techniques was used to assign the main intermolecular interactions that occurred during the inclusion process. The neutral CHCl3 molecule is more stabilized in the less negatively charged CTV cap of 1. The different behavior towards the ammonium cations can be explained in term of interactions with the electronegative heteroatoms and cation-pi interactions. Moreover, this study revealed a considerable slowing down of the guest exchange kinetics with host 2, for which the association and dissociation rates are reduced by a factor 10(3) to 10(4) with respect to 1. For example, at room temperature, the Me4N+@2 complex exhibits a half-life of ca. 2 years, instead of a few hours for the corresponding complex of 1.

  8. Controlling the thermodynamic stability of intermediate phases in a cationic-amphiphile-water system with strongly binding counterions.

    Science.gov (United States)

    Gupta, Santosh Prasad; Raghunathan, V A

    2013-07-01

    We have studied the influence of two structurally isomeric organic salts, namely, 2-sodium-3-hydroxy naphthoate (SHN) and 1-sodium-2-hydroxy naphthoate (SHN1), on the phase behavior of concentrated aqueous solutions of the cationic surfactant cetylpyridinium chloride (CPC). Partial phase diagrams of the two systems have been constructed using polarizing optical microscopy and x-ray diffraction techniques. A variety of intermediate phases is seen in both systems for a range of salt concentrations. The CPC-SHN-water system exhibits the rhombohedral and tetragonal mesh phases in addition to the random mesh phase, whereas the CPC-SHN1-water system shows only the tetragonal and random mesh phases. The CPC-SHN-water system also exhibits two nematic phases consisting of cylindrical and disk-like micelles at relatively low and high salt concentrations, respectively. These results show that the concentration of the strongly bound counterion provided by the organic salt can be used as a control parameter to tune the stability of different intermediate phases in amphiphile-water systems.

  9. Metal-Organic Frameworks (MOFs) as Multivalent Materials: Size Control and Surface Functionalization by Monovalent Capping Ligands.

    Science.gov (United States)

    Rijnaarts, Timon; Mejia-Ariza, Raquel; Egberink, Richard J M; van Roosmalen, Wies; Huskens, Jurriaan

    2015-07-13

    Control over particle size and composition are pivotal to tune the properties of metal organic frameworks (MOFs), for example, for biomedical applications. Particle-size control and functionalization of MIL-88A were achieved by using stoichiometric replacement of a small fraction of the divalent fumarate by monovalent capping ligands. A fluorine-capping ligand was used to quantify the surface coverage of capping ligand at the surface of MIL-88A. Size control at the nanoscale was achieved by using a monovalent carboxylic acid-functionalized poly(ethylene glycol) (PEG-COOH) ligand at different concentrations. Finally, a biotin-carboxylic acid capping ligand was used to functionalize MIL-88A to bind fluorescently labeled streptavidin as an example towards bioapplications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site

    DEFF Research Database (Denmark)

    Laursen, Mette; Yatime, Laure; Nissen, Poul

    2013-01-01

    we describe a crystal structure of the phosphorylated pig kidney Na+,K+-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the β-surface of the steroid core......The Na+,K+-ATPase maintains electrochemical gradients for Na+ and K+ that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na+,K+-ATPase. Here...... of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg2+, and crystallographic studies indicate that Rb+ and Mn2+, but not Na+, bind to this site. Comparison with the low-affinity [K2]E2–MgFx–ouabain structure [Ogawa et al...

  11. Serial incorporation of a monovalent GalNAc phosphoramidite unit into hepatocyte-targeting antisense oligonucleotides.

    Science.gov (United States)

    Yamamoto, Tsuyoshi; Sawamura, Motoki; Wada, Fumito; Harada-Shiba, Mariko; Obika, Satoshi

    2016-01-01

    The targeting of abundant hepatic asialoglycoprotein receptors (ASGPR) with trivalent N-acetylgalactosamine (GalNAc) is a reliable strategy for efficiently delivering antisense oligonucleotides (ASOs) to the liver. We here experimentally demonstrate the high systemic potential of the synthetically-accessible, phosphodiester-linked monovalent GalNAc unit when tethered to the 5'-terminus of well-characterised 2',4'-bridged nucleic acid (also known as locked nucleic acid)-modified apolipoprotein B-targeting ASO via a bio-labile linker. Quantitative analysis of the hepatic disposition of the ASOs revealed that phosphodiester is preferable to phosphorothioate as an interunit linkage in terms of ASGPR binding of the GalNAc moiety, as well as the subcellular behavior of the ASO. The flexibility of this monomeric unit was demonstrated by attaching up to 5 GalNAc units in a serial manner and showing that knockdown activity improves as the number of GalNAc units increases. Our study suggests the structural requirements for efficient hepatocellular targeting using monovalent GalNAc and could contribute to a new molecular design for suitably modifying ASO.

  12. Theoretical calculation of the NMR spin-spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine.

    Science.gov (United States)

    Sychrovský, Vladimír; Sponer, Jirí; Hobza, Pavel

    2004-01-21

    The calculated intermolecular and intramolecular indirect NMR spin-spin coupling constants and NMR shifts were used for the discrimination between the inner-shell and the outer-shell binding motif of hydrated divalent cations Mg(2+) or Zn(2+) with a guanine base. The intermolecular coupling constants (1)J(X,O6) and (1)J(X,N7) (X = Mg(2+), Zn(2+)) can be unambiguously assigned to the specific inner-shell binding motif of the hydrated cation either with oxygen O6 or with nitrogen N7 of guanine. The calculated coupling constants (1)J(Mg,O6) and (1)J(Zn,O6) were 6.2 and -17.5 Hz, respectively, for the inner-shell complex of cation directly interacting with oxygen O6 of guanine. For the inner-shell coordination of the cation at nitrogen N7, the calculated coupling constants (1)J(Mg,N7) and (1)J(Zn,N7) were 5.6 and -36.5 Hz, respectively. When the binding of the cation is water-mediated, the coupling constant is zero. To obtain reliable shifts in NMR parameters, hydrated guanine was utilized as the reference state. The calculated change of NMR spin-spin coupling constants due to the hydration and coordination of the cation with guanine is caused mainly by the variation of Fermi-contact coupling contribution while the variation of diamagnetic spin-orbit, paramagnetic spin-orbit, and spin-dipolar coupling contributions is small. The change of s-character of guanine sigma bonding, sigma antibonding, and lone pair orbitals upon the hydration and cation coordination (calculated using the Natural Bond Orbital analysis) correlates with the variation of the Fermi-contact term. The calculated NMR shifts delta(N7) of -15.3 and -12.2 ppm upon the coordination of Mg(2+) and Zn(2+) ion are similar to the NMR shift of 19.6 ppm toward the high field measured by Tanaka for N7 of guanine upon the coordination of the Cd(2+) cation (Tanaka, Y.; Kojima, C.; Morita, E. H.; Kasai. Y.; Yamasaki, K.; Ono, A.; Kainosho, M.; Taira, K. J. Am. Chem. Soc. 2002, 124, 4595-4601). The present data

  13. Reversible CO binding enables tunable CO/H₂ and CO/N₂ separations in metal-organic frameworks with exposed divalent metal cations.

    Science.gov (United States)

    Bloch, Eric D; Hudson, Matthew R; Mason, Jarad A; Chavan, Sachin; Crocellà, Valentina; Howe, Joshua D; Lee, Kyuho; Dzubak, Allison L; Queen, Wendy L; Zadrozny, Joseph M; Geier, Stephen J; Lin, Li-Chiang; Gagliardi, Laura; Smit, Berend; Neaton, Jeffrey B; Bordiga, Silvia; Brown, Craig M; Long, Jeffrey R

    2014-07-30

    Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.09(2) Å for M = Ni to 2.49(1) Å for M = Zn and M-C-O angles ranging from 161.2(7)° for M = Mg to 176.9(6)° for M = Fe. Electronic structure calculations employing density functional theory (DFT) resulted in good agreement with the trends apparent in the infrared spectra and crystal structures. These results represent the first crystallographically characterized magnesium and zinc carbonyl compounds and the first high-spin manganese(II), iron(II), cobalt(II), and nickel(II) carbonyl species. Adsorption isotherms indicate reversible adsorption, with capacities for the Fe, Co, and Ni frameworks approaching one CO per metal cation site at 1 bar, corresponding to loadings as high as 6.0 mmol/g and 157 cm(3)/cm(3). The six frameworks display (negative) isosteric heats of CO adsorption ranging from 52.7 to 27.2 kJ/mol along the series Ni > Co > Fe > Mg > Mn > Zn, following the Irving-Williams stability order. The reversible CO binding suggests that these frameworks may be of utility for the separation of CO from various industrial gas mixtures, including CO/H2 and CO/N2. Selectivities determined from gas adsorption isotherm data using ideal adsorbed solution theory (IAST) over a range of gas compositions at 1 bar and 298 K indicate that all six M2(dobdc) frameworks could potentially be used as solid adsorbents to replace current cryogenic distillation technologies, with the choice of M dictating adsorbent regeneration energy and the level of purity of the resulting gases.

  14. Actinide cation-cation complexes

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Nancy Jane [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO2+) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO2+; therefore, cation-cation complexes indicate something unique about AnO2+ cations compared to actinide cations in general. The first cation-cation complex, NpO2+•UO22+, was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO2+ species, the cation-cation complexes of NpO2+ have been studied most extensively while the other actinides have not. The only PuO2+ cation-cation complexes that have been studied are with Fe3+ and Cr3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO2+•UO22+, NpO2+•Th4+, PuO2+•UO22+, and PuO2+•Th4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ~0.8 M-1.

  15. Improvement of outer membrane-permeabilizing and lipopolysaccharide-binding activities of an antimicrobial cationic peptide by C-terminal modification.

    Science.gov (United States)

    Piers, K L; Brown, M H; Hancock, R E

    1994-10-01

    Antimicrobial cationic peptides have been discovered in many different organisms and often possess a broad range of activity. In this study, we investigated the mechanisms of actions of melittin and two synthetic peptides, CEME (a cecropin-melittin hybrid) and CEMA, against gram-negative bacteria. CEMA was produced by recombinant DNA procedures and is an analog of CEME with a modified C terminus resulting in two additional positive charges. All three peptides showed good antimicrobial activity against four different gram-negative bacteria, but only CEMA was able to somewhat augment the activity of some conventional antibiotics in synergy studies. Studies using the bacteria Pseudomonas aeruginosa and Enterobacter cloacae showed that the peptides all possessed the ability to permeabilize bacterial outer membranes to the hydrophobic fluorophor 1-N-phenylnaphthylamine and the protein lysozyme, with CEMA being the most active. CEMA also had the strongest relative binding affinity for bacterial endotoxin (lipopolysaccharide). These data collectively indicated that these peptides all cross the outer membrane by the self-promoted uptake pathway and that CEMA is the peptide most effective at accessing this pathway.

  16. Effect of binding of an oligomeric cationic fluorosurfactant on the dilational rheological properties of gelatin adsorbed at the air-water interface.

    Science.gov (United States)

    Rao, Ashwin; Kim, Yongsin; Kausch, Charles M; Thomas, Richard R

    2006-09-12

    The effect of binding of an oligomeric cationic fluorooxetane surfactant on the interfacial properties of adsorbed gelatin-fluorooxetane complexes has been studied using dynamic surface tension and dilational rheological measurements. Adsorption kinetics of gelatin-fluorooxetane complexes are reminiscent of a mixed (barrier/diffusion limited) process, while the dilational rheological properties of the interface exhibit a strong dependence on surfactant concentration. At low surfactant concentrations, dilational surface moduli as well as phase angles are relatively insensitive to the presence of the fluorooxetane. However, at the critical aggregation concentration of the polymer-surfactant system, there is a sharp increase in the complex modulus. Further increase in the fluorooxetane concentration does not significantly affect the complex modulus. The phase angle, however, does increase with increasing fluorooxetane concentration due to the transport of bound fluorooxetane from the subsurface to the solution-air interface. These results indicate that, at fluorooxetane concentrations exceeding the critical aggregation concentration, the polymer-surfactant complexes adsorb to form cross-linked multilayers at the solution-air interface.

  17. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    Energy Technology Data Exchange (ETDEWEB)

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  18. On the selective adsorption of cations in the cell wall of the green alga Valonia utricularis

    Science.gov (United States)

    Kesseler, H.

    1980-06-01

    The selective adsorption of the cations Na+, K+, Mg++ and Ca++ by the cell wall of the Mediterranean alga Valonia utricularis (Siphonocladales, Chlorophyceae) from sea water of 40 %. S was investigated by extraction of cell-wall preparations, eluted before in 1.1 mol methanol (adjusted to pH 8) with 0.1 n formic acid in a Soxhlet apparatus. Na+ and K+ were determined by flame photometry, Mg++ and Ca++ by complexometric titration with EDTA. From calculation of the dry weight:fresh weight ratios and the chloride determinations in the eluates, the Donnan free-space fraction of the total cell-wall volume was calculated to about 35 %, and the analytical results of the cation concentrations in the extracts expressed as μVal cm-3 DFS. This calculation is based on the assumption that the acidic groups of the noncellulosic matrix material, carrying negative charges by dissociation at the reaction of sea water (ph about 8) are responsible for the adsorption of cations by exhibition of a Donnan effect. The results obtained show clearly that besides the divalent cations Mg++ and Ca++, which according to the physico-chemical laws of the Donnan distribution must be relatively accumulated to the second power of the monovalent ones, potassium is also enriched by selective adsorption, and the K+:Na+ ratio increased significantly compared with that in sea water. This seems to indicate that the strength of attraction between the cations and the negative sites is dependent on the radii of the ions and the state of hydration and/or polarisation of the ions and binding sites.

  19. Study of the effect hydrogen binding in the solvation of alkaline earth cations with MeOH in nitromethane using 1 H NMR technique and determination of ionic solvation number

    CERN Document Server

    Alizadeh, N

    2001-01-01

    A proton NMR method for the study of the effect hydrogen binding and determination of solvation numbers of alkaline earth cations with methanol (MeOH) in in tromethane (NM) as diluent is described. The method is based on monitoring the resonance frequency of MeOH protons as a function of MeOH to metal ion mole ratio at constant metal ion concentration. the average solvation number of cation, n, at any MeOH/ metal ion mole ration was calculated from the NMR chemical shift-mole ration data and was plotted against the mole ration values. The solvation numbers of alkaline earth cations were obtained from the limiting values of the corresponding n, vs. mole ratio plots.

  20. High affinity binding of (/sup 3/H)cocaine to rat liver microsomes

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    )/sup 3/H)cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in (/sup 3/H)cocaine binding. On the other hand, chronic administration of cocaine reduced (/sup 3/H)cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of (/sup 3/H)cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced (/sup 3/H)cocaine binding to liver with a different rank order of potency than their displacement of (/sup 3/H)cocaine binding to striatum. This high affinity (/sup 3/H)cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  1. Polarized spectral complexes of optical functions of monovalent mercury iodide

    Science.gov (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  2. Structure of a cation-bound multidrug and toxic compound extrusion transporter

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao; Szewczyk, Paul; Karyakin, Andrey; Evin, Mariah; Hong, Wen-Xu; Zhang, Qinghai; Chang, Geoffrey (Scripps)

    2010-10-26

    Transporter proteins from the MATE (multidrug and toxic compound extrusion) family are vital in metabolite transport in plants, directly affecting crop yields worldwide. MATE transporters also mediate multiple-drug resistance (MDR) in bacteria and mammals, modulating the efficacy of many pharmaceutical drugs used in the treatment of a variety of diseases. MATE transporters couple substrate transport to electrochemical gradients and are the only remaining class of MDR transporters whose structure has not been determined. Here we report the X-ray structure of the MATE transporter NorM from Vibrio cholerae determined to 3.65 {angstrom}, revealing an outward-facing conformation with two portals open to the outer leaflet of the membrane and a unique topology of the predicted 12 transmembrane helices distinct from any other known MDR transporter. We also report a cation-binding site in close proximity to residues previously deemed critical for transport. This conformation probably represents a stage of the transport cycle with high affinity for monovalent cations and low affinity for substrates.

  3. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    CHENG JiaGao; LUO XiaoMin; YAN XiuHua; LI Zhong; TANG Yun; JIANG HuaLiang; ZHU WeiLiang

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system, which has been viewed as a new kind of binding force, as being compared with the classical interac-tions (e.g. hydrogen bonding, electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper, we present an overview of the typi-cal cation-π interactions in biological systems, the experimental and theoretical investigations on cation-π interactions, as well as the research results on cation-π interactions in our group.

  4. Research progress in cation-π interactions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cation-π interaction is a potent intermolecular interaction between a cation and an aromatic system,which has been viewed as a new kind of binding force,as being compared with the classical interactions(e.g. hydrogen bonding,electrostatic and hydrophobic interactions). Cation-π interactions have been observed in a wide range of biological contexts. In this paper,we present an overview of the typical cation-π interactions in biological systems,the experimental and theoretical investigations on cation-π interactions,as well as the research results on cation-π interactions in our group.

  5. The extrinsic PsbO protein modulates the oxidation/reduction rate of the exogenous Mn cation at the high-affinity Mn-binding site of Mn-depleted PSII membranes.

    Science.gov (United States)

    Semin, Boris K; Podkovirina, Tatiana E; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B

    2015-08-01

    The oxidation of exogenous Mn(II) cations at the high-affinity (HA) Mn-binding site in Mn-depleted photosystem II (PSII) membranes with or without the presence of the extrinsic PsbO polypeptide was studied by EPR. The six-lines EPR spectrum of Mn(II) cation disappears in the absence of the PsbO protein in membranes under illumination, but there was no effect when PSII preparations bound the PsbO protein. Our study demonstrates that such effect is determined by significant influence of the PsbO protein on the ratio between the rates of Mn oxidation and reduction at the HA site when the membranes are illuminated.

  6. How accurate is Poisson-Boltzmann theory for monovalent ions near highly charged interfaces?

    Science.gov (United States)

    Bu, Wei; Vaknin, David; Travesset, Alex

    2006-06-20

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface. A lipid phosphate (dihexadecyl hydrogen-phosphate) was spread as a monolayer at the air-water interface to control surface charge density. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. Five decades in bulk concentrations are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. The increase of Cs+ concentration modifies the contact value potential, thereby causing proton release. This process effectively modifies surface charge density and enables exploration of ion distributions as a function of effective surface charge-density. The experimentally obtained ion distributions are compared to distributions calculated by Poisson-Boltzmann theory accounting for the variation of surface charge density due to proton release and binding. We also discuss the accuracy of our experimental results in discriminating possible deviations from Poisson-Boltzmann theory.

  7. Monovalency Unleashes the Full Therapeutic Potential of the DN-30 Anti-Met Antibody*

    Science.gov (United States)

    Pacchiana, Giovanni; Chiriaco, Cristina; Stella, Maria C.; Petronzelli, Fiorella; De Santis, Rita; Galluzzo, Maria; Carminati, Paolo; Comoglio, Paolo M.; Michieli, Paolo; Vigna, Elisa

    2010-01-01

    Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor “shedding”) followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy. PMID:20833723

  8. Monovalency unleashes the full therapeutic potential of the DN-30 anti-Met antibody.

    Science.gov (United States)

    Pacchiana, Giovanni; Chiriaco, Cristina; Stella, Maria C; Petronzelli, Fiorella; De Santis, Rita; Galluzzo, Maria; Carminati, Paolo; Comoglio, Paolo M; Michieli, Paolo; Vigna, Elisa

    2010-11-12

    Met, the high affinity receptor for hepatocyte growth factor, is one of the most frequently activated tyrosine kinases in human cancer and a validated target for cancer therapy. We previously developed a mouse monoclonal antibody directed against the extracellular portion of Met (DN-30) that induces Met proteolytic cleavage (receptor "shedding") followed by proteasome-mediated receptor degradation. This translates into inhibition of hepatocyte growth factor/Met-mediated biological activities. However, DN-30 binding to Met also results in partial activation of the Met kinase due to antibody-mediated receptor homodimerization. To safely harness the therapeutic potential of DN-30, its shedding activity must be disassociated from its agonistic activity. Here we show that the DN-30 Fab fragment maintains high affinity Met binding, elicits efficient receptor shedding and down-regulation, and does not promote kinase activation. In Met-addicted tumor cell lines, DN-30 Fab displays potent cytostatic and cytotoxic activity in a dose-dependent fashion. DN-30 Fab also inhibits anchorage-independent growth of several tumor cell lines. In mouse tumorigenesis assays using Met-addicted carcinoma cells, intratumor administration of DN-30 Fab or systemic delivery of a chemically stabilized form of the same molecule results in reduction of Met phosphorylation and inhibition of tumor growth. These data provide proof of concept that monovalency unleashes the full therapeutic potential of the DN-30 antibody and point at DN-30 Fab as a promising tool for Met-targeted therapy.

  9. Effect of water coordination on competition between π and non-π cation binding sites in aromatic amino acids: L-phenylalanine, L-tyrosine, and L-tryptophan Li+, Na +, and K+ complexes.

    Science.gov (United States)

    Remko, Milan; Šoralová, Stanislava

    2012-04-01

    Quantum chemistry methods have been applied to charged complexes of the alkali metals Li(+), Na(+), and K(+) with the aromatic amino acids (AAAs) phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp). The geometries of 72 different complexes (Phe·M, Tyr·M, Trp·M, M is Li(+), Na(+), or K(+)) were completely optimized at the B3LYP/6-311+G(d,p) level of density functional theory. The solvent effect on the geometry and stability of individual complexes was studied by making use of a microsolvation model. The interaction enthalpies, entropies, and Gibbs energies of nine different complexes of the systems Phe·M, Tyr·M, and Trp·M (M is Li(+), Na(+), or K(+)) were also determined at the B3LYP density functional level of theory. The calculated Gibbs binding energies of the M(+)-AAA complexes follow the order Phe < Tyr < Trp for all three metal cations studied. Among the three AAAs studied, the indole ring of Trp is the best π donor for alkali metal cations. Our calculations demonstrated the existence of strong cation-π interactions between the alkali metals and the aromatic side chains of the three AAAs. These AAAs comprise about 8% of all known protein sequences. Thus, besides the potential for hydrogen-bond interaction, aromatic residues of Phe, Tyr, and Trp show great potential for π-donor interactions. The existence of cation-π interaction in proteins has also been demonstrated experimentally. However, more complex experimental studies of metal cation-π interaction in diverse biological systems will no doubt lead to more exact validation of these investigations.

  10. Effects of Hofmeister salt series on gluten network formation: Part I. Cation series.

    Science.gov (United States)

    Tuhumury, H C D; Small, D M; Day, L

    2016-12-01

    Different cationic salts were used to investigate the effects of the Hofmeister salt series on gluten network formation. The effects of cationic salts on wheat flour dough mixing properties, the rheological and the chemical properties of the gluten extracted from the dough with different respective salts, were investigated. The specific influence of different cationic salts on the gluten structure formation during dough mixing, compared to the sodium ion, were determined. The effects of different cations on dough and gluten of different flours mostly followed the Hofmeister series (NH4(+), K(+), Na(+), Mg(2+) and Ca(2+)). The impacts of cations on gluten structure and dough rheology at levels tested were relatively small. Therefore, the replacement of sodium from a technological standpoint is possible, particularly by monovalent cations such as NH4(+), or K(+). However the levels of replacement need to take into account sensory attributes of the cationic salts.

  11. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    : DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6...

  12. Binding of beta-scorpion toxin: a physicochemical study.

    Science.gov (United States)

    Jover, E; Bablito, J; Couraud, F

    1984-03-13

    The binding to rat brain synaptosomes of a beta-scorpion toxin, i.e., toxin II of Centruroides suffusus suffusus (Css II), was studied as a function of pH, temperature, and concentration of some monovalent and divalent cations. At 10 degrees C and pH 6.0, the specific binding of 125I-labeled Css II corresponds to a single class of noninteracting high-affinity binding sites (KD = 0.18 nM) with a capacity (4.2 pmol/mg of protein) that is almost identical with that generally accepted for saxitoxin. The equilibrium dissociation constant of beta-scorpion toxin is pH independent, but the maximum binding capacity is reduced with increasing pH. Li+, guanidinium, Ca2+, Mg2+, and Mn2+ modified the apparent KD of the 125I-labeled Css II toxin. The equilibrium dissociation constant varies markedly with the temperature. The van't Hoff plot of the data is curvilinear, corresponding to a standard free-energy change associated with an entropy-driven process. The association rate constant also varies considerably with the temperature whereas the Arrhenius plot is linear between 1 and 30 degrees C. The energy of activation determined from these data is 17.6 kcal/mol. These results support the hypothesis that a cluster of nonpolar amino acid residues present on one face of the molecule is involved in the toxin-receptor interaction.

  13. Sequestration of Alkyltin(IV Compounds in Aqueous Solution: Formation, Stability, and Empirical Relationships for the Binding of Dimethyltin(IV Cation by N- and O-Donor Ligands

    Directory of Open Access Journals (Sweden)

    Agatino Casale

    2009-01-01

    Full Text Available The sequestering ability of polyamines and aminoacids of biological and environmental relevance (namely, ethylenediamine, putrescine, spermine, a polyallylamine, a branched polyethyleneimine, aspartate, glycinate, lysinate toward dimethyltin(IV cation was evaluated. The stability of various dimethyltin(IV / ligand species was determined in NaClaq at t=25∘C and at different ionic strengths (0.1≤I/mol L-1≤1.0, and the dependence of stability constants on this parameter was modeled by an Extended Debye-Hückel equation and by Specific ion Interaction Theory (SIT approach. At I=0.1 mol L−1, for the ML species we have log K=10.8, 14.2, 12.0, 14.7, 11.9, 7.7, 13.7, and 8.0 for ethylenediamine, putrescine, polyallylamine, spermine, polyethyleneimine, glycinate, lysinate, and aspartate, respectively. The sequestering ability toward dimethyltin(IV cation was defined by calculating the parameter pL50 (the total ligand concentration, as−log CL, able to bind 50% of metal cation, able to give an objective representation of this ability. Equations were formulated to model the dependence of pL50 on different variables, such as ionic strength and pH, and other empirical predictive relationships were also found.

  14. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  15. Metal Cations in G-Quadruplex Folding and Stability

    Science.gov (United States)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  16. Metal Cations in G-Quadruplex Folding and Stability

    Directory of Open Access Journals (Sweden)

    Debmalya Bhattacharyya

    2016-09-01

    Full Text Available This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  17. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement.

    Directory of Open Access Journals (Sweden)

    Melissa A Edeling

    2014-04-01

    Full Text Available We recently described our most potently neutralizing monoclonal antibody, E106, which protected against lethal Dengue virus type 1 (DENV-1 infection in mice. To further understand its functional properties, we determined the crystal structure of E106 Fab in complex with domain III (DIII of DENV-1 envelope (E protein to 2.45 Å resolution. Analysis of the complex revealed a small antibody-antigen interface with the epitope on DIII composed of nine residues along the lateral ridge and A-strand regions. Despite strong virus neutralizing activity of E106 IgG at picomolar concentrations, E106 Fab exhibited a ∼20,000-fold decrease in virus neutralization and bound isolated DIII, E, or viral particles with only a micromolar monovalent affinity. In comparison, E106 IgG bound DENV-1 virions with nanomolar avidity. The E106 epitope appears readily accessible on virions, as neutralization was largely temperature-independent. Collectively, our data suggest that E106 neutralizes DENV-1 infection through bivalent engagement of adjacent DIII subunits on a single virion. The isolation of anti-flavivirus antibodies that require bivalent binding to inhibit infection efficiently may be a rare event due to the unique icosahedral arrangement of envelope proteins on the virion surface.

  18. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    Energy Technology Data Exchange (ETDEWEB)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of); Choe, MuHyeon, E-mail: choemh@korea.ac.kr [College of Life Sciences and Graduate School of Biotechnology, Korea University, 5-ga Anam-dong, Sungbuk-gu, Seoul 136-701 (Korea, Republic of)

    2009-04-24

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G{sub 4}S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38]{sub 2}) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  19. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    Energy Technology Data Exchange (ETDEWEB)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.; Vazquez-Laslop, N.; Neyfakh, A.A.; Brennan, R.G.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets, that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.

  20. MD and NMR analyses of choline and TMA binding to duplex DNA: on the origins of aberrant sequence-dependent stability by alkyl cations in aqueous and water-free solvents.

    Science.gov (United States)

    Portella, Guillem; Germann, Markus W; Hud, Nicholas V; Orozco, Modesto

    2014-02-26

    It has been known for decades that alkylammonium ions, such as tetramethyl ammonium (TMA), alter the usual correlation between DNA GC-content and duplex stability. In some cases it is even possible for an AT-rich duplex to be more stable than a GC-rich duplex of the same length. There has been much speculation regarding the origin of this aberration in sequence-dependent DNA duplex stability, but no clear resolution. Using a combination of molecular dynamics simulations and NMR spectroscopy we demonstrate that choline (2-hydroxy-N,N,N-trimethylethanaminium) and TMA are preferentially localized in the minor groove of DNA duplexes at A·T base pairs and these same ions show less pronounced localization in the major groove compared to what has been demonstrated for alkali and alkali earth metal ions. Furthermore, free energy calculations show that single-stranded GC-rich sequences exhibit more favorable solvation by choline than single-stranded AT-rich sequences. The sequence-specific nature of choline and TMA binding provides a rationale for the enhanced stability of AT-rich sequences when alkyl-ammonium ions are used as the counterions of DNA. Our combined theoretical and experimental study provides one of the most detailed pictures to date of cations localized along DNA in the solution state, and provides insights that go beyond understanding alkyl-ammonium ion binding to DNA. In particular, because choline and TMA bind to DNA in a manner that is found to be distinct from that previously reported for Na(+), K(+), Mg(2+), and Ca(2+), our results reveal the important but underappreciated role that most other cations play in sequence-specific duplex stability.

  1. Removal of cations using ion-binding terpolymer involving 2-amino-6-nitro-benzothiazole and thiosemicarbazide with formaldehyde by batch equilibrium technique

    Energy Technology Data Exchange (ETDEWEB)

    Ahamed, Mohamed A. Riswan [Department of Chemistry, Oxford Engineering College, Tiruchirappalli 620 009, Tamil Nadu (India); Jeyakumar, Duraisamy [Functional Materials Division, Central Electrochemical Research Institute, Karaikudi 630 006, Tamil Nadu (India); Burkanudeen, Abdul R., E-mail: a_deen@rediffmail.com [PG and Research Department of Chemistry, Jamal Mohamed College, Tiruchirappalli 620 020, Tamil Nadu (India)

    2013-03-15

    Graphical abstract: Effect of (a) NaCl, (b) NaNO{sub 3}, (c) NaClO{sub 4} and (d) Na{sub 2}SO{sub 4} electrolytes on metal ion uptake. Display Omitted Highlights: ► A novel [(2-amino-6-nitro-benzothiazole)–thiosemicarbazide–formaldehyde] terpolymer has been synthesized. ► SEM images show high porosity in the surface of the resin evidences the effective adsorption of various metal ions. ► BTF terpolymer is a well recyclable cation-exchange resin for industrial waste water treatment. -- Abstract: 2-Amino-6-nitro-benzothiazole and thiosemicarbazide with formaldehyde (BTF) terpolymer was synthesized by the condensation polymerization technique. The elemental analysis and physico-chemical parameters of the terpolymer were measured. This chelation terpolymer was characterized by infrared, electronic and nuclear magnetic resonance ({sup 1}H and {sup 13}C NMR) spectral studies. The molecular weight of the terpolymer was determined by gel permeation chromatography (GPC). Surface analysis of the terpolymer was analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) method. The thermal stability of the terpolymer was analyzed by thermogravimetric analysis (TGA). The cation-exchange property of the terpolymer was determined by batch equilibrium method with the effect of pH, contact time and electrolytes. The reusability of the resin was also studied to estimate the effectiveness of the terpolymer resin.

  2. Competitive Effects of 2+ and 3+ Cations on DNA Compaction

    CERN Document Server

    Tongu, C; Yoshikawa, Y; Zinchenko, A A; Chen, N; Yoshikawa, K

    2016-01-01

    By using single-DNA observation with fluorescence microscopy, we observed the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA with 166 kbp). It was found that divalent cations, such as Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. These experimental observations are inconsistent with the well-established Debye-Huckel scheme regarding the shielding effect of counter ions, which is given as the additivity of contributions of cations with different valences. We interpreted the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counter ions before and after the folding transition of DNA. For the compaction with SPD(3+), we considered the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly-charged polyelectrolyte, double-st...

  3. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH3NH3PbI3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb(2+)-need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb(2+) ions into one monovalent M(+) and one trivalent M(3+) ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  4. Removal of cations using ion-binding terpolymer involving 2-amino-6-nitro-benzothiazole and thiosemicarbazide with formaldehyde by batch equilibrium technique.

    Science.gov (United States)

    Ahamed, Mohamed A Riswan; Jeyakumar, Duraisamy; Burkanudeen, Abdul R

    2013-03-15

    2-Amino-6-nitro-benzothiazole and thiosemicarbazide with formaldehyde (BTF) terpolymer was synthesized by the condensation polymerization technique. The elemental analysis and physico-chemical parameters of the terpolymer were measured. This chelation terpolymer was characterized by infrared, electronic and nuclear magnetic resonance ((1)H &(13)C NMR) spectral studies. The molecular weight of the terpolymer was determined by gel permeation chromatography (GPC). Surface analysis of the terpolymer was analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) method. The thermal stability of the terpolymer was analyzed by thermogravimetric analysis (TGA). The cation-exchange property of the terpolymer was determined by batch equilibrium method with the effect of pH, contact time and electrolytes. The reusability of the resin was also studied to estimate the effectiveness of the terpolymer resin.

  5. SO2-binding properties of cationic η6,η1-NCN-pincer arene ruthenium platinum complexes: spectroscopic and theoretical studies

    NARCIS (Netherlands)

    Bonnet, S.A.; van Lenthe, J.H.; van Dam, H.J.J.; van Koten, G.; Klein Gebbink, R.J.M.

    2011-01-01

    The SO2-binding properties of a series of h6,h1-NCN-pincer ruthenium platinum complexes (NCN = 2,6-bis[(dimethylamino)methyl]phenyl anion) have been studied by both UV-visible spectroscopy and theoretical calculations. When an electron-withdrawing [Ru(C5R5)]+ fragment (R = H or Me) is h6-coordinated

  6. The cationic peptide LL-37 binds Mac-1 (CD11b/CD18) with a low dissociation rate and promotes phagocytosis.

    Science.gov (United States)

    Zhang, Xianwei; Bajic, Goran; Andersen, Gregers R; Christiansen, Stig Hill; Vorup-Jensen, Thomas

    2016-05-01

    As a broad-spectrum anti-microbial peptide, LL-37 plays an important role in the innate immune system. A series of previous reports implicates LL-37 as an activator of various cell surface receptor-mediated functions, including chemotaxis in integrin CD11b/CD18 (Mac-1)-expressing cells. However, evidence is scarce concerning the direct binding of LL-37 to these receptors and investigations on the associated binding kinetics is lacking. Mac-1, a member of the β2 integrin family, is mainly expressed in myeloid leukocytes. Its critical functions include phagocytosis of complement-opsonized pathogens. Here, we report on interactions of LL-37 and its fragment FK-13 with the ligand-binding domain of Mac-1, the α-chain I domain. LL-37 bound the I-domain with an affinity comparable to the complement fragment C3d, one of the strongest known ligands for Mac-1. In cell adhesion assays both LL-37 and FK-13 supported binding by Mac-1 expressing cells, however, with LL-37-coupled surfaces supporting stronger cell adhesion than FK-13. Likewise, in phagocytosis assays with primary human monocytes both LL-37 and FK-13 enhanced uptake of particles coupled with these ligands but with a tendency towards a stronger uptake by LL-37.

  7. SO2-binding properties of cationic η6,η1-NCN-pincer arene ruthenium platinum complexes: spectroscopic and theoretical studies

    NARCIS (Netherlands)

    Bonnet, S.A.; van Lenthe, J.H.; van Dam, H.J.J.; van Koten, G.; Klein Gebbink, R.J.M.

    2011-01-01

    The SO2-binding properties of a series of h6,h1-NCN-pincer ruthenium platinum complexes (NCN = 2,6-bis[(dimethylamino)methyl]phenyl anion) have been studied by both UV-visible spectroscopy and theoretical calculations. When an electron-withdrawing [Ru(C5R5)]+ fragment (R = H or Me) is h6-coordinated

  8. Binding of cationic peptides (KX)4K to DPPG bilayers. Increasing the hydrophobicity of the uncharged amino acid X drives formation of membrane bound β-sheets: A DSC and FT-IR study.

    Science.gov (United States)

    Hädicke, André; Blume, Alfred

    2016-06-01

    The binding of cationic peptides of the sequence (KX)4K to lipid vesicles of negatively charged dipalmitoyl-phosphatidylglycerol (DPPG) was investigated by differential scanning calorimetry (DSC) and temperature dependent Fourier-transformed infrared (FT-IR) spectroscopy. The hydrophobicity of the uncharged amino acid X was changed from G (glycine) over A (alanine), Abu (α-aminobutyric acid), V (valine) to L (leucine). The binding of the peptides caused an increase of the phase transition temperature (Tm) of DPPG by up to 20°C. The shift depended on the charge ratio and on the hydrophobicity of the amino acid X. Unexpectedly, the upward shift of Tm increased with increasing hydrophobicity of X. FT-IR spectroscopy showed a shift of the CH2 stretching vibrations of DPPG to lower frequency, particularly for bilayers in the liquid-crystalline phase, indicating an ordering of the hydrocarbon chains when the peptides were bound. Changes in the lipid C=O vibrational band indicated a dehydration of the lipid headgroup region after peptide binding. (KG)4K was bound in an unordered structure at all temperatures. All other peptides formed intermolecular antiparallel β-sheets, when bound to gel phase DPPG. However, for (KA)4K and (KAbu)4K, the β-sheets converted into an unordered structure above Tm. In contrast, the β-sheet structures of (KV)4K and (KL)4K remained stable even at 80°C when bound to the liquid-crystalline phase of DPPG. Strong aggregation of DPPG vesicles occurred after peptide binding. For the aggregates, we suggest a structure, where aggregated single β-sheets are sandwiched between opposing DPPG bilayers with a dehydrated interfacial region.

  9. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding

    Directory of Open Access Journals (Sweden)

    Wolfgang Hüttel

    2014-02-01

    Full Text Available Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin. Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.

  10. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding

    Science.gov (United States)

    Spencer, Jonathan B; Leadlay, Peter F

    2014-01-01

    Summary Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation. PMID:24605157

  11. Neutralizing capacity of a new monovalent anti-Bothrops atrox antivenom: comparison with two commercial antivenoms

    Directory of Open Access Journals (Sweden)

    R. Otero

    1997-03-01

    Full Text Available Three horse-derived antivenoms were tested for their ability to neutralize lethal, hemorrhagic, edema-forming, defibrinating and myotoxic activities induced by the venom of Bothrops atrox from Antioquia and Chocó (Colombia. The following antivenoms were used: a polyvalent (crotaline antivenom produced by Instituto Clodomiro Picado (Costa Rica, b monovalent antibothropic antivenom produced by Instituto Nacional de Salud-INS (Bogotá, and c a new monovalent anti-B. atrox antivenom produced with the venom of B. atrox from Antioquia and Chocó. The three antivenoms neutralized all toxic activities tested albeit with different potencies. The new monovalent anti-B. atrox antivenom showed the highest neutralizing ability against edema-forming and defibrinating effects of B. atrox venom (41 ± 2 and 100 ± 32 µl antivenom/mg venom, respectively, suggesting that it should be useful in the treatment of B. atrox envenomation in Antioquia and Chocó

  12. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions

    Science.gov (United States)

    Shi, Ya-Zhou; Jin, Lei; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electrostatic potential and including a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. The model presented here can predict 3D structures of RNA hairpins with bulges/internal loops (RNA hairpins with bulge loops of different lengths at several divalent/monovalent ion conditions. In addition, the model successfully predicts the stability of RNA hairpins with various loops/stems in divalent/monovalent ion solutions. PMID:26682822

  13. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms.

    Science.gov (United States)

    Noskov, Sergei Y; Roux, Benoît

    2008-03-28

    The x-ray structure of LeuT, a bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion binding sites, NA1 and NA2, which are highly selective for Na(+). Extensive all-atom free-energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na(+) over K(+) or Li(+), the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In NA1, selectivity for Na(+) over K(+) arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In NA2, which comprises only neutral ligands, selectivity for Na(+) is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the polypeptide chain surrounding the ion according to a "snug-fit" mechanism.

  14. Extraction mechanism of monovalent ion-pairs by polyurethane foams.

    Science.gov (United States)

    Fong, P; Chow, A

    1992-07-01

    The extractability sequence of K(+) approximately Rb(+) > Cs(+) > Na(+) > Li(+) for the extraction with polyether foam suggests that the cation chelation mechanism might be operative. However, the same order was obtained for the extraction with 100% polypropylene oxide polyether foam which does not normally adopt a helical structure to form oxygen-rich cavities as easily or as effectively as polyethylene oxide to accommodate alkali metal ions. This result indicates that a hole-size/cation-diameter relationship may not be required for the high extraction of K(+). The extraction of alkali metal DPAs and hydroxides from methanol demonstrates the importance of the solvent effect. It indicates that the water-structure enforced ion-pairing (WSEIP) is the driving force for extraction of the ion-pairs. The extraction mechanism for ionic species can be described as an ion-pair extraction process. The overall effect of ion-pair formation in water and interaction of the extracted ions with foam appears to determine the extractability of the ions of the extractable ion-pair.

  15. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.

    Science.gov (United States)

    Vácha, Robert; Jurkiewicz, Piotr; Petrov, Michal; Berkowitz, Max L; Böckmann, Rainer A; Barucha-Kraszewska, Justyna; Hof, Martin; Jungwirth, Pavel

    2010-07-29

    Interactions of different anions with phospholipid membranes in aqueous salt solutions were investigated by molecular dynamics simulations and fluorescence solvent relaxation measurements. Both approaches indicate that the anion-membrane interaction increases with the size and softness of the anion. Calculations show that iodide exhibits a genuine affinity for the membrane, which is due to its pairing with the choline group and its propensity for the nonpolar region of the acyl chains, the latter being enhanced in polarizable calculations showing that the iodide number density profile is expanded toward the glycerol level. Solvent relaxation measurements using Laurdan confirm the influence of large soft ions on the membrane organization at the glycerol level. In contrast, chloride exhibits a peak at the membrane surface only in the presence of a surface-attracted cation, such as sodium but not potassium, suggesting that this behavior is merely a counterion effect.

