WorldWideScience

Sample records for monoterpene synthase gene

  1. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1 in Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr.

    Directory of Open Access Journals (Sweden)

    Bua-In Saowaluck

    2014-01-01

    Full Text Available Cassumunar ginger (Zingiber montanum (Koenig Link ex Dietr. is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant and evaluate the mechanical wounding that may influence the transcription level of the monoterpene synthase gene. To isolate the gene, the selected clones from DNA derived from young leaves were sequenced and analyzed and the monoterpene synthase gene from cassumunar ginger (ZMM1 was identified. The ZMM1 CDS containing 1 773 bp (KF500399 is predicted to encode a protein of 590 amino acids. The deduced amino acid sequence is 40-74% identical with known sequences of other angiosperm monoterpene synthases belonging to the isoprenoid biosynthesis C1 superfamily. A transcript of ZMM1 was detected almost exclusively in the leaves and was related to leaf wounding. The results of this research offer insight into the control of monoterpene synthesis in this plant. This finding can be applied to breeding programs or crop management of cassumunar ginger for better yield and quality of essential oil.

  2. Isolation and Characterization of Three New Monoterpene Synthases from Artemisia annua

    Science.gov (United States)

    Ruan, Ju-Xin; Li, Jian-Xu; Fang, Xin; Wang, Ling-Jian; Hu, Wen-Li; Chen, Xiao-Ya; Yang, Chang-Qing

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5, and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography–mass spectrometry detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate, salicylic acid, and gibberellin, suggesting a role of these monoterpene synthases in plant–environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant. PMID:27242840

  3. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    Directory of Open Access Journals (Sweden)

    Ju-Xin eRuan

    2016-05-01

    Full Text Available Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with camphene and 1,8-cineole as major products, respectively, and AaTPS2 produced a single product, β-myrcene. Although both Mg2+ and Mn2+ were able to support their catalytic activities, altered product spectrum was observed in the presence of Mn2+ for AaTPS2 and AaTPS5. Analysis of extracts of aerial tissues and root of A. annua with gas chromatography-mass spectrometry (GC-MS detected more than 20 monoterpenes, of which the three enzymes constituted more than 1/3 of the total. Mechanical wounding induced the expression of all three monoterpene synthase genes, and transcript levels of AaTPS5 and AaTPS6 were also elevated after treatments with phytohormones of methyl jasmonate (MeJA, salicylic acid (SA and gibberellin (GA, suggesting a role of these monoterpene synthases in plant-environment interactions. The three new monoterpene synthases reported here further our understanding of molecular basis of monoterpene biosynthesis and regulation in plant.

  4. Generation and Functional Evaluation of Designer Monoterpene Synthases.

    Science.gov (United States)

    Srividya, N; Lange, I; Lange, B M

    2016-01-01

    Monoterpene synthases are highly versatile enzymes that catalyze the first committed step in the pathways toward terpenoids, the structurally most diverse class of plant natural products. Recent advancements in our understanding of the reaction mechanism have enabled engineering approaches to develop mutant monoterpene synthases that produce specific monoterpenes. In this chapter, we are describing protocols to introduce targeted mutations, express mutant enzyme catalysts in heterologous hosts, and assess their catalytic properties. Mutant monoterpene synthases have the potential to contribute significantly to synthetic biology efforts aimed at producing larger amounts of commercially attractive monoterpenes. © 2016 Elsevier Inc. All rights reserved.

  5. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    Science.gov (United States)

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively). Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    Science.gov (United States)

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  8. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour

    Science.gov (United States)

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2016-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS) genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2, and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers. PMID:26793212

  9. Emission and accumulation of monoterpene and the key terpene synthase (TPS associated with monoterpene biosynthesis in Osmanthus fragrans Lour.

    Directory of Open Access Journals (Sweden)

    Xaingling eZeng

    2016-01-01

    Full Text Available Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The results showed that both emission and accumulation of monoterpenes varied with flower development and glycosylation had an important impact on floral linalool emission during this process. Gene expression demonstrated that the transcript levels of terpene synthase (TPS genes probably played a key role in monoterpene production, compared to the genes in the MEP pathway. Phylogenetic analysis showed that OfTPS1 and OfTPS2 belonged to a TPS-g subfamily, and OfTPS3 and OfTPS4 clustered into a TPS-b subfamily. Their transient and stable expression in tobacco leaves suggested that OfTPS1 and OfTPS2 exclusively produced β-linalool, and trans-β-ocimene was the sole product from OfTPS3, while OfTPS4, a predictive sesquiterpene synthase, produced α-farnesene. These results indicate that OfTPS1, OfTPS2 and OfTPS3 could account for the major floral monoterpenes, linalool and trans-β-ocimene, produced in O. fragrans flowers.

  10. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase

    OpenAIRE

    Karuppiah, Vijaykumar; Ranaghan, Kara E.; Leferink, Nicole G. H.; Johannissen, Linus O.; Shanmugam, Muralidharan; Ní Cheallaigh, Aisling; Bennett, Nathan J.; Kearsey, Lewis J.; Takano, Eriko; Gardiner, John M.; van der Kamp, Marc W.; Hay, Sam; Mulholland, Adrian J.; Leys, David; Scrutton, Nigel S.

    2017-01-01

    Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS)...

  11. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    Science.gov (United States)

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  12. Isolation and characterization of three new monoterpene synthases from Artemisia annua

    OpenAIRE

    Ju-Xin eRuan; Jian-Xu eLi; Xin eFang; Ling-Jian eWang; Wen-Li eHu; Xiao-Ya eChen; Changqing eYang

    2016-01-01

    Artemisia annua, an annual herb used in traditional Chinese medicine, produces a wealth of monoterpenes and sesquiterpenes, including the well-known sesquiterpene lactone artemisinin, an active ingredient in the treatment for malaria. Here we report three new monoterpene synthases of A. annua. From a glandular trichome cDNA library, monoterpene synthases of AaTPS2, AaTPS5 and AaTPS6, were isolated and characterized. The recombinant proteins of AaTPS5 and AaTPS6 produced multiple products with...

  13. Flowery odor formation revealed by differential expression of monoterpene biosynthetic genes and monoterpene accumulation in rose (Rosa rugosa Thunb.).

    Science.gov (United States)

    Feng, Liguo; Chen, Chen; Li, Tinglin; Wang, Meng; Tao, Jun; Zhao, Daqiu; Sheng, Lixia

    2014-02-01

    Rosa rugosa is an important ornamental and economical plant. In this paper, four genes encoding 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), alcohol acyltransferase (AAT) and linalool synthase (LIS) involved in the monoterpene biosynthesis pathways were isolated from R. rugosa 'Tangzi', and the expression patterns of these genes in different flower development stages and different parts of floral organs were determined by real-time quantitative fluorescence PCR. Furthermore, a comprehensive analysis was carried out into the relationship between expression of four monoterpene synthesis genes and accumulation of main volatile monoterpenes and their acetic acid ester derivatives. The results showed that the genes RrDXS, RrDXR and RrLIS showed consistent expressions during the development process for R. rugosa flower from budding to withering stage, the overall expression levels of gene RrDXS and RrLIS were obviously lower as compared with those of gene RrDXR and RrAAT. Although the gene RrDXS, RrDXR, RrAAT and RrLIS were expressed in all parts of R. rugosa floral organs, the expression levels varied significantly. The variations in the constituent and content of volatile monoterpenes including citronellol, geraniol, nerol, linalool, citronellyl acetate, geranyl acetate and neryl acetate at different development stages and parts of floral organs were significantly different. On this basis, we concluded that the gene RrDXR and RrAAT might play a key role in the biosynthesis of volatile monoterpenes in R. rugosa flowers, and the two genes are important candidate genes for the regulation of secondary metabolism for rose aromatic components. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  14. The influence of monoterpene synthase transformation on the odour of tabacco.

    NARCIS (Netherlands)

    Tamer, el M.K.; Smeets, M.A.M.; Holthuysen, N.T.E.; Lucker, J.; Tang, A.; Roozen, J.P.; Bouwmeester, H.J.; Voragen, A.G.J.

    2003-01-01

    Monoterpenes are an important class of terpenoids that are commonly present in plant essential oils. These can be extracted from plants and are used in the flavouring and perfumery industry. Monoterpene synthases are the key enzymes in monoterpene biosynthesis, as they catalyse the cyclisation of

  15. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Peng, Bingyin; Nielsen, Lars K.; Kampranis, Sotirios C

    2018-01-01

    Monoterpene production in Saccharomyces cerevisae requires the introduction of heterologous monoterpene synthases (MTSs). The endogenous farnesyl pyrosphosphate synthase (FPPS; Erg20p) competes with MTSs for the precursor geranyl pyrophosphate (GPP), which limits the production of monoterpenes. ERG......20 is an essential gene that cannot be deleted and transcriptional down-regulation of ERG20 has failed to improve monoterpene production. Here, we investigated an N-degron-dependent protein degradation strategy to down-regulate Erg20p activity. Degron tagging decreased GFP protein half......-life drastically to 1 h (degron K3K15) or 15 min (degrons KN113 and KN119). Degron tagging of ERG20 was therefore paired with a sterol responsive promoter to ensure sufficient metabolic flux to essential downstream sterols despite the severe destabilisation effect of degron tagging. A dual monoterpene...

  16. Impact of drought stress on specialised metabolism: Biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis).

    Science.gov (United States)

    Radwan, Alzahraa; Kleinwächter, Maik; Selmar, Dirk

    2017-09-01

    In previous experiments, we demonstrated that the amount of monoterpenes in sage is increased massively by drought stress. Our current study is aimed to elucidate whether this increase is due, at least in part, to elevated activity of the monoterpene synthases responsible for the biosynthesis of essential oils in sage. Accordingly, the transcription rates of the monoterpene synthases were analyzed. Salvia officinalis plants were cultivated under moderate drought stress. The concentrations of monoterpenes as well as the expression of the monoterpene synthases were analyzed. The amount of monoterpenes massively increased in response to drought stress; it doubled after just two days of drought stress. The observed changes in monoterpene content mostly match with the patterns of monoterpene synthase expressions. The expression of bornyl diphosphate synthase was strongly up-regulated; its maximum level was reached after two days. Sabinene synthase increased gradually and reached a maximum after two weeks. In contrast, the transcript level of cineole synthase continuously declined. This study revealed that the stress related increase of biosynthesis is not only due to a "passive" shift caused by the stress related over-reduced status, but also is due - at least in part-to an "active" up-regulation of the enzymes involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Molecular cloning and expression levels of the monoterpene synthase gene (ZMM1) in Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.)

    OpenAIRE

    Bua-In Saowaluck; Paisooksantivatana Yingyong; Weimer Bart C.; Chowpongpang Srimek

    2014-01-01

    Cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) is a native Thai herb with a high content and large variety of terpenoids in its essential oil. Improving the essential oil content and quality of cassumunar ginger is difficult for a breeder due to its clonally propagated nature. In this research, we describe the isolation and expression level of the monoterpene synthase gene that controls the key step of essential oil synthesis in this plant an...

  18. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered S. cerevisiae wine strain.

    Science.gov (United States)

    Pardo, Ester; Rico, Juan; Gil, José Vicente; Orejas, Margarita

    2015-09-16

    Monoterpenes are important contributors to grape and wine aroma. Moreover, certain monoterpenes have been shown to display health benefits with antimicrobial, anti-inflammatory, anticancer or hypotensive properties amongst others. The aim of this study was to construct self-aromatizing wine yeasts to overproduce de novo these plant metabolites in wines. Expression of the Ocimum basilicum (sweet basil) geraniol synthase (GES) gene in a Saccharomyces cerevisiae wine strain substantially changed the terpene profile of wine produced from a non-aromatic grape variety. Under microvinification conditions, and without compromising other fermentative traits, the recombinant yeast excreted geraniol de novo at an amount (~750 μg/L) well exceeding (>10-fold) its threshold for olfactory perception and also exceeding the quantities present in wines obtained from highly aromatic Muscat grapes. Interestingly, geraniol was further metabolized by yeast enzymes to additional monoterpenes and esters: citronellol, linalool, nerol, citronellyl acetate and geranyl acetate, resulting in a total monoterpene concentration (~1,558 μg/L) 230-fold greater than that of the control. We also found that monoterpene profiles of wines derived from mixed fermentations were found to be determined by the composition of the initial yeast inocula suggesting the feasibility of producing 'à la carte' wines having predetermined monoterpene contents. Geraniol synthase-engineered yeasts demonstrate potential in the development of monoterpene enhanced wines.

  19. Monoterpene synthases from common sage (Salvia officinalis)

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney Bruce (Pullman, WA); Wise, Mitchell Lynn (Pullman, WA); Katahira, Eva Joy (Pullman, WA); Savage, Thomas Jonathan (Christchurch 5, NZ)

    1999-01-01

    cDNAs encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase from common sage (Salvia officinalis) have been isolated and sequenced, and the corresponding amino acid sequences has been determined. Accordingly, isolated DNA sequences (SEQ ID No:1; SEQ ID No:3 and SEQ ID No:5) are provided which code for the expression of (+)-bornyl diphosphate synthase (SEQ ID No:2), 1,8-cineole synthase (SEQ ID No:4) and (+)-sabinene synthase SEQ ID No:6), respectively, from sage (Salvia officinalis). In other aspects, replicable recombinant cloning vehicles are provided which code for (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase, or for a base sequence sufficiently complementary to at least a portion of (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding (+)-bornyl diphosphate synthase, 1,8-cineole synthase or (+)-sabinene synthase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant monoterpene synthases that may be used to facilitate their production, isolation and purification in significant amounts. Recombinant (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase may be used to obtain expression or enhanced expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase in plants in order to enhance the production of monoterpenoids, or may be otherwise employed for the regulation or expression of (+)-bornyl diphosphate synthase, 1,8-cineole synthase and (+)-sabinene synthase, or the production of their products.

  20. Synthesis of 'cineole cassette' monoterpenes in Nicotiana section Alatae: gene isolation, expression, functional characterization and phylogenetic analysis.

    Science.gov (United States)

    Fähnrich, Anke; Brosemann, Anne; Teske, Laura; Neumann, Madeleine; Piechulla, Birgit

    2012-08-01

    The scent bouquets of flowers of Nicotiana species, particularly those of section Alatae, are rich in monoterpenes, including 1,8-cineole, limonene, β-myrcene, α- and β-pinene, sabinene, and α-terpineol. New terpene synthase genes were isolated from flowers of Nicotiana bonariensis, N. forgetiana, N. longiflora, and N. mutabilis. The recombinant enzymes synthesize simultaneously the characteristic 'cineole cassette' monoterpenes with 1,8-cineole as the dominant volatile product. Interestingly, amino acid sequence comparison and phylogenetic tree construction clustered the newly isolated cineole synthases (CIN) of section Alatae together with the catalytically similar CIN of N. suaveolens of section Suaveolentes, thus suggesting a common ancestor. These CIN genes of N. bonariensis, N. forgetiana, N. longiflora, and N. mutabilis are distinct from the terpineol synthases (TERs) of the taxonomically related N. alata and N. langsdorfii (both Alatae), thus indicating gene diversification of monoterpene synthases in section Alatae. Furthermore, the presence of CINs in species of the American section Alatae supports the hypothesis that one parent of the Australian section Suaveolentes was a member of the present section Alatae. Amino acid sequences of the Nicotiana CINs and TERs were compared to identify relevant amino acids of the cyclization reaction from α-terpineol to 1,8-cineole.

  1. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana)

    Science.gov (United States)

    2013-01-01

    Background The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. Results We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. Conclusion In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine. PMID:23679205

  2. Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Hall, Dawn E; Yuen, Macaire M S; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet K; Li, Maria; Henderson, Hannah; Arango-Velez, Adriana; Liao, Nancy Y; Docking, Roderick T; Chan, Simon K; Cooke, Janice Ek; Breuil, Colette; Jones, Steven Jm; Keeling, Christopher I; Bohlmann, Jörg

    2013-05-16

    The mountain pine beetle (MPB, Dendroctonus ponderosae) epidemic has affected lodgepole pine (Pinus contorta) across an area of more than 18 million hectares of pine forests in western Canada, and is a threat to the boreal jack pine (Pinus banksiana) forest. Defence of pines against MPB and associated fungal pathogens, as well as other pests, involves oleoresin monoterpenes, which are biosynthesized by families of terpene synthases (TPSs). Volatile monoterpenes also serve as host recognition cues for MPB and as precursors for MPB pheromones. The genes responsible for terpene biosynthesis in jack pine and lodgepole pine were previously unknown. We report the generation and quality assessment of assembled transcriptome resources for lodgepole pine and jack pine using Sanger, Roche 454, and Illumina sequencing technologies. Assemblies revealed transcripts for approximately 20,000 - 30,000 genes from each species and assembly analyses led to the identification of candidate full-length prenyl transferase, TPS, and P450 genes of oleoresin biosynthesis. We cloned and functionally characterized, via expression of recombinant proteins in E. coli, nine different jack pine and eight different lodgepole pine mono-TPSs. The newly identified lodgepole pine and jack pine mono-TPSs include (+)-α-pinene synthases, (-)-α-pinene synthases, (-)-β-pinene synthases, (+)-3-carene synthases, and (-)-β-phellandrene synthases from each of the two species. In the absence of genome sequences, transcriptome assemblies are important for defence gene discovery in lodgepole pine and jack pine, as demonstrated here for the terpenoid pathway genes. The product profiles of the functionally annotated mono-TPSs described here can account for the major monoterpene metabolites identified in lodgepole pine and jack pine.

  3. Increased and Altered Fragrance of Tobacco Plants after Metabolic Engineering Using Three Monoterpene Synthases from Lemon

    Science.gov (United States)

    Lücker, Joost; Schwab, Wilfried; van Hautum, Bianca; Blaas, Jan; van der Plas, Linus H. W.; Bouwmeester, Harro J.; Verhoeven, Harrie A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one plant by crossings, we show that it is possible to increase the amount and alter the composition of the blend of monoterpenoids produced in tobacco plants. The transgenic tobacco plant line with the three introduced monoterpene synthases is emitting β-pinene, limonene, and γ-terpinene and a number of side products of the introduced monoterpene synthases, from its leaves and flowers, in addition to the terpenoids emitted by wild-type plants. The results show that there is a sufficiently high level of substrate accessible for the introduced enzymes. PMID:14718674

  4. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    Science.gov (United States)

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Monoterpene engineering in a woody plant Eucalyptus camaldulensis using a limonene synthase cDNA.

    Science.gov (United States)

    Ohara, Kazuaki; Matsunaga, Etsuko; Nanto, Kazuya; Yamamoto, Kyoko; Sasaki, Kanako; Ebinuma, Hiroyasu; Yazaki, Kazufumi

    2010-01-01

    Metabolic engineering aimed at monoterpene production has become an intensive research topic in recent years, although most studies have been limited to herbal plants including model plants such as Arabidopsis. The genus Eucalyptus includes commercially important woody plants in terms of essential oil production and the pulp industry. This study attempted to modify the production of monoterpenes, which are major components of Eucalyptus essential oil, by introducing two expression constructs containing Perilla frutescens limonene synthase (PFLS) cDNA, whose gene products were designed to be localized in either the plastid or cytosol, into Eucalyptus camaldulensis. The expression of the plastid-type and cytosol-type PFLS cDNA in transgenic E. camaldulensis was confirmed by real-time polymerase chain reaction (PCR). Gas chromatography with a flame ionization detector analyses of leaf extracts revealed that the plastidic and cytosolic expression of PFLS yielded 2.6- and 4.5-times more limonene than that accumulated in wild-type E. camaldulensis, respectively, while the ectopic expression of PFLS had only a small effect on the emission of limonene from the leaves of E. camaldulensis. Surprisingly, the high level of PFLS in Eucalyptus was accompanied by a synergistic increase in the production of 1,8-cineole and alpha-pinene, two major components of Eucalyptus monoterpenes. This genetic engineering of monoterpenes demonstrated a new potential for molecular breeding in woody plants.

  6. Monoterpene synthase from Dracocephalum kotschyi and SPME-GC-MS analysis of its aroma profile

    Directory of Open Access Journals (Sweden)

    S. Saeidnia

    2014-04-01

    Full Text Available Dracocephalum kotschyi (Lamiaceae, as one of the remarkable aromatic plants, widely grows and also is cultivated in various temperate regions of Iran. There are diverse reports about the composition of the oil of this plant representing limonene derivatives as its major compounds. There is no report on cloning of mono- or sesquiterpene synthases from this plant. In the present study, the aroma profile of D. kotschyi has been extracted and analyzed via Headspace Solid-Phase Microextraction technique coupled with Gas Chromatography- Mass Spectroscopy. In order to determine the sequence of the active terpene synthase in this plant, first mRNA was prepared and cloning was performed by 3’ and 5’-RACEs-PCR method, then cDNA was sequenced and finally aligned with other recognized terpene synthases. The results showed that the plant leaves mainly comprised geranial (37.2%, limonene-10-al (28.5%, limonene (20.1% and 1,1-dimethoxy decane (14.5%. Sequencing the cDNA cloned from this plant revealed the presence of a monoterpene synthase absolutely similar to limonene synthase, responsible in formation of limonene, terpinolene, camphene and some other cyclic monoterpenes in its young leaves.

  7. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants.

    Science.gov (United States)

    Degenhardt, Jörg; Köllner, Tobias G; Gershenzon, Jonathan

    2009-01-01

    The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.

  8. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis FlowersW

    NARCIS (Netherlands)

    Ginglinger, J.F.; Boachon, B.; Hofer, R.; Paetz, C.; Kollner, T.G.; Miesch, L.; Lugan, R.; Baltenweck, R.; Mutterer, J.; Ullman, P.; Verstappen, F.W.A.; Bouwmeester, H.J.

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus

  9. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.

    Science.gov (United States)

    Schilmiller, Anthony L; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L; Pichersky, Eran

    2009-06-30

    We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.

  10. Natural variation in monoterpene synthesis in kiwifruit: transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors.

    Science.gov (United States)

    Nieuwenhuizen, Niels J; Chen, Xiuyin; Wang, Mindy Y; Matich, Adam J; Perez, Ramon Lopez; Allan, Andrew C; Green, Sol A; Atkinson, Ross G

    2015-04-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. © 2015 American

  11. Characterization of two monoterpene synthases involved in floral scent formation in Hedychium coronarium.

    Science.gov (United States)

    Yue, Yuechong; Yu, Rangcai; Fan, Yanping

    2014-10-01

    Hedychium coronarium, a perennial herb belonging to the family Zingiberaceae, is cultivated as a garden plant or cut flower as well as for medicine and aromatic oil. Its flowers emit a fresh and inviting scent, which is mainly because of monoterpenes present in the profile of the floral volatiles. However, fragrance produced as a result of monoterpenes has not been well studied. In the present study, two novel terpene synthase (TPS) genes (HcTPS7 and HcTPS8) were isolated to study the biosynthesis of monoterpenes in H. coronarium. In vitro characterization showed that the recombinant HcTPS7 was capable of generating sabinene as its main product, in addition to nine sub-products from geranyl diphosphate (GPP). Recombinant HcTPS8 almost specifically catalyzed the formation of linalool from GPP, while it converted farnesyl diphosphate (FPP) to α-bergamotene, cis-α-bisabolene, β-farnesene and other ten sesquiterpenes. Subcellular localization experiments revealed that HcTPS7 and HcTPS8 were located in plastids. Real-time PCR analyses showed that HcTPS7 and HcTPS8 genes were highly expressed in petals and sepals, but were almost undetectable in vegetative organs. The changes of their expression levels in petals were positively correlated with the emission patterns of sabinene and linalool, respectively, during flower development. The results indicated that HcTPS7 and HcTPS8 were involved in the biosynthesis of sabinene and linalool in H. coronarium flowers. Results on these two TPSs first characterized from H. coronarium provide new insights into molecular mechanisms of terpene biosynthesis in this species and also lay the basis for biotechnological modification of floral scent profile in Hedychium.

  12. The Tomato Terpene Synthase Gene Family1[W][OA

    Science.gov (United States)

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  13. Germacrene A Synthase in Yarrow (Achillea millefolium Is an Enzyme with Mixed Substrate Specificity: Gene Cloning, Functional Characterization and Expression Analysis

    Directory of Open Access Journals (Sweden)

    Leila ePazouki

    2015-03-01

    Full Text Available Terpenoid synthases constitute a highly diverse gene family producing a wide range of cyclic and acyclic molecules consisting of isoprene (C5 residues. Often a single terpene synthase produces a spectrum of molecules of given chain length, but some terpene synthases can use multiple substrates, producing products of different chain length. Only a few such enzymes has been characterized, but the capacity for multiple-substrate use can be more widespread than previously thought. Here we focused on germacrene A synthase (GAS that is a key cytosolic enzyme in the sesquiterpene lactone biosynthesis pathway in the important medicinal plant Achillea millefolium (AmGAS. The full length encoding gene was heterologously expressed in Escherichia coli BL21 (DE3, functionally characterized, and its in vivo expression was analyzed. The recombinant protein catalyzed formation of germacrene A with the C15 substrate farnesyl diphosphate (FDP, while acyclic monoterpenes were formed with the C10 substrate geranyl diphosphate (GDP and cyclic monoterpenes with the C10 substrate neryl diphosphate (NDP. Although monoterpene synthesis has been assumed to be confined exclusively to plastids, AmGAS can potentially synthesize monoterpenes in cytosol when GDP or NDP become available. AmGAS enzyme had high homology with GAS sequences from other Asteraceae species, suggesting that multi-substrate use can be more widespread among germacrene A synthases than previously thought. Expression studies indicated that AmGAS was expressed in both autotrophic and heterotrophic plant compartments with the highest expression levels in leaves and flowers. To our knowledge, this is the first report on the cloning and characterization of germacrene A synthase coding gene in A. millefolium, and multi-substrate use of GAS enzymes.

  14. Natural Variation in Monoterpene Synthesis in Kiwifruit: Transcriptional Regulation of Terpene Synthases by NAC and ETHYLENE-INSENSITIVE3-Like Transcription Factors1

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Chen, Xiuyin; Wang, Mindy Y.; Matich, Adam J.; Perez, Ramon Lopez; Allan, Andrew C.; Green, Sol A.; Atkinson, Ross G.

    2015-01-01

    Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-d-erythritol 4-phosphate pathway enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-d-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits. PMID:25649633

  15. A Dual Repeat Cis-Element Determines Expression of GERANYL DIPHOSPHATE SYNTHASE for Monoterpene Production in Phalaenopsis Orchids

    Directory of Open Access Journals (Sweden)

    Yu-Chen Chuang

    2018-06-01

    Full Text Available Phalaenopsis bellina is a scented orchid emitting large amount of monoterpenes. GERANYL DIPHOSPHATE SYNTHASE (PbGDPS is the key enzyme for monoterpene biosynthesis, and shows concomitant expression with the emission of monoterpenes during flower development in P. bellina. Here, we identified a dual repeat cis-element in the GDPS promoter that is critical for monoterpene biosynthesis in Phalaenopsis orchids. A strong correlation between the dual repeat and the monoterpene production was revealed by examination of the GDPS promoter fragments over 12 Phalaenopsis species. Serial-deletion of the 2-kb GDPS promoter fragments demonstrated that the integrity of the dual repeat was crucial for its promoter activities. By screening the Arabidopsis transcription factors (TFs cDNA library using yeast one-hybrid assay, AtbZIP18, a member of group I of bZIP TFs, was identified to be able to bind the dual repeat. We then identified PbbZIP4 in the transcriptome of P. bellina, showing 83% identity in the DNA binding region with that of AtbZIP18, and the expression level of PbbZIP4 was higher in the scented orchids. In addition, PbbZIP4 transactivated the GDPS promoter fragment containing the dual repeat in dual luciferase assay. Furthermore, transient ectopic expression of PbbZIP4 induced a 10-fold production of monoterpenoids in the scentless orchid. In conclusion, these results indicate that the dual repeat is a real TF-bound cis-element significant for GDPS gene expression, and thus subsequent monoterpene biosynthesis in the scented Phalaenopsis orchids.

  16. Transcriptome profiling of the Australian arid-land plant Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) for the identification of monoterpene synthases.

    Science.gov (United States)

    Kracht, Octavia Natascha; Ammann, Ann-Christin; Stockmann, Julia; Wibberg, Daniel; Kalinowski, Jörn; Piotrowski, Markus; Kerr, Russell; Brück, Thomas; Kourist, Robert

    2017-04-01

    Plant terpenoids are a large and highly diverse class of metabolites with an important role in the immune defense. They find wide industrial application as active pharmaceutical ingredients, aroma and fragrance compounds. Several Eremophila sp. derived terpenoids have been documented. To elucidate the terpenoid metabolism, the transcriptome of juvenile and mature Eremophila serrulata (A.DC.) Druce (Scrophulariaceae) leaves was sequenced and a transcript library was generated. We report on the first transcriptomic dataset of an Eremophila plant. IlluminaMiSeq sequencing (2 × 300 bp) revealed 7,093,266 paired reads, which could be assembled to 34,505 isogroups. To enable detection of terpene biosynthetic genes, leaves were separately treated with methyl jasmonate, a well-documented inducer of plant secondary metabolites. In total, 21 putative terpene synthase genes were detected in the transcriptome data. Two terpene synthase isoenzymatic genes, termed ES01 and ES02, were successfully expressed in E. coli. The resulting proteins catalyzed the conversion of geranyl pyrophosphate, the universal substrate of monoterpene synthases to myrcene and Z-(b)-ocimene, respectively. The transcriptomic data and the discovery of the first terpene synthases from Eremophila serrulata are the initial step for the understanding of the terpene metabolism in this medicinally important plant genus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transcriptome Sequencing Analysis Reveals a Difference in Monoterpene Biosynthesis between Scented Lilium ‘Siberia’ and Unscented Lilium ‘Novano’

    Directory of Open Access Journals (Sweden)

    Zenghui Hu

    2017-08-01

    Full Text Available Lilium is a world famous fragrant bulb flower with high ornamental and economic values, and significant differences in fragrance are found among different Lilium genotypes. In order to explore the mechanism underlying the different fragrances, the floral scents of Lilium ‘Sibeia’, with a strong fragrance, and Lilium ‘Novano’, with a very faint fragrance, were collected in vivo using a dynamic headspace technique. These scents were identified using automated thermal desorption—gas chromatography/mass spectrometry (ATD-GC/MS at different flowering stages. We used RNA-Seq technique to determine the petal transcriptome at the full-bloom stage and analyzed differentially expressed genes (DEGs to investigate the molecular mechanism of floral scent biosynthesis. The results showed that a significantly higher amount of Lilium ‘Siberia’ floral scent was released compared with Lilium ‘Novano’. Moreover, monoterpenes played a dominant role in the floral scent of Lilium ‘Siberia’; therefore, it is believed that the different emissions of monoterpenes mainly contributed to the difference in the floral scent between the two Lilium genotypes. Transcriptome sequencing analysis indicated that ~29.24 Gb of raw data were generated and assembled into 124,233 unigenes, of which 35,749 unigenes were annotated. Through a comparison of gene expression between these two Lilium genotypes, 6,496 DEGs were identified. The genes in the terpenoid backbone biosynthesis pathway showed significantly different expression levels. The gene expressions of 1-deoxy-D-xylulose 5-phosphate synthase (DXS, 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR, 4-hydroxy-3-methylbut-2-enyl diphosphate synthase (HDS, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR, isopentenyl diphosphate isomerase (IDI, and geranyl diphosphate synthase (GPS/GGPS, were upregulated in Lilium ‘Siberia’ compared to Lilium ‘Novano’, and two monoterpene synthase genes

  18. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  19. The Biosynthetic Origin of Irregular Monoterpenes in Lavandula

    Science.gov (United States)

    Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.

    2013-01-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202

  20. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon

    NARCIS (Netherlands)

    Lücker, J.; Schwab, W.; Hautum, van B.; Blaas, J.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2004-01-01

    Wild-type tobacco (Nicotiana tabacum) plants emit low levels of terpenoids, particularly from the flowers. By genetic modification of tobacco cv Petit Havana SR1 using three different monoterpene synthases from lemon (Citrus limon L. Burm. f.) and the subsequent combination of these three into one

  1. Emission and Accumulation of Monoterpene and the Key Terpene Synthase (TPS) Associated with Monoterpene Biosynthesis in Osmanthus fragrans Lour

    OpenAIRE

    Zeng, Xiangling; Liu, Cai; Zheng, Riru; Cai, Xuan; Luo, Jing; Zou, Jingjing; Wang, Caiyun

    2016-01-01

    Osmanthus fragrans is an ornamental and economically important plant known for its magnificent aroma, and the most important aroma-active compounds in flowers are monoterpenes, mainly β-ocimene, linalool and linalool derivatives. To understand the molecular mechanism of monoterpene production, we analyzed the emission and accumulation patterns of these compounds and the transcript levels of the genes involved in their biosynthesis in two O. fragrans cultivars during flowering stages. The resu...

  2. Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression.

    Science.gov (United States)

    1996-10-01

    AD GRANT NUMBER DAMDI7-94-J-4041 TITLE: Cloning and Characterizing Genes Involved in Monoterpene Induced Mammary Tumor Regression PRINCIPAL...October 1996 Annual (1 Sep 95 - 31 Aug 96) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cloning and Characterizing Genes Involved in Monoterpene Induced... Monoterpene -induced/repressed genes were identified in regressing rat mammary carcinomas treated with dietary limonene using a newly developed method

  3. Monoterpene biosynthesis in lemon (Citrus limon) cDNA isolation and functional analysis of four monoterpene synthases

    NARCIS (Netherlands)

    Lücker, J.; Tamer, El M.K.; Schwab, W.; Verstappen, F.W.A.; Plas, van der L.H.W.; Bouwmeester, H.J.; Verhoeven, H.A.

    2002-01-01

    Citrus limon possesses a high content and large variety of monoterpenoids, especially in the glands of the fruit flavedo. The genes responsible for the production of these monoterpenes have never been isolated. By applying a random sequencing approach to a cDNA library from mRNA isolated from the

  4. Long-term dynamics of monoterpene synthase activities, monoterpene storage pools and emissions in boreal Scots pine

    OpenAIRE

    Vanhatalo, Anni; Ghirardo, Andrea; Juurola, Eija; Schnitzler, Jörg-Peter; Zimmer, Ina; Hellén, Heidi; Hakola, Hannele; Bäck, Jaana

    2018-01-01

    Seasonal variations in monoterpene emissions from Scots pine (Pinus sylvestris) are well documented, and emissions are often shown to follow the incident temperatures due to effects on compound volatility. Recent studies have indicated a link between monoterpene emissions and physiological drivers such as photosynthetic capacity during needle development. The complex interplay between the dynamic changes in the biosynthetic capacity to produce monoterpenes and the temperature-dependent evapor...

  5. Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Yang, Chang-Qing; Wu, Xiu-Ming; Ruan, Ju-Xin; Hu, Wen-Li; Mao, Yin-Bo; Chen, Xiao-Ya; Wang, Ling-Jian

    2013-12-01

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Chen, Xujun; Chen, Hao; Yuan, Joshua S; Köllner, Tobias G; Chen, Yuying; Guo, Yufen; Zhuang, Xiaofeng; Chen, Xinlu; Zhang, Yong-Jun; Fu, Jianyu; Nebenführ, Andreas; Guo, Zejian; Chen, Feng

    2018-03-06

    Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up-regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)-limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)-limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)-limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Ca²⁺ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia'.

    Science.gov (United States)

    Hu, Zenghui; Li, Tianjiao; Zheng, Jian; Yang, Kai; He, Xiangfeng; Leng, Pingsheng

    2015-06-01

    The floral scent is an important part of plant volatile compounds, and is influenced by environmental factors. The emission of monoterpenes of Lilium 'siberia' is regulated by light intensity, but the mechanism is large unknown. In this study, the expression of Li-mTPS, a monoterpene synthase gene in the tepals of Lilium 'siberia', and net Ca(2+) flux were investigated after exposure to different levels of light intensity (0, 100, 300, 600, 1000, and 1500 μmol m(-2) s(-1)). Moreover the effect of LaCl3 and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) on the Li-mTPS expression, monoterpene emission, and net Ca(2+) flux were examined at 600 μmol m(-2) s(-1). The results showed that along with the enhancement of light intensity, the expression level of Li-mTPS increased gradually, and the net Ca(2+) influx was also enhanced showing a similar pattern. It was found that LaCl3 and EGTA effectively inhibited the increase in expression of Li-mTPS and the net Ca(2+) influx induced by light treatment. Moreover, the release amounts of monoterpenes decreased significantly after treatment with LaCl3 and EGTA. So it can be concluded that Ca(2+) signal contributed to the biosynthesis and emission of monoterpenes regulated by light intensity in Lilium 'siberia' tepals. The increased light intensity firstly triggered the Ca(2+) influx to cytoplasm, and then the gene expression of monoterpene synthases downstream was activated to regulate the biosynthesis and emission of monoterpenes. But in the signaling pathway other mechanisms were thought to be involved in the emission of monoterpenes regulated by light intensity, which need to be investigated in future research. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Identification, Functional Characterization, and Evolution of Terpene Synthases from a Basal Dicot1[OPEN

    Science.gov (United States)

    Yahyaa, Mosaab; Matsuba, Yuki; Brandt, Wolfgang; Doron-Faigenboim, Adi; Bar, Einat; McClain, Alan; Davidovich-Rikanati, Rachel; Lewinsohn, Efraim; Pichersky, Eran; Ibdah, Mwafaq

    2015-01-01

    Bay laurel (Laurus nobilis) is an agriculturally and economically important dioecious tree in the basal dicot family Lauraceae used in food and drugs and in the cosmetics industry. Bay leaves, with their abundant monoterpenes and sesquiterpenes, are used to impart flavor and aroma to food, and have also drawn attention in recent years because of their potential pharmaceutical applications. To identify terpene synthases (TPSs) involved in the production of these volatile terpenes, we performed RNA sequencing to profile the transcriptome of L. nobilis leaves. Bioinformatic analysis led to the identification of eight TPS complementary DNAs. We characterized the enzymes encoded by three of these complementary DNAs: a monoterpene synthase that belongs to the TPS-b clade catalyzes the formation of mostly 1,8-cineole; a sesquiterpene synthase belonging to the TPS-a clade catalyzes the formation of mainly cadinenes; and a diterpene synthase of the TPS-e/f clade catalyzes the formation of geranyllinalool. Comparison of the sequences of these three TPSs indicated that the TPS-a and TPS-b clades of the TPS gene family evolved early in the evolution of the angiosperm lineage, and that geranyllinalool synthase activity is the likely ancestral function in angiosperms of genes belonging to an ancient TPS-e/f subclade that diverged from the kaurene synthase gene lineages before the split of angiosperms and gymnosperms. PMID:26157114

  9. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    Science.gov (United States)

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221. Copyright © 2017. Published by Elsevier Ltd.

  10. Cloning of a sesquiterpene synthase from Lavandula x intermedia glandular trichomes.

    Science.gov (United States)

    Sarker, Lukman S; Demissie, Zerihun A; Mahmoud, Soheil S

    2013-11-01

    The essential oil (EO) of Lavandula is dominated by monoterpenes, but can also contain small amounts of sesquiterpenes, depending on species and environmental conditions. For example, the sesquiterpene 9-epi-caryophyllene can make up to 8 % of the EO in a few species, including those commercially propagated for EO production. Here, we report the cloning and functional characterization of 9-epi-caryophyllene synthase (LiCPS) from the glandular trichomes of Lavandula x intermedia, cv. Grosso. The 1,617 bp open reading frame of LiCPS, which did not encode a transit peptide, was expressed in Escherichia coli and the recombinant protein purified by Ni-NTA agarose affinity chromatography. The ca. 60 kDa recombinant protein specifically converted farnesyl diphosphate to 9-epi-caryophyllene. LiCPS also produced a few monoterpenes when assayed with the monoterpene precursor geranyl diphosphate (GPP), but--unlike most monoterpene synthases--was not able to derive detectable amounts of any products from the cis isomer of GPP, neryl diphosphate. The LiCPS transcripts accumulated in developing L. x intermedia flowers and were highly enriched in glandular trichomes, but were not detected in leaves suggesting that the transcriptional expression of this gene is spatially and developmentally regulated.

  11. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria).

    Science.gov (United States)

    Formighieri, Cinzia; Melis, Anastasios

    2015-11-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial applications. Transformation of Synechocystis and heterologous expression of the β-phellandrene synthase (PHLS) gene alone is necessary and sufficient to confer to Synechocystis the ability to divert intermediate terpenoid metabolites and to generate the monoterpene β-phellandrene during photosynthesis. However, terpene synthases, including the PHLS, have a slow Kcat (low Vmax) necessitating high levels of enzyme concentration to enable meaningful rates and yield of product formation. Here, a novel approach was applied to increase the PHLS protein expression alleviating limitations in the rate and yield of β-phellandrene product generation. Different PHLS fusion constructs were generated with the Synechocystis endogenous cpcB sequence, encoding for the abundant in cyanobacteria phycocyanin β-subunit, expressed under the native cpc operon promoter. In one of these constructs, the CpcB·PHLS fusion protein accumulated to levels approaching 20% of the total cellular protein, i.e., substantially higher than expressing the PHLS protein alone under the same endogenous cpc promoter. The CpcB·PHLS fusion protein retained the activity of the PHLS enzyme and catalyzed β-phellandrene synthesis, yielding an average of 3.2 mg product g(-1) dry cell weight (dcw) versus the 0.03 mg g(-1)dcw measured with low-expressing constructs, i.e., a 100-fold yield improvement. In conclusion, the terpene synthase fusion-protein approach is promising, as, in this case, it substantially increased the amount of the PHLS in cyanobacteria, and commensurately improved rates and yield of β-phellandrene hydrocarbons production in these photosynthetic microorganisms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  12. Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in Arabidopsis Flowers[W][OPEN

    Science.gov (United States)

    Ginglinger, Jean-François; Boachon, Benoit; Höfer, René; Paetz, Christian; Köllner, Tobias G.; Miesch, Laurence; Lugan, Raphael; Baltenweck, Raymonde; Mutterer, Jérôme; Ullmann, Pascaline; Beran, Franziska; Claudel, Patricia; Verstappen, Francel; Fischer, Marc J.C.; Karst, Francis; Bouwmeester, Harro; Miesch, Michel; Schneider, Bernd; Gershenzon, Jonathan; Ehlting, Jürgen; Werck-Reichhart, Danièle

    2013-01-01

    The cytochrome P450 family encompasses the largest family of enzymes in plant metabolism, and the functions of many of its members in Arabidopsis thaliana are still unknown. Gene coexpression analysis pointed to two P450s that were coexpressed with two monoterpene synthases in flowers and were thus predicted to be involved in monoterpenoid metabolism. We show that all four selected genes, the two terpene synthases (TPS10 and TPS14) and the two cytochrome P450s (CYP71B31 and CYP76C3), are simultaneously expressed at anthesis, mainly in upper anther filaments and in petals. Upon transient expression in Nicotiana benthamiana, the TPS enzymes colocalize in vesicular structures associated with the plastid surface, whereas the P450 proteins were detected in the endoplasmic reticulum. Whether they were expressed in Saccharomyces cerevisiae or in N. benthamiana, the TPS enzymes formed two different enantiomers of linalool: (−)-(R)-linalool for TPS10 and (+)-(S)-linalool for TPS14. Both P450 enzymes metabolize the two linalool enantiomers to form different but overlapping sets of hydroxylated or epoxidized products. These oxygenated products are not emitted into the floral headspace, but accumulate in floral tissues as further converted or conjugated metabolites. This work reveals complex linalool metabolism in Arabidopsis flowers, the ecological role of which remains to be determined. PMID:24285789

  13. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  14. PLANT VOLATILES. Biosynthesis of monoterpene scent compounds in roses.

    Science.gov (United States)

    Magnard, Jean-Louis; Roccia, Aymeric; Caissard, Jean-Claude; Vergne, Philippe; Sun, Pulu; Hecquet, Romain; Dubois, Annick; Hibrand-Saint Oyant, Laurence; Jullien, Frédéric; Nicolè, Florence; Raymond, Olivier; Huguet, Stéphanie; Baltenweck, Raymonde; Meyer, Sophie; Claudel, Patricia; Jeauffre, Julien; Rohmer, Michel; Foucher, Fabrice; Hugueney, Philippe; Bendahmane, Mohammed; Baudino, Sylvie

    2015-07-03

    The scent of roses (Rosa x hybrida) is composed of hundreds of volatile molecules. Monoterpenes represent up to 70% percent of the scent content in some cultivars, such as the Papa Meilland rose. Monoterpene biosynthesis in plants relies on plastid-localized terpene synthases. Combining transcriptomic and genetic approaches, we show that the Nudix hydrolase RhNUDX1, localized in the cytoplasm, is part of a pathway for the biosynthesis of free monoterpene alcohols that contribute to fragrance in roses. The RhNUDX1 protein shows geranyl diphosphate diphosphohydrolase activity in vitro and supports geraniol biosynthesis in planta. Copyright © 2015, American Association for the Advancement of Science.