  16. Non-covalent ligand conjugation to biotinylated DNA nanoparticles using TAT peptide genetically fused to monovalent streptavidin.

    Science.gov (United States)

    Sun, Wenchao; Fletcher, David; van Heeckeren, Rolf Christiaan; Davis, Pamela B

    2012-09-01

    DNA nanoparticles (DNA NPs), which self-assemble from DNA plasmids and poly-L-lysine (pLL)-polyethylene glycol (PEG) block copolymers, transfect several cell types in vitro and in vivo with minimal toxicity and immune response. To further enhance the gene transfer efficiency of DNA NP and control its tropism, we established a strategy to efficiently attach peptide ligands to DNA NPs. The non-covalent biotin-streptavidin (SA) interaction was used for ligand conjugation to overcome problems associated with covalent conjugation methods. A fusion protein of SA with the HIV-1 TAT peptide was cloned, expressed, purified and attached to biotinylated DNA NPs. A modified SA system with tetrameric structure but monovalent biotin binding capacity was adopted and shown to reduce the aggregation of biotinylated DNA NPs compared to neutravidin. Compared to unmodified DNA NPs, TAT modified DNA NPs significantly enhanced in vitro gene transfer, particularly at low DNA concentrations. Studies of cellular uptake and cellular distribution of the DNA NPs indicated that attaching TAT enhanced binding of DNA NPs to cell surface but not internalization at high DNA concentrations. In vivo studies showed that TAT modified DNA NPs mediated equal level of gene transfer to the mouse airways via the luminal route compared to unmodified DNA NPs.

  17. Glycosylated Platinum(IV) Complexes as Substrates for Glucose Transporters (GLUTs) and Organic Cation Transporters (OCTs) Exhibited Cancer Targeting and Human Serum Albumin Binding Properties for Drug Delivery.

    Science.gov (United States)

    Ma, Jing; Wang, Qingpeng; Huang, Zhonglv; Yang, Xiande; Nie, Quandeng; Hao, Wenpei; Wang, Peng George; Wang, Xin

    2017-07-13

    Glycosylated platinum(IV) complexes were synthesized as substrates for GLUTs and OCTs for the first time, and the cytotoxicity and detailed mechanism were determined in vitro and in vivo. Galactoside Pt(IV), glucoside Pt(IV), and mannoside Pt(IV) were highly cytotoxic and showed specific cancer-targeting properties in vitro and in vivo. Glycosylated platinum(IV) complexes 5, 6, 7, and 8 (IC50 0.24-3.97 μM) had better antitumor activity of nearly 166-fold higher than the positive controls cisplatin (1a), oxaliplatin (3a), and satraplatin (5a). The presence of a hexadecanoic chain allowed binding with human serum albumin (HSA) for drug delivery, which not only enhanced the stability of the inert platinum(IV) prodrugs but also decreased their reduction by reductants present in human whole blood. Their preferential accumulation in cancer cells compared to noncancerous cells (293T and 3T3 cells) suggested that they were potentially safe for clinical therapeutic use.

  18. High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity

    Science.gov (United States)

    Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Novellino, Ettore; Mazzarella, Lelio; Sica, Filomena

    2012-01-01

    The G-quadruplex architecture is a peculiar structure adopted by guanine-rich oligonucleotidic sequences, and, in particular, by several aptamers, including the thrombin-binding aptamer (TBA) that has the highest inhibitory activity against human α-thrombin. A crucial role in determining structure, stability and biological properties of G-quadruplexes is played by ions. In the case of TBA, K+ ions cause an enhancement of the aptamer clotting inhibitory activity. A detailed picture of the interactions of TBA with the protein and with the ions is still lacking, despite the importance of this aptamer in biomedical field for detection and inhibition of α-thrombin. Here, we fill this gap by presenting a high-resolution crystallographic structural characterization of the thrombin–TBA complex formed in the presence of Na+ or K+ and a circular dichroism study of the structural stability of the aptamer both free and complexed with α-thrombin, in the presence of the two ionic species. The results indicate that the different effects exerted by Na+ and K+ on the inhibitory activity of TBA are related to a subtle perturbation of a few key interactions at the protein–aptamer interface. The present data, in combination with those previously obtained on the complex between α-thrombin and a modified aptamer, may allow the design of new TBA variants with a pharmacological performance enhancement. PMID:22669903

  19. SELECTION OF NEW EPITOPES FROM MONOVALENT DISPLAYED PHAGE OCTAPEPTIDE LIBRARY

    Institute of Scientific and Technical Information of China (English)

    李全喜; 王琰; 李竞; 王雅明; 徐建军; 王力民; 董志伟

    1998-01-01

    A library of 2×l07 random oetspaptides was constructed by use of phegemid-based monovaient phage display system. The randomly synthesized degenerated oilgodeoxyribonucleotides (oligos) were fused to the truncated gⅢ (p210-p408). Sequeraze analysis of 11 randomly chosen clones suggested that the degenerated inserts and its deduced amino acid (an) sequences are randomly distributed. The library was used to select binding paptides to the morroeloncl antlhody (mAb) 9E10, which recognizes a continuous decapaptide epitope of denatured human c-myc protein. After four to five rounds of panning, most of the eluted clones could bind to 9E10. Sequerlce analysis of the selected positive clones indlcated that the binding sequences could fall into two chsses, one class (clone 1) shares a consensus motif, ISE x x L, with c-mire decapeprider and the sequences of the other class are entirely different. The binding of both classes to 9E10 could be specifically lnhlhited by froe c-myc deeapeptide. The immunogenlcitF cff the phage peptide was further investigsted h5, construction of multivalent displayed phage peptides and immunization of animals with or without adjuvant. ELISA and competitive ELISA showed that anti-serum from both mice and rabbit immunized with either done could bind to the original antigen, c-myc decapeptide. These results denote that in spite of the dissimilarity of the selected psptides with c-myc decapeptide, they are capable of inducing similar immune respones in vivo, thus actually mimicking the antigen epitope.

  20. Importance of Residues Outside the Cation Binding Pocket for Na+ and K+ Binding to the Na+/K+-ATPase

    DEFF Research Database (Denmark)

    Christiansen, Line; Toustrup-Jensen, Mads Schak; Einholm, Anja P.;

    Mutagenesis studies have identified several oxygen-containing residues in the transmembrane region which are important for the coordination of Na+ and/or K+. These were later confirmed by the high-resolution crystal structures of the Na+/K+-ATPase with bound Na+ or K+. However, more information......-established that K+ antagonizes ouabain binding, and vice versa. Furthermore, recent crystal structures have shown that ouabain binds in an extracellular cavity created by residues of transmembrane helices 4, 5, and 6 (3). This cavity, which is lined by Phe785 and Phe788, as well as Phe318, Arg882, and Asp886, may...... aromatic ring, while Arg882 and Asp886 were mutated to leucine and alanine, respectively, to investigate the importance of charge and size of the residues. All three mutants could sustain growth and proliferation under ouabain pressure. However, the mutants exhibited a reduced turnover number. All three...

  1. Cationic lipids and cationic ligands induce DNA helix denaturation: detection of single stranded regions by KMnO4 probing.

    Science.gov (United States)

    Prasad, T K; Gopal, Vijaya; Rao, N Madhusudhana

    2003-09-25

    Cationic lipids and cationic polymers are widely used in gene delivery. Using 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid, we have investigated the stability of the DNA in DOTAP:DNA complexes by probing with potassium permanganate (KMnO4). Interestingly, thymidines followed by a purine showed higher susceptibility to cationic ligand-mediated melting. Similar studies performed with other water-soluble cationic ligands such as polylysine, protamine sulfate and polyethyleneimine also demonstrated melting of the DNA but with variations. Small cations such as spermine and spermidine and a cationic detergent, cetyl trimethylammonium bromide, also rendered the DNA susceptible to modification by KMnO4. The data presented here provide direct proof for melting of DNA upon interaction with cationic lipids. Structural changes subsequent to binding of cationic lipids/ligands to DNA may lead to instability and formation of DNA bubbles in double-stranded DNA.

  2. Monovalent RIVM meningococcal B OMP vesicle F91 vaccines in toddlers

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Labadie J; Berbers GAM; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW; Sophia Kinderziekenhuis /; LVO

    2001-01-01

    This report gives the results of a randomised phase-II clinical study into the safety and immunogenicity of a monovalent MenB OMV vaccine expressing P1.7h,4 PorA (MonoMen) in toddlers. Safety and immunogenicity are compared for two types of vaccine that are differently adjuvated (either aluminium ph

  3. Polarizing a hydrophobic cavity for the efficient binding of organic guests: the case of calix[6]tren, a highly efficient and versatile receptor for neutral or cationic species.

    Science.gov (United States)

    Darbost, Ulrich; Rager, Marie-Noëlle; Petit, Samuel; Jabin, Ivan; Reinaud, Olivia

    2005-06-15

    The host-guest properties of calix[6]tren 1 have been evaluated. The receptor is based on a calix[6]arene that is covalently capped at the narrow rim by a tren unit. As a result, the system presents a concave hydrophobic cavity with, at its bottom, a grid-like nitrogenous core. Despite its well-defined cavity and opening to the outside at the large rim, 1 did not behave as a good receptor for neutral molecules in chloroform. However, it exhibited efficient endo-complexation of ammonium guests. By contrast, the per-protonated host, 1.4H(+), behaved as a remarkable receptor for small organic molecules. The complexation is driven by a strong charge-dipole interaction and hydrogen bonds between the polar guest and the tetracationic cap of the calixarene. Finally, coordination of Zn(2+) to the tren core led to the asymmetrization of calixarene cavity and to the strong but selective endo-binding of neutral ligands. This study emphasizes the efficiency of a receptor presenting a concave hydrophobic cavity that is polarized at its bottom. The resulting combination of charge-dipole, hydrogen bonding, CH-pi, and van der Waals interactions highly stabilizes the supramolecular architectures. Also, importantly, the tren cap allows the tuning of the polarization, offering either a basic (1), a highly charged and acidic (1.4H(+)), or a coordination (1.Zn(2+)) site. As a result, the system proved to be highly versatile, tunable, and interconvertible in solution by simple addition of protons, bases, or metal ions.

  4. Evaluation of energy spectral information in nuclear imaging and investigation of protein binding of cationic radionuclides by lactoferrin. Comprehensive progress report, October 1, 1977-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, P. B.

    1980-06-10

    Construction of an Anger camera-computer system which allows collection of both the position and energy signals from events detected by the scintillation camera has been completed. The system allows correction of energy response non-uniformity of the detector and facilitates research related to effects of energy discrimination in radionuclide scintigraphy. The system consists of electronic hardware to transmit and digitize the energy signal, software to record and process that signal in conjunction with spatial positioning signals, and additional hardware for recording the processed images so that they can be evaluated by observers. Preliminary results indicate that the system is useful in evaluating clinical images. Assymetric (eccentric) energy windows do improve image quality and are of value in improving detection of lesions on liver scintigraphs. The mechanisms by which Ga-67 is taken up in infection and tumor has been elucidated, and the uptake of radiogallium in microorganisms as a function of its interaction with siderophores was also studied. The primary function of these low molecular weight compounds is to trap ferric ion. However, gallium may be substituted for ferric ion and becomes trapped within the microorganism. The uptake of radiogallium by neutrophils and the role that lactoferrin plays in both intracellular localization of radiogallium and subsequent deposition of the radionuclide at sites of infection were also studied. Investigation of ferric ion analogs reveals definate differences in the affinity of these metals for binding molecules which helps explain their biologic activity. While ferric ion has the strongest affinity for such molecules, gallium has very high affinity for siderophores, moderate affinity for lactoferrin, and lower affinity for transferrin. The relative affinity of indium for these molecules is in approximately the reverse order.

  5. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations.

    Science.gov (United States)

    Kutzner, Susann; Schaffer, Mario; Börnick, Hilmar; Licha, Tobias; Worch, Eckhard

    2014-05-01

    Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.

  6. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    Science.gov (United States)

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  7. Lipopolysaccharide Neutralization by Cationic-Amphiphilic Polymers through Pseudoaggregate Formation.

    Science.gov (United States)

    Uppu, Divakara S S M; Haldar, Jayanta

    2016-03-14

    Synthetic polymers incorporating the cationic charge and hydrophobicity to mimic the function of antimicrobial peptides (AMPs) have been developed. These cationic-amphiphilic polymers bind to bacterial membranes that generally contain negatively charged phospholipids and cause membrane disintegration resulting in cell death; however, cationic-amphiphilic antibacterial polymers with endotoxin neutralization properties, to the best of our knowledge, have not been reported. Bacterial endotoxins such as lipopolysaccharide (LPS) cause sepsis that is responsible for a great amount of mortality worldwide. These cationic-amphiphilic polymers can also bind to negatively charged and hydrophobic LPS and cause detoxification. Hence, we envisaged that cationic-amphiphilic polymers can have both antibacterial as well as LPS binding properties. Here we report synthetic amphiphilic polymers with both antibacterial as well as endotoxin neutralizing properties. Levels of proinflammatory cytokines in human monocytes caused by LPS stimulation were inhibited by >80% when coincubated with these polymers. These reductions were found to be dependent on concentration and, more importantly, on the side-chain chemical structure due to variations in the hydrophobicity profiles of these polymers. These cationic-amphiphilic polymers bind and cause LPS neutralization and detoxification. Investigations of polymer interaction with LPS using fluorescence spectroscopy and dynamic light scattering (DLS) showed that these polymers bind but neither dissociate nor promote LPS aggregation. We show that polymer binding to LPS leads to sort of a pseudoaggregate formation resulting in LPS neutralization/detoxification. These findings provide an unusual mechanism of LPS neutralization using novel synthetic cationic-amphiphilic polymers.

  8. Regulation of activity of the yeast TATA-binding protein through intra-molecular interactions

    Indian Academy of Sciences (India)

    Perumal Vanathi; Anurag Kumar Mishra; Purnima Bhargava

    2003-06-01

    Dimerization is proposed to be a regulatory mechanism for TATA-binding protein (TBP) activity both in vitro and in vivo. The reversible dimer-monomer transition of TBP is influenced by the buffer conditions in vitro. Using in vitro chemical cross-linking, we found yeast TBP (yTBP) to be largely monomeric in the presence of the divalent cation Mg2+, even at high salt concentrations. Apparent molecular mass of yTBP at high salt with Mg2+, run through a gel filtration column, was close to that of monomeric yTBP. Lowering the monovalent ionic concentration in the absence of Mg2+, resulted in dimerization of TBP. Effect of Mg2+ was seen at two different levels: at higher TBP concentrations, it suppressed the TBP dimerization and at lower TBP levels, it helped keep TBP monomers in active conformation (competent for binding TATA box), resulting in enhanced TBP-TATA complex formation in the presence of increasing Mg2+. At both the levels, activity of the full-length TBP in the presence of Mg2+ was like that reported for the truncated C-terminal domain of TBP from which the N-terminus is removed. Therefore for full-length TBP, intra-molecular interactions can regulate its activity via a similar mechanism.

  9. Assaying the binding strength of G-quadruplex ligands using single-molecule TPM experiments.

    Science.gov (United States)

    Liu, Shih-Wei; Chu, Jen-Fei; Tsai, Cheng-Ting; Fang, Hung-Chih; Chang, Ta-Chau; Li, Hung-Wen

    2013-05-15

    G-quadruplexes are stable secondary structures formed by Hoogsteen base pairing of guanine-rich single-stranded DNA sequences in the presence of monovalent cations (Na(+) or K(+)). Folded G-quadruplex (G4) structures in human telomeres have been proposed as a potential target for cancer therapy. In this study, we used single-molecule tethered particle motion (TPM) experiments to assay the binding strength of possible G4 ligands. We found that individual single-stranded DNA molecules containing the human telomeric sequence d[AGGG(TTAGGG)3] fluctuated between the folded and the unfolded states in a 10 mM Na(+) solution at 37 °C. The durations of folded and unfolded states were single-exponentially distributed, and in return the folding and unfolding rate constants were 1.68 ± 0.01 and 1.63 ± 0.03 (s(-1)), respectively. In the presence of G4 ligands, such as TMPyP4, DODCI, BMVC, and BMVPA, the unfolding rate constant decreased appreciably. In addition, combining the Cu(2+)-induced G4 unfolding and TPM assay, we showed that BMVC and TMPyP4 are better G4 stabilizers than DODCI. The capability of monitoring the fluctuation between the folded and the unfolded state of G4 DNA in real time allows the determination of both kinetic and thermodynamic parameters in a single measurement and offers a simple way to assay binding strength under various conditions.

  10. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties.

    Science.gov (United States)

    Sehaqui, Houssine; Mautner, Andreas; Perez de Larraya, Uxua; Pfenninger, Numa; Tingaut, Philippe; Zimmermann, Tanja

    2016-01-01

    Cationic cellulose nanofibers (CNF) having 3 different contents of positively charged quaternary ammonium groups have been prepared from waste pulp residues according to a water-based modification method involving first the etherification of the pulp with glycidyltrimethylammonium chloride followed by mechanical disintegration. The cationic nanofibers obtained were observed by scanning electron microscopy and the extent of the reaction was evaluated by conductometric titration, ζ-potential measurements, and thermogravimetric analyses. The cationic CNF had a maximum cationic charge content of 1.2mmolg(-1) and positive ζ-potential at various pH values. Sorption of negatively charged contaminants (fluoride, nitrate, phosphate and sulphate ions) and their selectivity onto cationic CNF have been evaluated. Maximum sorption of ∼0.6mmolg(-1) of these ions by CNF was achieved and selectivity adsorption studies showed that cationic CNF are more selective toward multivalent ions (PO4(3-) and SO4(2-)) than monovalent ions (F(-) and NO3(-)). In addition, we demonstrated that cationic CNF can be manufactured into permeable membranes capable of dynamic nitrate adsorption by utilizing a simple paper-making process.

  11. Quantitative mapping of intracellular cations in the human amniotic membrane

    Science.gov (United States)

    Moretto, Ph.; Llabador, Y.; Simonoff, M.; Razafindrabe, L.; Bara, M.; Guiet-Bara, A.

    1993-05-01

    The effect of magnesium and taurine on the permeability of cell membranes to monovalent cations has been investigated using the Bordeaux nuclear microprobe. PIXE and RBS techniques have been used to provide quantitative measurements and ion distributions in the isolated amniotic membrane. This physiological model for cellular exchanges allowed us to reveal the distribution of most elements involved in cellular pathways and the modifications under different experimental conditions of incubation in physiological fluids. The PIXE microanalysis provided an original viewpoint on these mechanisms. Following this first study, the amnion compact lamina was found to play a role which was not, up to now, taken into account in the interpretation of electrophysiological experimentations. The release of some ionic species, such as K +, from the epithelial cells, during immersion in isotonic fluids, could have been hitherto underestimated.

  12. Dilution thermodynamics of the biologically relevant cation mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kaczyński, Marek, E-mail: marek.kaczynski@pwr.wroc.pl; Borowik, Tomasz, E-mail: office@novel-id.pl; Przybyło, Magda, E-mail: magdalena.przybylo@pwr.wroc.pl; Langner, Marek, E-mail: marek.langner@pwr.wroc.pl

    2014-01-10

    Graphical abstract: - Highlights: • Dilution energetics of Ca{sup 2+} can be altered by the aqueous phase ionic composition. • Dissipated heat upon Ca{sup 2+} dilution is drastically reduced in the K{sup +} presence. • Reduction of the enthalpy change upon Ca{sup 2+} dilution is K{sup +} concentration dependent. • The cooperativity of Ca{sup 2+} hydration might be of great biological relevance providing a thermodynamic argument for the specific ionic composition of the intracellular environment. - Abstract: The ionic composition of intracellular space is rigorously controlled by a variety of processes consuming large quantities of energy. Since the energetic efficiency is an important evolutional criterion, therefore the ion fluxes within the cell should be optimized with respect to the accompanying energy consumption. In the paper we present the experimental evidence that the dilution enthalpies of the biologically relevant ions; i.e. calcium and magnesium depend on the presence of monovalent cations; i.e. sodium and potassium. The heat flow generated during the dilution of ionic mixtures was measured with the isothermal titration calorimetry. When calcium was diluted together with potassium the dilution enthalpy was drastically reduced as the function of the potassium concentration present in the solution. No such effect was observed when the potassium ions were substituted with sodium ones. When the dilution of magnesium was investigated the dependence of the dilution enthalpy on the accompanying monovalent cation was much weaker. In order to interpret experimental evidences the ionic cluster formation is postulated. The specific organization of such cluster should depend on ions charges, sizes and organization of the hydration layers.

  13. Mixed polyvalent-monovalent metal coating for carbon-graphite fibers

    Science.gov (United States)

    Harper-Tervet, J.; Tervet, F. W.; Humphrey, M. F. (Inventor)

    1982-01-01

    An improved coating of gasification catalyst for carbon-graphite fibers is provided comprising a mixture of a polyvalent metal such as calcium and a monovalent metal such as lithium. The addition of lithium provides a lighter coating and a more flexible coating when applied to a coating of a carboxyl containing resin such as polyacrylic acid since it reduces the crosslink density. Furthermore, the presence of lithium provides a glass-like substance during combustion which holds the fiber together resulting in slow, even combustion with much reduced evolution of conductive fragments. The coated fibers are utilized as fiber reinforcement for composites.

  14. Coupled-cluster calculations of properties of Boron atom as a monovalent system

    CERN Document Server

    Gharibnejad, H

    2015-01-01

    We present relativistic coupled-cluster (CC) calculations of energies, magnetic-dipole hyperfine constants, and electric-dipole transition amplitudes for low-lying states of atomic boron. The trivalent boron atom is computationally treated as a monovalent system. We explore performance of the CC method at various approximations. Our most complete treatment involves singles, doubles and the leading valence triples. The calculations are done using several approximations in the coupled-cluster (CC) method. The results are within 0.2-0.4% of the energy benchmarks. The hyperfine constants are reproduced with 1-2% accuracy.

  15. [Safety and tolerability of monovalent measles and combined measles, mumps, rubella, and varicella vaccines].

    Science.gov (United States)

    Mentzer, D; Meyer, H; Keller-Stanislawski, B

    2013-09-01

    Although effective monovalent and combined measles vaccines have been available for several decades in Germany, measles outbreaks continue to occur leading to severe cases of measles and even death. Possible reasons for the low acceptance of the measles vaccination are concerns about adverse events and serious complications following vaccination. In this report, we have summarized and assessed all adverse events reported in Germany from 2001 to 2012 after vaccination with monovalent- and combined measles-containing vaccines. A total of 1,696 suspected adverse reaction reports describing 5,297 adverse events were sent to the Paul Ehrlich Institute (PEI) between 1 January 2001 and 31 December 2012. The calculated mean reporting rate was 5.7 reports per 100,000 vaccine doses released by the PEI. Analysis of the reports indicates that measles-containing vaccines are well tolerated with a constantly low rate of adverse events reported. Compared to the high rate of serious complications following wild-type measles infection, the benefit of measles-containing vaccines clearly outweighs the anticipated risks of adverse events.

  16. Predicting 3D structure, flexibility and stability of RNA hairpins in monovalent and divalent ion solutions

    CERN Document Server

    Shi, Ya-Zhou; Wang, Feng-Hua; Zhu, Xiao-Long; Tan, Zhi-Jie

    2015-01-01

    A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we will further develop the model by improving the implicit-salt electrostatic potential and involving a sequence-dependent coaxial stacking potential to enable the model to simulate RNA 3D structure folding in divalent/monovalent ion solutions. As compared with the experimental data, the present model can predict 3D structures of RNA hairpins with bulge/internal loops (<77nt) from their sequences at the corresponding experimental ion conditions with an overall improved accuracy, and the model also makes reliable predictions for the flexibility of RNA hairpins with bulge loops of different length at extensive divalent/monovalent ion conditions. In addition, the model successfully pred...

  17. Saccharomyces cerevisiae Ski7 Is a GTP-Binding Protein Adopting the Characteristic Conformation of Active Translational GTPases.

    Science.gov (United States)

    Kowalinski, Eva; Schuller, Anthony; Green, Rachel; Conti, Elena

    2015-07-07

    Ski7 is a cofactor of the cytoplasmic exosome in budding yeast, functioning in both mRNA turnover and non-stop decay (NSD), a surveillance pathway that degrades faulty mRNAs lacking a stop codon. The C-terminal region of Ski7 (Ski7C) shares overall sequence similarity with the translational GTPase (trGTPase) Hbs1, but whether Ski7 has retained the properties of a trGTPase is unclear. Here, we report the high-resolution structures of Ski7C bound to either intact guanosine triphosphate (GTP) or guanosine diphosphate-Pi. The individual domains of Ski7C adopt the conformation characteristic of active trGTPases. Furthermore, the nucleotide-binding site of Ski7C shares similar features compared with active trGTPases, notably the presence of a characteristic monovalent cation. However, a suboptimal polar residue at the putative catalytic site and an unusual polar residue that interacts with the γ-phosphate of GTP distinguish Ski7 from other trGTPases, suggesting it might function rather as a GTP-binding protein than as a GTP-hydrolyzing enzyme.

  18. Cation-cation interaction in neptunyl(V) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krot, N.N. [Russian Academy of Sciences, Institute of Physical Chemistry (Russian Federation); Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The original manuscript was prepared by Professor N.N. Krot of Institute of Physical Chemistry, Russian Academy of Sciences, in 1997. Saeki tried to translate that into Japanese and to add some new data since 1997. The contents include the whole picture of cation-cation interactions mainly in 5-valence neptunium compounds. Firstly, characteristic structures of neptunium are summarized of the cation-cation bonding in compounds. Secondly, it is mentioned how the cation-cation bonding affects physical and chemical properties of the compounds. Then, characterization-methods for the cation-cation bonding in the compounds are discussed. Finally, the cation-cation interactions in compounds of other actinide-ions are shortly reviewed. (author)

  19. International collaboration to assess the risk of Guillain Barre Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    Dodd, Caitlin N.; Romio, Silvana A.; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M. Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S. K.; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Sanchez, Francisco Gimenez; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-01-01

    Background: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barre syndrome (GBS), which has been an

  20. In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments

    NARCIS (Netherlands)

    F. Aladin (Farah); A.W.C. Einerhand (Sandra); J. Bouma (Janneke); S. Bezemer (Sandra); P. Hermans (Pim); D. Wolvers (Danielle); K. Bellamy (Kate); L.G.J. Frenken (Leon); J. Gray (Jim); M. Iturriza-Gómara (Miren)

    2012-01-01

    textabstractRotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (refe

  1. The interactions between cationic cellulose and Gemini surfactant in aqueous solution.

    Science.gov (United States)

    Zhao, Shaojing; Cheng, Fa; Chen, Yu; Wei, Yuping

    2016-05-05

    Due to the extensive application of cationic cellulose in cosmetic, drug delivery and gene therapy, combining the improvement effect of surfactant-cellulose complexes, to investigate the properties of cellulose in aqueous solution is an important topic from both scientific and technical views. In this study, the phase behavior, solution properties and microstructure of Gemini surfactant sodium 5-nonyl-2-(4-(4-nonyl-2-sulfonatophenoxy)butoxy)phenyl sulfite (9-4-9)/cationic cellulose (JR400, the ammonium groups are directly bonded to the hydroxyethyl substituent with a degree substitution of 0.37) mixture was investigated using turbidity, fluorescence spectrophotometer and shear rheology techniques. As a control, the interaction of corresponding monovalent surfactant, sodium 2-ethoxy-5-nonylbenzenesulfonate (9-2) with JR400 in aqueous solution was also studied. Experimental results showed that 9-4-9/JR400 mixture has lower critical aggregation concentration (CAC) and critical micelle concentration (CMC) (about one order of magnitude) than 9-2/JR400 mixture. A low concentration of Gemini surfactant 9-4-9 appeared to induce an obvious micropolarity and viscosity value variation of the mixture, while these effects required a high concentration of corresponding monovalent one. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements illuminated the formation and collapse procedure of network structure of the 9-4-9/JR400 mixture, which resulted in the increase and decrease of viscosity. These results suggest that the molecular structure of the surfactant has a great effect on its interaction with cationic cellulose. Moreover, the Gemini surfactant/cationic cellulose mixture may be used as a potencial stimuli-responsive drug delivery vector which not only load hydrophilic drugs, but also deliver hydrophobic substances.

  2. Change Color Effect and Spectral Properties of Gold Nanoparticle-cationic Surfactants System

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-liang; PAN Hong-cheng; YUAN Wei-en

    2004-01-01

    The change color effect of gold nanoparticle solutions was studied by means of resonance scattering and absorption spectrometry and scan electron microscopy. The red Au nanoparticles with a size of 10 nm exhibit a resonance absorption peak and a resonance scattering peak all at 525 nm. After some inorganic electrolyte was added to a red Au nanoparticles solution, the color of the solution became blue and the absorbance at 600-700 nm was significantly increased. The ratio of the concentration of monovalent cations, at which the resonance scattering of the system at 525 nm is maximal to that of divalent cations, is in the range of 100 : 1 -100 : 1.8. It is in good agreement with the Schulze-Hardy rule of the coagulation value of electrolyte. After adding some cationic surfactants to the above solution, the color of the solution is in deep blue, with two resonance absorption peaks at 550 and 680 nm, and a greatly enhanced resonance scattering peak at 525 nm.The experiments demonstrate that the stronger the hydrophobicity of the cationic surfactant is, the stronger the change color effect of the Au nanoparticle solution promoted by cationic surfactant is. The change color effect of Au nanoparticle solution is resulted from the increased diameter of Au nanoparticles, and the changes of resonance absorption peak and resonance scattering.

  3. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  4. Binding of the radioprotective agent cysteamine with the phospholipidic membrane headgroup-interface region

    Energy Technology Data Exchange (ETDEWEB)

    Berleur, F.; Roman, V.; Jaskierowicz, D.; Fatome, M.; Leterrier, F.; Ter-Minassian-Saraga, L.; Madelmont, G.

    1985-09-01

    The interaction of the aminothiol radioprotector cysteamine (..beta..-mercaptoethylamine)(CYST) with dipalmitoylphosphatidylcholine (DPPC) artificial membranes has been studied by differential scanning calorimetry (DSC), turbidimetry and spin labeling. This hydrophilic molecule displays a biphasic, concentration-dependent binding to the phospholipidic head groups at neutral pH. In the CYST/DPPC molar ratio 1:160-1:2 (mole/mole) an increasing ordering effect is observed. At high concentrations (over 3:1 ratio), this ordering effect decreases. With the symmetric disulfide dimer cystamine, the biphasic effect is not shown and the membrane rigidity decrease is obtained only at concentration ratio higher than 1:1. The charge repartition of the cysteamine molecule has been shown to be disymmetric, +0.52 e on the NH/sub 3/ group and +0.19 e on the SH extremity, whereas the cystamine molecule is electrostatically symmetrical. These properties could be related to their membrane effects. With cysteamine, at a low concentration, an electrostatic bridging between the negatively charged phosphate groups of the polar heads induces the increase in membrane stability: the molecules behave like a divalent cation. At high concentration a displacement of the slightly charged SH extremity by the amine disrupts the bridges and induces the decrease in rigidity: the drug behaves like a monovalent cation. Due to its symmetric charge and its double length, such an effect is not observed with cystamine. This study could bring further information about the interactions between cysteamine and polyelectrolytic structures (ADN for example) and about the radioprotective properties of this drug.

  5. Comparison of Cation Adsorption by Isostructural Rutile and Cassiterite

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Wesolowski, David J [ORNL; Rosenqvist, Jorgen K [ORNL; Predota, M. [University of South Bohemia, Czech Republic; Vlcek, Lukas [ORNL; Ridley, Moira K [ORNL; Kohli, V [Oak Ridge National Laboratory (ORNL); Zhang, Zhan [Argonne National Laboratory (ANL); Fenter, Paul [Argonne National Laboratory (ANL); Cummings, Peter T [ORNL; Lvov, Serguei N. [Pennsylvania State University; Fedkin, Mark V [ORNL; Rodriguez-Santiago, V [Oak Ridge National Laboratory (ORNL); Kubicki, James D. [Pennsylvania State University; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia

    2011-01-01

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) Crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl2 in NaCl, and trace ZnCl2 in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ( bulk 11). Inner-sphere adsorption is also significant for Rb and Na on neutral surfaces, whereas Cl- binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb , Na , and especially Sr2 are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn2 are very steep but similar for both oxides, reflective of Zn2 hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner-sphere cation binding is relatively more

  6. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Science.gov (United States)

    Machesky, Michael; Wesolowski, David; Rosenqvist, Jörgen; Předota, Milan; Vlcek, Lukas; Ridley, Moira; Kohli, Vaibhav; Zhang, Zhan; Fenter, Paul; Cummings, Peter; Lvov, Serguei; Fedkin, Mark; Rodriguez-Santiago, Victor; Kubicki, James; Bandura, Andrei

    2011-04-19

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl(2) in NaCl, and trace ZnCl(2) in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite (ε(bulk) ≈ 11). Inner-sphere adsorption is also significant for Rb(+) and Na(+) on neutral surfaces, whereas Cl(-) binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb(+), Na(+), and especially Sr(2+) are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn(2+) are very steep but similar for both oxides, reflective of Zn(2+) hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH(+) on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the cassiterite (110) surface. Hence, their removal upon inner

  7. Focused fluorescent probe library for metal cations and biological anions.

    Science.gov (United States)

    Rhee, Hyun-Woo; Lee, Sang Wook; Lee, Jun-Seok; Chang, Young-Tae; Hong, Jong-In

    2013-09-09

    A focused fluorescent probe library for metal cations was developed by combining metal chelators and picolinium/quinolinium moieties as combinatorial blocks connected through a styryl group. Furthermore, metal complexes derived from metal chelators having high binding affinities for metal cations were used to construct a focused probe library for phosphorylated biomolecules. More than 250 fluorescent probes were screened for identifying an ultraselective probe for dTTP.

  8. Influence of length and flexibility of spacers on the binding affinity of divalent ligands

    Directory of Open Access Journals (Sweden)

    Susanne Liese

    2015-05-01

    Full Text Available We present a quantitative model for the binding of divalent ligand–receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.

  9. Influence of length and flexibility of spacers on the binding affinity of divalent ligands.

    Science.gov (United States)

    Liese, Susanne; Netz, Roland R

    2015-01-01

    We present a quantitative model for the binding of divalent ligand-receptor systems. We study the influence of length and flexibility of the spacers on the overall binding affinity and derive general rules for the optimal ligand design. To this end, we first compare different polymeric models and determine the probability to simultaneously bind to two neighboring receptor binding pockets. In a second step the binding affinity of divalent ligands in terms of the IC50 value is derived. We find that a divalent ligand has the potential to bind more efficiently than its monovalent counterpart only, if the monovalent dissociation constant is lower than a critical value. This critical monovalent dissociation constant depends on the ligand-spacer length and flexibility as well as on the size of the receptor. Regarding the optimal ligand-spacer length and flexibility, we find that the average spacer length should be equal or slightly smaller than the distance between the receptor binding pockets and that the end-to-end spacer length fluctuations should be in the same range as the size of a receptor binding pocket.

  10. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    Science.gov (United States)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  11. Characterization of gonadotropin binding sites in the intracellular organelles of bovine corpora lutea and comparison with plasma membrane sites.

    Science.gov (United States)

    Rao, C V; Mitra, S; Carman, F R

    1981-03-25

    The specific binding of 125I-human choriogonadotropin (hCG) to plasma membranes, nuclear membranes, lysosomes, rough endoplasmic reticulum, heavy golgi, and medium and light golgi of bovine corpora lutea was dependent on the amount of protein, 125I-hCG concentration and incubation time. The bound hormone in all the organelles was able to rebind to fresh corresponding organelles. Scatchard analysis revealed a homogenous population of gonadotropin binding sites in plasma membrane, rough endoplasmic reticulum, heavy golgi, and medium and light golgi, whose binding affinities (Kd = 8.6-11.0 X 10(-11) M) were similar but whose number of available gonadotropin binding sites varied. Scatchard analyses of nuclear membranes and lysosome binding, on the other hand, were heterogenous (Nuclear membranes, 11 and 23 X 10(-11) M lysosomes, 3.4 and 130 X 10(-11) M). The rate constants for association (5.9 to 12.1 X 10(6) M-1 S-1) and dissociation (7.4 to 9.0 X 10(-4) S-1) were similar among different subcellular organelles except for nuclear membranes and lysosomes, where rate constants for association were significantly lower. The ligand binding specificity, lower effectiveness of human luteinizing hormone as compared to hCG in competition, the optimal pH, the lack of ionic requirements for binding, and the molecular size of 125I-hCG-gonadotropin binding site complexes solubilized from various intracellular organelles were similar to those observed for plasma membranes. Numerous differences were also observed between intracellular organelles and plasma membranes as well as among intracellular organelles themselves with respect to binding losses due to exposure to low and high pH values, di- and monovalent cations, increasing preincubation temperatures, and a variety of enzymes and protein reagents. The possible reasons for these similarities as well as differences observed are discussed. The differences are viewed as an additional indication that contamination cannot solely

  12. Novel 1,3-diacylamidopropane-2-[bis-(2-dimethylaminoethane)] carbamate pH-sensitive lipids for cationic liposome-mediated transfection

    Science.gov (United States)

    Spelios, Michael G.

    A novel series of 1,3-diacylamidopropane-2-[bis(2-dimethylaminoethane)] carbamate analogs (1,3lb) were designed for cationic lipid-assisted transfection (lipofection). First, their physicochemical properties in self-assemblies with and without plasmid DNA (pDNA) were evaluated to examine the effects of hydrophobic tail length and degree of saturation on gene delivery and expression. Significant in vitro lipofection was induced at a nitrogen:phosphate ratio (N:P) of 4:1 by the dimyristoyl, dipalmitoyl, and dioleoyl analogs 1,3lb2, 1,3lb3, and 1,3lb5, respectively, without inclusion of neutral "lipofection enhancing" co-lipids in the cationic lipid formulations. Lipofection was reduced in the presence of co-lipids except for 1,3lb5 which maintained reporter gene expression levels at N:P 4:1 and yielded increased bioactivity at a lower NP of 2:1. Physicochemical characterization of the bioactive transfection agents (cytofectins) revealed: high hydration and in-plane elasticity of lipid monolayers by Langmuir film balance measurements; fluid lipid bilayers, with gel---liquid crystalline phase transitions below physiological temperature, by fluorescence anisotropy; lipid mixing with biomembrane-mimicking vesicles by fluorescence resonance energy transfer; efficient pDNA binding and compaction by ethidium bromide displacement; cationic liposome---nucleic acid complexes (lipoplexes) with large particle sizes (mean diameter ≥ 500 nm) and zeta potentials of positive values by dynamic light scattering and electrophoretic mobility, respectively. The results suggest that well hydrated and elastic cationic lipids forming fluid lamellar assemblies are extremely potent and minimally toxic cytofectins. Second, a comparison was made between 1,3lb2 and two derivatives, one an isomer with a shorter space between the myristoyl chains and the other the monovalent form, in an effort to delineate the biological effects of interchain distance and pH-induced polar headgroup expandability

  13. On the real performance of cation exchange resins in wastewater treatment under conditions of cation competition: the case of heavy metal pollution.

    Science.gov (United States)

    Prelot, Benedicte; Ayed, Imen; Marchandeau, Franck; Zajac, Jerzy

    2014-01-01

    Sorption performance of cation-exchange resins Amberlite® IRN77 and Amberlite™ IRN9652 toward Cs(I) and Sr(II) has been tested in single-component aqueous solutions and simulated waste effluents containing other monovalent (Effluent 1) or divalent (Effluent 2) metal cations, as well as nitrate, borate, or carbonate anions. The individual sorption isotherms of each main component were measured by the solution depletion method. The differential molar enthalpy changes accompanying the ion-exchange between Cs+ or Sr2+ ions and protons at the resin surface from single-component nitrate solutions were measured by isothermal titration calorimetry and they showed a higher specificity of the two resins toward cesium. Compared to the retention limits of both resins under such idealized conditions, an important depression in the maximum adsorption capacity toward each main component was observed in multication systems. The overall effect of ion exchange process appeared to be an unpredictable outcome of the individual sorption capacities of the two resins toward various cations as a function of the cation charge, size, and concentration. The cesium retention capacity of the resins was diminished to about 25% of the "ideal" value in Effluent 1 and 50% in Effluent 2; a further decrease to about 15% was observed upon concomitant strontium addition. The uptake of strontium by the resins was found to be less sensitive to the addition of other metal components: the greatest decrease in the amount adsorbed was 60% of the ideal value in the two effluents for Amberlite® IRN77 and 75% for Amberlite™ IRN9652. It was therefore demonstrated that any performance tests carried out under idealized conditions should be exploited with much caution to predict the real performance of cation exchange resins under conditions of cation competition.

  14. Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides.

    Science.gov (United States)

    Lee, Byung Joon; Schlautman, Mark A; Toorman, Erik; Fettweis, Michael

    2012-11-01

    Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca(2+) and Mg(2+) can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.

  15. Differences on the conversion of celestite in solutions bearing monovalent ions under hydrothermal conditions

    Science.gov (United States)

    Rendón-Angeles, J. C.; Pech-Canul, M. I.; López-Cuevas, J.; Matamoros-Veloza, Z.; Yanagisawa, K.

    2006-12-01

    The replacement of SO 42- ions by monovalent ions in mineral SrSO 4 crystals was investigated under hydrothermal conditions by using aqueous solutions bearing F - and OH - ions. Experiments were conducted at various temperatures (150-250 °C) for different reaction intervals (1-96 h), with M-/SO 42- molar ratios of 1, 5 and 10, where M-=F - or OH -. The celestite crystals were completely converted into SrF 2 crystals, at 200 °C using a F -/SO 42- molar ratio=5 for 24 h. The morphology of the converted SrF 2 crystals indicated that the heteroionic conversion proceeded by a pseudomorphic replacement process, because the transformed crystals maintained their original shape and dimensions. In contrast, the SrSO 4 crystals were instantaneously converted into the Sr(OH) 2 phase by a bulk dissolution-recrystallization mechanism, resulting in the formation of large transparent acicular Sr(OH) 2 crystals. The differences on the conversion process are mainly associated with the chemical interaction between the mineral crystal and the hydrothermal fluid. In addition, the chemical stability of the converted phase with low solubility is also essential for the heteroionic conversion to proceed by the pseudomorphic replacement process.

  16. Aqueous batteries based on mixed monovalence metal ions: a new battery family.

    Science.gov (United States)

    Chen, Liang; Zhang, Leyuan; Zhou, Xufeng; Liu, Zhaoping

    2014-08-01

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, new concepts are urgently needed to build batteries with high energy density, low cost, and good safety. Here, we demonstrate two new aqueous batteries based on two monovalence metal ions (Li(+) /K(+) and Na(+) /K(+) ) as charge-transfer ions, Ni1 Zn1 HCF/TiP2 O7 and Ni1 Zn1 HCF/NaTi2 (PO4 )3 . These new batteries are unlike the conventional "rocking-chair" aqueous metal-ion batteries based on the migration of one type of shuttle ion between cathode and anode. They can deliver specific energy of 46 Wh kg(-1) and 53 Wh kg(-1) based on the total mass of active materials; this is superior to current aqueous battery systems based on sodium-ion and/or potassium-ion technologies. These two new batteries together with the previously developed Li(+) /Na(+) mixed-ion battery not only constitute a new battery family for energy storage, but also greatly broaden our horizons for battery research.

  17. Antigenic specificity of a monovalent versus polyvalent MOMP based Chlamydia pecorum vaccine in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Kollipara, Avinash; Wan, Charles; Rawlinson, Galit; Brumm, Jacqui; Nilsson, Karen; Polkinghorne, Adam; Beagley, Kenneth; Timms, Peter

    2013-02-06

    Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Impact of universal mass vaccination with monovalent inactivated hepatitis A vaccines – A systematic review

    Science.gov (United States)

    Stuurman, Anke L.; Marano, Cinzia; Bunge, Eveline M.; De Moerlooze, Laurence; Shouval, Daniel

    2017-01-01

    ABSTRACT The WHO recommends integration of universal mass vaccination (UMV) against hepatitis A virus (HAV) in national immunization schedules for children aged ≥1 year, if justified on the basis of acute HAV incidence, declining endemicity from high to intermediate and cost-effectiveness. This recommendation has been implemented in several countries. Our aim was to assess the impact of UMV using monovalent inactivated hepatitis A vaccines on incidence and persistence of anti-HAV (IgG) antibodies in pediatric populations. We conducted a systematic review of literature published between 2000 and 2015 in PubMed, Cochrane Library, LILACS, IBECS identifying a total of 27 studies (Argentina, Belgium, China, Greece, Israel, Panama, the United States and Uruguay). All except one study showed a marked decline in the incidence of hepatitis A post introduction of UMV. The incidence in non-vaccinated age groups decreased as well, suggesting herd immunity but also rising susceptibility. Long-term anti-HAV antibody persistence was documented up to 17 y after a 2-dose primary vaccination. In conclusion, introduction of UMV in countries with intermediate endemicity for HAV infection led to a considerable decrease in the incidence of hepatitis A in vaccinated and in non-vaccinated age groups alike. PMID:27786671

  19. IRMPD action spectroscopy of alkali metal cation-cytosine complexes: effects of alkali metal cation size on gas phase conformation.

    Science.gov (United States)

    Yang, Bo; Wu, R R; Polfer, N C; Berden, G; Oomens, J; Rodgers, M T

    2013-10-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both similar and distinctive spectral features over the range of ~1000-1900 cm(-1). The IRMPD spectra of the Li(+)(cytosine), Na(+)(cytosine), and K(+)(cytosine) complexes are relatively simple but exhibit changes in the shape and shifts in the positions of several bands that correlate with the size of the alkali metal cation. The IRMPD spectra of the Rb(+)(cytosine) and Cs(+)(cytosine) complexes are much richer as distinctive new IR bands are observed, and the positions of several bands continue to shift in relation to the size of the metal cation. The measured IRMPD spectra are compared to linear IR spectra of stable low-energy tautomeric conformations calculated at the B3LYP/def2-TZVPPD level of theory to identify the conformations accessed in the experiments. These comparisons suggest that the evolution in the features in the IRMPD action spectra with the size of the metal cation, and the appearance of new bands for the larger metal cations, are the result of the variations in the intensities at which these complexes can be generated and the strength of the alkali metal cation-cytosine binding interaction, not the presence of multiple tautomeric conformations. Only a single tautomeric conformation is accessed for all five alkali metal cation-cytosine complexes, where the alkali metal cation binds to the O2 and N3 atoms of the canonical amino-oxo tautomer of cytosine, M(+)(C1).

  20. Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug-DNA complex via detergent sequestration.

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-10-20

    The present study aims at exploring a detailed characterization of the binding interaction of a promising cancer cell photosensitizer, harmane (HM), with DNA extracted from herring sperm. The polarity-sensitive prototropic transformation of HM, a naturally occurring, fluorescent, drug-binding alkaloid, β-carboline, is remarkably modified upon interaction with DNA and is manifested through significant modulations on the absorption and emission profiles of HM. From the series of studies undertaken in the present program, for example, absorption; steady-state emission; the effect of chaotrope (urea); iodide ion-induced steady-state fluorescence quenching; circular dichroism (CD); and helix melting from absorption spectroscopy; the mode of binding of HM into the DNA helix has been substantiated to be principally intercalative. Concomitantly, a discernible dependence of the photophysics of the DNA-bound drug on the medium ionic strength indicates that electrostatic attraction should not be ignored in the interaction. Efforts have also been delivered to delineate the dynamical aspects of the interaction, such as modulation in time-resolved fluorescence decay and rotational relaxation dynamics of the drug within the DNA environment. In view of the prospective biological applications of HM, the issue of facile dissociation of intercalated HM from the DNA helix also comprises a crucial prerequisite for the functioning as an effective therapeutic agent. In this context, our results imply that the concept of detergent-sequestered dissociation of the drug from the drug-DNA complex can be a prospective strategy through an appropriate choice of the detergent molecule. The utility of the present work resides in exploring the potential applicability of the fluorescence property of HM for studying its interactions with a relevant biological target, for example, DNA. In addition, the methods and techniques used in the present work can also be exploited to study the interaction of

  1. Paralytic poliomyelitis associated with Sabin monovalent and bivalent oral polio vaccines in Hungary.

    Science.gov (United States)

    Estívariz, Concepción F; Molnár, Zsuzsanna; Venczel, Linda; Kapusinszky, Beatrix; Zingeser, James A; Lipskaya, Galina Y; Kew, Olen M; Berencsi, György; Csohán, Agnes

    2011-08-01

    Historical records of patients with vaccine-associated paralytic poliomyelitis (VAPP) in Hungary during 1961-1981 were reviewed to assess the risk of VAPP after oral polio vaccine (OPV) administration. A confirmed VAPP case was defined as a diagnosis of paralytic poliomyelitis and residual paralysis at 60 days in a patient with an epidemiologic link to the vaccine. Archived poliovirus isolates were retested using polymerase chain reaction and sequencing of the viral protein 1 capsid region. This review confirmed 46 of 47 cases previously reported as VAPP. Three cases originally linked to monovalent OPV (mOPV) 3 and one case linked to mOPV1 presented after administration of bivalent OPV 1 + 3 (bOPV). The adjusted VAPP risk per million doses administered was 0.18 for mOPV1 (2 cases/11.13 million doses), 2.96 for mOPV3 (32 cases/10.81 million doses), and 12.82 for bOPV (5 cases/390,000 doses). Absence of protection from immunization with inactivated poliovirus vaccine or exposure to OPV virus from routine immunization and recent injections could explain the higher relative risk of VAPP in Hungarian children. In polio-endemic areas in which mOPV3 and bOPV are needed to achieve eradication, the higher risk of VAPP would be offset by the high risk of paralysis due to wild poliovirus and higher per-dose efficacy of mOPV3 and bOPV compared with trivalent OPV.

  2. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  3. Variational first hyperpolarizabilities of 2,3-naphtho-15-crown-5 ether derivatives with cation-complexing: a potential and selective cation detector.

    Science.gov (United States)

    Yu, Hai-Ling; Wang, Wen-Yong; Hong, Bo; Zong, Ying; Si, Yan-Ling; Hu, Zhong-Qiang

    2016-09-29

    Crown ethers, as a kind of heterocycle, have been the subject of great interest over recent decades due to their selective capability to bind to metal cations. The use of a constant crown ether, such as naphtho-15-crown-5 (N15C5), and varied metal cations (Li(+), Na(+), K(+), Be(2+), Mg(2+), Ca(2+), Co(2+), Ni(2+), Cu(2+)) makes it possible to determine the contributions of the metal cations to nonlinear optical (NLO) responses and to design an appropriate NLO-based cation detector. N15C5 and its metal cation derivatives have been systematically investigated by density functional theory. It is found that the dependency of the first hyperpolarizability relies on the metal cation, especially for transition metals. The decrease of the first hyperpolarizabilities for alkali metal cation derivatives is due to their relatively low oscillator strengths, whereas the significant increase of the first hyperpolarizabilities for transition metal cation derivatives can be further illustrated by their low transition energies, large amplitudes and separate distributions of first hyperpolarizability density. Thus, the alkali metal and transition metal cations are distinguishable and the transition metal cations are easier to detect by utilizing the variations in NLO responses.

  4. Specificity of the metalloregulator CueR for monovalent metal ions

    DEFF Research Database (Denmark)

    Szunyogh, Dániel; Szokolai, Hajnalka; Thulstrup, Peter Waaben;

    2015-01-01

    (II) , and Hg(II) binding to model systems encompassing the metal-ion-binding loop of CueR from E. coli and V. cholerae. In the presence of Ag(I) , a conserved cysteine residue displays a pKa value for deprotonation of the thiol that is close to the physiological pH value. This property is only observed...

  5. Cooperativity in the Binding of the Cationic Biocide Polyhexamethylene Biguanide to Nucleic Acids%阳离子型抗菌剂聚六亚甲基双胍与核酸结合的协同作用

    Institute of Scientific and Technical Information of China (English)

    Michael J. Allen; Andrew P. Morby; Graham F. White; 江正武; 赵春霞; 刘白玲

    2011-01-01

    研究了广谱抗菌剂聚六亚甲基双胍(PHMB)与各类核酸的相互作用。通过滴定反应研究了PHMB与具有100个碱基(对)的单(双)链DNA、混合长度的标准DNA、tRNA相互作用形成的复合物沉淀。试验发现:PHMB与核酸之间是核苷酸/双胍基团以单元比相结合的。它们之间的这种结合具有很强的协同性,其表观Hill系数为10.3—14.6。用核酸滴定PHMB的荧光衍生物时,四类核酸的作用都显示了很强的荧光偏振强度,表明了核酸与PHMB之间的结合作用。PHMB与各类核酸之间强烈而广泛的结合作用.对这类抗菌剂的作用机理有%The interaction between the broad - spectrum antimicrobial agent, polyhexamethylene biguanide ( PHMB), and various nucleic acids was investigated. Titration of either single - or double - stranded 100 - bp DNA, or mixed - molecular weight marker DNA, or tRNA with PHMB caused precipitation of a complex between nucleic acid and PHMB in which the nucleotide/ biguanide ratio was always close to unity. Binding of PHMB was highly cooperative, with apparent Hill coefficients I0.3 - 14.6. When a fluorescent derivative of PHMB was titrated with increasing amounts of nucleic acid, all four forms of nucleic acid caused strong polarisation of fluorescence, demonstrating the association with PHMB. The intensity and broad - spectrum binding of PHMB to all forms of nucleic acid has significant implications for the mechanism of action of this biocide.

  6. HIV-1特异性单抗2G12单价抗体的构建及活性分析%Construction and activity analysis of HIV specific monovalent mAb 2G12

    Institute of Scientific and Technical Information of China (English)

    冯一帆; 刘雪; 徐柯; 冯霞; 曾毅; 余双庆

    2015-01-01

    Objective To construct monovalent form IgG antibodies and compare their binding and neutralizing activity with parent antibody.Methods To obtain the monovalent form HIV-1 specific antibody 2G12 with 1 Fab and 1 Fc (2G12-tH),an expression vector containing DNA encoding the IgG1 hinge,CH2 and CH3 domain exons was constructed and co-transfected with the plasmids expressing 2G12 heavy and light chains.To obtain the half molecule form 2G12 (2G12-HM),the disulfide bond at hinge region and the stable non-covalent bonds in CH2,CH3 regions were removed by site-directed mutation on 2G12 heavy chain gene.The mutated heavy chain gene was co-transfected with light chain expressing plasmid.Purified 2G12-tH and 2G12-HM were analyzed by non-reducing SDS-PAGE.The antigen specific binding and neutralizing activity against HIV-1 was compared with parent IgG by ELISA and micro-neutralizing assay.Results Two forms of monovalent 2G12 antibody,2G12-tH and 2G12-HM,were constructed and expressed correctly.Both 2G12-tH and 2G12-HM effectively combined with HIV-1 Env.The results of neutralizing assay based on six pseudoviruses of HIV-1 subtype B indicated that monovalent form antibodies had similar neutralizing activity with IgG.Conclusions Two forms of monovalent antibody were successfully constructed.The binding and neutralizing activity of monovalent form antibodies were similar to that of parent IgG antibody.%目的 构建单价抗体并与IgG比较结合活性及中和活性的差异.方法 对IgG1抗体重链恒定区基因进行改造,分别构建N端截短型的IgG1重链恒定区基因IgG1-tH和去除绞链区二硫键及CH2、CH3区的稳定非共价键的2G12重链基因2G12-HM.将IgG1-tH与2G12抗体重链和轻链基因表达质粒共转染293T细胞,表达含有完整Fc的单价抗体;将2G12-HM和轻链基因表达质粒共转染293T细胞,表达半分子型的单价抗体.通过非还原SDS-PAGE对表达抗体的大小进行鉴定,并用ELISA和微量中和实验比较原型2

  7. Comparison of cation adsorption by isostructural rutile and cassiterite.

    Energy Technology Data Exchange (ETDEWEB)

    Machesky, M.; Wesolowski, D.; Rosenqvist, J.; Predota, M.; Vlcek, L.; Ridley, M.; Kohli, V.; Zhang, Z.; Fenter, P.; Cummings, P.; Lvov, S.; Fedkin, M.; Rodriguez-Santiago, V.; Kupicki, J.; Bandura, A. (X-Ray Science Division); (Illinois State Water Survey); (Oak Ridge National Laboratory); (University of South Branisovska); (Texas Tech University); (Vanderbilt University); (The Pennsylvania State University); (St. Petersburg State University)

    2011-01-01

    Macroscopic net proton charging curves for powdered rutile and cassiterite specimens with the (110) crystal face predominant, as a function of pH in RbCl and NaCl solutions, trace SrCl{sub 2} in NaCl, and trace ZnCl{sub 2} in NaCl and Na Triflate solutions, are compared to corresponding molecular-level information obtained from static DFT optimizations and classical MD simulations, as well as synchrotron X-ray methods. The similarities and differences in the macroscopic charging behavior of rutile and cassiterite largely reflect the cation binding modes observed at the molecular level. Cation adsorption is primarily inner-sphere on both isostructural (110) surfaces, despite predictions that outer-sphere binding should predominate on low bulk dielectric constant oxides such as cassiterite ({epsilon}{sub bulk} {approx} 11). Inner-sphere adsorption is also significant for Rb{sup +} and Na{sup +} on neutral surfaces, whereas Cl{sup -} binding is predominately outer-sphere. As negative surface charge increases, relatively more Rb{sup +}, Na{sup +}, and especially Sr{sup 2+} are bound in highly desolvated tetradentate fashion on the rutile (110) surface, largely accounting for enhanced negative charge development relative to cassiterite. Charging curves in the presence of Zn{sup 2+} are very steep but similar for both oxides, reflective of Zn{sup 2+} hydrolysis (and accompanying proton release) during the adsorption process, and the similar binding modes for ZnOH{sup +} on both surfaces. These results suggest that differences in cation adsorption between high and low bulk dielectric constant oxides are more subtly related to the relative degree of cation desolvation accompanying inner-sphere binding (i.e., more tetradentate binding on rutile), rather than distinct inner- and outer-sphere adsorption modes. Cation desolvation may be favored at the rutile (110) surface in part because inner-sphere water molecules are bound further from and less tightly than on the

  8. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun

    2008-01-01

    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.

  9. Binding of alkylpyridinium chloride surfactants to sodium polystyrene sulfonate

    NARCIS (Netherlands)

    Ishiguro, M.; Koopal, L.K.

    2009-01-01

    Binding of cationic surfactants to anionic polymers is well studied. However, the surfactant binding characteristics at very low concentration near the start of binding and at high concentration, where charge compensation may Occur. are less well known. Therefore, the binding characteristics of

  10. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  11. Investigating the efficacy of monovalent and tetravalent dengue vaccine formulations against DENV-4 challenge in AG129 mice.

    Science.gov (United States)

    Fuchs, Jeremy; Chu, Haiyan; O'Day, Peter; Pyles, Richard; Bourne, Nigel; Das, Subash C; Milligan, Gregg N; Barrett, Alan D T; Partidos, Charalambos D; Osorio, Jorge E

    2014-11-12

    Dengue (DEN) is the most important mosquito-borne viral disease, with a major impact on global health and economics, caused by four serologically and distinct viruses termed DENV-1 to DENV-4. Currently, there is no licensed vaccine to prevent DEN. We have developed a live attenuated tetravalent DENV vaccine candidate (TDV) (formally known as DENVax) that has shown promise in preclinical and clinical studies and elicits neutralizing antibody responses to all four DENVs. As these responses are lowest to DENV-4 we have used the AG129 mouse model to investigate the immunogenicity of monovalent TDV-4 or tetravalent TDV vaccines, and their efficacy against lethal DENV-4 challenge. Since the common backbone of TDV is based on an attenuated DENV-2 strain (TDV-2) we also tested the efficacy of TDV-2 against DENV-4 challenge. Single doses of the tetravalent or monovalent vaccines elicited neutralizing antibodies, anti-NS1 antibodies, and cellular responses to both envelope and nonstructural proteins. All vaccinated animals were protected against challenge at 60 days post-immunization, whereas all control animals died. Investigation of DENV-4 viremias post-challenge showed that only the control animals had high viremias on day 3 post-challenge, whereas vaccinated mice had no detectable viremia. Overall, these data highlight the excellent immunogenicity and efficacy profile of our candidate dengue vaccine in AG129 mice.

  12. Establishment of an in vivo potency assay for the recombinant hepatit is B surface antigen in monovalent and combined vaccines

    Directory of Open Access Journals (Sweden)

    Mabel Izquierdo-López

    2014-12-01

    Full Text Available In this paper the development of potency assay in animals (mice was made, with the objective of demonstrating the immunogenic power of the recombinant Hepatitis B surface antigen in monovalent and combined vaccines, produced at the Center of Genetic Engineering and Biotechnology. The potency test is a parameter in quality control and it is also a tool to demonstrate the consistency of the production process. Parameters such as duration of the test, number of animals in the test, as well as different areas for the maintenance of the animals were evaluated. The results on the applicability of the potency test, to two presentations of the vaccines; monovalent Heberbiovac HB and pentavalent liquid in one vial Heberpenta-L are shown, for which specificity studies, evaluating different vaccine lots, the behavior of linearity, and parallelism, as well as establishing quality specification of the test were performed. This assay led to the obtainment of reliable results for the vaccines evaluated, the consistent evaluation of the immunogenic power and the monitoring of different production processes.

  13. Cationic polymers and porous materials

    KAUST Repository

    Han, Yu

    2017-04-27

    According to one or more embodiments, cationic polymers may be produced which include one or more monomers containing cations. Such cationic polymers may be utilized as structure directing agents to form mesoporous zeolites. The mesoporous zeolites may include micropores as well as mesopores, and may have a surface area of greater than 350 m2/g and a pore volume of greater than 0.3 cm3/g. Also described are core/shell zeolites, where at least the shell portion includes a mesoporous zeolite material.

  14. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    Science.gov (United States)

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials.

  15. Electrochemical Studies for Cation Recognition with Diazo-Coupled Calix[4]arenes

    Directory of Open Access Journals (Sweden)

    Bongsu Kim

    2015-01-01

    Full Text Available The electrochemical properties of diazophenylcalix[4]arenes bearing ortho-carboxyl group (o-CAC and ortho-ester group (o-EAC, respectively, in the presence of various metal ions were investigated by voltammetry in CH3CN. o-CAC and o-EAC showed voltammetric changes toward divalent metal ions and no significant changes with monovalent alkali metal ions. However, o-CAC preferentially binds with alkaline earth and transition metal ions, whereas no significant changes in voltammetric signals are observed in o-EAC with alkaline earth metal ions. o-EAC only binds with other transition metal ions. This can be explained on metal ion complexation-induced release of proton from the azophenol to the quinone-hydrazone tautomer followed by internal complexation of the metal ion with aid of nitrogen atoms and ortho-carbonyl groups in the diazophenylazocalix[4]arenes.

  16. Cationic Nitrogen Doped Helical Nanographenes.

    Science.gov (United States)

    Xu, Kun; Feng, Xinliang; Berger, Reinhard; Popov, Alexey A; Weigand, Jan J; Vincon, Ilka; Machata, Peter; Hennersdorf, Felix; Zhou, Youjia; Fu, Yubin

    2017-09-13

    Herein, we report on the synthesis of a series of novel cationic nitrogen doped nanographenes (CNDN) by rhodium catalyzed annulation reactions. This powerful method allows for the synthesis of cationic nanographenes with non-planar, axial chiral geometries. Single-crystal X-ray analysis reveals helical and cove-edged structures. Compared to their all-carbon analogues, the CNDN exhibit energetically lower lying frontier orbitals with a reduced optical energy gap and an electron accepting behavior. All derivatives show quasi reversible reductions in cyclic voltammetry. Depending on the number of nitrogen dopant, in situ spectroelectrochemistry proves the formation of neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) upon reduction. The developed synthetic protocol paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons containing cationic nitrogen doping. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Theoretical Studies on the Interactions of Cations with Diazine

    Institute of Scientific and Technical Information of China (English)

    CHEN Xing; WU Wen-Peng; ZHANG Jing-Lai; CAO Ze-Xing

    2006-01-01

    Density functional theory and MP2 calculations have been used to determine the geometries, stabilities, binding energies, and dissociative properties of cation-diazine complexes Mn+-C4H4N2 (Mn+ = Li+, B+, Al+, Be2+, Mg2+, Ca2+). The calculated results indicate that most complexes are stable except the π complexes of Ca2+-pyridazine, Ca2+-pyrazine, Al+-pyrimidine and Al+-pyrimidine. The σ complexes are generally much more stable than their π counterparts. Among the π complexes, the cation-pyrazine π complexes have slightly higher stability. The nature of the ion-molecule interactions has been discussed by the natural bond orbital analysis and frontier molecular orbital interactions. In these σ complexes, there is stronger covalent interaction between B+ and diazine. In the selected π complexes, B+ and Be2+ have stronger covalent interaction with diazine, while the other cations mainly have electrostatic interaction with diazine.

  18. Oxatub[4]arene: a molecular "transformer" capable of hosting a wide range of organic cations.

    Science.gov (United States)

    Jia, Fei; Wang, Hao-Yi; Li, Dong-Hao; Yang, Liu-Pan; Jiang, Wei

    2016-04-28

    The molecular "transformer", oxatub[4]arene, was found to be able to host a wide range of organic cations. The strong binding ability is believed to originate from its four interconvertible and deep-cavity conformers. The binding behavior of such adaptable receptors may provide implications for molecular recognition in nature.

  19. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; Limpt CJP van; Berbers GAM; Labadie J; Kleijn ED de; Groot R de; Rumke HC; Alphen AJW van; Sophia Kinderziekenhuis /; LVO

    2000-01-01

    This report describes the results with respect to immunogenicity as well as reactogenicity of a monovalent P1.7h,4 OMV vaccine (MonoMen) used as booster vaccination in children previously vaccinated with a hexavalent MenB vaccine. The participants in this study were immunised in 1995-1996 with hexav

  20. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  1. Immunogenicity and safety of monovalent RIVM meningococcal B OMP vesicle F91 vaccine administered to children that received hexavalent meningococcal B vaccine 2.5 years ago

    NARCIS (Netherlands)

    Lafeber AB; van Limpt CJP; Berbers GAM; Labadie J; de Kleijn ED; de Groot R; Rumke HC; van Alphen AJW; LVO

    2000-01-01

    Dit rapport beschrijft een follow-up studie naar veiligheid en immunogeniciteit van monovalent P1.7h,4 OMV vaccin (MonoMen) gebruikt als boostervaccinatie in kinderen eerder gevaccineerd met hexavalent MenB vaccin. De deelnemers aan deze studie zijn in het kader van een eerdere studie gevaccineerd

  2. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines

    NARCIS (Netherlands)

    C. Dodd (Caitlin); S.A. Romio (Silvana); S. Black (Steve); C. Vellozzi (Claudia); N.J. Andrews (Nick); M.C.J.M. Sturkenboom (Miriam); P. Zuber (Patrick); W. Hua (Wei); J. Bonhoeffer (Jan); J. Buttery (Jim); N. Crawford (Nigel); G. Deceuninck (Genevieve); C.S. de Vries (Corinne); P. de Wals (Philippe); D. Gimeno (David); H. Heijbel (Harald); H. Hughes (Hayley); K. Hur (Kwan); A. Hviid (Anders); J. Kelman (Jeffrey); T. Kilpi (Tehri); S.K. Chuang (S.); T. Macartney (Thomas); M. Rett (Melisa); V.R. Lopez-Callada (Vesta Richardson); D. Salmon (Daniel); F.G. Sanchez (Francisco Gimenez); N. Sanz (Nuria); B. Silverman (Bernard); J. Storsaeter (Jann); U. Thirugnanam (Umapathi); N.A.T. van der Maas (Nicoline); K. Yih (Katherine); T. Zhang (Teng Fei); H.S. Izurieta (Hector); B.J. Addis; A. Akhtar (Aysha); J. Cope (Judith); R.L. Davis (Robert); P. Gargiullo (Paul); X. Kurz (Xavier); B. Law (Barbara); I. Sahinovic (Isabelle); J. Tokars (Jerry); P. Serrano (Pedro); A. Cheng (Aixin); N.J. Andrews (Nick); P. Charles (Pat); H. Clothier (Hazel); B. Day (Bruce); T. Day (Timothy); P. Gates (Peter); R. MacDonnell (Richard); L. Roberts (Les); V. Rodriguez-Casero (Vic-toria); T. Wijeratne (Tissa); H.A.L. Kiers (Henk); C. Blyth (Christopher); R. Booy (Robert); E. Elliott (Elizabeth); M.R. Gold (Michael); H. Marshall; P. McIntyre (Peter); P. Richmond (Peter); J. Royle (Jenny); N.W. Wood (Nicholas); Y. Zurynski (Yvonne); G. Calvo (Gonzalo); M. Campins (Magda); N. Corominas (Nuria); F. Torres (Ferran); V. Valls; A. Vilella (Ángels); A. Dutra (Amalia); A. Eick-Cost (Angelia); H.M. Jackson (Henry); K. Garman (Katherine); Z. Hu (Zheng); J. Rigo; J. Badoo (Judith); D Cho (David); L.L. Polakowski (Laura); S.K. Sandhu (Sukhminder); G. Sun (Guoying); H.-S.S. Chan (Hoi-Shan Sophelia); K.-Y. Chan (Kwok-Yin); R. Cheung (Raymond); Y-F. Cheung (Yuk-Fai); S. Cherk (Sharon); S.K Chuang (S.); D. Fok (Dennis); B.-H. Fung (Bun-Hey); K.-F. Ko (Kwai-Fu); K.W. Lau (Ka Wing); K.-K. Lau (Kwok-Kwong); P. Li (Pulin); H.-T. Liu (Hui-Tung); S.-H. Liu (Shao-Haei); K. Mok (Kin); J. So (Joanna); W. Wong (Winnie); S.-P. Wu (Shun-Ping); V. Avagyan (Vardan); R. Ball (Robert); D. Burwen (Dale); R.L. Franks (Riley); J.M. Gibbs (Jonathan); R.E. Kliman (Rebecca); S. Kropp (Silke); T.E. MaCurdy (Thomas); D.B. Martin (David); S.-D.K. Sandhu (Sukhmin-Der); B.B. Worrall (Bradford B.); D.E.F. Fuentes (Dra. Elvira Fuentes); P.C.O. González (Paola Carolina Ojeda); V.F. Reyna (Valerie ); M. Kulldorff (Martin); G. Lee (Grace); T.A. Lieu (Tracy); S. Platt; G.D. Serres (Gaston De); K. Jabin (Kamilah); B.L.S. Soh (Bee Leng Sally); L. Arnheim-Dahlström (Lisen); A. Castot (Anne); H.E. de Melker (Hester); J.P. Dieleman (Jeanne); J. Hallgren (Jonal); B.C. Jacobs (Bart); K. Johansen (Kari); P Kramarz (Piotr); M. Lapeyre (Maryse); T. Leino (Tuija); D. Mølgaard-Nielsen (Ditte); M. Mosseveld (Mees); H.K. Olberg (Henning K); C.-M. Sammon (Cor-Mac); C. Saussier (Christel); M.J. Schuemie (Martijn); A. Sommet (Agnès); P. Sparen (Pär); H. Svanström (Henrik); A.M. Vanrolleghem (Ann M.); D.M. Weibel (Daniel); J.D. Domingo (Javier Diez); J.L. Esparza (José LuísMicó); R.M.O. Lucas (Rafael M. Ortí); J.B.M. Maseres (Juan B. Mollar); J.L.A. Sánchez (José Luís Alfonso); M.G. Sánchez (Mercedes Garcés); V.Z. Viguer (Vicente Zanón); F. Cunningham (Francesca); B. Thakkar (Bharat); R. Zhang (Rongping)

    2013-01-01

    textabstractBackground: The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which

  3. Monovalent rotavirus vaccine provides protection against an emerging fully heterotypic G9P[4] rotavirus strain in Mexico.

    Science.gov (United States)

    Yen, Catherine; Figueroa, Jesùs Reyna; Uribe, Edgar Sánchez; Carmen-Hernández, Luz Del; Tate, Jacqueline E; Parashar, Umesh D; Patel, Manish M; Richardson López-Collado, Vesta

    2011-09-01

    After the introduction of monovalent rotavirus vaccine (RV1) in Mexico in 2006-2007, diarrhea mortality and morbidity declined substantially among Mexican children under 5 years of age. In January 2010, surveillance identified the emergence of a novel G9P[4] rotavirus strain nationwide. We conducted a case-control study to assess the field effectiveness of RV1 against severe rotavirus gastroenteritis caused by this unusual strain and to determine whether the G9P[4] emergence was related to vaccine failure or failure to vaccinate. RV1 was 94% effective (95% confidence interval, 16%-100%) against G9P[4] rotavirus-related hospitalization, indicating that its emergence was likely unrelated to vaccine pressure.

  4. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

    Science.gov (United States)

    Grossert, J. Stuart; Herrera, Lisandra Cubero; Ramaley, Louis; Melanson, Jeremy E.

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  5. Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition.

    Science.gov (United States)

    Weidman, Mark C; Seitz, Michael; Stranks, Samuel D; Tisdale, William A

    2016-08-23

    Colloidal perovskite nanoplatelets are a promising class of semiconductor nanomaterials-exhibiting bright luminescence, tunable and spectrally narrow absorption and emission features, strongly confined excitonic states, and facile colloidal synthesis. Here, we demonstrate the high degree of spectral tunability achievable through variation of the cation, metal, and halide composition as well as nanoplatelet thickness. We synthesize nanoplatelets of the form L2[ABX3]n-1BX4, where L is an organic ligand (octylammonium, butylammonium), A is a monovalent metal or organic molecular cation (cesium, methylammonium, formamidinium), B is a divalent metal cation (lead, tin), X is a halide anion (chloride, bromide, iodide), and n-1 is the number of unit cells in thickness. We show that variation of n, B, and X leads to large changes in the absorption and emission energy, while variation of the A cation leads to only subtle changes but can significantly impact the nanoplatelet stability and photoluminescence quantum yield (with values over 20%). Furthermore, mixed halide nanoplatelets exhibit continuous spectral tunability over a 1.5 eV spectral range, from 2.2 to 3.7 eV. The nanoplatelets have relatively large lateral dimensions (100 nm to 1 μm), which promote self-assembly into stacked superlattice structures-the periodicity of which can be adjusted based on the nanoplatelet surface ligand length. These results demonstrate the versatility of colloidal perovskite nanoplatelets as a material platform, with tunability extending from the deep-UV, across the visible, into the near-IR. In particular, the tin-containing nanoplatelets represent a significant addition to the small but increasingly important family of lead- and cadmium-free colloidal semiconductors.

  6. Cation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays

    Science.gov (United States)

    Zulkeflee, Zufarzaana; Aris, Ahmad Zaharin; Shamsuddin, Zulkifli H.; Yusoff, Mohd Kamil

    2012-01-01

    A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+ and Al3+ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P < 0.05), respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v) CaCl2 and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements. PMID:22997497

  7. Cation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays

    Directory of Open Access Journals (Sweden)

    Zufarzaana Zulkeflee

    2012-01-01

    Full Text Available A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The flocculating activity was measured as optical density and by flocs formation. A synergistic effect was observed with the addition of monovalent and divalent cations, namely, Na+, Ca2+, and Mg2+, while Fe2+ and Al3+ produced inhibiting effects on flocculating activity. Divalent cations were conclusively demonstrated as the best cation source to enhance flocculation. The bioflocculant works in a wide pH range, from 4.0 to 8.0 with significantly different performances (P<0.05, respectively. It best performs at pH 5.0 and pH 6.0 with flocculating performance of above 90%. A much lower or higher pH would inhibit flocculation. Low dosage requirements were needed for both the cation and bioflocculant, with only an input of 50 mL/L for 0.1% (w/v CaCl2 and 5 mL/L for culture broth, respectively. These results are comparable to other bioflocculants produced by various microorganisms with higher dosage requirements.

  8. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is

  9. Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW

    Directory of Open Access Journals (Sweden)

    Lisa Maria Henning

    2015-05-01

    Full Text Available The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein–protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with KDs of 80 μM and 150 µM to the individual WW domains and with a KD of 150 μM to the tandem-WW1–WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a KD of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome.

  10. Cation selectivity by the CorA Mg2+ channel requires a fully hydrated cation.

    Science.gov (United States)

    Moomaw, Andrea S; Maguire, Michael E

    2010-07-27

    The CorA Mg(2+) channel is the primary uptake system in about half of all bacteria and archaea. However, the basis for its Mg(2+) selectivity is unknown. Previous data suggested that CorA binds a fully hydrated Mg(2+) ion, unlike other ion channels. The crystal structure of Thermotoga maritima CorA shows a homopentamer with two transmembrane segments per monomer connected by a short periplasmic loop. This highly conserved loop, (281)EFMPELKWS(289) in Salmonella enterica serovar Typhimurium CorA, is the only portion of the channel outside of the cell, suggesting a role in cation selectivity. Mutation of charged residues in the loop, E281 and K287, to any of several amino acids had little effect, demonstrating that despite conservation electrostatic interactions with these residues are not essential. While mutation of the universally conserved E285 gave a minimally functional channel, E285A and E285K mutants were the most functional, again indicating that the negative charge at this position is not a determining factor. Several mutations at K287 and W288 behaved anomalously in a transport assay. Analysis indicated that mutation of K287 and W288 disrupts cooperative interactions between distinct Mg(2+) binding sites. Overall, these results are not compatible with electrostatic interaction of the Mg(2+) ion with the periplasmic loop. Instead, the loop appears to form an initial binding site for hydrated Mg(2+), not for the dehydrated cation. The loop residues may function to accelerate dehydration of the before entry of Mg(2+) into the pore of the channel.

  11. Blood-Brain Barrier Transport of Cationized Immunoglobulin G: Enhanced Delivery Compared to Native Protein

    Science.gov (United States)

    Triguero, Domingo; Buciak, Jody B.; Yang, Jing; Pardridge, William M.

    1989-06-01

    IgG molecules are potential neuropharmaceuticals that may be used for therapeutic or diagnostic purposes. However, IgG molecules are excluded from entering brain, owing to a lack of transport of these plasma proteins through the brain capillary wall, or blood-brain barrier (BBB). The possibility of enhanced IgG delivery through the BBB by cationization of the proteins was explored in the present studies. Native bovine IgG molecules were cationized by covalent coupling of hexamethylenediamine and the isoelectric point was raised to >10.7 based on isoelectric focusing studies. Native and cationized IgG molecules were radiolabeled with 125I and chloramine T. Cationized IgG, but not native IgG, was rapidly taken up by isolated bovine brain microvessels, which were used as an in vitro model system of the BBB. Cationized IgG binding was time and temperature dependent and was saturated by increasing concentrations of unlabeled cationized IgG (dissociation constant of the high-affinity binding site, 0.90 ± 0.37 μ M; Bmax, 1.4 ± 0.4 nmol per mg of protein). In vivo studies documented enhanced brain uptake of 125I-labeled cationized IgG relative to [3H]albumin, and complete transcytosis of the 125I-labeled cationized IgG molecule through the BBB and into brain parenchyma was demonstrated by thaw-mount autoradiography of frozen sections of rat brain obtained after carotid arterial infusions of 125I-labeled cationized IgG. These studies demonstrate that cationization of IgG molecules greatly facilitates the transport of these plasma proteins through the BBB in vivo, and this process may provide a new strategy for IgG delivery through the BBB.

  12. Blood-brain barrier transport of cationized immunoglobulin G: Enhanced delivery compared to native protein

    Energy Technology Data Exchange (ETDEWEB)

    Triguero, D.; Buciak, J.B.; Yang, J.; Pardridge, W.M.

    1989-06-01

    IgG molecules are potential neuropharmaceuticals that may be used for therapeutic or diagnostic purposes. However, IgG molecules are excluded from entering brain, owing to a lack of transport of these plasma proteins through the brain capillary wall, or blood-brain barrier (BBB). The possibility of enhanced IgG delivery through the BBB by cationization of the proteins was explored in the present studies. Native bovine IgG molecules were cationized by covalent coupling of hexamethylenediamine and the isoelectric point was raised to greater than 10.7 based on isoelectric focusing studies. Native and cationized IgG molecules were radiolabeled with /sup 125/I and chloramine T. Cationized IgG, but not native IgG, was rapidly taken up by isolated bovine brain microvessels, which were used as an in vitro model system of the BBB. Cationized IgG binding was time and temperature dependent and was saturated by increasing concentrations of unlabeled cationized IgG (dissociation constant of the high-affinity binding site, 0.90 +/- 0.37 microM; Bmax, 1.4 +/- 0.4 nmol per mg of protein). In vivo studies documented enhanced brain uptake of 125I-labeled cationized IgG relative to (3H)albumin, and complete transcytosis of the 125I-labeled cationized IgG molecule through the BBB and into brain parenchyma was demonstrated by thaw-mount autoradiography of frozen sections of rat brain obtained after carotid arterial infusions of 125I-labeled cationized IgG. These studies demonstrate that cationization of IgG molecules greatly facilitates the transport of these plasma proteins through the BBB in vivo, and this process may provide a new strategy for IgG delivery through the BBB.

  13. Cationic pyridinium porphyrins appending different peripheral substituents: Spectroscopic studies on their interactions with bovine serum albumin

    Science.gov (United States)

    Zhao, Ping; Huang, Jin-Wang; Ji, Liang-Nian

    2012-03-01

    The interaction of cationic pyridinium porphyrins appending methylpyridyl, hydroxyphenyl, propionoxyphenyl or carboxyphenyl group at meso-20-position of porphyrin core with bovine serum albumin (BSA), was studied by the combination of absorption spectroscopy, surface-enhanced Raman spectroscopy (SERS), circular dichroism (CD) spectroscopy, fluorescence spectroscopy and synchronous spectroscopy. The spectral monitoring results indicate that the studied compounds could bind with the BSA molecule and the calculated binding constants show that the tetracationic porphyrin has higher binding affinity than those tricationic ones. The interactions between porphyrins and BSA employ an electrostatic binding mechanism and there was only one binding site which located on the surface of the protein molecule.

  14. Impact of sediment-seawater cation exchange on Himalayan chemical weathering fluxes

    Science.gov (United States)

    Lupker, Maarten; France-Lanord, Christian; Lartiges, Bruno

    2016-08-01

    Continental-scale chemical weathering budgets are commonly assessed based on the flux of dissolved elements carried by large rivers to the oceans. However, the interaction between sediments and seawater in estuaries can lead to additional cation exchange fluxes that have been very poorly constrained so far. We constrained the magnitude of cation exchange fluxes from the Ganga-Brahmaputra river system based on cation exchange capacity (CEC) measurements of riverine sediments. CEC values of sediments are variable throughout the river water column as a result of hydrological sorting of minerals with depth that control grain sizes and surface area. The average CEC of the integrated sediment load of the Ganga-Brahmaputra is estimated ca. 6.5 meq 100 g-1. The cationic charge of sediments in the river is dominated by bivalent ions Ca2+ (76 %) and Mg2+ (16 %) followed by monovalent K+ (6 %) and Na+ (2 %), and the relative proportion of these ions is constant among all samples and both rivers. Assuming a total exchange of exchangeable Ca2+ for marine Na+ yields a maximal additional Ca2+ flux of 28 × 109 mol yr-1 of calcium to the ocean, which represents an increase of ca. 6 % of the actual river dissolved Ca2+ flux. In the more likely event that only a fraction of the adsorbed riverine Ca2+ is exchanged, not only for marine Na+ but also Mg2+ and K+, estuarine cation exchange for the Ganga-Brahmaputra is responsible for an additional Ca2+ flux of 23 × 109 mol yr-1, while ca. 27 × 109 mol yr-1 of Na+, 8 × 109 mol yr-1 of Mg2+ and 4 × 109 mol yr-1 of K+ are re-absorbed in the estuaries. This represents an additional riverine Ca2+ flux to the ocean of 5 % compared to the measured dissolved flux. About 15 % of the dissolved Na+ flux, 8 % of the dissolved K+ flux and 4 % of the Mg2+ are reabsorbed by the sediments in the estuaries. The impact of estuarine sediment-seawater cation exchange appears to be limited when evaluated in the context of the long-term carbon cycle and

  15. Cation size effects in mixed-ion metaphosphate glasses: structural characterization by multinuclear solid state NMR spectroscopy.