  15. Identification of a Fungal 1,8-Cineole Synthase from Hypoxylon sp. with Specificity Determinants in Common with the Plant Synthases*

    Science.gov (United States)

    Shaw, Jeffrey J.; Berbasova, Tetyana; Sasaki, Tomoaki; Jefferson-George, Kyra; Spakowicz, Daniel J.; Dunican, Brian F.; Portero, Carolina E.; Narváez-Trujillo, Alexandra; Strobel, Scott A.

    2015-01-01

    Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds. PMID:25648891

  16. The effect of inoculation with mycorrhizal arbuscular fungi on expression of limonene synthase in Mentha spicata L. genotypes

    Directory of Open Access Journals (Sweden)

    Leila Shabani

    2015-03-01

    Full Text Available Spearmint (Mentha spicata L. is an important economical and medicinal plant from Lamiaceae family, which has gained research attraction as a model for biosynthesis of essential oils due to its high capability for synthesis of monoterpenes. Limonene is a simple monoterpene and its biosynthesis is catalyzed by limonene synthase a key regulatory enzyme in the biosynthesis pathway of monoterpenes in spearmint plant. This study was concerned with the effect of colonization of roots with Funneliformis mosseae and F. etunicatum fungi on spearmint plant growth indices, leaf essential oils and changes in the expression of limonene synthase (LS gene. This study also explained the application of GADPH gene as the internal standard for real-time quantitative PCR (RTqPCR analysis of LS in spearmints. Our results showed that essential oil content of leaf in spearmint genotype Meybod inoculated with F. etunicatum was higher than that of genotypes from populations Kashan and Bojnourd and was 130% higher than the control. According to the results of this study, increase in transcript accumulation of the LS gene in leaves of spearmint plants inoculated with F. etunicatum was concordant with the increased essential oil contents and was dependent on the plant genotype.

  17. Susceptibility to Verticillium longisporum is linked to monoterpene production by TPS23/27 in Arabidopsis.

    Science.gov (United States)

    Roos, Jonas; Bejai, Sarosh; Mozūraitis, Raimondas; Dixelius, Christina

    2015-02-01

    The fungus Verticillium longisporum is a soil-borne plant pathogen of increasing economic importance, and information on plant responses to it is limited. To identify the genes and components involved in the early stages of infection, transcripts in roots of V. longisporum-challenged Arabidopsis Col-0 and the susceptible NON-RACE SPECIFIC DISEASE RESISTANCE 1 (ndr1-1) mutant were compared using ATH1 gene chips. The analysis revealed altered transcript levels of several terpene biosynthesis genes, including the monoterpene synthase TPS23/27. When transgenic 35S:TPS23/27 and TPS23/27-amiRNA plants were monitored the over-expresser line showed enhanced fungal colonization whereas the silenced genotype was indistinguishable from Col-0. Transcript analysis of terpene biosynthesis genes suggested that only the TPS23/27 pathway is affected in the two transgenic genotypes. To confirm changes in monoterpene production, emitted volatiles were determined using solid-phase microextraction and gas chromatography-mass spectrometry. Levels of all identified TPS23/27 monoterpene products were significantly altered in the transgenic plants. A stimulatory effect on conidial germination and hyphal growth of V. longisporum was also seen in co-cultivation with 35S:TPS23/27 plants and upon exposure to 1,8-cineole, the main product of TPS23/27. Methyl jasmonate treatments of myc2-1 and myc2-2 mutants and analysis of TPS23/27:uidA in the myc2-2 background suggested a dependence on jasmonic acid mediated by the transcription factor MYC2. Taken together, our results show that TPS23/27-produced monoterpenes stimulate germination and subsequent invasion of V. longisporum in Arabidopsis roots. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.

    Directory of Open Access Journals (Sweden)

    Dullat Harpreet K

    2011-03-01

    Full Text Available Abstract Background In conifers, terpene synthases (TPSs of the gymnosperm-specific TPS-d subfamily form a diverse array of mono-, sesqui-, and diterpenoid compounds, which are components of the oleoresin secretions and volatile emissions. These compounds contribute to defence against herbivores and pathogens and perhaps also protect against abiotic stress. Results The availability of extensive transcriptome resources in the form of expressed sequence tags (ESTs and full-length cDNAs in several spruce (Picea species allowed us to estimate that a conifer genome contains at least 69 unique and transcriptionally active TPS genes. This number is comparable to the number of TPSs found in any of the sequenced and well-annotated angiosperm genomes. We functionally characterized a total of 21 spruce TPSs: 12 from Sitka spruce (P. sitchensis, 5 from white spruce (P. glauca, and 4 from hybrid white spruce (P. glauca × P. engelmannii, which included 15 monoterpene synthases, 4 sesquiterpene synthases, and 2 diterpene synthases. Conclusions The functional diversity of these characterized TPSs parallels the diversity of terpenoids found in the oleoresin and volatile emissions of Sitka spruce and provides a context for understanding this chemical diversity at the molecular and mechanistic levels. The comparative characterization of Sitka spruce and Norway spruce diterpene synthases revealed the natural occurrence of TPS sequence variants between closely related spruce species, confirming a previous prediction from site-directed mutagenesis and modelling.

  19. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Jongedijk, E.J.; Cankar, K.; Ranzijn, J.; Krol, van der A.R.; Bouwmeester, H.J.; Beekwilder, M.J.

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a

  20. Bacillus caldolyticus prs gene encoding phosphoribosyldiphosphate synthase

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1996-01-01

    The prs gene, encoding phosphoribosyl-diphosphate (PRPP) synthase, as well as the flanking DNA sequences were cloned and sequenced from the Gram-positive thermophile, Bacillus caldolyticus. Comparison with the homologous sequences from the mesophile, Bacillus subtilis, revealed a gene (gca......D) encoding N-acetylglucosamine-l-phosphate uridyltransferase upstream of prs, and a gene homologous to ctc downstream of prs. cDNA synthesis with a B. caldolyticus gcaD-prs-ctc-specified mRNA as template, followed by amplification utilising the polymerase chain reaction indicated that the three genes are co......-transcribed. Comparison of amino acid sequences revealed a high similarity among PRPP synthases across a wide phylogenetic range. An E. coli strain harbouring the B. caldolyticus prs gene in a multicopy plasmid produced PRPP synthase activity 33-fold over the activity of a haploid B. caldolyticus strain. B. caldolyticus...

  1. Anaerobic Degradation of Bicyclic Monoterpenes in Castellaniella defragrans

    Directory of Open Access Journals (Sweden)

    Edinson Puentes-Cala

    2018-02-01

    Full Text Available The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon–carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.

  2. Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia).

    Science.gov (United States)

    Landmann, Christian; Fink, Barbara; Festner, Maria; Dregus, Márta; Engel, Karl-Heinz; Schwab, Wilfried

    2007-09-15

    The essential oil of lavender (Lavandula angustifolia) is mainly composed of mono- and sesquiterpenes. Using a homology-based PCR strategy, two monoterpene synthases (LaLIMS and LaLINS) and one sesquiterpene synthase (LaBERS) were cloned from lavender leaves and flowers. LaLIMS catalyzed the formation of (R)-(+)-limonene, terpinolene, (1R,5S)-(+)-camphene, (1R,5R)-(+)-alpha-pinene, beta-myrcene and traces of alpha-phellandrene. The proportions of these products changed significantly when Mn(2+) was supplied as the cofactor instead of Mg(2+). The second enzyme LaLINS produced exclusively (R)-(-)-linalool, the main component of lavender essential oil. LaBERS transformed farnesyl diphosphate and represents the first reported trans-alpha-bergamotene synthase. It accepted geranyl diphosphate with higher affinity than farnesyl diphosphate and also produced monoterpenes, albeit at low rates. LaBERS is probably derived from a parental monoterpene synthase by the loss of the plastidial signal peptide and by broadening its substrate acceptance spectrum. The identification and description of the first terpene synthases from L. angustifolia forms the basis for the biotechnological modification of essential oil composition in lavender.

  3. Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen.

    Science.gov (United States)

    Yoshitomi, Kayo; Taniguchi, Shiduku; Tanaka, Keiichiro; Uji, Yuya; Akimitsu, Kazuya; Gomi, Kenji

    2016-02-01

    Rice is one of the most important crops worldwide and is widely used as a model plant for molecular studies of monocotyledonous species. The plant hormone jasmonic acid (JA) is involved in rice-pathogen interactions. In addition, volatile compounds, including terpenes, whose production is induced by JA, are known to be involved in the rice defense system. In this study, we analyzed the JA-induced terpene synthase OsTPS24 in rice. We found that OsTPS24 was localized in chloroplasts and produced a monoterpene, γ-terpinene. The amount of γ-terpinene increased after JA treatment. γ-Terpinene had significant antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo); however, it did not show significant antifungal activity against Magnaporthe oryzae. The antibacterial activity of the γ-terpinene against Xoo was caused by damage to bacterial cell membranes. These results suggest that γ-terpinene plays an important role in JA-induced resistance against Xoo, and that it functions as an antibacterial compound in rice. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    Science.gov (United States)

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Induction of senescence and identification of differentially expressed genes in tomato in response to monoterpene.

    Directory of Open Access Journals (Sweden)

    Sumit Ghosh

    Full Text Available Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS, ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process.

  6. Induction of Senescence and Identification of Differentially Expressed Genes in Tomato in Response to Monoterpene

    Science.gov (United States)

    Kumar, Vinay; Kumar, Anil; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2013-01-01

    Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process. PMID:24098759

  7. Beta-Glucan Synthase Gene Expression in Pleurotus sp

    International Nuclear Information System (INIS)

    Azhar Mohamad; Nie, H.J.

    2016-01-01

    Pleurotus sp. is a popular edible mushroom, containing various functional component, in particular, Beta-glucan. Beta-glucans is a part of glucan family of polysaccharides and supposedly contribute to medicinal and nutritional value of Pleurotus.sp. In order to understand the distribution of Beta-glucan in Pleurotus.sp, the Beta-glucan synthase gene expression was determined and compared in different part of Pleurotus, namely mycelium, stripe and cap. The Pleurotus.sp RNA was extracted using commercial kit, employing Tissuelyser ll (Qiagen, USA) to disrupt the cell walls. Then the RNA was quantified by Nano drop (Thermo Fisher, USA) and visualized using denaturing agarose gel. RNA with good OD 260.280 reading (∼2.0) was chosen and converted to cDNA. Using Laccase synthase gene as home keeping gene, Beta-glucan synthase gene expression was quantified using CFX 96 Real Time PCR detection system (Biorad, USA). Preliminary result shows that Beta-glucan synthase was relatively expressed the most in stripe, followed by mycelium and barely in cap. (author)

  8. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    Science.gov (United States)

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  9. Sequence analysis of cereal sucrose synthase genes and isolation ...

    African Journals Online (AJOL)

    SERVER

    2007-10-18

    Oct 18, 2007 ... sequencing of sucrose synthase gene fragment from sor- ghum using primers designed at their conserved exons. MATERIALS AND METHODS. Multiple sequence alignment. Sucrose synthase gene sequences of various cereals like rice, maize, and barley were accessed from NCBI Genbank database.

  10. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene.

    Science.gov (United States)

    Lee, Gun Woong; Chung, Moon-Soo; Kang, Mihyung; Chung, Byung Yeoup; Lee, Sungbeom

    2016-05-01

    Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is a severe disease of rice plants. Upon pathogen infection, rice biosynthesizes phytoalexins, including diterpenoids such as momilactones, phytocassanes, and oryzalexins. However, information on headspace volatiles in response to Xoo infection is limited. We have examined headspace volatile terpenes, induced by the infection of Xoo, and investigated their biological roles in the rice plant. Monoterpenes α-thujene, α-pinene, sabinene, myrcene, α-terpene, and (S)-limonene and sesquiterpenes cyclosativene, α-copaene, and β-elemene were detected from 1-week-old Xoo-infected rice seedlings, by solid-phase microextraction-gas chromatography-mass spectrometry. All monoterpenes were constitutively released from rice seedlings before Xoo infection. However, (S)-limonene emission was further elicited after exposure of the seedlings to Xoo in coincidence with upregulation of limonene synthase gene (OsTPS20) transcripts. Only the stereospecific (S)-limonene [and not (R)-limonene or other monoterpenes] severely inhibited Xoo growth, as confirmed by disc diffusion and liquid culture assays. Rice seedlings showed suppressed pathogenic symptoms suggestive of resistance to Xoo infection after foliar treatment with (S)-limonene. Collectively, our findings suggest that (S)-limonene is a volatile phytoanticipin, which plays a significant role in suppressing Xoo growth in rice seedlings.

  11. Profiling of the Terpene Metabolome in Carrot Fruits of Wild ( Daucus carota L. ssp. carota) Accessions and Characterization of a Geraniol Synthase.

    Science.gov (United States)

    Yahyaa, Mosaab; Ibdah, Muhammad; Marzouk, Sally; Ibdah, Mwafaq

    2018-03-14

    Fruits from wild carrot ( Daucus carota L. ssp. carota) have been used for medicinal purposes since ancient times. The oil of its seeds, with their abundant monoterpenes and sesquiterpenes, has drawn attention in recent years because of its potential pharmaceutical application. A combined chemical, biochemical, and molecular study was conducted to evaluate the differential accumulation of terpene volatiles in carrot fruits of wild accessions. This work reports a similarity-based cloning strategy identification and functional characterization of one carrot monoterpene terpene synthase, WtDcTPS1. Recombinant WtDcTPS1 protein produces mainly geraniol, the predominant monoterpene in carrot seeds of wild accession 23727. The results suggest a role for the WtDcTPS1 gene in the biosynthesis of carrot fruit aroma and flavor compounds.

  12. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae.

    Science.gov (United States)

    Jongedijk, Esmer; Cankar, Katarina; Ranzijn, Jorn; van der Krol, Sander; Bouwmeester, Harro; Beekwilder, Jules

    2015-01-01

    Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems. Copyright © 2014 John Wiley & Sons, Ltd.

  13. [BIOINFORMATIC SEARCH AND PHYLOGENETIC ANALYSIS OF THE CELLULOSE SYNTHASE GENES OF FLAX (LINUM USITATISSIMUM)].

    Science.gov (United States)

    Pydiura, N A; Bayer, G Ya; Galinousky, D V; Yemets, A I; Pirko, Ya V; Podvitski, T A; Anisimova, N V; Khotyleva, L V; Kilchevsky, A V; Blume, Ya B

    2015-01-01

    A bioinformatic search of sequences encoding cellulose synthase genes in the flax genome, and their comparison to dicots orthologs was carried out. The analysis revealed 32 cellulose synthase gene candidates, 16 of which are highly likely to encode cellulose synthases, and the remaining 16--cellulose synthase-like proteins (Csl). Phylogenetic analysis of gene products of cellulose synthase genes allowed distinguishing 6 groups of cellulose synthase genes of different classes: CesA1/10, CesA3, CesA4, CesA5/6/2/9, CesA7 and CesA8. Paralogous sequences within classes CesA1/10 and CesA5/6/2/9 which are associated with the primary cell wall formation are characterized by a greater similarity within these classes than orthologous sequences. Whereas the genes controlling the biosynthesis of secondary cell wall cellulose form distinct clades: CesA4, CesA7, and CesA8. The analysis of 16 identified flax cellulose synthase gene candidates shows the presence of at least 12 different cellulose synthase gene variants in flax genome which are represented in all six clades of cellulose synthase genes. Thus, at this point genes of all ten known cellulose synthase classes are identify in flax genome, but their correct classification requires additional research.

  14. Characterization of the human gene (TBXAS1) encoding thromboxane synthase.

    Science.gov (United States)

    Miyata, A; Yokoyama, C; Ihara, H; Bandoh, S; Takeda, O; Takahashi, E; Tanabe, T

    1994-09-01

    The gene encoding human thromboxane synthase (TBXAS1) was isolated from a human EMBL3 genomic library using human platelet thromboxane synthase cDNA as a probe. Nucleotide sequencing revealed that the human thromboxane synthase gene spans more than 75 kb and consists of 13 exons and 12 introns, of which the splice donor and acceptor sites conform to the GT/AG rule. The exon-intron boundaries of the thromboxane synthase gene were similar to those of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) except for introns 9 and 10, although the primary sequences of these enzymes exhibited 35.8% identity each other. The 1.2-kb of the 5'-flanking region sequence contained potential binding sites for several transcription factors (AP-1, AP-2, GATA-1, CCAAT box, xenobiotic-response element, PEA-3, LF-A1, myb, basic transcription element and cAMP-response element). Primer-extension analysis indicated the multiple transcription-start sites, and the major start site was identified as an adenine residue located 142 bases upstream of the translation-initiation site. However, neither a typical TATA box nor a typical CAAT box is found within the 100-b upstream of the translation-initiation site. Southern-blot analysis revealed the presence of one copy of the thromboxane synthase gene per haploid genome. Furthermore, a fluorescence in situ hybridization study revealed that the human gene for thromboxane synthase is localized to band q33-q34 of the long arm of chromosome 7. A tissue-distribution study demonstrated that thromboxane synthase mRNA is widely expressed in human tissues and is particularly abundant in peripheral blood leukocyte, spleen, lung and liver. The low but significant levels of mRNA were observed in kidney, placenta and thymus.

  15. Microbial monoterpene transformations – A review

    Directory of Open Access Journals (Sweden)

    Robert eMarmulla

    2014-07-01

    Full Text Available Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic concentrations, the compounds can serve as carbon and energy source for aerobic and anaerobic microorganisms. Besides these catabolic reactions, transformations may occur as part of detoxification processes. Initial transformations of monoterpenes involve the introduction of functional groups, oxidation reactions and molecular rearrangements catalyzed by various enzymes. Pseudomonas and Rhodococcus strains and members of the genera Castellaniella and Thauera have become model organisms for the elucidation of biochemical pathways. We review here the enzymes and their genes together with microorganisms known for a monoterpene metabolism, with a strong focus on microorganisms that are taxonomically validly described and currently available from culture collections. Metagenomes of microbiomes with a monoterpene-rich diet confirmed the ecological relevance of monoterpene metabolism and raised concerns on the quality of our insights based on the limited biochemical knowledge.

  16. Functional Genomics Reveals That a Compact Terpene Synthase Gene Family Can Account for Terpene Volatile Production in Apple1[W

    Science.gov (United States)

    Nieuwenhuizen, Niels J.; Green, Sol A.; Chen, Xiuyin; Bailleul, Estelle J.D.; Matich, Adam J.; Wang, Mindy Y.; Atkinson, Ross G.

    2013-01-01

    Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple ‘Royal Gala’ expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-β-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies. PMID:23256150

  17. Isolation and functional characterization of a methyl jasmonate-responsive 3-carene synthase from Lavandula x intermedia.

    Science.gov (United States)

    Adal, Ayelign M; Sarker, Lukman S; Lemke, Ashley D; Mahmoud, Soheil S

    2017-04-01

    A methyl jasmonate responsive 3-carene synthase (Li3CARS) gene was isolated from Lavandula x intermedia and functionally characterized in vitro. Lavenders produce essential oils consisting mainly of monoterpenes, including the potent antimicrobial and insecticidal monoterpene 3-carene. In this study we isolated and functionally characterized a leaf-specific, methyl jasmonate (MeJA)-responsive monoterpene synthase (Li3CARS) from Lavandula x intermedia. The ORF excluding transit peptides encoded a 64.9 kDa protein that was expressed in E. coli, and purified with Ni-NTA agarose affinity chromatography. The recombinant Li3CARS converted GPP into 3-carene as the major product, with K m and k cat of 3.69 ± 1.17 µM and 2.01 s -1 respectively. Li3CARS also accepted NPP as a substrate to produce multiple products including a small amount of 3-carene. The catalytic efficiency of Li3CARS to produce 3-carene was over ten fold higher for GPP (k cat /K m = 0.56 µM -1 s -1 ) than NPP (k cat /K m = 0.044 µM -1 s -1 ). Production of distinct end product profiles from different substrates (GPP versus NPP) by Li3CARS indicates that monoterpene metabolism may be controlled in part through substrate availability. Li3CARS transcripts were found to be highly abundant in leaves (16-fold) as compared to flower tissues. The transcriptional activity of Li3CARS correlated with 3-carene production, and was up-regulated (1.18- to 3.8-fold) with MeJA 8-72 h post-treatment. The results suggest that Li3CARS may have a defensive role in Lavandula.

  18. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... chronic periodontitis (CP), 31 with gingivitis (G) and 50 healthy controls. Probing depth ..... Periodontal disease in pregnancy I. Prevalence and severity. ... endothelial nitric oxide synthase gene in premenopausal women with.

  19. Monoterpenes Support Systemic Acquired Resistance within and between Plants.

    Science.gov (United States)

    Riedlmeier, Marlies; Ghirardo, Andrea; Wenig, Marion; Knappe, Claudia; Koch, Kerstin; Georgii, Elisabeth; Dey, Sanjukta; Parker, Jane E; Schnitzler, Jörg-Peter; Vlot, A Corina

    2017-06-01

    This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 ( AZI1 ) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1 , and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants. © 2017 American Society of Plant Biologists. All rights reserved.

  20. PCR cloning of Polyhydroxybutyrate Synthase Gene (phbC) from Aeromonashydrophila

    International Nuclear Information System (INIS)

    Enan, M. R.; Bashandy, S.A.

    2006-01-01

    Plastic wastes are considered to be severe environmental contaminantscausing waste disposal problems. Widespread use of biodegradable plastics isone of the solutions, but it is limited by high production cost. A polymerasechain reaction (PCR) protocol was developed for the specific for the specificdetection and isolation of full-length gene coding for polyhydroxybutyrate(PBH). (PCR) strategy using (PHB) primers resulted in the amplification of(DNA) fragments with the expected size from all isolated bacteria (PBH)synthase gene was cloned directly from Aeromonas hydrophila genome for thefirst time. The clonec fragment was named (phbCAh) gene exhibits similarly to(PHB) synthase genes of Alcaligenes latus and Pseudomonas oleovorans (97%),Alcaligenes sp. (81%) and Comamonas acidovorans (84%). (author)

  1. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice.

    Science.gov (United States)

    Taniguchi, Shiduku; Hosokawa-Shinonaga, Yumi; Tamaoki, Daisuke; Yamada, Shoko; Akimitsu, Kazuya; Gomi, Kenji

    2014-02-01

    Jasmonic acid (JA) is involved in the regulation of host immunity in plants. Recently, we demonstrated that JA signalling has an important role in resistance to rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) in rice. Here, we report that many volatile compounds accumulate in response to exogenous application of JA, including the monoterpene linalool. Expression of linalool synthase was up-regulated by JA. Vapour treatment with linalool induced resistance to Xoo, and transgenic rice plants overexpressing linalool synthase were more resistance to Xoo, presumably due to the up-regulation of defence-related genes in the absence of any treatment. JA-induced accumulation of linalool was regulated by OsJAZ8, a rice jasmonate ZIM-domain protein involving the JA signalling pathway at the transcriptional level, suggesting that linalool plays an important role in JA-induced resistance to Xoo in rice. © 2013 John Wiley & Sons Ltd.

  2. Endothelial nitric oxide synthase gene polymorphisms associated ...

    African Journals Online (AJOL)

    Endothelial nitric oxide synthase (NOS3) is involved in key steps of immune response. Genetic factors predispose individuals to periodontal disease. This study's aim was to explore the association between NOS3 gene polymorphisms and clinical parameters in patients with periodontal disease. Genomic DNA was obtained ...

  3. Altered expression of the caffeine synthase gene in a naturally caffeine-free mutant of Coffea arabica

    Directory of Open Access Journals (Sweden)

    Mirian Perez Maluf

    2009-01-01

    Full Text Available In this work, we studied the biosynthesis of caffeine by examining the expression of genes involved in this biosynthetic pathway in coffee fruits containing normal or low levels of this substance. The amplification of gene-specific transcripts during fruit development revealed that low-caffeine fruits had a lower expression of the theobromine synthase and caffeine synthase genes and also contained an extra transcript of the caffeine synthase gene. This extra transcript contained only part of exon 1 and all of exon 3. The sequence of the mutant caffeine synthase gene revealed the substitution of isoleucine for valine in the enzyme active site that probably interfered with enzymatic activity. These findings indicate that the absence of caffeine in these mutants probably resulted from a combination of transcriptional regulation and the presence of mutations in the caffeine synthase amino acid sequence.

  4. Terpene synthases from Cannabis sativa.

    Science.gov (United States)

    Booth, Judith K; Page, Jonathan E; Bohlmann, Jörg

    2017-01-01

    Cannabis (Cannabis sativa) plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS) were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E)-β-ocimene, (-)-limonene, (+)-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  5. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance

    DEFF Research Database (Denmark)

    Huang, Laurence; Crothers, Kristina; Atzori, Chiara

    2004-01-01

    in the dihydropteroate synthase (DHPS) gene. Similar mutations have been observed in P. jirovecii. Studies have consistently demonstrated a significant association between the use of sulfa drugs for PCP prophylaxis and DHPS gene mutations. Whether these mutations confer resistance to TMP-SMX or dapsone plus trimethoprim...

  6. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression.

    Science.gov (United States)

    Zhou, Fei; Sun, Tian-Hu; Zhao, Lei; Pan, Xi-Wu; Lu, Shan

    2015-01-01

    The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site) which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA), we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS) transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD) and constant dark (DD) conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC) driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  7. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  8. Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype

    Science.gov (United States)

    Kriegs, Bettina; Jansen, Marcus; Hahn, Katrin; Peisker, Helga; Šamajová, Olga; Beck, Martina; Braun, Silvia; Ulbrich, Andreas; Baluška, František

    2010-01-01

    Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. Effects depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. Although MPK3 (MAP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the process of stomatal closure. The expression of PEPCase, an enzyme important for stomatal opening, is downregulated. The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an ABA inducible stress protein). Non-invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen the plant fitness. PMID:20484979

  9. Occurrence of theobromine synthase genes in purine alkaloid-free species of Camellia plants.

    Science.gov (United States)

    Ishida, Mariko; Kitao, Naoko; Mizuno, Kouichi; Tanikawa, Natsu; Kato, Misako

    2009-02-01

    Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-(14)C]adenine and [8-(14)C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue.

  10. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  11. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli.

    Science.gov (United States)

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H(4)MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H(4)MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H(4)MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H(4)MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H(4)MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  12. The bZIP transcription factor HY5 interacts with the promoter of the monoterpene synthase gene QH6 in modulating its rhythmic expression

    Directory of Open Access Journals (Sweden)

    Fei eZhou

    2015-04-01

    Full Text Available The Artemisia annua L. β-pinene synthase QH6 was previously determined to be circadian-regulated at the transcriptional level, showing a rhythmic fluctuation of steady-state transcript abundances. Here we isolated both the genomic sequence and upstream promoter region of QH6. Different regulatory elements, such as G-box (TGACACGTGGCA, -421 bp from the translation initiation site which might have effects on rhythmic gene expression, were found. Using the yeast one-hybrid and electrophoretic mobility shift assay (EMSA, we confirmed that the bZIP transcription factor HY5 binds to this motif of QH6. Studies with promoter truncations before and after this motif suggested that this G-box was important for the diurnal fluctuation of the transgenic β-glucuronidase gene (GUS transcript abundance in Arabidopsis thaliana. GUS gene driven by the promoter region immediately after G-box showed an arrhythmic expression in both light/dark (LD and constant dark (DD conditions, whereas the control with G-box retained its fluctuation in both LD and DD. We further transformed A. thaliana with the luciferase gene (LUC driven by an 1400 bp fragment upstream QH6 with its G-box intact or mutated, respectively. The luciferase activity assay showed that a peak in the early morning disappeared in the mutant. Gene expression analysis also demonstrated that the rhythmic expression of LUC was abolished in the hy5-1 mutant.

  13. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site.

    Science.gov (United States)

    Xu, Jinkun; Ai, Ying; Wang, Jianhui; Xu, Jingwei; Zhang, Yongkang; Yang, Dong

    2017-05-01

    S-limonene synthase is a model monoterpene synthase that cyclizes geranyl pyrophosphate (GPP) to form S-limonene. It is a relatively specific enzyme as the majority of its products are composed of limonene. In this study, we converted it to pinene or phellandrene synthases after introducing N345A/L423A/S454A or N345I mutations. Further studies on N345 suggest the polarity of this residue plays a critical role in limonene production by stabilizing the terpinyl cation intermediate. If it is mutated to a non-polar residue, further cyclization or hydride shifts occurs so the carbocation migrates towards the pyrophosphate, leading to the production of pinene or phellandrene. On the other hand, mutant enzymes that still possess a polar residue at this position produce limonene as the major product. N345 is not the only polar residue that may stabilize the terpinyl cation because it is not strictly conserved among limonene synthases across species and there are also several other polar residues in this area. These residues could form a "polar pocket" that may collectively play this stabilizing role. Our study provides important insights into the catalytic mechanism of limonene synthases. Furthermore, it also has wider implications on the evolution of terpene synthases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Differentiation of Cannabis subspecies by THCA synthase gene analysis using RFLP.

    Science.gov (United States)

    Cirovic, Natasa; Kecmanovic, Miljana; Keckarevic, Dusan; Keckarevic Markovic, Milica

    2017-10-01

    Cannabis sativa subspecies, known as industrial hemp (C. sativa sativa) and marijuana (C. sativa indica) show no evident morphological distinctions, but they contain different levels of psychoactive Δ-9-tetrahidrocanabinol (THC), with considerably higher concentration in marijuana than in hemp. C. sativa subspecies differ in sequence of tetrahydrocannabinolic acid (THCA) synthase gene, responsible for THC production, and only one active copy of the gene, distinctive for marijuana, is capable of producing THC in concentration more then 0,3% in dried plants, usually punishable by the law. Twenty different samples of marijuana that contain THC in concentration more then 0,3% and three varieties of industrial hemp were analyzed for presence of an active copy of THCA synthase gene using in-house developed restriction fragment length polymorphism (RFLP) method All twenty samples of marijuana were positive for the active copy of THCA synthase gene, 16 of them heterozygous. All three varieties of industrial hemp were homozygous for inactive copy. An algorithm for the fast and accurate forensic analysis of samples suspected to be marijuana was constructed, answering the question if an analyzed sample is capable of producing THC in concentrations higher than 0.3%. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Rapid Discovery and Functional Characterization of Terpene Synthases from Four Endophytic Xylariaceae.

    Directory of Open Access Journals (Sweden)

    Weihua Wu

    Full Text Available Endophytic fungi are ubiquitous plant endosymbionts that establish complex and poorly understood relationships with their host organisms. Many endophytic fungi are known to produce a wide spectrum of volatile organic compounds (VOCs with potential energy applications, which have been described as "mycodiesel". Many of these mycodiesel hydrocarbons are terpenes, a chemically diverse class of compounds produced by many plants, fungi, and bacteria. Due to their high energy densities, terpenes, such as pinene and bisabolene, are actively being investigated as potential "drop-in" biofuels for replacing diesel and aviation fuel. In this study, we rapidly discovered and characterized 26 terpene synthases (TPSs derived from four endophytic fungi known to produce mycodiesel hydrocarbons. The TPS genes were expressed in an E. coli strain harboring a heterologous mevalonate pathway designed to enhance terpene production, and their product profiles were determined using Solid Phase Micro-Extraction (SPME and GC-MS. Out of the 26 TPS's profiled, 12 TPS's were functional, with the majority of them exhibiting both monoterpene and sesquiterpene synthase activity.

  16. Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus.

    Science.gov (United States)

    Mizuno, Kouhei; Kihara, Takahiro; Tsuge, Takeharu; Lundgren, Benjamin R; Sarwar, Zaara; Pinto, Atahualpa; Nomura, Christopher T

    2017-01-01

    Many microorganisms harbor genes necessary to synthesize biodegradable plastics known as polyhydroxyalkanoates (PHAs). We surveyed a genomic database and discovered a new cluster of class IV PHA synthase genes (phaRC). These genes are different in sequence and operon structure from any previously reported PHA synthase. The newly discovered PhaRC synthase was demonstrated to produce PHAs in recombinant Escherichia coli.

  17. Terpene synthases from Cannabis sativa.

    Directory of Open Access Journals (Sweden)

    Judith K Booth

    Full Text Available Cannabis (Cannabis sativa plants produce and accumulate a terpene-rich resin in glandular trichomes, which are abundant on the surface of the female inflorescence. Bouquets of different monoterpenes and sesquiterpenes are important components of cannabis resin as they define some of the unique organoleptic properties and may also influence medicinal qualities of different cannabis strains and varieties. Transcriptome analysis of trichomes of the cannabis hemp variety 'Finola' revealed sequences of all stages of terpene biosynthesis. Nine cannabis terpene synthases (CsTPS were identified in subfamilies TPS-a and TPS-b. Functional characterization identified mono- and sesqui-TPS, whose products collectively comprise most of the terpenes of 'Finola' resin, including major compounds such as β-myrcene, (E-β-ocimene, (--limonene, (+-α-pinene, β-caryophyllene, and α-humulene. Transcripts associated with terpene biosynthesis are highly expressed in trichomes compared to non-resin producing tissues. Knowledge of the CsTPS gene family may offer opportunities for selection and improvement of terpene profiles of interest in different cannabis strains and varieties.

  18. Strengthening Triterpene Saponins Biosynthesis by Over-Expression of Farnesyl Pyrophosphate Synthase Gene and RNA Interference of Cycloartenol Synthase Gene in Panax notoginseng Cells

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2017-04-01

    Full Text Available To conform to the multiple regulations of triterpene biosynthesis, the gene encoding farnesyl pyrophosphate synthase (FPS was transformed into Panax notoginseng (P. notoginseng cells in which RNA interference (RNAi of the cycloartenol synthase (CAS gene had been accomplished. Transgenic cell lines showed both higher expression levels of FPS and lower expression levels of CAS compared to the wild-type (WT cells. In the triterpene and phytosterol analysis, transgenic cell lines provided a higher accumulation of total triterpene saponins, and a lower amount of phytosterols in comparison with the WT cells. Compared with the cells in which RNAi of the CAS gene was achieved, the cells with simultaneously over-expressed FPS and silenced CAS showed higher triterpene contents. These results demonstrate that over-expression of FPS can break the rate-limiting reaction catalyzed by FPS in the triterpene saponins biosynthetic pathway; and inhibition of CAS expression can decrease the synthesis metabolic flux of the phytosterol branch. Thus, more precursors flow in the direction of triterpene synthesis, and ultimately promote the accumulation of P. notoginseng saponins. Meanwhile, silencing and over-expressing key enzyme genes simultaneously is more effective than just manipulating one gene in the regulation of saponin biosynthesis.

  19. Comparative glandular trichome transcriptome-based gene characterization reveals reasons for differential (-)-menthol biosynthesis in Mentha species.

    Science.gov (United States)

    Akhtar, Md Qussen; Qamar, Nida; Yadav, Pallavi; Kulkarni, Pallavi; Kumar, Ajay; Shasany, Ajit Kumar

    2017-06-01

    The genes involved in menthol biosynthesis are reported earlier in Mentha × piperita. But the information on these genes is not available in Mentha arvensis. To bridge the gap in knowledge on differential biosynthesis of monoterpenes leading to compositional variation in the essential oil of these species, a comparative transcriptome analysis of the glandular trichome (GT) was carried out. In addition to the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathway genes, about 210 and 196 different terpene synthases (TPSs) transcripts were identified from annotation in M. arvensis and M. × piperita, respectively, and correlated to several monoterpenes present in the essential oil. Six isoforms of (-)-menthol dehydrogenases (MD), the last enzyme of the menthol biosynthetic pathway, were identified, cloned and characterized from the transcriptome data (three from each species). Varied expression levels and differential enzyme kinetics of these isoforms indicated the nature and composition of the product, as these isoforms generate both (-)-menthol and (+)-neomenthol from (-)-menthone and converts (-)-menthol to (-)-menthone in the reverse reaction, and hence together determine the quantity of (-)-menthol in the essential oil in these two species. Several genes for high value minor monoterpenes could also be identified from the transcriptome data. © 2017 Scandinavian Plant Physiology Society.

  20. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids.

    Directory of Open Access Journals (Sweden)

    Kattina Zavala

    Full Text Available Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas. Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense. We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation.

  1. Protein modelling of triterpene synthase genes from mangrove plants using Phyre2 and Swiss-model

    Science.gov (United States)

    Basyuni, M.; Wati, R.; Sulistiyono, N.; Hayati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Molecular cloning of five oxidosqualene cyclases (OSC) genes from Bruguiera gymnorrhiza, Kandelia candel, and Rhizophora stylosa had previously been cloned, characterized, and encoded mono and -multi triterpene synthases. The present study analyzed protein modelling of triterpene synthase genes from mangrove using Phyre2 and Swiss-model. The diversity was noted within protein modelling of triterpene synthases using Phyre2 from sequence identity (38-43%) and residue (696-703). RsM2 was distinguishable from others for template structure; it used lanosterol synthase as a template (PDB ID: w6j.1.A). By contrast, other genes used human lanosterol synthase (1w6k.1.A). The predicted bind sites were correlated with the product of triterpene synthase, the product of BgbAS was β-amyrin, while RsM1 contained a significant amount of β-amyrin. Similarly BgLUS and KcMS, both main products was lupeol, on the other hand, RsM2 with the outcome of taraxerol. Homology modelling revealed that 696 residues of BgbAS, BgLUS, RsM1, and RsM2 (91-92% of the amino acid sequence) had been modelled with 100% confidence by the single highest scoring template using Phyre2. This coverage was higher than Swiss-model (85-90%). The present study suggested that molecular cloning of triterpene genes provides useful tools for studying the protein modelling related regulation of isoprenoids biosynthesis in mangrove forests.

  2. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  3. The polyketide components of waxes and the Cer-cqu gene cluster encoding a novel polyketide synthase, the β-diketone synthase, DKS

    DEFF Research Database (Denmark)

    von Wettstein, Penny

    2017-01-01

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb...... Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms...

  4. Nitric oxide synthase gene G298 allele

    International Nuclear Information System (INIS)

    Nagib El-Kilany, Galal E.; Nayel, Ehab; Hazzaa, Sahar

    2004-01-01

    Background: Nitric oxide (NO) has an important effect on blood pressure, arterial wall, and the basal release of endothelial NO in hypertension (HPN) may be reduced. Until now, there is no solid data revealing the potential role of the polymorphism of the nitric oxide synthase gene (NOS) in patients with HPN and microvascular angina. Aim: The aim of the present study is to investigate the gene of endothelial nitric oxide synthase (eNOS), as the polymorphism of this gene may be a putative candidate for HPN and initiate the process of atherosclerosis. Methods: Sixty participants were recruited for this study; 50 were hypertensive patients complaining of chest pain [30 of them have electrocardiogram (EKG) changes of ischemia], 20 had isolated HPN, and 10 healthy volunteers served as control. All patients underwent stress myocardial perfusion imaging (MPI) and coronary angiography. Genotyping of eNOS for all patients and controls was performed. The linkages between HPN, microvascular angina and eNOS gene polymorphism were investigated. Results: MPI and coronary angiography revealed that 15 patients had chest pain with true ischemia and reversible myocardial perfusion defects (multiple and mild) but normal epicardial coronary arteries (microvascular angina), while 15 patients had significant coronary artery disease (CAD), and 20 hypertensive patients showed normal perfusion scan and coronary angiography. The prevalence of the NOS G 298 allele was higher in the hypertensive group with microvascular angina (documented by MPI) than it was among the control participants (P<.005). The eNOS allele was significantly higher in the hypertensive group than in the control participants, but there was no significant difference in homozygote mutants among hypertensive participants, x-syndrome and patients with CAD. Conclusion: eNOS gene polymorphism is proved to be an important etiology in microvascular angina (x-syndrome) among hypertensive patients. In addition, the eNOS mutant

  5. Spearmint R2R3-MYB transcription factor MsMYB negatively regulates monoterpene production and suppresses the expression of geranyl diphosphate synthase large subunit (MsGPPS.LSU).

    Science.gov (United States)

    Reddy, Vaishnavi Amarr; Wang, Qian; Dhar, Niha; Kumar, Nadimuthu; Venkatesh, Prasanna Nori; Rajan, Chakravarthy; Panicker, Deepa; Sridhar, Vishweshwaran; Mao, Hui-Zhu; Sarojam, Rajani

    2017-09-01

    Many aromatic plants, such as spearmint, produce valuable essential oils in specialized structures called peltate glandular trichomes (PGTs). Understanding the regulatory mechanisms behind the production of these important secondary metabolites will help design new approaches to engineer them. Here, we identified a PGT-specific R2R3-MYB gene, MsMYB, from comparative RNA-Seq data of spearmint and functionally characterized it. Analysis of MsMYB-RNAi transgenic lines showed increased levels of monoterpenes, and MsMYB-overexpressing lines exhibited decreased levels of monoterpenes. These results suggest that MsMYB is a novel negative regulator of monoterpene biosynthesis. Ectopic expression of MsMYB, in sweet basil and tobacco, perturbed sesquiterpene- and diterpene-derived metabolite production. In addition, we found that MsMYB binds to cis-elements of MsGPPS.LSU and suppresses its expression. Phylogenetic analysis placed MsMYB in subgroup 7 of R2R3-MYBs whose members govern phenylpropanoid pathway and are regulated by miR858. Analysis of transgenic lines showed that MsMYB is more specific to terpene biosynthesis as it did not affect metabolites derived from phenylpropanoid pathway. Further, our results indicate that MsMYB is probably not regulated by miR858, like other members of subgroup 7. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  7. A comparison of new measurements of total monoterpene flux with improved measurements of speciated monoterpene flux

    Directory of Open Access Journals (Sweden)

    A. Lee

    2005-01-01

    Full Text Available Many monoterpenes have been identified in forest emissions using gas chromatography (GC. Until now, it has been impossible to determine whether all monoterpenes are appropriately measured using GC techniques. We used a proton transfer reaction mass spectrometer (PTR-MS coupled with the eddy covariance (EC technique to measure mixing ratios and fluxes of total monoterpenes above a ponderosa pine plantation. We compared PTR-MS-EC results with simultaneous measurements of eight speciated monoterpenes, β-pinene, α-pinene, 3-carene, d-limonene, β-phellandrene, α-terpinene, camphene, and terpinolene, made with an automated, in situ gas chromatograph with flame ionization detectors (GC-FID, coupled to a relaxed eddy accumulation system (REA. Monoterpene mixing ratios and fluxes measured by PTR-MS averaged 30±2.3% and 31±9.2% larger than by GC-FID, with larger mixing ratio discrepancies between the two techniques at night than during the day. Two unidentified peaks that correlated with β-pinene were resolved in the chromatograms and completely accounted for the daytime difference and reduced the nighttime mixing ratio difference to 20±2.9%. Measurements of total monoterpenes by PTR-MS-EC indicated that GC-FID-REA measured the common, longer-lived monoterpenes well, but that additional terpenes were emitted from the ecosystem that represented an important contribution to the total mixing ratio above the forest at night.

  8. The Eucalyptus terpene synthase gene family.

    Science.gov (United States)

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  9. The Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS.

    Science.gov (United States)

    von Wettstein-Knowles, Penny

    2017-07-10

    The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c , -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase/carboxyl transferase, and a P450 hydroxylase, respectively, establishes a new, major pathway for the synthesis of plant waxes. The major product is a β-diketone (14,16-hentriacontane) aliphatic that forms long, thin crystalline tubes. A pathway branch leads to the formation of esterified alkan-2-ols.

  10. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  12. Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif.

    Science.gov (United States)

    Hurd, Matthew C; Kwon, Moonhyuk; Ro, Dae-Kyun

    2017-08-26

    Lippia dulcis (Aztec sweet herb) contains the potent natural sweetener hernandulcin, a sesquiterpene ketone found in the leaves and flowers. Utilizing the leaves for agricultural application is challenging due to the presence of the bitter-tasting and toxic monoterpene, camphor. To unlock the commercial potential of L. dulcis leaves, the first step of camphor biosynthesis by a bornyl diphosphate synthase needs to be elucidated. Two putative monoterpene synthases (LdTPS3 and LdTPS9) were isolated from L. dulcis leaf cDNA. To elucidate their catalytic functions, E. coli-produced recombinant enzymes with truncations of their chloroplast transit peptides were assayed with geranyl diphosphate (GPP). In vitro enzyme assays showed that LdTPS3 encodes bornyl diphosphate synthase (thus named LdBPPS) while LdTPS9 encodes linalool synthase. Interestingly, the N-terminus of LdBPPS possesses two arginine-rich (RRX 8 W) motifs, and enzyme assays showed that the presence of both RRX 8 W motifs completely inhibits the catalytic activity of LdBPPS. Only after the removal of the putative chloroplast transit peptide and the first RRX 8 W, LdBPPS could react with GPP to produce bornyl diphosphate. LdBPPS is distantly related to the known bornyl diphosphate synthase from sage in a phylogenetic analysis, indicating a converged evolution of camphor biosynthesis in sage and L. dulcis. The discovery of LdBPPS opens up the possibility of engineering L. dulcis to remove the undesirable product, camphor. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Maiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Sugiura, Kazumitsu [Department of Dermatology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Koichi, E-mail: koichi@med.nagoya-u.ac.jp [Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan); Furukawa, Keiko [Department of Life and Medical Sciences, Chubu University Faculty of Life and Health Sciences, Matsumoto, Kasugai 487-8501 (Japan); Department of Biochemistry II, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-0065 (Japan)

    2014-03-07

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  14. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    International Nuclear Information System (INIS)

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-01-01

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes

  15. Highly reactive light-dependent monoterpenes in the Amazon

    Science.gov (United States)

    Jardine, A. B.; Jardine, K. J.; Fuentes, J. D.; Martin, S. T.; Martins, G.; Durgante, F.; Carneiro, V.; Higuchi, N.; Manzi, A. O.; Chambers, J. Q.

    2015-03-01

    Despite orders of magnitude difference in atmospheric reactivity and great diversity in biological functioning, little is known about monoterpene speciation in tropical forests. Here we report vertically resolved ambient air mixing ratios for 12 monoterpenes in a central Amazon rainforest including observations of the highly reactive cis-β-ocimene (160 ppt), trans-β-ocimene (79 ppt), and terpinolene (32 ppt) which accounted for an estimated 21% of total monoterpene composition yet 55% of the upper canopy monoterpene ozonolysis rate. All 12 monoterpenes showed a mixing ratio peak in the upper canopy, with three demonstrating subcanopy peaks in 7 of 11 profiles. Leaf level emissions of highly reactive monoterpenes accounted for up to 1.9% of photosynthesis confirming light-dependent emissions across several Amazon tree genera. These results suggest that highly reactive monoterpenes play important antioxidant roles during photosynthesis in plants and serve as near-canopy sources of secondary organic aerosol precursors through atmospheric photooxidation via ozonolysis.

  16. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    Science.gov (United States)

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  17. Conifer-Derived Monoterpenes and Forest Walking

    OpenAIRE

    Sumitomo, Kazuhiro; Akutsu, Hiroaki; Fukuyama, Syusei; Minoshima, Akiho; Kukita, Shin; Yamamura, Yuji; Sato, Yoshiaki; Hayasaka, Taiki; Osanai, Shinobu; Funakoshi, Hiroshi; Hasebe, Naoyuki; Nakamura, Masao

    2015-01-01

    Conifer and broadleaf trees emit volatile organic compounds in the summer. The major components of these emissions are volatile monoterpenes. Using solid phase microextraction fiber as the adsorbant, monoterpenes were successfully detected and identified in forest air samples. Gas chromatography/mass chromatogram of monoterpenes in the atmosphere of a conifer forest and that of serum from subjects who were walking in a forest were found to be similar each other. The amounts of α-pinene in the...

  18. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits*

    Science.gov (United States)

    Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E.; Osbourn, Anne

    2016-01-01

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. PMID:26709230

  19. Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) fruits

    DEFF Research Database (Denmark)

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo

    2016-01-01

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range...... of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From...... these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive...

  20. Identifying the catalytic components of cellulose synthase and the maize mixed-linkage beta-glucan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas C Carpita

    2009-04-20

    Five specific objectives of this project are to develop strategies to identify the genes that encode the catalytic components of "mixed-linkage" (1→3),(1→4)-beta-D-glucans in grasses, to determine the protein components of the synthase complex, and determine the biochemical mechanism of synthesis. We have used proteomic approaches to define intrinsic and extrinsic polypeptides of Golgi membranes that are associated with polysaccharide synthesis and trafficking. We were successful in producing recombinant catalytic domains of cellulose synthase genes and discovered that they dimerize upon concentration, indicating that two CesA proteins form the catalytic unit. We characterized a brittle stalk2 mutant as a defect in a COBRA-like protein that results in compromised lignin-cellulose interactions that decrease tissue flexibility. We used virus-induced gene silencing of barley cell wall polysaccharide synthesis by BSMV in an attempt to silence specific members of the cellulose synthase-like gene family. However, we unexpectedly found that regardless of the specificity of the target gene, whole gene interaction networks were silenced. We discovered the cause to be an antisense transcript of the cellulose synthase gene initiated small interfering RNAs that spread silencing to related genes.

  1. Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance.

    Science.gov (United States)

    Singh, Anup Kumar; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Reddy, Sajjalavarahalli Gangireddy Eswara; Rao, Dodaghatta Krishnarao Venkata; Shasany, Ajit Kumar; Nagegowda, Dinesh A

    2015-12-01

    Withania somnifera (L.) Dunal is an important Indian medicinal plant that produces withanolides, which are triterpenoid steroidal lactones having diverse biological activities. To enable fast and efficient functional characterization of genes in this slow-growing and difficult-to-transform plant, a virus-induced gene silencing (VIGS) was established by silencing phytoene desaturase (PDS) and squalene synthase (SQS). VIGS of the gene encoding SQS, which provides precursors for triterpenoids, resulted in significant reduction of squalene and withanolides, demonstrating its application in studying withanolides biosynthesis in W. somnifera leaves. A comprehensive analysis of gene expression and sterol pathway intermediates in WsSQS-vigs plants revealed transcriptional modulation with positive feedback regulation of mevalonate pathway genes, and negative feed-forward regulation of downstream sterol pathway genes including DWF1 (delta-24-sterol reductase) and CYP710A1 (C-22-sterol desaturase), resulting in significant reduction of sitosterol, campesterol and stigmasterol. However, there was little effect of SQS silencing on cholesterol, indicating the contribution of sitosterol, campesterol and stigmasterol, but not of cholesterol, towards withanolides formation. Branch-point oxidosqualene synthases in WsSQS-vigs plants exhibited differential regulation with reduced CAS (cycloartenol synthase) and cycloartenol, and induced BAS (β-amyrin synthase) and β-amyrin. Moreover, SQS silencing also led to the down-regulation of brassinosteroid-6-oxidase-2 (BR6OX2), pathogenesis-related (PR) and nonexpressor of PR (NPR) genes, resulting in reduced tolerance to bacterial and fungal infection as well as to insect feeding. Taken together, SQS silencing negatively regulated sterol and defence-related genes leading to reduced phytosterols, withanolides and biotic stress tolerance, thus implicating the application of VIGS for functional analysis of genes related to withanolides

  2. CHARACTERIZATION OF 0.58 kb DNA STILBENE SYNTHASE ENCODING GENE FRAGMENT FROM MELINJO PLANT (Gnetum gnemon

    Directory of Open Access Journals (Sweden)

    Tri Joko Raharjo

    2011-12-01

    Full Text Available Resveratrol is a potent anticancer agent resulted as the main product of enzymatic reaction between common precursor in plants and Stilbene Synthase enzyme, which is expressed by sts gene. Characterization of internal fragment of Stilbene Synthase (STS encoding gene from melinjo plant (Gnetum gnemon L. has been carried out as part of a larger work to obtain a full length of Stilbene Synthase encoding gene of the plant. RT-PCR (Reverse Transcriptase Polymerase Chain Reaction was performed using two degenerated primers to amplify the gene fragment. Ten published STS conserved amino acid sequences from various plant species from genebank were utilized to construct a pair of GGF2 (5' GTTCCACCTGCGAAGCAGCC 3' and GGR2 (5' CTGGATCGCACATCC TGGTG 3' primers. Both designed primers were predicted to be in the position of 334-354 and 897-916 kb of the gene respectively. Total RNA isolated from melinjo leaves was used as template for the RT-PCR amplification process using two-step technique. A collection of 0.58 DNA fragments was generated from RT-PCR amplification and met the expected results. The obtained DNA fragments were subsequently isolated, refined and sequenced. A nucleotide sequence analysis was accomplished by comparing it to the existed sts genes available in genebank. Homology analysis of the DNA fragments with Arachis hypogaea L00952 sts gene showed high similarity level. Taken together, the results are evidence that the amplified fragment obtained in this study is part of melinjo sts gene

  3. Oil production at different stages of leaf development in Lippia alba

    OpenAIRE

    Diego Pandeló; Talita D. Melo; Júnya L. Singulani; Fernanda A. F. Guedes; Marco A. Machado; Cíntia M. Coelho; Lyderson F. Viccini; Marcelo O. Santos

    2012-01-01

    The aim of this work was to analyze terpene oil production and terpene synthases (TPS) gene expression from leaves at different developmental stages of different chemotypes of Lippia alba (Mill.) N.E. Br. ex Britton & P. Wilson, Verbenaceae. Hydro-distilled essential oil were used for chemical analysis and gene expression of three monoterpene synthase genes called LaTPS12, LaTPS23 and LaTPS25 were used for analyses of gene expression associated to oil production. The putative genes were a...

  4. Cloning and characterization of ATP synthase CF1 α gene from ...

    African Journals Online (AJOL)

    ATP synthase CF1 α subunit protein is a key enzyme for energy metabolism in plant kingdom, and plays an important role in multiple cell processes. In this study, the complete atpA gene (accession no. JN247444) was cloned from sweet potato (Ipomoea batatas L. Lam) by reverse transcriptasepolymerase chain reaction ...

  5. Cardiovascular effects of monoterpenes: a review

    Directory of Open Access Journals (Sweden)

    Márcio R. V. Santos

    2011-07-01

    Full Text Available The monoterpenes are secondary metabolites of plants. They have various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, anti-spasmodic, hypotensive, and vasorelaxant. The purpose of this research was to review the cardiovascular effects of monoterpenes. The data in this resarch were collected using the Internet portals Pubmed, Scopus, and ISI Web of Knowledge between the years 1987 and 2010. In the study 33 monoterpenes were included, which were related to each of the thirteen individual words: artery, cardiovascular, heart, myocyte, vasorelaxant, vessel, hypotension, hypotensive, cardiomyocyte, ventricular, vasodilatory, aorta, and aortic. The research utilized 22 articles published mainly in the journals Phytomedicine, Fundamental Clinical Pharmacology, Planta Medica, Life Science, European Journal of Pharmacology, and Brazilian Journal of Medical and Biological Research. Of the 33 monoterpenes studied surveyed, sixteen of them had already been studied for their effects on the cardiovascular system: carvacrol, citronellol, p-cymene, eucalyptol (1,8-cineole, linalool, menthol, myrtenal, myrtenol, α-pinene, rotundifolone (piperitenone oxide, sobrerol, thymol, α-limonene, α-terpinen-4-ol, α-terpineol, and perillyl alcohol. The main effects observed were vasorelaxation, decreased heart rate and blood pressure. This review showed that the monoterpenes may be considered promising agents for prevention or treatment of diseases of the cardiovascular system.

  6. Cardiovascular effects of monoterpenes: a review

    Directory of Open Access Journals (Sweden)

    Márcio R. V. Santos

    2011-08-01

    Full Text Available The monoterpenes are secondary metabolites of plants. They have various pharmacological properties including antifungal, antibacterial, antioxidant, anticancer, anti-spasmodic, hypotensive, and vasorelaxant. The purpose of this research was to review the cardiovascular effects of monoterpenes. The data in this resarch were collected using the Internet portals Pubmed, Scopus, and ISI Web of Knowledge between the years 1987 and 2010. In the study 33 monoterpenes were included, which were related to each of the thirteen individual words: artery, cardiovascular, heart, myocyte, vasorelaxant, vessel, hypotension, hypotensive, cardiomyocyte, ventricular, vasodilatory, aorta, and aortic. The research utilized 22 articles published mainly in the journals Phytomedicine, Fundamental Clinical Pharmacology, Planta Medica, Life Science, European Journal of Pharmacology, and Brazilian Journal of Medical and Biological Research. Of the 33 monoterpenes studied surveyed, sixteen of them had already been studied for their effects on the cardiovascular system: carvacrol, citronellol, p-cymene, eucalyptol (1,8-cineole, linalool, menthol, myrtenal, myrtenol, α-pinene, rotundifolone (piperitenone oxide, sobrerol, thymol, α-limonene, α-terpinen-4-ol, α-terpineol, and perillyl alcohol. The main effects observed were vasorelaxation, decreased heart rate and blood pressure. This review showed that the monoterpenes may be considered promising agents for prevention or treatment of diseases of the cardiovascular system.

  7. Monoterpene emissions from an understory species, Pteridium aquilinum

    Science.gov (United States)

    Madronich, Monica B.; Greenberg, James P.; Wessman, Carol A.; Guenther, Alex B.

    2012-07-01

    Monoterpene emissions from the dominant understory species Pteridium aquilinum (Bracken fern) in a mixed temperate forest were measured in the field during the summers of 2006, 2007 and 2008. The results showed that Bracken fern emitted monoterpenes at different rates depending if the plants were located in the understory or in open areas. Understory plants emitted monoterpene levels ranging from 0.002 to 13 μgC gdw-1 h-1. Open area plants emitted monoterpene levels ranging from 0.005 to 2.21 μgC gdw-1 h-1. During the summer of 2008 greenhouse studies were performed to complement the field studies. Only 3% of the greenhouse Bracken fern plants emitted substantial amounts of monoterpenes. The average emission, 0.15 μgC gdw-1 h-1 ± 0.9 μgC gdw-1 h-1, was much lower than that observed in the field. The factors controlling monoterpene emissions are not clear, but this study provides evidence of the potential importance of understory vegetation to ecosystem total hydrocarbon emissions and emphasizes the need for longer-term field studies.

  8. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    OpenAIRE

    Bechard, Matthew E.; Chhatwal, Sonya; Garcia, Rosemarie E.; Rasche, Madeline E.

    2003-01-01

    Tetrahydromethanopterin (H4MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and...

  9. Functional mitochondrial ATP synthase proteolipid gene produced by recombination of parental genes in a petunia somatic hybrid

    International Nuclear Information System (INIS)

    Rothenberg, M.; Hanson, M.R.

    1988-01-01

    A novel ATP synthase subunit 9 gene (atp9) was identified in the mitochondrial genome of a Petunia somatic hybrid line (13-133) which was produced from a fusion between Petunia lines 3688 and 3704. The novel gene was generated by intergenomic recombination between atp9 genes from the two parental plant lines. The entire atp9 coding region is represented on the recombinant gene. Comparison of gene sequences using electrophoresis and autoradiography, indicate that the 5' transcribed region is contributed by an atp9 gene from 3704 and the 3' transcribed region is contributed by an atp9 gene from 3688. The recombinant atp9 gene is transcriptionally active. The location of the 5' and 3' transcript termini are conserved with respect to the parental genes, resulting in the production of hybrid transcripts

  10. A real-time PCR assay for the relative quantification of the tetrahydrocannabinolic acid (THCA) synthase gene in herbal Cannabis samples.

    Science.gov (United States)

    Cascini, Fidelia; Passerotti, Stella; Martello, Simona

    2012-04-10

    In this study, we wanted to investigate whether or not the tetrahydrocannabinolic acid (THCA) synthase gene, which codes for the enzyme involved in the biosynthesis of THCA, influences the production and storage of tetrahydrocannabinol (THC) in a dose-dependent manner. THCA is actually decarboxylated to produce THC, the main psychoactive component in the Cannabis plant. Assuming as the research hypothesis a correlation between the gene copy number and the production of THC, gene quantification could be useful in forensics in order to complement or replace chemical analysis for the identification and classification of seized Cannabis samples, thus distinguishing the drug-type from the fibre-type varieties. A real-time PCR assay for the relative quantification of the THCA synthase gene was then validated on Cannabis samples; some were seized from the illegal drug market and others were derived from experimental cultivation. In order to determine the gene copy number to compare high vs. low potency plants, we chose the ΔΔCt method for TaqMan reactions. The assay enabled single plants with zero, one, and two copies of the gene to be distinguished. As a result of this first part of the research on the THCA synthase gene (the second part will cover a study of gene expression), we found no correlation between THCA synthase gene copy number and the content of THC in the herbal Cannabis samples tested. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Mutation of Cellulose Synthase Gene Improves the Nutritive Value of Rice Straw

    Directory of Open Access Journals (Sweden)

    Yanjing Su

    2012-06-01

    Full Text Available Rice straw is an important roughage resource for ruminants in many rice-producing countries. In this study, a rice brittle mutant (BM, mutation in OsCesA4, encoding cellulose synthase and its wild type (WT were employed to investigate the effects of a cellulose synthase gene mutation on rice straw morphological fractions, chemical composition, stem histological structure and in situ digestibility. The morphological fractions investigation showed that BM had a higher leaf sheath proportion (43.70% vs 38.21%, p0.05 was detected in neutral detergent fiber (NDFom and ADL contents for both strains. Histological structure observation indicated that BM stems had fewer sclerenchyma cells and a thinner sclerenchyma cell wall than WT. The results of in situ digestion showed that BM had higher DM, NDFom, cellulose and hemicellulose disappearance at 24 or 48 h of incubation (p<0.05. The effective digestibility of BM rice straw DM and NDFom was greater than that of WT (31.4% vs 26.7% for DM, 29.1% vs 24.3% for NDFom, p<0.05, but the rate of digestion of the slowly digested fraction of BM rice straw DM and NDF was decreased. These results indicated that the mutation in the cellulose synthase gene could improve the nutritive value of rice straw for ruminants.

  12. Aroma Quality of Fruits of Wild and Cultivated Strawberry (FRAGARIA SPP. in Relation to the Flavour-Related Gene Expression

    Directory of Open Access Journals (Sweden)

    Bianchi Giulia

    2014-09-01

    Full Text Available Expression profiles of flavour-related genes and the aroma quality of fruit headspace were investigated in the four strawberry genotypes ‘Reine des Vallées’ (Fragaria vesca, ‘Profumata di Tortona’ (F mos-chata, ‘Onda’ and VR 177 selection (F” x ananassa. Differences in the expression level of genes coding of strawberry alcohol acyltransferase (SAAT, F. x ananassa nerolidol synthase 1 (FaNESl and F vesca monoterpene and sesquiterpene synthases (FvPINS and PINS1, respectively were detected among these genotypes. In fruits of F. x ananassa the terpenoid profile was dominated by nerolidol, whereas wild spe–cies produced mainly monoterpenes. It was correlated with the higher induction of FaNES1 in cultivated and PINS gene in the wild Fragaria species. The flavour biogenesis in ripening fruits was determined by the expression of SAAT gene, especially visible for ‘Profumata di Tortona’ and ‘Onda’ strawberries. The fruit solid-phase microextraction (SPME headspace was analysed using the Gas Chromatography-Olfac–tometry (GC-O, that allows for the chromatographic separation of volatiles together with their olfactomet-ric evaluation. ‘Reine des Vallées’ fruits have a peculiar profile characterized by high concentrations of limonene, linalool and mesifurane that resulted in “spiced”, “citrus, floral” and “sweet, baked” descriptors. The character impact compound in ‘Profumata di Tortona’ fruits was ethyl butanoate, responsible for “sweet” and “fruity, strawberry” descriptors. However, it was detected in lower amount in comparison to the data obtained for F. x ananassa strawberries. The sesquiterpene nerolidol was identified in both culti–vated strawberry genotypes.

  13. Microbial monoterpene transformations—a review

    OpenAIRE

    Marmulla, Robert; Harder, Jens

    2014-01-01

    Isoprene and monoterpenes constitute a significant fraction of new plant biomass. Emission rates into the atmosphere alone are estimated to be over 500 Tg per year. These natural hydrocarbons are mineralized annually in similar quantities. In the atmosphere, abiotic photochemical processes cause lifetimes of minutes to hours. Microorganisms encounter isoprene, monoterpenes, and other volatiles of plant origin while living in and on plants, in the soil and in aquatic habitats. Below toxic conc...

  14. Enantiospecific (+)- and (-)-germacrene D synthases, cloned from goldenrod, reveal a functionally active variant of the universal isoprenoid-biosynthesis aspartate-rich motif.

    Science.gov (United States)

    Prosser, Ian; Altug, Iris G; Phillips, Andy L; König, Wilfried A; Bouwmeester, Harro J; Beale, Michael H

    2004-12-15

    The naturally occurring, volatile sesquiterpene hydrocarbon germacrene D has strong effects on insect behaviour and genes encoding enzymes that produce this compound are of interest in the study of plant-insect interactions and in a number of biotechnological approaches to pest control. Goldenrod, Solidago canadensis, is unusual in that it produces both enantiomers of germacrene D. Two new sesquiterpene synthase cDNAs, designated Sc11 and Sc19, have been isolated from goldenrod and functional expression in Escherichia coli identified Sc11 as (+)-germacrene D synthase and Sc19 as (-)-germacrene D synthase. Thus, the enantiomers of germacrene D are the products of separate, but closely related (85% amino-acid identity), enzymes. Unlike other sesquiterpene synthases and the related monoterpene synthases and prenyl transferases, which contain the characteristic amino-acid motif DDXX(D,E), Sc11 is unusual in that this motif occurs as (303)NDTYD. Mutagenesis of this motif to (303)DDTYD gave rise to an enzyme that fully retained (+)-germacrene D synthase activity. The converse mutation in Sc19 (D303N) resulted in a less efficient but functional enzyme. Mutagenesis of position 303 to glutamate in both enzymes resulted in loss of activity. These results indicate that the magnesium ion-binding role of the first aspartate in the DDXXD motif may not be as critical as previously thought. Further amino-acid sequence comparisons and molecular modelling of the enzyme structures revealed that very subtle changes to the active site of this family of enzymes are required to alter the reaction pathway to form, in this case, different enantiomers from the same enzyme-bound carbocationic intermediate.

  15. Characterization of three chalcone synthase-like genes from apple (Malus x domestica Borkh.).

    Science.gov (United States)

    Yahyaa, Mosaab; Ali, Samah; Davidovich-Rikanati, Rachel; Ibdah, Muhammad; Shachtier, Alona; Eyal, Yoram; Lewinsohn, Efraim; Ibdah, Mwafaq

    2017-08-01

    Apple (Malus x domestica Brokh.) is a widely cultivated deciduous tree species of significant economic importance. Apple leaves accumulate high levels of flavonoids and dihydrochalcones, and their formation is dependent on enzymes of the chalcone synthase family. Three CHS genes were cloned from apple leaves and expressed in Escherichia coli. The encoded recombinant enzymes were purified and functionally characterized. In-vitro activity assays indicated that MdCHS1, MdCHS2 and MdCHS3 code for proteins exhibiting polyketide synthase activity that accepted either p-dihydrocoumaroyl-CoA, p-coumaroyl-CoA, or cinnamoyl-CoA as starter CoA substrates in the presence of malonyl-CoA, leading to production of phloretin, naringenin chalcone, and pinocembrin chalcone. MdCHS3 coded a chalcone-dihydrochalcone synthase enzyme with narrower substrate specificity than the previous ones. The apparent Km values of MdCHS3 for p-dihydrocoumaryl-CoA and p-coumaryl-CoA were both 5.0 μM. Expression analyses of MdCHS genes varied according to tissue type. MdCHS1, MdCHS2 and MdCHS3 expression levels were associated with the levels of phloretin accumulate in the respective tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Identification and Characterization of the Iridoid Synthase Involved in Oleuropein Biosynthesis in Olive (Olea europaea) Fruits.

    Science.gov (United States)

    Alagna, Fiammetta; Geu-Flores, Fernando; Kries, Hajo; Panara, Francesco; Baldoni, Luciana; O'Connor, Sarah E; Osbourn, Anne

    2016-03-11

    The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait. In addition, oleuropein possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, and anti-cancer activities. In accordance, obtaining high oleuropein varieties is a main goal of molecular breeding programs. Here we use a transcriptomic approach to identify candidate genes belonging to the secoiridoid pathway in olive. From these candidates, we have functionally characterized the olive homologue of iridoid synthase (OeISY), an unusual terpene cyclase that couples an NAD (P)H-dependent 1,4-reduction step with a subsequent cyclization, and we provide evidence that OeISY likely generates the monoterpene scaffold of oleuropein in olive fruits. OeISY, the first pathway gene characterized for this type of secoiridoid, is a potential target for breeding programs in a high value secoiridoid-accumulating species. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    OpenAIRE

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was succe...

  18. Sesquiterpene Synthase-3-Hydroxy-3-Methylglutaryl Coenzyme A Synthase Fusion Protein Responsible for Hirsutene Biosynthesis in Stereum hirsutum.

    Science.gov (United States)

    Flynn, Christopher M; Schmidt-Dannert, Claudia

    2018-06-01

    The wood-rotting mushroom Stereum hirsutum is a known producer of a large number of namesake hirsutenoids, many with important bioactivities. Hirsutenoids form a structurally diverse and distinct class of sesquiterpenoids. No genes involved in hirsutenoid biosynthesis have yet been identified or their enzymes characterized. Here, we describe the cloning and functional characterization of a hirsutene synthase as an unexpected fusion protein of a sesquiterpene synthase (STS) with a C-terminal 3-hydroxy-3-methylglutaryl-coenzyme A (3-hydroxy-3-methylglutaryl-CoA) synthase (HMGS) domain. Both the full-length fusion protein and truncated STS domain are highly product-specific 1,11-cyclizing STS enzymes with kinetic properties typical of STSs. Complementation studies in Saccharomyces cerevisiae confirmed that the HMGS domain is also functional in vivo Phylogenetic analysis shows that the hirsutene synthase domain does not form a clade with other previously characterized sesquiterpene synthases from Basidiomycota. Comparative gene structure analysis of this hirsutene synthase with characterized fungal enzymes reveals a significantly higher intron density, suggesting that this enzyme may be acquired by horizontal gene transfer. In contrast, the HMGS domain is clearly related to other fungal homologs. This STS-HMGS fusion protein is part of a biosynthetic gene cluster that includes P450s and oxidases that are expressed and could be cloned from cDNA. Finally, this unusual fusion of a terpene synthase to an HMGS domain, which is not generally recognized as a key regulatory enzyme of the mevalonate isoprenoid precursor pathway, led to the identification of additional HMGS duplications in many fungal genomes, including the localization of HMGSs in other predicted sesquiterpenoid biosynthetic gene clusters. IMPORTANCE Hirsutenoids represent a structurally diverse class of bioactive sesquiterpenoids isolated from fungi. Identification of their biosynthetic pathways will provide

  19. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.

    Science.gov (United States)

    Demissie, Zerihun A; Cella, Monica A; Sarker, Lukman S; Thompson, Travis J; Rheault, Mark R; Mahmoud, Soheil S

    2012-07-01

    Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

  20. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation

    Science.gov (United States)

    Battilana, Juri; Emanuelli, Francesco; Gambino, Giorgio; Gribaudo, Ivana; Gasperi, Flavia; Boss, Paul K.; Grando, Maria Stella

    2011-01-01

    Grape berries of Muscat cultivars (Vitis vinifera L.) contain high levels of monoterpenols and exhibit a distinct aroma related to this composition of volatiles. A structural gene of the plastidial methyl-erythritol-phosphate (MEP) pathway, 1-deoxy-D-xylulose 5-phosphate synthase (VvDXS), was recently suggested as a candidate gene for this trait, having been co-localized with a major quantitative trait locus for linalool, nerol, and geraniol concentrations in berries. In addition, a structured association study discovered a putative causal single nucleotide polymorphism (SNP) responsible for the substitution of a lysine with an asparagine at position 284 of the VvDXS protein, and this SNP was significantly associated with Muscat-flavoured varieties. The significance of this nucleotide difference was investigated by comparing the monoterpene profiles with the expression of VvDXS alleles throughout berry development in Moscato Bianco, a cultivar heterozygous for the SNP mutation. Although correlation was detected between the VvDXS transcript profile and the accumulation of free monoterpenol odorants, the modulation of VvDXS expression during berry development appears to be independent of nucleotide variation in the coding sequence. In order to assess how the non-synonymous mutation may enhance Muscat flavour, an in vitro characterization of enzyme isoforms was performed followed by in vivo overexpression of each VvDXS allele in tobacco. The results showed that the amino acid non-neutral substitution influences the enzyme kinetics by increasing the catalytic efficiency and also dramatically affects monoterpene levels in transgenic lines. These findings confirm a functional effect of the VvDXS gene polymorphism and may pave the way for metabolic engineering of terpenoid contents in grapevine. PMID:21868399

  1. Unchanged gene expression of glycogen synthase in muscle from patients with NIDDM following sulphonylurea-induced improvement of glycaemic control

    DEFF Research Database (Denmark)

    Vestergaard, H; Lund, S; Bjørbaek, C

    1995-01-01

    We have previously shown that the mRNA expression of muscle glycogen synthase is decreased in non-insulin-dependent diabetic (NIDDM) patients; the objective of the present protocol was to examine whether the gene expression of muscle glycogen synthase in NIDDM is affected by chronic sulphonylurea...... as enhanced beta-cell responses to an oral glucose load. During euglycaemic, hyperinsulinaemic clamp (2 mU x kg-1 x min-1) in combination with indirect calorimetry, a 35% (p=0.005) increase in whole-body insulin-stimulated glucose disposal rate, predominantly due to an increased non-oxidative glucose....... In conclusion, improved blood glucose control in gliclazide-treated obese NIDDM patients has no impact on the gene expression of muscle glycogen synthase....

  2. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase.

    Directory of Open Access Journals (Sweden)

    Catalina Sanz

    Full Text Available Phycomyces carRA gene encodes a protein with two domains. Domain R is characterized by red carR mutants that accumulate lycopene. Domain A is characterized by white carA mutants that do not accumulate significant amounts of carotenoids. The carRA-encoded protein was identified as the lycopene cyclase and phytoene synthase enzyme by sequence homology with other proteins. However, no direct data showing the function of this protein have been reported so far. Different Mucor circinelloides mutants altered at the phytoene synthase, the lycopene cyclase or both activities were transformed with the Phycomyces carRA gene. Fully transcribed carRA mRNA molecules were detected by Northern assays in the transformants and the correct processing of the carRA messenger was verified by RT-PCR. These results showed that Phycomyces carRA gene was correctly expressed in Mucor. Carotenoids analysis in these transformants showed the presence of ß-carotene, absent in the untransformed strains, providing functional evidence that the Phycomyces carRA gene complements the M. circinelloides mutations. Co-transformation of the carRA cDNA in E. coli with different combinations of the carotenoid structural genes from Erwinia uredovora was also performed. Newly formed carotenoids were accumulated showing that the Phycomyces CarRA protein does contain lycopene cyclase and phytoene synthase activities. The heterologous expression of the carRA gene and the functional complementation of the mentioned activities are not very efficient in E. coli. However, the simultaneous presence of both carRA and carB gene products from Phycomyces increases the efficiency of these enzymes, presumably due to an interaction mechanism.

  3. Analysis of Human Bradykinin Receptor Gene and Endothelial Nitric Oxide Synthase Gene Polymorphisms in End-Stage Renal Disease Among Malaysians

    Directory of Open Access Journals (Sweden)

    R. Vasudevan

    2014-06-01

    Full Text Available The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR polymorphism of the endothelial nitric oxide synthase (eNOS gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R in Malaysian end-stage renal disease (ESRD subjects.

  4. Expression of an (E-β-farnesene synthase gene from Asian peppermint in tobacco affected aphid infestation

    Directory of Open Access Journals (Sweden)

    Xiudao Yu

    2013-10-01

    Full Text Available Aphids are major agricultural pests that cause significant yield losses in crop plants each year. (E-β-farnesene (EβF is the main or only component of an alarm pheromone involved in chemical communication within aphid species and particularly in the avoidance of predation. EβF also occurs in the essential oil of some plant species, and is catalyzed by EβF synthase. By using oligonucleotide primers designed from the known sequence of an EβF synthase gene from black peppermint (Mentha × piperita, two cDNA sequences, MaβFS1 and MaβFS2, were isolated from Asian peppermint (Mentha asiatica. Expression pattern analysis showed that the MaβFS1 gene exhibited higher expression in flowers than in roots, stems and leaves at the transcriptional level. Overexpression of MaβFS1 in tobacco plants resulted in emission of pure EβF ranging from 2.62 to 4.85 ng d− 1 g− 1 of fresh tissue. Tritrophic interactions involving peach aphids (Myzus persicae, and predatory lacewing (Chrysopa septempunctata larvae demonstrated that transgenic tobacco expressing MaβFS1 had lower aphid infestation. This result suggested that the EβF synthase gene from Asian peppermint could be a good candidate for genetic engineering of agriculturally important crop plants.

  5. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    Science.gov (United States)

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. [Interspecific polymorphism of the glucosyltransferase domain of the sucrose synthase gene in the genus Malus and related species of Rosaceae].

    Science.gov (United States)

    Boris, K V; Kochieva, E Z; Kudryavtsev, A M

    2014-12-01

    The sequences that encode the main functional glucosyltransferase domain of sucrose synthase genes have been identified for the first time in 14 species of the genus Malus and related species of the family Rosaceae, and their polymorphism was investigated. Single nucleotide substitutions leading to amino acid substitutions in the protein sequence, including the conservative transmembrane motif sequence common to all sucrose synthase genes of higher plants, were detected in the studied sequences.

  7. IDENTIFICATION AND CHARACTERIZATION OF THE SUCROSE SYNTHASE 2 GENE (Sus2 IN DURUM WHEAT

    Directory of Open Access Journals (Sweden)

    Mariateresa eVolpicella

    2016-03-01

    Full Text Available Sucrose transport is the central system for the allocation of carbon resources in vascular plants. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, represents a key enzyme in the control of the flow of carbon into starch biosynthesis. In the present study the genomic identification and characterization of the Sus2-2A and Sus2-2B genes coding for sucrose synthase in durum wheat (cultivars Ciccio and Svevo is reported. The genes were analyzed for their expression in different tissues and at different seed maturation stages, in four tetraploid wheat genotypes (Svevo, Ciccio, Primadur and 5-BIL42. The activity of the encoded proteins was evaluated by specific activity assays on endosperm extracts and their structure established by modelling approaches. The combined results of SUS2 expression and activity levels were then considered in the light of their possible involvement in starch yield.

  8. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    Directory of Open Access Journals (Sweden)

    Bao-Qing Zhu

    2014-12-01

    Full Text Available Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer” with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes.

  9. Identification of a Plastid-Localized Bifunctional Nerolidol/Linalool Synthase in Relation to Linalool Biosynthesis in Young Grape Berries

    Science.gov (United States)

    Zhu, Bao-Qing; Cai, Jian; Wang, Zhi-Qun; Xu, Xiao-Qing; Duan, Chang-Qing; Pan, Qiu-Hong

    2014-01-01

    Monoterpenoids are a diverse class of natural products and contribute to the important varietal aroma of certain Vitis vinifera grape cultivars. Among the typical monoterpenoids, linalool exists in almost all grape varieties. A gene coding for a nerolidol/linalool (NES/LINS) synthase was evaluated in the role of linalool biosynthesis in grape berries. Enzyme activity assay of this recombinant protein revealed that it could convert geranyl diphosphate and farnesyl diphosphate into linalool and nerolidol in vitro, respectively, and thus it was named VvRILinNer. However, localization experiment showed that this enzyme was only localized to chloroplasts, which indicates that VvRILinNer functions in the linalool production in vivo. The patterns of gene expression and linalool accumulation were analyzed in the berries of three grape cultivars (“Riesling”, “Cabernet Sauvignon”, “Gewurztraminer”) with significantly different levels of monoterpenoids. The VvRILinNer was considered to be mainly responsible for the synthesis of linalool at the early developmental stage. This finding has provided us with new knowledge to uncover the complex monoterpene biosynthesis in grapes. PMID:25470020

  10. [Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.)].

    Science.gov (United States)

    Galinovskiĭ, D V; Anisimova, N V; Raĭskiĭ, A P; Leont'ev, V N; Titok, V V; Hotyleva, L V

    2014-01-01

    Four cellulose synthase genes were identified by analysis of their class-specific regions (CSRII) in plants of fiber flax during the "rapid growth" stage. These genes were designated as LusCesA1, LusCesA4, LusCesA7 and LusCesA9. LusCesA4, LusCesA7, and LusCesA9 genes were expressed in the stem; LusCesA1 and LusCesA4 genes were expressed in the apex part of plants, and the LusCesA4 gene was expressed in the leaves of fiber flax. The expression of the LusCesA7 and LusCesA9 genes was specific to the stems of fiber flax. These genes may influence the quality of the flax fiber.

  11. Heterooligomeric phosphoribosyl diphosphate synthase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne

    2004-01-01

    The yeast Saccharomyces cerevisiae contains five phosphoribosyl diphosphate (PRPP) synthase-homologous genes (PRS1-5), which specify PRPP synthase subunits 1-5. Expression of the five S. cerevisiae PRS genes individually in an Escherichia coli PRPP-less strain (Deltaprs) showed that a single PRS...

  12. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    Science.gov (United States)

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  13. Isolation and characterization of a copalyl diphosphate synthase gene promoter from Salvia miltiorrhiza

    Directory of Open Access Journals (Sweden)

    Piotr Szymczyk

    2016-09-01

    Full Text Available The promoter, 5' UTR, and 34-nt 5' fragments of protein encoding region of the Salvia miltiorrhiza copalyl diphosphate synthase gene were cloned and characterized. No tandem repeats, miRNA binding sites, or CpNpG islands were observed in the promoter, 5' UTR, or protein encoding fragments. The entire isolated promoter and 5' UTR is 2235 bp long and contains repetitions of many cis-active elements, recognized by homologous transcription factors, found in Arabidopsis thaliana and other plant species. A pyrimidine-rich fragment with only 6 non-pyrimidine bases was localized in the 33-nt stretch from nt 2185 to 2217 in the 5' UTR. The observed cis-active sequences are potential binding sites for trans-factors that could regulate spatio-temporal CPS gene expression in response to biotic and abiotic stress conditions. Obtained results are initially verified by in silico and co-expression studies based on A. thaliana microarray data. The quantitative RT-PCR analysis confirmed that the entire 2269-bp copalyl diphosphate synthase gene fragment has the promoter activity. Quantitative RT-PCR analysis was used to study changes in CPS promoter activity occurring in response to the application of four selected biotic and abiotic regulatory factors; auxin, gibberellin, salicylic acid, and high-salt concentration.

  14. Functional analysis of the cellulose synthase-like genes CSLD1, CSLD2 and CSLD4 in tip-growing arabidopsis cells

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Yoo, Cheol-Min; Mutwil, Marek

    2008-01-01

    A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from that pre......A reverse genetic approach was used to investigate the functions of three members of the cellulose synthase superfamily in Arabidopsis (Arabidopsis thaliana), CELLULOSE SYNTHASE-LIKE D1 (CSLD1), CSLD2, and CSLD4. CSLD2 is required for normal root hair growth but has a different role from...... for insertions in these genes were partially rescued by reduced temperature growth. However, this was not the case for a double mutant homozygous for insertions in both CSLD2 and CSLD3, suggesting that there may be partial redundancy in the functions of these genes. Mutants in CSLD1 and CSLD4 had a defect...

  15. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

    DEFF Research Database (Denmark)

    Schneider, Lizette Marais; Adamski, Nikolai M.; Christensen, Caspar Elo

    2016-01-01

    identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified...... alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed...... five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase...

  16. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes.

    Directory of Open Access Journals (Sweden)

    Mariela V Catone

    Full Text Available Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB, a short chain length polyhydroxyalkanoate (sclPHA infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA. All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC in comparison with the mclPHA core genome genes (phaC1 and phaC2 indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases.

  18. Development of intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase for discriminating Curcuma species.

    Science.gov (United States)

    Kita, Tomoko; Komatsu, Katsuko; Zhu, Shu; Iida, Osamu; Sugimura, Koji; Kawahara, Nobuo; Taguchi, Hiromu; Masamura, Noriya; Cai, Shao-Qing

    2016-03-01

    Various Curcuma rhizomes have been used as medicines or spices in Asia since ancient times. It is very difficult to distinguish them morphologically, especially when they are boiled and dried, which causes misidentification leading to a loss of efficacy. We developed a method for discriminating Curcuma species by intron length polymorphism markers in genes encoding diketide-CoA synthase and curcumin synthase. This method could apply to identification of not only fresh plants but also samples of crude drugs or edible spices. By applying this method to Curcuma specimens and samples, and constructing a dendrogram based on these markers, seven Curcuma species were clearly distinguishable. Moreover, Curcuma longa specimens were geographically distinguishable. On the other hand, Curcuma kwangsiensis (gl type) specimens also showed intraspecies polymorphism, which may have occurred as a result of hybridization with other Curcuma species. The molecular method we developed is a potential tool for global classification of the genus Curcuma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Metabolism of monoterpenes in cell cultures of common sage (Salvia officinalis)

    International Nuclear Information System (INIS)

    Falk, K.L.; Gershenzon, J.; Croteau, R.

    1990-01-01

    Leaves of common sage (Salvia officinalis) accumulate monoterpenes in glandular trichomes at levels exceeding 15 milligrams per gram fresh weight at maturity, whereas sage cells in suspension culture did not accumulate detectable levels of monoterpenes ( 14 C]sucrose was also virtually undetectable in this cell culture system. In vitro assay of each of the enzymes required for the sequential conversion of the ubiquitous isoprenoid precursor geranyl pyrophosphate to (+)-camphor (a major monoterpene product of sage) in soluble extracts of the cells revealed the presence of activity sufficient to produce (+)-camphor at a readily detectable level (>0.3 micrograms per gram fresh weight) at the late log phase of growth. Other monoterpene synthetic enzymes were present as well. In vivo measurement of the ability to catabolize (+)-camphor in these cells indicated that degradative capability exceeded biosynthetic capacity by at least 1,000-fold. Therefore, the lack of monoterpene accumulation in undifferentiated sage cultures could be attributed to a low level of biosynthetic activity (relative to the intact plant) coupled to a pronounced capacity for monoterpene catabolism

  20. Structural relationships and vasorelaxant activity of monoterpenes

    Directory of Open Access Journals (Sweden)

    Cardoso Lima Tamires

    2012-09-01

    Full Text Available Abstract Background and purpose of the study The hypotensive activity of the essential oil of Mentha x villosa and its main constituent, the monoterpene rotundifolone, have been reported. Therefore, our objective was to evaluate the vasorelaxant effect of monoterpenes found in medicinal plants and establish the structure-activity relationship of rotundifolone and its structural analogues on the rat superior mesenteric artery. Methods Contractions of the vessels were induced with 10 μM of phenylephine (Phe in rings with endothelium. During the tonic phase of the contraction, the monoterpenes (10-8 - 10-3, cumulatively were added to the organ bath. The extent of relaxation was expressed as the percentage of Phe-induced contraction. Results The results from the present study showed that both oxygenated terpenes (rotundifolone, (+-limonene epoxide, pulegone epoxide, carvone epoxide, and (+-pulegone and non-oxygenated terpene ((+-limonene exhibit relaxation activity. The absence of an oxygenated molecular structure was not a critical requirement for the molecule to be bioactive. Also it was found that the position of ketone and epoxide groups in the monoterpene structures influence the vasorelaxant potency and efficacy. Major conclusion The results suggest that the presence of functional groups in the chemical structure of rotundifolone is not essential for its vasorelaxant activity.

  1. Expression analysis of cellulose synthase and main cytoskeletal protein genes in flax (Linum usitatissimum L.).

    Science.gov (United States)

    Galinousky, Dmitry; Padvitski, Tsimafei; Bayer, Galina; Pirko, Yaroslav; Pydiura, Nikolay; Anisimova, Natallia; Nikitinskaya, Tatyana; Khotyleva, Liubov; Yemets, Alla; Kilchevsky, Aleksandr; Blume, Yaroslav

    2017-08-09

    Fiber flax is an important source of natural fiber and a comprehensive model for the plant fiber biogenesis studies. Cellulose-synthase (CesA) and cytoskeletal genes are known to be important for the cell wall biogenesis in general and for the biogenesis of flax fibers in particular. Currently, knowledge about activity of these genes during the plant growth is limited. In this study, we have investigated flax fiber biogenesis by measuring expression of CesA and cytoskeletal genes at two stages of the flax development (seedlings and stems at the rapid growth stage) in several flax subspecies (elongatum, mediterraneum, crepitans). RT-qPCR has been used to quantify the expression of LusСesA1, LusСesA4, LusСesA7, LusСesA6, Actin, and α-Tubulin genes in plant samples. We report that CesA genes responsible for the secondary cell wall synthesis (LusCesA4, LusCesA7) have different expression pattern compared with CesA genes responsible for the primary cell wall synthesis (LusCesA1, LusCesA6): an average expression of LusCesA4 and LusCesA7 genes is relatively high in seedlings and further increases in stems at the rapid growth stage, whereas an average expression of LusCesA1 and LusCesA6 genes decreases. Interestingly, LusCesA1 is the only studied gene with different expression dynamics between the flax subspecies: its expression decreases by 5.2-10.7 folds in elongatum and mediterraneum but does not change in crepitans subspecies when the rapid growth stage and seedlings are compared. The expression of cytoskeleton genes (coding actin and α-tubulin) is relatively stable and significantly higher than the expression of cellulose-synthase genes in all the studied samples. © 2017 International Federation for Cell Biology.