    Science.gov (United States)

    Schneider, J; Tsuchida, J; Eckert, H

    2013-09-14

    Metaphosphate glasses with two monovalent species A(1-x)B(x)PO3 (0 ≤x≤ 1) show mixed-ion effects (MIE) in the dc conductivities and glass transition temperatures, which are strongly dependent on the cation size mismatch between the two mobile species. In the present contribution, mixed-ion metaphosphate glasses based on the cation combinations Cs-Li, Rb-Li, and Cs-Ag, exhibiting particularly large size mismatches, are analyzed by (31)P, (87)Rb, (109)Ag and (133)Cs NMR to determine possible correlations between this mismatch and some of the structural properties critical to the development of the MIE: the local environments around the mobile species and their spatial distribution relative to each other. The results are compared with those obtained in the Na-Ag metaphosphate series, which serves as a reference system, with minimized cation mismatch MIE. The local coordination environments of the Ag(+), Rb(+) and Cs(+) ions follow analogous compositional trends as previously observed in Na-based mixed-ion metaphosphate glasses: for a given cation species A, the average A-O distance shows an expansion/compression when this cation is replaced by a second species B with smaller/bigger ionic radius, respectively. This compositional differentiation of the structural sites for the mobile species may contribute to the MIE. Concerning the relative spatial distribution of the mobile ions, results from (7)Li-(133)Cs (SEDOR) experiments indicate a random mixture of Cs and Li in Cs-Li metaphosphate glasses. While this result is in agreement with one of the fundamental hypotheses of the models proposed to describe the MIE, it is at variance with the observation of various partial cation segregation phenomena observed in Na-based mixed alkali glasses. This result suggests that cation size mismatch is not the decisive parameter in determining segregation or non-statistical mixing of cations in the glass. In the Cs-Ag and Na-Ag glasses, (109)Ag spin-echo NMR reveals a progressive

  16. Tripodal Receptors for Cation and Anion Sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman,; Verboom, Willem; Reinhoudt, David N.

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  17. Interactions between liposomes and cations in aqueous solution.

    Science.gov (United States)

    Ruso, Juan M; Besada, Lina; Martínez-Landeira, Pablo; Seoane, Laura; Prieto, Gerardo; Sarmiento, Félix

    2003-05-01

    An investigation on the dependence of electrophoretic mobilities of unilamellar vesicles of phosphatidylcholine-cholesterol-phosphatidylinositol (PC-Chol-PI) on the concentration of several cations with variations in the relation charge/radius in the range Na+, K+, Cs+, Mg2+, Ca2+, Ba2+, Al3+, and La3+ has been realized. Plots of zeta potential against ion concentration exhibit a maximum for all the cations under study, the position of the maximum is greatly affected by the charge of the ion. From the feature of these plots two phenomenon were observed: an initial binding of cations into the slipping plane for ion concentration below the maximum and a phenomenon of vesicle association for concentration above the maximum. To confirm these observations measurements on dynamic light scattering were performed to obtain the corresponding size distribution of the liposomes at different ion concentrations. Finally the ability of the Stern isotherm to describe the adsorption of the cations to vesicles was tested by two methods. The two main parameters of the theory: the total number of adsorption sites per unit area, N1, and the equilibrium constant, K; (and consequently the free energy of adsorption, deltaG0ads) were calculated for the different ions, showing good agreement. The equilibrium constants of adsorption have been found to obey a linear relationship with ion radius the slope of which decreases with the ion charge.

  18. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.

  19. Isomerization of propargyl cation to cyclopropenyl cation: Mechanistic elucidations and effects of lone pair donors

    Indian Academy of Sciences (India)

    Zodinpuia Pachuau; Kiew S Kharnaior; R H Duncan Lyngdoh

    2013-03-01

    This ab initio study examines two pathways (one concerted and the other two-step) for isomerization of the linear propargyl cation to the aromatic cyclopropenyl cation, also probing the phenomenon of solvation of this reaction by simple lone pair donors (NH3, H2O, H2S and HF) which bind to the substrate at two sites. Fully optimized geometries at the B3LYP/6-31G(d) level were used, along with single point QCISD(T)/6-311+G(d,p) and accurate G3 level calculations upon the DFT optimized geometries. For the unsolvated reaction, the two-step second pathway is energetically favoured over the one-step first pathway. Lone pair donor affinity for the various C3H$^{+}_{3}$ species follows the uniform order NH3 > H2S>H2O>HF. The activation barriers for the solvated isomerizations decrease in the order HF>H2O>H2S>NH3 for both pathways. The number of lone pairs on the donor heteroatom as well as the heteroatom electronegativity are factors related to both these trends. Compared to the unsolvated cases, the solvated reactions have transition states which are usually ‘later’ in position along the reaction coordinate, validating the Hammond postulate.

  20. The protective efficacy of cloned Moraxella bovis pili in monovalent and multivalent vaccine formulations against experimentally induced infectious bovine keratoconjunctivitis (IBK).

    Science.gov (United States)

    Lepper, A W; Atwell, J L; Lehrbach, P R; Schwartzkoff, C L; Egerton, J R; Tennent, J M

    1995-07-01

    Calves were vaccinated with cloned Moraxella bovis pili of serogroup C (experiment 1) or B (experiment 2) either as a monovalent formulation or as part of a multivalent preparation with pili of six other serogroups. Within 4 weeks of the second vaccine dose vaccinated calves and non-vaccinated controls were challenged via the ocular route with either virulent M. bovis strain Dal2d (serogroup C) or M. bovis strain 3WO7 (serogroup B) in experiments 1 and 2, respectively. Calves vaccinated with multivalent vaccines had significantly lower antibody titres than those vaccinated with monovalent preparations. Nevertheless, the levels of protection against infectious bovine keratoconjunctivitis (IBK) achieved with multivalent vaccines were 72% and 83% for the groups challenged with M. bovis strains of serogroups B and C, respectively. The serogroup C monovalent vaccine gave 100% protection against experimentally induced IBK and M. bovis isolates cultured from the eyes 6 days post-challenge were identified as belonging solely to serogroup C. Unexpectedly, only 25% protection was achieved against homologous strain challenge of calves that received the monovalent serogroup B vaccine. Furthermore, the majority of M. bovis isolates recovered from calves in this group belonged to serogroup C, as did half of those isolates cultured from the multivalent vaccinates. The remaining bacterial isolates from the latter group, together with all isolates from the non-vaccinated controls, belonged to serogroup B. Results are consistent with the hypothesis that derivatives of the serogroup B challenge inoculum had expressed serogroup C pilus antigen within 6 days of the challenge, possibly as a result of pilus gene inversion occurring in response to the presence of specific antibody in eye tissues and tears.

  1. Monovalent Ions and Water Dipoles in Contact with Dipolar Zwitterionic Lipid Headgroups-Theory and MD Simulations

    Directory of Open Access Journals (Sweden)

    Aljaž Velikonja

    2013-01-01

    Full Text Available The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD simulation.

  2. In-vitro Neurotoxicity of Two Malaysian Krait Species (Bungarus candidus and Bungarus fasciatus Venoms: Neutralization by Monovalent and Polyvalent Antivenoms from Thailand

    Directory of Open Access Journals (Sweden)

    Muhamad Rusdi Ahmad Rusmili

    2014-03-01

    Full Text Available Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  3. In-vitro neurotoxicity of two Malaysian krait species (Bungarus candidus and Bungarus fasciatus) venoms: neutralization by monovalent and polyvalent antivenoms from Thailand.

    Science.gov (United States)

    Rusmili, Muhamad Rusdi Ahmad; Yee, Tee Ting; Mustafa, Mohd Rais; Othman, Iekhsan; Hodgson, Wayne C

    2014-03-12

    Bungarus candidus and Bungarus fasciatus are two species of krait found in Southeast Asia. Envenoming by these snakes is often characterized by neurotoxicity and, without treatment, causes considerable morbidity and mortality. In this study, the in vitro neurotoxicity of each species, and the effectiveness of two monovalent antivenoms and a polyvalent antivenom, against the neurotoxic effects of the venoms, were examined in a skeletal muscle preparation. Both venoms caused concentration-dependent inhibition of indirect twitches, and attenuated responses to exogenous nicotinic receptor agonists, in the chick biventer preparation, with B. candidus venom being more potent than B. fasciatus venom. SDS-PAGE and western blot analysis indicated different profiles between the venoms. Despite these differences, most proteins bands were recognized by all three antivenoms. Antivenom, added prior to the venoms, attenuated the neurotoxic effect of the venoms. Interestingly, the respective monovalent antivenoms did not neutralize the effects of the venom from the other Bungarus species indicating a relative absence of cross-neutralization. Addition of a high concentration of polyvalent antivenom, at the t90 time point after addition of venom, partially reversed the neurotoxicity of B. fasciatus venom but not B. candidus venom. The monovalent antivenoms had no significant effect when added at the t90 time point. This study showed that B. candidus and B. fasciatus venoms display marked in vitro neurotoxicity in the chick biventer preparation and administration of antivenoms at high dose is necessary to prevent or reverse neurotoxicity.

  4. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.

    Science.gov (United States)

    Matamouros, Susana; Miller, Samuel I

    2015-11-01

    S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

  5. Synthetic LPS-Binding Polymer Nanoparticles

    Science.gov (United States)

    Jiang, Tian

    Lipopolysaccharide (LPS), one of the principal components of most gram-negative bacteria's outer membrane, is a type of contaminant that can be frequently found in recombinant DNA products. Because of its strong and even lethal biological effects, selective LPS removal from bioproducts solution is of particular importance in the pharmaceutical and health care industries. In this thesis, for the first time, a proof-of-concept study on preparing LPS-binding hydrogel-like NPs through facile one-step free-radical polymerization was presented. With the incorporation of various hydrophobic (TBAm), cationic (APM, GUA) monomers and cross-linkers (BIS, PEG), a small library of NPs was constructed. Their FITC-LPS binding behaviors were investigated and compared with those of commercially available LPS-binding products. Moreover, the LPS binding selectivity of the NPs was also explored by studying the NPs-BSA interactions. The results showed that all NPs obtained generally presented higher FITC-LPS binding capacity in lower ionic strength buffer than higher ionic strength. However, unlike commercial poly-lysine cellulose and polymyxin B agarose beads' nearly linear increase of FITC-LPS binding with particle concentration, NPs exhibited serious aggregation and the binding quickly saturated or even decreased at high particle concentration. Among various types of NPs, higher FITC-LPS binding capacity was observed for those containing more hydrophobic monomers (TBAm). However, surprisingly, more cationic NPs with higher content of APM exhibited decreased FITC-LPS binding in high ionic strength conditions. Additionally, when new cationic monomer and cross-linker, GUA and PEG, were applied to replace APM and BIS, the obtained NPs showed improved FITC-LPS binding capacity at low NP concentration. But compared with APM- and BIS-containing NPs, the FITC-LPS binding capacity of GUA- and PEG-containing NPs saturated earlier. To investigate the NPs' binding to proteins, we tested the NPs

  6. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wangyang; Liu Chunxi; Ye Jiesheng; Zou Weiwei; Zhang Na; Xu Wenfang [School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji' nan (China)], E-mail: zhangnancy9@sdu.edu.cn

    2009-05-27

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  7. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Science.gov (United States)

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang

    2009-05-01

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  8. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations.

    Science.gov (United States)

    Lee, Samuel K; Shanmughapriya, Santhanam; Mok, Mac C Y; Dong, Zhiwei; Tomar, Dhanendra; Carvalho, Edmund; Rajan, Sudarsan; Junop, Murray S; Madesh, Muniswamy; Stathopulos, Peter B

    2016-09-22

    Calcium (Ca(2+)) flux into the matrix is tightly controlled by the mitochondrial Ca(2+) uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca(2+) or Mg(2+) destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg(2+) loading or blockade of mitochondrial Ca(2+) extrusion suppresses MCU Ca(2+)-uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU-regulating acidic patch that inhibits human MCU activity in response to Mg(2+) and Ca(2+) binding.

  9. Spectroscopic analysis of 1-butyl-2,3-dimethylimidazolium ionic liquids: Cation-anion interactions

    Science.gov (United States)

    Men, Shuang; Jiang, Jing; Licence, Peter

    2017-04-01

    In this study, four 1-butyl-2,3-dimethylimidazolium ionic liquids are analysed by X-ray photoelectron spectroscopy, together with three 1-butyl-3-methylimidazolium ionic liquids. A reliable fitting model for the carbon 1s region of 1-butyl-2,3-dimethylimidazolium ionic liquids is modified according to established models. The effect of the anion on the electronic environment of the cation is explored based upon the comparison between measured binding energies of nitrogen 1s and the hydrogen bond acceptor ability. The effect of the cation on the cation-anion interaction is also demonstrated by carefully comparing the hydrogen bond donating ability of different cations, with a definite anion.

  10. The Free Tricoordinated Silyl Cation Problem

    Directory of Open Access Journals (Sweden)

    Čičak, H.

    2010-03-01

    Full Text Available As the importance and abundance of silicon in our environment is large, it has been thought that silicon might take the place of carbon in forming a host of similar compounds and silicon-based life. However, until today there is no experimental evidence for such a hypothesis and carbon is still unique among the elements in the vast number and variety of compounds it can form. Also, the corresponding derivatives of the two elements show considerable differences in their chemical properties.The essential debate concerning organosilicon chemistry relates to the existence of the free planar tricoordinated silyl cations in condensed phase (R3Si+, in analogy to carbocations (R3C+ which have been known and characterized as free species. Although silyl cations are thermodynamically more stable than their carbon analogs, they are very reactive due to their high inherent electrophilicity and the ability of hypervalent coordination. On the other hand, stabilization by inductive and hyperconjugative effects and larger steric effects of carbocations make them less sensitive to solvation or other environmental effects than silyl cations. Hence, observation of free silyl cations in the condensed phase proved extremely difficult and the actual problem is the question of the degree of the (remaining silyl cation character.The first free silyl cation, trimesitylsilyl cation, and in analogy with it tridurylsilyl cation, were synthesized by Lambert et al. Free silyl cations based on analogy to aromatic ions (homocyclopropenylium and tropylium have also been prepared. However, in these silyl cations the cationic character is reduced by internal π -conjugation. Čičak et al. prepared some silyl-cationic intermediates (Me3Si--CH≡CR+in solid state. With the help of quantum-mechanical calculations it was concluded that these adducts have much more silyl cation than carbocation character.

  11. Explorations of a series of second order nonlinear optical materials based on monovalent metal gold(III) iodates.

    Science.gov (United States)

    Huang, Chao; Hu, Chun-Li; Xu, Xiang; Yang, Bing-Ping; Mao, Jiang-Gao

    2013-10-07

    The syntheses, crystal structures, and characterizations of a series of monovalent metal gold(III) iodates, namely, α-NaAu(IO3)4, β-NaAu(IO3)4, RbAu(IO3)4, α-CsAu(IO3)4, β-CsAu(IO3)4, and AgAu(IO3)4 are reported. Their structures feature Au(IO3)4(-) anions that are separated by alkali metal ions or silver(I) ions. The Au(IO3)4(-) anions in the polar α-NaAu(IO3)4, RbAu(IO3)4, and α-CsAu(IO3)4 are polar with all four iodate groups being located only above (or below) the AuO4 square plane (cis- configuration). α-NaAu(IO3)4, RbAu(IO3)4, and α-CsAu(IO3)4 display moderate strong Second-Hamonic Generation (SHG) responses of 1.17 ×, 1.33 ×, and 1.17 × KTP (KTiOPO4), respectively, and all three materials are type-I phase-matchable. The Au(IO3)4(-) anions in centrysymmetric β-NaAu(IO3)4, β-CsAu(IO3)4, and AgAu(IO3)4 are nonpolar with the four iodate groups of the Au(IO3)4(-) anion being located both above and below the AuO4 square plane (trans- configuration). IR and UV spectra, luminescent and ferroelectric properties have also been measured. Theoretical calculations of their optical properties based on density functional theory (DFT) methods were performed by using the CASTEP total-energy code.

  12. Neutralizing antibody responses in macaques induced by human immunodeficiency virus type 1 monovalent or trivalent envelope glycoproteins.

    Directory of Open Access Journals (Sweden)

    Gerald V Quinnan

    Full Text Available A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb. In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q, was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B and 14/00/4 (subtype F, both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q. The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.

  13. Group a rotavirus and norovirus genotypes circulating in the northeastern Brazil in the post-monovalent vaccination era.

    Science.gov (United States)

    Sá, Ana Caroline C; Gómez, Mariela M; Lima, Ila Fernanda N; Quetz, Josiane S; Havt, Alexandre; Oriá, Reinaldo B; Lima, Aldo A; Leite, José Paulo G

    2015-09-01

    Group A rotaviruses (RVA) and noroviruses (NoV) are the leading cause of acute gastroenteritis (AGE) worldwide. Childhood diarrhea deaths and hospital admissions have declined since the introduction of the monovalent (G1P[8]) vaccine (Rotarix(®) [RV1]) in the National Immunization Program in Brazil in 2006. This study aims to investigate the epidemiological profile of NoV and RVA infections from children with AGE in the Northeastern region of Brazil in the post vaccine season. Two-hundred fecal samples collected from children up to 10 years old in Fortaleza, Ceará between 2008-2009 were screened for the presence of RVA and NoV. Positive samples were genotyped and sequenced. The RVA screening revealed 12% prevalence and all RVA strains belonged to G2P[4] genotype. Phylogenetic analysis based on the 11 RVA genome segments sequenced from eight samples revealed a DS-1-like genotype constellation: I2-R2-C2-M2-A2-N2-T2-E2-H2. For NoV screening, the prevalence observed was 17% and the following genotypes were detected: GII.4 (59%), GII.12 (17%), GII.6 (9%), GII.3 (6%), and GII.? (9%). At least four different NoVs genotypes and two RVA G2P[4] variants were identified circulating in the Northeastern region of Brazil. RVA phylogenetic analysis suggests that the RVA G2P[4] strains might have originated from intragenogroup reassortment events. Whether the genetic modifications observed in these contemporary G2P[4] RVA strains may impact the long-term effectiveness of the current vaccination programs remains to be explored. These data reinforce the importance of surveillance for monitoring the emergence of new strains of RVA and NoV and their impact on cases of acute gastroenteritis.

  14. Policy statement—Prevention of varicella: update of recommendations for use of quadrivalent and monovalent varicella vaccines in children.

    Science.gov (United States)

    2011-09-01

    Two varicella-containing vaccines are licensed for use in the United States: monovalent varicella vaccine (Varivax [Merck & Co, Inc, West Point, PA]) and quadrivalent measles-mumps-rubella-varicella vaccine (MMRV) (ProQuad [Merck & Co, Inc]). It is estimated from postlicensure data that after vaccination at 12 through 23 months of age, 7 to 9 febrile seizures occur per 10,000 children who receive the MMRV, and 3 to 4 febrile seizures occur per 10,000 children who receive the measles-mumps-rubella (MMR) and varicella vaccines administered concurrently but at separate sites. Thus, 1 additional febrile seizure is expected to occur per approximately 2300 to 2600 children 12 to 23 months old vaccinated with the MMRV, when compared with separate MMR and varicella vaccine administration. The period of risk for febrile seizures is from 5 through 12 days after receipt of the vaccine(s). No increased risk of febrile seizures is seen among patients 4 to 6 years of age receiving MMRV. Febrile seizures do not predispose to epilepsy or neurodevelopmental delays later in life and are not associated with long-term health impairment. The American Academy of Pediatrics recommends that either MMR and varicella vaccines separately or the MMRV be used for the first dose of measles, mumps, rubella, and varicella vaccines administered at 12 through 47 months of age. For the first dose of measles, mumps, rubella, and varicella vaccines administered at ages 48 months and older, and for dose 2 at any age (15 months to 12 years), use of MMRV generally is preferred over separate injections of MMR and varicella vaccines.

  15. Blackbody-induced radiative dissociation of cationic SF 6 clusters

    DEFF Research Database (Denmark)

    Toker, Jonathan; Rahinov, I.; Schwalm, D.;

    2012-01-01

    The stability of cationic SF5+(SF6)n−1 clusters was investigated by measuring their blackbody-induced radiative dissociation (BIRD) rates. The clusters were produced in a supersonic expansion ion source and stored in an electrostatic ion-beam trap at room temperature, where their abundances...... and lifetimes were measured. Using the “master equation” approach, relative binding energies of an SF6 unit in the clusters could be extracted from the storage-time dependence of the survival probabilities. The results allow for a deeper insight into the effect of a localized charge on the structure...... and stability of SF6-based clusters....

  16. Cationic polyacrylamides enhance rates of starch and cellulose saccharification.

    Science.gov (United States)

    Reye, John T; Maxwell, Kendra; Rao, Swati; Lu, Jian; Banerjee, Sujit

    2009-10-01

    Adding a cationic polyacrylamide (c-PAM) to either the amylase mediated hydrolysis of corn starch or the hydrolysis of wood fiber by cellulase can enhance the initial hydrolysis rates, although a rate decrease can occur under some conditions. Several c-PAMs can serve as catalysts and the same c-PAM can improve the efficiency of both amylase and cellulase. The initial amylase rate approximately doubles; the analogous cellulase hydrolysis rate increases by about 40%. c-PAMs increase the binding of enzyme to substrate.

  17. The laws governing ionic liquid extraction of cations: partition of 1-ethylpyridinium monocation and paraquat dication in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Hamamoto, Takuya; Okai, Miho; Katsuta, Shoichi

    2015-05-21

    To find the laws governing the extraction of cations from aqueous solutions into hydrophobic ionic liquids (ILs), we investigated the partition of 1-ethylpyridinium monocation and paraquat (1,1'-dimethyl-4,4'-bipyridinium) dication in various IL/water biphasic systems. Ten different ILs of 1-butyl-3-methylimidazolium-based or bis(trifluoromethanesulfonyl)amide-based salts were used. The distribution ratio of the target cations (T(n+)) was dependent on the initial concentration in the aqueous phase and also very sensitive to the kind of IL. The behavior was quantitatively explained on the basis of a model in which the extraction goes through both the ion exchange and ion pair transfer processes, while keeping the product of the aqueous concentrations of the IL constituent ions a constant value (solubility product, Ksp). The distribution ratio of T(n+) is expressed as a function of the difference between the initial and equilibrium concentrations of T(n+) in the aqueous phase (Δ[T(n+)]W), the aqueous solubility of IL (Ksp(1/2)), and the cation valence n. The distribution ratio is a nearly constant value (D0) when Δ[T(n+)]W ≪ Ksp(1/2)/n and decreases inversely proportional to the nth power of Δ[T(n+)]W when Δ[T(n+)]W ≫ Ksp(1/2)/n. The log D0 versus log Ksp(1/2) plot gives a linear relationship with a slope of +n for the ILs with the same anion but different cations and that with a slope of nearly -n for the ILs with the same cation but different anions. This means that the extractability dependence on the kinds of IL constituent ions is greater for the divalent cation than for the monovalent one.

  18. [Effect of metal cations on the copper induced peroxidation of the low density lipoproteins].

    Science.gov (United States)

    Dremina, E S; Vlasova, I I; Vakhrusheva, T V; Sharov, V S; Azizova, O A

    1997-01-01

    The effect of metal cations on copper-catalyzed lipid peroxidation (LPO) of low density lipoproteins (LDL) was examined. The presence of metal cations in the incubation media containing LDL (0.8 mg protein/ml) and CuSO4 (0-80 microM) influenced on LPO of LDL as evident by the measurement of TBARS. With the concentrations of CuSO4 less than 10 microM, the metal cations caused an increase in LDL peroxidation. Zn2+ appeared to be the most effective inductor, Mn2+ was less effective, and the influence of Ca2+ and Mg2+ was insignificant. With greater CuSO4 concentrations Mg2+ showed no effect on TBARS formation in LDL while the addition of other nontransition metal cations to the incubation mixture led to the inhibition of LDL peroxidation. The capacity for inhibition decreased in the row Mn2+ > Zn2+ > Ca2+ > Mg2+. The possible mechanism explaining these results may be in the competition of metal ions for copper binding sites on LDL. Our results allow to suggest the existence of two types of copper binding sites on LDL, tight-binding sites which are non-effective in LPO and effective weak-binding sites.

  19. Cations in a Molecular Funnel: Vibrational Spectroscopy of Isolated Cyclodextrin Complexes with Alkali Metals

    NARCIS (Netherlands)

    Gamez, F.; Hurtado, P.; Hortal, A. R.; Martinez-Haya, B.; G. Berden,; Oomens, J.

    2013-01-01

    The benchmark inclusion complexes formed by -cyclodextrin (CD) with alkali-metal cations are investigated under isolated conditions in the gas phase. The relative CD-M+ (M=Li+, Na+, K+, Cs+) binding affinities and the structure of the complexes are determined from a combination of mass spectrometry,

  20. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate.

    Science.gov (United States)

    Nilius, Bernd; Mahieu, Frank; Prenen, Jean; Janssens, Annelies; Owsianik, Grzegorz; Vennekens, Rudi; Voets, Thomas

    2006-02-08

    Transient receptor potential (TRP) channel, melastatin subfamily (TRPM)4 is a Ca2+-activated monovalent cation channel that depolarizes the plasma membrane and thereby modulates Ca2+ influx through Ca2+-permeable pathways. A typical feature of TRPM4 is its rapid desensitization to intracellular Ca2+ ([Ca2+]i). Here we show that phosphatidylinositol 4,5-biphosphate (PIP2) counteracts desensitization to [Ca2+]i in inside-out patches and rundown of TRPM4 currents in whole-cell patch-clamp experiments. PIP2 shifted the voltage dependence of TRPM4 activation towards negative potentials and increased the channel's Ca2+ sensitivity 100-fold. Conversely, activation of the phospholipase C (PLC)-coupled M1 muscarinic receptor or pharmacological depletion of cellular PIP2 potently inhibited currents through TRPM4. Neutralization of basic residues in a C-terminal pleckstrin homology (PH) domain accelerated TRPM4 current desensitization and strongly attenuated the effect of PIP2, whereas mutations to the C-terminal TRP box and TRP domain had no effect on the PIP2 sensitivity. Our data demonstrate that PIP2 is a strong positive modulator of TRPM4, and implicate the C-terminal PH domain in PIP2 action. PLC-mediated PIP2 breakdown may constitute a physiologically important brake on TRPM4 activity.

  1. Drug loading to lipid-based cationic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Leide P. [ESRF, 6 rue Jules Horowitz, B.P. 220, F-38043 Grenoble CDX 09 (France)]. E-mail: cavalcanti@esrf.fr; Konovalov, Oleg [ESRF, 6 rue Jules Horowitz, B.P. 220, F-38043 Grenoble CDX 09 (France); Torriani, Iris L. [UNICAMP/LNLS (Brazil); Haas, Heinrich [Munich Biotech AG, Neuried (Germany)

    2005-08-15

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  2. Drug loading to lipid-based cationic nanoparticles

    Science.gov (United States)

    Cavalcanti, Leide P.; Konovalov, Oleg; Torriani, Iris L.; Haas, Heinrich

    2005-08-01

    Lipid-based cationic nanoparticles are a new promising option for tumor therapy, because they display enhanced binding and uptake at the neo-angiogenic endothelial cells, which a tumor needs for its nutrition and growth. By loading suitable cytotoxic compounds to the cationic carrier, the tumor endothelial and consequently also the tumor itself can be destroyed. For the development of such novel anti-tumor agents, the control of drug loading and drug release from the carrier matrix is essential. We have studied the incorporation of the hydrophobic anti-cancer agent Paclitaxel (PXL) into a variety of lipid matrices by X-Ray reflectivity measurements. Liposome suspensions from cationic and zwitterionic lipids, comprising different molar fractions of Paclitaxel, were deposited on planar glass substrates. After drying at controlled humidity, well ordered, oriented multilayer stacks were obtained, as proven by the presence of bilayer Bragg peaks to several orders in the reflectivity curves. The presence of the drug induced a decrease of the lipid bilayer spacing, and with an excess of drug, also Bragg peaks of drug crystals could be observed. From the results, insight into the solubility of Paclitaxel in the model membranes was obtained and a structural model of the organization of the drug in the membrane was derived. Results from subsequent pressure/area-isotherm and grazing incidence diffraction (GID) measurements performed with drug/lipid Langmuir monolayers were in accordance with these conjectures.

  3. Aggregation kinetics of inorganic colloids in eutrophic shallow lakes: Influence of cyanobacterial extracellular polymeric substances and electrolyte cations.

    Science.gov (United States)

    Xu, Huacheng; Yang, Changming; Jiang, Helong

    2016-12-01

    The stability/aggregation propensity of inorganic colloids in eutrophic shallow lakes is of great essence in governing the water transparency and contaminant behavior. In this study, time-resolved dynamic light scattering was employed to investigate the aggregation kinetics of Al2O3 inorganic colloids over a wide range of cyanobacterial extracellular polymeric substance (EPS) concentrations in the absence and presence of electrolyte cations. The results showed that EPS adsorption alone greatly decreased the hydrodynamic diameters of colloidal particles, whose stability behavior followed closely the predictions of the classical DLVO theory. Electrolyte cations, however, can induce the aggregation of colloidal particles, and divalent Ca(2+) were found to be more efficient in destabilizing the colloids than monovalent Na(+), as indicated by the considerably lower critical coagulation concentrations (2.5 mM for Ca(2+) vs. 170 mM for Na(+)). Further addition of Ca(2+), i.e., >2.5 mM, caused an extremely high aggregation degree and rate. High resolution transmission electron microscopy revealed that this enhanced aggregation should be attributed to the gel-like bridging between colloidal particles, which were verified to be the amorphous EPS-Ca(2+) complexes. Field-emission scanning electron microscopy coupled with elemental mapping provided additional evidence that the bridging interaction of EPS with Ca(2+) was the predominant mechanism for the aggregation enhancement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Genome-wide identification and comparative analysis of the cation proton antiporters family in pear and four other Rosaceae species.

    Science.gov (United States)

    Zhou, Hongsheng; Qi, Kaijie; Liu, Xing; Yin, Hao; Wang, Peng; Chen, Jianqing; Wu, Juyou; Zhang, Shaoling

    2016-08-01

    The monovalent cation proton antiporters (CPAs) play essential roles in plant nutrition, development, and signal transduction by regulating ion and pH homeostasis of the cell. The CPAs of plants include the Na(+)/H(+) exchanger, K(+) efflux antiporter, and cation/H(+) exchanger families. However, currently, little is known about the CPA genes in Rosaceae species. In this study, 220 CPA genes were identified from five Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, and Prunus mume), and 53 of which came from P. bretschneideri. Phylogenetic, structure, collinearity, and gene expression analyses were conducted on the entire CPA genes of pear. Gene expression data showed that 35 and 37 CPA genes were expressed in pear fruit and pollen tubes, respectively. The transcript analysis of some CPA genes under abiotic stress conditions revealed that CPAs may play an important role in pollen tubes growth. The results presented here will be useful in improving understanding of the complexity of the CPA gene family and will promote functional characterization in future studies.

  5. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Directory of Open Access Journals (Sweden)

    Igor A Vereninov

    Full Text Available Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  6. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells.

    Science.gov (United States)

    Vereninov, Igor A; Yurinskaya, Valentina E; Model, Michael A; Vereninov, Alexey A

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1-10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential.

  7. Afrikaans Syllabification Patterns

    Directory of Open Access Journals (Sweden)

    Tilla Fick

    2010-01-01

    Full Text Available In contrast to English, automatic hyphenation by computer of Afrikaans words is a problem that still needs to be addressed, since errors are still often encountered in printed text. An initial step in this task is the ability to automatically syllabify words. Since new words are created continuously by joining words, it is necessary to develop an “intelligent” technique for syllabification. As a first phase of the research, we consider only the orthographic information of words, and disregard both syntactic and morphological information. This approach allows us to use machine-learning techniques such as artificial neural networks and decision trees that are known for their pattern recognition abilities. Both these techniques are trained with isolated patterns consisting of input patterns and corresponding outputs (or targets that indicate whether the input pattern should be split at a certain position, or not. In the process of compiling a list of syllabified words from which to generate training data for the  syllabification problem, irregular patterns were identified. The same letter patterns are split differently in different words and complete words that are spelled identically are split differently due to meaning. We also identified irregularities in and between  the different dictionaries that we used. We examined the influence range of letters that are involved in irregularities. For example, for their in agter-ente and vaste-rente we have to consider three letters to the left of r to be certain where the hyphen should be inserted. The influence range of the k in verstek-waarde and kleinste-kwadrate is four to the left and three to the right. In an analysis of letter patterns in Afrikaans words we found that the letter e has the highest frequency overall (16,2% of all letters in the word list. The frequency of words starting with s is the highest, while the frequency of words ending with e is the highest. It is important to

  8. Electroanalysis of cationic species at membrane-carbon electrodes modified by polysaccharides. Bioaccumulation at microorganism-modified electrodes.

    Science.gov (United States)

    Lojou, E; Bianco, P

    2000-05-01

    Membrane-carbon electrodes modified with polysaccharides suspensions entrapped between a dialysis membrane and the carbon surface were used for electroanalysis of various cationic species. Cationic complexes of ruthenium and cobalt, metallic cations (Cu(2+), Fe(3+), UO(2)(2+)) as well as methylviologen were considered. By investigating various parameters (concentration of the suspension, pH) binding of the cations by the polysaccharides was demonstrated. Comparison of cations uptake by different kinds of polysaccharides such as alginic acid, polygalacturonic acid, pectin, dextran and agar was performed. This study has been extended to natural biomaterials, alga and lichen, which are known to contain polysaccharides. The interest of the membrane-electrode strategy is described.

  9. Assessment of epicutaneous testing of a monovalent Influenza A (H1N1 2009 vaccine in egg allergic patients

    Directory of Open Access Journals (Sweden)

    Pitt Tracy

    2011-02-01

    Full Text Available Abstract Background H1N1 is responsible for the first influenza pandemic in 41 years. In the fall of 2009, an H1N1 vaccine became available in Canada with the hopes of reducing the overall effect of the pandemic. The purpose of this study was to assess the safety of administering 2 different doses of a monovalent split virus 2009 H1N1 vaccine in egg allergic patients. Methods Patients were skin tested to the H1N1 vaccine in the outpatient paediatric and adult allergy and immunology clinics of the Health Sciences Centre and Children's Hospital of Winnipeg, Manitoba Canada. Individuals Results A total of 61 patients with egg allergy (history of an allergic reaction to egg with either positive skin test &/or specific IgE to egg >0.35 Ku/L were referred to our allergy clinics for skin testing to the H1N1 vaccine. 2 patients were excluded, one did not have a skin prick test to the H1N1 vaccine (only vaccine administration and the other passed an egg challenge during the study period. Ages ranged from 1 to 27 years (mean 5.6 years. There were 41(69.5% males and 18(30.5% females. All but one patient with a history of egg allergy, positive skin test to egg and/or elevated specific IgE level to egg had negative skin tests to the H1N1 vaccine. The 58 patients with negative skin testing to the H1N1 vaccine were administered the vaccine and observed for 30 minutes post vaccination with no adverse results. The patient with the positive skin test to the H1N1 vaccine was also administered the vaccine intramuscularly with no adverse results. Conclusions Despite concern regarding possible anaphylaxis to the H1N1 vaccine in egg allergic patients, in our case series 1/59(1.7% patients with sensitization to egg were also sensitized to the H1N1 vaccine. Administration of the H1N1 vaccine in egg allergic patients with negative H1N1 skin tests and observation is safe. Administering the vaccine in a 1 or 2 dose protocol without skin testing is a reasonable alternative

  10. H2O Nucleation Around Noble Metal Cations

    Science.gov (United States)

    Calaminici, Patrizia; Oropeza Alfaro, Pavel; Juarez Flores, Martin; Köster, Andreas; Beltran, Marcela; Ulises Reveles, J.; Khanna, Shiv N.

    2008-03-01

    First principle electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure and binding energy of noble metal cations (H2O)n^+ clusters containing up to 10 H2O molecules. The calculations are performed with the density functional theory code deMon2k [1]. Due to the very flat potential energy surface of these systems special care to the numerical stability of energy and gradient calculation must be taken.Comparison of the results obtained with Cu^+, Ag^+ and Au^+ will be shown. This investigation provides insight into the structural arrangement of the water molecules around these metals and a microscopic understanding of the observed incremental binding energy in the case of the gold cation based on collision induced dissociation experiments. [1] A.M. Köster, P. Calaminici, M.E. Casida, R. Flores-Moreno, G. Geudtner, A. Goursot, T. Heine, A. Ipatov, F. Janetzko, J. Martin del Campo, S. Patchkovski, J.U. Reveles, A. Vela and D.R. Salahub, deMon2k, The deMon Developers, Cinvestav, 2006

  11. Advancements in Anion Exchange Membrane Cations

    Energy Technology Data Exchange (ETDEWEB)

    Sturgeon, Matthew R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Long, Hai [National Renewable Energy Lab. (NREL), Golden, CO (United States); Park, Andrew M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pivovar, Bryan S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-15

    Anion-exchange membrane fuel cells (AME-FCs) are of increasingly popular interest as they enable the use of non-Pt fuel cell catalysts, the primary cost limitation of proton exchange membrane fuel cells. Benzyltrimethyl ammonium (BTMA) is the standard cation that has historically been utilized as the hydroxide conductor in AEMs. Herein we approach AEMs from two directions. First and foremost we study the stability of several different cations in a hydroxide solution at elevated temperatures. We specifically targeted BTMA and methoxy and nitro substituted BTMA. We've also studied the effects of adding an akyl spacer units between the ammonium cation and the phenyl group. In the second approach we use computational studies to predict stable ammonium cations, which are then synthesized and tested for stability. Our unique method to study cation stability in caustic conditions at elevated temperatures utilizes Teflon Parr reactors suitable for use under various temperatures and cation concentrations. NMR analysis was used to determine remaining cation concentrations at specific time points with GCMS analysis verifying product distribution. We then compare the experimental results with calculated modeling stabilities. Our studies show that the electron donating methoxy groups slightly increase stability (compared to that of BTMA), while the electron withdrawing nitro groups greatly decrease stability in base. These results give insight into possible linking strategies to be employed when tethering a BTMA like ammonium cation to a polymeric backbone; thus synthesizing an anion exchange membrane.

  12. Charge Shielding of PIP2 by Cations Regulates Enzyme Activity of Phospholipase C.

    Directory of Open Access Journals (Sweden)

    Jong Bae Seo

    Full Text Available Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2 of the plasma membrane by phospholipase C (PLC generates two critical second messengers, inositol-1,4,5-trisphosphate and diacylglycerol. For the enzymatic reaction, PIP2 binds to positively charged amino acids in the pleckstrin homology domain of PLC. Here we tested the hypothesis that positively charged divalent and multivalent cations accumulate around the negatively charged PIP2, a process called electrostatic charge shielding, and therefore inhibit electrostatic PIP2-PLC interaction. This charge shielding of PIP2 was measured quantitatively with an in vitro enzyme assay using WH-15, a PIP2 analog, and various recombinant PLC proteins (β1, γ1, and δ1. Reduction of PLC activity by divalent cations, polyamines, and neomycin was well described by a theoretical model considering accumulation of cations around PIP2 via their electrostatic interaction and chemical binding. Finally, the charge shielding of PIP2 was also observed in live cells. Perfusion of the cations into cells via patch clamp pipette reduced PIP2 hydrolysis by PLC as triggered by M1 muscarinic receptors with a potency order of Mg2+ < spermine4+ < neomycin6+. Accumulation of divalent cations into cells through divalent-permeable TRPM7 channel had the same effect. Altogether our results suggest that Mg2+ and polyamines modulate the activity of PLCs by controlling the amount of free PIP2 available for the enzymes and that highly charged biomolecules can be inactivated by counterions electrostatically.

  13. DFT and MP2 study of the interaction between corannulene and alkali cations.

    Science.gov (United States)

    Rellán-Piñeiro, Marcos; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M; Josa, Daniela

    2013-05-01

    Corannulene is an unsaturated hydrocarbon composed of fused rings, with one central five-membered ring and five peripheral six-membered rings. Its structure can be considered as a portion of C60. Corannulene is a curved π surface, but unlike C60, it has two accessible different faces: one concave (inside) and one convex (outside). In this work, computational modeling of the binding between alkali metal cations (Li(+), Na(+), and K(+)) and corannulene has been performed at the DFT and MP2 levels. Different corannulene···M(+) complexes have been studied and the transition states interconnecting local minima were located. The alkali cations can be bound to a five or six membered ring in both faces. At the DFT level, binding to the convex face (outside) is favored relative to the concave face for the three alkali cations studied, as it was previously published. This out preference was found to decrease as cation size increases. At the MP2 level, although a similar trend is found, some different conclusions related to the in/out preference were obtained. According to our results, migration of cations can take place on the convex or on the concave face. Also, there are two ways to transform a concave complex in a convex complex: migration across the edge of corannulene and bowl-to-bowl inversion.

  14. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin

    Science.gov (United States)

    2017-01-01

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems. PMID:28234007

  15. Isothermal titration calorimetric analysis of the interaction between cationic lipids and plasmid DNA.

    Science.gov (United States)

    Lobo, B A; Davis, A; Koe, G; Smith, J G; Middaugh, C R

    2001-02-01

    The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.

  16. Cation diffusion in the natural zeolite clinoptilolite

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, A.; White, K.J. [Science Research Institute, Chemistry Division, Cockcroft Building, University of Salford, Salford (United Kingdom)

    1999-12-14

    The natural zeolite clinoptilolite is mined commercially in many parts of the world. It is a selective exchanger for the ammonium cation and this has prompted its use in waste water treatment, swimming pools and in fish farming. It is also used to scavenge radioisotopes in nuclear waste clean-up. Further potential uses for clinoptilolite are in soil amendment and remediation. The work described herein provides thermodynamic data on cation exchange processes in clinoptilolite involving the NH{sub 4}, Na, K, Ca, and Mg cations. The data includes estimates of interdiffusion coefficients together with free energies, entropies and energies of activation for the cation exchanges studied. Suggestions are made as to the mechanisms of cation-exchanges involved.

  17. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  18. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture.

    Science.gov (United States)

    An, Min; Parkin, Sean R; DeRouchey, Jason E

    2014-01-28

    In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.

  19. Nonbonded interactions in membrane active cyclic biopolymers. IV - Cation dependence

    Science.gov (United States)

    Radhakrishnan, R.; Srinivasan, S.; Prasad, C. V.; Brinda, S. R.; Macelroy, R. D.; Sundaram, K.

    1980-01-01

    Interactions of valinomycin and form of its analogs in several conformations with the central ions Li(+), Na(+), K(+), Rb(+) and Cs(+) are investigated as part of a study of the specific preference of valinomycin for potassium and the mechanisms of carrier-mediated ion transport across membranes. Ion binding energies and conformational potential energies are calculated taking into account polarization energy formulas and repulsive energy between the central ion and the ligand atoms for conformations representing various stages in ion capture and release for each of the two ring chiralities of valinomycin and its analogs. Results allow the prediction of the chirality and conformation most likely to be observed for a given analog, and may be used to synthesize analogs with a desired rigidity or flexibility. The binding energies with the alkali metal cations are found to decrease with increasing ion size, and to be smaller than the corresponding ion hydration energies. It is pointed out that the observed potassium preference may be explainable in terms of differences between binding and hydration energies. Binding energies are also noted to depend on ligand conformation.