  2. Effects of salicylic acid on monoterpene production and antioxidant ...

    African Journals Online (AJOL)

    Salicylic acid (SA) plays important roles in plant defense responses. However, little is available about its effects on monoterpene responses. Therefore, monoterpene contents and antioxidant systems were measured three days after foliar application of SA with different concentrations in Houttuynia cordata. SA at low ...

  3. Is forest management a significant source of monoterpenes into the boreal atmosphere?

    Science.gov (United States)

    Haapanala, S.; Hakola, H.; Hellén, H.; Vestenius, M.; Levula, J.; Rinne, J.

    2012-04-01

    Volatile organic compounds (VOCs) including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA). The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.

  4. Is forest management a significant source of monoterpenes into the boreal atmosphere?

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2012-04-01

    Full Text Available Volatile organic compounds (VOCs including terpenoids are emitted into the atmosphere from various natural sources. Damaging the plant tissue is known to strongly increase their monoterpene release. We measured the terpenoid emissions caused by timber felling, i.e. those from stumps and logging residue. The emissions from stumps were studied using enclosures and those from the whole felling area using an ecosystem-scale micrometeorological method, disjunct eddy accumulation (DEA. The compounds analyzed were isoprene, monoterpenes and sesquiterpenes. Strong emissions of monoterpenes were measured from both the stumps and from the whole felling area. The emission rate decreased rapidly within a few months after the logging. In addition to fresh logging residue, the results suggest also other strong monoterpene sources may be present in the felling area. These could include pre-existing litter, increased microbial activity and remaining undergrowth. In order to evaluate the possible importance of monoterpenes emitted annually from cut Scots pine forests in Finland, we conducted a rough upscaling calculation. The resulting monoterpene release was approximated to be on the order of 15 kilotonnes per year, which corresponds to about one tenth of the monoterpene release from intact forests in Finland.

  5. Analysis of monoterpene hydrocarbons in rural atmospheres

    International Nuclear Information System (INIS)

    Holdren, M.W.; Westberg, H.H.; Zimmerman, P.R.

    1979-01-01

    Gas chromatographic/mass spectrometric analysis of monoterpenes from a rural forested site in the northwestern United States is described. Use of a glass capillary column provided excellent resolution of the hydrocarbons. Increased sensitivity and specificity of the mass spectrometer detector over the flame ionization detector were demonstrated for trace (parts per trillion) atmospheric hydrocarbons. As little as 10 ppt of compound was detectable in 100-cc air samples. Two analytical methods (cryogenic and solid adsorbent--Tenax-GC) were used in the collection of ambient air. Analytical results from the two techniques compared very well. Rural concentrations of the monoterpenes varied considerably depending upon location within the forest canopy. The concentration of individual species never exceeded 1 ppb of compound during a 10-month sampling period. The monoterpene total for all samples fell in the range of 0.5- to 16-ppb compound for C 10 terpene

  6. Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean.

    Science.gov (United States)

    Takagi, Kyoko; Nishizawa, Keito; Hirose, Aya; Kita, Akiko; Ishimoto, Masao

    2011-10-01

    Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α' subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.

  7. Predictors of monoterpene exposure in the Danish furniture industry.

    Science.gov (United States)

    Hagström, Katja; Jacobsen, Gitte; Sigsgaard, Torben; Schaumburg, Inger; Erlandsen, Mogens; Schlunssen, Vivi

    2012-04-01

    Individuals who work with pine in the furniture industry may be exposed to monoterpenes, the most abundant of which are α-pinene, β-pinene, and Δ(3)-carene. Monoterpenes are suspected to cause dermatitis and to harm the respiratory system. An understanding of the predictors of monoterpene exposure is therefore important in preventing these adverse effects. These predictors may include general characteristics of the work environment and specific work operations. We sought to assess the extent to which workers are exposed to monoterpenes and to identify possible predictors of monoterpene exposure in the pine furniture industry in Denmark. Passive measurements of the levels of selected monoterpenes (α-pinene, β-pinene, and Δ(3)-carene) were performed on 161 subjects from 17 pine furniture factories in Viborg County, Denmark; one sample was acquired from each worker. Additionally, wood dust samples were collected from 145 workers. Data on potential predictors of exposure were acquired over the course of the day on which the exposure measurements were recorded and could be assigned to one of four hierarchic ordered levels: worker, machine, department, and factory. In addition to univariate analyses, a mixed model was used to account for imbalances within the data and random variation with each of the hierarchically ordered levels. The geometric mean (GM) monoterpene content observed over the 161 measurements was 7.8 mg m(-3) [geometric standard deviation (GSD): 2.4]; the GM wood dust level over 145 measurements was 0.58 mg m(-3) (GSD: 1.49). None of the measured samples exceeded the occupational exposure limit for terpenes in Denmark (25 ppm, 150 mg m(-3)). In the univariate analyses, half of the predictors tested were found to be significant; the multivariate model indicated that only three of the potential predictors were significant. These were the recirculation of air in rooms used for the processing of wood (a factory level predictor), the presence of a

  8. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants

    DEFF Research Database (Denmark)

    Liepman, Aaron H; Nairn, C Joseph; Willats, William G T

    2007-01-01

    from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants......, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced...... they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall...

  9. Aldosterone synthase gene is not a major susceptibility gene for progression of chronic kidney disease in patients with autosomal dominant polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Gnanasambandan Ramanathan

    2017-01-01

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is the most common heritable kidney disease and is characterized by bilateral renal cysts. Hypertension is a frequent cause of chronic kidney disease (CKD and mortality in patients with ADPKD. The aldosterone synthase gene polymorphisms of the renin-angiotensin-aldosterone system have been extensively studied as hypertension candidate genes. The present study is aimed to investigate the potential modifier effect of CYP11B2 gene on the progression of CKD in ADPKD. One hundred and two ADPKD patients and 106 healthy controls were recruited based on Ravine inclusion and exclusion criteria. The three tag-SNPs within CYP11B2 gene (rs3802230, rs4543, and rs4544 were genotyped using FRET-based KASPar method. Cochran-Armitage trend test was used to assess the potential associations between these polymorphisms and CKD stages. Mantel- Haenszel stratified analysis was used to explore confounding and interaction effects of these polymorphisms. Of the three tag-SNPs genotyped, rs4544 polymorphism was monomorphic and rs3802230 deviated Hardy-Weinberg equilibrium. The CYP11B2 tag-SNPs did not show significant association with ADPKD or CKD. Further, these polymorphisms did not exhibit confounding effect on the relationship between CKD progression and hypertension. Our results suggest that aldosterone synthase gene is not a major susceptibility gene for progression of CKD in South Indian ADPKD patients.

  10. Association of Endothelial Nitric Oxide Synthase Gene Polymorphisms With Acute Rejection in Liver Transplant Recipients.

    Science.gov (United States)

    Azarpira, Negar; Namazi, Soha; Malahi, Sayan; Kazemi, Kourosh

    2016-06-01

    Polymorphisms of the endothelial nitric oxide synthase gene have been associated with altered endothelial nitric oxide synthase activity. The purpose of this study was to investigate the relation between endothelial nitric oxide synthase -786T/C and 894G/T polymorphism and their haplotypes on the occurrence of acute rejection episodes in liver transplant recipients. We conducted a case control study in which 100 liver transplant recipients and 100 healthy controls were recruited from Shiraz Transplant Center. The patients used triple therapy including tacrolimus, mycophenolate mofetil, and prednisolone for immunosuppression maintenance. DNA was extracted from peripheral blood and endothelial nitric oxide synthase polymorphisms were determined by polymerase chain reaction and restriction fragment length polymorphism. Patients included 60 men and 40 women (mean age, 32.35 ± 10.2 y). There was a significant association of endothelial nitric oxide synthase 894G/T and acute rejection episode. The GT* gen-otype and acute rejection episodes had a significant association (odds ratio, 2.42; 95% confidence interval, 0.97-6.15; P = .03). The GG and GT* genotype and T* allele frequency were significantly different between patients and control subjects (P = .001). Haplotype TT* was higher in recipients than control subjects (odds ratio, 2.17; 95% confidence interval, 1.12-4.25; P = .01). Haplotype TG was higher in the control group (odds ratio, 0.62; 95% confidence interval, 0.40-0.96; P = .02). Our results suggest a relation between different endothelial nitric oxide synthase geno-types and risk of acute rejection episodes. However, further study is necessary to determine genetic susceptibility for transplant patients.

  11. Complementation of the amylose-free starch mutant of potato (Solanum tuberosum.) by the gene encoding granule-bound starch synthase

    NARCIS (Netherlands)

    van der Leij, E.R.; Visser, R.G.E.; OOSTERHAVEN, K; VANDERKOP, DAM; Jacobsen, E.; Feenstra, W.

    1991-01-01

    Agrobacterium rhizogenes-mediated introduction of the wild-type allele of the gene encoding granule-bound starch synthase (GBSS) into the amylose-free starch mutant amf of potato leads to restoration of GBSS activity and amylose synthesis, which demonstrates that Amf is the structural gene for GBSS.

  12. Characterization and evolutionary analysis of ent-kaurene synthase like genes from the wild rice species Oryza rufipogon.

    Science.gov (United States)

    Toyomasu, Tomonobu; Miyamoto, Koji; Shenton, Matthew R; Sakai, Arisa; Sugawara, Chizu; Horie, Kiyotaka; Kawaide, Hiroshi; Hasegawa, Morifumi; Chuba, Masaru; Mitsuhashi, Wataru; Yamane, Hisakazu; Kurata, Nori; Okada, Kazunori

    2016-11-18

    Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  14. Cloning and Functional Characterization of a Gene for Capsanthin-Capsorubin Synthase from Tiger Lily (Lilium lancifolium Thunb. ‘Splendens’)

    OpenAIRE

    Jeknić, Zoran; Morré, Jeffrey T.; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H.H.

    2012-01-01

    The orange color of tiger lily (Lolium lancifolium ‘Splendens’) flowers is due, primarily, to the accumulation of two κ-xanthophylls, capsanthin and capsorubin. An enzyme, known as capsanthin-capsorubin synthase (CCS), catalyzes the conversion of antheraxanthin and violaxanthin into capsanthin and capsorubin, respectively. We cloned the gene for capsanthin-capsorubin synthase (Llccs) from flower tepals of L. lancifolium by the rapid amplification of cDNA ends (RACE) with a heterologous non-de...

  15. Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis.

    Science.gov (United States)

    Morehouse, Benjamin R; Kumar, Ramasamy P; Matos, Jason O; Olsen, Sarah Naomi; Entova, Sonya; Oprian, Daniel D

    2017-03-28

    Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C 10 ) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.

  16. Mutations in the dihydropteroate synthase gene of Pneumocystis jiroveci isolates from Portuguese patients with Pneumocystis pneumonia

    DEFF Research Database (Denmark)

    Costa, M C; Helweg-Larsen, J; Lundgren, Bettina

    2003-01-01

    The aim of this study was to evaluate the frequency of mutations of the P. jiroveci dihydropteroate synthase (DHPS) gene in an immunocompromised Portuguese population and to investigate the possible association between DHPS mutations and sulpha exposure. In the studied population, DHPS gene...... mutations were not significantly more frequent in patients exposed to sulpha drugs compared with patients not exposed (P=0.390). The results of this study suggest that DHPS gene mutations are frequent in the Portuguese immunocompromised population but do not seem associated with previous sulpha exposure...

  17. Cloning and Comparative Studies of Seaweed Trehalose-6-Phosphate Synthase Genes

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-07-01

    Full Text Available The full-length cDNA sequence (3219 base pairs of the trehalose-6-phosphate synthase gene of Porphyra yezoensis (PyTPS was isolated byRACE-PCR and deposited in GenBank (NCBI with the accession number AY729671. PyTPS encodes a protein of 908 amino acids before a stop codon, and has a calculated molecular mass of 101,591 Daltons. The PyTPS protein consists of a TPS domain in the N-terminus and a putative TPP domain at the C-terminus. Homology alignment for PyTPS and the TPS proteins from bacteria, yeast and higher plants indicated that the most closely related sequences to PyTPS were those from higher plants (OsTPS and AtTPS5, whereas the most distant sequence to PyTPS was from bacteria (EcOtsAB. Based on the identified sequence of the PyTPS gene, PCR primers were designed and used to amplify the TPS genes from nine other seaweed species. Sequences of the nine obtained TPS genes were deposited in GenBank (NCBI. All 10 TPS genes encoded peptides of 908 amino acids and the sequences were highly conserved both in nucleotide composition (>94% and in amino acid composition (>96%. Unlike the TPS genes from some other plants, there was no intron in any of the 10 isolated seaweed TPS genes.

  18. Bioinformatics analysis of the phytoene synthase gene in cabbage (Brassica oleracea var. capitata)

    Science.gov (United States)

    Sun, Bo; Jiang, Min; Xue, Shengling; Zheng, Aihong; Zhang, Fen; Tang, Haoru

    2018-04-01

    Phytoene Synthase (PSY) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata PSY (BocPSY) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocPSY1, BocPSY2 and BocPSY3 genes mapped to chromosomes 2,3 and 9, and contains an open reading frame of 1,248 bp, 1,266 bp and 1,275 bp that encodes a 415, 421, 424 amino acid protein, respectively. Subcellular localization predicted all BocPSY genes were in the chloroplast. The conserved domain of the BocPSY protein is PLN02632. Homology analysis indicates that the levels of identity among BocPSYs were all more than 85%, and the PSY protein is apparently conserved during plant evolution. The findings of the present study provide a molecular basis for the elucidation of PSY gene function in cabbage.

  19. Thermodynamic study of selected monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.; Rocha, M.A.A.; Santos, L.M.N.B.F.; Schröder, B.

    2013-01-01

    Roč. 60, MAY (2013), 117-125 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * pinene * vapor pressure * heat capacity * vaporization and sublimation enthalpy * ideal - gas thermodynamic Subject RIV: BJ - Thermodynamics Impact factor: 2.423, year: 2013

  20. Nicotianamine synthase overexpression positively modulates iron homeostasis-related genes in high iron rice

    Directory of Open Access Journals (Sweden)

    Meng eWang

    2013-05-01

    Full Text Available Nearly one-third of the world population, mostly women and children, suffer from iron malnutrition and its consequences, such as anemia or impaired mental development. Biofortification of rice, which is a staple crop for nearly half of the world’s population, can significantly contribute in alleviating iron deficiency. NFP rice (transgenic rice expressing nicotianamine synthase, ferritin and phytase genes has a more than six-fold increase in iron content in polished rice grains, resulting from the synergistic action of nicotianamine synthase (NAS and ferritin transgenes. We investigated iron homeostasis in NFP plants by analyzing the expression of 28 endogenous rice genes known to be involved in the homeostasis of iron and other metals, in iron-deficient and iron-sufficient conditions. RNA was collected from different tissues (roots, flag leaves, grains and at three developmental stages during grain filling. NFP plants showed increased sensitivity to iron-deficiency conditions and changes in the expression of endogenous genes involved in nicotianamine (NA metabolism, in comparison to their non-transgenic siblings. Elevated transcript levels were detected in NFP plants for several iron transporters. In contrast, expression of OsYSL2, which encodes a member of Yellow Stripe-like protein family, and a transporter of the NA-Fe(II complex was reduced in NFP plants under low iron conditions, indicating that expression of OsYSL2 is regulated by the endogenous iron status. Expression of the transgenes did not significantly affect overall iron homeostasis in NFP plants, which establishes the engineered push-pull mechanism as a suitable strategy to increase rice endosperm iron content.

  1. New zwitterionic monoterpene indole alkaloids from Uncaria rhynchophylla.

    Science.gov (United States)

    Guo, Qiang; Yang, Hongshuai; Liu, Xinyu; Si, Xiali; Liang, Hong; Tu, Pengfei; Zhang, Qingying

    2018-01-31

    Four new zwitterionic monoterpene indole alkaloids, rhynchophyllioniums A-D (1-4), together with eight known alkaloids (5-12), were isolated from the hook-bearing stems of Uncaria rhynchophylla. Their structures were elucidated by extensive spectroscopic data analysis of MS, 1D and 2D NMR, and ECD, and the zwitterionic forms and absolute configurations of 1 and 2 were unambiguously confirmed by single crystal X-ray diffraction analysis. All the isolates, including the monoterpene indole alkaloids with free C-22 carboxyl group and those with C-22 carboxyl methyl ester, were proved to be naturally coexisting in the herb by LC-MS analysis. This is the first report of monoterpene indole alkaloids that exist in the form of zwitterion. Additionally, the cytotoxic activities of all isolates against A549, HepG2, and MCF-7 cell lines are reported. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing.

    Science.gov (United States)

    Chantreau, Maxime; Chabbert, Brigitte; Billiard, Sylvain; Hawkins, Simon; Neutelings, Godfrey

    2015-12-01

    Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of 'primary cell wall' and 'secondary cell wall' flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Science.gov (United States)

    Noar, Roslyn D; Daub, Margaret E

    2016-01-01

    Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity) for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity) to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that they may encode

  4. Bioinformatics Prediction of Polyketide Synthase Gene Clusters from Mycosphaerella fijiensis.

    Directory of Open Access Journals (Sweden)

    Roslyn D Noar

    Full Text Available Mycosphaerella fijiensis, causal agent of black Sigatoka disease of banana, is a Dothideomycete fungus closely related to fungi that produce polyketides important for plant pathogenicity. We utilized the M. fijiensis genome sequence to predict PKS genes and their gene clusters and make bioinformatics predictions about the types of compounds produced by these clusters. Eight PKS gene clusters were identified in the M. fijiensis genome, placing M. fijiensis into the 23rd percentile for the number of PKS genes compared to other Dothideomycetes. Analysis of the PKS domains identified three of the PKS enzymes as non-reducing and two as highly reducing. Gene clusters contained types of genes frequently found in PKS clusters including genes encoding transporters, oxidoreductases, methyltransferases, and non-ribosomal peptide synthases. Phylogenetic analysis identified a putative PKS cluster encoding melanin biosynthesis. None of the other clusters were closely aligned with genes encoding known polyketides, however three of the PKS genes fell into clades with clusters encoding alternapyrone, fumonisin, and solanapyrone produced by Alternaria and Fusarium species. A search for homologs among available genomic sequences from 103 Dothideomycetes identified close homologs (>80% similarity for six of the PKS sequences. One of the PKS sequences was not similar (< 60% similarity to sequences in any of the 103 genomes, suggesting that it encodes a unique compound. Comparison of the M. fijiensis PKS sequences with those of two other banana pathogens, M. musicola and M. eumusae, showed that these two species have close homologs to five of the M. fijiensis PKS sequences, but three others were not found in either species. RT-PCR and RNA-Seq analysis showed that the melanin PKS cluster was down-regulated in infected banana as compared to growth in culture. Three other clusters, however were strongly upregulated during disease development in banana, suggesting that

  5. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haofei; Guenther, Alex; Gu, Dasa; Warneke, Carsten; Geron, Chris; Goldstein, Allen; Graus, Martin; Karl, Thomas; Kaser, Lisa; Misztal, Pawel; Yuan, Bin

    2017-10-01

    Isoprene and monoterpene emission rates are essential inputs for atmospheric chemistry models that simulate atmospheric oxidant and particle distributions. Process studies of the biochemical and physiological mechanisms controlling these emissions are advancing our understanding and the accuracy of model predictions but efforts to quantify regional emissions have been limited by a lack of constraints on regional distributions of ecosystem emission capacities. We used an airborne wavelet-based eddy covariance measurement technique to characterize isoprene and monoterpene fluxes with high spatial resolution during the 2013 SAS (Southeast Atmosphere Study) in the southeastern United States. The fluxes measured by direct eddy covariance were comparable to emissions independently estimated using an indirect inverse modeling approach. Isoprene emission factors based on the aircraft wavelet flux estimates for high isoprene chemotypes (e.g., oaks) were similar to the MEGAN2.1 biogenic emission model estimates for landscapes dominated by oaks. Aircraft flux measurement estimates for landscapes with fewer isoprene emitting trees (e.g., pine plantations), were about a factor of two lower than MEGAN2.1 model estimates. The tendency for high isoprene emitters in these landscapes to occur in the shaded understory, where light dependent isoprene emissions are diminished, may explain the lower than expected emissions. This result demonstrates the importance of accurately representing the vertical profile of isoprene emitting biomass in biogenic emission models. Airborne measurement-based emission factors for high monoterpene chemotypes agreed with MEGAN2.1 in landscapes dominated by pine (high monoterpene chemotype) trees but were more than a factor of three higher than model estimates for landscapes dominated by oak (relatively low monoterpene emitting) trees. This results suggests that unaccounted processes, such as floral emissions or light dependent monoterpene emissions, or

  6. Analysis of MaACS2, a stress-inducible ACC Synthase Gene in Musa acuminata AAA Group Cultivar Pisang Ambon

    Directory of Open Access Journals (Sweden)

    Resnanti Utami Handayani

    2014-07-01

    Full Text Available Ethylene has an important function in plant growth and development. Ethylene production generally increases in response to pathogen attacks and other environmental stress conditions. The synthesis of this phytohormone is regulated by two enzymes, ACC synthase (ACS and ACC oxidase (ACO. ACC synthase is encoded by a multigene that regulates the production of ACC, after which this precursor is converted into ethylene by ACO. Pisang Ambon (Musa sp. AAA group, a banana cultivar originating from Indonesia, has nine ACS genes (MaACS 1-9 and one ACO gene (MaACO. One of the banana ACS genes, MaACS2, is stress-inducible. In this research, we have investigated the expression profile of MaACS2 in the roots and leaf tissues of infected tissue culture plants. Quantification of gene expression was analyzed using Real-Time PCR (qPCR using Ma18srRNA and MaGAPDH as reference genes. The results showed nine-to ten fold higher MaACS2 expression levels in the infected roots tissues compared to the uninfected roots tissues. However, MaACS2 expression in the leaves was only detected in infected tissue.

  7. Antitumor Activity of Monoterpenes Found in Essential Oils

    Directory of Open Access Journals (Sweden)

    Marianna Vieira Sobral

    2014-01-01

    Full Text Available Cancer is a complex genetic disease that is a major public health problem worldwide, accounting for about 7 million deaths each year. Many anticancer drugs currently used clinically have been isolated from plant species or are based on such substances. Accumulating data has revealed anticancer activity in plant-derived monoterpenes. In this review the antitumor activity of 37 monoterpenes found in essential oils is discussed. Chemical structures, experimental models, and mechanisms of action for bioactive substances are presented.

  8. De novo assembly of Eugenia uniflora L. transcriptome and identification of genes from the terpenoid biosynthesis pathway.

    Science.gov (United States)

    Guzman, Frank; Kulcheski, Franceli Rodrigues; Turchetto-Zolet, Andreia Carina; Margis, Rogerio

    2014-12-01

    Pitanga (Eugenia uniflora L.) is a member of the Myrtaceae family and is of particular interest due to its medicinal properties that are attributed to specialized metabolites with known biological activities. Among these molecules, terpenoids are the most abundant in essential oils that are found in the leaves and represent compounds with potential pharmacological benefits. The terpene diversity observed in Myrtaceae is determined by the activity of different members of the terpene synthase and oxidosqualene cyclase families. Therefore, the aim of this study was to perform a de novo assembly of transcripts from E. uniflora leaves and to annotation to identify the genes potentially involved in the terpenoid biosynthesis pathway and terpene diversity. In total, 72,742 unigenes with a mean length of 1048bp were identified. Of these, 43,631 and 36,289 were annotated with the NCBI non-redundant protein and Swiss-Prot databases, respectively. The gene ontology categorized the sequences into 53 functional groups. A metabolic pathway analysis with KEGG revealed 8,625 unigenes assigned to 141 metabolic pathways and 40 unigenes predicted to be associated with the biosynthesis of terpenoids. Furthermore, we identified four putative full-length terpene synthase genes involved in sesquiterpenes and monoterpenes biosynthesis, and three putative full-length oxidosqualene cyclase genes involved in the triterpenes biosynthesis. The expression of these genes was validated in different E. uniflora tissues. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between Old World and New World fruit bats (Order: Chiroptera).

    Science.gov (United States)

    Fang, Lu; Shen, Bin; Irwin, David M; Zhang, Shuyi

    2014-10-01

    Glycogen synthase, which catalyzes the synthesis of glycogen, is especially important for Old World (Pteropodidae) and New World (Phyllostomidae) fruit bats that ingest high-carbohydrate diets. Glycogen synthase 1, encoded by the Gys1 gene, is the glycogen synthase isozyme that functions in muscles. To determine whether Gys1 has undergone adaptive evolution in bats with carbohydrate-rich diets, in comparison to insect-eating sister bat taxa, we sequenced the coding region of the Gys1 gene from 10 species of bats, including two Old World fruit bats (Pteropodidae) and a New World fruit bat (Phyllostomidae). Our results show no evidence for positive selection in the Gys1 coding sequence on the ancestral Old World and the New World Artibeus lituratus branches. Tests for convergent evolution indicated convergence of the sequences and one parallel amino acid substitution (T395A) was detected on these branches, which was likely driven by natural selection.

  10. Do monoterpenes released from feverfew (Tanacetum parthenium) plants cause airborne Compositae dermatitis?

    DEFF Research Database (Denmark)

    Paulsen, E.; Christensen, Lars Porskjær; Andersen, K.E.

    2002-01-01

    The Compositae plant feverfew (Tanacetum parthenium) is an important sensitizer in Europe and has been suspected of causing airborne Compositae dermatitis. A previous investigation of substances emitted from feverfew plants detected no sesquiterpene lactones, however, but mainly monoterpenes...... airborne dermatitis, mimicking photosensitivity, and the disappearance of symptoms upon removal of feverfew plants suggest monoterpenes as a possible contributing factor. Similar associations between doubtful positive monoterpene reactions and clinical patterns, fragrance/colophonium allergy and relevance...

  11. Synthesis of monoterpene piperidines from the iridoid glucoside antirrhinoside

    DEFF Research Database (Denmark)

    Franzyk, Henrik; Frederiksen, Signe Maria; Jensen, Søren Rosendal

    1997-01-01

    Synthesis of five novel piperidine monoterpene alkaloids using the iridoid glucoside antirrhinoside as a synthon is described. Two strategies for their preparation were investigated: the first possible pathway involved an intermediate diol from which the piperidine ring was expected to be constru......Synthesis of five novel piperidine monoterpene alkaloids using the iridoid glucoside antirrhinoside as a synthon is described. Two strategies for their preparation were investigated: the first possible pathway involved an intermediate diol from which the piperidine ring was expected...... to be constructed via reaction of its ditosylate with an amine; the second strategy involved a double reductive amination as the key step to the piperidine ring, which proved successful. The stereochemistry of C-5 and C-9 in the obtained piperidine monoterpenes was the same as that reported for alfa...

  12. Dynamics of Monoterpene Formation in Spike Lavender Plants

    Directory of Open Access Journals (Sweden)

    Isabel Mendoza-Poudereux

    2017-12-01

    Full Text Available The metabolic cross-talk between the mevalonate (MVA and the methylerythritol phosphate (MEP pathways was analyzed in spike lavender (Lavandula latifolia Med on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR, the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP and dimethylallyl diphosphate (DMAPP of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.

  13. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA)

    Science.gov (United States)

    Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C.

    2011-01-01

    Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA). Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the ongoing monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ?? 0.21 ppbv, a factor of 93 % above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km-2 h -1 compared to an estimated clear weather rate of 116 to 193 g km-2 h-1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols. ?? 2011 Author(s).

  14. Differential accumulation of β-carotene and tissue specific expression of phytoene synthase (MaPsy) gene in banana (Musa sp) cultivars.

    Science.gov (United States)

    Dhandapani, R; Singh, V P; Arora, A; Bhattacharya, R C; Rajendran, Ambika

    2017-12-01

    An experiment was conducted with twelve major Indian banana cultivars to investigate the molecular relationship between the differential accumulation of β-carotene in peel and pulp of the banana fruit and carotenoid biosynthetic pathway genes. The high performance liquid chromatography showed that all banana cultivars accumulated two-three fold more β-carotene in non-edible portion of the banana fruit. However, Nendran , a famous orange fleshed cultivar of South India, had high β-carotene content (1362 µg/100 g) in edible pulp. The gene encoding Musa accuminata phytoene synthase ( MaPsy ) was successfully amplified using a pair of degenerate primers designed from Oncidium orchid. The deduced amino acid sequences shared a high level of identity to phytoene synthase gene from other plants. Gene expression analysis confirmed the presence of two isoforms ( MaPsy1 and MaPsy2 ) of MaPsy gene in banana fruits. Presence of two isoforms of MaPsy gene in peel and one in pulp confirmed the differential accumulation of β-carotene in banana fruits. However, Nendran accumulated more β-carotene in edible pulp due to presence of both the isoforms of MaPsy gene. Thus, carotenoid accumulation is a tissue specific process strongly dependent on differential expression pattern of two isoforms of MaPsy gene in banana.

  15. Potential contribution of exposed resin to ecosystem emissions of monoterpenes

    Science.gov (United States)

    Eller, Allyson S. D.; Harley, Peter; Monson, Russell K.

    2013-10-01

    Conifers, especially pines, produce and store under pressure monoterpene-laden resin in canals located throughout the plant. When the plants are damaged and resin canals punctured, the resin is exuded and the monoterpenes are released into the atmosphere, a process that has been shown to influence ecosystem-level monoterpene emissions. Less attention has been paid to the small amounts of resin that are exuded from branches, expanding needles, developing pollen cones, and terminal buds in the absence of any damage. The goal of this study was to provide the first estimate of the potential of this naturally-exposed resin to influence emissions of monoterpenes from ponderosa pine (Pinus ponderosa) ecosystems. When resin is first exuded as small spherical beads from undamaged tissues it emits monoterpenes to the atmosphere at a rate that is four orders of magnitude greater than needle tissue with an equivalent exposed surface area and the emissions from exuded beads decline exponentially as the resin dries. We made measurements of resin beads on the branches of ponderosa pine trees in the middle of the growing season and found, on average, 0.15 cm2 of exposed resin bead surface area and 1250 cm2 of total needle surface area per branch tip. If the resin emerged over the course of 10 days, resin emissions would make up 10% of the ecosystem emissions each day. Since we only accounted for exposed resin at a single point in time, this is probably an underestimate of how much total resin is exuded from undamaged pine tissues over the course of a growing season. Our observations, however, reveal the importance of this previously unrecognized source of monoterpenes emitted from pine forests and its potential to influence regional atmospheric chemistry dynamics.

  16. The Antigerminative Activity of Twenty-Seven Monoterpenes

    Directory of Open Access Journals (Sweden)

    Laura De Martino

    2010-09-01

    Full Text Available Monoterpenes, the main constituents of essential oils, are known for their many biological activities. The present work studied the potential biological activity of twenty-seven monoterpenes, including monoterpene hydrocarbons and oxygenated ones, against seed germination and subsequent primary radicle growth of Raphanus sativus L. (radish and Lepidium sativum L. (garden cress, under laboratory conditions. The compounds, belonging to different chemical classes, showed different potency in affecting both parameters evaluated. The assayed compounds demonstrated a good inhibitory activity in a dose-dependent way. In general, radish seed is more sensitive than garden cress and its germination appeares more inhibited by alcohols; at the highest concentration tested, the more active substances were geraniol, borneol, (±-β-citronellol and α-terpineol. Geraniol and carvone inhibited, in a significant way, the germination of garden cress, at the highest concentration tested. Radicle elongation of two test species was inhibited mainly by alcohols and ketones. Carvone inhibited the radicle elongation of both seeds, at almost all concentrations assayed, while 1,8-cineole inhibited their radicle elongation at the lowest concentrations (10−5 M, 10−6 M.

  17. Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests.

    Science.gov (United States)

    Yu, Haofei; Guenther, Alex; Gu, Dasa; Warneke, Carsten; Geron, Chris; Goldstein, Allen; Graus, Martin; Karl, Thomas; Kaser, Lisa; Misztal, Pawel; Yuan, Bin

    2017-10-01

    Isoprene and monoterpene emission rates are essential inputs for atmospheric chemistry models that simulate atmospheric oxidant and particle distributions. Process studies of the biochemical and physiological mechanisms controlling these emissions are advancing our understanding and the accuracy of model predictions but efforts to quantify regional emissions have been limited by a lack of constraints on regional distributions of ecosystem emission capacities. We used an airborne wavelet-based eddy covariance measurement technique to characterize isoprene and monoterpene fluxes with high spatial resolution during the 2013 SAS (Southeast Atmosphere Study) in the southeastern United States. The fluxes measured by direct eddy covariance were comparable to emissions independently estimated using an indirect inverse modeling approach. Isoprene emission factors based on the aircraft wavelet flux estimates for high isoprene chemotypes (e.g., oaks) were similar to the MEGAN2.1 biogenic emission model estimates for landscapes dominated by oaks. Aircraft flux measurement estimates for landscapes with fewer isoprene emitting trees (e.g., pine plantations), were about a factor of two lower than MEGAN2.1 model estimates. The tendency for high isoprene emitters in these landscapes to occur in the shaded understory, where light dependent isoprene emissions are diminished, may explain the lower than expected emissions. This result demonstrates the importance of accurately representing the vertical profile of isoprene emitting biomass in biogenic emission models. Airborne measurement-based emission factors for high monoterpene chemotypes agreed with MEGAN2.1 in landscapes dominated by pine (high monoterpene chemotype) trees but were more than a factor of three higher than model estimates for landscapes dominated by oak (relatively low monoterpene emitting) trees. This results suggests that unaccounted processes, such as floral emissions or light dependent monoterpene emissions, or

  18. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA

    Directory of Open Access Journals (Sweden)

    K. B. Haase

    2011-11-01

    Full Text Available Monoterpenes are an important class of biogenic hydrocarbons that influence ambient air quality and are a principle source of secondary organic aerosol (SOA. Emitted from vegetation, monoterpenes are a product of photosynthesis and act as a response to a variety of environmental factors. Most parameterizations of monoterpene emissions are based on clear weather models that do not take into account episodic conditions that can drastically change production and release rates into the atmosphere. Here, the monoterpene dataset from the rural Thompson Farm measurement site in Durham, New Hampshire is examined in the context of a set of known severe storm events. While some storm systems had a negligible influence on ambient monoterpene mixing ratios, the average storm event increased mixing ratios by 0.59 ± 0.21 ppbv, a factor of 93% above pre-storm levels. In some events, mixing ratios reached the 10's of ppbv range and persisted overnight. These mixing ratios correspond to increases in the monoterpene emission rate, ranging from 120 to 1240 g km−2 h−1 compared to an estimated clear weather rate of 116 to 193 g km−2 h−1. Considering the regularity of storm events over most forested areas, this could be an important factor to consider when modeling global monoterpene emissions and their resulting influence on the formation of organic aerosols.

  19. Cloning and characterization of novel methylsalicylic acid synthase gene involved in the biosynthesis of isoasperlactone and asperlactone in Aspergillus westerdijkiae

    International Nuclear Information System (INIS)

    Bacha, N.; Dao, H.P.; Mathieu, F.; Liboz, T.; Lebrihi, A.; Atoui, A.; O'Callaghan, J.; Dobson, A.D.W.; Puel, O.

    2008-01-01

    Aspergillus westerdijkiae is the main producer of several biologically active polyketide metabolites including isoasperlactone and asperlactone. A 5298 bp polyketide synthase gene ''aomsas'' has been cloned in Aspergillus westerdijkiae by using gene walking approach and RACE-PCR. The predicted amino acid sequence of aomsas shows an identity of 40-56% with different methylsalicylic acid synthase genes found in Byssochlamys nivea, P. patulum, A. terreus and Streptomyces viridochromogenes. Based on the reverse transcription PCR and kinetic secondary metabolites production studies, aomsas expression was found to be associated with the biosynthesis of isoasperlactone and asperlactone. Moreover an aomsas knockout mutant ''aomsas'' of A. westerdijkiae, not only lost the capacity to produce isoasperlactone and asperlactone, but also 6-methylsalicylic acid. The genetically complemented mutant aomsas restored the biosynthesis of all the missing metabolites. Chemical complementation through the addition of 6-methylsalicylic acid, aspyrone and diepoxide to growing culture of aomsas mutant revealed that these compounds play intermediate roles in the biosynthesis of asperlactone and isoasperlactone. (author)

  20. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts

    Directory of Open Access Journals (Sweden)

    Diogo Miron

    Full Text Available Dermatomycosis causes highly frequent dermal lesions, and volatile oils have been proven to be promising as antifungal agents. The antifungal activity of geraniol, nerol, citral, neral and geranial (monoterpenes, and terbinafine and anidulafungin (control drugs against seven opportunistic pathogenic yeasts and four dermatophyte species was evaluated by the Clinical and Laboratory Standards Institute microdilution tests. Monoterpenes were more active against dermatophytes than yeasts (geometric mean of minimal inhibitory concentration (GMIC of 34.5 and 100.4 µg.ml-1, respectively. Trichophyton rubrum was the fungal species most sensitive to monoterpenes (GMIC of 22.9 µg.ml-1. The trans isomers showed higher antifungal activity than the cis. The mechanism of action was investigated evaluating damage in the fungal cell wall (Sorbitol Protection Assay and in the cell membrane (Ergosterol Affinity Assay. No changes were observed in the MIC of monoterpenes in the sorbitol protection assay.The MIC of citral and geraniol was increased from 32 to 160 µg.ml-1 when the exogenous ergosterol concentrations was zero and 250 µg.ml-1, respectively. The monoterpenes showed an affinity for ergosterol relating their mechanism of action to cell membrane destabilization.

  1. Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation

    NARCIS (Netherlands)

    Merkulov, S.; Assema, van F.; Springer, J.; Carmen, del A.F.; Mooibroek, H.

    2000-01-01

    The squalene synthase (SQS) gene encodes a key regulatory enzyme, farnesyl-diphosphate farnesyltransferase (EC 2.5.1.21), in sterol biosynthesis. The SQS1 gene was isolated from a subgenomic library of the industrially important yeast Yarrowia lipolytica, using PCR-generated probes. Probes were

  2. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants

    DEFF Research Database (Denmark)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna Maritta

    2016-01-01

    test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During...... 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C mg-2 yrg-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene...

  3. Detection of the enzymatically-active polyhydroxyalkanoate synthase subunit gene, phaC, in cyanobacteria via colony PCR.

    Science.gov (United States)

    Lane, Courtney E; Benton, Michael G

    2015-12-01

    A colony PCR-based assay was developed to rapidly determine if a cyanobacterium of interest contains the requisite genetic material, the PHA synthase PhaC subunit, to produce polyhydroxyalkanoates (PHAs). The test is both high throughput and robust, owing to an extensive sequence analysis of cyanobacteria PHA synthases. The assay uses a single detection primer set and a single reaction condition across multiple cyanobacteria strains to produce an easily detectable positive result - amplification via PCR as evidenced by a band in electrophoresis. In order to demonstrate the potential of the presence of phaC as an indicator of a cyanobacteria's PHA accumulation capabilities, the ability to produce PHA was assessed for five cyanobacteria with a traditional in vivo PHA granule staining using an oxazine dye. The confirmed in vivo staining results were then compared to the PCR-based assay results and found to be in agreement. The colony PCR assay was capable of successfully detecting the phaC gene in all six of the diverse cyanobacteria tested which possessed the gene, while exhibiting no undesired product formation across the nine total cyanobacteria strains tested. The colony PCR quick prep provides sufficient usable DNA template such that this assay could be readily expanded to assess multiple genes of interest simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  5. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    Science.gov (United States)

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  6. A Polyketide Synthase Encoded by the Gene An15g07920 Is Involved in the Biosynthesis of Ochratoxin A in Aspergillus niger.

    Science.gov (United States)

    Zhang, Jian; Zhu, Liuyang; Chen, Haoyu; Li, Min; Zhu, Xiaojuan; Gao, Qiang; Wang, Depei; Zhang, Ying

    2016-12-28

    The polyketide synthase gene An15g07920 was known in Aspergillus niger CBS 513.88 as putatively involved in the production of ochratoxin A (OTA). Genome resequencing analysis revealed that the gene An15g07920 is also present in the ochratoxin-producing A. niger strain 1062. Disruption of An15g07920 in A. niger 1062 removed its capacity to biosynthesize ochratoxin β (OTβ), ochratoxin α (OTα), and OTA. These results indicate that the polyketide synthase encoded by An15g07920 is a crucial player in the biosynthesis of OTA, in the pathway prior to the phenylalanine ligation step. The gene An15g07920 reached its maximum transcription level before OTA accumulation reached its highest level, confirming that gene transcription precedes OTA production. These findings will not only help explain the mechanism of OTA production in A. niger but also provide necessary information for the development of effective diagnostic, preventive, and control strategies to reduce the risk of OTA contamination in foods.

  7. Thermodynamic study of selected monoterpenes II

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.

    2014-01-01

    Roč. 79, Dec (2014), 272-279 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  8. Thermodynamic study of selected monoterpenes III

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Červinka, C.

    2014-01-01

    Roč. 79, Dec (2014), 280-289 ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : monoterpenes * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization and sublimation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  9. Amplification and diversity analysis of keto synthase domains of putative polyketide synthase genes in Aspergillus ochraceus and Aspergillus carbonarius producers of ochratoxin A

    International Nuclear Information System (INIS)

    Atoui, A.; Phong Dao, H.; Mathieu, F.; Lebrihi, A.

    2006-01-01

    The diversity of polyketide synthase (PKS) genes in Aspergillus ochraceus NRRL 3174 and Aspergil- lus carbonarius 2Mu134 has been investigated using different primer pairs previously developed for the ketosynthase (KS) domain of fungal PKSs. Nine different KS domain sequences in A. ochraceus NRRL 3174 as well as five different KS domain sequences in A. carbonarius 2Mu134 have been identified. The identified KS fragments were distributed in five different clusters on the phylogenetic tree, indicating that they most probably represent PKSs responsible for different functions. (author)

  10. Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat.

    Science.gov (United States)

    Bonneau, Julien; Baumann, Ute; Beasley, Jesse; Li, Yuan; Johnson, Alexander A T

    2016-12-01

    Nicotianamine (NA) is a non-protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S-adenosyl-L-methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up-regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Deletion of a Chitin Synthase Gene in a Citric Acid Producing Strain of Aspergillus niger

    Energy Technology Data Exchange (ETDEWEB)

    Rinker, Torri E.; Baker, Scott E.

    2007-01-29

    Citric acid production by the filamentous fungus Aspergillus niger is carried out in a process that causes the organism to drastically alter its morphology. This altered morphology includes hyphal swelling and highly limited polar growth resulting in clumps of swollen cells that eventually aggregate into pellets of approximately 100 microns in diameter. In this pelleted form, A. niger has increased citric acid production as compared to growth in filamentous form. Chitin is a crucial component of the cell wall of filamentous fungi. Alterations in the deposition or production of chitin may have profound effects on the morphology of the organism. In order to study the role of chitin synthesis in pellet formation we have deleted a chitin synthase gene (csmA) in Aspergillus niger strain ATCC 11414 using a PCR based deletion construct. This class of chitin synthases is only found in filamentous fungi and is not present in yeasts. The csmA genes contain a myosin motor domain at the N-terminus and a chitin synthesis domain at the C-terminus. They are believed to contribute to the specialized polar growth observed in filamentous fungi that is lacking in yeasts. The csmA deletion strain (csmAΔ) was subjected to minimal media with and without osmotic stabilizers as well as tested in citric acid production media. Without osmotic stabilizers, the mutant germlings were abnormally swollen, primarily in the subapical regions, and contained large vacuoles. However, this swelling is ultimately not inhibitory to growth as the germlings are able to recover and undergo polar growth. Colony formation was largely unaffected in the absence of osmotic stabilizers. In citric acid production media csmAΔ was observed to have a 2.5 fold increase in citric acid production. The controlled expression of this class of chitin synthases may be useful for improving production of organic acids in filamentous fungi.