  20. Cationic Bolaamphiphiles for Gene Delivery

    Science.gov (United States)

    Tan, Amelia Li Min; Lim, Alisa Xue Ling; Zhu, Yiting; Yang, Yi Yan; Khan, Majad

    2014-05-01

    Advances in medical research have shed light on the genetic cause of many human diseases. Gene therapy is a promising approach which can be used to deliver therapeutic genes to treat genetic diseases at its most fundamental level. In general, nonviral vectors are preferred due to reduced risk of immune response, but they are also commonly associated with low transfection efficiency and high cytotoxicity. In contrast to viral vectors, nonviral vectors do not have a natural mechanism to overcome extra- and intracellular barriers when delivering the therapeutic gene into cell. Hence, its design has been increasingly complex to meet challenges faced in targeting of, penetration of and expression in a specific host cell in achieving more satisfactory transfection efficiency. Flexibility in design of the vector is desirable, to enable a careful and controlled manipulation of its properties and functions. This can be met by the use of bolaamphiphile, a special class of lipid. Unlike conventional lipids, bolaamphiphiles can form asymmetric complexes with the therapeutic gene. The advantage of having an asymmetric complex lies in the different purposes served by the interior and exterior of the complex. More effective gene encapsulation within the interior of the complex can be achieved without triggering greater aggregation of serum proteins with the exterior, potentially overcoming one of the great hurdles faced by conventional single-head cationic lipids. In this review, we will look into the physiochemical considerations as well as the biological aspects of a bolaamphiphile-based gene delivery system.

  1. Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hanzhong, E-mail: jiahz@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Li, Li [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Chen, Hongxia; Zhao, Yue [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046 (China); Li, Xiyou [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China); Wang, Chuanyi, E-mail: cywang@ms.xjb.ac.cn [Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011 (China)

    2015-04-28

    Graphical abstract: Roles of exchangeable cations in PAHs photodegradation on clay surafces under visible light. - Highlights: • Photolysis rate are strongly dependent on the type of cations on clay surface. • The strength of “cation–π” interactions governs the photodegradation rate of PAHs. • Several exchangeable cations could cause a shift in the absorption spectrum of PAHs. • Exchangeable cations influence the type and amount of reactive intermediates. - Abstract: Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe{sup 3+} > Al{sup 3+} > Cu{sup 2+} >> Ca{sup 2+} > K{sup +} > Na{sup +}, which is consistent with the binding energy of cation–π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation–π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na{sup +}-smectite and K{sup +}-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe{sup 3+}, Al{sup 3+}, and Cu{sup 2+} are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O{sub 2}{sup −}· , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.

  2. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  3. Cation distributions on rapidly solidified cobalt ferrite

    Science.gov (United States)

    De Guire, Mark R.; Kalonji, Gretchen; O'Handley, Robert C.

    1990-01-01

    The cation distributions in two rapidly solidified cobalt ferrites have been determined using Moessbauer spectroscopy at 4.2 K in an 8-T magnetic field. The samples were obtained by gas atomization of a Co0-Fe2O3-P2O5 melt. The degree of cation disorder in both cases was greater than is obtainable by cooling unmelted cobalt ferrite. The more rapidly cooled sample exhibited a smaller departure from the equilibrium cation distribution than did the more slowly cooled sample. This result is explained on the basis of two competing effects of rapid solidification: high cooling rate of the solid, and large undercooling.

  4. Synthesis and metal binding properties of N-alkylcarboxyspiropyrans

    OpenAIRE

    Perry, Alexis; Kousseff, Christina J

    2017-01-01

    Spiropyrans bearing an N-alkylcarboxylate tether are a common structure in dynamic, photoactive materials and serve as colourimetric/fluorimetric cation receptors. In this study, we describe an efficient synthesis of spiropyrans with 2–12 carbon atom alkylcarboxylate substituents, and a systematic analysis of their interactions with metal cations using 1H NMR and UV-visible spectroscopy. All N-alkylcarboxyspiropyrans in this study displayed a strong preference for binding divalent metal catio...

  5. Intracellular NHX-Type Cation/H+ Antiporters inPlants

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Cells depend on the homeostatic maintenance of pHwithin specific cellular compartments to ensure optimalconditions for metabolic and enzymatic processes as wellas protein structure and function. In the animal secre-tory pathway, cells maintain distinct luminal pHs withinvarious compartments (Paroutis et al., 2004). Among themany molecular players that contribute to pH and ionhomeostasis in plants, Na+(K+)/H+ exchangers (also knownas NHX-type cation/H+ antiporters) appear to be particu-larly important for the regulation of a wide variety ofphysiological processes, including cell expansion, cellvolume regulation, osmotic adjustment, pH regulation,membrane trafficking, protein processing, and cellularstress responses (Pardo et al., 2006; Rodriguez-Rosaleset al., 2009; Bassil et al., 2012). In plants, NHX antiportersappeared early in evolution and are ubiquitously encodedmembers of the CPA1 cation/H+ antiporters subgroupthat belongs to the large family of monovalent cation/H+ transporters CPA (Brett et al., 2005). NHX antiport-ers are found, thus far, in all sequenced plant genomes(Bassil et al., 2012; Chanroj et al., 2012). In Arabidopsis,the NHX family consists of eight isoforms, six of whichare intracellular (AtNHXl-AtNHX6), located either to thevacuole (AtNHXl to AtNHX4) or endosomes (AtNHX5 andAtNHX6) and an additional two more divergent members(AtNHX7/SOSl and AtNHX8) at the plasma membrane(Bassil et al., 2012). Orthologous sequences in each of thethree classes (plasma membrane, vacuolar, or endosomal)appear in all sequenced genomes, suggesting that distinctfunctional NHX classes appeared early in evolution andmay have conserved roles that are compartment-specific(Bassil et al., 2012). Emerging new evidence highlightsthe importance of particular intracellular NHX antiport-ers in the regulation of vesicular and vacuolar pH andK+ homeostasis. Vacuolar NHXs are needed to maintainK+ homeostasis

  6. Cationic ruthenium alkylidene catalysts bearing phosphine ligands.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2016-02-28

    The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelating Ph2P(CH2)nPPh2 (n = 2 or 3) ligated cationic catalysts. The structures of these newly reported catalysts feature unique geometries caused by ligation of the bulky phosphine ligands. Their activities and selectivities in standard metathesis reactions were also investigated. These cationic ruthenium alkylidene catalysts reported here showed moderate activity and very similar stereoselectivity when compared to the second generation ruthenium dichloride catalyst in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization assays.

  7. Cation locations and dislocations in zeolites

    Science.gov (United States)

    Smith, Luis James

    The focus of this dissertation is the extra-framework cation sites in a particular structural family of zeolites, chabazite. Cation sites play a particularly important role in the application of these sieves for ion exchange, gas separation, catalysis, and, when the cation is a proton, acid catalysis. Structural characterization is commonly performed through the use of powder diffraction and Rietveld analysis of powder diffraction data. Use of high-resolution nuclear magnetic resonance, in the study of the local order of the various constituent nuclei of zeolites, complements well the long-range order information produced by diffraction. Recent developments in solid state NMR techniques allow for increased study of disorder in zeolites particularly when such phenomena test the detection limits of diffraction. These two powerful characterization techniques, powder diffraction and NMR, offer many insights into the complex interaction of cations with the zeolite framework. The acids site locations in SSZ-13, a high silica chabazite, and SAPO-34, a silicoaluminophosphate with the chabazite structure, were determined. The structure of SAPO-34 upon selective hydration was also determined. The insensitivity of X-rays to hydrogen was avoided through deuteration of the acid zeolites and neutron powder diffraction methods. Protons at inequivalent positions were found to have different acid strengths in both SSZ-13 and SAPO-34. Other light elements are incorporated into zeolites in the form of extra-framework cations, among these are lithium, sodium, and calcium. Not amenable by X-ray powder diffraction methods, the positions of such light cations in fully ion-exchanged versions of synthetic chabazite were determined through neutron powder diffraction methods. The study of more complex binary cation systems were conducted. Powder diffraction and solid state NMR methods (MAS, MQMAS) were used to examine cation site preferences and dislocations in these mixed-akali chabazites

  8. Cell number and transfection volume dependent peptide nucleic acid antisense activity by cationic delivery methods

    DEFF Research Database (Denmark)

    Llovera Nadal, Laia; Berthold, Peter; Nielsen, Peter E

    2012-01-01

    Efficient intracellular delivery is essential for high activity of nucleic acids based therapeutics, including antisense agents. Several strategies have been developed and practically all rely on auxiliary transfection reagents such as cationic lipids, cationic polymers and cell penetrating...... peptides as complexing agents and carriers of the nucleic acids. However, uptake mechanisms remain rather poorly understood, and protocols always require optimization of transfection parameters. Considering that cationic transfection complexes bind to and thus may up-concentrate on the cell surface, we...... have now quantitatively compared the cellular activity (in the pLuc705 HeLa cell splice correction system) of PNA antisense oligomers using lipoplex delivery of cholesterol- and bisphosphonate-PNA conjugates, polyplex delivery via a PNA-polyethyleneimine conjugate and CPP delivery via a PNA...

  9. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2016-11-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms. Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  10. Cationized Carbohydrate Gas-Phase Fragmentation Chemistry

    Science.gov (United States)

    Bythell, Benjamin J.; Abutokaikah, Maha T.; Wagoner, Ashley R.; Guan, Shanshan; Rabus, Jordan M.

    2017-04-01

    We investigate the fragmentation chemistry of cationized carbohydrates using a combination of tandem mass spectrometry, regioselective labeling, and computational methods. Our model system is D-lactose. Barriers to the fundamental glyosidic bond cleavage reactions, neutral loss pathways, and structurally informative cross-ring cleavages are investigated. The most energetically favorable conformations of cationized D-lactose were found to be similar. In agreement with the literature, larger group I cations result in structures with increased cation coordination number which require greater collision energy to dissociate. In contrast with earlier proposals, the B n -Y m fragmentation pathways of both protonated and sodium-cationized analytes proceed via protonation of the glycosidic oxygen with concerted glycosidic bond cleavage. Additionally, for the sodiated congeners our calculations support sodiated 1,6-anhydrogalactose B n ion structures, unlike the preceding literature. This affects the subsequent propensity of formation and prediction of B n /Y m branching ratio. The nature of the anomeric center (α/β) affects the relative energies of these processes, but not the overall ranking. Low-energy cross-ring cleavages are observed for the metal-cationized analytes with a retro-aldol mechanism producing the 0,2 A 2 ion from the sodiated forms . Theory and experiment support the importance of consecutive fragmentation processes, particularly for the protonated congeners at higher collision energies.

  11. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Science.gov (United States)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-09-01

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  12. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei

    2009-01-01

    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  13. Sulfation and Cation Effects on the Conformational Properties of the Glycan Backbone of Chondroitin Sulfate Disaccharides

    Science.gov (United States)

    Faller, Christina E.; Guvench, Olgun

    2015-01-01

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic “backbone” has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high resolution, high precision free energies of CS disaccharides as a function of all possible backbone geometries. All ten disaccharides (β1-3 vs. β1-4 linkage x five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA –COO− moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to –COO− can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to –COO− results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing

  14. Increased cation conductance in human erythrocytes artificially aged by glycation.

    Science.gov (United States)

    Kucherenko, Yuliya V; Bhavsar, Shefalee K; Grischenko, Valentin I; Fischer, Uwe R; Huber, Stephan M; Lang, Florian

    2010-06-01

    Excessive glucose concentrations foster glycation and thus premature aging of erythrocytes. The present study explored whether glycation-induced erythrocyte aging is paralleled by features of suicidal erythrocyte death or eryptosis, which is characterized by cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface and cell shrinkage. Both are triggered by increases of cytosolic Ca(2+) concentration ([Ca(2+)](i)), which may result from activation of Ca(2+) permeable cation channels. Glycation was accomplished by exposure to high glucose concentrations (40 and 100 mM), phosphatidylserine exposure estimated from annexin binding, cell shrinkage from decrease of forward scatter, and [Ca(2+)](i) from Fluo3-fluorescence in analysis via fluorescence-activated cell sorter. Cation channel activity was determined by means of whole-cell patch clamp. Glycation of total membrane proteins, immunoprecipitated TRPC3/6/7, and immunoprecipitated L-type Ca(2+) channel proteins was estimated by Western blot testing with polyclonal antibodies used against advanced glycation end products. A 30-48-h exposure of the cells to 40 or 100 mM glucose in Ringer solution (at 37 degrees C) significantly increased glycation of membrane proteins, hemoglobin (HbA(1c)), TRPC3/6/7, and L-type Ca(2+) channel proteins, enhanced amiloride-sensitive, voltage-independent cation conductance, [Ca(2+)](i), and phosphatidylserine exposure, and led to significant cell shrinkage. Ca(2+) removal and addition of Ca(2+) chelator EGTA prevented the glycation-induced phosphatidylserine exposure and cell shrinkage after glycation. Glycation-induced erythrocyte aging leads to eryptosis, an effect requiring Ca(2+) entry from extracellular space.

  15. Relationship between alpha-1 receptors and cations in rat liver plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J.L.

    1986-01-01

    The influence of cations on binding of (/sup 3/H)-prazosin (PRZ), an alpha-1 specific antagonist, to alpha receptor sites in rat liver plasma membranes was examined. All cations tested were able to produce dose-dependent shifts to lower affinity binding sites for PRZ. The maximum number of binding sites was also observed to be altered. Inclusion of cations resulted in a slower observed rate constant for association as well as a delay in the dissociation of specifically bound PRZ following the addition of phentolamine. In contrast, the ability of (-)-norepinephrine to displace PRZ was enhanced by the addition of cations. The influence of alpha-1 receptor stimulation on Na/sup +//K/sup +/-ATPase activity in rat liver was examined by two methods - rat liver plasma membrane Na/sup +//K/sup +/-ATPase activity following liver perfusion in situ and /sup 86/Tb uptake in rat liver slices. The activity of the Na/sup +/ pump was found to be biphasic following exposure to phenylephrine (PE), an alpha-1 agonist. Stimulation (35%) was present over the first two minutes, while activity was inhibited over the interval of 5 to 10 minutes of continued PE exposure. Both phases were blocked by prazosin. The influence of DAG and protein kinase C (PKC) in alpha-1 receptor modulation of the Na/sup +/ pump was studied by employing 4-beta-phorbol (PMA), a phorbol ester which activates PKC. Perfusion of livers with PMA in situ or incubation with slices yielded inhibition of ATPase activity in membranes and /sup 86/Rb uptake in that was qualitatively and quantitatively similar to PE. These results suggest cations may influence receptor function in vivo and in vitro and the inhibitory effects of PE on the sodium pump may be mediated through PKC.

  16. Low-dose aspirin use does not diminish the immune response to monovalent H1N1 influenza vaccine in older adults.

    Science.gov (United States)

    Jackson, M L; Bellamy, A; Wolff, M; Hill, H; Jackson, L A

    2016-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) may inhibit antibody production by peripheral blood mononuclear cells; one consequence of this could be decreased effectiveness of vaccines in NSAID users. Because many older adults use low-dose aspirin for primary or secondary prevention of coronary events, any inhibitory effect of aspirin on vaccine immune response could reduce the benefits of vaccination programmes in older adults. We tested whether immune response to vaccination differed between users vs. non-users of low-dose aspirin, using data from four randomized trials of monovalent 2009 pandemic influenza A(H1N1) vaccine. Geometric mean haemagglutination inhibition antibody titres were not significantly lower in low-dose aspirin users compared to non-users. Our results provide reassurance that influenza vaccination effectiveness is probably not reduced in older adults taking chronic low-dose aspirin.

  17. The effect of primycin on the intracellular monovalent ion and water contents of rat hepatocytes as revealed by energy dispersive X-ray microanalysis and interference microscopy.

    Science.gov (United States)

    Horváth, I; Nagy, I; Lustyik, G; Váradi, G

    1983-01-01

    Using energy-dispersive X-ray microanalytic and interference microscopic techniques, the intracellular concentration of the monovalent ions (Na+, K+, Cl+) as well as the intracytoplasmic and intracellular water contents were studied in normal and adrenalectomized rat hepatocytes with and without primycin treatment. Although primycin influenced significantly only the intracellular potassium content of the adrenalectomized group, it exerted a marked influence on the intranuclear water content in both the normal and adrenalectomized rats. The intranuclear water content increased significantly in the primycin-treated animals. The conclusion is drawn that the increased level of hydration of the nuclear substances reflects a 'decondensation' of the chromatin which on the other hand, may represent the basis for the various effects of primycin on the induction of certain hepatic enzymes.

  18. The cation content of phospholipides from swine erythrocytes.

    Science.gov (United States)

    KIRSCHNER, L B

    1958-11-20

    Phospholipides from swine erythrocytes were isolated and separated into four reproducible fractions. One of the fractions seems to be pure phosphatidylserine. The others are almost certainly not single compounds, although the analytical data indicate that they represent mixtures considerably simpler than the parent mixture extracted from the cells. All four fractions contained Na(+) and K(+), but very little Ca(2+). Sodium was the predominant cation in two of the fractions under all conditions although the major intracellular cation was potassium. In the other two fractions the ratio Na/K varied with the extraction procedure largely because the quantity of K(+) seemed to depend on the solvent system used. There appear to be reasons to believe that the entire system of phospholipides binds Na(+) preferentially. In addition, it was observed that the quantity of Na(+) found in the lipide extracts varied when the extrusion of Na(+) from the cells was made to vary. Both of these observations are consistent with the possibility that the phospholipides play some part in the extrusion of Na(+) from these cells.

  19. Cationic Polyene Phospholipids as DNA Carriers for Ocular Gene Therapy

    Directory of Open Access Journals (Sweden)

    Susana Machado

    2014-01-01

    Full Text Available Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE or cholesterol (Chol. Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane-carbamoyl]-cholesterol (DC-Chol and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.

  20. Behavior of human serum albumin on strong cation exchange resins: I. experimental analysis.

    Science.gov (United States)

    Voitl, Agnes; Butté, Alessandro; Morbidelli, Massimo

    2010-08-20

    Experiments with human serum albumin on the strong cation exchange resin Fractogel EMD SE Hicap (M) were carried out. Even though human serum albumin was used at high purity, two peaks in gradient elution experiments occurred. The obtained data can be explained by considering that human serum albumin binds to Fractogel EMD SE Hicap (M) in two different binding conformations: the protein adsorbs instantaneously in the first conformation and then changes into the second one with a kinetic limitation. The two-peak behavior of human serum albumin was analyzed in detail, especially at various gradient lengths, concentrations and temperatures. Breakthrough curves were performed at four modifier concentrations and three velocities. The characteristic adsorption behavior, found for gradient experiments, was confirmed by the breakthrough curves. The two-peak elution pattern of human serum albumin was also found for other strong cation exchange resins, but not for weak cation exchange resins. It is concluded that the described behavior is peculiar for the interaction of human serum albumin with the strong cation exchange ligand of the resin.

  1. Interaction of cationic dye/surfactants with Klebsiella K18 capsular polysaccharides: Physico-chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Nath, Ranendu Kumar, E-mail: rknath1959@gmail.com [Department of Chemistry, Tripura University, Suryamaninagar, Tripura-799130 (India); Singh, Th. Charanjit [Department of Chemistry, D.D.M. College, Khowai, Tripura-799 202 (India); Dasgupta, Satwati [Department of Chemistry, Tripura University, Suryamaninagar, Tripura-799130 (India); Mitra, Asish [Department of Chemistry, MBB College, Agartala, Tripura-799001 (India); Panda, Amiya Kumar [Department of Chemistry, University of North Bengal, P.O. North Bengal University, Dt: Darjeeling, West Bengal-734013 (India)

    2010-05-10

    Physico-chemical studies on the interaction of capsular polysaccharide (SPS) isolated from Klebsiella K18, with cationic dyes and surfactants have been reported. SPS is an integral component of gram-negative bacteria and having glucuronic acid as the potential anionic site, induced strong metachromasy (blue shift {approx} 110 nm) in the cationic dye pinacyanol chloride (PCYN). Reversal of metachromasy was observed upon addition of co-solvents which provides a qualitative measurement of stability and nature of metachromatic compound associated with PCYN-SPS interaction. Thermodynamic parameters such as association constant, changes in free energy, enthalpy and entropy of dye-polymer interaction, were evaluated which revealed the nature of interaction. Studies on fluorescence quenching of acridine orange (AO) was also performed. The interaction of SPS with cationic and cationic-non-ionic mixed surfactant systems have been studied by turbidimetry, spectrophotometry, spectrofluorometry and viscosity measurements. The studies could provide an understanding on the effects of the surfactants on binding with the polymer. The binding was found to be electrostatic in origin and also hydrophobic in nature to a certain extent.

  2. Cation induced differential effect on structural and functional properties of Mycobacterium tuberculosis α-Isopropylmalate synthase

    Directory of Open Access Journals (Sweden)

    Bhakuni Vinod

    2007-06-01

    Full Text Available Abstract Background α-isopropylmalate synthase (MtαIPMS, an enzyme that catalyzes the first committed step of the leucine biosynthetic pathway of Mycobacterium tuberculosis is a potential drug target for the anti-tuberculosis drugs. Cations induce differential effect of activation and inhibition of MtαIPMS. To date no concrete mechanism for such an opposite effect of similarly charged cations on the functional activity of enzyme has been presented. Results Effect of cations on the structure and function of the MtαIPMS has been studied in detail. The studies for the first time demonstrate that different cations interact specifically at different sites in the enzyme and modulate the enzyme structure differentially. The inhibitors Zn2+ and Cd2+ ions interact directly with the catalytic domain of the enzyme and induce unfolding/denaturation of the domain. The activator K+ also interacts with the catalytic TIM barrel domain however, it does not induce any significant effect on the enzyme structure. Studies with isolated catalytic TIM barrel domain showed that it can carry out the catalytic function on its own but probably requires the non-catalytic C-terminal domain for optimum functioning. An important observation was that divalent cations induce significant interaction between the regulatory and the catalytic domain of MtαIPMS thus inducing structural cooperativity in the enzyme. This divalent cation induced structural cooperativity might result in modulation of activity of the catalytic domain by regulatory domain. Conclusion The studies for the first time demonstrate that different cations bind at different sites in the enzyme leading to their differential effects on the structure and functional activity of the enzyme.

  3. Unconventional hydrogen bonding to organic ions in the gas phase: stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine.

    Science.gov (United States)

    Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  4. Hemin/G-quadruplex structure and activity alteration induced by magnesium cations.

    Science.gov (United States)

    Kosman, J; Juskowiak, B

    2016-04-01

    The influence of metal cations on G-quadruplex structure and peroxidase-mimicking DNAzyme activity was investigated. Experiments revealed a significant role of magnesium ion, which in the presence of potassium cation influenced DNAzyme activity. This ability has been associated with alteration of G-quadruplex topology and consequently affinity to bind hemin molecule. It has been demonstrated that G-quadruplex based on PS2.M sequence under these conditions formed parallel topology, which exhibited lower activity than that observed in standard potassium-containing solution. On the other hand DNAzyme/magnesium ion system based on telomeric sequence, which did not undergo significant structural changes, exhibited higher peroxidase activity upon magnesium ion addition. In both cases, the stabilization effect of magnesium cations on G-quadruplex structure was observed. The mechanism of DNAzyme activity alteration by magnesium ion can be explained by its influence on the pKa value of DNAzyme. Magnesium ion decreased pKa for PS2.M based system but increased it for telomeric DNAzyme. Magnesium cation effect on G-quadruplex structure as well as DNAzyme activity is particularly important since this ion is one of the most common metal cations in biological samples.

  5. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline

    Indian Academy of Sciences (India)

    Suresh Kumar Gupta; Vandna Luthra; Ramadhar Singh

    2012-10-01

    A detailed comparative study of electron paramagnetic resonance (EPR) in conjunction with d.c. electrical conductivity has been undertaken to know about the charge transport mechanism in polyaniline (PANI) doped with monovalent and multivalent protonic acids. This work is in continuation of our previous work for further understanding the conduction mechanism in conducting polymers. The results reveal that the polarons and bipolarons are the main charge carriers formed during doping process and these cause increase in electrical conductivity not only by increase in their concentration but also because of their enhanced mobility due to increased inter-chain transport in polyaniline at high doping levels. EPR line asymmetry having Dysonian line shape for highly doped samples shows a marked deviation of amplitudes / ratio from values close to one to much high values as usually observed in metals, thereby support the idea of high conductivity at higher doping levels. The nature of dopant ions and their doping levels control the charge carriers concentration as well as electrical conductivity of polyaniline. The electrical conductivity has also been studied as a function of temperature to know the thermally assisted transport process of these charge carriers at different doping levels which has been found to follow the Mott’s variable range hopping (VRH) conduction model for all the three dopants used. The charge carriers show a change over from 3D VRH to quasi 1D VRH hopping process for multivalent ions at higher doping levels whereas 1D VRH has been followed by monovalent ion for full doping range. These studies collectively give evidence of inter-chain percolation at higher doping levels causing increase in effective mobility of the charge carriers which mainly seems to govern the electrical conduction behaviour in this system.

  6. Chiral DNA packaging in DNA-cationic liposome assemblies.

    Science.gov (United States)

    Zuidam, N J; Barenholz, Y; Minsky, A

    1999-09-03

    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  7. Cationic Conjugated Polymers-Induced Quorum Sensing of Bacteria Cells.

    Science.gov (United States)

    Zhang, Pengbo; Lu, Huan; Chen, Hui; Zhang, Jiangyan; Liu, Libing; Lv, Fengting; Wang, Shu

    2016-03-15

    Bacteria quorum sensing (QS) has attracted significant interest for understanding cell-cell communication and regulating biological functions. In this work, we demonstrate that water-soluble cationic conjugated polymers (PFP-G2) can interact with bacteria to form aggregates through electrostatic interactions. With bacteria coated in the aggregate, PFP-G2 can induce the bacteria QS system and prolong the time duration of QS signal molecules (autoinducer-2 (AI-2)) production. The prolonged AI-2 can bind with specific protein and continuously regulate downstream gene expression. Consequently, the bacteria show a higher survival rate against antibiotics, resulting in decreased antimicrobial susceptibility. Also, AI-2 induced by PFP-G2 can stimulate 55.54 ± 12.03% more biofilm in E. coli. This method can be used to understand cell-cell communication and regulate biological functions, such as the production of signaling molecules, antibiotics, other microbial metabolites, and even virulence.

  8. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini

    2010-01-01

    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  9. Metal ion binding with carbon nanotubes and graphene: Effect of chirality and curvature

    Science.gov (United States)

    Umadevi, Deivasigamani; Sastry, G. Narahari

    2012-10-01

    First principles calculations have been used to comprehensively study the binding of a series alkali (Li+, Na+, K+) and alkaline earth (Be2+, Mg2+, Ca2+) metal ions with carbon nanotubes (CNTs) and graphene. It is interesting to note that the mono-cationic systems prefer binding to armchair CNTs over zigzag CNTs, while the preference for the di-cationic systems is exactly opposite. We have also observed significant changes in the HOMO-LUMO energy gap of the CNTs on metal ion binding and these results indicate that the fine tuning of energy gap of the CNTs can be effected through metal ion binding.

  10. Interaction between cationic agents and small interfering RNA and DNA molecules

    Science.gov (United States)

    Unksov, I. N.; Slita, A. V.; Petrova, A. V.; Pereviazko, I.; Bakulev, V. M.; Rolich, V. I.; Bondarenko, A. B.; Kasyanenko, N. A.

    2016-11-01

    Azobenzene containing surfactant AzoTAB was used for investigation of binding in cationic- agent + nucleic acid in NaCl salt aqueous solutions. Two nucleic acids, macromolecular DNA and small interfering RNA, were examined upon the interaction with the surfactant. For DNA the interaction was studied using spectral methods and the methods of viscometry and flow birefringence measurement. For siRNA the possibility of surfactant-based delivery was checked in vitro.

  11. The effect of cations on the aggregation of commercial ZnO nanoparticle suspension

    Science.gov (United States)

    Liu, Wei-Szu; Peng, Yu-Huei; Shiung, Chia-En; Shih, Yang-hsin

    2012-12-01

    Nanoscale ZnO materials have been largely used in many products due to their distinct properties. However, ZnO nanoparticles (NPs) are hazardous to human health and the ecosystem. The characteristics and the stability of ZnO NPs are relevant to their fate in the environment and their potential toxicities. In this study, a stable commercial ZnO NP suspension was chosen to investigate its aggregation under various salt additions. Different concentrations of NaCl, KCl and CaCl2 were chosen to represent various environmental conditions. Under pH 8-9, the surface charge of commercial ZnO NPs was negative. The behavior of the stabilized ZnO NPs in water was affected by ionic combinations and ionic strength; that is, divalent cations were more effective than monovalent ones in promoting aggregation formation. The attachment efficiencies of ZnO aggregates were calculated based upon the aggregation kinetics. The critical coagulation concentration values for this commercial ZnO NPs were higher than previous reported for ZnO NPs, indicating this ZnO NP could be stable in the aquatic environment and might have increased hazardous potentials. Based upon the Derjaguin-Landau-Verwey-Overbeek theory, interactions between ZnO NPs in the presence of different ions were evaluated to illustrate the aggregation mechanism. Our results indicated that critical ionic type and concentration promote the aggregation of stable ZnO NPs. These understandings also can facilitate the design of the precipitation treatment to remove NPs from water.

  12. Study on the Interaction between Lanthanide Cationic Porphyrin Complex and Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    LIU, Peng; LIU, Yi; LI, Xi; HUANG, Wei-Guo

    2007-01-01

    The interaction between lanthanide cationic porphyrin and bovine serum albumin (BSA) was studied by fluorescence and UV-Vis spectrum. The static quenching of BSA was observed in the presence of YbTMPyP. According to the thermodynamic parameters, this binding was regarded as "enthalpy-driven" reaction. Furthermore,YbTMPyP is so close to the residues of BSA that molecular resonance energy transfer occurs between them. Besides, the red drift and hypochromicity of absorption spectrum of YbTMPyP were accompanied with the binding reaction.

  13. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.; (UIUC)

    2009-06-17

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  14. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-05-21

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  15. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  16. Metalated Nitriles: Cation-Controlled Cyclizations

    Science.gov (United States)

    Fleming, Fraser F.; Wei, Yunjing; Liu, Wang; Zhang, Zhiyu

    2008-01-01

    Judicious choice of cation allows the selective cyclization of substituted γ-hydroxynitriles to trans- or cis-decalins and trans- or cis-bicyclo[5.4.0]-undecanes. The stereoselectivities are consistent with deprotonations generating two distinctly different metalated nitriles: an internally coordinated nitrile anion with BuLi, and a C-magnesiated nitrile with i-PrMgCl. Employing cations to control the geometry of metalated nitriles permits stereodivergent cyclizations with complete control over the stereochemistry of the quaternary, nitrile-bearing carbon. PMID:17579448

  17. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  18. Cation Effect on Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin

    2009-02-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  19. Cationically polymerizable monomers derived from renewable sources

    Energy Technology Data Exchange (ETDEWEB)

    Crivello, J.V.

    1992-10-01

    The objectives of this project are to design and synthesize novel monomers which orginate from renewable biological sources and to carry out their rapid, efficient, pollution-free and energy efficient cationic polymerization to useful products under the influence of ultraviolet light or heat. A summary of the results of the past year's research on cationically polymerizable monomers derived from renewable sources is presented. Three major areas of investigation corresponding to the different classes of naturally occurring starting materials were investigated; epoxidized terpenes and natural rubber and vinyl ethers from alcohols and carbohydrates.

  20. Dissecting electrostatic screening, specific ion binding, and ligand binding in an energetic model for glycine riboswitch folding

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, Jan; Sim, Adelene Y.L.; Herschlag, Daniel; Doniach, Sebastian (Stanford)

    2010-09-17

    Riboswitches are gene-regulating RNAs that are usually found in the 5{prime}-untranslated regions of messenger RNA. As the sugar-phosphate backbone of RNA is highly negatively charged, the folding and ligand-binding interactions of riboswitches are strongly dependent on the presence of cations. Using small angle X-ray scattering (SAXS) and hydroxyl radical footprinting, we examined the cation dependence of the different folding stages of the glycine-binding riboswitch from Vibrio cholerae. We found that the partial folding of the tandem aptamer of this riboswitch in the absence of glycine is supported by all tested mono- and divalent ions, suggesting that this transition is mediated by nonspecific electrostatic screening. Poisson-Boltzmann calculations using SAXS-derived low-resolution structural models allowed us to perform an energetic dissection of this process. The results showed that a model with a constant favorable contribution to folding that is opposed by an unfavorable electrostatic term that varies with ion concentration and valency provides a reasonable quantitative description of the observed folding behavior. Glycine binding, on the other hand, requires specific divalent ions binding based on the observation that Mg{sup 2+}, Ca{sup 2+}, and Mn{sup 2+} facilitated glycine binding, whereas other divalent cations did not. The results provide a case study of how ion-dependent electrostatic relaxation, specific ion binding, and ligand binding can be coupled to shape the energetic landscape of a riboswitch and can begin to be quantitatively dissected.

  1. Evidence of interlipidic ion-pairing in anion-induced DNA release from cationic amphiphile-DNA complexes. Mechanistic implications in transfection.

    Science.gov (United States)

    Bhattacharya, S; Mandal, S S

    1998-05-26

    Complex formation of DNA with a number of cationic amphiphiles has been examined using fluorescence, gel electrophoresis, and chemical nuclease digestion. Here we have addressed the status of both DNA and lipid upon complexation with each other. DNA upon binding with cationic amphiphiles changes its structure in such a way that it loses the ability to intercalate and becomes resistant to nuclease digestion. Fluorescence anisotropy measurements due to 1, 6-diphenylhexatriene (DPH) doped in cationic liposomes demonstrated that upon complexation with DNA, the resulting complexes still retain lamellar organizations with modest enhancement in thermal stabilities. The lipid-DNA complexation is most effective only when the complexation was carried out at or around the phase transition temperatures of the cationic lipid employed in the complexation with DNA. The release of DNA from cationic lipid-DNA complexes could be induced by several anionic additives. Determination of fluorescence anisotropies (due to DPH) as a function of temperature clearly demonstrates that the addition of equivalent amounts of anionic amphiphile into cationic lipid-DNA complexes leads to the ion-pairing of the amphiphiles, the melting profiles of which are virtually the same as those obtained in the absence of DNA. In this process DNA gets released from its complexes with cationic lipids and regains its natural intercalation ability, movement, and staining ability on agarose gel and also the sensitivities toward nuclease digestion. This clearly suggests that combination of ion-pairing and hydrophobic interactions between cationic and anionic amphiphiles is stronger than the electrostatic forces involved in the cationic lipid-DNA complexation. It is further revealed that the DNA release by anions is most efficient from the cationic lipid-DNA complexes at or around the Tm of the cationic lipid used in DNA complexation. This explains why more effective DNA delivery is achieved with cationic lipids

  2. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane.

    Science.gov (United States)

    Feng, Xinghua; Huang, Yu; Lu, Yungang; Xiong, Jian; Wong, Ching-On; Yang, Pu; Xia, Jintang; Chen, De; Du, Guangwei; Venkatachalam, Kartik; Xia, Xuefeng; Zhu, Michael X

    2014-02-14

    Transient Receptor Potential mucolipin (TRPML) channels are implicated in endolysosomal trafficking, lysosomal Ca(2+) and Fe(2+) release, lysosomal biogenesis, and autophagy. Mutations in human TRPML1 cause the lysosome storage disease, mucolipidosis type IV (MLIV). Unlike vertebrates, which express three TRPML genes, TRPML1-3, the Drosophila genome encodes a single trpml gene. Although the trpml-deficient flies exhibit cellular defects similar to those in mammalian TRPML1 mutants, the biophysical properties of Drosophila TRPML channel remained uncharacterized. Here, we show that transgenic expression of human TRPML1 in the neurons of Drosophila trpml mutants partially suppressed the pupal lethality phenotype. When expressed in HEK293 cells, Drosophila TRPML was localized in both endolysosomes and plasma membrane and was activated by phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) applied to the cytoplasmic side in whole lysosomes and inside-out patches excised from plasma membrane. The PI(3,5)P2-evoked currents were blocked by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), but not other phosphoinositides. Using TRPML A487P, which mimics the varitint-waddler (Va) mutant of mouse TRPML3 with constitutive whole-cell currents, we show that TRPML is biphasically regulated by extracytosolic pH, with an optimal pH about 0.6 pH unit higher than that of human TRPML1. In addition to monovalent cations, TRPML exhibits high permeability to Ca(2+), Mn(2+), and Fe(2+), but not Fe(3+). The TRPML currents were inhibited by trivalent cations Fe(3+), La(3+), and Gd(3+). These features resemble more closely to mammalian TRPML1 than TRPML2 and TRPML3, but with some obvious differences. Together, our data support the use of Drosophila for assessing functional significance of TRPML1 in cell physiology.

  3. Cationic dialkylarylphosphates: a new family of bio-inspired cationic lipids for gene delivery.

    Science.gov (United States)

    Le Corre, Stéphanie S; Belmadi, Nawal; Berchel, Mathieu; Le Gall, Tony; Haelters, Jean-Pierre; Lehn, Pierre; Montier, Tristan; Jaffrès, Paul-Alain

    2015-01-28

    In this work that aims to synthesize and evaluate new cationic lipids as vectors for gene delivery, we report the synthesis of a series of cationic lipids in which a phosphate functional group acts as a linker to assemble on a molecular scale, two lipid chains and one cationic polar head. The mono or dicationic moiety is connected to the phosphate group by an aryl spacer. In this work, two synthesis strategies were evaluated. The first used the Atherton-Todd coupling reaction to introduce a phenolic derivative to dioleylphosphite. The second strategy used a sequential addition of lipid alcohol and a phenolic derivative on POCl3. The two methods are efficient, but the latter allows larger yields. Different polar head groups were introduced, thus producing amphiphilic compounds possessing either one permanent (N-methyl-imidazolium, pyridinium, trimethylammonium) or two permanent cationic charges. All these cationic lipids were formulated as liposomal solutions and characterized (size and zeta potential). They formed stable liposomal solutions both in water (at pH 7.0) and in a weakly acidic medium (at pH 5.5). Finally, this new generation of cationic lipids was used to deliver DNA into various human-derived epithelial cells cultured in vitro. Compared with Lipofectamine used as a reference commercial lipofection reagent, some cationic dialkylarylphosphates were able to demonstrate potent gene transfer abilities, and noteworthily, monocationic derivatives were much more efficient than dicationic analogues.

  4. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    Science.gov (United States)

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  5. Raman, IR and DFT studies of mechanism of sodium binding to urea catalyst

    Science.gov (United States)

    Kundu, Partha P.; Kumari, Gayatri; Chittoory, Arjun K.; Rajaram, Sridhar; Narayana, Chandrabhas

    2015-12-01

    Bis-camphorsulfonyl urea, a newly developed hydrogen bonding catalyst, was evaluated in an enantioselective Friedel-Crafts reaction. We observed that complexation of the sulfonyl urea with a sodium cation enhanced the selectivity of reactions in comparison to reactions performed with urea alone. To understand the role of sodium cation, we performed Infrared and Raman spectroscopic studies. The detailed band assignment of the molecule was made by calculating spectra using Density Functional theory. Our studies suggest that the binding of the cation takes place through the oxygen atoms of carbonyl and sulfonyl groups. Natural Bond Orbital (NBO) analysis shows the expected charge distribution after sodium binding. The changes in the geometrical parameter and charge distribution are in line with the experimentally observed spectral changes. Based on these studies, we conclude that binding of the sodium cation changes the conformation of the sulfonyl urea to bring the chiral camphor groups closer to the incipient chiral center.

  6. Controlled Cationic Polymerization of N-Vinylcarbazol

    NARCIS (Netherlands)

    Nuyken, O.; Rieß, G.; Loontjens, J.A.

    1995-01-01

    Cationic polymerization of N-Vinylcarbazol (NVC) was initiated with 1-iodo-1-(2-methylpropyloxy)ethane in the presence of N(n-Bu)4ClO4 and without addition of this activator. Furthermore, 1-chloro-1-(2-methylpropyloxy) ethane, with and without activator has been applied as initiator for NVC. These i

  7. Anionic/cationic complexes in hair care.

    Science.gov (United States)

    O'Lenick, Tony

    2011-01-01

    The formulation of cosmetic products is always more complicated than studying the individual components in aqueous solution. This is because there are numerous interactions between the components, which make the formulation truly more than the sum of the parts. This article will look at interactions between anionic and cationic surfactants and offer insights into how to use these interactions advantageously in making formulations.

  8. Resonance raman studies of phenylcyclopropane radical cations

    NARCIS (Netherlands)

    Godbout, J.T.; Zuilhof, H.; Heim, G.; Gould, I.R.; Goodman, J.L.; Dinnocenzo, J.P.; Myers Kelley, A.

    2000-01-01

    Resonance Raman spectra of the radical cations of phenylcyclopropane and trans-1-phenyl-2-methylcyclopropane are reported. A near-UV pump pulse excites a photosensitizer which oxidizes the species of interest, and a visible probe pulse delayed by 35 ns obtains the spectrum of the radical ion. The tr

  9. Mixed cation effect in sodium aluminosilicate glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Smedskjær, Morten Mattrup; Mauro, John C.

    , network structure, and the resistances associated with the deformation processes in mixed cation glasses by partially substituting magnesium for calcium and calcium for lithium in sodium aluminosilicate glasses. We use Raman and 27Al NMR spectroscopies to obtain insights into the structural...

  10. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.;

    2003-01-01

    Polypyrrole (PPy) polymer films permanently doped with large, immobile anion dodecyl benzene sulfonate (DBS) have been characterized by cyclic voltammetry in order to clarify the roles of cations and anions in the aqueous electrolyte as mobile ions in the film. Aqueous solutions of 0.05-0.1 M...... alkali metal chlorides as well as BaCl2, NaBr and (CH3CH2CH2)(4)NBr were used to investigate the effects of both the ionic charge, size and shape. In 1: 1 electrolytes using small ions only three peaks are present: a sharp cathodic peak at ca. - 0.6 V vs, SCE representing both the insertion of cations...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  11. Microscale characterization of the binding specificity and affinity of a monoclonal antisulfotyrosyl IgG antibody

    DEFF Research Database (Denmark)

    Lassen, K.S.; Bradbury, A.R.; Heegaard, N.H.;

    2008-01-01

    peptides and proteins. The data show that the anti-Tyr(SO(3)H) antibody is completely specific for compounds containing sulfated tyrosyls. Affinity electrophoresis experiments allowed us to estimate dissociation constants for sulfated hirudin fragment (56-65), gastrin-17, and cholecystokinin octapeptide...... (CCK8) in the 1-3 microM range. The affinity of the antibody toward complement 4 protein that contains three sulfotyrosines was analyzed by surface plasmon resonance technology and modeled according to a bivalent-binding model which yielded a K(d1) of 20.1 microM for the monovalent complex. The same...... binding was studied by CE and found to be in the micromolar scale albeit with some uncertainty due to complex separation patterns. The work illustrates the amount of information on antibody-antigen interactions that may be obtained with microelectrophoretic methods consuming minute quantities of material...