  12. Endothelial nitric oxide synthase gene haplotypes and diabetic nephropathy among Asian Indians

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Ahuja, Monica; Rai, Taranjit Singh

    2008-01-01

    of the constitutive endothelial nitric oxide synthase gene (eNOS) polymorphisms with type 2 diabetic nephropathy. We genotyped three polymorphisms of eNOS (Two SNPs: -786T > C, 894G > T and one 27-bp repeat polymorphism in Intron 4 (27VNTR)) in type 2 diabetic nephropathy patients (cases: n = 195) and type 2 diabetic...... without nephropathy (controls: n = 255), using validated PCR-RFLP assays. We measured serum NO levels in these subjects and examined its correlation with diabetic nephropathy and eNOS genotypes. The frequency of CC (-786T > C), TT (894G > T) and aa genotypes (27VNTR) were significantly higher in diabetic...

  13. Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize

    OpenAIRE

    Zhou, Xiaojin; Li, Suzhen; Zhao, Qianqian; Liu, Xiaoqing; Zhang, Shaojun; Sun, Cheng; Fan, Yunliu; Zhang, Chunyi; Chen, Rumei

    2013-01-01

    Background Nicotianamine (NA), a ubiquitous molecule in plants, is an important metal ion chelator and the main precursor for phytosiderophores biosynthesis. Considerable progress has been achieved in cloning and characterizing the functions of nicotianamine synthase (NAS) in plants including barley, Arabidopsis and rice. Maize is not only an important cereal crop, but also a model plant for genetics and evolutionary study. The genome sequencing of maize was completed, and many gene families ...

  14. Overexpression of the homologous lanosterol synthase gene in ganoderic acid biosynthesis in Ganoderma lingzhi.

    Science.gov (United States)

    Zhang, De-Huai; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-02-01

    Ganoderic acids (GAs) in Ganoderma lingzhi exhibit anticancer and antimetastatic activities. GA yields can be potentially improved by manipulating G. lingzhi through genetic engineering. In this study, a putative lanosterol synthase (LS) gene was cloned and overexpressed in G. lingzhi. Results showed that its overexpression (OE) increased the ganoderic acid (GA) content and the accumulation of lanosterol and ergosterol in a submerged G. lingzhi culture. The maximum contents of GA-O, GA-Mk, GA-T, GA-S, GA-Mf, and GA-Me in transgenic strains were 46.6 ± 4.8, 24.3 ± 3.5, 69.8 ± 8.2, 28.9 ± 1.4, 15.4 ± 1.2, and 26.7 ± 3.1 μg/100 mg dry weight, respectively, these values being 6.1-, 2.2-, 3.2-, 4.8-, 2.0-, and 1.9-times higher than those in wild-type strains. In addition, accumulated amounts of lanosterol and ergosterol in transgenic strains were 2.3 and 1.4-fold higher than those in the control strains, respectively. The transcription level of LS was also increased by more than five times in the presence of the G. lingzhi glyceraldehyde-3-phosphate dehydrogenase gene promoter, whereas transcription levels of 3-hydroxy-3-methylglutaryl coenzyme A enzyme and squalene synthase did not change significantly in transgenic strains. This study demonstrated that OE of the homologous LS gene can enhance lanosterol accumulation. A large precursor supply promotes GA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-10-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.

  16. Nitric oxide synthase, calcitonin gene-related peptide and NK-1 receptor mechanisms are involved in GTN-induced neuronal activation

    DEFF Research Database (Denmark)

    Ramachandran, Roshni; Bhatt, Deepak Kumar; Ploug, Kenneth Beri

    2014-01-01

    BACKGROUND AND AIM: Infusion of glyceryltrinitrate (GTN), a nitric oxide (NO) donor, in awake, freely moving rats closely mimics a universally accepted human model of migraine and responds to sumatriptan treatment. Here we analyse the effect of nitric oxide synthase (NOS) and calcitonin gene-rela...

  17. Mitochondrially-Encoded Adenosine Triphosphate Synthase 6 Gene Haplotype Variation among World Population during 2003-2013

    OpenAIRE

    Steven Steven; Yoni F Syukriani; Julius B Dewanto

    2016-01-01

    Background: Adaptation and natural selection serve as an important part of evolution. Adaptation in molecular level can lead to genetic drift which causes mutation of genetic material; one of which is polymorphism of mitochondrial DNA (mtDNA). The aim of this study is to verify the polymorphism of mitochondrially-encoded Adenosine Triphosphate synthase6gene (MT-ATP6) as one of mtDNA building blocks among tropic, sub-tropic, and polar areas. Methods: This descriptive quantitative research used...

  18. Process-based modelling of biogenic monoterpene emissions combining production and release from storage

    NARCIS (Netherlands)

    Schurgers, G.; Arneth, A.; Holzinger, R.|info:eu-repo/dai/nl/337989338; Goldstein, A.H.

    2009-01-01

    Monoterpenes, primarily emitted by terrestrial vegetation, can influence atmospheric ozone chemistry, and can form precursors for secondary organic aerosol. The short-term emissions of monoterpenes have been well studied and understood, but their long-term variability, which is particularly

  19. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

    Science.gov (United States)

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-03-09

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of Pennisetum species.

    Science.gov (United States)

    Li, H C; Lu, H B; Yang, F Y; Liu, S J; Bai, C J; Zhang, Y W

    2015-03-31

    Sucrose phosphate synthase (SPS) is an enzyme used by higher plants for sucrose synthesis. In this study, three primer sets were designed on the basis of known SPS sequences from maize (GenBank: NM_001112224.1) and sugarcane (GenBank: JN584485.1), and five novel SPS genes were identified by RT-PCR from the genomes of Pennisetum spp (the hybrid P. americanum x P. purpureum, P. purpureum Schum., P. purpureum Schum. cv. Red, P. purpureum Schum. cv. Taiwan, and P. purpureum Schum. cv. Mott). The cloned sequences showed 99.9% identity and 80-88% similarity to the SPS sequences of other plants. The SPS gene of hybrid Pennisetum had one nucleotide and four amino acid polymorphisms compared to the other four germplasms, and cluster analysis was performed to assess genetic diversity in this species. Additional characterization of the SPS gene product can potentially allow Pennisetum to be exploited as a biofuel source.

  1. In vitro analysis of radioprotective effect of monoterpenes

    International Nuclear Information System (INIS)

    Ken-ichi Kudo; Tadashi Hanafusa; Toshiro Ono

    2017-01-01

    Monoterpenes are naturally occurring hydrocarbons composed of two units of isoprenes. They exhibit antioxidant activity to scavenge reactive oxygen species, such as hydroxyl radicals. We investigated the potential of monoterpenes such as thymol, linalool, and menthol to act as radioprotectants. The proliferation of EL4 cells, a mouse lymphoma cell line, treated with linalool at a concentration of 500 μM or more was not affected by X-ray irradiation. Plasmid-nicking assay performed using formamidopyrimidine-DNA glycosylase showed that linalool prevented single strand breaks and oxidized purines on pUC19 plasmid DNA. These findings indicate that linalool has the ability to scavenge reactive oxygen species and is a potential radioprotector. (author)

  2. Simple proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site

    Directory of Open Access Journals (Sweden)

    J. Kontkanen

    2016-10-01

    Full Text Available The oxidation products of monoterpenes likely have a crucial role in the formation and growth of aerosol particles in boreal forests. However, the continuous measurements of monoterpene concentrations are usually not available on decadal timescales, and the direct measurements of the concentrations of monoterpene oxidation product have so far been scarce. In this study we developed proxies for the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, southern Finland. For deriving the proxies we used the monoterpene concentration measured with a proton transfer reaction mass spectrometer (PTR-MS during 2006–2013. Our proxies for the monoterpene concentration take into account the temperature-controlled emissions from the forest ecosystem, the dilution caused by the mixing within the boundary layer and different oxidation processes. All the versions of our proxies captured the seasonal variation of the monoterpene concentration, the typical proxy-to-measurements ratios being between 0.8 and 1.3 in summer and between 0.6 and 2.6 in winter. In addition, the proxies were able to describe the diurnal variation of the monoterpene concentration rather well, especially in summer months. By utilizing one of the proxies, we calculated the concentration of oxidation products of monoterpenes by considering their production in the oxidation and their loss due to condensation on aerosol particles. The concentration of oxidation products was found to have a clear seasonal cycle, with a maximum in summer and a minimum in winter. The concentration of oxidation products was lowest in the morning or around noon and highest in the evening. In the future, our proxies for the monoterpene concentration and their oxidation products can be used, for example, in the analysis of new particle formation and growth in boreal environments.

  3. Molecular cloning and expression of Chimonanthus praecox farnesyl pyrophosphate synthase gene and its possible involvement in the biosynthesis of floral volatile sesquiterpenoids.

    Science.gov (United States)

    Xiang, Lin; Zhao, Kaige; Chen, Longqing

    2010-01-01

    Farnesyl pyrophosphate (FPP) synthase catalyzes the biosynthesis of FPP, which is the precursors of sesquiterpenoids such as floral scent volatiles, from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). cDNA encoding wintersweet (Chimonanthus praecox L.) FPP synthase was isolated by the RT-PCR and RACE methods. The deduced amino acid sequence showed a high identity to plant FPP synthases. Expression of the gene in Escherichia coli yielded FPPS activity that catalyzed the synthesis of FPP as a main product. Tissue-specific and developmental analyses of the mRNA levels of CpFPPS and volatile sesquiterpenoids levels in C. praecox flowers revealed that the FPPS may play a regulatory role in floral volatile sesquiterpenoids of wintersweet. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  4. Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*

    Science.gov (United States)

    Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying

    2012-01-01

    To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043

  5. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    Science.gov (United States)

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-04-11

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  6. The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora.

    Science.gov (United States)

    Schindler, Daniel; Nowrousian, Minou

    2014-07-01

    Filamentous ascomycetes have long been known as producers of a variety of secondary metabolites, many of which have toxic effects on other organisms. However, the role of these metabolites in the biology of the fungi that produce them remains in most cases enigmatic. A major group of fungal secondary metabolites are polyketides. They are chemically diverse, but have in common that their chemical scaffolds are synthesized by polyketide synthases (PKSs). In a previous study, we analyzed development-dependent expression of pks genes in the filamentous ascomycete Sordaria macrospora. Here, we show that a deletion mutant of the pks4 gene is sterile, producing only protoperithecia but no mature perithecia, whereas overexpression of pks4 leads to enlarged, malformed fruiting bodies. Thus, correct expression levels of pks4 are essential for wild type-like perithecia formation. The predicted PKS4 protein has a domain structure that is similar to homologs in other fungi, but conserved residues of a methyl transferase domain present in other fungi are mutated in PKS4. Expression of several developmental genes is misregulated in the pks4 mutant. Surprisingly, the development-associated app gene is not downregulated in the mutant, in contrast to all other previously studied mutants with a block at the protoperithecial stage. Our data show that the polyketide synthase gene pks4 is essential for sexual development and plays a role in regulating fruiting body morphology. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Monoterpene ‘thermometer’ of tropical forest-atmosphere response to climate warming

    OpenAIRE

    Jardine, KJ; Jardine, AB; Holm, JA; Lombardozzi, DL; Negron-Juarez, RI; Martin, ST; Beller, HR; Gimenez, BO; Higuchi, N; Chambers, JQ

    2017-01-01

    © 2016 John Wiley & Sons Ltd Tropical forests absorb large amounts of atmospheric CO 2 through photosynthesis but elevated temperatures suppress this absorption and promote monoterpene emissions. Using 13 CO 2 labeling, here we show that monoterpene emissions from tropical leaves derive from recent photosynthesis and demonstrate distinct temperature optima for five groups (Groups 1–5), potentially corresponding to different enzymatic temperature-dependent reaction mechanisms within β-ocimen...

  8. Local and regional variation in the monoterpenes of ponderosa pine wood oleoresin

    Science.gov (United States)

    R.H. Smith; R.L. Peloquin; P.C. Passof

    1969-01-01

    A gas chromatographic analysis of the mono-terpenes of 927 ponderosa pines, representing to some degree a major portion of the species' range, showed considerable local and regional diversity in composition. Five major monoterpenes— α-pinene, β-pinene, 3-carene, myrcene, and limonene—were analyzed. There is some evidence to support the...

  9. Inhibition of the NorA multi-drug transporter by oxygenated monoterpenes.

    Science.gov (United States)

    Coêlho, Mayara Ladeira; Ferreira, Josie Haydée Lima; de Siqueira Júnior, José Pinto; Kaatz, Glenn W; Barreto, Humberto Medeiros; de Carvalho Melo Cavalcante, Ana Amélia

    2016-10-01

    The aim of this study was to investigate intrinsic antimicrobial activity of three monoterpenes nerol, dimethyl octanol and estragole, against bacteria and yeast strains, as well as, investigate if these compounds are able to inhibit the NorA efflux pump related to fluoroquinolone resistance in Staphylococcus aureus. Minimal inhibitory concentrations (MICs) of the monoterpenes against Staphylococcus aureus, Escherichia coli and Candida albicans strains were determined by micro-dilution assay. MICs of the norfloxacin against a S. aureus strain overexpressing the NorA protein were determined in the absence or in the presence of the monoterpenes at subinhibitory concentrations, aiming to verify the ability of this compounds act as efflux pump inhibitors. The monoterpenes were inactive against S. aureus however the nerol was active against E. coli and C. albicans. The addition of the compounds to growth media at sub-inhibitory concentrations enhanced the activity of norfloxacin against S. aureus SA1199-B. This result shows that bioactives tested, especially the nerol, are able to inhibit NorA efflux pump indicating a potential use as adjuvants of norfloxacin for therapy of infections caused by multi-drug resistant S. aureus strains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes

    Directory of Open Access Journals (Sweden)

    Ro Dae-Kyun

    2009-07-01

    Full Text Available Abstract Background Sesquiterpene lactones are characteristic metabolites of Asteraceae (or Compositae which often display potent bioactivities and are sequestered in specialized organs such as laticifers, resin ducts, and trichomes. For characterization of sunflower sesquiterpene synthases we employed a simple method to isolate pure trichomes from anther appendages which facilitated the identification of these genes and investigation of their enzymatic functions and expression patterns during trichome development. Results Glandular trichomes of sunflower (Helianthus annuus L. were isolated, and their RNA was extracted to investigate the initial steps of sesquiterpene lactone biosynthesis. Reverse transcription-PCR experiments led to the identification of three sesquiterpene synthases. By combination of in vitro and in vivo characterization of sesquiterpene synthase gene products in Escherichia coli and Saccharomyces cerevisiae, respectively, two enzymes were identified as germacrene A synthases, the key enzymes of sesquiterpene lactone biosynthesis. Due to the very low in vitro activity, the third enzyme was expressed in vivo in yeast as a thioredoxin-fusion protein for functional characterization. In in vivo assays, it was identified as a multiproduct enzyme with the volatile sesquiterpene hydrocarbon δ-cadinene as one of the two main products with α-muuorlene, β-caryophyllene, α-humulene and α-copaene as minor products. The second main compound remained unidentified. For expression studies, glandular trichomes from the anther appendages of sunflower florets were isolated in particular developmental stages from the pre- to the post-secretory phase. All three sesquiterpene synthases were solely upregulated during the biosynthetically active stages of the trichomes. Expression in different aerial plant parts coincided with occurrence and maturity of trichomes. Young roots with root hairs showed expression of the sesquiterpene synthase genes

  11. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use

    DEFF Research Database (Denmark)

    Hantson, Stijn; Knorr, Wolfgang; Schurgers, Guy

    2017-01-01

    Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.). It is th......Plants emit large quantities of isoprene and monoterpenes, the main components of global biogenic volatile organic compound (BVOC) emissions. BVOCs have an important impact on the atmospheric composition of methane, and of short-lived radiative forcing agents (e.g. ozone, aerosols etc.......). It is therefore necessary to know how isoprene and monoterpene emissions have changed over the past and how future changes in climate, land-use and other factors will impact them. Here we present emission estimates of isoprene and monoterpenes over the period 1901–2 100 based on the dynamic global vegetation...... model LPJ-GUESS, including the effects of all known important drivers. We find that both isoprene and monoterpene emissions at the beginning of the 20th century were higher than at present. While anthropogenic land-use change largely drives the global decreasing trend for isoprene over the 20th century...

  12. Isolation and Characterization of D-Myo-Inositol-3-Phosphate Synthase Gene Family Members in Soybean

    OpenAIRE

    Good, Laura Lee

    2001-01-01

    The objective of this research was to isolate genes encoding isoforms of the enzyme D-myo-inositol 3-phosphate synthase (MIPS, E.C. 5.5.1.4) from soybean and to characterize their expression, especially with respect to their involvement in phytic acid biosynthesis. A MIPS-homologous cDNA, designated GmMIPS1, was isolated via PCR using total RNA from developing seeds. Southern blot analysis and examination of MIPS-homologous soybean EST sequences suggested that GmMIPS1 is part of a multigene...

  13. An (E,E)-a-farnesene synthase gene of soybean has a role in defense against nematodes and is involved in synthesizing insect-induced volatiles

    Science.gov (United States)

    Plant terpene synthase genes (TPSs) have roles in diverse biological processes. Here we report the functional characterization of one member of the soybean TP S gene family, which was designated GmAFS. Recombinant GmAFS produced in E.coli catalyzed the formation of a sesquiterpene (E,E)-a-farnesene....

  14. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Benfield, Thomas; Eugen-Olsen, J

    1999-01-01

    Sulpha drugs are widely used for the treatment and long-term prophylaxis of Pneumocystis carinii pneumonia (PCP) in HIV-1-infected individuals. Sulpha resistance in many microorganisms is caused by point mutations in dihydropteroate synthase (DHPS), an enzyme that is essential for folate biosynth...... biosynthesis. We assessed whether mutations in the DHPS gene of P. carinii were associated with exposure to sulpha drugs and influenced outcome from PCP....

  15. Metabolic engineering of monoterpene biosynthesis in plants

    NARCIS (Netherlands)

    Lücker, J.

    2002-01-01

    Monoterpenes are a large group of compounds that belong to the terpenoid family of natural compounds in plants. They are small, volatile, lipophilic substances of which around one thousand different structures have been

  16. Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands.

    Science.gov (United States)

    Rodríguez, Ana; Shimada, Takehiko; Cervera, Magdalena; Redondo, Ana; Alquézar, Berta; Rodrigo, María Jesús; Zacarías, Lorenzo; Palou, Lluís; López, María M; Peña, Leandro

    2015-01-01

    Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.

  17. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium

    International Nuclear Information System (INIS)

    Franchi, Nicola; Piccinni, Ester; Ferro, Diana; Basso, Giuseppe; Spolaore, Barbara; Santovito, Gianfranco; Ballarin, Loriano

    2014-01-01

    Highlights: • Ciona intestinalis have a functional phytochelatin synthase (PCS) gene (cipcs). • CiPCS amino acid sequence is phylogentically related to other metazoan PCSs. • CiPCS catalyze the synthesis of PC2. • cipcs are mostly transcribed in circulating hemocytes, in both tunic and blood lacunae. • Cadmium exposure results in a significant increase of cipcs and cipcna transcription. - Abstract: The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96 h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal

  18. Characterization and transcription studies of a phytochelatin synthase gene from the solitary tunicate Ciona intestinalis exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Piccinni, Ester [Department of Biology, University of Padova, Padova (Italy); Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Basso, Giuseppe [Department of Woman and Child Health, University of Padova, Padova (Italy); Spolaore, Barbara [CRIBI Biotechnology Centre, University of Padova, Padova (Italy); Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2014-07-01

    Highlights: • Ciona intestinalis have a functional phytochelatin synthase (PCS) gene (cipcs). • CiPCS amino acid sequence is phylogentically related to other metazoan PCSs. • CiPCS catalyze the synthesis of PC2. • cipcs are mostly transcribed in circulating hemocytes, in both tunic and blood lacunae. • Cadmium exposure results in a significant increase of cipcs and cipcna transcription. - Abstract: The major thiol-containing molecules involved in controlling the level of intracellular ROS in eukaryotes, acting as a nonenzymatic detoxification system, are metallothioneins (MTs), glutathione (GSH) and phytochelatins (PCs). Both MTs and GSH are well-known in the animal kingdom. PC was considered a prerogative of the plant kingdom but, in 2001, a phytochelatin synthase (PCS) gene was described in the nematode Caenorhabditis elegans; additional genes encoding this enzyme were later described in the earthworm Eisenia fetida and in the parasitic nematode Schistosoma mansoni but scanty data are available, up to now, for Deuterostomes. Here, we describe the molecular characteristics and transcription pattern, in the presence of Cd, of a PCS gene from the invertebrate chordate Ciona intestinalis, a ubiquitous solitary tunicate and demonstrate the presence of PCs in tissue extracts. We also studied mRNA localization by in situ hybridization. In addition, we analyzed the behavior of hemocytes and tunic cells consequent to Cd exposure as well as the transcription pattern of the Ciona orthologous for proliferating cell nuclear antigen (PCNA), usually considered a proliferation marker, and observed that cell proliferation occurs after 96 h of Cd treatment. This matches the hypothesis of Cd-induced cell proliferation, as already suggested by previous data on the expression of a metallothionein gene in the same animal.

  19. Highly divergent mitochondrial ATP synthase complexes in Tetrahymena thermophila.

    Directory of Open Access Journals (Sweden)

    Praveen Balabaskaran Nina

    2010-07-01

    Full Text Available The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F(1 sector catalyzes ATP synthesis, whereas the F(o sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F(1 and F(o sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the F(o sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a

  20. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Directory of Open Access Journals (Sweden)

    N. Yassaa

    2010-11-01

    Full Text Available A headspace solid-phase microextraction (HS-SPME and gas chromatography/mass spectrometry (GC/MS system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS, 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS. Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m−2 s−1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  1. Quantitative and enantioselective analysis of monoterpenes from plant chambers and in ambient air using SPME

    Science.gov (United States)

    Yassaa, N.; Custer, T.; Song, W.; Pech, F.; Kesselmeier, J.; Williams, J.

    2010-11-01

    A headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) system has been developed for quantifying enantiomeric and nonenantiomeric monoterpenes in plant chamber studies and ambient air. Performance of this system was checked using a capillary diffusion system to produce monoterpene standards. The adsorption efficiency, competitive adsorption and chromatographic peak resolution of monoterpene enantiomer pairs were compared for three SPME fibre coatings: 75 μm Carboxen-PDMS (CAR-PDMS), 50/30 μm divinylbenzene-carboxen-polydimethylsiloxane (DVB-CAR-PDMS) and 65 μm divinylbenzene-polydimethylsiloxane (DVB-PDMS). Key parameters such as the linearity and reproducibility of the SPME system have been investigated in this work. The best compromise between the enantiomeric separation of monoterpenes and competitive adsorption of the isoprenoids on the solid SPME fibre coating was found for DVB-PDMS fibres. The optimum conditions using DVB-PDMS fibres were applied to measure the exchange rates of monoterpenes in the emission of Quercus ilex using a laboratory whole plant enclosure under light and dark conditions, as well as in ambient air. With 592 and 223 ng m-2 s-1 respectively, β-myrcene and limonene were the predominant monoterpenes in the emission of Q. ilex. These values were closely comparable to those obtained using a zNose and cartridge GC-FID systems.

  2. Mechanism of monoterpene volatilization in Salvia mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Dement, W A; Tyson, B J; Mooney, H A

    1975-01-01

    Monoterpene volatilization in Salvia mellifera is primarily dependent on the vapor pressures of the terpenes as they are influenced by temperature, the humidity of the air surrounding the leaf and the surface area of oil present on the leaf. 12 references, 1 figure, 2 tables.

  3. Alpha-tryptophan synthase of Isatis tinctoria: gene cloning and expression.

    Science.gov (United States)

    Salvini, M; Boccardi, T M; Sani, E; Bernardi, R; Tozzi, S; Pugliesi, C; Durante, M

    2008-07-01

    Indole producing reaction is a crux in the regulation of metabolite flow through the pathways and the coordination of primary and secondary product biosynthesis in plants. Indole is yielded transiently from indole-3-glycerol phosphate and immediately condensed with serine to give tryptophan, by the enzyme tryptophan synthase (TS). There is evidence that plant TS, like the bacterial complex, functions as an alpha beta heteromer. In few species, e.g. maize, are known enzymes, related with the TS alpha-subunit (TSA), able to catalyse reaction producing indole, which is free to enter the secondary metabolite pathways. In this contest, we searched for TSA and TSA related genes in Isatis tinctoria, a species producing the natural blue dye indigo. The It-TSA cDNA and the full-length exons/introns genomic region were isolated. The phylogenetic analysis indicates that It-TSA is more closely related to Arabidopsis thaliana At-T14E10.210 TSA (95.7% identity at the amino acid level) with respect to A. thaliana At-T10P11.11 TSA1-like (63%), Zea mays indole-3-glycerol phosphate lyase (54%), Z. mays TSA (53%), and Z. mays indole synthase (50%). The It-TSA cDNA was also able to complement an Escherichia coli trpA mutant. To examine the involvement of It-TSA in the biosynthesis of secondary metabolism compounds, It-TSA expression was tested in seedling grown under different light conditions. Semi-quantitative RT-PCR showed an increase in the steady-state level of It-TSA mRNA, paralleled by an increase of indigo and its precursor isatan B. Our results appear to indicate an involvement for It-TSA in indigo precursor synthesis and/or tryptophan biosynthesis.

  4. Laboratory studies of monoterpene secondary organic aerosol formation and evolution

    Science.gov (United States)

    Thornton, J. A.; D'Ambro, E.; Zhao, Y.; Lee, B. H.; Pye, H. O. T.; Schobesberger, S.; Shilling, J.; Liu, J.

    2017-12-01

    We have conducted a series of chamber experiments to study the molecular composition and properties of secondary organic aerosol (SOA) formed from monoterpenes under a range of photochemical and dark conditions. We connect variations in the SOA mass yield to molecular composition and volatility, and use a detailed Master Chemical Mechanism (MCM) based chemical box model with dynamic gas-particle partitioning to examine the importance of various peroxy radical reaction mechanisms in setting the SOA yield and properties. We compare the volatility distribution predicted by the model to that inferred from isothermal room-temperature evaporation experiments using the FIGAERO-CIMS where SOA particles collected on a filter are allowed to evaporate under humidified pure nitrogen flow stream for up to 24 hours. We show that the combination of results requires prompt formation of low volatility SOA from predominantly gas-phase mechanisms, with important differences between monoterpenes (alpha-Pinene and delta-3-Carene) followed by slower non-radical particle phase chemistry that modulates both the chemical and physical properties of the SOA. Implications for the regional evolution of atmospheric monoterpene SOA are also discussed.

  5. Wounding stimulates ALLENE OXIDE SYNTHASE gene and increases the level of jasmonic acid in Ipomoea nil cotyledons

    Directory of Open Access Journals (Sweden)

    Emilia Wilmowicz

    2016-03-01

    Full Text Available Allene oxide synthase (AOS encodes the first enzyme in the lipoxygenase pathway, which is responsible for jasmonic acid (JA formation. In this study we report the molecular cloning and characterization of InAOS from Ipomoea nil. The full-length gene is composed of 1662 bp and encodes for 519 amino acids. The predicted InAOS contains PLN02648 motif, which is evolutionarily conserved and characteristic for functional enzymatic proteins. We have shown that wounding led to a strong stimulation of the examined gene activity in cotyledons and an increase in JA level, which suggest that this compound may be a modulator of stress responses in I. nil.

  6. Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae

    Science.gov (United States)

    Wilson, Richard A.; Wang, Zheng-Yi; Kershaw, Michael J.; Talbot, Nicholas J.

    2013-01-01

    The filamentous fungus Magnaporthe oryzae is the causal agent of rice blast disease. Here we show that glycogen metabolic genes play an important role in plant infection by M. oryzae. Targeted deletion of AGL1 and GPH1, which encode amyloglucosidase and glycogen phosphorylase, respectively, prevented mobilisation of glycogen stores during appressorium development and caused a significant reduction in the ability of M. oryzae to cause rice blast disease. By contrast, targeted mutation of GSN1, which encodes glycogen synthase, significantly reduced the synthesis of intracellular glycogen, but had no effect on fungal pathogenicity. We found that loss of AGL1 and GPH1 led to a reduction in expression of TPS1 and TPS3, which encode components of the trehalose-6-phosphate synthase complex, that acts as a genetic switch in M. oryzae. Tps1 responds to glucose-6-phosphate levels and the balance of NADP/NADPH to regulate virulence-associated gene expression, in association with Nmr transcriptional inhibitors. We show that deletion of the NMR3 transcriptional inhibitor gene partially restores virulence to a Δagl1Δgph1 mutant, suggesting that glycogen metabolic genes are necessary for operation of the NADPH-dependent genetic switch in M. oryzae. PMID:24098112

  7. SNP in Chalcone Synthase gene is associated with variation of 6-gingerol content in contrasting landraces of Zingiber officinale.Roscoe.

    Science.gov (United States)

    Ghosh, Subhabrata; Mandi, Swati Sen

    2015-07-25

    Zingiber officinale, medicinally the most important species within Zingiber genus, contains 6-gingerol as the active principle. This compound obtained from rhizomes of Z.officinale, has immense medicinal importance and is used in various herbal drug formulations. Our record of variation in content of this active principle, viz. 6-gingerol, in land races of this drug plant collected from different locations correlated with our Gene expression studies exhibiting high Chalcone Synthase gene (Chalcone Synthase is the rate limiting enzyme of 6-gingerol biosynthesis pathway) expression in high 6-gingerol containing landraces than in the low 6-gingerol containing landraces. Sequencing of Chalcone Synthase cDNA and subsequent multiple sequence alignment revealed seven SNPs between these contrasting genotypes. Converting this nucleotide sequence to amino acid sequence, alteration of two amino acids becomes evident; one amino acid change (asparagine to serine at position 336) is associated with base change (A→G) and another change (serine to leucine at position 142) is associated with the base change (C→T). Since asparagine at position 336 is one of the critical amino acids of the catalytic triad of Chalcone Synthase enzyme, responsible for substrate binding, our study suggests that landraces with a specific amino acid change viz. Asparagine (found in high 6-gingerol containing landraces) to serine causes low 6-gingerol content. This is probably due to a weak enzyme substrate association caused by the absence of asparagine in the catalytic triad. Detailed study of this finding could also help to understand molecular mechanism associated with variation in 6-gingerol content in Z.officinale genotypes and thereby strategies for developing elite genotypes containing high 6-gingerol content. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Production of aromas and fragrances through microbial oxidation of monoterpenes

    Directory of Open Access Journals (Sweden)

    H. F. Rozenbaum

    2006-09-01

    Full Text Available Aromas and fragrances can be obtained through the microbial oxidation of monoterpenes. Many microorganisms can be used to carry out extremely specific conversions using substrates of low commercial value. However, for many species, these substrates are highly toxic, consequently inhibiting their metabolism. In this work, the conversion ability of Aspergillus niger IOC-3913 for terpenic compounds was examined. This species was preselected because of its high resistance to toxic monoterpenic substrates. Though it has been grown in media containing R-limonene (one of the cheapest monoterpenic hydrocarbons, which is widely available on the market, the species has not shown the ability to metabolize it, since biotransformation products were not detected in high resolution gas chromatography analyses. For this reason, other monoterpenes (alpha-pinene, beta-pinene and camphor were used as substrates. These compounds were shown to be metabolized by the selected strain, producing oxidized compounds. Four reaction systems were used: a biotransformation in a liquid medium with cells in growth b with pre-grown cultures c with cells immobilized in a synthetic polymer network and d in a solid medium to which the substrate was added via the gas phase. The main biotransformation products were found in all the reaction systems, although the adoption of previously cultivated cells seemed to favor biotransformation. Cell immobilization seemed to be a feasible strategy for alleviating the toxic effect of the substrate. Through mass spectrometry it was possible to identify verbenone and alpha-terpineol as the biotransformation products of alpha-pinene and beta-pinene, respectively. The structures of the other oxidation products are described.

  9. Host-tree monoterpenes and biosynthesis of aggregation pheromones in the bark beetle ips paraconfusus

    Science.gov (United States)

    In the 1970-80s, vapors of the common conifer tree monoterpenes, myrcene and a-pinene, were shown to serve as precursors of ipsenol, ipsdienol and cis-verbenol, aggregation pheromone components of Ips paraconfusus. A paradigm developed that Ips bark beetles utilize pre-formed monoterpene precursors ...

  10. An aureobasidin A resistance gene isolated from Aspergillus is a homolog of yeast AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthase activity.

    Science.gov (United States)

    Kuroda, M; Hashida-Okado, T; Yasumoto, R; Gomi, K; Kato, I; Takesako, K

    1999-03-01

    The AUR1 gene of Saccharomyces cerevisiae, mutations in which confer resistance to the antibiotic aureobasidin A, is necessary for inositol phosphorylceramide (IPC) synthase activity. We report the molecular cloning and characterization of the Aspergillus nidulans aurA gene, which is homologous to AUR1. A single point mutation in the aurA gene of A. nidulans confers a high level of resistance to aureobasidin A. The A. nidulans aurA gene was used to identify its homologs in other Aspergillus species, including A. fumigatus, A. niger, and A. oryzae. The deduced amino acid sequence of an aurA homolog from the pathogenic fungus A. fumigatus showed 87% identity to that of A. nidulans. The AurA proteins of A. nidulans and A. fumigatus shared common characteristics in primary structure, including sequence, hydropathy profile, and N-glycosylation sites, with their S. cerevisiae, Schizosaccharomyces pombe, and Candida albicans counterparts. These results suggest that the aureobasidin resistance gene is conserved evolutionarily in various fungi.

  11. Comparative study of the antitumor effect of natural monoterpenes: relationship to cell cycle analysis

    Directory of Open Access Journals (Sweden)

    Abdeslam Jaafari

    2012-06-01

    Full Text Available Monoterpenes have been identified as responsible of important therapeutic effects of plant-extracts. In this work, we try to compare the cytotoxic effect of six monoterpenes (carvacrol, thymol, carveol, carvone, eugenol and isopulegol as well as their molecular mechanisms. The in vitro antitumor activity of the tested products, evaluated against five tumor cell lines, show that the carvacrol is the most cytotoxic monoterpene. The investigation of an eventual synergistic effect of the six natural monoterpenes with two anticancer drugs revealed that there is a significant synergy between them (p<5%. On the other hand, the effect of the tested products on cell cycle progression was examined by flow cytometry after DNA staining in order to investigate the molecular mechanism of their cytotoxic activity. The results revealed that carvacrol and carveol stopped the cell cycle progression in S phase; however, thymol and isopulegol stopped it in G0/G1 phase. Regarding carvone and eugenol, no effect on cell cycle was observed.

  12. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.

    Science.gov (United States)

    Materić, Dušan; Lanza, Matteo; Sulzer, Philipp; Herbig, Jens; Bruhn, Dan; Turner, Claire; Mason, Nigel; Gauci, Vincent

    2015-10-01

    Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique for real-time analysis of volatile organic compounds (VOCs). Although it is extremely sensitive (with sensitivities of up to 4500 cps/ppbv, limits of detection monoterpenes, which belong to the most important plant VOCs, still cannot be distinguished so more traditional technologies, such as gas chromatography mass spectrometry (GC-MS), have to be utilised. GC-MS is very time consuming (up to 1 h) and cannot be used for real-time analysis. Here, we introduce a sensitive, near-to-real-time method for plant monoterpene research-PTR-MS coupled with fastGC. We successfully separated and identified six of the most abundant monoterpenes in plant studies (α- and β-pinenes, limonene, 3-carene, camphene and myrcene) in less than 80 s, using both standards and conifer branch enclosures (Norway spruce, Scots pine and black pine). Five monoterpenes usually present in Norway spruce samples with a high abundance were separated even when the compound concentrations were diluted to 20 ppbv. Thus, fastGC-PTR-ToF-MS was shown to be an adequate one-instrument solution for plant monoterpene research.

  13. Cloning and expression analysis of two dehydrodolichyl diphosphate synthase genes from Tripterygium wilfordii

    Directory of Open Access Journals (Sweden)

    Lin-Hui Gao

    2018-01-01

    Full Text Available Objective: To clone and investigate two dehydrodolichyl diphosphate synthase genes of Tripterygium wilfordii by bioinformatics and tissue expression analysis. Materials and Methods: According to the T. wifordii transcriptome database, specific primers were designed to clone the TwDHDDS1 and TwDHDDS2 genes via PCR. Based on the cloned sequences, protein structure prediction, multiple sequence alignment and phylogenetic tree construction were performed. The expression levels of the genes in different tissues of T. wilfordii were measured by real-time quantitative PCR. Results: The TwDHDDS1 gene encompassed a 873 bp open reading frame (ORF and encoded a protein of 290 amino acids. The calculated molecular weight of the translated protein was about 33.46 kDa, and the theoretical isoelectric point (pI was 8.67. The TwDHDDS2 encompassed a 768 bp ORF, encoding a protein of 255 amino acids with a calculated molecular weight of about 21.19 kDa, and a theoretical isoelectric point (pI of 7.72. Plant tissue expression analysis indicated that TwDHDDS1 and TwDHDDS2 both have relatively ubiquitous expression in all sampled organ tissues, but showed the highest transcription levels in the stems. Conclusions: The results of this study provide a basis for further functional studies of TwDHDDS1 and TwDHDDS2. Most importantly, these genes are promising genetic targets for the regulation of the biosynthetic pathways of important bioactive terpenoids such as triptolide.

  14. Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves.

    Science.gov (United States)

    Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir

    2018-02-01

    Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.

  15. Untangling the primary drivers of pinyon monoterpene production and emissions under predicted drought

    Science.gov (United States)

    Trowbridge, A. M.; Adams, H. D.; Breshears, D. D.; Monson, R. K.

    2012-04-01

    Climate and insect herbivory have important consequences for plant function, atmospheric composition, and the functioning of ecosystems and ecological communities. Within the last decade, pinyon-juniper woodlands throughout the southwestern U.S. have suffered large-scale mortality, especially of pinyon pine, due to drought and associated insect outbreaks. While much research has focused on the primary metabolic mechanisms underlying pinyon's sensitivity to drought, there remains a gap in our knowledge concerning how the resulting shift in carbon allocation toward plant secondary compounds, particularly monoterpenes, affects atmospheric process and ecological interactions. Monoterpenes are the principal constituents of pinyon resin. Because of their large global emission rates and effect on atmospheric chemistry, particularly ozone creation, identifying controls over emissions and sensitivities to environmental change is critical for global emission models. Furthermore, monoterpenes are known to impact insect behavior and act as defense compounds against herbivores, contributing to insect population fluctuations either directly through toxicity, or indirectly by influencing parasitism susceptibility. Pinyon mortality events are thought to be exacerbated by their susceptibility to herbivores resulting from weakened secondary chemical defenses, but the impact of current and predicted drought on the chemical defense status of pinyons and subsequent atmospheric and ecological consequences remain unknown. A field study was developed to examine the impact of seasonality and climate, particularly drought, on pinyon pine physiology and chemistry in the context of tiger moth (Lophocampa ingens) herbivory in pinyon-juniper woodlands. We demonstrate the importance of geography and seasonality, particularly mid-summer drought and late summer monsoons, in driving physiology and monoterpene concentrations and emissions. Emission rates significantly decreased throughout the summer

  16. A 31 bp VNTR in the cystathionine beta-synthase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine levels

    NARCIS (Netherlands)

    Lievers, K.J.; Kluijtmans, L.A.; Heil, S.G.; Boers, G.H.J.; Verhoef, P.; Oppenraay-Emmerzaal, van D.; Heijer, den M.; Trijbels, F.J.M.; Blom, H.J.

    2001-01-01

    Molecular defects in genes encoding enzymes involved in homocysteine metabolism may account for mild hyperhomocysteinaemia, an independent and graded risk factor for cardiovascular disease (CVD). Although heterozygosity for cystathionine -synthase (CBS) deficiency has been excluded as a major

  17. RNAi and Homologous Over-Expression Based Functional Approaches Reveal Triterpenoid Synthase Gene-Cycloartenol Synthase Is Involved in Downstream Withanolide Biosynthesis in Withania somnifera.

    Directory of Open Access Journals (Sweden)

    Smrati Mishra

    Full Text Available Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.

  18. Endothelial Nitric Oxide Synthase Gene Polymorphism (G894T and Diabetes Mellitus (Type II among South Indians

    Directory of Open Access Journals (Sweden)

    T. Angeline

    2011-01-01

    Full Text Available The objective of the study is to find out whether the endothelial nitric oxide synthase (eNOS G894T single-nucleotide polymorphism is associated with type 2 diabetes mellitus in South Indian (Tamil population. A total number of 260 subjects comprising 100 type 2 diabetic mellitus patients and 160 healthy individuals with no documented history of diabetes were included for the study. DNA was isolated, and eNOS G894T genotyping was performed using the polymerase chain reaction followed by restriction enzyme analysis using Ban II. The genotype distribution in patients and controls were compatible with the Hardy-Weinberg expectations (P>0.05. Odds ratio indicates that the occurrence of mutant genotype (GT/TT was 7.2 times (95% CI = 4.09–12.71 more frequent in the cases than in controls. Thus, the present study demonstrates that there is an association of endothelial nitric oxide synthase gene (G894T polymorphism with diabetes mellitus among South Indians.

  19. A 31 bp VNTR in the cystathionine beta-synthase (CBS) gene is associated with reduced CBS activity and elevated post-load homocysteine levels.

    NARCIS (Netherlands)

    Lievers, K.J.; Kluijtmans, L.A.J.; Heil, S.G.; Boers, G.H.J.; Verhoef, P.; Oppenraaij-Emmerzaal, D. van; Heijer, M. den; Trijbels, J.M.F.; Blom, H.J.

    2001-01-01

    Molecular defects in genes encoding enzymes involved in homocysteine metabolism may account for mild hyperhomocysteinaemia, an independent and graded risk factor for cardiovascular disease (CVD). Although heterozygosity for cystathionine beta-synthase (CBS) deficiency has been excluded as a major

  20. Isolation and expression of two polyketide synthase genes from Trichoderma harzianum 88 during mycoparasitism.

    Science.gov (United States)

    Yao, Lin; Tan, Chong; Song, Jinzhu; Yang, Qian; Yu, Lijie; Li, Xinling

    2016-01-01

    Metabolites of mycoparasitic fungal species such as Trichoderma harzianum 88 have important biological roles. In this study, two new ketoacyl synthase (KS) fragments were isolated from cultured Trichoderma harzianum 88 mycelia using degenerate primers and analysed using a phylogenetic tree. The gene fragments were determined to be present as single copies in Trichoderma harzianum 88 through southern blot analysis using digoxigenin-labelled KS gene fragments as probes. The complete sequence analysis in formation of pksT-1 (5669bp) and pksT-2 (7901bp) suggests that pksT-1 exhibited features of a non-reducing type I fungal PKS, whereas pksT-2 exhibited features of a highly reducing type I fungal PKS. Reverse transcription polymerase chain reaction indicated that the isolated genes are differentially regulated in Trichoderma harzianum 88 during challenge with three fungal plant pathogens, which suggests that they participate in the response of Trichoderma harzianum 88 to fungal plant pathogens. Furthermore, disruption of the pksT-2 encoding ketosynthase-acyltransferase domains through Agrobacterium-mediated gene transformation indicated that pksT-2 is a key factor for conidial pigmentation in Trichoderma harzianum 88. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Cloning and sequence analysis of putative type II fatty acid synthase ...

    Indian Academy of Sciences (India)

    Prakash

    Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. ... acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP .... Helix II plays a dominant role in the interaction ... main distinguishing features of plant ACPs in plastids and ..... synthase component; J. Biol.

  2. First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Patrick C Y Woo

    Full Text Available BACKGROUND: The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes. METHODOLOGY/PRINCIPAL FINDINGS: All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05. There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05. CONCLUSIONS/SIGNIFICANCE: The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid

  3. Geranylfarnesyl diphosphate synthase from Methanosarcina mazei: Different role, different evolution

    International Nuclear Information System (INIS)

    Ogawa, Takuya; Yoshimura, Tohru; Hemmi, Hisashi

    2010-01-01

    The gene of (all-E) geranylfarnesyl diphosphate synthase that is responsible for the biosynthesis of methanophenazine, an electron carrier utilized for methanogenesis, was cloned from a methanogenic archaeon Methanosarcina mazei Goe1. The properties of the recombinant enzyme and the results of phylogenetic analysis suggest that the enzyme is closely related to (all-E) prenyl diphosphate synthases that are responsible for the biosynthesis of respiratory quinones, rather than to the enzymes involved in the biosynthesis of archaeal membrane lipids, including (all-E) geranylfarnesyl diphosphate synthase from a thermophilic archaeon.

  4. Gene discovery for enzymes involved in limonene modification or utilization by the mountain pine beetle-associated pathogen Grosmannia clavigera.

    Science.gov (United States)

    Wang, Ye; Lim, Lynette; Madilao, Lina; Lah, Ljerka; Bohlmann, Joerg; Breuil, Colette

    2014-08-01

    To successfully colonize and eventually kill pine trees, Grosmannia clavigera (Gs cryptic species), the main fungal pathogen associated with the mountain pine beetle (Dendroctonus ponderosae), has developed multiple mechanisms to overcome host tree chemical defenses, of which terpenoids are a major component. In addition to a monoterpene efflux system mediated by a recently discovered ABC transporter, Gs has genes that are highly induced by monoterpenes and that encode enzymes that modify or utilize monoterpenes [especially (+)-limonene]. We showed that pine-inhabiting Ophiostomale fungi are tolerant to monoterpenes, but only a few, including Gs, are known to utilize monoterpenes as a carbon source. Gas chromatography-mass spectrometry (GC-MS) revealed that Gs can modify (+)-limonene through various oxygenation pathways, producing carvone, p-mentha-2,8-dienol, perillyl alcohol, and isopiperitenol. It can also degrade (+)-limonene through the C-1-oxygenated pathway, producing limonene-1,2-diol as the most abundant intermediate. Transcriptome sequencing (RNA-seq) data indicated that Gs may utilize limonene 1,2-diol through beta-oxidation and then valine and tricarboxylic acid (TCA) metabolic pathways. The data also suggested that at least two gene clusters, located in genome contigs 108 and 161, were highly induced by monoterpenes and may be involved in monoterpene degradation processes. Further, gene knockouts indicated that limonene degradation required two distinct Baeyer-Villiger monooxygenases (BVMOs), an epoxide hydrolase and an enoyl coenzyme A (enoyl-CoA) hydratase. Our work provides information on enzyme-mediated limonene utilization or modification and a more comprehensive understanding of the interaction between an economically important fungal pathogen and its host's defense chemicals.

  5. Valencene synthase from the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of valencene.

    Science.gov (United States)

    Beekwilder, Jules; van Houwelingen, Adèle; Cankar, Katarina; van Dijk, Aalt D J; de Jong, René M; Stoopen, Geert; Bouwmeester, Harro; Achkar, Jihane; Sonke, Theo; Bosch, Dirk

    2014-02-01

    Nootkatone is one of the major terpenes in the heartwood of the Nootka cypress Callitropsis nootkatensis. It is an oxidized sesquiterpene, which has been postulated to be derived from valencene. Both valencene and nootkatone are used for flavouring citrus beverages and are considered among the most valuable terpenes used at commercial scale. Functional evaluation of putative terpene synthase genes sourced by large-scale EST sequencing from Nootka cypress wood revealed a valencene synthase gene (CnVS). CnVS expression in different tissues from the tree correlates well with nootkatone content, suggesting that CnVS represents the first dedicated gene in the nootkatone biosynthetic pathway in C. nootkatensis The gene belongs to the gymnosperm-specific TPS-d subfamily of terpenes synthases and its protein sequence has low similarity to known citrus valencene synthases. In vitro, CnVS displays high robustness under different pH and temperature regimes, potentially beneficial properties for application in different host and physiological conditions. Biotechnological production of sesquiterpenes has been shown to be feasible, but productivity of microbial strains expressing valencene synthase from Citrus is low, indicating that optimization of valencene synthase activity is needed. Indeed, expression of CnVS in Saccharomyces cerevisiae indicated potential for higher yields. In an optimized Rhodobacter sphaeroides strain, expression of CnVS increased valencene yields 14-fold to 352 mg/L, bringing production to levels with industrial potential. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. The role of ecophysiology in determining monoterpene concentrations and emissions from pinyon pine under drought conditions

    Science.gov (United States)

    Trowbridge, A. M.; Adams, H. D.; Breshears, D. D.; Stoy, P.; Monson, R. K.

    2012-12-01

    While much research has focused on the primary metabolic mechanisms underlying pinyon pine's sensitivity to severe and abrupt drought conditions, there remains a gap in our knowledge concerning how the resulting shift in carbon allocation toward plant secondary compounds, particularly monoterpenes, affects both atmospheric process and ecological species interactions. Because of the large global emission rate of monoterpenes and their effect on atmospheric chemistry, identifying the primary controls over and sensitivities to environmental change is critical for global emission models. Furthermore, monoterpenes are also known to impact insect behavior and act as defense compounds against herbivores, contributing to fluctuations in the population densities of herbivores either directly through toxicity, or indirectly by influencing an insect's susceptibility to parasitism. While pinyon mortality events are thought to be exacerbated by their susceptibility to herbivores resulting from weakened secondary chemical defenses, the impact of current and predicted drought on the chemical defense status of pinyons and the potential consequences for atmospheric composition and ecological interactions remains unknown. We performed a manipulative field study to untangle the effects of drought on plant carbon assimilation, growth, and defense throughout the year. Transplanting pinyons from their natural habitat into a desert environment, we were able to increase mean annual temperature by ~4 degrees C. Throughout the growing season, we measured pinyon physiology and monoterpene composition and emissions under different water (well-watered, ambient, or drought-stresed) and temperature (natural pinyon habitat or desert transplants) regimes. We hypothesized that increased drought would increase tissue concentrations in accordance with the carbon-nutrient balance hypothesis (CNBH). Furthermore, we predicted that higher temperatures and lower water availability together would influence

  7. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit.

    Directory of Open Access Journals (Sweden)

    Hongxia Miao

    Full Text Available Granule-bound starch synthase (GBSS is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage.

  8. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    Science.gov (United States)

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  9. Functional Characterization of Sesquiterpene Synthase from Polygonum minus

    Directory of Open Access Journals (Sweden)

    Su-Fang Ee

    2014-01-01

    Full Text Available Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS has a complete open reading frame (ORF of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β-sesquiphellandrene.

  10. Cloning and expression of pineapple sucrose- phosphate synthase ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... phosphate; EDTA, ethylene diamine tetraacetic acid; Ivr, invertase; SS .... phenolics, tannins and artifacts due to differences of tissue composition ..... Banana sucrose-phosphate synthase gene expression during fruit ripening.

  11. The contribution of wine-derived monoterpene glycosides to retronasal odour during tasting.

    Science.gov (United States)

    Parker, Mango; Black, Cory A; Barker, Alice; Pearson, Wes; Hayasaka, Yoji; Francis, I Leigh

    2017-10-01

    This study investigated the sensory significance of monoterpene glycosides during tasting, by retronasal perception of odorant aglycones released in-mouth. Monoterpene glycosides were isolated from Gewürztraminer and Riesling juices and wines, chemically characterised and studied using sensory time-intensity methodology, together with a synthesised monoterpene glucoside. When assessed in model wine at five times wine-like concentration, Gewürztraminer glycosides and geranyl glucoside gave significant fruity flavour, although at wine-like concentrations, or in the presence of wine volatiles, the effect was not significant. Gewürztraminer glycosides, geranyl glucoside and guaiacyl glucoside were investigated using a sensory panel (n=39), revealing large inter-individual variability, with 77% of panellists responding to at least one glycoside. The study showed for the first time that grape-derived glycosides can contribute perceptible fruity flavour, providing a means of enhancing flavour in wines, and confirms the results of previous studies that the effect is highly variable across individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Molecular cloning and expression of a novel trehalose synthase gene from Enterobacter hormaechei

    Directory of Open Access Journals (Sweden)

    Yue Ming

    2009-06-01

    Full Text Available Abstract Background Trehalose synthase (TreS which converts maltose to trehalose is considered to be a potential biocatalyst for trehalose production. This enzymatic process has the advantage of simple reaction and employs an inexpensive substrate. Therefore, new TreS producing bacteria with suitable enzyme properties are expected to be isolated from extreme environment. Results Six TreS producing strains were isolated from a specimen obtained from soil of the Tibetan Plateau using degenerate PCR. A novel treS gene from Enterobacter hormaechei was amplified using thermal asymmetric interlaced PCR. The gene contained a 1626 bp open reading frame encoding 541 amino acids. The gene was expressed in Escherichia coli, and the recombinant TreS was purified and characterized. The purified TreS had a molecular mass of 65 kDa and an activity of 18.5 U/mg. The optimum temperature and pH for the converting reaction were 37°C and 6, respectively. Hg2+, Zn2+, Cu2+and SDS inhibited the enzyme activity at different levels whereas Mn2+ showed an enhancing effect by 10%. Conclusion In this study, several TreS producing strains were screened from a source of soil bacteria. The characterization of the recombinant TreS of Enterobacter hormaechei suggested its potential application. Consequently, a strategy for isolation of TreS producing strains and cloning of novel treS genes from natural sources was demonstrated.

  13. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    Science.gov (United States)

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  14. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  15. [Development of specific and degenerated primers to CesA genes encoding flax (Linum usitatissimum L.) cellulose synthase].

    Science.gov (United States)

    Grushetskaia, Z E; Lemesh, V A; Khotyleva, L V

    2010-01-01

    Cellulose synthase catalytic subunit genes, CesA, have been discovered in several higher plant species, and it has been shown that the CesA gene family has multiple members. HVR2 fragment of these genes determine the class specificity of the CESA protein and its participation in the primary or secondary cell wall synthesis. The aim of this study was development of specific and degenerated primers to flax CesA gene fragments leading to obtaining the class specific HVR2 region of the gene. Two pairs of specific primers to the certain fragments of CesA-1 and CesA-6 genes and one pair of degenerated primers to HVR2 region of all flax CesA genes were developed basing on comparison of six CesA EST sequences of flax and full cDNA sequences of Arabidopsis, poplar, maize and cotton plants, obtained from GenBank. After amplification of flax cDNA, the bands of expected size were detected (201 and 300 b.p. for the CesA-1 and CesA-6, and 600 b.p. for the HVR2 region of CesA respectively). The developed markers can be used for cloning and sequencing of flax CesA genes, identifying their number in flax genome, tissue and stage specificity.

  16. Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression.

    Science.gov (United States)

    Thomson, Errol M; Kumarathasan, Prem; Calderón-Garcidueñas, Lilian; Vincent, Renaud

    2007-10-01

    Recent work suggests that air pollution is a risk factor for cerebrovascular and neurodegenerative disease. Effects of inhaled pollutants on the production of vasoactive factors such as endothelin (ET) and nitric oxide (NO) in the brain may be relevant to disease pathogenesis. Inhaled pollutants increase circulating levels of ET-1 and ET-3, and the pituitary is a potential source of plasma ET, but the effects of pollutants on the expression of ET and NO synthase genes in the brain and pituitary are not known. In the present study, Fischer-344 rats were exposed by nose-only inhalation to particles (0, 5, 50mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Real-time reverse transcription polymerase chain reaction was used to measure mRNA levels in the cerebral hemisphere and pituitary 0 and 24 h post-exposure. Ozone inhalation significantly increased preproET-1 but decreased preproET-3 mRNAs in the cerebral hemisphere, while increasing mRNA levels of preproET-1, preproET-3, and the ET-converting enzyme (ECE)-1 in the pituitary. Inducible NO synthase (iNOS) was initially decreased in the cerebral hemisphere after ozone inhalation, but increased 24 h post-exposure. Particles decreased tumour necrosis factor (TNF)-alpha mRNA in the cerebral hemisphere, and both particles and ozone decreased TNF-alpha mRNA in the pituitary. Our results show that ozone and particulate matter rapidly modulate the expression of genes involved in key vasoregulatory pathways in the brain and pituitary, substantiating the notion that inhaled pollutants induce cerebrovascular effects.

  17. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole

    DEFF Research Database (Denmark)

    Payne, Richard; Xu, Deyang; Foureau, Emilien

    2017-01-01

    Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimal......Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine...

  18. Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ

    Science.gov (United States)

    Qin, Momei; Hu, Yongtao; Wang, Xuesong; Vasilakos, Petros; Boyd, Christopher M.; Xu, Lu; Song, Yu; Ng, Nga Lee; Nenes, Athanasios; Russell, Armistead G.

    2018-07-01

    Monoterpenes react with nitrate radicals (NO3), contributing substantially to nighttime organic aerosol (OA) production. In this study, the role of reactions of monoterpenes + NO3 in forming biogenic secondary organic aerosol (BSOA) was examined using the Community Multiscale Air Quality (CMAQ) model, with extended emission profiles of biogenic volatile organic compounds (BVOCs), species-specific representations of BSOA production from individual monoterpenes and updated aerosol yields for monoterpene + NO3. The model results were compared to detailed measurements from the Southern Oxidants and Aerosol Study (SOAS) at Centreville, Alabama. With the more detailed model, monoterpene-derived BSOA increased by ∼1 μg m-3 at night, accounting for one-third of observed less-oxidized oxygenated OA (LO-OOA), more closely agreeing with observations (lower error, stronger correlation). Implementation of a multigenerational oxidation approach resulted in the model capturing elevated OA episodes. With the aging model, aged semi-volatile organic compounds (ASVOCs) contributed over 60% of the monoterpene-derived BSOA, followed by SOA formation via nitrate radical chemistry, making up to 34% of that formed at night. Among individual monoterpenes, β-pinene and limonene contributed most to the monoterpene-derived BSOA from nighttime reactions.

  19. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    Science.gov (United States)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P glycogen content ( P glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  20. Structure Odour Relationship Study of Acyclic Monoterpene Alcohols, their Acetates and Synthesized Oxygenated Derivatives

    OpenAIRE

    Elsharif, Shaimaa

    2017-01-01

    The replacement of synthetic conventional compounds by natural ingredients; whether in medicine, food, or cosmetics; has been increasingly requested by consumers, especially since the last decade. Terpenes in general and monoterpenes in particular are secondary metabolites in plants, and they may be a promising natural alternative. Monoterpenes, the main constituents of plants’ essential oils, are odorous compounds that play a significant ecological role in plant evolution. The...

  1. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests.

    Science.gov (United States)

    Trowbridge, Amy M; Daly, Ryan W; Helmig, Detlev; Stoy, Paul C; Monson, Russell K

    2014-06-01

    The emission of volatile monoterpenes from coniferous trees impacts the oxidative state of the troposphere and multi-trophic signaling between plants and animals. Previous laboratory studies have revealed that climate anomalies and herbivory alter the rate of tree monoterpene emissions. However, no studies to date have been conducted to test these relations in situ. We conducted a two-year field experiment at two semiarid sites dominated by pinyon pine (Pinus edulis) during outbreaks of a specialist herbivore, the southwestern tiger moth (Lophocampa ingens: Arctiidae). We discovered that during the early spring, when herbivory rates were highest, monoterpene emission rates were approximately two to six times higher from undamaged needles on damaged trees, with this increase in emissions due to alpha-pinene, beta-pinene, and camphene at both sites. During mid-summer, emission rates did not differ between previously damaged and undamaged trees at the site on the Western Slope of the Rocky Mountains, but rather tracked changes in the temperature and precipitation regime characteristic of the region. As the mid-summer drought progressed at the Eastern Slope site, emission rates were low, but differences between previously damaged and undamaged trees were not statistically significant. Despite no difference in emissions, mid-summer tissue monoterpene concentrations were significantly lower in previously damaged trees at both sites. With the onset of monsoon rains during late summer, emission rates from previously damaged trees increased to levels higher than those of undamaged trees despite the lack of herbivory. We conclude that (1) herbivory systemically increases the flux of terpenes to the atmosphere during the spring, (2) drought overrides the effect of past herbivory as the primary control over emissions during the mid-summer, and (3) a release from drought and the onset of late-summer rains is correlated with a secondary increase in emissions, particularly from

  2. Analysis of genetic variation of inducible nitric oxide synthase and ...

    African Journals Online (AJOL)

    The genetic diversity of 100 Malaysian native chickens was investigated using polymerase chain reaction-restriction fragment polymorphism (PCR-RFLP) for two candidate genes: inducible nitric oxide synthase (INOS) and natural resistance-associated macrophage protein 1 (NRAMP1). The two genes were selected ...

  3. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  4. Genetic and biochemical characterization of a novel monoterpene epsilon-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, van der C.J.B.; Werf, van der M.J.

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  5. Genetic and biochemical characterization of a novel monoterpene e-lactone hydrolase from Rhodococcus erythropolis DCL14

    NARCIS (Netherlands)

    Vlugt-Bergmans, C.J.B. van der; Werf, M.J. van der

    2001-01-01

    A monoterpene ε-lactone hydrolase (MLH) from Rhodococcus erythropolis DCL14, catalyzing the ring opening of lactones which are formed during degradation of several monocyclic monoterpenes, including carvone and menthol, was purified to apparent homogeneity. It is a monomeric enzyme of 31 kDa that is

  6. Pheromone Production by an Invasive Bark Beetle Varies with Monoterpene Composition of its Naïve Host.

    Science.gov (United States)

    Taft, Spencer; Najar, Ahmed; Erbilgin, Nadir

    2015-06-01

    The secondary chemistry of host plants can have cascading impacts on the establishment of new insect herbivore populations, their long-term population dynamics, and their invasion potential in novel habitats. Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae) has recently expanded its range into forests of jack pine, Pinus banksiana Lamb., in western Canada. We investigated whether variations in jack pine monoterpenes affect beetle pheromone production, as the primary components of the beetle's aggregation pheromone, (-)-trans-verbenol and anti-aggregation pheromone (-)-verbenone, are biosynthesized from the host monoterpene α-pinene. Jack pine bolts were collected from five Canadian provinces east of the beetle's current range, live D. ponderosae were introduced into them, and their monoterpene compositions were characterized. Production of (-)-trans-verbenol and (-)-verbenone emitted by beetles was measured to determine whether pheromone production varies with monoterpene composition of jack pines. Depending on particular ratios of major monoterpenes in host phloem, jack pine could be classified into three monoterpenoid groups characterized by high amounts of (+)-α-pinene, 3-carene, or a more moderate blend of monoterpenes, and beetle pheromone production varied among these groups. Specifically, beetles reared in trees characterized by high (+)-α-pinene produced the most (-)-trans-verbenol and (-)-verbenone, while beetles in trees characterized by high 3-carene produced the least. Our results indicate that pheromone production by D. ponderosae will remain a significant aspect and important predictor of its survival and persistence in the boreal forest.

  7. Cloning and Expression of the PHA Synthase Gene From a Locally Isolated Chromobacterium sp. USM2

    Directory of Open Access Journals (Sweden)

    Bhubalan, K.

    2010-01-01

    Full Text Available Chromobacterium sp. USM2, a locally isolated bacterium was found to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate, P(3HB-co-3HV copolymer with high 3HV monomer composition. The PHA synthase gene was cloned and expressed in Cupriavidus necator PHB¯4 to investigate the possibilities of incorporating other monomer. The recombinant successfully incorporated 3-hydroxyhexanoate (3HHx monomer when fed with crude palm kernel oil (CPKO as the sole carbon source. Approximately 63 ± 2 wt% of P(3HB-co-3HHx copolymer with 4 mol% of 3HHx was synthesized from 5 g/L of oil after 48 h of cultivation. In addition, P(3HB-co-3HV-co-3HHx terpolymer with 9 mol% 3HV and 4 mol% 3HHx could be synthesized with a mixture of CPKO and sodium valerate. The presence of 3HV and 3HHx monomers in the copolymer and terpolymer was further confirmed with +H-NMR analysis. This locally isolated PHA synthase has demonstrated its ability to synthesize P(3HB-co-3HHx copolymer from a readily available and renewable carbon source; CPKO, without the addition of 3HHx precursors.

  8. Monoterpene emissions from a Ponderosa Pine forest. Does age matter?

    Science.gov (United States)

    Madronich, M. B.; Guenther, A. B.; Wessman, C. A.

    2011-12-01

    Determining the emissions rate of biogenic volatile organic carbon (BVOC) from plants is a challenge. Biological variability makes it difficult to assess accurately those emissions rates. It is known that photosynthetic active radiation (PAR), temperature, nutrients as well as the biology of the plant affect emissions. However, less is known about the variability of the emissions with respect to the life cycle of the plants. This study is focusing on the difference of monoterpene emission rates from mature Ponderosa Pine trees and saplings in the field. Preliminary calculations show that there is a significant difference between total monoterpene emissions in mature trees (0.24±0.04 μgC/gdwh) and saplings (0.37±0.02 μgC/gdwh).

  9. Root parasitic plant Orobanche aegyptiaca and shoot parasitic plant Cuscuta australis obtained Brassicaceae-specific strictosidine synthase-like genes by horizontal gene transfer.

    Science.gov (United States)

    Zhang, Dale; Qi, Jinfeng; Yue, Jipei; Huang, Jinling; Sun, Ting; Li, Suoping; Wen, Jian-Fan; Hettenhausen, Christian; Wu, Jinsong; Wang, Lei; Zhuang, Huifu; Wu, Jianqiang; Sun, Guiling

    2014-01-13

    Besides gene duplication and de novo gene generation, horizontal gene transfer (HGT) is another important way of acquiring new genes. HGT may endow the recipients with novel phenotypic traits that are important for species evolution and adaption to new ecological niches. Parasitic systems expectedly allow the occurrence of HGT at relatively high frequencies due to their long-term physical contact. In plants, a number of HGT events have been reported between the organelles of parasites and the hosts, but HGT between host and parasite nuclear genomes has rarely been found. A thorough transcriptome screening revealed that a strictosidine synthase-like (SSL) gene in the root parasitic plant Orobanche aegyptiaca and the shoot parasitic plant Cuscuta australis showed much higher sequence similarities with those in Brassicaceae than with those in their close relatives, suggesting independent gene horizontal transfer events from Brassicaceae to these parasites. These findings were strongly supported by phylogenetic analysis and their identical unique amino acid residues and deletions. Intriguingly, the nucleus-located SSL genes in Brassicaceae belonged to a new member of SSL gene family, which were originated from gene duplication. The presence of introns indicated that the transfer occurred directly by DNA integration in both parasites. Furthermore, positive selection was detected in the foreign SSL gene in O. aegyptiaca but not in C. australis. The expression of the foreign SSL genes in these two parasitic plants was detected in multiple development stages and tissues, and the foreign SSL gene was induced after wounding treatment in C. australis stems. These data imply that the foreign genes may still retain certain functions in the recipient species. Our study strongly supports that parasitic plants can gain novel nuclear genes from distantly related host species by HGT and the foreign genes may execute certain functions in the new hosts.

  10. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G.L.; Astrin, K.H.; Desnick, R.J. [Mount Sinai School of Medicine, New York, NY (United States)

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  11. Low temperature fluidized wood chip drying with monoterpene analysis

    Science.gov (United States)

    Bridget N. Bero; Alarick Reiboldt; Ward Davis; Natalie Bedard; Evan Russell

    2011-01-01

    This paper describes the drying of ponderosa pine wood chips at low (20°C and 50°C) temperatures using a bench-scale batch pulsed fluidizer to evaluate both volatile pine oils (monoterpenes) and moisture losses during drying.

  12. Isolation of developing secondary xylem specific cellulose synthase ...

    Indian Academy of Sciences (India)

    The present study aimed at identifying developing secondary xylem specific cellulose synthase genes from .... the First strand cDNA synthesis kit (Fermentas, Pittsburgh,. USA). .... ing height of the rooted cutting, girth of the stem, leaf area.

  13. Identification, isolation and evaluation of a constitutive sucrose phosphate synthase gene promoter from tomato

    International Nuclear Information System (INIS)

    Naqvi, R.Z.; Mubeen, H.; Maqsood, A.; Khatoon, A.

    2017-01-01

    Sucrose phosphate synthase (SPS) is one of the abundantly expressed genes in plants. The promoters of SPS gene was identified, analyzed and retrieved from high throughput genomic sequence (HTGS) database. The cis-acting regulatory elements and transcription start sites of promoter were identified through different bioinformatics tools. The SPS promoter was isolated from Solanum lycopersicum and was initially cloned in TA vector (pTZ57R/T). Later on this promoter was transferred to a plant expression binary vector, pGR1 (pGRSPS) that was used for the transient GUS expression studies in various tissues of Nicotiana tabacum. SPS promoter was also cloned in plant stable expression vector pGA482 (pGASPS) and was transformed in Nicotiana tabacum through Agrobacterium-mediated transformation method. The histochemical GUS expression analysis of both transient and stable transgenic plants for this promoter indicated its functional importance in regulating gene expression in a constitutive manner. It was concluded that SPS promoter is constitutively expressed with a strength equivalent to CaMV 2X35S promoter. The promoter isolated through these studies may be effectively substituted in plant genetic engineering with other constitutive promoter for transgene expression in economically important agricultural crops. (author)

  14. Monoterpene emissions from Pinus halepensis forests in a semi-arid region (Israel)

    Science.gov (United States)

    Seco, R.; Karl, T.; Turnipseed, A. A.; Greenberg, J.; Guenther, A. B.; Llusia, J.; Penuelas, J.; Kim, S.; Dicken, U.; Rotenberg, E.; Rohatyn, S.; Preisler, Y.; Yakir, D.

    2013-12-01

    Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, and can affect atmospheric chemisty, secondary aerosol formation, and as a consequence also climate. At the same time, global changes in climate arising from human activities can modify the VOC emissions of vegetation in the coming years. Monoterpene emission fluxes were measured during April 2013 at two forests in the semi-arid climate of Israel. Both forests were dominated by the same pine species, Pinus halepensis, but differed in the amount of annual average precipitation received (280 and 800 mm at Yatir and Birya, respectively). Measurements performed included leaf-level sampling as well as canopy-level flux calculations. Leaf level monoterpene emissions were sampled from leaf cuvettes with adsorbent cartridges and later analyzed by GC-MS. Canopy scale fluxes were calculated with the Disjunct Eddy Covariance technique by means of a Quadrupole PTRMS. We report the differences observed between the two forests in terms of photosynthetic activity and monoterpene emissions, aiming to see the effect of the different precipitation regimes at each location.

  15. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    Science.gov (United States)

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  16. Monoterpene persistence in the sapwood and heartwood of longleaf pine stumps: assessment of differences in composition and stability under field conditions

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz

    2009-01-01

    Monoterpenes in exudates, phloem and sapwood have received considerable attention relative to the active defenses of pine trees. However, little is known about the composition and function of the heartwood monoterpenes. To address this deficiency, monoterpene contents and relative compositions were determined for sapwood and heartwood samples from longleaf pine (Pinus...

  17. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-01-01

    Full Text Available The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS and trehalose-6-phosphate phosphatase (TPP pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.

  18. Isolation and identification of a thermophilic strain producing trehalose synthase from geothermal water in China.

    Science.gov (United States)

    Zhu, Yueming; Zhang, Jun; Wei, Dongsheng; Wang, Yufan; Chen, Xiaoyun; Xing, Laijun; Li, Mingchun

    2008-08-01

    A slightly thermophilic strain, CBS-01, producing trehalose synthase (TreS), was isolated from geothermal water in this study. According to the phenotypic characteristics and phylogenetic analysis of the 16s rRNA gene sequence, it was identified as Meiothermus ruber. The trehalose synthase gene of Meiothermus ruber CBS-01 was cloned by polymerase chain reaction and sequenced. The TreS gene consisted of 2,895 nucleotides, which specified a 964-amino-acid protein. This novel TreS catalyzed reversible interconversion of maltose and trehalose.

  19. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome.

    Science.gov (United States)

    Müller, Christina A; Oberauner-Wappis, Lisa; Peyman, Armin; Amos, Gregory C A; Wellington, Elizabeth M H; Berg, Gabriele

    2015-08-01

    Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Likelihood analysis of the chalcone synthase genes suggests the role of positive selection in morning glories (Ipomoea).

    Science.gov (United States)

    Yang, Ji; Gu, Hongya; Yang, Ziheng

    2004-01-01

    Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoides, which are important for the pigmentation of flowers and act as attractants to pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. In morning glories (Ipomoea), five functional CHS genes (A-E) have been described. Phylogenetic analysis of the Ipomoea CHS gene family revealed that CHS A, B, and C experienced accelerated rates of amino acid substitution relative to CHS D and E. To examine whether the CHS genes of the morning glories underwent adaptive evolution, maximum-likelihood models of codon substitution were used to analyze the functional sequences in the Ipomoea CHS gene family. These models used the nonsynonymous/synonymous rate ratio (omega = d(N)/ d(S)) as an indicator of selective pressure and allowed the ratio to vary among lineages or sites. Likelihood ratio test suggested significant variation in selection pressure among amino acid sites, with a small proportion of them detected to be under positive selection along the branches ancestral to CHS A, B, and C. Positive Darwinian selection appears to have promoted the divergence of subfamily ABC and subfamily DE and is at least partially responsible for a rate increase following gene duplication.

  1. Genomic Analysis of Terpene Synthase Family and Functional Characterization of Seven Sesquiterpene Synthases from Citrus sinensis

    Directory of Open Access Journals (Sweden)

    Berta Alquézar

    2017-08-01

    Full Text Available Citrus aroma and flavor, chief traits of fruit quality, are derived from their high content in essential oils of most plant tissues, including leaves, stems, flowers, and fruits. Accumulated in secretory cavities, most components of these oils are volatile terpenes. They contribute to defense against herbivores and pathogens, and perhaps also protect tissues against abiotic stress. In spite of their importance, our understanding of the physiological, biochemical, and genetic regulation of citrus terpene volatiles is still limited. The availability of the sweet orange (Citrus sinensis L. Osbeck genome sequence allowed us to characterize for the first time the terpene synthase (TPS family in a citrus type. CsTPS is one of the largest angiosperm TPS families characterized so far, formed by 95 loci from which just 55 encode for putative functional TPSs. All TPS angiosperm families, TPS-a, TPS-b, TPS-c, TPS-e/f, and TPS-g were represented in the sweet orange genome, with 28, 18, 2, 2, and 5 putative full length genes each. Additionally, sweet orange β-farnesene synthase, (Z-β-cubebene/α-copaene synthase, two β-caryophyllene synthases, and three multiproduct enzymes yielding β-cadinene/α-copaene, β-elemene, and β-cadinene/ledene/allo-aromandendrene as major products were identified, and functionally characterized via in vivo recombinant Escherichia coli assays.

  2. Characterization of two trpE genes encoding anthranilate synthase α-subunit in Azospirillum brasilense

    International Nuclear Information System (INIS)

    Ge Shimei; Xie Baoen; Chen Sanfeng

    2006-01-01

    The previous report from our laboratory has recently identified a new trpE gene (termed trpE 2 ) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE 1 (G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is First report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE 1 (G) while these sequence features did not exist in front of trpE 2 . The β-galactosidase activity of an A. brasilense strain carrying a trpE 2 -lacZ fusion remained constant at different tryptophan concentrations, but the β-galactosidase activity of the same strain carrying a trpE 1 (G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE 1 (G) is regulated at the transcriptional level by attenuation while trpE 2 is constantly expressed. The anthranilate synthase assays with trpE 1 (G) - and trpE 2 - mutants demonstrated that TrpE 1 (G) fusion protein is feedback inhibited by tryptophan while TrpE 2 protein is not. We also found that both trpE 1 (G) and trpE 2 gene products were involved in IAA synthesis

  3. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli

    DEFF Research Database (Denmark)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    2017-01-01

    ). FPP biosynthesis diverts the carbon flux from monoterpene production to C15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate...

  4. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon.

    Science.gov (United States)

    Filiz, Ertugrul; Ozyigit, Ibrahim Ilker; Vatansever, Recep

    2015-10-01

    GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gene expression profiles of inducible nitric oxide synthase and cytokines in Leishmania major-infected macrophage-like RAW 264.7 cells treated with gallic acid

    NARCIS (Netherlands)

    Radtke, O.A.; Kiderlen, A.F.; Kayser, Oliver; Kolodziej, H

    2004-01-01

    The effects of gallic acid on the gene expressions of inducible nitric oxide synthase (iNOS) and the cytokines interleukin (IL)-1, IL-10, IL-12, IL-18, TNF-alpha, and interferon (IFN)-gamma were investigated by reverse-transcription polymerase chain reaction (RT-PCR). The experiments were performed

  6. A novel fast gas chromatography method for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2014-05-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in ambient air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C9-C15 BVOC composition of single plant emissions may be characterised within a 14.5 min analysis time. Moreover, in-situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an 11.7 min chromatographic separation time (increasing to 19.7 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). These analysis times potentially allow for a twofold to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in-situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC (OBVOC) linalool in ambient air. During this field deployment within a suburban forest

  7. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

    Directory of Open Access Journals (Sweden)

    Hiroaki Iwasaka

    2018-04-01

    Full Text Available Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB, phytoene desaturase (crtI and lycopene cyclase (crtY were fused into single gene (crtIBY with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species.

  8. Polyhydroxyalkanoate production by a novel bacterium Massilia sp. UMI-21 isolated from seaweed, and molecular cloning of its polyhydroxyalkanoate synthase gene.

    Science.gov (United States)

    Han, Xuerong; Satoh, Yasuharu; Kuriki, Yumi; Seino, Teruyuki; Fujita, Shinji; Suda, Takanori; Kobayashi, Takanori; Tajima, Kenji

    2014-11-01

    We successfully isolated one microorganism (UMI-21) from Ulva, a green algae that contains starch. The strain UMI-21 can produce polyhydroxyalkanoate (PHA) from starch, maltotriose, or maltose as a sole carbon source. Taxonomic studies and 16S rDNA sequence analysis revealed that strain UMI-21 was phylogenetically related to species of the genus Massilia. The PHA content under the cultivation condition using a 10-L jar fermentor was 45.5% (w/w). This value was higher than that obtained after cultivation in a flask, suggesting the possibility of large-scale PHA production by UMI-21 from starch. A major issue for the industrial production of microbial PHAs is the very high production cost. Starch is a relatively inexpensive substrate that is also found in abundant seaweeds such as Ulva. Therefore, the strain isolated in this study may be very useful for producing PHA from seaweeds containing polysaccharides such as starch. In addition, a 3.7-kbp DNA fragment containing the whole PHA synthase gene (phaC) was obtained from the strain UMI-21. The results of open reading frame (ORF) analysis suggested that the DNA fragment contained two ORFs, which were composed of 1740 (phaC) and 564 bp (phaR). The deduced amino acid sequence of PhaC from strain UMI-21 shared high similarity with PhaC from Ralstonia eutropha, which is a representative PHA-producing bacterium with a class I PHA synthase. This is the first report for the cloning of the PHA synthase gene from Massilia species. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Identification and characterization of two bisabolene synthases from linear glandular trichomes of sunflower (Helianthus annuus L., Asteraceae).

    Science.gov (United States)

    Aschenbrenner, Anna-Katharina; Kwon, Moonhyuk; Conrad, Jürgen; Ro, Dae-Kyun; Spring, Otmar

    2016-04-01

    Sunflower is known to produce a variety of bisabolene-type sesquiterpenes and accumulates these substances in trichomes of leaves, stems and flowering parts. A bioinformatics approach was used to identify the enzyme responsible for the initial step in the biosynthesis of these compounds from its precursor farnesyl pyrophosphate. Based on sequence similarity with a known bisabolene synthases from Arabidopsis thaliana AtTPS12, candidate genes of Helianthus were searched in EST-database and used to design specific primers. PCR experiments identified two candidates in the RNA pool of linear glandular trichomes of sunflower. Their sequences contained the typical motifs of sesquiterpene synthases and their expression in yeast functionally characterized them as bisabolene synthases. Spectroscopic analysis identified the stereochemistry of the product of both enzymes as (Z)-γ-bisabolene. The origin of the two sunflower bisabolene synthase genes from the transcripts of linear trichomes indicates that they may be involved in the synthesis of sesquiterpenes produced in these trichomes. Comparison of the amino acid sequences of the sunflower bisabolene synthases showed high similarity with sesquiterpene synthases from other Asteracean species and indicated putative evolutionary origin from a β-farnesene synthase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.

    Science.gov (United States)

    Gupta, Dinesh; Ip, Tina; Summers, Michael L; Basu, Chhandak

    2015-01-01

    Phytol is a diterpene alcohol of medicinal importance and it also has potential to be used as biofuel. We found over production of phytol in Nostoc punctiforme by expressing a 2-Methyl-3-buten-2-ol (MBO) synthase gene. MBO synthase catalyzes the conversion of dimethylallyl pyrophosphate (DMAPP) into MBO, a volatile hemiterpene alcohol, in Pinus sabiniana. The result of enhanced phytol production in N. punctiforme, instead of MBO, could be explained by one of the 2 models: either the presence of a native prenyltransferase enzyme with a broad substrate specificity, or appropriation of a MBO synthase metabolic intermediate by a native geranyl diphosphate (GDP) synthase. In this work, an expression vector with an indigenous petE promoter for gene expression in the cyanobacterium N. punctiforme was constructed and MBO synthase gene expression was successfully shown using reverse transcriptase (RT)-PCR and SDS-PAGE. Gas chromatography--mass spectrophotometry (GC-MS) was performed to confirm phytol production from the transgenic N. punctiforme strains. We conclude that the expression of MBO synthase in N. punctiforme leads to overproduction of an economically important compound, phytol. This study provides insights about metabolic channeling of isoprenoids in cyanobacteria and also illustrates the challenges of bioengineering non-native hosts to produce economically important compounds.

  11. Structure of the human beta-ketoacyl [ACP] synthase from the mitochondrial type II fatty acid synthase

    DEFF Research Database (Denmark)

    Christensen, Caspar Elo; Kragelund, Birthe B; von Wettstein-Knowles, Penny

    2007-01-01

    Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual...... activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high...... degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic...

  12. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco

    Directory of Open Access Journals (Sweden)

    Yonghai Fan

    2017-12-01

    Full Text Available Galactinol synthase (GolS is a key enzyme in raffinose family oligosaccharide (RFO biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus and tobacco (Nicotiana tabacum remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.

  13. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.

    Science.gov (United States)

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  14. Cloning and Characterization of Farnesyl Diphosphate Synthase Gene Involved in Triterpenoids Biosynthesis from Poria cocos

    Directory of Open Access Journals (Sweden)

    Jianrong Wang

    2014-12-01

    Full Text Available Poria cocos (P. cocos has long been used as traditional Chinese medicine and triterpenoids are the most important pharmacologically active constituents of this fungus. Farnesyl pyrophosphate synthase (FPS is a key enzyme of triterpenoids biosynthesis. The gene encoding FPS was cloned from P. cocos by degenerate PCR, inverse PCR and cassette PCR. The open reading frame of the gene is 1086 bp in length, corresponding to a predicted polypeptide of 361 amino acid residues with a molecular weight of 41.2 kDa. Comparison of the P. cocos FPS deduced amino acid sequence with other species showed the highest identity with Ganoderma lucidum (74%. The predicted P. cocos FPS shares at least four conserved regions involved in the enzymatic activity with the FPSs of varied species. The recombinant protein was expressed in Pichia pastoris and purified. Gas chromatography analysis showed that the recombinant FPS could catalyze the formation of farnesyl diphosphate (FPP from geranyl diphosphate (GPP and isopentenyl diphosphate (IPP. Furthermore, the expression profile of the FPS gene and content of total triterpenoids under different stages of development and methyl jasmonate treatments were determined. The results indicated that there is a positive correlation between the activity of FPS and the amount of total triterpenoids produced in P. cocos.

  15. Characterization of microbial community and the alkylscccinate synthase genes in petroleum reservoir fluids of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lei; Mu, Bo-Zhong [University of Science and Technology (China)], email: bzmu@ecust.edu.cn; Gu, Ji-Dong [The University of Hong Kong (China)], email: jdgu@hkucc.hku.hk

    2011-07-01

    Petroleum reservoirs represent a special ecosystem consisting of specific temperature, pressure, salt concentration, oil, gas, water, microorganisms and, enzymes among others. This paper presents the characterization of microbial community and the alkyl succinate synthase genes in petroleum reservoir fluids in China. A few samples were analyzed and the physical and chemical characteristics are given in a tabular form. A flow chart shows the methods and procedures for microbial activities. Six petroleum reservoirs were studied using an archaeal 16S rRNA gene-based approach to establish the presence of archaea and the results are given. The correlation of archaeal and bacterial communities with reservoir conditions and diversity of the arachaeal community in water-flooding petroleum reservoirs at different temperatures is also shown. From the study, it can be summarized that, among methane producers, CO2-reducing methanogens are mostly found in oil reservoir ecosystems and as more assA sequences are revealed, more comprehensive molecular probes can be designed to track the activity of anaerobic alkane-degrading organisms in the environment.

  16. Analysis of tandem repeat units of the promoter of capsanthin/capsorubin synthase (Ccs) gene in pepper fruit.

    Science.gov (United States)

    Tian, Shi-Lin; Li, Zheng; Li, Li; Shah, S N M; Gong, Zhen-Hui

    2017-07-01

    Capsanthin/capsorubin synthase ( Ccs ) gene is a key gene that regulates the synthesis of capsanthin and the development of red coloration in pepper fruits. There are three tandem repeat units in the promoter region of Ccs , but the potential effects of the number of repetitive units on the transcriptional regulation of Ccs has been unclear. In the present study, expression vectors carrying different numbers of repeat units of the Ccs promoter were constructed, and the transient expression of the β-glucuronidase ( GUS ) gene was used to detect differences in expression levels associated with the promoter fragments. These repeat fragments and the plant expression vector PBI121 containing the 35s CaMV promoter were ligated to form recombinant vectors that were transfected into Agrobacterium tumefaciens GV3101. A fluorescence spectrophotometer was used to analyze the expression associated with the various repeat units. It was concluded that the constructs containing at least one repeat were associated with GUS expression, though they did not differ from one another. This repeating unit likely plays a role in transcription and regulation of Ccs expression.

  17. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter...... volunteers. By applying inverse polymerase chain reaction and direct DNA sequencing, 532 base pairs (bp) of the GS promoter were identified and the transcriptional start site determined by primer extension. SSCP scanning of the promoter region detected five single nucleotide substitutions, positioned at 42......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  18. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  19. Use of octaketide synthases to produce kermesic acid and flavokermesic acid

    DEFF Research Database (Denmark)

    2017-01-01

    A method for producing an octaketide derived aromatic compound of interest (e.g. carminic acid), wherein the method comprises (I): heterologous expression of a recombinantly introduced Type III polyketide synthase (PKS) gene encoding an octaketide synthase (OKS) to obtain non-reduced octaketide...... in vivo within the recombinant host cell and (II): converting in vivo the non-reduced octaketide of step (I) into a C14-C34 aromatic compound of interest (e.g. carminic acid)....

  20. Use of octaketide synthases to produce kermesic acid and flavokermesic acid

    DEFF Research Database (Denmark)

    2016-01-01

    A method for producing an octaketide derived aromatic compound of interest (e.g. carminic acid), wherein the method comprises (I): heterologous expression of a recombinantly introduced Type III polyketide synthase (PKS) gene encoding an octaketide synthase (OKS) to obtain non-reduced octaketide...... in vivo within the recombinant host cell and (II): converting in vivo the non-reduced octaketide of step (I) into a C14-C34 aromatic compound of interest (e.g. carminic acid)....

  1. The ratio and concentration of two monoterpenes mediate fecundity of the pinewood nematode and growth of its associated fungi.

    Directory of Open Access Journals (Sweden)

    Hongtao Niu

    Full Text Available The pinewood nematode (PWN Bursaphelenchus xylophilus, vectored primarily by the sawyer beetle, Monochamus alternatus, is an important invasive pest and causal agent of pine wilt disease of Chinese Masson pine, Pinus massoniana. Previous work demonstrated that the ratios and concentrations of α-pinene:β-pinene differed between healthy trees and those trees containing blue-stain fungus (and M. alternatus pupae. However, the potential influence of the altered monoterpene ratios and concentrations on PWN and associated fungi remained unknown. Our current results show that low concentrations of the monoterpenes within petri dishes reduced PWN propagation, whereas the highest concentration of the monoterpenes increased PWN propagation. The propagation rate of PWN treated with the monoterpene ratio representative of blue-stain infected pine (α-pinene:β-pinene = 1:0.8, 137.6 mg/ml was significantly higher than that (α-pinene:β-pinene = 1:0.1, 137.6 mg/ml representative of healthy pines or those damaged by M. alternatus feeding, but without blue stain. Furthermore, inhibition of mycelial growth of associated fungi increased with the concentration of the monoterpenes α-pinene and β-pinene. Additionally, higher levels of β-pinene (α-pinene:β-pinene = 1:0.8 resulted in greater inhibition of the growth of the associated fungi Sporothrix sp.2 and Ophiostoma ips strains, but had no significant effects on the growth of Sporothrix sp.1, which is the best food resource for PWN. These results suggest that host monoterpenes generally reduce the reproduction of PWN. However, PWN utilizes high monoterpene concentrations and native blue-stain fungus Sporothrix sp.1 to improve its own propagation and overcome host resistance, which may provide clues to understanding the ecological mechanisms of PWN's successful invasion.