  12. Dendritic Cells Stimulated by Cationic Liposomes.

    Science.gov (United States)

    Vitor, Micaela Tamara; Bergami-Santos, Patrícia Cruz; Cruz, Karen Steponavicius Piedade; Pinho, Mariana Pereira; Barbuto, José Alexandre Marzagão; De La Torre, Lucimara Gaziola

    2016-01-01

    Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.

  13. First principle study of the interaction of elemental Hg with small neutral, anionic and cationic Pd ( = 1-6) clusters

    Indian Academy of Sciences (India)

    Shamoon Ahmad Siddiqui; Nadir Bouarissa

    2013-11-01

    Density functional theory (DFT)-based calculations have been performed so as to study the interaction of elemental mercury (Hg) with small neutral, cationic and anionic palladium clusters (Pd, = 1-6). Results of these calculations clearly indicate that frontier molecular orbital (FMO) theory is a useful method to predict the selectivity of Hg adsorption. Binding energies of Hg on cationic Pd clusters are generally found to be greater than those on neutral and anionic clusters. Results of natural bond orbital (NBO) analysis show that the flow of electrons in the neutral and charged complexes is mainly due to s orbitals of Hg. NBO analysis also indicates that, in most of the cases, the binding energies of Hg with Pdn clusters are directly proportional to charge transfer, i.e., greater the charge transfer, higher is the binding energy.

  14. Europium ion as a probe for binding sites to carrageenans

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil); Zaniquelli, Maria Elisabete D. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil)], E-mail: medzaniquelli@ffclrp.usp.br; Wong, Kenneth [Laboratorio de Fisico-Quimica, Centro de Pesquisas de Paulinia, Rhodia Brasil, Paulinia, Sao Paulo (Brazil)

    2007-12-15

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu{sup 3+}/Na{sup +} or K{sup +} with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan.

  15. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead

    CERN Document Server

    Ropo, Matti; Baldauf, Carsten

    2016-01-01

    We derive structural and binding energy trends for twenty amino acids, their dipeptides, and their interactions with the divalent cations Ca$^{2+}$, Ba$^{2+}$, Sr$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, and Hg$^{2+}$. The underlying data set consists of 45,892 first-principles predicted conformers with relative energies up to about 4 eV (about 400kJ/mol). We show that only very few distinct backbone structures of isolated amino acids and their dipeptides emerge as lowest-energy conformers. The isolated amino acids predominantly adopt structures that involve an acidic proton shared between the carboxy and amino function. Dipeptides adopt one of two intramolecular-hydrogen bonded conformations C$_5$ or equatorial C$_7$. Upon complexation with a divalent cation, the accessible conformational space shrinks and intramolecular hydrogen bonding is prevented due to strong electrostatic interaction of backbone and side chain functional groups with cations. Clear correlations emerge from the binding energies of the six divalent ...

  16. Highly stable noble metal nanoparticles dispersible in biocompatible solvents: synthesis of cationic phosphonium gold nanoparticles in water and DMSO.

    Science.gov (United States)

    Ju-Nam, Yon; Abdussalam-Mohammed, Wanisa; Ojeda, Jesus J

    2016-01-01

    In this work, we report the synthesis of novel cationic phosphonium gold nanoparticles dispersible in water and dimethyl sulfoxide (DMSO) for their potential use in biomedical applications. All the cationic-functionalising ligands currently reported in the literature are ammonium-based species. Here, the synthesis and characterisation of an alternative system, based on phosphonioalkylthiosulfate zwitterions and phosphonioalkylthioacetate were carried out. We have also demonstrated that our phosphonioalkylthiosulfate zwitterions readily disproportionate into phosphonioalkylthiolates in situ during the synthesis of gold nanoparticles produced by the borohydride reduction of gold(III) salts. The synthesis of the cationic gold nanoparticles using these phosphonium ligands was carried out in water and DMSO. UV-visible spectroscopic and TEM studies have shown that the phosphonioalkylthiolates bind to the surface of gold nanoparticles which are typically around 10 nm in diameter. The resulting cationic-functionalised gold nanoparticles are dispersible in aqueous media and in DMSO, which is the only organic solvent approved by the U.S. Food and Drug Administration (FDA) for drug carrier tests. This indicates their potential future use in biological applications. This work shows the synthesis of a new family of phosphonium-based ligands, which behave as cationic masked thiolate ligands in the functionalisation of gold nanoparticles. These highly stable colloidal cationic phosphonium gold nanoparticles dispersed in water and DMSO can offer a great opportunity for the design of novel biorecognition and drug delivery systems.

  17. Cu and Zn adsorption to a heterogeneous natural sediment: Influence of leached cations and natural organic matter.

    Science.gov (United States)

    Fisher-Power, Leanne M; Cheng, Tao; Rastghalam, Zahra Sadat

    2016-02-01

    Adsorption of heavy metals by natural sediments has important implications to the fate and transport of contaminants in subsurface environments. Although the importance of major multivalent cations and dissolved organic matter (DOM) in heavy metal adsorption had been previously demonstrated, the leaching of major cations and DOM from sediments and its influence on heavy metal adsorption have not been fully examined. In this study, the concentrations of Ca, Mg, Al, Fe, and natural organic matter that leached from a natural sediment in Cu and Zn adsorption experiments were measured and used in surface complexation models to elucidate their effects on Cu and Zn adsorption. Experimental results showed that the leaching of cations and DOM was substantial and pH-dependent. The leached concentrations of Ca and Mg were reasonably simulated based on BaCl2 extractable Ca and Mg at pH MINTEQ simulations showed that the leached cations markedly decreased Cu adsorption at pH 6 due to formation of Cu-DOM aqueous complexes, but increase Zn adsorption at pH 4-7 due to formation of aqueous complexes between DOM and major cations, which reduced competition from these cations against Zn for binding sites on the sediment.

  18. Effect of Clay Mineralogy and Exchangeable Cations on Permeability of Saudi Sandstone Reservoirs Effet de la minéralogie des argiles et des cations échangeables sur la perméabilité des réservoirs gréseux d'Arabie Saoudite

    Directory of Open Access Journals (Sweden)

    Dahab A. S.

    2006-11-01

    Full Text Available Reservoir rocks are susceptible to formation damage during secondary recovery operations due to the particular mineralogical, textural and electrochemical properties of the clay minerals they contain. This damage can be explained by the swelling of indigeneous clays present, resulting in the constricting of pores, or by the dispersion of indigeneous nonswelling particle rearrangements during fluid flow, resulting in the plugging of the pore system, or by a combination of the two. This article describes a laboratory study showing the effect of clay mineralogy on the permeability of actual Saudi sandstone reservoirs during water flooding operations. The study shows that the permeability damage of Saudi sandstone reservoirs depends upon the amount of swelling clays and exchangeable ions as well as on the nature of these ions. Monovalent cations cause more damage than multivalent ones but within the same group of metals, those with smaller atomic mass cause more damage. Les roches réservoirs peuvent être endommagées pendant les opérations de récupération secondaire à cause des propriétés minéralogiques, texturales et électrochimiques particulières des minéraux argileux qu'elles contiennent. Cet endommagement peut s'expliquer, soit par le gonflement des argiles qui conduit à un rétrécissement des pores, soit par la migration de particules non gonflantes pendant l'écoulement des fluides qui entraîne le colmatage des milieux poreux, soit par une combinaison des deux mécanismes. Cet article présente une étude de laboratoire montrant l'effet de la minéralogie des argiles sur la perméabilité des roches réservoirs réelles d'Arabie Saoudite pendant des opérations d'injection d'eau. L'étude montre que l'endommagement de la perméabilité des roches réservoirs d'Arabie Saoudite dépend de la quantité d'argiles gonflantes et d'ions échangeables, ainsi que de la nature de ces ions. Les cations monovalents provoquent plus d

  19. Comparison between methods using copper, lanthanum, and colorimetry for the determination of the cation exchange capacity of plant cell walls.

    Science.gov (United States)

    Wehr, J Bernhard; Blamey, F Pax C; Menzies, Neal W

    2010-04-28

    The determination of the cation exchange capacity (CEC) of plant cell walls is important for many physiological studies. We describe the determination of cell wall CEC by cation binding, using either copper (Cu) or lanthanum (La) ions, and by colorimetry. Both cations are strongly bound by cell walls, permitting fast and reproducible determinations of the CEC of small samples. However, the dye binding methods using two cationic dyes, Methylene Blue and Toluidine Blue, overestimated the CEC several-fold. Column and centrifugation methods are proposed for CEC determination by Cu or La binding; both provide similar results. The column method involves packing plant material (2-10 mg dry mass) in a chromatography column (10 mL) and percolating with 20 bed volumes of 1 mM La or Cu solution, followed by washing with deionized water. The centrifugation method uses a suspension of plant material (1-2 mL) that is centrifuged, and the pellet is mixed three times with 10 pellet volumes of 1 mM La or Cu solution followed by centrifugation and final washing with deionized water. In both methods the amount of La or Cu bound to the material was determined by spectroscopic methods.

  20. Tissue specificity of endothelin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bolger, G.T.; Liard, F.; Krogsrud, R.; Thibeault, D.; Jaramillo, J. (BioMega, Inc., Laval, Quebec (Canada))

    1990-09-01

    A measurement was made of the binding of 125I-labeled endothelin (125I-ET) to crude membrane fractions prepared from rat aorta, atrium, ventricle, portal vein, trachea, lung parenchyma, vas deferens, ileum, bladder, and guinea-pig taenia coli and lung parenchyma. Scatchard analysis of 125I-ET binding in all tissues indicated binding to a single class of saturable sites. The affinity and density of 125I-ET binding sites varied between tissues. The Kd of 125I-ET binding was approximately 0.5 nM for rat aorta, trachea, lung parenchyma, ventricle, bladder, and vas deferens, and guinea-pig taenia coli and lung parenchyma, 1.8 nM for rat portal vein and atrium, and 3.3 nM for ileum. The Bmax of 125I-ET binding had the following rank order of density in rat tissues: trachea greater than lung parenchyma = vas deferens much greater than aorta = portal vein = atrium greater than bladder greater than ventricle = ileum. The properties of 125I-ET endothelin binding were characterized in rat ventricular membranes. 125I-ET binding was time dependent, reaching a maximum within 45-60 min at 25 degrees C. The calculated microassociation constant was 9.67 x 10(5) s-1 M-1. Only 15-20% of 125I-ET dissociated from its binding site even when dissociation was studied as long as 3 h. Preincubation of ventricular membranes with ET prevented binding of 125I-ET. 125I-ET binding was destroyed by boiling of ventricular membranes and was temperature, pH, and cation (Ca2+, Mg2+, and Na+) dependent.

  1. THE CATIONIC ADDITIVES USED IN COATED INK-JET PAPER

    Institute of Scientific and Technical Information of China (English)

    Dongmei Yu; Chuanshan Zhao; Kefu Chen

    2004-01-01

    This study investigated the effects of several different cationic additives on the viscosity 、zeta potential and printing properties of the ink-jet coating. The cationic additives have greatly improved sheet's gloss and printabilities.

  2. Bithiophene radical cation: Resonance Raman spectroscopy and molecular orbital calculations

    DEFF Research Database (Denmark)

    Grage, M.M.-L.; Keszthelyi, T.; Offersgaard, J.F.

    1998-01-01

    The resonance Raman spectrum of the photogenerated radical cation of bithiophene is reported. The bithiophene radical cation was produced via a photoinduced electron transfer reaction between excited bithiophene and the electron acceptor fumaronitrile in a room temperature acetonitrile solution a...

  3. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  4. Gel for simultaneous chemical imaging of anionic and cationic solutes using diffusive gradients in thin films.

    Science.gov (United States)

    Kreuzeder, Andreas; Santner, Jakob; Prohaska, Thomas; Wenzel, Walter W

    2013-12-17

    We report on a novel gel based on diffusive gradients in thin films (DGT) for the simultaneous measurement of cations and anions and its suitability for high resolution chemical imaging by using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The new high resolution mixed binding gel (HR-MBG) is based on zirconium-hydroxide and suspended particulate reagent-iminodiacetate (SPR-IDA) as resin materials which are embedded in an ether-based urethane polymer hydrogel. The use of this polymer hydrogel material allows the production of ultrathin, highly stable and tear-proof resin gel layers with superior handling properties compared to existing ultrathin polyacrylamide gels. The gel was characterized regarding its uptake kinetics, the anion and cation capacities, and the effects of pH, ionic strength, and aging on the performance of the HR-MBG. Our results demonstrate the capability of this novel gel for concomitant sampling of anions and cations. The suitability of this new gel type for DGT chemical imaging at submm spatial resolution in soils using LA-ICPMS is shown. 2D images of P, As, Co, Cu, Mn, and Zn distributions around roots of Zea mays L. demonstrate the new opportunities offered by the HR-MBG for high-resolution mapping of solute dynamics in soil and sediment hotspots, such as the rhizosphere, by simultaneous observation of anionic and cationic solute species.

  5. Mode of formation and structural features of DNA-cationic liposome complexes used for transfection.

    Science.gov (United States)

    Gershon, H; Ghirlando, R; Guttman, S B; Minsky, A

    1993-07-20

    Complexes formed between cationic liposomes and nucleic acids represent a highly efficient vehicle for delivery of DNA and RNA molecules into a large variety of eukaryotic cells. By using fluorescence, gel electrophoresis, and metal-shadowing electron microscopy techniques, the factors that affect the, yet unclear, interactions between DNA and cationic liposomes as well as the structural features of the resulting complexes have been elucidated. A model is suggested according to which cationic liposomes bind initially to DNA molecules to form clusters of aggregated vesicles along the nucleic acids. At a critical liposome density, two processes occur, namely, DNA-induced membrane fusion, indicated by lipid mixing studies, and liposome-induced DNA collapse, pointed out by the marked cooperativity of the encapsulation processes, by their modulations by DNA-condensing agents, and also by their conspicuous independence upon DNA length. The DNA collapse leads to the formation of condensed structures which can be completely encapsulated within the fused lipid bilayers in a fast, highly cooperative process since their exposed surface is substantially smaller than that of extended DNA molecules. The formation of the transfecting DNA-liposome complexes in which the nucleic acids are fully encapsulated within a positively-charged lipid bilayer is proposed, consequently, to be dominated by mutual effects exerted by the DNA and the cationic liposomes, leading to interrelated lipid fusion and DNA collapse.

  6. Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite.

    Science.gov (United States)

    Tan, Yinyue; Guo, Yong; Gu, Xueyuan; Gu, Cheng

    2015-01-01

    Ciprofloxacin (CIP) can be strongly adsorbed by ferric oxides, but some influencing factors, such as multivalent cations and soil organic matter, have not been evaluated extensively. In this study, the interaction between CIP and four divalent metals (Ca, Cd, Cu, and Pb) was investigated using potentiometric titration and the results indicated that CIP can bind to the divalent metals in the following affinity order: Cu(II) > Pb(II) > Cd(II) > Ca(II). The effects of metals and fulvic acid (FA) on the adsorption behavior of CIP onto goethite surfaces were also examined using batch experiments. It was found that metal cations enhanced the CIP retention on goethite surfaces in the same order as the affinity order with CIP, indicating that metals likely increased CIP retention through cation bridging. FA was found to promote CIP sorption rather than compete with it, and the coexistence of FA and Cu(II) in the system exhibited an addictive effect with CIP sorption, indicating that they might influence the sorption separately under the studied loading condition. Taken together, our results suggested that the coexistence of divalent cations or soil organic matter will enhance CIP sorption on goethite surfaces, hence reducing its mobility and bioavailability in the environment.

  7. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice.

    Science.gov (United States)

    Moda, Fabio; Vimercati, Chiara; Campagnani, Ilaria; Ruggerone, Margherita; Giaccone, Giorgio; Morbin, Michela; Zentilin, Lorena; Giacca, Mauro; Zucca, Ileana; Legname, Giuseppe; Tagliavini, Fabrizio

    2012-01-01

    Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.

  8. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations.

    Science.gov (United States)

    Bücking, Heike

    2004-06-01

    A prerequisite for symbiotic phosphate transfer in an ectomycorrhizal (ECM) association is hypothesized to be conditions in the interface between both symbiotic partners, that either promote the release of inorganic phosphate (P) from the Hartig net into the interfacial apoplast and/or decrease the fungal reabsorption from this location. To get more information about conditions, which might be involved in the regulation of P efflux or P reabsorption, the effect of various external conditions on 33P-orthophosphate (33P) uptake or efflux by axenic cultures of the ECM basidiomycetes Hebeloma crustliniforme, Amanita muscaria and Laccaria laccata was analysed. In short-time experiments the following external conditions were analysed: an external supply of (1) P in the preculture, (2) cations (0.1-100 mM K, 0.1-50 mM Na, Mg and Ca), and (3) carbohydrates (0.5-50 mM glucose, fructose or sucrose). The P absorption was generally reduced in cultures previously supplied with an abundant P supply and with increased P concentrations in their tissues. The P uptake was also affected by an external supply of cations, whereas carbohydrates had only a slight effect. Compared to Na, Mg and Ca, the P absorption by H. crustuliniforme and L. laccata was increased by 0.1 mM K in the labelling solution but decreased after a supply of 100 mM K and then did not differ from the other cation treatments. Compared to other cations, an addition of 50 mM Ca led to a decrease of P absorption by A. muscaria, whereas 50 mM Mg increased the P uptake by H. crustuliniforme. The P efflux from the fungi was affected by both the cation and carbohydrate concentration of the bathing solution. High concentrations of the monovalent cations K and Na (5 mM or 50 mM) in the bathing solution increased the P efflux by H. crustuliniforme (only Na) and L. laccata (K and Na), but had little effects on A. muscaria. By contrast, the same concentrations of the divalent cation Mg reduced the P efflux from all fungal

  9. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  10. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  11. Structural Insights into Divalent Cation Modulations of ATP-Gated P2X Receptor Channels

    Directory of Open Access Journals (Sweden)

    Go Kasuya

    2016-02-01

    Full Text Available P2X receptors are trimeric ATP-gated cation channels involved in physiological processes ranging widely from neurotransmission to pain and taste signal transduction. The modulation of the channel gating, including that by divalent cations, contributes to these diverse physiological functions of P2X receptors. Here, we report the crystal structure of an invertebrate P2X receptor from the Gulf Coast tick Amblyomma maculatum in the presence of ATP and Zn2+ ion, together with electrophysiological and computational analyses. The structure revealed two distinct metal binding sites, M1 and M2, in the extracellular region. The M1 site, located at the trimer interface, is responsible for Zn2+ potentiation by facilitating the structural change of the extracellular domain for pore opening. In contrast, the M2 site, coupled with the ATP binding site, might contribute to regulation by Mg2+. Overall, our work provides structural insights into the divalent cation modulations of P2X receptors.

  12. Ion binding to natural organic matter : General considerations and the NICA-Donnan model

    NARCIS (Netherlands)

    Koopal, L.K.; Saito, T.; Pinheiro, J.P.; Riemsdijk, van W.H.

    2005-01-01

    The general principles of cation binding to humic matter and the various aspects of modeling used in general-purpose speciation programs are discussed. The discussion will focus on (1) the discrimination between chemical and electrostatic interactions, (2) the binding site heterogeneity, (3) the mod

  13. Production of sulfonated cation-exchangers from petroleum asphaltites

    Energy Technology Data Exchange (ETDEWEB)

    Pokonova, Yu.V.; Pol' kin, G.B.; Proskuryakov, V.A.; Vinogradov, M.V.

    1982-02-10

    Continuing our studies of the preparation of products of practical value from asphaltite, a new by-product of oil refining, we obtained sulfonated cation-exchangers from a mixture of asphaltite and acid tar. It is shown that these cation-exchangers have good kinetic properties and are superior in thermal and thermohydrolytic stability to the commercial cation-exchange resin KU-2.

  14. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes

    DEFF Research Database (Denmark)

    Korsholm, Karen Smith; Agger, Else Marie; Foged, Camilla

    2007-01-01

    Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes...... concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D....... In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake...

  15. DNA binding hydroxyl radical probes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vicky J.; Konigsfeld, Katie M.; Aguilera, Joe A. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, Jamie R., E-mail: jmilligan@ucsd.edu [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)

    2012-01-15

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different chromophores, which produce fluorescent products when hydroxylated. Of these, the coumarin system suffers from the fewest disadvantages. We have therefore examined its behavior when linked to a cationic peptide ligand designed to bind strongly to DNA. - Highlights: > Examined four aromatic groups as a means to detect hydroxyl radicals by fluorescence. > Coumarin system suffers from the fewest disadvantages. > Characterized its reactivity when linked to a hexa-arginine peptide.

  16. Cation Permeability in Soybean Aleurone Layer

    OpenAIRE

    Noda, Hiroko; Fukuda, Mitsuru

    1998-01-01

    The permeation of water and ions into bean seeds is essential for processing and cooking of beans. The permeability of cations, K, Na, Ca, and Mg ions, into soybean seed tissue, especially aleurone layer, during water uptake was investigated to characterize the ion permeation into soybeans. Aleurone layers and seed coats contained relatively high concentration of endogenous K and Ca ions, and endogenous Ca ion, respectively. The amounts of Ca ion entered seed coats and aleurone layers were gr...

  17. Regulation of Cation Balance in Saccharomyces cerevisiae

    Science.gov (United States)

    Cyert, Martha S.; Philpott, Caroline C.

    2013-01-01

    All living organisms require nutrient minerals for growth and have developed mechanisms to acquire, utilize, and store nutrient minerals effectively. In the aqueous cellular environment, these elements exist as charged ions that, together with protons and hydroxide ions, facilitate biochemical reactions and establish the electrochemical gradients across membranes that drive cellular processes such as transport and ATP synthesis. Metal ions serve as essential enzyme cofactors and perform both structural and signaling roles within cells. However, because these ions can also be toxic, cells have developed sophisticated homeostatic mechanisms to regulate their levels and avoid toxicity. Studies in Saccharomyces cerevisiae have characterized many of the gene products and processes responsible for acquiring, utilizing, storing, and regulating levels of these ions. Findings in this model organism have often allowed the corresponding machinery in humans to be identified and have provided insights into diseases that result from defects in ion homeostasis. This review summarizes our current understanding of how cation balance is achieved and modulated in baker’s yeast. Control of intracellular pH is discussed, as well as uptake, storage, and efflux mechanisms for the alkali metal cations, Na+ and K+, the divalent cations, Ca2+ and Mg2+, and the trace metal ions, Fe2+, Zn2+, Cu2+, and Mn2+. Signal transduction pathways that are regulated by pH and Ca2+ are reviewed, as well as the mechanisms that allow cells to maintain appropriate intracellular cation concentrations when challenged by extreme conditions, i.e., either limited availability or toxic levels in the environment. PMID:23463800

  18. A review of albumin binding in CKD.

    Science.gov (United States)

    Meijers, Björn K I; Bammens, Bert; Verbeke, Kristin; Evenepoel, Pieter

    2008-05-01

    Hypoalbuminemia is associated with excess mortality in patients with kidney disease. Albumin is an important oxidant scavenger and an abundant carrier protein for numerous endogenous and exogenous compounds. Several specific binding sites for anionic, neutral, and cationic ligands were described. Overall, the extent of binding depends on the ligand and albumin concentration, albumin-binding affinity, and presence of competing ligands. Chronic kidney disease affects all these determinants. This may result in altered pharmacokinetics and increased risk of toxicity. Renal clearance of albumin-bound solutes mainly depends on tubular clearance. Dialytic clearance by means of conventional hemodialysis/hemofiltration and peritoneal dialysis is limited. Other epuration techniques combining hemodialysis with adsorption have been developed. However, the benefit of these techniques remains to be proved.

  19. Controlling chemistry with cations: photochemistry within zeolites.

    Science.gov (United States)

    Ramamurthy, V; Shailaja, J; Kaanumalle, Lakshmi S; Sunoj, R B; Chandrasekhar, J

    2003-08-21

    The alkali ions present in the supercages of zeolites X and Y interact with included guest molecules through quadrupolar (cation-pi), and dipolar (cation-carbonyl) interactions. The presence of such interactions can be inferred through solid-state NMR spectra of the guest molecules. Alkali ions, as illustrated in this article, can be exploited to control the photochemical and photophysical behaviors of the guest molecules. For example, molecules that rarely phosphoresce can be induced to do so within heavy cation-exchanged zeolites. The nature (electronic configuration) of the lowest triplet state of carbonyl compounds can be altered with the help of light alkali metal ions. This state switch (n pi*-pi pi*) helps to bring out reactivity that normally remains dormant. Selectivity obtained during the singlet oxygen oxidation of olefins within zeolites illustrates the remarkable control that can be exerted on photoreactions with the help of a confined medium that also has active sites. The reaction cavities of zeolites, like enzymes, are not only well-defined and confined, but also have active sites that closely guide the reactant molecule from start to finish. The examples provided here illustrate that zeolites are far more useful than simple shape-selective catalysts.

  20. Limited data speaker identification

    Indian Academy of Sciences (India)

    H S Jayanna; S R Mahadeva Prasanna

    2010-10-01

    In this paper, the task of identifying the speaker using limited training and testing data is addressed. Speaker identification system is viewed as four stages namely, analysis, feature extraction, modelling and testing. The speaker identification performance depends on the techniques employed in these stages. As demonstrated by different experiments, in case of limited training and testing data condition, owing to less data, existing techniques in each stage will not provide good performance. This work demonstrates the following: multiple frame size and rate (MFSR) analysis provides improvement in the analysis stage, combination of mel frequency cepstral coefficients (MFCC), its temporal derivatives $(\\Delta,\\Delta \\Delta)$, linear prediction residual (LPR) and linear prediction residual phase (LPRP) features provides improvement in the feature extraction stage and combination of learning vector quantization (LVQ) and gaussian mixture model – universal background model (GMM–UBM) provides improvement in the modelling stage. The performance is further improved by integrating the proposed techniques at the respective stages and combining the evidences from them at the testing stage. To achieve this, we propose strength voting (SV), weighted borda count (WBC) and supporting systems (SS) as combining methods at the abstract, rank and measurement levels, respectively. Finally, the proposed hierarchical combination (HC) method integrating these three methods provides significant improvement in the performance. Based on these explorations, this work proposes a scheme for speaker identification under limited training and testing data.

  1. Magnetic Resonance Studies of Proton Loss from Carotenoid Radical Cations

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, Lowell D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Focsan, A Ligia [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Konovalova, Tatyana A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawrence, Jesse [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bowman, Michael K [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Molnar, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deli, Jozsef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-06-11

    Carotenoids, intrinsic components of reaction centers and pigment-protein complexes in photosynthetic membranes, play a photoprotective role and serve as a secondary electron donor. Before optimum use of carotenoids can be made in artificial photosynthetic systems, their robust nature in living materials requires extensive characterization of their electron transfer, radical trapping ability, stability, structure in and on various hosts, and photochemical behavior. Pulsed ENDOR and 2D-HYSCORE studies combined with DFT calculations reveal that photo-oxidation of natural zeaxanthin (I) and violaxanthin (II) on silica-alumina produces not only the carotenoid radical cations (Car•+) but also neutral radicals (#Car•) by proton loss from the methyl groups at positions 5 or 5', and possibly 9 or 9' and 13 or 13'. Notably, the proton loss favored in I at the 5 position by DFT calculations, is unfavorable in II due to the epoxide at the 5, 6 position. DFT calculations predict the isotropic methyl proton couplings of 8-10 MHz for Car•+ which agree with the ENDOR for carotenoid α-conjugated radical cations. Large α-proton hyperfine coupling constants (>10 MHz) determined from HYSCORE are assigned from the DFT calculations to neutral carotenoid radicals. Proton loss upon photolysis was also examined as a function of carotenoid polarity [Lycopene (III) versus 8'-apo-β-caroten-8'-al (IV)]; hydrogen bonding [Lutein (V) versus III]; host [silica-alumina versus MCM-41 molecular sieve]; and substituted metal in MCM-41. Loss of H+ from the 5(5'), 9(9') or 13(13') methyl positions has importance in photoprotection. Photoprotection involves nonphotochemical quenching (NPQ) in which 1Ch1* decays via energy transfer to the carotenoid which returns to the ground state by thermal dissipation; or via electron transfer to form a charge transfer state (I •+…Chl•-), lower in energy than 1Chl*. Formation of I •+ results in bond

  2. Cross-arm binding efficiency of an EGFR x c-Met bispecific antibody.

    Science.gov (United States)

    Zheng, Songmao; Moores, Sheri; Jarantow, Stephen; Pardinas, Jose; Chiu, Mark; Zhou, Honghui; Wang, Weirong

    2016-01-01

    Multispecific proteins, such as bispecific antibodies (BsAbs), that bind to two different ligands are becoming increasingly important therapeutic agents. Such BsAbs can exhibit markedly increased target binding and target residence time when both pharmacophores bind simultaneously to their targets. The cross-arm binding efficiency (χ) describes an increase in apparent affinity when a BsAb binds to the second target or receptor (R2) following its binding to the first target or receptor (R1) on the same cell. χ is an intrinsic characteristic of a BsAb mostly related to the binding epitopes on R1 and R2. χ can have significant impacts on the binding to R2 for BsAbs targeting two receptors on the same cell. JNJ-61186372, a BsAb that targets epidermal growth factor receptor (EGFR) and c-Met, was used as the model compound for establishing a method to characterize χ. The χ for JNJ-61186372 was successfully determined via fitting of in vitro cell binding data to a ligand binding model that incorporated χ. The model-derived χ value was used to predict the binding of JNJ-61186372 to individual EGFR and c-Met receptors on tumor cell lines, and the results agreed well with the observed IC50 for EGFR and c-Met phosphorylation inhibition by JNJ-61186372. Consistent with the model, JNJ-61186372 was shown to be more effective than the combination therapy of anti-EGFR and anti-c-Met monovalent antibodies at the same dose level in a mouse xenograft model. Our results showed that χ is an important characteristic of BsAbs, and should be considered for rationale design of BsAbs targeting two membrane bound targets on the same cell.

  3. Study by XPS of different conditioning processes to improve the cation exchange in clinoptilolite

    Science.gov (United States)

    Ruiz-Serrano, D.; Flores-Acosta, M.; Conde-Barajas, E.; Ramírez-Rosales, D.; Yáñez-Limón, J. M.; Ramírez-Bon, R.

    2010-09-01

    We report the X-ray photoelectron spectroscopy (XPS) analysis of natural clinoptilolite from a mine in Sonora, México. From these measurements we determined the chemical state and binding energy of the elements in the zeolite framework and of those in the extra framework sites. The analysis was done on natural clinoptilolite and on cation-exchanged clinoptilolites with Na + and NH4+ ions. Complementary analysis by several experimental techniques was performed to determine the structural, chemical composition and chemical state modifications experimented by clinoptilolite samples processed by the two types of cation exchange. The clinoptilolite samples were studied by X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) to determine their structural composition, Energy Dispersive Spectroscopy (EDS) to measure the chemical composition and electronic paramagnetic resonance (EPR) spectroscopy to determine the chemical state of iron inside the natural zeolites.

  4. Multidimensional Perovskites: A Mixed Cation Approach Towards Ambient Stable and Tunable Perovskite Photovoltaics.

    Science.gov (United States)

    Koh, Teck Ming; Thirumal, Krishnamoorthy; Soo, Han Sen; Mathews, Nripan

    2016-09-22

    Although halide perovskites are able to deliver high power conversion efficiencies, their ambient stability still remains an obstacle for commercialization. Thus, promoting the ambient stability of perovskites has become a key research focus. In this review, we highlight the sources of instability in conventional 3 D perovskites, including water intercalation, ion migration, and thermal decomposition. Recently, the multidimensional perovskites approach has become one of the most promising strategies to enhance the stability of perovskites. As compared to pure 2 D perovskites, multidimensional perovskites typically possess more ideal band gaps, better charge transport, and lower exciton binding energy, which are essential for photovoltaic applications. The larger organic cations in multidimensional perovskites could also be more chemically stable at higher temperatures than the commonly used methylammonium cation. By combining 3 D and 2 D perovskites to form multidimensional perovskites, halide perovskite photovoltaics can attain both high efficiency and increased stability.

  5. Physical factors affecting chloroquine binding to melanin.

    Science.gov (United States)

    Schroeder, R L; Pendleton, P; Gerber, J P

    2015-10-01

    Chloroquine is an antimalarial drug but is also prescribed for conditions such as rheumatoid arthritis. Long-term users risk toxic side effects, including retinopathy, thought to be caused by chloroquine accumulation on ocular melanin. Although the binding potential of chloroquine to melanin has been investigated previously, our study is the first to demonstrate clear links between chloroquine adsorption by melanin and system factors including temperature, pH, melanin type, and particle size. In the current work, two Sepia melanins were compared with bovine eye as a representative mammalian melanin. Increasing the surface anionic character due to a pH change from 4.7 to 7.4 increased each melanin's affinity for chloroquine. Although the chloroquine isotherms exhibited an apparently strong interaction with each melanin, isosteric heat analysis indicated a competitive interaction. Buffer solution cations competed effectively at low surface coverage; chloroquine adsorption occurs via buffer cation displacement and is promoted by temperature-influenced secondary structure swelling.

  6. Alkali cation specific adsorption onto fcc(111) transition metal electrodes.

    Science.gov (United States)

    Mills, J N; McCrum, I T; Janik, M J

    2014-07-21

    The presence of alkali cations in electrolyte solutions is known to impact the rate of electrocatalytic reactions, though the mechanism of such impact is not conclusively determined. We use density functional theory (DFT) to examine the specific adsorption of alkali cations to fcc(111) electrode surfaces, as specific adsorption may block catalyst sites or otherwise impact surface catalytic chemistry. Solvation of the cation-metal surface structure was investigated using explicit water models. Computed equilibrium potentials for alkali cation adsorption suggest that alkali and alkaline earth cations will specifically adsorb onto Pt(111) and Pd(111) surfaces in the potential range of hydrogen oxidation and hydrogen evolution catalysis in alkaline solutions.

  7. [Antioxidant activity of cationic whey protein isolate].

    Science.gov (United States)

    titova, M E; Komolov, S A; Tikhomirova, N A

    2012-01-01

    The process of lipid peroxidation (LPO) in biological membranes of cells is carried out by free radical mechanism, a feature of which is the interaction of radicals with other molecules. In this work we investigated the antioxidant activity of cationic whey protein isolate, obtained by the cation-exchange chromatography on KM-cellulose from raw cow's milk, in vitro and in vivo. In biological liquids, which are milk, blood serum, fetal fluids, contains a complex of biologically active substances with a unique multifunctional properties, and which are carrying out a protective, antimicrobial, regenerating, antioxidant, immunomodulatory, regulatory and others functions. Contents of the isolate were determined electrophoretically and by its biological activity. Cationic whey protein isolate included lactoperoxidase, lactoferrin, pancreatic RNase, lysozyme and angeogenin. The given isolate significantly has an antioxidant effect in model experimental systems in vitro and therefore may be considered as a factor that can adjust the intensity of lipid oxidation. In model solutions products of lipid oxidation were obtained by oxidation of phosphatidylcholine by hydrogen peroxide in the presence of a source of iron. The composition of the reaction mixture: 0,4 mM H2O2; 50 mcM of hemin; 2 mg/ml L-alpha-phosphatidylcholine from soybean (Sigma, German). Lipid peroxidation products were formed during the incubation of the reaction mixture for two hours at 37 degrees C. In our studies rats in the adaptation period immediately after isolation from the nest obtained from food given orally native cationic whey protein isolate at the concentration three times higher than in fresh cow's milk. On the manifestation of the antioxidant activity of cationic whey protein isolate in vivo evidence decrease of lipid peroxidation products concentration in the blood of rats from the experimental group receipt whey protein isolate in dos 0,6 mg/g for more than 20% (pwhey protein isolate has an

  8. Cell volume-regulated cation channels.

    Science.gov (United States)

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  9. Surface selective binding of nanoclay particles to polyampholyte protein chains

    Science.gov (United States)

    Pawar, Nisha; Bohidar, H. B.

    2009-07-01

    Binding of nanoclay (Laponite) to gelatin-A and gelatin-B (both polyampholytes) molecules was investigated at room temperature (25 °C) both experimentally and theoretically. The stoichiometric binding ratio between gelatin and Laponite was found to be strongly dependent on the solution ionic strength. Large soluble complexes were formed at higher ionic strengths of the solution, a result supported by data obtained from light scattering, viscosity, and zeta potential measurements. The binding problem was theoretically modeled by choosing a suitable two-body screened Coulomb potential, U(R+)=(q-/2ɛ)[(Q-/R-)e-kR--(Q+/R+)e-kR+], where the protein dipole has charges Q+ and Q_ that are located at distances R+ and R_ from the point Laponite charge q- and the dispersion liquid has dielectric constant (ɛ). U(R+) accounted for electrostatic interactions between a dipole (protein molecule) and an effective charge (Laponite particle) located at an angular position θ. Gelatin-A and Laponite association was facilitated by a strong attractive interaction potential that led to preferential binding of the biopolymer chains to negatively charged face of Laponite particles. In the case of gelatin-B selective surf ace patch binding dominated the process where the positively charged rim and negatively charged face of the particles were selectively bound to the oppositely charged segments of the biopolymer. The equilibrium separation (Re) between the protein and nanoclay particle revealed monovalent salt concentration dependence given by Re˜[NaCl]α where α =0.6±0.2 for gelatin-A and α =0.4±0.2 for gelatin-B systems. The equilibrium separations were ≈30% less compared to the gelatin-A system implying preferential short-range ordering of the gelatin-B-nanoclay pair in the solvent.

  10. Interactions between alpha-latrotoxin and trivalent cations in rat striatal synaptosomal preparations

    Energy Technology Data Exchange (ETDEWEB)

    Scheer, H.W.

    1989-05-01

    The interactions between alpha-latrotoxin (alpha-LTx), a neurosecretagogue purified from the venom of the black widow spider, and the trivalent cations Al3+, Y3+, La3+, Gd3+, and Yb3+ were investigated in rat striatal synaptosomal preparations. All trivalent cations tested were inhibitors of alpha-LTx-induced (/sup 3/H)dopamine ((/sup 3/H)DA) release (order of potency: Yb3+ greater than Gd3+ approximately Y3+ greater than La3+ greater than Al3+). Only with Al3+ could inhibition of (/sup 3/H)DA release be attributed to a block of /sup 125/I-alpha-LTx specific binding to synaptosomal preparations. The inhibitory effect of trivalent ions was reversible provided synaptosomes were washed with buffer containing EDTA. Trivalent ions also inhibited alpha-LTx-induced (/sup 3/H)DA release at times when alpha-LTx-stimulated release was already evident. alpha-LTx-induced synaptosomal membrane depolarization was blocked by La3+, but not affected by Gd3+, Y3+, and Yb3+. alpha-LTx-stimulated uptake of /sup 45/Ca/sup 2 +/ was inhibited by all trivalent cations tested. These results demonstrate that there exist at least three means by which trivalent cations can inhibit alpha-LTx action in rat striatal synaptosomal preparations: (1) inhibition of alpha-LTx binding (Al3+); (2) inhibition of alpha-LTx-induced depolarization (La3+); and (3) inhibition of alpha-LTx-induced /sup 45/Ca/sup 2 +/ uptake (Gd3+, Y3+, Yb3+, La3+).

  11. Cationic nanoparticles with quaternary ammonium-functionalized PLGA-PEG-based copolymers for potent gene transfection

    Science.gov (United States)

    Wang, Yan-Hsung; Fu, Yin-Chih; Chiu, Hui-Chi; Wang, Chau-Zen; Lo, Shao-Ping; Ho, Mei-Ling; Liu, Po-Len; Wang, Chih-Kuang

    2013-11-01

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA- phe-PEG- qDETA (PPD), phe-PEG- qDETA-PLGA (PDP), and PLGA- phe-PEG- qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH2), phenylalanine ( phe), and poly(lactic- co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of 217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  12. Cationic nanoparticles with quaternary ammonium-functionalized PLGA–PEG-based copolymers for potent gene transfection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan-Hsung [Kaohsiung Medical University, School of Dentistry, College of Dental Medicine (China); Fu, Yin-Chih [Kaohsiung Medical University, Graduate Institute of Medicine, College of Medicine (China); Chiu, Hui-Chi [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Wang, Chau-Zen [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Lo, Shao-Ping [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China); Ho, Mei-Ling [Kaohsiung Medical University, Department of Physiology, College of Medicine (China); Liu, Po-Len [Kaohsiung Medical University, Department of Respiratory Therapy, College of Medicine (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, College of Life Science (China)

    2013-11-15

    The objective of the present work was to develop new cationic nanoparticles (cNPs) with amphiphilic cationic copolymers for the delivery of plasmid DNA (pDNA). Cationic copolymers were built on the synthesis of quaternary ammonium salt compounds from diethylenetriamine (DETA) to include the positively charged head group and amphiphilic multi-grafts. PLGA-phe-PEG-qDETA (PPD), phe-PEG-qDETA-PLGA (PDP), and PLGA-phe-PEG-qDETA-PLGA (PPDP) cationic copolymers were created by this moiety of DETA quaternary ammonium, heterobifunctional polyethylene glycol (COOH-PEG-NH{sub 2}), phenylalanine (phe), and poly(lactic-co-glycolic acid) (PLGA). These new cNPs were prepared by the water miscible solvent displacement method. They exhibit good pDNA binding ability, as shown in a retardation assay that occurred at a particle size of ∼217 nm. The zeta potential was approximately +21 mV when the cNP concentration was 25 mg/ml. The new cNPs also have a better buffering capacity than PLGA NPs. However, the pDNA binding ability was demonstrated starting at a weight ratio of approximately 6.25 cNPs/pDNA. Gene transfection results showed that these cNPs had transfection effects similar to those of Lipofectamine 2000 in 293T cells. Furthermore, cNPs can also transfect human adipose-derived stem cells. The results indicate that the newly developed cNP is a promising candidate for a novel gene delivery vehicle.

  13. Induction of morphogenesis in Geodermatophilus by inorganic cations and by organic nitrogenous cations.

    Science.gov (United States)

    Ishiguro, E E; Wolfe, R S

    1974-01-01

    Morphogenesis of Geodermatophilus strain 22-68 involves two stages, a motile rod (R form) and an irregularly shaped cluster of coccoid cells (C form). A variety of mono- and divalent cations have been found to induce R-form to C-form morphogenesis and to maintain the organism in the C form. Concentration optima for all cations exceeded 100 mM. Results indicated that uptake of cations was accompanied by extrusion of intracellular protons, causing an increase in intracellular pH. A variety of organic amines also induced morphogenesis. Organic amines were taken up in the dissociated free base form, causing the intracellular pH to rise. None of these compounds was utilized as a carbon or nitrogen source.

  14. Refined multivalent display of bacterial spore-binding peptides.

    Science.gov (United States)

    Lusvarghi, Sabrina; Kim, Jenny Morana; Creeger, Yehuda; Armitage, Bruce Alan

    2009-05-07

    A multiple antigen peptide display scaffold was used to create multivalent versions of a heptapeptide selected previously by phage display to bind to Bacillus subtilis spores. A simple flow cytometric assay was developed in which a biotinylated form of the peptide was first bound to fluorescent streptavidin, then the fluorescent streptavidin-peptide complex was bound to spores before introduction into the cytometer. This assay clearly demonstrated that the tetravalent scaffold enhanced the affinity for B. subtilis spores by greater than 1 and 2 orders of magnitude when compared to divalent and monovalent analogues, respectively. However, variations in the number and flexibility of spacer residues within the scaffold did not significantly affect the binding affinity of the tetravalent peptides. Similar to prior reports, these multivalent scaffolds are effective most likely because they mimic the multivalent display of the original peptide library on the phage coat. Moreover, the tetravalent peptides can be readily integrated into a variety of heterogeneous and homogeneous spore-detection assay formats.

  15. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  16. Adverse events following pandemic A (H1N1 2009 monovalent vaccines in pregnant women--Taiwan, November 2009-August 2010.

    Directory of Open Access Journals (Sweden)

    Wan-Ting Huang

    Full Text Available BACKGROUND: During the 2009 H1N1 pandemic, pregnant women were prioritized to receive the unadjuvanted or MF59®-adjuvanted pandemic A (H1N1 2009 monovalent vaccines ("2009 H1N1 vaccines" in Taiwan regardless of stage of pregnancy. Monitoring adverse events following 2009 H1N1 vaccination in pregnant women was a priority for the mass immunization campaign beginning November 2009. METHODS/FINDINGS: We characterized reports to the national passive surveillance from November 2009 through August 2010 involving adverse events following 2009 H1N1 vaccines among pregnant women. Reports from the passive surveillance were matched to a large-linked database on a unique identifier, date of vaccination, and date of diagnosis in a capture-recapture analysis to estimate the true number of spontaneous abortion after 2009 H1N1 vaccination. We verified 16 spontaneous abortions, 11 stillbirths, 4 neonatal deaths, 4 nonpregnancy-specific adverse events, and 2 inadvertent immunizations in recipients who were unaware of pregnancy at time of vaccination. The Chapman capture-recapture estimator of true number of spontaneous abortion after 2009 H1N1 vaccination was 329 (95% confidence interval [CI] 196-553. Of the 14,474 pregnant women who received the 2009 H1N1 vaccines, the estimated risk of spontaneous abortion was 2.3 (95% CI, 1.4-3.8 per 100 pregnancies, compared with a local background rate of 12.8 (95% CI, 12.8-12.9 per 100 pregnancies. CONCLUSIONS: The passive surveillance provided rapid initial assessment of adverse events after 2009 H1N1 vaccination among pregnant women. Its findings were reassuring for the safety of 2009 H1N1 vaccines in pregnancy.

  17. Comparison of accelerated and rapid schedules for monovalent hepatitis B and combined hepatitis A/B vaccines in children with cancer.

    Science.gov (United States)

    Köksal, Yavuz; Varan, Ali; Aydin, G Burca; Sari, Neriman; Yazici, Nalan; Yalcin, Bilgehan; Kutluk, Tezer; Akyuz, Canan; Büyükpamukçu, Münevver

    2007-12-01

    The aim of this study was to determine the efficacy of immunization against hepatitis A and B infections with "rapid" or "accelerated" schedules in children with cancer receiving chemotherapy. Fifty-one children were recruited to receive either vaccination schedule, in the "rapid vaccination schedule"; hepatitis B (group I) or combined hepatitis A/B vaccines (group III) were administered at months 0, 1, 2, and 12; in the "accelerated vaccination schedule," hepatitis B (group II) or combined hepatitis A/B (group IV) vaccines were administered on days 0, 7, 21, and 365 intramuscularly. The seroconversion rates at months 1 and 3 were 35.7 and 57.1% in group I and 25 and 18.8% in group II, respectively. Group I developed higher seroconversion rates at month 3. In group III the seroconversion rates for hepatitis B at months 1 and 3 were 54.5 and 60% and in group IV 50 and 70%, respectively. For hepatitis A, the seroconversion rates at months 1 and 3 were 81.8 and 90% in group III and 80 and 88.9% in group IV, respectively. The accelerated vaccination schedule seems to have no advantage in children receiving cancer chemotherapy except for high antibody levels at month 1. In conclusion, the accelerated vaccination schedules are not good choices for cancer patients. The combined hepatitis A/B vaccine is more effective than monovalent vaccine in cancer patients, which probably can be explained by an adjuvant effect of the antigens. The seroconversion of hepatitis A by the combined hepatitis A/B vaccination is very good in cancer patients.

  18. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  19. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation.

    Science.gov (United States)

    Jubeli, Emile; Maginty, Amanda B; Abdul Khalique, Nada; Raju, Liji; Abdulhai, Mohamad; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2015-10-01

    Previously we reported the synthesis and in vitro evaluation of four novel, short-chain cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic hydrophobic regions composed of, or derived from, two 7-carbon chains. Herein we describe a revised synthesis of an expanded library of related cationic lipids to include extended chain analogues, their formulation with plasmid DNA (pDNA) and in vitro delivery into Chinese hamster ovarian (CHO-K1) cells. The formulations were evaluated against each other based on structural differences in the hydrophobic domain and headgroup. Structurally the library is divided into four sets based on lipids derived from two 7- or two 11-carbon hydrophobic chains, C7 and C11 respectively, which possess either a dimethylamine or a trimethylamine derived headgroup. Each set includes four cationic lipids based on an acyclic or macrocyclic, saturated or unsaturated hydrophobic domain. All lipids were co-formulated with the commercial cationic lipid 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC) in a 1:1 molar ratio, along with one of two distinct neutral co-lipids, cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in an overall cationic-to-neutral lipid molar ratio of 3:2. Binding of lipid formulations with DNA, and packing morphology associated with the individual lipid-DNA complexes were characterized by gel electrophoresis and small angle X-ray diffraction (SAXD), respectively. As a general trend, lipoplex formulations based on mismatched binary cationic lipids, composed of a shorter C7 lipid and the longer lipid EPC (C14), were generally associated with higher transfection efficiency and lower cytotoxicity than their more closely matched C11/EPC binary lipid formulation counterparts. Furthermore, the cyclic lipids gave transfection levels as high as or greater than their acyclic counterparts, and formulations with cholesterol exhibited higher transfection and lower cytotoxicity than those

  20. Rapid and quantitative quality control of microarrays using cationic nanoparticles.

    Science.gov (United States)

    Sun, Ye; Fan, Wenhua; McCann, Michael P; Golovlev, Val

    2009-02-15

    The fabrication quality of microarrays significantly influences the accuracy and reproducibility of microarray experiments. In this report, we present a simple and fast quality control (QC) method for spotted oligonucleotide and cDNA microarrays. It employs a nonspecific electrostatic interaction of colloidal gold nanoparticles with the chemical groups of DNA molecules and other biomolecules immobilized on the microarray surface that bear positive or negative charges. An inexpensive flatbed scanner is used to visualize and quantify the binding of cationic gold particles to the anionic DNA probes on the microarray surface. An image analysis software was designed to assess the various parameters of the array spots including spot intensity, shape and array homogeneity, calculate the overall array quality score, and save the detailed array quality report in an Excel file. The gold staining technique is fast and sensitive. It can be completed in 10 min and detect less than 1% of the probe amount commonly recommended for microarrays. Compared to the current microarray QC method that utilizes the hybridization of probes with short random sequence oligonucleotides labeled with fluorophore, our gold staining method requires less time for the analysis, reduces the reagent cost, and eliminates the need for the expensive laser scanner.

  1. Transient receptor potential (TRP gene superfamily encoding cation channels

    Directory of Open Access Journals (Sweden)

    Pan Zan

    2011-01-01

    Full Text Available Abstract Transient receptor potential (TRP non-selective cation channels constitute a superfamily, which contains 28 different genes. In mammals, this superfamily is divided into six subfamilies based on differences in amino acid sequence homology between the different gene products. Proteins within a subfamily aggregate to form heteromeric or homomeric tetrameric configurations. These different groupings have very variable permeability ratios for calcium versus sodium ions. TRP expression is widely distributed in neuronal tissues, as well as a host of other tissues, including epithelial and endothelial cells. They are activated by environmental stresses that include tissue injury, changes in temperature, pH and osmolarity, as well as volatile chemicals, cytokines and plant compounds. Their activation induces, via intracellular calcium signalling, a host of responses, including stimulation of cell proliferation, migration, regulatory volume behaviour and the release of a host of cytokines. Their activation is greatly potentiated by phospholipase C (PLC activation mediated by coupled GTP-binding proteins and tyrosine receptors. In addition to their importance in maintaining tissue homeostasis, some of these responses may involve various underlying diseases. Given the wealth of literature describing the multiple roles of TRP in physiology in a very wide range of different mammalian tissues, this review limits itself to the literature describing the multiple roles of TRP channels in different ocular tissues. Accordingly, their importance to the corneal, trabecular meshwork, lens, ciliary muscle, retinal, microglial and retinal pigment epithelial physiology and pathology is reviewed.

  2. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  3. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E.; Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.

    1981-10-02

    The cationic technetium-99 complex trans-(99TC(dmpe)2Cl2)+, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH3)2P-CH2-P(CH3)2, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(99mTc(dmpe) 2Cl2)+, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  4. Aggregate Formed by a Cationic Fluorescence Probe

    Institute of Scientific and Technical Information of China (English)

    TIAN, Juan; SANG, Da-Yong; JI, Guo-Zhen

    2007-01-01

    The aggregation behavior of a cationic fluorescence probe 10-(4,7,10,13,16-pentaoxa-1-azacyclooctadecyl-methyl)anthracen-9-ylmethyl dodecanoate (1) was observed and studied by a fluorescence methodology in acidic and neutral conditions. By using the Py scale, differences between simple aggregates and micelles have been discussed. The stability of simple aggregates was discussed in terms of hydrophobic interaction and electrostatic repulsion. The absence of excimer emission of the anthrancene moiety of probe 1 in neutral condition was attributed to the photoinduced electron transfer mechanism instead of photodimerization.

  5. Mapping the interfacial binding surface of human secretory group IIa phospholipase A2.

    Science.gov (United States)

    Snitko, Y; Koduri, R S; Han, S K; Othman, R; Baker, S F; Molini, B J; Wilton, D C; Gelb, M H; Cho, W

    1997-11-25

    Human secretory group IIa phospholipase A2 (hIIa-PLA2) contains a large number of prominent cationic patches on its molecular surface and has exceptionally high affinity for anionic surfaces, including anionic membranes. To identify the cationic amino acid residues that support binding of hIIa-PLA2 to anionic membranes, we have performed extensive site-directed mutagenesis of this protein and measured vesicle binding and interfacial kinetic properties of the mutants using polymerized liposomes and nonpolymerized anionic vesicles. Unlike other secretory PLA2s, which have a few cationic residues that support binding of enzyme to anionic membranes, interfacial binding of hIIa-PLA2 is driven in part by electrostatic interactions involving a number of cationic residues forming patches on the putative interfacial binding surface. Among these residues, the amino-terminal patch composed of Arg-7, Lys-10, and Lys-16 makes the most significant contribution to interfacial adsorption, and this is supplemented by contributions from other patches, most notably Lys-74/Lys-87/Arg-92 and Lys-124/Arg-127. For these mutants, complete vesicle binding occurs in the presence of high vesicle concentrations, and under these conditions the mutants display specific activities comparable to that of wild-type enzyme. These studies indicate that electrostatic interactions between surface lysine and arginine residues and the interface contribute to interfacial binding of hIIa-PLA2 to anionic vesicles and that cationic residues closest to the opening of the active-site slot make the most important interactions with the membrane. However, because the wild type binds extremely tightly to anionic vesicles, it was not possible to exactly determine what fraction of the total interfacial binding energy is due to electrostatics.

  6. Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan).

    Science.gov (United States)

    Bonnaud, Marieange; Weiss, Jochen; McClements, David J

    2010-09-08

    Lauric arginate (LAE) is a food-grade cationic surfactant that is a highly potent antimicrobial active against a wide range of food pathogens and spoilage organisms. In compositionally complex environments, the antimicrobial activity of cationic LAE is likely to be impacted by its interactions with other charged components. The purpose of this study was to characterize the interactions between cationic LAE and various food grade biopolymers with different charge characteristics: anionic (pectin, alginate, carrageenan, xanthan), neutral (dextran), and cationic (chitosan). Isothermal titration calorimetry (ITC) and turbidity measurements were used to characterize surfactant-biopolymer interactions and the solubility of any aggregates formed. ITC and turbidity measurements suggested that no complex formation occurred between the cationic LAE and the cationic or neutral biopolymers, although the critical micelle concentration (cmc) of the surfactant was changed because of excluded volume effects. On the other hand, ITC measurements indicated a strong binding interaction between cationic LAE and anionic biopolymers. The amount of surfactant bound and the solubility of the aggregates formed depended strongly on biopolymer type. The results of this study have important implications for the application of LAE in compositionally complex systems.

  7. Analyzing binding data.

    Science.gov (United States)

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  8. Small angle neutron scattering studies on the interaction of cationic surfactants with bovine serum albumin

    Indian Academy of Sciences (India)

    Nuzhat Gull; S Chodankar; V K Aswal; Kabir-Ud-Din

    2008-11-01

    The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant molecules aggregate along the unfolded polypeptide chain of the protein resulting in the formation of a fractal structure representing a necklace model of micelle-like clusters randomly distributed along the polypeptide chain. The fractal dimension as well as the size and number of micelles attached to the complex have been determined.

  9. Refolding of Denatured/Reduced Lysozyme Using Weak-Cation Exchange Chromatography

    Institute of Scientific and Technical Information of China (English)

    Yan WANG; Bo Lin GONG; Xin Du GENG

    2003-01-01

    Oxidative refolding of the denatured/reduced lysozyme was investigated by using weak-cation exchange chromatography (WCX). The stationary phase of WCX binds to the reduced lysozyme and prevented it from forming intermolecular aggregates. At the same time urea and ammonium sulfate were added to the mobile phase to increase the elution strength for lysozyme. Ammonium sulfate can more stabilize the native protein than a common eluting agent, sodium chloride. Refolding of lysozyme by using this WCX is successfully. It was simply carried out to obtain a completely and correctly refolding of the denatured lysozyme at high concentration of 20.0 mg/mL.

  10. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins.

    Science.gov (United States)

    Ngo, Van; da Silva, Mauricio C; Kubillus, Maximilian; Li, Hui; Roux, Benoît; Elstner, Marcus; Cui, Qiang; Salahub, Dennis R; Noskov, Sergei Yu

    2015-10-13

    Despite decades of investigations, the principal mechanisms responsible for the high affinity and specificity of proteins for key physiological cations K(+), Na(+), and Ca(2+) remain a hotly debated topic. At the core of the debate is an apparent need (or lack thereof) for an accurate description of the electrostatic response of the charge distribution in a protein to the binding of an ion. These effects range from partial electronic polarization of the directly ligating atoms to long-range effects related to partial charge transfer and electronic delocalization effects. While accurate modeling of cation recognition by metalloproteins warrants the use of quantum-mechanics (QM) calculations, the most popular approximations used in major biomolecular simulation packages rely on the implicit modeling of electronic polarization effects. That is, high-level QM computations for ion binding to proteins are desirable, but they are often unfeasible, because of the large size of the reactive-site models and the need to sample conformational space exhaustively at finite temperature. Several solutions to this challenge have been proposed in the field, ranging from the recently developed Drude polarizable force-field for simulations of metalloproteins to approximate tight-binding density functional theory (DFTB). To delineate the usefulness of different approximations, we examined the accuracy of three recent and commonly used theoretical models and numerical algorithms, namely, CHARMM C36, the latest developed Drude polarizable force fields, and DFTB3 with the latest 3OB parameters. We performed MD simulations for 30 cation-selective proteins with high-resolution X-ray structures to create ensembles of structures for analysis with different levels of theory, e.g., additive and polarizable force fields, DFTB3, and DFT. The results from DFT computations were used to benchmark CHARMM C36, Drude, and DFTB3 performance. The explicit modeling of quantum effects unveils the key

  11. Xe-bearing hydrocarbon ions: Observation of Xe.acetylene+rad and Xe.benzene+rad radical cations and calculations of their ground state structures

    Science.gov (United States)

    Cui, Zhong-hua; Attah, Isaac K.; Platt, Sean P.; Aziz, Saadullah G.; Kertesz, Miklos; El-Shall, M. S.

    2016-04-01

    This work reports evidence for novel types of Xe-bearing hydrocarbon radical cations. The Xe.acetylene+rad radical cation adduct is observed at nearly room temperature using the mass-selected drift cell technique. The irreversible addition of the Xe atom and the lack of back dissociation to HCCH+rad + Xe is consistent with the calculated binding energy of 0.85 eV to be contrasted with the metastable nature of the neutral Xe.acetylene adduct. The observed Xe.benzene+rad radical cation appears to be a weakly bound complex stabilized mainly by ion-induced dipole interaction consistent with a calculated binding energy in the range of 0.14-0.17 eV.

  12. Study the effects of metallic ions on the combination of DNA and histones with molecular combing technique

    Institute of Scientific and Technical Information of China (English)

    LIU Yuying; WANG Pengye; DOU Shuoxing; XIE Ping; WANG Weichi; YIN Huawei

    2005-01-01

    The effects of monovalent (Na+, K+) and divalent (Mg2+, Ca2+, Mn2+) ions on the interaction between DNA and histone are studied using the molecular combing technique. λ-DNA molecules and DNA-histone complexes incubated with metal cations (Na+, K+, Mg2+, Ca2+, Mn2+) are stretched on hydrophobic surfaces, and directly observed by fluorescence microscopy. The results indicate that when these cations are added into the DNA solution, the fluorescence intensities of the stained DNA are reduced differently. The monovalent cations (Na+, K+) inhibit binding of histone to DNA. The divalent cations (Mg2+, Ca2+, Mn2+) enhance significantly the binding of histone to DNA and the binding of the DNA-histone complex to the hydrophobic surface. Mn2+ also induces condensation and aggregation of the DNA- histone complex.

  13. Electronic absorptions of the benzylium cation

    Science.gov (United States)

    Dryza, Viktoras; Chalyavi, Nahid; Sanelli, Julian A.; Bieske, Evan J.

    2012-11-01

    The electronic transitions of the benzylium cation (Bz+) are investigated over the 250-550 nm range by monitoring the photodissociation of mass-selected C7H7+-Arn (n = 1, 2) complexes in a tandem mass spectrometer. The Bz+-Ar spectrum displays two distinct band systems, the S1←S0 band system extending from 370 to 530 nm with an origin at 19 067 ± 15 cm-1, and a much stronger S3←S0 band system extending from 270 to 320 nm with an origin at 32 035 ± 15 cm-1. Whereas the S1←S0 absorption exhibits well resolved vibrational progressions, the S3←S0 absorption is broad and relatively structureless. Vibronic structure of the S1←S0 system, which is interpreted with the aid of time-dependent density functional theory and Franck-Condon simulations, reflects the activity of four totally symmetric ring deformation modes (ν5, ν6, ν9, ν13). We find no evidence for the ultraviolet absorption of the tropylium cation, which according to the neon matrix spectrum should occur over the 260 - 275 nm range [A. Nagy, J. Fulara, I. Garkusha, and J. Maier, Angew. Chem., Int. Ed. 50, 3022 (2011)], 10.1002/anie.201008036.

  14. Photodissociation of Cerium Oxide Nanocluster Cations.

    Science.gov (United States)

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  15. Antibacterial Activity of Geminized Amphiphilic Cationic Homopolymers.

    Science.gov (United States)

    Wang, Hui; Shi, Xuefeng; Yu, Danfeng; Zhang, Jian; Yang, Guang; Cui, Yingxian; Sun, Keji; Wang, Jinben; Yan, Haike

    2015-12-22

    The current study is aimed at investigating the effect of cationic charge density and hydrophobicity on the antibacterial and hemolytic activities. Two kinds of cationic surfmers, containing single or double hydrophobic tails (octyl chains or benzyl groups), and the corresponding homopolymers were synthesized. The antimicrobial activity of these candidate antibacterials was studied by microbial growth inhibition assays against Escherichia coli, and hemolysis activity was carried out using human red blood cells. It was interestingly found that the homopolymers were much more effective in antibacterial property than their corresponding monomers. Furthermore, the geminized homopolymers had significantly higher antibacterial activity than that of their counterparts but with single amphiphilic side chains in each repeated unit. Geminized homopolymers, with high positive charge density and moderate hydrophobicity (such as benzyl groups), combine both advantages of efficient antibacterial property and prominently high selectivity. To further explain the antibacterial performance of the novel polymer series, the molecular interaction mechanism is proposed according to experimental data which shows that these specimens are likely to kill microbes by disrupting bacterial membranes, leading them unlikely to induce resistance.

  16. Transition-Metal Hydride Radical Cations.

    Science.gov (United States)

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  17. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  18. Nature as a source of inspiration for cationic lipid synthesis.

    Science.gov (United States)

    Labas, Romain; Beilvert, Fanny; Barteau, Benoit; David, Stéphanie; Chèvre, Raphaël; Pitard, Bruno

    2010-02-01

    Synthetic gene delivery systems represent an attractive alternative to viral vectors for DNA transfection. Cationic lipids are one of the most widely used non-viral vectors for the delivery of DNA into cultured cells and are easily synthesized, leading to a large variety of well-characterized molecules. This review discusses strategies for the design of efficient cationic lipids that overcome the critical barriers of in vitro transfection. A particular focus is placed on natural hydrophilic headgroups and lipophilic tails that have been used to synthesize biocompatible and non-toxic cationic lipids. We also present chemical features that have been investigated to enhance the transfection efficiency of cationic lipids by promoting the escape of lipoplexes from the endosomal compartment and DNA release from DNA-liposome complexes. Transfection efficiency studies using these strategies are likely to improve the understanding of the mechanism of cationic lipid-mediated gene delivery and to help the rational design of novel cationic lipids.

  19. Improving the Force Field Description of Tyrosine-Choline Cation-pi Interactions : QM Investigation of Phenol-N(Me)(4)(+) Interactions

    NARCIS (Netherlands)

    Khan, Hanif M.; Grauffel, Cedric; Broer, Ria; MacKerell, Alexander D.; Havenith, Remco W. A.; Reuter, Nathalie

    2016-01-01

    Cation-pi interactions between tyrosine amino acids and compounds containing N,N,N-trimethylethanolammonium (N(CH3)(3)) are involved in the recognition of histone tails by chromodomains and in the recognition of phosphatidylcholine (PC) phospholipids by membrane-binding proteins. Yet, the lack of ex

  20. Synthesis and cationic selectivity studies of novel calix[4]arene derivatives containing heteroatom at the lower rim

    Institute of Scientific and Technical Information of China (English)

    WANG; Hao; LI; Zhe; LIU; Yu

    2007-01-01

    A series of calixarene derivatives 2-5 containing heteroatom at the lower rim have been synthesized. 1H NMR studies and crystallographic structures demonstrated that the calix[4]arene derivatives adopted cone conformations. Their cationic binding abilities and selectivities towards heavy and transition metal ions have been evaluated by solvent extraction of aqueous metal picrates. The obtained results indicated that the introduction of nitrogen, sulfur, and/or phosphor atoms to the calix[4]arene framework could effectively enhance their binding ability and selectivity for heavy and transition metal ions, such as Pb2+ or Ag+.

  1. Mechanism of quinine-dependent monoclonal antibody binding to platelet glycoprotein IIb/IIIa.

    Science.gov (United States)

    Bougie, Daniel W; Peterson, Julie; Rasmussen, Mark; Aster, Richard H

    2015-10-29

    Drug-dependent antibodies (DDAbs) that cause acute thrombocytopenia upon drug exposure are nonreactive in the absence of the drug but bind tightly to a platelet membrane glycoprotein, usually α(IIb)/β3 integrin (GPIIb/IIIa) when the drug is present. How a drug promotes binding of antibody to its target is unknown and is difficult to study with human DDAbs, which are poly-specific and in limited supply. We addressed this question using quinine-dependent murine monoclonal antibodies (mAbs), which, in vitro and in vivo, closely mimic antibodies that cause thrombocytopenia in patients sensitive to quinine. Using surface plasmon resonance (SPR) analysis, we found that quinine binds with very high affinity (K(D) ≈ 10⁻⁹ mol/L) to these mAbs at a molar ratio of ≈ 2:1 but does not bind detectably to an irrelevant mAb. Also using SPR analysis, GPIIb/IIIa was found to bind monovalently to immobilized mAb with low affinity in the absence of quinine and with fivefold greater affinity (K(D) ≈ 2.2 × 10⁻⁶) when quinine was present. Measurements of quinine-dependent binding of intact mAb and fragment antigen-binding (Fab) fragments to platelets showed that affinity is increased 10 000- to 100 000-fold by bivalent interaction between antibody and its target. Together, the findings indicate that the first step in drug-dependent binding of a DDAb is the interaction of the drug with antibody, rather than with antigen, as has been widely thought, where it induces structural changes that enhance the affinity/specificity of antibody for its target epitope. Bivalent binding may be essential for a DDAb to cause thrombocytopenia.

  2. Trends for isolated amino acids and dipeptides: Conformation, divalent ion binding, and remarkable similarity of binding to calcium and lead

    Science.gov (United States)

    Ropo, M.; Blum, V.; Baldauf, C.

    2016-11-01

    We derive structural and binding energy trends for twenty amino acids, their dipeptides, and their interactions with the divalent cations Ca2+, Ba2+, Sr2+, Cd2+, Pb2+, and Hg2+. The underlying data set consists of more than 45,000 first-principles predicted conformers with relative energies up to ~4 eV (~400 kJ/mol). We show that only very few distinct backbone structures of isolated amino acids and their dipeptides emerge as lowest-energy conformers. The isolated amino acids predominantly adopt structures that involve an acidic proton shared between the carboxy and amino function. Dipeptides adopt one of two intramolecular-hydrogen bonded conformations C5 or . Upon complexation with a divalent cation, the accessible conformational space shrinks and intramolecular hydrogen bonding is prevented due to strong electrostatic interaction of backbone and side chain functional groups with cations. Clear correlations emerge from the binding energies of the six divalent ions with amino acids and dipeptides. Cd2+ and Hg2+ show the largest binding energies–a potential correlation with their known high acute toxicities. Ca2+ and Pb2+ reveal almost identical binding energies across the entire series of amino acids and dipeptides. This observation validates past indications that ion-mimicry of calcium and lead should play an important role in a toxicological context.

  3. Structural Adaptation of a Thermostable Biotin-binding Protein in a Psychrophilic Environment

    Science.gov (United States)

    Meir, Amit; Bayer, Edward A.; Livnah, Oded

    2012-01-01

    Shwanavidin is an avidin-like protein from the marine proteobactrium Shewanella denitrificans, which exhibits an innate dimeric structure while maintaining high affinity toward biotin. A unique residue (Phe-43) from the L3,4 loop and a distinctive disulfide bridge were shown to account for the high affinity toward biotin. Phe-43 emulates the function and position of the critical intermonomeric Trp that characterizes the tetrameric avidins but is lacking in shwanavidin. The 18 copies of the apo-monomer revealed distinctive snapshots of L3,4 and Phe-43, providing rare insight into loop flexibility, binding site accessibility, and psychrophilic adaptation. Nevertheless, as in all avidins, shwanavidin also displays high thermostability properties. The unique features of shwanavidin may provide a platform for the design of a long sought after monovalent form of avidin, which would be ideal for novel types of biotechnological application. PMID:22493427

  4. A Rhizavidin Monomer with Nearly Multimeric Avidin-Like Binding Stability Against Biotin Conjugates.

    Science.gov (United States)

    Lee, Jeong Min; Kim, Jung A; Yen, Tzu-Chi; Lee, In Hwan; Ahn, Byungjun; Lee, Younghoon; Hsieh, Chia-Lung; Kim, Ho Min; Jung, Yongwon

    2016-03-01

    Developing a monomeric form of an avidin-like protein with highly stable biotin binding properties has been a major challenge in biotin-avidin linking technology. Here we report a monomeric avidin-like protein-enhanced monoavidin-with off-rates almost comparable to those of multimeric avidin proteins against various biotin conjugates. Enhanced monoavidin (eMA) was developed from naturally dimeric rhizavidin by optimally maintaining protein rigidity during monomerization and additionally shielding the bound biotin by diverse engineering of the surface residues. eMA allowed the monovalent and nonperturbing labeling of head-group-biotinylated lipids in bilayer membranes. In addition, we fabricated an unprecedented 24-meric avidin probe by fusing eMA to a multimeric cage protein. The 24-meric avidin and eMA were utilized to demonstrate how artificial clustering of cell-surface proteins greatly enhances the internalization rates of assembled proteins on live cells.

  5. Redox Active Cation Intercalation/Deintercalation in Two-Dimensional Layered MnO2 Nanostructures for High-Rate Electrochemical Energy Storage.

    Science.gov (United States)

    Xiong, Pan; Ma, Renzhi; Sakai, Nobuyuki; Bai, Xueyin; Li, Shen; Sasaki, Takayoshi

    2017-02-22

    Two-dimensional (2D) layered materials with a high intercalation pseudocapacitance have long been investigated for Li(+)-ion-based electrochemical energy storage. By contrast, the exploration of guest ions other than Li(+) has been limited, although promising. The present study investigates intercalation/deintercalation behaviors of various metal ions in 2D layered MnO2 with various interlayer distances, K-birnessite nanobelt (K-MnO2), its protonated form (H-MnO2), and a freeze-dried sample of exfoliated nanosheets. Series of metal ions, such as monovalent Li(+), Na(+), and K(+) and divalent Mg(2+), exhibit reversible intercalation during charge/discharge cycling, delivering high-rate pseudocapacitances. In particular, the freeze-dried MnO2 of exfoliated nanosheets restacked with the largest interlayer spacing and a less compact 3D network exhibits the best rate capability and a stable cyclability over 5000 cycles. Both theoretical calculation and kinetic analysis reveal that the increased interlayer distance facilitates the fast diffusion of cations in layered MnO2 hosts. The results presented herein provide a basis for the controllable synthesis of layered nanostructures for high-rate electrochemical energy storage using various single- and multivalent ions.

  6. Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes.

    Science.gov (United States)

    Wormit, Michael; Dreuw, Andreas

    2007-06-21

    Light harvesting complexes (LHCs) have been identified in all photosynthetic organisms. To understand their function in light harvesting and energy dissipation, detailed knowledge about possible excitation energy transfer (EET) and electron transfer (ET) processes in these pigment proteins is of prime importance. This again requires the study of electronically excited states of the involved pigment molecules, in LHCs of chlorophylls and carotenoids. This paper represents a critical review of recent quantum chemical calculations on EET and ET processes between pigment pairs relevant for the major LHCs of green plants (LHC-II) and of purple bacteria (LH2). The theoretical methodology for a meaningful investigation of such processes is described in detail, and benefits and limitations of standard methods are discussed. The current status of excited state calculations on chlorophylls and carotenoids is outlined. It is focused on the possibility of EET and ET in the context of chlorophyll fluorescence quenching in LHC-II and carotenoid radical cation formation in LH2. In the context of non-photochemical quenching of green plants, it is shown that replacement of the carotenoid violaxanthin by zeaxanthin in its binding pocket of LHC-II can not result in efficient quenching. In LH2, our computational results give strong evidence that the S(1) states of the carotenoids are involved in carotenoid cation formation. By comparison of theoretical findings with recent experimental data, a general mechanism for carotenoid radical cation formation is suggested.

  7. Effects of different cations on properties of ionomers of maleated styrene-butadiene-styrene triblock copolymer%阳离子对顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物离聚体性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘大刚; 谢洪泉; 高玉

    2011-01-01

    The ionomers containing different cations, such as sodium, lithium, potassium, calcium,zinc, lead, magnesium, and ethyl ammonium were synthesized from the ionization of maleated styrenebutadiene-styrene triblock copolymer ( SBS ) .Effects of different cations on the thermal, mechanical, oil resistance and adhesive properties of the ionomers were studied. The results showed that, in addition to the glass transition temperatures (Tg) of butadiene and styrene blocks, the ionomers exhibited third Tg, which is due to the dissociation of the ionic domains. For the monovalent alkali metal cation neutralized ionomers, the higher the ionic potential, the higher the dissociation temperature of ionic domains, tensile strength and lap shear strength to iron plates and the order from large to small was Li+ > Na+> K+; for the divalent cation neutralized ionomers, the dissociation temperature of ionic domains decreased in the order of Ca2+> Zn2+>Pb2+ , whereas the tensile strength decreased in the order of Ca2+> Zn2 + > Mg2 + , but all were lower than those of the monovalent alkali metal cation neutralized ionomers. The oil resistance of the divalent cation neutralized ionomers was better than that of the monovalent cation neutralized ionomers or SBS.The lap shear strength of zinc ion neutralized ionomer to iron plates was the highest of all, being 0. 594 MPa.%将顺酐化苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)离子化得到含不同阳离子的离聚体,考察了不同阳离子对离聚体热性能、物理机械性能、耐油性能和粘接性能的影响.结果表明,离聚体有3个玻璃化转变温度(Tg),其中2个是SBS固有的Tg,另一个是离子微区的离解温度;对于含1价阳离子的离聚体,离子电离势越高,离聚体的离解温度、拉伸强度和搭接剪切强度基本越高,即从大到小依次为含锂离聚体、含钠离聚体、含钾离聚体;含2价阳离子离聚体的离解温度从大到小依次为含钙离聚

  8. Epitope mapping of imidazolium cations in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation.

    Science.gov (United States)

    Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J

    2014-11-14

    We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).

  9. Ultrasound-Mediated Gene Delivery with Cationic Versus Neutral Microbubbles: Effect of DNA and Microbubble Dose on In Vivo Transfection Efficiency

    Science.gov (United States)

    Panje, Cedric M.; Wang, David S.; Pysz, Marybeth A.; Paulmurugan, Ramasamy; Ren, Ying; Tranquart, Francois; Tian, Lu; Willmann, Jürgen K.

    2012-01-01

    Objective: To assess the effect of varying microbubble (MB) and DNA doses on the overall and comparative efficiencies of ultrasound (US)-mediated gene delivery (UMGD) to murine hindlimb skeletal muscle using cationic versus neutral MBs. Materials and Methods: Cationic and control neutral MBs were characterized for size, charge, plasmid DNA binding, and ability to protect DNA against endonuclease degradation. UMGD of a codon optimized firefly luciferase (Fluc) reporter plasmid to endothelial cells (1 MHz, 1 W/cm², 20% duty cycle, 1 min) was performed in cell culture using cationic, neutral, or no MBs. In vivo UMGD to mouse hindlimb muscle was performed by insonation (1 MHz, 2 W/cm², 50% duty cycle, 5 min) after intravenous administration of Fluc combined with cationic, neutral, or no MBs. Gene delivery efficiency was assessed by serial in vivo bioluminescence imaging. Efficiency of in vivo UMGD with cationic versus neutral MBs was systematically evaluated by varying plasmid DNA dose (10, 17.5, 25, 37.5, and 50 µg) while maintaining a constant MB dose of 1x108 MBs and by changing MB dose (1x107, 5x107, 1x108, or 5x108 MBs) while keeping a constant DNA dose of 50 µg. Results: Cationic and size-matched control neutral MBs differed significantly in zeta potential with cationic MBs being able to bind plasmid DNA (binding capacity of 0.03 pg/MB) and partially protect DNA from nuclease degradation while neutral MBs could not. Cationic MBs enhanced UMGD compared to neutral MBs as well as no MB and no US controls both in cell culture (P < 0.001) and in vivo (P < 0.05). Regardless of MB type, in vivo UMGD efficiency increased dose-dependently with DNA dose and showed overall maximum transfection with 50 µg DNA. However, there was an inverse correlation (ρ = -0.90; P = 0.02) between DNA dose and the degree of enhanced UMGD efficiency observed with using cationic MBs instead of neutral MBs. The delivery efficiency advantage associated with cationic MBs was most prominent

  10. Ultrasound-Mediated Gene Delivery with Cationic Versus Neutral Microbubbles: Effect of DNA and Microbubble Dose on In Vivo Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Cedric M. Panje, David S. Wang, Marybeth A. Pysz, Ramasamy Paulmurugan, Ying Ren, Francois Tranquart, Lu Tian, Jürgen K. Willmann

    2012-01-01

    Full Text Available Objective: To assess the effect of varying microbubble (MB and DNA doses on the overall and comparative efficiencies of ultrasound (US-mediated gene delivery (UMGD to murine hindlimb skeletal muscle using cationic versus neutral MBs.Materials and Methods: Cationic and control neutral MBs were characterized for size, charge, plasmid DNA binding, and ability to protect DNA against endonuclease degradation. UMGD of a codon optimized firefly luciferase (Fluc reporter plasmid to endothelial cells (1 MHz, 1 W/cm², 20% duty cycle, 1 min was performed in cell culture using cationic, neutral, or no MBs. In vivo UMGD to mouse hindlimb muscle was performed by insonation (1 MHz, 2 W/cm², 50% duty cycle, 5 min after intravenous administration of Fluc combined with cationic, neutral, or no MBs. Gene delivery efficiency was assessed by serial in vivo bioluminescence imaging. Efficiency of in vivo UMGD with cationic versus neutral MBs was systematically evaluated by varying plasmid DNA dose (10, 17.5, 25, 37.5, and 50 µg while maintaining a constant MB dose of 1x108 MBs and by changing MB dose (1x107, 5x107, 1x108, or 5x108 MBs while keeping a constant DNA dose of 50 µg.Results: Cationic and size-matched control neutral MBs differed significantly in zeta potential with cationic MBs being able to bind plasmid DNA (binding capacity of 0.03 pg/MB and partially protect DNA from nuclease degradation while neutral MBs could not. Cationic MBs enhanced UMGD compared to neutral MBs as well as no MB and no US controls both in cell culture (P < 0.001 and in vivo (P < 0.05. Regardless of MB type, in vivo UMGD efficiency increased dose-dependently with DNA dose and showed overall maximum transfection with 50 µg DNA. However, there was an inverse correlation (ρ = -0.90; P = 0.02 between DNA dose and the degree of enhanced UMGD efficiency observed with using cationic MBs instead of neutral MBs. The delivery efficiency advantage associated with cationic MBs was most

  11. Cation-π interaction of the univalent silver cation with meso-octamethylcalix[4]pyrrole: Experimental and theoretical study

    Science.gov (United States)

    Polášek, Miroslav; Kvíčala, Jaroslav; Makrlík, Emanuel; Křížová, Věra; Vaňura, Petr

    2017-02-01

    By using electrospray ionization mass spectrometry (ESI-MS), it was proven experimentally that the univalent silver cation Ag+ forms with meso-octamethylcalix[4]pyrrole (abbrev. 1) the cationic complex species 1·Ag+. Further, applying quantum chemical DFT calculations, four different conformations of the resulting complex 1·Ag+ were derived. It means that under the present experimental conditions, this ligand 1 can be considered as a macrocyclic receptor for the silver cation.

  12. Voltammetry and Molecular Assembly of G-quadruplex DNAzyme on Single-crystal Au(111)-electrode Surfaces – Hemin as an Electrochemical Intercalator

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    2016-01-01

    DNA quadruplexes (qs’s) are a class of “non-canonical” oligonucleotides (OGNs) composed of stacked guanine (G) quartets generally stabilized by monovalent cations. Metal porphyrins selectively bind to G-qs complexes to form DNAzyme, which can exhibit peroxidase and other catalytic activity simila...

  13. Voltammetry and Molecular Assembly of G-quadruplex DNAzyme on Single-crystal Au(111)-electrode Surfaces – Hemin as an Electrochemical Intercalator

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    2016-01-01

    DNA quadruplexes (qs’s) are a class of “non-canonical” oligonucleotides (OGNs) composed of stacked guanine (G) quartets generally stabilized by monovalent cations. Metal porphyrins selectively bind to G-qs complexes to form DNAzyme, which can exhibit peroxidase and other catalytic activity simila...

  14. Preliminary results: surveillance for Guillain-Barré syndrome after receipt of influenza A (H1N1) 2009 monovalent vaccine - United States, 2009-2010.

    Science.gov (United States)

    2010-06-01

    Guillain-Barré syndrome (GBS) is an uncommon peripheral neuropathy causing paralysis and in severe cases respiratory failure and death. GBS often follows an antecedent gastrointestinal or upper respiratory illness but, in rare cases, can follow vaccination. In 1976, vaccination against a novel swine-origin influenza A (H1N1) virus was associated with a statistically significant increased risk for GBS in the 42 days after vaccination (approximately 10 excess cases per 1 million vaccinations), a consideration in halting the vaccination program in the context of limited influenza virus transmission. To monitor influenza A (H1N1) 2009 monovalent vaccine safety, several federal surveillance systems, including CDC's Emerging Infections Program (EIP), are being used. In October 2009, EIP began active surveillance to assess the risk for GBS after 2009 H1N1 vaccination. Preliminary results from an analysis in EIP comparing GBS patients hospitalized through March 31, 2010, who did and did not receive 2009 H1N1 vaccination showed an estimated age-adjusted rate ratio of 1.77 (GBS incidence of 1.92 per 100,000 person-years among vaccinated persons and 1.21 per 100,000 person-years among unvaccinated persons). If end-of-surveillance analysis confirms this finding, this would correspond to 0.8 excess cases of GBS per 1 million vaccinations, similar to that found in seasonal influenza vaccines. No other federal system to date has detected a statistically significant association between GBS and 2009 H1N1 vaccination. Surveillance and further analyses are ongoing. The 2009 H1N1 vaccine safety profile is similar to that for seasonal influenza vaccines, which have an excellent safety record. Vaccination remains the most effective method to prevent serious illness and death from 2009 H1N1 influenza infection; illness from the 2009 H1N1 influenza virus has been associated with a hospitalization rate of 222 per 1 million and a death rate of 9.7 per 1 million population.

  15. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    DEFF Research Database (Denmark)

    Ellegaard, Anne-Marie; Dehlendorff, Christian; Vind, Anna C.