  2. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    Science.gov (United States)

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  3. Impaired glycogen synthase activity and mitochondrial dysfunction in skeletal muscle

    DEFF Research Database (Denmark)

    Højlund, Kurt; Beck-Nielsen, Henning

    2006-01-01

    Insulin resistance in skeletal muscle is a major hallmark of type 2 diabetes and an early detectable abnormality in the development of this disease. The cellular mechanisms of insulin resistance include impaired insulin-mediated muscle glycogen synthesis and increased intramyocellular lipid content......, whereas impaired insulin activation of muscle glycogen synthase represents a consistent, molecular defect found in both type 2 diabetic and high-risk individuals. Despite several studies of the insulin signaling pathway believed to mediate dephosphorylation and hence activation of glycogen synthase......, the molecular mechanisms responsible for this defect remain unknown. Recently, the use of phospho-specific antibodies in human diabetic muscle has revealed hyperphosphorylation of glycogen synthase at sites not regulated by the classical insulin signaling pathway. In addition, novel approaches such as gene...

  4. Biosynthesis of Akaeolide and Lorneic Acids and Annotation of Type I Polyketide Synthase Gene Clusters in the Genome of Streptomyces sp. NPS554

    Directory of Open Access Journals (Sweden)

    Tao Zhou

    2015-01-01

    Full Text Available The incorporation pattern of biosynthetic precursors into two structurally unique polyketides, akaeolide and lorneic acid A, was elucidated by feeding experiments with 13C-labeled precursors. In addition, the draft genome sequence of the producer, Streptomyces sp. NPS554, was performed and the biosynthetic gene clusters for these polyketides were identified. The putative gene clusters contain all the polyketide synthase (PKS domains necessary for assembly of the carbon skeletons. Combined with the 13C-labeling results, gene function prediction enabled us to propose biosynthetic pathways involving unusual carbon-carbon bond formation reactions. Genome analysis also indicated the presence of at least ten orphan type I PKS gene clusters that might be responsible for the production of new polyketides.

  5. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily

    DEFF Research Database (Denmark)

    Hansen, Nikolaj Lervad; Heskes, Allison Maree; Hamberger, Britta

    2017-01-01

    Tripterygium wilfordii (Celastraceae) is a medicinal plant with anti-inflammatory and immunosuppressive properties. Identification of a vast array of unusual sesquiterpenoids, diterpenoids and triterpenoids in T. wilfordii has spurred investigations of their pharmacological properties. The tri-ep...

  6. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  7. Altering the expression of two chitin synthase genes differentially affects the growth and morphology of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Müller, Christian; Hjort, C.M.; Hansen, K.

    2002-01-01

    In Aspergillus oryzae, one full-length chitin synthase (chsB) and fragments of two other chitin synthases (csmA and chsC) were identified. The deduced amino acid sequence of chsB was similar (87% identity) to chsB from Aspergillus nidulans, which encodes a class III chitin synthase. The sequence...

  8. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail.In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought.RDR1 is regulated by a much broader range of phytohormones than previously thought, indicating that it plays roles beyond those already suggested in virus

  9. Xylem monoterpenes of pines: distribution, variation, genetics, function

    Science.gov (United States)

    Richard Smith

    2000-01-01

    The monoterpenes of about 16,000 xylem resin samples of pine (Pinus) speciesand hybrids—largely from the western United States—were analyzed in this long-term study of the resistance of pines to attack by bark beetles (Coleoptera:Scolytidae), with special emphasis on resistance to the western pine beetle(Dendroctonus brevicomis). The samples were analyzed by gas liquid...

  10. Characterization of D-myo-inositol 3-phosphate synthase gene expression in two soybean low phytate mutants

    International Nuclear Information System (INIS)

    Yuan Fengjie; Dong Dekun; Li Baiquan; Yu Xiaomin; Fu Xujun; Zhu Danhua; Zhu Shenlong; Yang Qinghua

    2013-01-01

    1D-myo-inositol 3-phosphate synthase (MIPS) gene plays a significant role in phytic acid biosynthesis. In this study, we used two low phytic acid mutants Gm-lpa-TW-1, Gm-lpa-ZC-2 and their respective wild type parents Taiwan75 and Zhechun No.3 to analyze the expression pattern and characterization of MIPS1 gene. The results showed that there was a common expression pattern of MIPS1 in soybean developing seeds. Expression was weak as detected by RT-PCR in initial stage, increased in the following stages, and the peak expression was appeared in 22 day after flowering (DAF). The expression of MIPS1 gene of non-seed tissues in mutant Gm-lpa-TW-1 and its wildtype Taiwan75 was very weak. In the developing seeds, the MIPS1 expression by qRT-PCR revealed a significant reduction in 22 DAF in mutant Gm-lpa-TW-1 as compared with the wildtype. Similarly, the expression of MIPS1 gene in non-seed tissue of Zhenchun No.3 and Gm-lpa-ZC-2 was very weak. However, stronger expression in developing seeds of the mutant Gm-lpa-ZC-2 than Zhechun No.3 was found. We concluded that the MIPS1 gene expression in the developing seed exhibited an up-regulation pattern in mutant Gm-lpa-ZC-2, but a down-regulation pattern in the mutant Gm-lpa-TW-1. (authors)

  11. Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd.

    Science.gov (United States)

    Jin, Mei Lan; Lee, Woo Moon; Kim, Ok Tae

    2017-11-15

    Oxidosqualene cyclases (OSCs) are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA), RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated) were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG) values calculated by fragments per kilobase million (FPKM). In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1 , and PtCAS2 , were found, in addition to the PtBS (β-amyrin synthase) gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia . All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.

  12. Two Cycloartenol Synthases for Phytosterol Biosynthesis in Polygala tenuifolia Willd

    Directory of Open Access Journals (Sweden)

    Mei Lan Jin

    2017-11-01

    Full Text Available Oxidosqualene cyclases (OSCs are enzymes that play a key role in control of the biosynthesis of phytosterols and triterpene saponins. In order to uncover OSC genes from Polygala tenuifolia seedlings induced by methyl jasmonate (MeJA, RNA-sequencing analysis was performed using the Illumina sequencing platform. A total of 148,488,632 high-quality reads from two samples (control and the MeJA treated were generated. We screened genes related to phytosterol and triterpene saponin biosynthesis and analyzed the transcriptional changes of differentially expressed unigene (DEUG values calculated by fragments per kilobase million (FPKM. In our datasets, two full-length cDNAs of putative OSC genes, PtCAS1, and PtCAS2, were found, in addition to the PtBS (β-amyrin synthase gene reported in our previous studies and the two cycloartenol synthase genes of P. tenuifolia. All genes were isolated and characterized in yeast cells. The functional expression of the two PtCAS genes in yeast cells showed that the genes all produce a cycloartenol as the sole product. When qRT-PCR analysis from different tissues was performed, the expressions of PtCAS1 and PtCAS2 were highest in flowers and roots, respectively. After MeJA treatment, the transcripts of PtCAS1 and PtCAS2 genes increased by 1.5- and 2-fold, respectively. Given these results, we discuss the potential roles of the two PtCAS genes in relation to triterpenoid biosynthesis.

  13. Molecular characterization of two alkylresorcylic acid synthases from Sordariomycetes fungi

    DEFF Research Database (Denmark)

    Ramakrishnan, Dhivya; Tiwari, Manish Kumar; Manoharan, Gomathi

    2018-01-01

    Two putative type III polyketide synthase genes (PKS) were identified from Sordariomycetes fungi. These two type III PKS genes from Sordaria macrospora (SmPKS) and Chaetomium thermophilum (CtPKS), shared 59.8% sequence identity. Both, full-length and truncated versions of type III PKSs were...

  14. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  15. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide.

    Science.gov (United States)

    Souto-Maior, Flávia Negromonte; Fonsêca, Diogo Vilar da; Salgado, Paula Regina Rodrigues; Monte, Lucas de Oliveira; de Sousa, Damião Pergentino; de Almeida, Reinaldo Nóbrega

    2017-12-01

    Linalool oxide (OXL) (a monoterpene) is found in the essential oils of certain aromatic plants, or it is derived from linalool. The motivation for this work is the lack of psychopharmacological studies on this substance. To evaluate OXL's acute toxicity, along with its anticonvulsant and antinociceptive activities in male Swiss mice. OXL (50, 100 and 150 mg/kg, i.p.) was investigated for acute toxicity and in the Rota-rod test. Antinociceptive activity was evaluated by the acetic acid-induced writhing test, and by formalin testing. Anticonvulsant effects were demonstrated by testing for pentylenetetrazol (PTZ)-induced seizures and by Maximum Electroshock headset (MES) test. OXL was administered to the animals intraperitoneally 30 min before for pharmacological tests. OXL showed an LD 50 of ∼721 (681-765) mg/kg. In the Rota-rod test, it was observed that OXL caused no damage to the animal's motor coordination. OXL significantly reduced (p monoterpene may lead to the development of a new molecule with even higher potency and selectivity.

  16. Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature

    Science.gov (United States)

    Song, W.; Staudt, M.; Bourgeois, I.; Williams, J.

    2014-03-01

    Plants emit significant amounts of monoterpenes into the earth's atmosphere, where they react rapidly to form a multitude of gas phase species and particles. Many monoterpenes exist in mirror-image forms or enantiomers. In this study the enantiomeric monoterpene profile for several representative plants (Quercus ilex L., Rosmarinus officinalis L., and Pinus halepensis Mill.) was investigated as a function of chemotype, light and temperature both in the laboratory and in the field. Analysis of enantiomeric monoterpenes from 19 Quercus ilex individuals from Southern France and Spain revealed four regiospecific chemotypes (genetically fixed emission patterns). In agreement with previous work, only Quercus ilex emissions increased strongly with light. However, for all three plant species no consistent enantiomeric variation was observed as a function of light, and the enantiomeric ratio of α-pinene was found to vary by less than 20% from 100 and 1000 μmol m-2 s-1 PAR (photosynthetically active radiation). The rate of monoterpene emission increased with temperature from all three plant species, but little variation in the enantiomeric distribution of α-pinene was observed with temperature. There was more enantiomeric variability between individuals of the same species than could be induced by either light or temperature. Field measurements of α-pinene enantiomer mixing ratios in the air, taken at a Quercus ilex forest in Southern France, and several other previously reported field enantiomeric ratio diel cycle profiles are compared. All show smoothly varying diel cycles (some positive and some negative) even over changing wind directions. This is surprising in comparison with variations of enantiomeric emission patterns shown by individuals of the same species.

  17. Monoterpene oxidation in an oxidative flow reactor: SOA yields and the relationship between bulk gas-phase properties and organic aerosol growth

    Science.gov (United States)

    Friedman, B.; Link, M.; Farmer, D.

    2016-12-01

    We use an oxidative flow reactor (OFR) to determine the secondary organic aerosol (SOA) yields of five monoterpenes (alpha-pinene, beta-pinene, limonene, sabinene, and terpinolene) at a range of OH exposures. These OH exposures correspond to aging timescales of a few hours to seven days. We further determine how SOA yields of beta-pinene and alpha-pinene vary as a function of seed particle type (organic vs. inorganic) and seed particle mass concentration. We hypothesize that the monoterpene structure largely accounts for the observed variance in SOA yields for the different monoterpenes. We also use high-resolution time-of-flight chemical ionization mass spectrometry to calculate the bulk gas-phase properties (O:C and H:C) of the monoterpene oxidation systems as a function of oxidant concentrations. Bulk gas-phase properties can be compared to the SOA yields to assess the capability of the precursor gas-phase species to inform the SOA yields of each monoterpene oxidation system. We find that the extent of oxygenated precursor gas-phase species corresponds to SOA yield.

  18. HAEM SYNTHASE AND COBALT PORPHYRIN SYNTHASE IN VARIOUS MICRO-ORGANISMS.

    Science.gov (United States)

    PORRA, R J; ROSS, B D

    1965-03-01

    1. The preparation of a crude extract of Clostridium tetanomorphum containing cobalt porphyrin synthase but little haem-synthase activity is described. 2. The properties of cobalt porphyrin synthase in the clostridial extracts is compared with the properties of a haem synthase present in crude extracts of the yeast Torulopsis utilis. 3. Cobalt porphyrin synthase in extracts of C. tetanomorphum inserts Co(2+) ions into the following dicarboxylic porphyrins in descending order of rate of insertion: meso-, deutero- and proto-porphyrins. Esterification renders meso- and deutero-porphyrins inactive as substrates. Neither the tetracarboxylic (coproporphyrin III) nor the octacarboxylic (uroporphyrin III) compounds are converted into cobalt porphyrins by the extract, but the non-enzymic incorporation of Co(2+) ions into these two porphyrins is rapid. These extracts are unable to insert Mn(2+), Zn(2+), Mg(2+) or Cu(2+) ions into mesoporphyrin. 4. Crude extracts of T. utilis readily insert both Co(2+) and Fe(2+) ions into deutero-, meso, and proto-porphyrins. Unlike the extracts of C. tetanomorphum, these preparations catalyse the insertion of Co(2+) ions into deuteroporphyrin more rapidly than into mesoporphyrin. This parallels the formation of haems by the T. utilis extract. 5. Cobalt porphyrin synthase is present in the particulate fraction of the extracts of C. tetanomorphum but requires a heat-stable factor present in the soluble fraction. This soluble factor can be replaced by GSH. 6. Cobalt porphyrin synthase in the clostridial extract is inhibited by iodoacetamide and to a smaller extent by p-chloromercuribenzoate and N-ethylmaleimide. The haem synthases of T. utilis and Micrococcus denitrificans are also inhibited by various thiol reagents.

  19. Citric acid production and citrate synthase genes in distinct strains of ...

    African Journals Online (AJOL)

    SAM

    2014-05-28

    May 28, 2014 ... synthase in lactic acid production by A. niger and with the ... A number of microorganisms, including both bacteria and fungi, possess the capacity ..... citric acid production by solid-state fermentation from cassava bagasse and ...

  20. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple.

    Science.gov (United States)

    Chen, Xiaoe; Yang, Wei; Zhang, Liqin; Wu, Xianmiao; Cheng, Tian; Li, Guanglin

    2017-10-01

    Terpene synthases (TPSs) are vital for the biosynthesis of active terpenoids, which have important physiological, ecological and medicinal value. Although terpenoids have been reported in pineapple (Ananas comosus), genome-wide investigations of the TPS genes responsible for pineapple terpenoid synthesis are still lacking. By integrating pineapple genome and proteome data, twenty-one putative terpene synthase genes were found in pineapple and divided into five subfamilies. Tandem duplication is the cause of TPS gene family duplication. Furthermore, functional differentiation between each TPS subfamily may have occurred for several reasons. Sixty-two key amino acid sites were identified as being type-II functionally divergence between TPS-a and TPS-c subfamily. Finally, coevolution analysis indicated that multiple amino acid residues are involved in coevolutionary processes. In addition, the enzyme activity of two TPSs were tested. This genome-wide identification, functional and evolutionary analysis of pineapple TPS genes provide a new insight into understanding the roles of TPS family and lay the basis for further characterizing the function and evolution of TPS gene family. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Association of a neuronal nitric oxide synthase gene polymorphism with levodopa-induced dyskinesia in Parkinson's disease.

    Science.gov (United States)

    Santos-Lobato, Bruno Lopes; Borges, Vanderci; Ferraz, Henrique Ballalai; Mata, Ignacio Fernandez; Zabetian, Cyrus P; Tumas, Vitor

    2018-04-01

    Levodopa-induced dyskinesia (LID) is a common complication of advanced Parkinson's disease (PD). PD physiopathology is associated with dopaminergic and non-dopaminergic pathways, including the nitric oxide system. The present study aims to examine the association of a neuronal nitric oxide synthase gene (NOS1) single nucleotide polymorphism (rs2682826) with LID in PD patients. We studied 186 PD patients using levodopa. The presence of LID was defined as a MDS-UPDRS Part IV score ≥1 on item 4.1. We tested for association between NOS1 rs2682826 and the presence, daily frequency, and functional impact of LID using regression models, adjusting for important covariates. There was no significant association between genotype and any of the LID-related variables examined. Our results suggest that this NOS1 polymorphism does not contribute to LID susceptibility or severity. However, additional studies that include a comprehensive set of NOS1 variants will be needed to fully define the role of this gene in LID. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Aspirin inhibits interleukin 1-induced prostaglandin H synthase expression in cultured endothelial cells

    International Nuclear Information System (INIS)

    Wu, K.K.; Sanduja, R.; Tsai, A.L.; Ferhanoglu, B.; Loose-Mitchell, D.S.

    1991-01-01

    Prostaglandin H (PGH) synthase is a key enzyme in the biosynthesis of prostaglandins, thromboxane, and prostacyclin. In cultured human umbilical vein endothelial cells, interleukin 1 (IL-1) is known to induce the synthesis of this enzyme, thereby raising the level of PGH synthase protein severalfold over the basal level. Pretreatment with aspirin at low concentrations inhibited more than 60% of the enzyme mass and also the cyclooxygenase activity in IL-1-induced cells with only minimal effects on the basal level of the synthase enzyme in cells without IL-1. Sodium salicylate exhibited a similar inhibitory action whereas indomethacin had no apparent effect. Similarly low levels of aspirin inhibited the increased L-[ 35 S]methionine incorporation into PGH synthase that was induced by IL0-1 and also suppressed expression of the 2.7-kilobase PGH synthase mRNA. These results suggest that in cultured endothelial cells a potent inhibition of eicosanoid biosynthetic capacity can be effected by aspirin or salicylate at the level of PGH synthase gene expression. The aspirin effect may well be due to degradation of salicylate

  3. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    Science.gov (United States)

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  4. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  5. SEQUENCE OF THE STRUCTURAL GENE FOR GRANULE-BOUND STARCH SYNTHASE OF POTATO (SOLANUM-TUBEROSUM L) AND EVIDENCE FOR A SINGLE POINT DELETION IN THE AMF ALLELE

    NARCIS (Netherlands)

    van der Leij, Feike R.; VISSER, RGF; Ponstein, Anne S.; Jacobsen, Evert; Feenstra, Willem

    The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type

  6. Genome-wide analysis of the cellulose synthase-like (Csl) gene family in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Kaur, Simerjeet; Dhugga, Kanwarpal S; Beech, Robin; Singh, Jaswinder

    2017-11-03

    Hemicelluloses are a diverse group of complex, non-cellulosic polysaccharides, which constitute approximately one-third of the plant cell wall and find use as dietary fibres, food additives and raw materials for biofuels. Genes involved in hemicellulose synthesis have not been extensively studied in small grain cereals. In efforts to isolate the sequences for the cellulose synthase-like (Csl) gene family from wheat, we identified 108 genes (hereafter referred to as TaCsl). Each gene was represented by two to three homeoalleles, which are named as TaCslXY_ZA, TaCslXY_ZB, or TaCslXY_ZD, where X denotes the Csl subfamily, Y the gene number and Z the wheat chromosome where it is located. A quarter of these genes were predicted to have 2 to 3 splice variants, resulting in a total of 137 putative translated products. Approximately 45% of TaCsl genes were located on chromosomes 2 and 3. Sequences from the subfamilies C and D were interspersed between the dicots and grasses but those from subfamily A clustered within each group of plants. Proximity of the dicot-specific subfamilies B and G, to the grass-specific subfamilies H and J, respectively, points to their common origin. In silico expression analysis in different tissues revealed that most of the genes were expressed ubiquitously and some were tissue-specific. More than half of the genes had introns in phase 0, one-third in phase 2, and a few in phase 1. Detailed characterization of the wheat Csl genes has enhanced the understanding of their structural, functional, and evolutionary features. This information will be helpful in designing experiments for genetic manipulation of hemicellulose synthesis with the goal of developing improved cultivars for biofuel production and increased tolerance against various stresses.

  7. Alternative splicing of the porcine glycogen synthase kinase 3β (GSK-3β gene with differential expression patterns and regulatory functions.

    Directory of Open Access Journals (Sweden)

    Linjie Wang

    Full Text Available Glycogen synthase kinase 3 (GSK3α and GSK3β are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer's disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.

  8. Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-alpha-pinene and (-)-beta-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate

    International Nuclear Information System (INIS)

    Croteau, R.B.; Wheeler, C.J.; Cane, D.E.; Ebert, R.; Ha, H.J.

    1987-01-01

    To determine whether the bicyclic monoterpene olefins (-)-alpha-pinene and (-)-beta-pinene arise biosynthetically from the same monoterpene cyclase by alternate deprotonations of a common carbocationic intermediate, the product distributions arising from the acyclic precursor [10- 2 H 3 ,1- 3 H]geranyl pyrophosphate were compared with those resulting from incubation of [1-3H]geranyl pyrophosphate with (-)-pinene cyclase from Salvia officinalis. Alteration in proportions of the olefinic products generated by the partially purified pinene cyclase resulted from the suppression of the formation of (-)-beta-pinene (C10 deprotonation) by a primary deuterium isotope effect with a compensating stimulation of the formation of (-)-alpha-pinene (C4 deprotonation). (-)-Pinene cyclase as well as (+)-pinene cyclase also exhibited a decrease in the proportion of the acyclic olefin myrcene generated from the deuteriated substrate, accompanied by a corresponding increase in the commitment to cyclized products. The observation of isotopically sensitive branching, in conjunction with quantitation of the magnitude of the secondary deuterium isotope effect on the overall rate of product formation by the (+)- and (-)-pinene cyclases as well as two other monoterpene cyclases from the same tissue, supports the biosynthetic origin of (-)-alpha-pinene and (-)-beta-pinene by alternative deprotonations of a common enzymatic intermediate. A biogenetic scheme consistent with these results is presented, and alternate proposals for the origin of the pinenes are addressed

  9. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    Science.gov (United States)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  10. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content

    OpenAIRE

    Wilson, Wayne A.; Boyer, Michael P.; Davis, Keri D.; Burke, Michael; Roach, Peter J.

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilize Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase is located within cells. We demonstrate that the localization pattern of Gsy2-GFP depends upon the glycogen content of the cell. When glyco...

  11. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    International Nuclear Information System (INIS)

    Dotson, G.D.; Woodard, R.W.

    1994-01-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3 2 H)PEP, (2- 13 C)PEP, and (2- 13 C, 18 O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our 1 H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3- 2 H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3- 2 H)PEP gave predominantly (3S)-(3 2 H)KDO 8-P and (E)-(3- 2 H)PEP gave predominantly (3R)-(3 2 H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2- 13 C, 18 O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both 13 C- and 31 P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the 18 O

  12. Mechanistic studies of 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, G.D.; Woodard, R.W. [Univ. of Michigan, Ann Arbor, MI (United States)

    1994-12-01

    The enzyme 3-deOXY-D-manno-octulosonic acid 8-phosphate synthase (KDO 8-P synthase) catalyses the condensation of arabinose 5-phosphate (A 5-P) with phosphoenolpyruvate (PEP) to give the unique eight-carbon acidic sugar 3-deoxy-D-nianno-octulosonic acid 8-phosphate (KDO 8-P) found only in gram-negative bacteria and required for lipid A maturation and cellular growth. The E. coli gene kdsA that encodes KDO 8-P synthase has been amplified by standard PCR methodologies. The synthetic gene, subcloned into the expression vector pT7-7 was used to infect E. coli BL 21 (DE 3). Purification of crude supernatant from this transformant on Q Sepharose yields >200 mg of near-homogeneous KDO 8-P synthase per liter of cell culture. To explore the mechanism of KDO 8-P synthase, we prepared (E)- and (Z)-(3{sup 2}H)PEP, (2-{sup 13}C)PEP, and (2-{sup 13}C,{sup 18}O)PEP chemically from the appropriately labeled 3-bromopyruvates by reaction with trimethylphosphite under Perkow reaction conditions. Our {sup 1}H-NMR analysis of the stereochemistry at C3 of the KDO 8-Ps, obtained by separate incubation of (E)- and (Z)-(3-{sup 2}H)PEP with A 5-P in the presence of KDO 8-P synthase, demonstrated that the reaction is stereospecific with respect to both the C3 of PEP and the C1 carbonyl of A 5-P. (Z)-(3-{sup 2}H)PEP gave predominantly (3S)-(3{sup 2}H)KDO 8-P and (E)-(3-{sup 2}H)PEP gave predominantly (3R)-(3{sup 2}H)KDO-8P, which indicates condensation of the si face of PEP upon the re face of A 5-P-an orientation analogous to that seen with the similar aldehyde Iyase DAH 7-P synthase. The fate of the enolic oxygen of (2-{sup 13}C, {sup 18}O)PEP, during the course of the KDO 8-P synthase-catalyzed reaction as monitored by both {sup 13}C- and {sup 31}P-NMR spectroscopy demonstrated that the inorganic phosphate (Pi) and not the KDO 8-P contained the {sup 18}O.

  13. Analysis of trends in isoprene and monoterpenes in a remote forest and an anthropogenic influenced forest

    Science.gov (United States)

    Usenko, S.; Sheesley, R. J.; Winfield, Z.; Yoon, S.; Erickson, M.; Flynn, J. H., III; Alvarez, S. L.; Wallace, H. W., IV; Griffin, R. J.

    2017-12-01

    The University of Houston Mobile Air Quality Laboratory (MAQL) was deployed to the University of Michigan Biological Station (UMBS) in July 2016 as part of the PROPHET-AMOS study and then was deployed to Jones Forest located north of Houston, TX from August 12 through September 23, 2016. Both sites are heavily forested, but UMBS is remote with no anthropogenic influence while Jones Forest sees frequent pollution transport from Houston. UMBS experienced periods of high isoprene:monoterpenes and periods of equivalent isoprene:monoterpenes, while Jones Forest had a consistently high isoprene:monoterpenes. This provided for a test bed to look at the interactions within two forested environments as well as the influence of anthropogenic sources. The MAQL was outfitted to measure O3 (2B Technology), NOy and SO2 (Thermo Scientific), NO/NOx (Air Quality Design), CO (Los Gatos), and select biogenic volatile organic carbon (BVOC) with their oxidation products (Ionicon PTR-MS). The instruments sampled from MAQL's 6 m tower at both sites. The UMBS site was below canopy and the Jones Forest site was in an open field surrounded by forest. The trends in isoprene and monoterpenes were explored in relation to time-of-day, temperature, and precipitation for both locations. In addition, the production of methyl vinyl ketone and methacrolein under these different conditions of meteorology, trace gas composition and BVOC composition was explored.

  14. Role of de novo biosynthesis in ecosystem scale monoterpene emissions from a boreal Scots pine forest

    Directory of Open Access Journals (Sweden)

    R. Taipale

    2011-08-01

    Full Text Available Monoterpene emissions from Scots pine have traditionally been assumed to originate as evaporation from specialized storage pools. More recently, the significance of de novo emissions, originating directly from monoterpene biosynthesis, has been recognized. To study the role of biosynthesis at the ecosystem scale, we measured monoterpene emissions from a Scots pine dominated forest in southern Finland using the disjunct eddy covariance method combined with proton transfer reaction mass spectrometry. The interpretation of the measurements was based on a correlation analysis and a hybrid emission algorithm describing both de novo and pool emissions. During the measurement period May–August 2007, the monthly medians of daytime emissions were 200, 290, 180, and 200 μg m−2 h−1. The emissions were partly light dependent, probably due to de novo biosynthesis. The emission potential for both de novo and pool emissions exhibited a decreasing summertime trend. The ratio of the de novo emission potential to the total emission potential varied between 30 % and 46 %. Although the monthly changes were not significant, the ratio always differed statistically from zero, suggesting that the role of de novo biosynthesis was observable. Given the uncertainties in this study, we conclude that more accurate estimates of the contribution of de novo emissions are required for improving monoterpene emission algorithms for Scots pine dominated forests.

  15. Silybin content and overexpression of chalcone synthase genes in Silybum marianum L. plants under abiotic elicitation.

    Science.gov (United States)

    El-Garhy, Hoda A S; Khattab, Salah; Moustafa, Mahmoud M A; Abou Ali, Rania; Abdel Azeiz, Ahmed Z; Elhalwagi, Abeer; El Sherif, Fadia

    2016-11-01

    Silymarin, a Silybum marianum seed extract containing a mixture of flavonolignans including silybin, is being used as an antihepatotoxic therapy for liver diseases. In this study, the enhancing effect of gamma irradiation on plant growth parameters of S. marianum under salt stress was investigated. The effect of gamma irradiation, either as a single elicitor or coupled with salinity, on chalcone synthase (CHS) gene expression and silybin A + B yield was also evaluated. The silybin A + B content in S. marianum fruits was estimated by liquid chromatography-mass spectrometry (LC-MS/MS). An increase in silybin content was accompanied by up-regulation of the CHS1, CHS2 and CHS3 genes, which are involved in the silybin biosynthetic pathway. The highest silybin A + B production (0.77 g/100 g plant DW) and transcript levels of the three studied genes (100.2-, 91.9-, and 24.3-fold increase, respectively) were obtained with 100GY gamma irradiation and 4000 ppm salty water. The CHS2 and CHS3 genes were partially sequenced and submitted to the NCBI database under the accession numbers KT252908.1 and KT252909.1, respectively. Developing new approaches to stimulate silybin biosynthetic pathways could be a useful tool to potentiate the use of plants as renewable resources of medicinal compounds. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    Science.gov (United States)

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  17. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  18. Variations in the monoterpene composition of ponderosa pine wood oleoresin

    Science.gov (United States)

    Richard H. Smith

    1964-01-01

    A wide range in quantitative composition of the wood oleoresin monoterpenes was found among 64 ponderosa pines in the central Sierra Nevada by gas chromatographic analysis. An inverse relationship was found in the amount of β-pinene and Δ3-carene. Practically no difference in composition could be associated with (a) type of...

  19. CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2008-07-01

    Full Text Available The ability of secondary organic aerosol (SOA produced from the ozonolysis of α-pinene and monoterpene mixtures (α-pinene, β-pinene, limonene and 3-carene to become cloud droplets was investigated. A static CCN counter and a Scanning Mobility CCN Analyser (a Scanning Mobility Particle Sizer coupled with a Continuous Flow counter were used for the CCN measurements. Consistent with previous studies monoterpene SOA is quite active and would likely be a good source of cloud condensation nuclei (CCN in the atmosphere. A decrease in CCN activation diameter for α-pinene SOA of approximately 3 nm hr−1 was observed as the aerosol continued to react with oxidants. Hydroxyl radicals further oxidize the SOA particles thereby enhancing the particle CCN activity with time. The initial concentrations of ozone and monoterpene precursor (for concentrations lower than 40 ppb do not appear to affect the activity of the resulting SOA. Köhler Theory Analysis (KTA is used to infer the molar mass of the SOA sampled online and offline from atomized filter samples. The estimated average molar mass of online SOA was determined to be 180±55 g mol−1 (consistent with existing SOA speciation studies assuming complete solubility. KTA suggests that the aged aerosol (both from α-pinene and the mixed monoterpene oxidation is primarily water-soluble (around 65%. CCN activity measurements of the SOA mixed with (NH42SO4 suggest that the organic can depress surface tension by as much as 10 N m−1 (with respect to pure water. The droplet growth kinetics of SOA samples are similar to (NH42SO4, except at low supersaturation, where SOA tends to grow more slowly. The CCN activation diameter of α-pinene and mixed monoterpene SOA can be modelled to within 10–15% of experiments by a simple implementation of Köhler theory, assuming complete dissolution of the particles, no

  20. of endothelial nitric oxide synthase gene and serum level of vascular ...

    African Journals Online (AJOL)

    uwerhiavwe

    Davignon and Ganz, 2004). NO is synthe- sized via a reaction that includes the conversion of L- arginine to L-citruline catalyzed by endothelial nitric oxide synthase (eNOS), which is one of the three isoforms of the enzyme (Mayer and Hemmens, 1997) ...

  1. Factors influencing gene silencing of granule-bound starch synthase in potato

    NARCIS (Netherlands)

    Heilersig, H.J.B.

    2005-01-01

    In the past, antisense RNA technology was used to modify the composition of potato tuber starch. Potato starch comprises amylose and amylopectin, polymers of glucose. Amylose production in potato is completely dependent on the presence of granule-bound starch synthase I (GBSSI). Inhibition of GBSSI

  2. Oil production at different stages of leaf development in Lippia alba

    Directory of Open Access Journals (Sweden)

    Diego Pandeló

    2012-06-01

    Full Text Available The aim of this work was to analyze terpene oil production and terpene synthases (TPS gene expression from leaves at different developmental stages of different chemotypes of Lippia alba (Mill. N.E. Br. ex Britton & P. Wilson, Verbenaceae. Hydro-distilled essential oil were used for chemical analysis and gene expression of three monoterpene synthase genes called LaTPS12, LaTPS23 and LaTPS25 were used for analyses of gene expression associated to oil production. The putative genes were associated to TPS-b gene class. Semi-quantitative PCR and quantitative PCR (qPCR analysis were used to investigate the expression profile of those three putative genes in different leaf stages and different chemotypes. Additionally, total oil production and gene expression of putative TPS genes cloned from L. alba chemotype linalool were evaluated at different stages of leaf development. The expression level of those three genes was higher when the highest oil production was observed, mainly in young leaves at the fourth nodal segment for all evaluated chemotypes. Total oil production was higher at leaves that had unopened trichomes. We also observed that the 1mM of MeJA treatment increased the gene expression in all chemotypes after 24 h elicitation.

  3. Oil production at different stages of leaf development in Lippia alba

    Directory of Open Access Journals (Sweden)

    Diego Pandeló

    2012-01-01

    Full Text Available The aim of this work was to analyze terpene oil production and terpene synthases (TPS gene expression from leaves at different developmental stages of different chemotypes of Lippia alba (Mill. N.E. Br. ex Britton & P. Wilson, Verbenaceae. Hydro-distilled essential oil were used for chemical analysis and gene expression of three monoterpene synthase genes called LaTPS12, LaTPS23 and LaTPS25 were used for analyses of gene expression associated to oil production. The putative genes were associated to TPS-b gene class. Semi-quantitative PCR and quantitative PCR (qPCR analysis were used to investigate the expression profile of those three putative genes in different leaf stages and different chemotypes. Additionally, total oil production and gene expression of putative TPS genes cloned from L. alba chemotype linalool were evaluated at different stages of leaf development. The expression level of those three genes was higher when the highest oil production was observed, mainly in young leaves at the fourth nodal segment for all evaluated chemotypes. Total oil production was higher at leaves that had unopened trichomes. We also observed that the 1mM of MeJA treatment increased the gene expression in all chemotypes after 24 h elicitation.

  4. A high-throughput colorimetric screening assay for terpene synthase activity based on substrate consumption.

    Directory of Open Access Journals (Sweden)

    Maiko Furubayashi

    Full Text Available Terpene synthases catalyze the formation of a variety of terpene chemical structures. Systematic mutagenesis studies have been effective in providing insights into the characteristic and complex mechanisms of C-C bond formations and in exploring the enzymatic potential for inventing new chemical structures. In addition, there is growing demand to increase terpene synthase activity in heterologous hosts, given the maturation of metabolic engineering and host breeding for terpenoid synthesis. We have developed a simple screening method for the cellular activities of terpene synthases by scoring their substrate consumption based on the color loss of the cell harboring carotenoid pathways. We demonstrate that this method can be used to detect activities of various terpene synthase or prenyltransferase genes in a high-throughput manner, irrespective of the product type, enabling the mutation analysis and directed evolution of terpene synthases. We also report the possibility for substrate-specific screening system of terpene synthases by taking advantage of the substrate-size specificity of C30 and C40 carotenoid pathways.

  5. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Sánchez, Rosario; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2016-02-01

    Two sunflower hydroxyacyl-[acyl carrier protein] dehydratases evolved into two different isoenzymes showing distinctive expression levels and kinetics' efficiencies. β-Hydroxyacyl-[acyl carrier protein (ACP)]-dehydratase (HAD) is a component of the type II fatty acid synthase complex involved in 'de novo' fatty acid biosynthesis in plants. This complex, formed by four intraplastidial proteins, is responsible for the sequential condensation of two-carbon units, leading to 16- and 18-C acyl-ACP. HAD dehydrates 3-hydroxyacyl-ACP generating trans-2-enoyl-ACP. With the aim of a further understanding of fatty acid biosynthesis in sunflower (Helianthus annuus) seeds, two β-hydroxyacyl-[ACP] dehydratase genes have been cloned from developing seeds, HaHAD1 (GenBank HM044767) and HaHAD2 (GenBank GU595454). Genomic DNA gel blot analyses suggest that both are single copy genes. Differences in their expression patterns across plant tissues were detected. Higher levels of HaHAD2 in the initial stages of seed development inferred its key role in seed storage fatty acid synthesis. That HaHAD1 expression levels remained constant across most tissues suggest a housekeeping function. Heterologous expression of these genes in E. coli confirmed both proteins were functional and able to interact with the bacterial complex 'in vivo'. The large increase of saturated fatty acids in cells expressing HaHAD1 and HaHAD2 supports the idea that these HAD genes are closely related to the E. coli FabZ gene. The proposed three-dimensional models of HaHAD1 and HaHAD2 revealed differences at the entrance to the catalytic tunnel attributable to Phe166/Val1159, respectively. HaHAD1 F166V was generated to study the function of this residue. The 'in vitro' enzymatic characterization of the three HAD proteins demonstrated all were active, with the mutant having intermediate K m and V max values to the wild-type proteins.

  6. Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia.

    Science.gov (United States)

    Inokuma, H; Brouqui, P; Drancourt, M; Raoult, D

    2001-09-01

    The sequence of the citrate synthase gene (gltA) of 13 ehrlichial species (Ehrlichia chaffeensis, Ehrlichia canis, Ehrlichia muris, an Ehrlichia species recently detected from Ixodes ovatus, Cowdria ruminantium, Ehrlichia phagocytophila, Ehrlichia equi, the human granulocytic ehrlichiosis [HGE] agent, Anaplasma marginale, Anaplasma centrale, Ehrlichia sennetsu, Ehrlichia risticii, and Neorickettsia helminthoeca) have been determined by degenerate PCR and the Genome Walker method. The ehrlichial gltA genes are 1,197 bp (E. sennetsu and E. risticii) to 1,254 bp (A. marginale and A. centrale) long, and GC contents of the gene vary from 30.5% (Ehrlichia sp. detected from I. ovatus) to 51.0% (A. centrale). The percent identities of the gltA nucleotide sequences among ehrlichial species were 49.7% (E. risticii versus A. centrale) to 99.8% (HGE agent versus E. equi). The percent identities of deduced amino acid sequences were 44.4% (E. sennetsu versus E. muris) to 99.5% (HGE agent versus E. equi), whereas the homology range of 16S rRNA genes was 83.5% (E. risticii versus the Ehrlichia sp. detected from I. ovatus) to 99.9% (HGE agent, E. equi, and E. phagocytophila). The architecture of the phylogenetic trees constructed by gltA nucleotide sequences or amino acid sequences was similar to that derived from the 16S rRNA gene sequences but showed more-significant bootstrap values. Based upon the alignment analysis of the ehrlichial gltA sequences, two sets of primers were designed to amplify tick-borne Ehrlichia and Neorickettsia genogroup Ehrlichia (N. helminthoeca, E. sennetsu, and E. risticii), respectively. Tick-borne Ehrlichia species were specifically identified by restriction fragment length polymorphism (RFLP) patterns of AcsI and XhoI with the exception of E. muris and the very closely related ehrlichia derived from I. ovatus for which sequence analysis of the PCR product is needed. Similarly, Neorickettsia genogroup Ehrlichia species were specifically identified by

  7. Crystallization and preliminary crystallographic analysis of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus

    International Nuclear Information System (INIS)

    Sá-Moura, Bebiana; Albuquerque, Luciana; Empadinhas, Nuno; Costa, Milton S. da; Pereira, Pedro José Barbosa; Macedo-Ribeiro, Sandra

    2008-01-01

    The enzyme mannosyl-3-phosphoglycerate synthase from R. xylanophilus has been expressed, purified and crystallized. The crystals belong to the hexagonal space group P6 5 22 and diffract to 2.2 Å resolution. Rubrobacter xylanophilus is the only Gram-positive bacterium known to synthesize the compatible solute mannosylglycerate (MG), which is commonly found in hyperthermophilic archaea and some thermophilic bacteria. Unlike the salt-dependent pattern of accumulation observed in (hyper)thermophiles, in R. xylanophilus MG accumulates constitutively. The synthesis of MG in R. xylanophilus was tracked from GDP-mannose and 3-phosphoglycerate, but the genome sequence of the organism failed to reveal any of the genes known to be involved in this pathway. The native enzyme was purified and its N-terminal sequence was used to identify the corresponding gene (mpgS) in the genome of R. xylanophilus. The gene encodes a highly divergent mannosyl-3-phosphoglycerate synthase (MpgS) without relevant sequence homology to known mannosylphosphoglycerate synthases. In order to understand the specificity and enzymatic mechanism of this novel enzyme, it was expressed in Escherichia coli, purified and crystallized. The crystals thus obtained belonged to the hexagonal space group P6 5 22 and contained two protein molecules per asymmetric unit. The structure was solved by SIRAS using a mercury derivative

  8. Alpha-Terpineol, a natural monoterpene: A review of its biological properties

    Science.gov (United States)

    Terpineols are monocyclic monoterpene tertiary alcohols and they are naturally present in plant species. There are five common isomers of terpineols, alpha-, beta-, gamma-, delta- and terpinen-4-ol, of which alpha-terpineol and its isomer terpinen-4-ol are the most common terpineols found in nature....

  9. Monoterpene composition of pine species and hybrids...some preliminary findings

    Science.gov (United States)

    Richard H. Smith

    1967-01-01

    Xylem resin samples, obtained from 72 freshly cut pine stumps at the Institute of Forest Genetics, Placerville, Calif., were analyzed for monoterpenes by gasliquid chromatography. Very little or no qualitative or quantitative variation could be attributed to annual ring, time of securing sample, and period of storage of sample up to 1 year. The 34 hybrids sampled...

  10. Molecular cloning of a seed specific multifunctional RFO synthase/ galactosylhydrolase in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Roman eGangl

    2015-09-01

    Full Text Available Stachyose is among the raffinose family oligosaccharides one of the major water-soluble carbohydrates next to sucrose in seeds of a number of plant species. Especially in leguminous seeds, e.g. chickpea, stachyose is reported as the major component. In contrast to their ambiguous potential as essential source of carbon for germination, raffinose family oligosaccharides are indigestible for humans and can contribute to diverse abdominal disorders.In the genome of Arabidopsis thaliana, six putative raffinose synthase genes are reported, whereas little is known about these putative raffinose synthases and their biochemical characteristics or their contribution to the raffinose family oligosaccharide physiology in A. thaliana.In this paper, we report on the molecular cloning, functional expression in Escherichia coli and purification of recombinant AtRS4 from A. thaliana and the biochemical characterisation of the putative stachyose synthase (AtSTS, At4g01970 as a raffinose and high affinity stachyose synthase (Km for raffinose 259.2 ± 21.15 µM as well as stachyose and galactinol specific galactosylhydrolase. A T-DNA insertional mutant in the AtRS4 gene was isolated. Only sqPCR from WT siliques showed a specific transcriptional AtRS4 PCR product. Metabolite measurements in seeds of ΔAtRS4 mutant plants revealed a total loss of stachyose in ΔAtRS4 mutant seeds. We conclude that AtRS4 is the only stachyose synthase in the genome of A. thaliana that AtRS4 represents a key regulation mechanism in the raffinose family oligosaccharide physiology of A. thaliana due to its multifunctional enzyme activity and that AtRS4 is possibly the second seed specific raffinose synthase beside AtRS5, which is responsible for Raf-accumulation under abiotic stress.