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD) library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We...... then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients...... with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any...

  16. Electron spectra of radical cations of heteroanalogs

    Energy Technology Data Exchange (ETDEWEB)

    Petrushenko, K.B.; Turchaninov, V.K.; Vokin, A.I.; Ermikov, A.F.; Frolov, Yu.L.

    1985-12-01

    Radical cation spectra of indazole and benzothiophene in the visible region were obtained by laser photolysis during the reaction of photoexcited quinones with these compounds in acetonitrile. The charge transfer bands of the complexes of the test compounds with p-chloranil and 7,7,8,8-tetracyanoquinodimethane in dioxane were recorded on a Specord M-40. Photoelectron spectra were obtained on a ES-3201 electron spectrometer. The He(I) resonance band (21.21 eV) was used for excitation. Measurements were carried out in the 60-120/sup 0/C range. The energy scale was calibrated form the first ionization potentials of Ar (15.76 eV) and chlorobenzene (9.06 eV). The error in the determination of the ionization potentials for the first four photoelectron bands was 0.05 eV.

  17. Structural and cytotoxic studies of cationic thiosemicarbazones

    Science.gov (United States)

    Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai

    2017-06-01

    Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.

  18. Heart imaging with cationic complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, E. (Univ. of Cincinnati, Cincinnati, OH); Bushong, W.; Glavan, K.A.; Elder, R.C.; Sodd, V.J.; Scholz, K.L.; Fortman, D.L.; Lukes, S.J.

    1981-10-02

    The cationic technetium-99 complex trans-(/sup 99/Tc(dmpe)/sub 2/Cl/sub 2/)/sup +/, where dmpe is bis(1,2-dimethylphosphino)ethane or (CH/sub 3/)/sub 2/P-CH/sub 2/CH/sub 2/-P(CH/sub 3/)/sub 2/, has been prepared and characterized by single-crystal, x-ray structural analysis. The technetium-99m analog, trans-(/sup 99m/Tc (dmpe)/sub 2/Cl/sub 2/)/sup +/, has also been prepared and shown to yield excellent gamma-ray images of the heart. The purposeful design, characterization, and synthesis of this technetium-99m radiopharmaceutical represents a striking application of fundamental inorganic chemistry to a problem in applied nuclear medicine.

  19. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  20. Capturing dynamic cation hopping in cubic pyrochlores

    Science.gov (United States)

    Brooks Hinojosa, Beverly; Asthagiri, Aravind; Nino, Juan C.

    2011-08-01

    In direct contrast to recent reports, density functional theory predicts that the most stable structure of Bi2Ti2O7 pyrochlore is a cubic Fd3¯m space group by accounting for atomic displacements. The displaced Bi occupies the 96g(x,x,z) Wyckoff position with six equivalent sites, which create multiple local minima. Using nudged elastic band method, the transition states of Bi cation hopping between equivalent minima were investigated and an energy barrier between 0.11 and 0.21 eV was determined. Energy barriers associated with the motion of Bi between equivalent sites within the 96g Wyckoff position suggest the presence of dielectric relaxation in Bi2Ti2O7.

  1. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  2. Predicting Organic Cation Sorption Coefficients: Accounting for Competition from Sorbed Inorganic Cations Using a Simple Probe Molecule.

    Science.gov (United States)

    Jolin, William C; Goyetche, Reaha; Carter, Katherine; Medina, John; Vasudevan, Dharni; MacKay, Allison A

    2017-06-06

    With the increasing number of emerging contaminants that are cationic at environmentally relevant pH values, there is a need for robust predictive models of organic cation sorption coefficients (Kd). Current predictive models fail to account for the differences in the identity, abundance, and affinity of surface-associated inorganic exchange ions naturally present at negatively charged receptor sites on environmental solids. To better understand how organic cation sorption is influenced by surface-associated inorganic exchange ions, sorption coefficients of 10 organic cations (including eight pharmaceuticals and two simple probe organic amines) were determined for six homoionic forms of the aluminosilicate mineral, montmorillonite. Organic cation sorption coefficients exhibited consistent trends for all compounds across the various homoionic clays with sorption coefficients (Kd) decreasing as follows: Kd(Na(+)) > Kd(NH4(+)) ≥ Kd(K(+)) > Kd(Ca(2+)) ≥ Kd(Mg(2+)) > Kd(Al(3+)). This trend for competition between organic cations and exchangeable inorganic cations is consistent with the inorganic cation selectivity sequence, determined for exchange between inorganic ions. Such consistent trends in competition between organic and inorganic cations suggested that a simple probe cation, such as phenyltrimethylammonium or benzylamine, could capture soil-to-soil variations in native inorganic cation identity and abundance for the prediction of organic cation sorption to soils and soil minerals. Indeed, sorption of two pharmaceutical compounds to 30 soils was better described by phenyltrimethylammonium sorption than by measures of benzylamine sorption, effective cation exchange capacity alone, or a model from the literature (Droge, S., and Goss, K. Environ. Sci. Technol. 2013, 47, 14224). A hybrid approach integrating structural scaling factors derived from this literature model of organic cation sorption, along with phenyltrimethylammonium Kd values, allowed for

  3. Antiviral effect of cationic compounds on bacteriophages

    Directory of Open Access Journals (Sweden)

    Mai Huong eChatain-Ly

    2013-03-01

    Full Text Available The antiviral activity of several cationic compounds - cetytrimethylammonium (CTAB, chitosan, nisin and lysozyme - was investigated on the bacteriophage c2 (DNA head and non-contractile tail infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA infecting E.coli. Firstly, these activities were evaluated in a phosphate buffer pH 7- 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 log(pfu/mL to 1,5 log(pfu/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min. These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds.

  4. Role of extracellular cations in cell motility, polarity, and chemotaxis

    Directory of Open Access Journals (Sweden)

    Soll D

    2011-04-01

    Full Text Available David R Soll1, Deborah Wessels1, Daniel F Lusche1, Spencer Kuhl1, Amanda Scherer1, Shawna Grimm1,21Monoclonal Antibody Research Institute, Developmental Studies, Hybridoma Bank, Department of Biology, University of Iowa, Iowa City; 2Mercy Medical Center, Surgical Residency Program, Des Moines, Iowa, USAAbstract: The concentration of cations in the aqueous environment of free living organisms and cells within the human body influence motility, shape, and chemotaxis. The role of extracellular cations is usually perceived to be the source for intracellular cations in the process of homeostasis. The role of surface molecules that interact with extracellular cations is believed to be that of channels, transporters, and exchangers. However, the role of Ca2+ as a signal and chemoattractant and the discovery of the Ca2+ receptor have demonstrated that extracellular cations can function as signals at the cell surface, and the plasma membrane molecules they interact with can function as bona fide receptors that activate coupled signal transduction pathways, associated molecules in the plasma membrane, or the cytoskeleton. With this perspective in mind, we have reviewed the cationic composition of aqueous environments of free living cells and cells that move in multicellular organisms, most notably humans, the range of molecules interacting with cations at the cell surface, the concept of a cell surface cation receptor, and the roles extracellular cations and plasma membrane proteins that interact with them play in the regulation of motility, shape, and chemotaxis. Hopefully, the perspective of this review will increase awareness of the roles extracellular cations play and the possibility that many of the plasma membrane proteins that interact with them could also play roles as receptors.Keywords: extracellular cations, chemotaxis, transporters, calcium, receptors

  5. Biosorption of cationic basic dye and cadmium by the novel biosorbent Bacillus catenulatus JB-022 strain.

    Science.gov (United States)

    Kim, Su Young; Jin, Mi Ra; Chung, Chang Ho; Yun, Yeoung-Sang; Jahng, Kwang Yeop; Yu, Kang-Yeol

    2015-04-01

    Biosorption of heavy metals and dyes is a promising technology that involves the removal of toxic metals from industrial wastes. The present study aims to screen the bacterial strains isolated from soils and polluted pond for their potential biosorption of both cationic dye and cadmium. Bacillus catenulatus JB-022 strain removed 58% and 66% of cationic basic blue 3 (BB3) and cadmium (Cd(II)) at the respective concentrations of 2000 mg/L and 150 mg/L. The biosorption equilibrium data were well fitted by the Langmuir adsorption isotherm, and the kinetic studies indicated that the biosorption followed the pseudo-second-order model. The biosorption kinetics showed that the equilibrium was reached within 10 min and 5 min for BB3 and Cd(II), respectively. According to the Langmuir model, the maximum uptakes of BB3 and Cd(II) by the JB-022 biomass were estimated to be 139.74 and 64.28 mg/g, respectively. To confirm the surface morphology and functional groups, field emission scanning electron microscope, energy-dispersive X-ray spectrometer, X-ray diffraction, and Fourier transform infrared spectroscopy analyses were carried out, and the results revealed that the biomass of JB-022 has carboxyl and phosphonate groups as potential surface functional groups capable of binding to cationic pollutants. In conclusion, B. catenulatus JB-022 is proposed as an excellent biosorbent with potentially important applications in removal of cationic pollutants from wastewaters. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography.

    Science.gov (United States)

    Madadkar, Pedram; Sadavarte, Rahul; Butler, Michael; Durocher, Yves; Ghosh, Raja

    2017-06-15

    Cation exchange (CEX) chromatography is widely used for large-scale separation of monoclonal antibody (mAb) aggregates. The aggregates bind more strongly to CEX media and hence elute after the monomeric mAb in a salt gradient. However, monomer-aggregate resolution that is typically obtained is poor, which results in low product recovery. In the current study we address this challenge through the use of cation-exchange laterally-fed membrane chromatography (LFMC). Three different LFMC devices, each containing a bed of strong cation-exchange (S) membranes were used for preparative-scale removal of mAb aggregates. Trastuzumab (IgG1) biosimilar derived from human embryonic kidney 293 (293) cells was used as the primary model mAb in our study. The other mAbs investigated were Chinese hamster ovary (CHO) cell line derived Alemtuzumab (Campath-1H) and a heavy chain chimeric mAb EG2-hFc. In each of these case-studies, aggregates were well-resolved from the respective monomer. The separated and collected monomer and aggregate fractions were analyzed using techniques such as hydrophobic interaction membrane chromatography (HIMC), native polyacrylamide gel electrophoresis (or PAGE), and size-exclusion high-performance liquid chromatography (SE-HPLC). The high efficiency of separation obtained in each case was due to a combination of the small membrane pore size (3-5μm), and the use of LFMC technology, which has been shown to be suitable for high-resolution, multi-component protein separations. Also, the LFMC based separation processes reported in this study were more than an order of magnitude faster than equivalent resin-based, cation exchange chromatography. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Q.; Mercier, R.W.; Yao, W.; Berkowitz, G.A.

    1999-11-01

    Cyclic nucleotide-gated (cng) non-selective cation channels have been cloned from a number of animal systems. These channels are characterized by direct gating upon cAMO or cGMO binding to the intracellular portion of the channel protein, which leads to an increase in channel conductance. Animal cng channels are involved in signal transduction systems; they translate stimulus-induced changes in cytosolic cyclic nucleotide into altered cell membrane potential and/or cation flux as part of a signal cascade pathway. Putative plant homologs of animal cng channels have been identified. However, functional characterization (i.e., demonstration of cyclic-nucleotide-dependent ion currents) of a plant cng channel has not yet been accomplished. The authors report the cloning and first functional characterization of a plant member of this family of ion channels. The Arabidopsis cDNA AtCNGC2 encodes a polypeptide with deduced homology to the {alpha}-subunit of animal channels, and facilitates cyclic nucleotide-dependent cation currents upon expression in a number of heterologous systems. AtCNGC2 expression in a yeast mutant lacking a low-affinity K{sup +} uptake system complements growth inhibition only when lipophilic nucleotides are present in the culture medium. Voltage clamp analysis indicates that Xenopus lawvis oocytes injected with AtCNGC2 cRNA demonstrate cyclic-nucleotide-dependent, inward-rectifying K{sup +} currents. Human embryonic kidney cells (HEK293) transfected with AtCNGC2 cDNA demonstrate increased permeability to Ca{sup 2+} only in the presence of lipophilic cyclic nucleotides. The evidence presented here supports the functional classification of AtCNGC2 as a cyclic-nucleotide-gated cation channel, and presents the first direct evidence identifying a plant member of this ion channel family.

  8. Changes in the Vibrational Spectra of Zeolites Due to Sorption of Heavy Metal Cations

    Science.gov (United States)

    Król, M.; Mozgawa, W.; Barczyk, K.; Bajda, T.; Kozanecki, M.

    2013-11-01

    This work presents the results of spectroscopic (MIR and Raman) studies of zeolite structures after immobilization of heavy metal cations from aqueous solutions. The sorption of Ag+, Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions has been conducted on zeolites belonging to different structural groups, i.e., sodium forms of natural chabazite, mordenite, ferrierite, and clinoptilolite, as well as on synthetic zeolite Y. Systematic changes in intensities and positions of the bands corresponding to the characteristic ring vibrations have been observed in the measured spectra. The most visible changes are observed in the FT-IR spectra of the samples in the range of 850-450 cm-1, and in the Raman spectra in the range of 600-250 cm-1. Depending on the zeolite structure, the bands, which can be regarded as a kind of indicator of ion exchange, were indentifi ed. For example, in the case of IR spectra, these bands are at 766, 703, 648, 578, and 506 cm-1 for zeolite Y, at 733 and 560 cm-1 for mordenite, at 675 cm-1 for clinoptilolite, etc. The degree of changes depends on both the type of cation and its concentration in the initial solution. This is connected with the way of binding of metal ions to the zeolite aluminosilicate framework, i.e., a proportion of the ion exchange and chemisorption in the process. Cations mainly undergoing ion exchange, such as Cd2+ or Pb2+, have the greatest impact on the character of the spectra. On the other hand, Cr3+ ions practically do not modify the spectra of zeolites. Results of IR and Raman spectroscopic studies have been compared with those obtained by atomic absorption spectroscopy (AAS), from which the proportion of ion exchange to chemisorption in the process and the effective cation exchange capacity of the individual samples have been estimated.

  9. Ligand Binding and Conformational Changes in the Purine-Binding Riboswitch Aptamer Domains

    Science.gov (United States)

    Noeske, Jonas; Buck, Janina; Wöhnert, Jens; Schwalbe, Harald

    Riboswitches are highly structured mRNA elements that regulate gene expression upon specific binding of small metabolite molecules. The purine-binding riboswitches bind different purine ligands by forming both canonical Watson—Crick and non-canonical intermolecular base pairs, involving a variety of hydrogen bonds between the riboswitch aptamer domain and the purine ligand. Here, we summarize work on the ligand binding modes of both purine-binding aptamer domains, their con-formational characteristics in the free and ligand-bound forms, and their ligand-induced folding. The adenine- and guanine-binding riboswitch aptamer domains display different conformations in their free forms, despite nearly identical nucleotide loop sequences that form a loop—loop interaction in the ligand-bound forms. Interestingly, the stability of helix II is crucial for the formation of the loop—loop interaction in the free form. A more stable helix II in the guanine riboswitch leads to a preformed loop—loop interaction in its free form. In contrast, a less stable helix II in the adenine riboswitch results in a lack of this loop—loop interaction in the absence of ligand and divalent cations.

  10. The Effect of Hydration on the Cation-π Interaction Between Benzene and Various Cations

    Indian Academy of Sciences (India)

    VIKASH DHINDHWAL; N SATHYAMURTHY

    2016-10-01

    The effect of hydration on cation-π interaction in Mq+ BmWn (B = benzene; W = water; Mq+ =Na⁺, K⁺, Mg²⁺, Ca²⁺, Al³⁺, 0 ≤ n,m ≤ 4, 1≤ m + n ≤ 4) complexes has been investigated using ab initio quantum chemical methods. Interaction energy values computed at the MP2 level of theory using the 6-31G(d,p) basis set reveal a qualitative trend in the relative affinity of different cations for benzene and water in these complexes. The π–cloud thickness values for benzene have also been estimated for these systems.

  11. Enhanced spectrophotometric determination of Losartan potassium based on its physicochemical interaction with cationic surfactant

    Science.gov (United States)

    Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam

    2015-02-01

    In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62 × 105 M-1 and 1.38 × 105; respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa = 0.422). The developed method is linear over the range 0.5-28 μg mL-1. The accuracy was evaluated and was found to be 99.79 ± 0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations.

  12. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  13. Antibacterial effect of cationic porphyrazines and anionic phthalocyanine and their interaction with plasmid DNA

    Science.gov (United States)

    Hassani, Leila; Hakimian, Fatemeh; Safaei, Elham; Fazeli, Zahra

    2013-11-01

    Resistance to antibiotics is a public health issue and identification of new antibacterial agents is one of the most important goals of pharmacological research. Among the novel developed antibacterial agents, porphyrin complexes and their derivatives are ideal candidates for use in medical applications. Phthalocyanines differ from porphyrins by having nitrogen atoms link the individual pyrrol units. The aza analogues of the phthalocyanines (azaPcs) such as tetramethylmetalloporphyrazines are heterocyclic Pc analogues. In this investigation, interaction of an anionic phthalocyanine (Cu(PcTs)) and two cationic tetrapyridinoporphyrazines including [Cu(2,3-tmtppa)]4+ and [Cu(3,4-tmtppa)]4+ complexes with plasmid DNA was studied using spectroscopic and gel electrophoresis methods. In addition, antibacterial effect of the complexes against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria was investigated using dilution test method. The results indicated that both porphyrazines have significant antibacterial properties, but Cu(PcTs) has weak antibacterial effect. Compairing the binding of the phthalocyanine and the porphyrazines to DNA demonstrated that the interaction of cationic porphyrazines is stronger than the anionic phthalocyanine remarkably. The extent of hypochromicity and red shift of absorption spectra indicated preferential intercalation of the two porphyrazine into the base pairs of DNA helix. Gel electrophoresis result implied Cu(2,3-tmtppa) and Cu(3,4-tmtppa) are able to perform cleavage of the plasmid DNA. Consequently, DNA binding and cleavage might be one of the antibacterial mechanisms of the complexes.

  14. Site-directed mutagenesis of cation coordinating residues in the gastric H,K-ATPase.

    Science.gov (United States)

    Rulli, S J; Louneva, N M; Skripnikova, E V; Rabon, E C

    2001-03-01

    Site-mutations were introduced into putative cation binding site 1 of the H,K-ATPase at glu-797, thr-825, and glu-938. The side chain oxygen of each was not essential but the mutations produced different activation and inhibition kinetics. Site mutations thr-825 (ala, leu) and glu-938 (ala, gln) modestly decreased the apparent affinity to K+, while glu-797 (gln) was equivalent to wild type. As expected of competitive inhibition, mutations of thr-825 and glu-938 that decreased the apparent affinity for K+ also increased the apparent affinity for SCH28080. This is consistent with the participation of thr-825 and glu-938 in a cation binding domain. The sidechain geometry, but not the sidechain charge of glu-797, is essential to ATPase function as the site mutant glu-797 (gly) inactivated the H,K-ATPase, while glu-797 (gln) was active but the apparent affinity to SCH 28080 was decreased by four-fold. Lys-793, a unique residue of the H,K-ATPase, was essential for ATPase function. Since this residue is adjacent to site 1, the result suggests that charge pairing between lys-793 and residues at or near this site may be essential to ATPase function.

  15. Study of Ion Specific Interactions of Alkali Cations with Dicarboxylate Dianions

    Energy Technology Data Exchange (ETDEWEB)

    Murdachaew, Garold; Valiev, Marat; Kathmann, Shawn M.; Wang, Xue B.

    2012-02-10

    Alkali metal cations often show pronounced ion specific interactions and selectivity with macromolecules in biological processes, colloids, and interfacial sciences, but a fundamental understanding about the underlying microscopic mechanism is still very limited. Here we report a direct probe of interactions between alkali metal cations (M{sup +}) and dicarboxylate dianions, O{sub 2}C(CH{sub 2})nCO{sub 2} (D{sub n}{sup 2-}) in the gas phase by combined photoelectron spectroscopy (PES) and ab initio electronic structure calculation on nine M{sup +}-D{sub n}{sup 2-} complexes (M = Li, Na, K; n = 2, 4, 6). PES spectra show that the electron binding energy (EBE) decreases from Li{sup +} to Na{sup +} to K{sup +} for complexes of M{sup +}-D{sub 2}{sup 2-}, whereas the order is Li{sup +} binding environments are found to depend upon dicarboxylate size n and the specific cation M{sup +}. The observed variance of EBEs reflects how well a specific dicarboxylate dianion accommodates each M{sup +}. This work demonstrates the delicate interplay among several factors (electrostatic interaction, size matching, and strain energy) that likely play critical roles in determining the structures and energetics of gaseous clusters as well as ion specificity and selectivity in solutions and biological systems.

  16. How mobile are sorbed cations in clays and clay rocks?

    Science.gov (United States)

    Gimmi, T; Kosakowski, G

    2011-02-15

    Diffusion of cations and other contaminants through clays is of central interest, because clays and clay rocks are widely considered as barrier materials for waste disposal sites. An intriguing experimental observation has been made in this context: Often, the diffusive flux of cations at trace concentrations is much larger and the retardation smaller than expected based on their sorption coefficients. So-called surface diffusion of sorbed cations has been invoked to explain the observations but remains a controversial issue. Moreover, the corresponding surface diffusion coefficients are largely unknown. Here we show that, by an appropriate scaling, published diffusion data covering a broad range of cations, clays, and chemical conditions can all be modeled satisfactorily by a surface diffusion model. The average mobility of sorbed cations seems to be primarily an intrinsic property of each cation that follows inversely its sorption affinity. With these surface mobilities, cation diffusion coefficients can now be estimated from those of water tracers. In pure clays at low salinities, surface diffusion can reduce the cation retardation by a factor of more than 1000.

  17. In vivo toxicity of cationic micelles and liposomes

    DEFF Research Database (Denmark)

    Knudsen, Kristina Bram; Northeved, Helle; Ek, Pramod Kumar

    2015-01-01

    This study investigated toxicity of nanocarriers comprised of cationic polymer and lipid components often used in gene and drug delivery, formulated as cationic micelles and liposomes. Rats were injected intravenously with 10, 25 or 100 mg/kg and sacrificed after 24 or 48 h, or 24 h after the last...

  18. Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study.

    Science.gov (United States)

    Gang, Hongze; Liu, Jinfeng; Mu, Bozhong

    2015-10-01

    The binding structure and kinetics of ionized surfactin monolayer formed at the air/water interface to five counterions, Li+, Na+, K+, Ca2+, and Ba2+ (molar ratios of surfactin to monovalent and divalent counterions are 1:2 and 1:1 respectively), have been studied using molecular dynamics simulation. The results show that surfactin exhibits higher binding affinity to divalent counterions, Ca2+, and Ba2+, and smaller monovalent counterion, Li+, than Na+ and K+. Both carboxyl groups in surfactin are accessible for counterions, but the carboxyl group in Glu1 is easier to access by counterions than Asp5. Salt bridges are widely built between carboxyl groups by counterions, and the probability of the formation of intermolecular salt bridge is markedly larger than that of intramolecular salt bridge. Divalent counterions perform well in forming salt bridges between carboxyl groups. The salt bridges mediated by Ca2+ are so rigid that the lifetimes are about 0.13 ns, and the break rates of these salt bridges are 1-2 orders of magnitude smaller than those mediated by K+ which is about 5 ps in duration. The positions of the hydration layer of carboxyl groups are independent of counterions, but the bound counterions induce the dehydration of carboxyl groups and disturb the hydrogen bonds built between carboxyl group and hydration water.

  19. Interactions between cationic liposomes and drugs or biomolecules

    Directory of Open Access Journals (Sweden)

    ANA MARIA CARMONA-RIBEIRO

    2000-03-01

    Full Text Available Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  20. Interactions between cationic liposomes and drugs or biomolecules.

    Science.gov (United States)

    Carmona-Ribeiro, A M

    2000-01-01

    Multiple uses for synthetic cationic liposomes composed of dioctadecyldimethylammonium bromide (DODAB) bilayer vesicles are presented. Drugs or biomolecules can be solubilized or incorporated in the cationic bilayers. The cationic liposomes themselves can act as antimicrobial agents causing death of bacteria and fungi at concentrations that barely affect mammalian cells in culture. Silica particles or polystyrene microspheres can be functionalized by coverage with DODAB bilayers or phospholipid monolayers. Negatively charged antigenic proteins can be carried by the cationic liposomes which generate a remarkable immunoadjuvant action. Nucleotides or DNA can be physically adsorbed to the cationic liposomes to be transferred to mammalian cells for gene therapy. An overview of the interactions between DODAB vesicles and some biomolecules or drugs clearly points out their versatility for useful applications in a near future.

  1. Binding of Pentaammineruthenium(II) Residues to the Tris(bipyrazine)ruthenium(II) Cation.

    Science.gov (United States)

    1987-08-01

    de Quimica , Universidade de Sao Paulo, CP 20780, Sao Paulo, SP, Brazil and Department of Chemistry, York University, North York, Ontario, Canada M3J...3 ] complex . In the presence of concentrated sulphuric acid, further changes are observed in the spectra which seem to indicate more drastic...not modified by the presence of cyanoferrate(II) ions, excluding the possibility that the changes illustrated in Fig. 3.B arise from outer-sphere

  2. Expression and divalent cation binding properties of the novel chemotactic inflammatory protein psoriasin

    DEFF Research Database (Denmark)

    Vorum, H; Madsen, Peder; Rasmussen, H H;

    1996-01-01

    in Escherichia coli as a fusion protein containing a hexa His tag and a factor Xa cleavage site in the NH2-terminus. The protein was purified by affinity chromatography on Ni(2+)-nitrilotriacetic acid agarose, digested with factor Xa, further purified by ion-exchange chromatography and characterized by two...

  3. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David E.

    2000-09-14

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  4. Metal Cation Binding to Gas-Phase Pentaalanine: Divalent Ions Restructure the Complex

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2013-01-01

    Ion-neutral complexes of pentaalalanine with several singly- and doubly charged metal ions are examined using conformation analysis by infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) computations. The infrared spectroscopy in the 1500-1800 cm(-1) region

  5. Metal Cation Binding to Gas-Phase Pentaalanine: Divalent Ions Restructure the Complex

    NARCIS (Netherlands)

    Dunbar, R.C.; Steill, J.D.; Polfer, N.C.; Oomens, J.

    2013-01-01

    Ion-neutral complexes of pentaalalanine with several singly- and doubly charged metal ions are examined using conformation analysis by infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) computations. The infrared spectroscopy in the 1500-1800 cm(-1) region

  6. Magnetic susceptibility and electron magnetic resonance study of monovalent potassium doped manganites Pr{sub 0.6}Sr{sub 0.4−x}K{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thaljaoui, R., E-mail: thaljaoui@gmail.com [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Pękała, K. [Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Boujelben, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia); Szydłowska, J. [Department of Chemistry, University of Warsaw, Al. Żwirki i Wigury 101, 02-089 Warsaw (Poland); Fagnard, J.-F.; Vanderbemden, P. [SUPRATEC, Department of Electrical Engineering and Computer Science (B28), University of Liege (Belgium); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax (Tunisia)

    2013-12-15

    Highlights: •Orthorhombic monovalent doped manganites Pr0.6Sr0.4-xKxMnO3 (x = 0.05 to 0.2). •Unit cell volume decreases with K content. •Curie temperature decreases with K content. •Electron magnetic resonance determines low temperature limit of paramagnetic phase. -- Abstract: The monovalent potassium doped manganites Pr{sub 0.6}Sr{sub 0.4−x}K{sub x}MnO{sub 3} (x = 0.05–0.2) are characterized using the complementary magnetic susceptibility and electron resonance methods. In paramagnetic phase the temperature variations of the inverse magnetic susceptibility and the inverse intensity of resonance signal obey the Curie–Weiss law. A similarity in temperature variation of resonance signal width and the adiabatic polaron conductivity points to the polaron mechanism controlling the resonance linewidth. The low temperature limit of the pure paramagnetic phase is determined from the electron resonance spectra revealing the mixed phase spread down to the Curie temperature.

  7. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both simi

  8. Effect of alterations in glomerular charge on deposition of cationic and anionic antibodies to fixed glomerular antigens in the rat.

    Science.gov (United States)

    Adler, S; Baker, P; Pritzl, P; Couser, W G

    1985-07-01

    Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for

  9. Anaerobic toxicity of cationic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gitipour, Alireza; Thiel, Stephen W. [Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH (United States); Scheckel, Kirk G. [USEPA, Office of Research and Development, Cincinnati, OH (United States); Tolaymat, Thabet, E-mail: tolaymat.thabet@epa.gov [USEPA, Office of Research and Development, Cincinnati, OH (United States)

    2016-07-01

    The microbial toxicity of silver nanoparticles (AgNPs) stabilized with different capping agents was compared to that of Ag{sup +} under anaerobic conditions. Three AgNPs were investigated: (1) negatively charged citrate-coated AgNPs (citrate-AgNPs), (2) minimally charged polyvinylpyrrolidone coated AgNPs (PVP-AgNPs) and (3) positively charged branched polyethyleneimine coated AgNPs (BPEI-AgNPs). The AgNPs investigated in this experiment were similar in size (10–15 nm), spherical in shape, but varied in surface charge which ranged from highly negative to highly positive. While, at AgNPs concentrations lower than 5 mg L{sup −1}, the anaerobic decomposition process was not influenced by the presence of the nanoparticles, there was an observed impact on the diversity of the microbial community. At elevated concentrations (100 mg L{sup −1} as silver), only the cationic BPEI-AgNPs demonstrated toxicity similar in magnitude to that of Ag{sup +}. Both citrate and PVP-AgNPs did not exhibit toxicity at the 100 mg L{sup −1} as measured by biogas evolution. These findings further indicate the varying modes of action for nanoparticle toxicity and represent one of the few studies that evaluate end-of-life management concerns with regards to the increasing use of nanomaterials in our everyday life. These findings also highlight some of the concerns with a one size fits all approach to the evaluation of environmental health and safety concerns associated with the use of nanoparticles. - Highlights: • At concentrations -1 the anaerobic decomposition process was not impacted. • An impact on the microbial community at concentrations -1 were observed. • At high concentrations (100 mg L{sup −1}), the cationic BPEI-AgNPs demonstrated toxicity. • Toxicity was demonstrated without the presence of oxidative dissolution of silver. • A one size fits all approach for the evaluation of NPs may not be accurate.

  10. Incorporating magnesium and calcium cations in porous organic frameworks for high-capacity hydrogen storage.

    Science.gov (United States)

    Wang, Lin; Sun, Yingxin; Sun, Huai

    2011-01-01

    We propose incorporating a bi-functional group consisting of magnesium or calcium cations and a 1,2,4,5-benzenetetroxide anion (C6H2O4(4-)) in porous materials to enhance the hydrogen storage capacity. The C6H2O4M2 bifunctional group is highly stable and polarized, and each group provides 18 (M = Mg) or 22 (M = Ca) binding sites for hydrogen molecules with an average binding energy of ca. 10 kJ mol(-1) per hydrogen molecule based on RIMP2/ TZVPP calculations. Two porous materials (PAF-Mg or PAF-Ca) constructed with the bi-functional groups show remarkable improvement in hydrogen uptakes at normal ambient conditions. At 233 K and 10 MPa, the predicted gravimetric uptakes are 6.8 and 6.4 wt% for PAF-Mg and PAF-Ca respectively. This work reveals that fabricating materials with large numbers of binding sites and relatively low binding energies is a promising approach to achieve high capacity for on-board storage of hydrogen.

  11. Gill microsomal (Na+,K+)-ATPase from the blue crab Callinectes danae: Interactions at cationic sites.

    Science.gov (United States)

    Masui, D C; Furriel, R P M; Silva, E C C; Mantelatto, F L M; McNamara, J C; Barrabin, H; Scofano, H M; Fontes, C F L; Leone, F A

    2005-12-01

    Euryhaline crustaceans tolerate exposure to a wide range of dilute media, using compensatory, ion regulatory mechanisms. However, data on molecular interactions occurring at cationic sites on the crustacean gill (Na+,K+)-ATPase, a key enzyme in this hyperosmoregulatory process, are unavailable. We report that Na+ binding at the activating site leads to cooperative, heterotropic interactions that are insensitive to K+. The binding of K+ ions to their high affinity sites displaces Na+ ions from their sites. The increase in Na+ ion concentrations increases heterotropic interactions with the K+ ions, with no changes in K0.5 for K+ ion activation at the extracellular sites. Differently from mammalian (Na+,K+)-ATPases, that from C. danae exhibits additional NH4+ ion binding sites that synergistically activate the enzyme at saturating concentrations of Na+ and K+ ions. NH4+ binding is cooperative, and heterotropic NH4+ ion interactions are insensitive to Na+ ions, but Na+ ions displace NH4+ ions from their sites. NH4+ ions also displace Na+ ions from their sites. Mg2+ ions modulate enzyme stimulation by NH4+ ions, displacing NH4+ ion from its sites. These interactions may modulate NH4+ ion excretion and Na+ ion uptake by the gill epithelium in euryhaline crustaceans that confront hyposmotic media.

  12. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    Science.gov (United States)

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  13. Hydrogen motion in proton sponge cations: a theoretical study.

    Science.gov (United States)

    Horbatenko, Yevhen; Vyboishchikov, Sergei F

    2011-04-18

    This work presents a study of intramolecular NHN hydrogen bonds in cations of the following proton sponges: 2,7-bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (1), 1,6-diazabicyclo[4.4.4.]tetradecane (2), 1,9-bis(dimethylamino)dibenzoselenophene (3), 1,9-bis(dimethylamino)dibenzothiophene (4), 4,5-bis(dimethylamino)fluorene (5), quino[7,8-h]quinoline (6) 1,2-bis(dimethylamino)benzene (7), and 1,12-bis(dimethylamino)benzo[c]phenantrene (8). Three different patterns were found for proton motion: systems with a single-well potential (cations 1-2), systems with a double-well potential and low proton transfer barrier, ΔEe (cations 3-5), and those with a double-well potential and a high barrier (cations 6-8). Tests of several density functionals indicate that the PBEPBE functional reproduces the potential-energy surface (PES) obtained at the MP2 level well, whereas the B3LYP, MPWB1K, and MPW1B95 functionals overestimate the barrier. Three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved for selected cases of cation 1 (with a single-well potential), cation 4 (with a ΔEe value of 0.1 kcal mol(-1) at the MP2 level), and cations 6 (ΔEe = 2.4 kcal mol(-1)) and 7 (ΔEe=3.4 kcal mol(-1)). The PES is highly anharmonic in all of these cases. The analysis of the three-dimensional ground-state vibrational wave function shows that the proton is delocalized in cations 1 and 4, but is rather localized around the energy minima for cation 7. Cation 6 is an intermediate case, with two weakly pronounced maxima and substantial tunneling. This allows for classification of proton sponge cations into those with localized and those with delocalized proton behavior, with the borderline between them at ΔEe values of about 1.5 kcal mol(-1). The excited vibrational states of proton sponge cations with a low barrier can be described within the framework of a simple particle-in-a-box model. Each cation can be assigned an effective box width.

  14. Cationic liposomes enhance targeted delivery and expression of exogenous DNA mediated by N-terminal modified poly(L-lysine)-antibody conjugate in mouse lung endothelial cells.

    Science.gov (United States)

    Trubetskoy, V S; Torchilin, V P; Kennel, S; Huang, L

    1992-07-15

    A new and improved system for targeted gene delivery and expression is described. Transfection efficiency of N-terminal modified poly(L-lysine) (NPLL) conjugated with anti-thrombomodulin antibody 34A can be improved by adding to the system a lipophilic component, cationic liposomes. DNA, antibody conjugate and cationic liposomes form a ternary electrostatic complex which preserves the ability to bind specifically to the target cells. At the same time the addition of liposomes enhance the specific transfection efficiency of antibody-polylysine/DNA binary complex by 10 to 20-fold in mouse lung endothelial cells in culture.

  15. The influence of cationic lipid type on in-vitro release kinetic profiles of antisense oligonucleotide from cationic nanoemulsions.

    Science.gov (United States)

    Hagigit, Tal; Nassar, Taher; Behar-Cohen, Francine; Lambert, Gregory; Benita, Simon

    2008-09-01

    Novel formulations of cationic nanoemulsions based on three different lipids were developed to strengthen the attraction of the polyanionic oligonucleotide (ODN) macromolecules to the cationic moieties on the oil nanodroplets. These formulations were developed to prolong the release of the ODN from the nanoemulsion under appropriate physiological dilutions as encountered in the eye following topical application. Increasing the concentration of the new cationic lipid exhibiting two cationic amine groups (AOA) in the emulsion from 0.05% to 0.4% did not alter markedly the particle size or zeta potential value of the blank cationic nanoemulsion. The extent of ODN association did not vary significantly when the initial concentration of ODN remained constant at 10 microM irrespective of the cationic lipid nature. However, the zeta potential value dropped consistently with the low concentrations of 0.05% and 0.1% of AOA in the emulsions suggesting that an electrostatic attraction occurred between the cationic lipids and the polyanionic ODN molecules at the o/w interface. Only the nanoemulsion prepared with N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium salts (DOTAP) remained physically stable over time. DOTAP cationic lipid nanoemulsion was the most efficient formulation capable of retaining the ODN despite the high dilution of 1:100 with simulated tear solution (STS). Less than 10% of the ODN was exchanged in contrast to 40-50% with the other cationic nanoemulsions. The in-vitro release kinetic behavior of ODN exchange with physiological anions present in the STS appears to be complex and difficult to characterize using mathematical fitting model equations. Further pharmacokinetic studies are needed to verify our kinetic assumptions and confirm the in-vitro ODN release profile from DOTAP cationic nanoemulsions.

  16. Repurposing Cationic Amphiphilic Antihistamines for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Anne-Marie Ellegaard

    2016-07-01

    Full Text Available Non-small cell lung cancer (NSCLC is one of the deadliest cancers worldwide. In search for new NSCLC treatment options, we screened a cationic amphiphilic drug (CAD library for cytotoxicity against NSCLC cells and identified several CAD antihistamines as inducers of lysosomal cell death. We then performed a cohort study on the effect of CAD antihistamine use on mortality of patients diagnosed with non-localized cancer in Denmark between 1995 and 2011. The use of the most commonly prescribed CAD antihistamine, loratadine, was associated with significantly reduced all-cause mortality among patients with non-localized NSCLC or any non-localized cancer when compared with use of non-CAD antihistamines and adjusted for potential confounders. Of the less frequently described CAD antihistamines, astemizole showed a similar significant association with reduced mortality as loratadine among patients with any non-localized cancer, and ebastine use showed a similar tendency. The association between CAD antihistamine use and reduced mortality was stronger among patients with records of concurrent chemotherapy than among those without such records. In line with this, sub-micromolar concentrations of loratadine, astemizole and ebastine sensitized NSCLC cells to chemotherapy and reverted multidrug resistance in NSCLC, breast and prostate cancer cells. Thus, CAD antihistamines may improve the efficacy of cancer chemotherapy.

  17. Cationic Noncovalent Interactions: Energetics and Periodic Trends.

    Science.gov (United States)

    Rodgers, M T; Armentrout, P B

    2016-05-11

    In this review, noncovalent interactions of ions with neutral molecules are discussed. After defining the scope of the article, which excludes anionic and most protonated systems, methods associated with measuring thermodynamic information for such systems are briefly recounted. An extensive set of tables detailing available thermodynamic information for the noncovalent interactions of metal cations with a host of ligands is provided. Ligands include small molecules (H2, NH3, CO, CS, H2O, CH3CN, and others), organic ligands (O- and N-donors, crown ethers and related molecules, MALDI matrix molecules), π-ligands (alkenes, alkynes, benzene, and substituted benzenes), miscellaneous inorganic ligands, and biological systems (amino acids, peptides, sugars, nucleobases, nucleosides, and nucleotides). Hydration of metalated biological systems is also included along with selected proton-based systems: 18-crown-6 polyether with protonated peptides and base-pairing energies of nucleobases. In all cases, the literature thermochemistry is evaluated and, in many cases, reanchored or adjusted to 0 K bond dissociation energies. Trends in these values are discussed and related to a variety of simple molecular concepts.

  18. INTERACTIONS BETWEEN CATIONIC POLYELECTROLYTE AND PULP FINES

    Directory of Open Access Journals (Sweden)

    Elina Orblin

    2011-05-01

    Full Text Available Papermaking pulps are a mixture of fibres, fibre fragments, and small cells (parenchyma or ray cells, usually called pulp fines. The interactions between pulp fines and a cationic copolymer of acrylamide and acryloxyethyltrimethyl ammonium chloride were investigated based on solid-liquid isotherms prepared under different turbulence, and subsequent advanced surface characterization using X-ray photoelectron spectroscopy (XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS. The surface charge and surface area of pulp fine substrates were measured by methylene blue sorption-XPS analysis and nitrogen adsorption combined with mercury porosimetry, respectively. The driving force behind polyelectrolyte adsorption was the amount of the surface anionic charge, whereas surface area appeared to be of less importance. Based on a comparison of solid-liquid and XPS sorption isotherms, different polyelectrolyte conformations were suggested, depending on the types of fines: A flatter conformation and partial cell-wall penetration of polyelectrolytes on kraft fines from freshly prepared pulp, and a more free conformation with extended loops and tails on lignocellulosic fines from recycled pulp. Additionally, ToF-SIMS imaging proved that recycled pulp fines contained residual de-inking chemicals (primarily palmitic acid salts that possibly hinder the electrostatic interactions with polyelectrolytes.

  19. Cation Defects and Conductivity in Transparent Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Exarhos, Gregory J.; Windisch, Charles F.; Ferris, Kim F.; Owings, Robert R.

    2007-10-24

    High quality doped zinc oxide and mixed transition metal spinel oxide films have been deposited by means of sputter deposition from metal and metal oxide targets, and by spin casting from aqueous or alcoholic precursor solutions. Deposition conditions and post-deposition processing are found to alter cation oxidation states and their distributions in both oxide materials resulting in marked changes to both optical transmission and electrical response. For ZnO, partial reduction of the neat or doped material by hydrogen treatment of the heated film or by electrochemical processing renders the oxide n-type conducting. Continued reduction was found to diminish conductivity. In contrast, oxidation of the infrared transparent p-type spinel conductors typified by NiCo2O4 was found to increase conductivity. The disparate behavior of these two materials is caused in part by the sign of the charge carrier and by the existence of two different charge transport mechanisms that are identified as free carrier conduction and polaron hopping. While much work has been reported concerning structure/property relationships in the free carrier conducting oxides, there is a significantly smaller body of information on transparent polaron conductors. In this paper, we identify key parameters that promote conductivity in mixed metal spinel oxides and compare their behavior with that of the free carrier TCO’s.