  11. Comparable Monoterpene emission from pine forests across 500 mm precipitation gradient in the semi-arid transition zone

    Science.gov (United States)

    Seco, Roger; Karl, Thomas; Turnipseed, Andrew; Greenberg, Jim; Guenther, Alex; Llusia, Joan; Penuelas, Josep; Dicken, Uri; Rotenberg, Eyal; Rohatyn, Shani; Preisler, Yakir; Yakir, Dan

    2014-05-01

    Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, and can affect atmospheric chemistry, secondary aerosol formation, and as a consequence also climate. At the same time, global changes in climate arising from human activities can modify the VOC emissions of vegetation in the coming years. Monoterpene emission fluxes were measured during April 2013 at two forests in the semi-arid climate of Israel. Both forests were dominated by Pinus halepensis trees of similar age, but differed in the amount of annual average precipitation received (~276 and ~760 mm at the Yatir and Birya sites, respectively). Measurements performed included leaf-level sampling and gas exchange, as well as canopy-level flux calculations. Leaf level monoterpene emissions were sampled from leaf cuvettes with adsorbent cartridges and later analyzed by GC-MS. Canopy scale fluxes were calculated with the Disjunct Eddy Covariance technique by means of a Quadrupole PTRMS and eddy-covariance system. We report the differences observed between the two forests in terms of photosynthetic activity and monoterpene emissions, aiming to see the effect of the different climatic regimes at each location. Significantly higher emission rates of monoterpenes were observed in the wetter site during mid-day, in both the leaf scale and canopy scale measurements. Remarkably, however, normalized to 30C and corrected for tree density differences between the sites indicated comparable emission rates for both sites, with higher emission rated in the evening hours in the dry site at the edge of the Negev Desert. Modeling the monoterpene emission rates using MEGAN v2.1 indicated better agreement with observations in the wetter site then in the dry site, especially with respect to fluxes during the evening hours.

  12. Glycogen Synthase Kinase-3 regulates IGFBP-1 gene transcription through the Thymine-rich Insulin Response Element

    Directory of Open Access Journals (Sweden)

    Marquez Rodolfo

    2004-09-01

    Full Text Available Abstract Background Hepatic expression of several gene products involved in glucose metabolism, including phosphoenolpyruvate carboxykinase (PEPCK, glucose-6-phosphatase (G6Pase and insulin-like growth factor binding protein-1 (IGFBP-1, is rapidly and completely inhibited by insulin. This inhibition is mediated through the regulation of a DNA element present in each of these gene promoters, that we call the Thymine-rich Insulin Response Element (TIRE. The insulin signalling pathway that results in the inhibition of these gene promoters requires the activation of phosphatidylinositol 3-kinase (PI 3-kinase. However, the molecules that connect PI 3-kinase to these gene promoters are not yet fully defined. Glycogen Synthase Kinase 3 (GSK-3 is inhibited following activation of PI 3-kinase. We have shown previously that inhibitors of GSK-3 reduce the activity of two TIRE-containing gene promoters (PEPCK and G6Pase, whose products are required for gluconeogenesis. Results In this report we demonstrate that in H4IIE-C3 cells, four distinct classes of GSK-3 inhibitor mimic the effect of insulin on a third TIRE-containing gene, IGFBP-1. We identify the TIRE as the minimum requirement for inhibition by these agents, and demonstrate that the target of GSK-3 is unlikely to be the postulated TIRE-binding protein FOXO-1. Importantly, overexpression of GSK-3 in cells reduces the insulin regulation of TIRE activity as well as endogenous IGFBP-1 expression. Conclusions These results implicate GSK-3 as an intermediate in the pathway from the insulin receptor to the TIRE. Indeed, this is the first demonstration of an absolute requirement for GSK-3 inhibition in insulin regulation of gene transcription. These data support the potential use of GSK-3 inhibitors in the treatment of insulin resistant states such as Type 2 diabetes mellitus, but suggest that it will be important to identify all TIRE-containing genes to assess potential side effects of these agents.

  13. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes

    Science.gov (United States)

    Claudia Cano-Ramirez; Maria Fernanda Lopez; Ana K. Cesar-Ayala; Veronica Pineda-Martinez; Brian T. Sullivan; Gerardo and Zuniga

    2013-01-01

    Bark beetles oxidize the defensive monoterpenes of their host trees both to detoxify them and convert them into components of their pheromone system. This oxidation is catalyzed by cytochrome P450 enzymes and occurs in different tissues of the insect, including the gut (i.e., the site where the beetle's pheromones are produced and accumulated) and the antennae (i....

  14. Monoterpene emissions in response to long-term night-time warming, elevated CO2 and extended summer drought in a temperate heath ecosystem

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Tang, Jing; Michelsen, Anders

    2017-01-01

    Monoterpenes emitted from plants have an important role in atmospheric chemistry through changing atmospheric oxidative capacity, forming new particles and secondary organic aerosols. The emission rates and patterns can be affected by changing climate. In this study, emission responses to six years...... of climatic manipulations (elevated CO2, extended summer drought and night-time warming) were investigated in a temperate semi-natural heath ecosystem. Samples for monoterpene analysis were collected in seven campaigns during an entire growing season (April-November, 2011). The results showed...... that the temperate heath ecosystem was a considerable source of monoterpenes to the atmosphere, with the emission averaged over the 8month measurement period of 21.7±6.8μgm(-2)groundareah(-1) for the untreated heath. Altogether, 16 monoterpenes were detected, of which the most abundant were α-pinene, δ-3-carene...

  15. Dermal exposure to monoterpenes during wood work.

    Science.gov (United States)

    Eriksson, Kare; Wiklund, Leif

    2004-06-01

    The dermal exposure to the suspected allergenic monoterpenes [small alpha]-pinene, [small beta]-pinene and [capital Delta](3)-carene was assessed with a patch sampling technique. The patch used was made of activated charcoal sandwiched between two layers of cotton cloth. Patches were fastened at 12 different spots on a sampling overall and at the front of a cap to estimate the potential exposure of the body. Fastening two patches on a cotton glove, one patch representing the dorsal side and one patch representing the palm of the hand respectively, assessed the exposure on the hands. Sampling was carried out during collecting of pine and spruce boards in sawmills and during sawing of pine wood pieces in joinery shops respectively. The potential dermal exposure of the total body was 29.0-1 890 mg h(-1) with a geometric mean (GM) of 238 mg h(-1) during sawing. During collecting the GM was estimated to 100 mg h(-1) with a range of 12.2-959 mg h(-1). The hands had a mean exposure of 9.24 mg h(-1) during sawing and 3.25 mg h(-1) during collecting respectively. The good correlation between the mass of contamination on the individual body parts and the potential body exposure indicates that sampling can be performed on one body part to give a good estimation of the potential body exposure. Monoterpenes were detected at patches fastened underneath the protective clothing indicating a contamination of the skin of the worker. The patch used may overestimate the dermal exposure.

  16. Induction of Terpene Biosynthesis in Berries of Microvine Transformed with VvDXS1 Alleles

    Directory of Open Access Journals (Sweden)

    Lorenza Dalla Costa

    2018-01-01

    Full Text Available Terpenoids, especially monoterpenes, are major aroma-impact compounds in grape and wine. Previous studies highlighted a key regulatory role for grapevine 1-deoxy-D-xylulose 5-phosphate synthase 1 (VvDXS1, the first enzyme of the methylerythritol phosphate pathway for isoprenoid precursor biosynthesis. Here, the parallel analysis of VvDXS1 genotype and terpene concentration in a germplasm collection demonstrated that VvDXS1 sequence has a very high predictive value for the accumulation of monoterpenes and also has an influence on sesquiterpene levels. A metabolic engineering approach was applied by expressing distinct VvDXS1 alleles in the grapevine model system “microvine” and assessing the effects on downstream pathways at transcriptional and metabolic level in different organs and fruit developmental stages. The underlying goal was to investigate two potential perturbation mechanisms, the former based on a significant over-expression of the wild-type (neutral VvDXS1 allele and the latter on the ex-novo expression of an enzyme with increased catalytic efficiency from the mutated (muscat VvDXS1 allele. The integration of the two VvDXS1 alleles in distinct microvine lines was found to alter the expression of several terpenoid biosynthetic genes, as assayed through an ad hoc developed TaqMan array based on cDNA libraries of four aromatic cultivars. In particular, enhanced transcription of monoterpene, sesquiterpene and carotenoid pathway genes was observed. The accumulation of monoterpenes in ripe berries was higher in the transformed microvines compared to control plants. This effect is predominantly attributed to the improved activity of the VvDXS1 enzyme coded by the muscat allele, whereas the up-regulation of VvDXS1 plays a secondary role in the increase of monoterpenes.

  17. α,β-Unsaturated monoterpene acid glucose esters: structural diversity, bioactivities and functional roles.

    Science.gov (United States)

    Goodger, Jason Q D; Woodrow, Ian E

    2011-12-01

    The glycosylation of lipophilic small molecules produces many important plant secondary metabolites. The majority of these are O-glycosides with relatively fewer occurring as glucose esters of aromatic or aliphatic acids. In particular, monoterpene acid glucose esters have much lower structural diversity and distribution compared to monoterpene glycosides. Nevertheless, there have been over 20 monoterpene acid glucose esters described from trees in the genus Eucalyptus (Myrtaceae) in recent years, all based on oleuropeic acid, menthiafolic acid or both. Here we review all of the glucose esters containing these monoterpenoids identified in plants to date. Many of the compounds contain phenolic aglycones and all contain at least one α,β-unsaturated carbonyl, affording a number of important potential therapeutic reactivities such as anti-tumor promotion, carcinogenesis suppression, and anti-oxidant and anti-inflammatory activities. Additional properties such as cytotoxicity, bitterness, and repellency are suggestive of a role in plant defence, but we also discuss their localization to the exterior of foliar secretory cavity lumina, and suggest they may also protect secretory cells from toxic terpenes housed within these structures. Finally we discuss how the use of a recently developed protocol to isolate secretory cavities in a functional state could be used in conjunction with systems biology approaches to help characterize their biosynthesis and roles in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli

    International Nuclear Information System (INIS)

    Chaurasia, Neha; Mishra, Yogesh; Rai, Lal Chand

    2008-01-01

    Phytochelatin synthase (PCS) is involved in the synthesis of phytochelatins (PCs), plays role in heavy metal detoxification. The present study describes for first time the functional expression and characterization of pcs gene of Anabaena sp. PCC 7120 in Escherichia coli in terms of offering protection against heat, salt, carbofuron (pesticide), cadmium, copper, and UV-B stress. The involvement of pcs gene in tolerance to above abiotic stresses was investigated by cloning of pcs gene in expression vector pGEX-5X-2 and its transformation in E. coli BL21 (DE3). The E. coli cells transformed with pGEX-5X-pcs showed better growth than control cells (pGEX-5X-2) under temperature (47 deg. C), NaCl (6% w/v), carbofuron (0.025 mg ml -1 ), CdCl 2 (4 mM), CuCl 2 (1 mM), and UV-B (10 min) exposure. The enhanced expression of pcs gene revealed by RT-PCR analysis under above stresses at different time intervals further advocates its role in tolerance against above abiotic stresses

  19. Isoprene and monoterpene emissions in south-east Australia: comparison of a multi-layer canopy model with MEGAN and with atmospheric observations

    Directory of Open Access Journals (Sweden)

    K. M. Emmerson

    2018-05-01

    Full Text Available One of the key challenges in atmospheric chemistry is to reduce the uncertainty of biogenic volatile organic compound (BVOC emission estimates from vegetation to the atmosphere. In Australia, eucalypt trees are a primary source of biogenic emissions, but their contribution to Australian air sheds is poorly quantified. The Model of Emissions of Gases and Aerosols from Nature (MEGAN has performed poorly against Australian isoprene and monoterpene observations. Finding reasons for the MEGAN discrepancies and strengthening our understanding of biogenic emissions in this region is our focus. We compare MEGAN to the locally produced Australian Biogenic Canopy and Grass Emissions Model (ABCGEM, to identify the uncertainties associated with the emission estimates and the data requirements necessary to improve isoprene and monoterpene emissions estimates for the application of MEGAN in Australia. Previously unpublished, ABCGEM is applied as an online biogenic emissions inventory to model BVOCs in the air shed overlaying Sydney, Australia. The two models use the same meteorological inputs and chemical mechanism, but independent inputs of leaf area index (LAI, plant functional type (PFT and emission factors. We find that LAI, a proxy for leaf biomass, has a small role in spatial, temporal and inter-model biogenic emission variability, particularly in urban areas for ABCGEM. After removing LAI as the source of the differences, we found large differences in the emission activity function for monoterpenes. In MEGAN monoterpenes are partially light dependent, reducing their dependence on temperature. In ABCGEM monoterpenes are not light dependent, meaning they continue to be emitted at high rates during hot summer days, and at night. When the light dependence of monoterpenes is switched off in MEGAN, night-time emissions increase by 90–100 % improving the comparison with observations, suggesting the possibility that monoterpenes emitted from Australian

  20. Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland.

    Science.gov (United States)

    Wang, Hongjun; Wang, Xinming; Zhang, Yanli; Mu, Yujing; Han, Xingguo

    2016-01-15

    Biogenic volatile organic compounds (BVOCs) emitted from plants have substantial effects on atmospheric chemistry/physics and feedbacks on ecosystem function. The on-going climate change and anthropogenic disturbance have been confirmed to cause the evident degradation of grassland with shift of plant community, and hence BVOCs emissions were suspected to be altered due to the different BOVCs emission potentials of different species. In this study, we investigated BVOCs concentration above ground surface during growing season in a degraded semi-arid grassland (41°2' N-45°6' N, 113°5'-117°8') in Inner Mongolia. The observed monoterpenes' concentrations varied from 0.10 to 215.78 μg m(-3) (34.88 ± 9.73 μg m(-3) in average) across 41 sites. Compared to non-degraded grassland, concentrations of monoterpenes were about 180 times higher at the sites dominated by subshrub--Artemisia frigida, a preponderant species under drought stress and over-grazing. The biomass of A. frigida explained 51.39% of the variation of monoterpenes' concentrations. α-pinene, β-pinene and γ-terpinene dominated in the 10 determined monoterpenes, accounting for 37.72 ± 2.98%, 14.65 ± 2.55% and 10.50 ± 2.37% of the total monoterpenes concentration, respectively. Low isoprene concentrations (≤ 3.25 μg m(-3)) were found and sedge biomass contributed about 51.76% to their spatial variation. α-pinene and isoprene emissions at noon were as high as 515.53 ± 88.34 μg m(-2)h(-1) and 7606.19 ± 1073.94 μg m(-2) h(-1) in A. frigida- and sedge-dominated areas where their biomass were 236.90 g m(-2) and 72.37 g m(-2), respectively. Our results suggested that the expansion of A. frigida and sedge caused by over-grazing and climatic stresses may increase local ambient BVOCs concentration in grassland. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Romain [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Staudt, Michael [Departement Fonctionnement des Ecosystemes, Centre d' Ecologie Fonctionnelle et Evolutive (CEFE, UMR 5175), 1919 Route de Mende, 34293 Montpellier Cedex 5 (France); Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France); Fernandez, Catherine, E-mail: catherine.fernandez@univ-provence.fr [Aix-Marseille Universite - Institut Mediterraneen d' Ecologie et de Paleoecologie (IMEP), UMR 6111, Equipe Diversite Fonctionnelle des Communautes Vegetales - Centre de St Charles, Case 4, 13331 Marseille Cedex 03 (France)

    2011-04-15

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha{sup -1} and 100 Mg ha{sup -1}, in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: > Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. > Compost spreading increased leaf biomass of Q. coccifera. > Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  2. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland

    International Nuclear Information System (INIS)

    Olivier, Romain; Staudt, Michael; Lavoir, Anne-Violette; Ormeno, Elena; Rizvi, Syed Hussain; Baldy, Virginie; Rivoal, Annabelle; Greff, Stephane; Lecareux, Caroline; Fernandez, Catherine

    2011-01-01

    Monoterpene emissions of Quercus coccifera L. were repeatedly measured during the two years following the spreading of a sewage sludge compost at rates of 50 Mg ha -1 and 100 Mg ha -1 , in a twelve-year-old post-fire Mediterranean shrubland. We also monitored the patterns of change in soil and leaf nutrient content, plant water potential, chlorophyll fluorescence, and plant growth. Compost spreading resulted in weak changes in leaf nutrient content and plant water status, and therefore no significant effect on monoterpene emissions at leaf scale, except during one summer sampling, probably related to advanced leaf maturity with the highest compost rate. However, compost increased plant growth, particularly the leaf biomass. The results suggest that compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level, but may indirectly increase volatile organic compound fluxes at the stand scale, which may contribute to regional ozone pollution. - Research highlights: → Compost spreading had weak effects on leaf terpene emissions of Quercus coccifera. → Compost spreading increased leaf biomass of Q. coccifera. → Compost spreading indirectly increased Q. coccifera biogenic emissions, at the landscape scale. - Compost spreading in Mediterranean shrublands has no strong short-term effect on Q. coccifera monoterpene emissions at leaf level.

  3. v-src induction of the TIS10/PGS2 prostaglandin synthase gene is mediated by an ATF/CRE transcription response element.

    OpenAIRE

    Xie, W; Fletcher, B S; Andersen, R D; Herschman, H R

    1994-01-01

    We recently reported the cloning of a mitogen-inducible prostaglandin synthase gene, TIS10/PGS2. In addition to growth factors and tumor promoters, the v-src oncogene induces TIS10/PGS2 expression in 3T3 cells. Deletion analysis, using luciferase reporters, identifies a region between -80 and -40 nucleotides 5' of the TIS10/PGS2 transcription start site that mediates pp60v-src induction in 3T3 cells. This region contains the sequence CGTCACGTG, which includes overlapping ATF/CRE (CGTCA) and E...

  4. Novel class III phosphoribosyl diphosphate synthase: structure and properties of the tetrameric, phosphate-activated, non-allosterically inhibited enzyme from Methanocaldococcus jannaschii

    DEFF Research Database (Denmark)

    Kadziola, Anders; Jepsen, Clemens H; Johansson, Eva

    2005-01-01

    The prs gene encoding phosphoribosyl diphosphate (PRPP) synthase of the hyperthermophilic autotrophic methanogenic archaeon Methanocaldococcus jannaschii has been cloned and expressed in Escherichia coli. Subsequently, M.jannaschii PRPP synthase has been purified, characterised, crystallised, and...

  5. Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts.

    Science.gov (United States)

    Aalto, J; Porcar-Castell, A; Atherton, J; Kolari, P; Pohja, T; Hari, P; Nikinmaa, E; Petäjä, T; Bäck, J

    2015-11-01

    Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO2 exchange and a simple, temperature history-based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime. © 2015 John Wiley & Sons Ltd.

  6. Variation in monoterpene content among geographic sources of eastern white pine

    Science.gov (United States)

    A.R. Gilmore; J.J. Jokela

    1977-01-01

    Variations of monoterpenes in cortical oleoresins and foliar samples were determined for seed from 16 provenances of eastern white pine (Pinus strobus L.). The experiment was analyzed using the "raw" and the arcsine "transformed" data. Alpha-pinene, camphene, and β-pinene varied between seed sources when "raw" data were analyzed...

  7. A multilevel prediction of physiological response to challenge: Interactions among child maltreatment, neighborhood crime, endothelial nitric oxide synthase gene (eNOS), and GABA(A) receptor subunit alpha-6 gene (GABRA6).

    Science.gov (United States)

    Lynch, Michael; Manly, Jody Todd; Cicchetti, Dante

    2015-11-01

    Physiological response to stress has been linked to a variety of healthy and pathological conditions. The current study conducted a multilevel examination of interactions among environmental toxins (i.e., neighborhood crime and child maltreatment) and specific genetic polymorphisms of the endothelial nitric oxide synthase gene (eNOS) and GABA(A) receptor subunit alpha-6 gene (GABRA6). One hundred eighty-six children were recruited at age 4. The presence or absence of child maltreatment as well as the amount of crime that occurred in their neighborhood during the previous year were determined at that time. At age 9, the children were brought to the lab, where their physiological response to a cognitive challenge (i.e., change in the amplitude of the respiratory sinus arrhythmia) was assessed and DNA samples were collected for subsequent genotyping. The results confirmed that complex Gene × Gene, Environment × Environment, and Gene × Environment interactions were associated with different patterns of respiratory sinus arrhythmia reactivity. The implications for future research and evidence-based intervention are discussed.

  8. The L locus, one of complementary genes required for anthocyanin production in onions (Allium cepa), encodes anthocyanidin synthase.

    Science.gov (United States)

    Kim, Sunggil; Jones, Rick; Yoo, Kil-Sun; Pike, Leonard M

    2005-06-01

    Bulb color in onions (Allium cepa) is an important trait, but its complex, unclear mechanism of inheritance has been a limiting factor in onion cultivar improvement. The identity of the L locus, which is involved in the color difference between Brazilian yellow and red onions, is revealed in this study. A cross was made between a US-type yellow breeding line and a Brazilian yellow cultivar. The segregation ratio of nine red to seven yellow onions in the F(2) population supports the involvement of two complementary genes in anthocyanin production in the F(1) hybrids. The high-performance liquid chromatography (HPLC) and reverse-transcriptase (RT)-PCR analysis of the Brazilian yellow onions indicated that the genes are involved late in the anthocyanin synthesis pathway. The genomic sequence of the anthocyanidin synthase (ANS) gene in Brazilian yellow onions showed a point mutation, which results in an amino acid change of a glycine to an arginine at residue 229. Because this residue is located adjacent to a highly conserved iron-binding active site, this mutation is likely responsible for the inactivation of the ANS gene in Brazilian yellow onions. Following the isolation of the promoter sequence of the mutant allele, a PCR-based marker for allelic selection of the ANS gene was designed. This assay is based on an insertion (larger than 3 kb) mutation. The marker perfectly co-segregated with the color phenotypes in the F(2) populations, thereby indicating that the L locus encodes ANS.

  9. Geographic variation in shortleaf pine (Pinus echinata Mill.) - cortical monoterpenes

    Science.gov (United States)

    R.C. Schmidtling; J.H. Myszewski; C.E. McDaniel

    2005-01-01

    Cortical monoterpenes were assayed in bud tissue from 16 Southwide Southern Pine Seed Source Study (SSPSS) sources and from 6 seed orchard sources fiom across the natural range of the species, to examine geogaphic variation in shortleaf pine. Spruce pine and pond pine were also sampled. The results show geographic differences in all of the major terpenes. There was no...

  10. Contribution of granule bound starch synthase in kernel modification ...

    African Journals Online (AJOL)

    The role of gbssI and gbssII genes, encoding granule bound starch synthase enzyme I and II, respectively, in quality protein maize (QPM) were studied at different days after pollination (DAP). Total RNA was used for first strand cDNA synthesis using the ImpromIISriptTM reverse transcriptase. No detectable levels of gbssI ...

  11. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    Science.gov (United States)

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    Paraffinic n -alkanes (>C 17 ) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n -octacosane (C 28 H 58 ). Compared with that in controls, the consumption of n -octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C 28 H 58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C 28 H 58 -degrading cultures compared with that in controls, suggesting n -octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C 28 H 58 -degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important

  12. Polyketide synthases from poison hemlock (Conium maculatum L.).

    Science.gov (United States)

    Hotti, Hannu; Seppänen-Laakso, Tuulikki; Arvas, Mikko; Teeri, Teemu H; Rischer, Heiko

    2015-11-01

    Coniine is a toxic alkaloid, the biosynthesis of which is not well understood. A possible route, supported by evidence from labelling experiments, involves a polyketide formed by the condensation of one acetyl-CoA and three malonyl-CoAs catalysed by a polyketide synthase (PKS). We isolated PKS genes or their fragments from poison hemlock (Conium maculatum L.) by using random amplification of cDNA ends (RACE) and transcriptome analysis, and characterized three full-length enzymes by feeding different starter-CoAs in vitro. On the basis of our in vitro experiments, two of the three characterized PKS genes in poison hemlock encode chalcone synthases (CPKS1 and CPKS2), and one encodes a novel type of PKS (CPKS5). We show that CPKS5 kinetically favours butyryl-CoA as a starter-CoA in vitro. Our results suggest that CPKS5 is responsible for the initiation of coniine biosynthesis by catalysing the synthesis of the carbon backbone from one butyryl-CoA and two malonyl-CoAs. © 2015 FEBS.

  13. THE POLYMORPHISM OF THE SUS4 SUCROSE SYNTHASE DOMAIN SEQUENCES IN RUSSIAN, BELORUSSIAN AND KAZAKH POTATO CULTIVARS

    Directory of Open Access Journals (Sweden)

    M. A. Slugina

    2016-01-01

    Full Text Available The potato is one of the main strategic crops in the Russian Federation, Belarus and Kazakhstan. Currently, we have achieved significant advances in the understanding of metabolic mechanism of carbohydrate and interconversion «sucrose – starch» in potato tubers. Sucrose synthase (Sus is a key enzyme in the breakdown of sucrose. Sucrose synthase (Sus is catalyzing a reversible reaction of conversion sucrose and UDP into fructose and UDP-glucose. The identification and subsequent characterization of the genes encoding plant sucrose synthase is the first step towards understanding their physiological roles and metabolic mechanism involved in carbohydrate accumulation in potato tubers. In the present work the nucleotide and amino acid polymorphism of the Sus4 gene fragments containing sequences of the sucrose synthase domain were analyzed. Sus4 gene fragments (intron III – exon VI in 9 potato cultivars of Russian, Kazakh and Belarusian breeding were analyzed. The polymorphism of the Sus4 sucrose synthase domain sequences was first examined. The length of analyzed fragment varied from 977 b.p. (cultivars Favorit, Karasaiskii, Miras to 1013 b.p. (cultivars Zorochka, Manifest, Elisaveta, Bashkirskii. It was demonstrated that the examined sequences contained point mutations, as well as insertions and deletions. The common polymorphism level was 5.82%. It was shown that the examined sequences contained 58 SNPs and 4 indels. The most variable were introns IV (12.4% and V (9.18%. The most variable was exon IV. 7 allelic variants were detected. 6 different amino acid sequences specific to different varieties were also identified.

  14. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes.

    Science.gov (United States)

    Köllner, Tobias G; Schnee, Christiane; Gershenzon, Jonathan; Degenhardt, Jörg

    2004-05-01

    The mature leaves and husks of Zea mays release a complex blend of terpene volatiles after anthesis consisting predominantly of bisabolane-, sesquithujane-, and bergamotane-type sesquiterpenes. The varieties B73 and Delprim release the same volatile constituents but in significantly different proportions. To study the molecular genetic and biochemical mechanisms controlling terpene diversity and distribution in these varieties, we isolated the closely related terpene synthase genes terpene synthase4 (tps4) and tps5 from both varieties. The encoded enzymes, TPS4 and TPS5, each formed the same complex mixture of sesquiterpenes from the precursor farnesyl diphosphate but with different proportions of products. These mixtures correspond to the sesquiterpene blends observed in the varieties B73 and Delprim, respectively. The differences in the stereoselectivity of TPS4 and TPS5 are determined by four amino acid substitutions with the most important being a Gly instead of an Ala residue at position 409 at the catalytic site of the enzyme. Although both varieties contain tps4 and tps5 alleles, their differences in terpene composition result from the fact that B73 has only a single functional allele of tps4 and no functional alleles of tps5, whereas Delprim has only a functional allele of tps5 and no functional alleles of tps4. Lack of functionality was shown to be attributable to frame-shift mutations or amino acid substitutions that greatly reduce the activity of their encoded proteins. Therefore, the diversity of sesquiterpenes in these two maize cultivars is strongly influenced by single nucleotide changes in the alleles of two terpene synthase genes.

  15. Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Mendoza, Daniel [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico); Moreno, Adriana Quiroz [Unidad de biotecnologia, CICY, Merida, Yucatan (Mexico); Zapata-Perez, Omar [Departamento de Recursos del Mar, Cinvestav-Unidad Merida, Merida, Yucatan (Mexico)]. E-mail: ozapata@mda.cinvestav.mx

    2007-08-01

    To evaluate the role of phytochelatins and metallothioneins in heavy metal tolerance of black mangrove Avicennia germinans, 3-month-old seedlings were exposed to cadmium or copper for 30 h, under hydroponic conditions. Degenerate Mt2 and PCS primers were synthesized based on amino acid and nucleotide alignment sequences reported for Mt2 and PCS in other plant species found in GenBank. Total RNA was isolated from A. germinans leaves and two partial fragments of metallothionein and phytochelatin synthase genes were isolated. Gene expression was evaluated with reverse transcripatase-polymerase chain reaction (RT-PCR) amplification technique. Temporal analysis showed that low Cd{sup 2+} and Cu{sup 2+} concentrations caused a slight (but not significant) increase in AvMt2 expression after a 16 h exposure time, while AvPCS expression showed a significant increase under the same conditions but only after 4 h. Results strongly suggest that the rapid increase in AvPCS expression may contribute to Cd{sup 2+} and Cu{sup 2+} detoxification. Moreover, we found that A. germinans has the capacity to over-express both genes (AvMt2 and AvPCS), which may constitute a coordinated detoxification response mechanism targeting non-essential metals. Nonetheless, our results confirm that AvPCS was the most active gene involved in the regulation of essential metals (e.g., Cu{sup 2+}) in A. germinans leaves.

  16. Characterization of capsaicin synthase and identification of its gene (csy1) for pungency factor capsaicin in pepper (Capsicum sp.)

    Science.gov (United States)

    Prasad, B. C. Narasimha; Kumar, Vinod; Gururaj, H. B.; Parimalan, R.; Giridhar, P.; Ravishankar, G. A.

    2006-01-01

    Capsaicin is a unique alkaloid of the plant kingdom restricted to the genus Capsicum. Capsaicin is the pungency factor, a bioactive molecule of food and of medicinal importance. Capsaicin is useful as a counterirritant, antiarthritic, analgesic, antioxidant, and anticancer agent. Capsaicin biosynthesis involves condensation of vanillylamine and 8-methyl nonenoic acid, brought about by capsaicin synthase (CS). We found that CS activity correlated with genotype-specific capsaicin levels. We purified and characterized CS (≈35 kDa). Immunolocalization studies confirmed that CS is specifically localized to the placental tissues of Capsicum fruits. Western blot analysis revealed concomitant enhancement of CS levels and capsaicin accumulation during fruit development. We determined the N-terminal amino acid sequence of purified CS, cloned the CS gene (csy1) and sequenced full-length cDNA (981 bp). The deduced amino acid sequence of CS from full-length cDNA was 38 kDa. Functionality of csy1 through heterologous expression in recombinant Escherichia coli was also demonstrated. Here we report the gene responsible for capsaicin biosynthesis, which is unique to Capsicum spp. With this information on the CS gene, speculation on the gene for pungency is unequivocally resolved. Our findings have implications in the regulation of capsaicin levels in Capsicum genotypes. PMID:16938870

  17. Impact of heat stress on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species

    Science.gov (United States)

    Kleist, E.; Mentel, T. F.; Andres, S.; Bohne, A.; Folkers, A.; Kiendler-Scharr, A.; Rudich, Y.; Springer, M.; Tillmann, R.; Wildt, J.

    2012-07-01

    Changes in the biogenic volatile organic compound (BVOC) emissions from European beech, Palestine oak, Scots pine, and Norway spruce exposed to heat stress were measured in a laboratory setup. In general, heat stress decreased the de novo emissions of monoterpenes, sesquiterpenes and phenolic BVOC. Decreasing emission strength with heat stress was independent of the tree species and whether the de novo emissions being constitutive or induced by biotic stress. In contrast, heat stress induced emissions of green leaf volatiles. It also amplified the release of monoterpenes stored in resin ducts of conifers probably due to heat-induced damage of these resin ducts. The increased release of monoterpenes could be strong and long lasting. But, despite of such strong monoterpene emission pulses, the net effect of heat stress on BVOC emissions from conifers can be an overall decrease. In particular during insect attack on conifers the plants showed de novo emissions of sesquiterpenes and phenolic BVOC which exceeded constitutive monoterpene emissions from pools. The heat stress induced decrease of these de novo emissions was larger than the increased release caused by damage of resin ducts. We project that global change induced heat waves may cause increased BVOC emissions only in cases where the respective areas are predominantly covered with conifers that do not emit high amounts of sesquiterpenes and phenolic BVOC. Otherwise the overall effect of heat stress will be a decrease in BVOC emissions.

  18. Influence of ambient air toxics in open-top chambers on the monoterpene emission of Picea abies. Diurnal and seasonal variation of emissions, and differentiation of needles and bark as emission sources. Der Einfluss natuerlich-phytotoxischer Luft auf die Monoterpen-Emission bei Picea abies in Open-Top-Kammern. Tages- und Jahresgang der Emission und Differenzierung von Nadel- und Rindenemissionen

    Energy Technology Data Exchange (ETDEWEB)

    Juettner, F. (Max-Planck-Institut fuer Limnologie, Ploen (Germany, F.R.). Abt. Oekophysiologie)

    1990-04-01

    Open-top chambers, in which each a 19-years old spruce tree (Picea abies) was growing, were used to determine monoterpene emissions by mass fragmentography. The annual dynamics of the monoterpene emissions corresponded to the air temperature. However, the diurnal dynamics did not follow the course of the temperature. Physiological reactions of the needles are responsible for the temperature independent emission of monoterpenes during the day. (orig.).

  19. Enhanced Oxidation of Isoprene and Monoterpenes in High and Low NOx Conditions

    Science.gov (United States)

    Tokarek, T. W.; Gilman, J.; Lerner, B. M.; Koss, A.; Yuan, B.; Taha, Y. M.; Osthoff, H. D.; Warneke, C.; De Gouw, J. A.

    2015-12-01

    In the troposphere, the photochemical oxidation of volatile organic compounds (VOCs) is primarily initiated by their reactions with the hydroxyl radical (OH) which yields peroxy radicals (HO2 and RO2). Concentrations of OH and the rates of VOC oxidation depend on the efficiency of peroxy radical recycling to OH. Radical recycling mainly occurs through reaction of HO2 with NO to produce NO2 and, ultimately, ozone (O3). Hence, the rate of VOC oxidation is dependent on NOx (=NO+NO2) concentration. The Shale Oil and Natural Gas Nexus (SONGNEX) campaign was conducted from March 17 to April 29, 2015 with the main goal of identifying and quantifying industrial sources of pollutants throughout the United States, in particular those associated with the production of oil and natural gas. In this work, a case study of biogenic VOC oxidation within and outside a power plant plume in the Haynesville basin near the border of Texas and Louisiana is presented. Isoprene, monoterpenes and their oxides were measured by H3O+ chemical ionization mass spectrometry (H3O+ CIMS) in high time resolution (1 s). Further, an improved Whole Air Sampler (iWAS) was used to collect samples for post-flight analysis by gas chromatography mass spectrometric detection (GC-MS) and yielded speciated quantification of biogenic VOCs. The monoterpene oxide to monoterpene ratio follows the spatial extent of the plume as judged by another tracer (NOx), tracking the enhancement of oxidation rates by NOx. The observations are rationalized with the aid of box modeling using the Master Chemical Mechanism (MCM).

  20. Development of radiation-inducible promoters for use in nitric oxide synthase gene therapy of cancer

    International Nuclear Information System (INIS)

    Hirst, D.G.; Worthington, J.; Adams, C.; Robson, T.; Scott, S.D.

    2003-01-01

    Full text: The free radical nitric oxide (NO) at nM concentrations performs multiple signaling roles that are essential for survival. These processes are regulated via the enzymes nNOS and eNOS, but another isoform, inducible nitric oxide synthase (iNOS) is capable of generating much higher concentrations (mM) over longer periods, resulting in the generation of very toxic species such as peroxynitrite. At high concentrations NO has many of the characteristics of an ideal anticancer molecule: it is cytotoxic (pro-apoptotic via peroxynitrite), it is a potent chemical radiosensitizer, it is anti-angiogenic and anti-metastatic. Thus, we see iNOS gene therapy as a strategy for targeting the generation of high concentrations of NO to tumours for therapeutic benefit. iNOS gene therapy should be used in combination with radiotherapy; so it is logical that the use of a radiation-inducible promoter should be part of the targeting strategy. We have tested several candidate promoters in vitro and in vivo. The WAF1 promoter has many of the properties desirable for therapeutic use including: rapid 3-4 fold induction at X-ray doses of 2 and 4Gy and no significant leakiness. WAF1 also has the advantage of being inducible by hypoxia and by the final product, NO. We have also tested the synthetic CArG promoter and demonstrated that, in addition to a high level of radiation inducibility, it is also inducible by NO. We have also been able to demonstrate potent radiosensitization (SER 2.0-2.5) in tumour cells in vitro and in vivo using iNOS gene transfer with constitutive or radiation-inducible promoters. We have also tested the use of iNOS gene therapy in combination with cisplatin and shown significant enhancement

  1. Aldosterone synthase gene polymorphism in alimentary obesity, metabolic syndrome components, some secondary forms of arterial hypertension, pathology of the adrenals glands core (literature review)

    OpenAIRE

    Koval, S.N.; Miloslavsky, D.K.; Snegurskaya, I.A.; Mysnichenko, O.V.; Penkova, M.Yu.

    2017-01-01

    Hormonal factors of adrenal origin belong to the pathophysiological mechanisms of the formation and progression of arterial hypertension (AH) and should be consi­dered while developing differentiated approaches to the treatment and prevention of hypertensive states, their primary, secondary and resistant forms. The first thing we should point up is aldosterone (AL), enzyme aldosterone synthase (AS), which takes a direct part in the formation of this hormone, as well as gene polymorphisms of A...

  2. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  3. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco.

    Science.gov (United States)

    Shimizu, Masanori; Goto, Maki; Hanai, Moeko; Shimizu, Tsutomu; Izawa, Norihiko; Kanamoto, Hirosuke; Tomizawa, Ken-Ichi; Yokota, Akiho; Kobayashi, Hirokazu

    2008-08-01

    Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.

  4. Biocatalytic conversion of turpentine - a wood processing waste - into oxygenated monoterpenes

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, Marcela; Valterová, Irena; Vaněk, Tomáš

    2011-01-01

    Roč. 29, č. 5 (2011), s. 204-211 ISSN 1024-2422 R&D Projects: GA MŠk ME08070; GA MŠk 2B08058 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z40550506 Keywords : biotransformation * monoterpene * Picea abies Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.905, year: 2011

  5. Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases.

    Science.gov (United States)

    Cheng, Jiujun; Charles, Trevor C

    2016-09-01

    Bacterially produced biodegradable polyhydroxyalkanoates (PHAs) with versatile properties can be achieved using different PHA synthases (PhaCs). This work aims to expand the diversity of known PhaCs via functional metagenomics and demonstrates the use of these novel enzymes in PHA production. Complementation of a PHA synthesis-deficient Pseudomonas putida strain with a soil metagenomic cosmid library retrieved 27 clones expressing either class I, class II, or unclassified PHA synthases, and many did not have close sequence matches to known PhaCs. The composition of PHA produced by these clones was dependent on both the supplied growth substrates and the nature of the PHA synthase, with various combinations of short-chain-length (SCL) and medium-chain-length (MCL) PHA. These data demonstrate the ability to isolate diverse genes for PHA synthesis by functional metagenomics and their use for the production of a variety of PHA polymer and copolymer mixtures.

  6. Role of Endothelial Nitric Oxide Synthase Gene Polymorphisms in Predicting Aneurysmal Subarachnoid Hemorrhage in South Indian Patients

    Directory of Open Access Journals (Sweden)

    Linda Koshy

    2008-01-01

    Full Text Available Endothelial nitric oxide synthase (eNOS gene polymorphisms have been implicated as predisposing genetic factors that can predict aneurysmal subarachnoid hemorrhage (aSAH, but with controversial results from different populations. Using a case-control study design, we tested the hypothesis whether variants in eNOS gene can increase risk of aSAH among South Indian patients, either independently, or by interacting with other risk factors of the disease. We enrolled 122 patients, along with 224 ethnically matched controls. We screened the intron-4 27-bp VNTR, the promoter T-786C and the exon-7 G894T SNPs in the eNOS gene. We found marked interethnic differences in the genotype distribution of eNOS variants when comparing the South Indian population with the reported frequencies from Caucasian and Japanese populations. Genotype distributions in control and patient populations were found to be in Hardy-Weinberg equilibrium. In patients, the allele, genotype and estimated haplotype frequencies did not differ significantly from the controls. Multiple logistic regression indicated hypertension and smoking as risk factors for the disease, however the risk alleles did not have any interaction with these risk factors. Although the eNOS polymorphisms were not found to be a likely risk factor for aSAH, the role of factors such as ethnicity, gender, smoking and hypertension should be evaluated cautiously to understand the genotype to phenotype conversion.

  7. Molecular cloning and characterization of two β-ketoacyl-acyl carrier protein synthase I genes from Jatropha curcas L.

    Science.gov (United States)

    Xiong, Wangdan; Wei, Qian; Wu, Pingzhi; Zhang, Sheng; Li, Jun; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2017-07-01

    The β-ketoacyl-acyl carrier protein synthase I (KASI) is involved in de novo fatty acid biosynthesis in many organisms. Two putative KASI genes, JcKASI-1 and JcKASI-2, were isolated from Jatropha curcas. The deduced amino acid sequences of JcKASI-1 and JcKASI-2 exhibit around 83.8% and 72.5% sequence identities with AtKASI, respectively, and both contain conserved Cys-His-Lys-His-Phe catalytic active sites. Phylogenetic analysis indicated that JcKASI-2 belongs to a clade with several KASI proteins from dicotyledonous plants. Both JcKASI genes were expressed in multiple tissues, most strongly in filling stage seeds of J. curcas. Additionally, the JcKASI-1 and JcKASI-2 proteins were both localized to the plastids. Expressing JcKASI-1 in the Arabidopsis kasI mutant rescued the mutant's phenotype and restored the fatty acid composition and oil content in seeds to wild-type, but expressing JcKASI-2 in the Arabidopsis kasI mutant resulted in only partial rescue. This implies that JcKASI-1 and JcKASI-2 exhibit partial functional redundancy and KASI genes play a universal role in regulating fatty acid biosynthesis, growth, and development in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Nitric oxide synthase during early embryonic development in silkworm Bombyx mori: Gene expression, enzyme activity, and tissue distribution.

    Science.gov (United States)

    Kitta, Ryo; Kuwamoto, Marina; Yamahama, Yumi; Mase, Keisuke; Sawada, Hiroshi

    2016-12-01

    To elucidate the mechanism for embryonic diapause or the breakdown of diapause in Bombyx mori, we biochemically analyzed nitric oxide synthase (NOS) during the embryogenesis of B. mori. The gene expression and enzyme activity of B. mori NOS (BmNOS) were examined in diapause, non-diapause, and HCl-treated diapause eggs. In the case of HCl-treated diapause eggs, the gene expression and enzyme activity of BmNOS were induced by HCl treatment. However, in the case of diapause and non-diapause eggs during embryogenesis, changes in the BmNOS activity and gene expressions did not coincide except 48-60 h after oviposition in diapause eggs. The results imply that changes in BmNOS activity during the embryogenesis of diapause and non-diapause eggs are regulated not only at the level of transcription but also post-transcription. The distribution and localization of BmNOS were also investigated with an immunohistochemical technique using antibodies against the universal NOS; the localization of BmNOS was observed mainly in the cytoplasm of yolk cells in diapause eggs and HCl-treated diapause eggs. These data suggest that BmNOS has an important role in the early embryonic development of the B. mori. © 2016 Japanese Society of Developmental Biologists.

  9. A novel haplotype of low-frequency variants in the aldosterone synthase gene among northern Han Chinese with essential hypertension.

    Science.gov (United States)

    Zhang, Hao; Li, Xueyan; Zhou, Li; Zhang, Keyong; Zhang, Qi; Li, Jingping; Wang, Ningning; Jin, Ming; Wu, Nan; Cong, Mingyu; Qiu, Changchun

    2017-09-01

    Low-frequency variants showed that there is more power to detect risk variants than to detect protective variants in complex diseases. Aldosterone plays an important role in the renin-angiotensin-aldosterone system, and aldosterone synthase catalyzes the speed-controlled steps of aldosterone biosynthesis. Polymorphisms of the aldosterone synthase gene (CYP11B2) have been reported to be associated with essential hypertension (EH). CYP11B2 polymorphisms such as -344T/C, have been extensively reported, but others are less well known. This study aimed to assess the association between human CYP11B2 and EH using a haplotype-based case-control study. A total of 1024 EH patients and 956 normotensive controls, which consist of north Han population peasants, were enrolled. Seven single nucleotide polymorphisms (SNPs) (rs28659182, rs10087214, rs73715282, rs542092383, rs4543, rs28491316, and rs7463212) covering the entire human CYP11B2 gene were genotyped as markers using the MassARRAY system. The major allele G frequency of rs542092383 was found to be risk against hypertension [odds ratio (OR) 3.478, 95% confidence interval (95% CI) 1.407-8.597, P = .004]. The AG genotype frequency of SNP rs542092383 was significantly associated with an increased risk of hypertension (OR 4.513, 95% CI 1.426-14.287, P = .010). In the haplotype-based case-control analysis, the frequency of the T-G-T haplotype was higher for EH patients than for controls (OR 5.729, 95% CI 1.889-17.371, P = .000495). All |D'| values of the seven SNPs were >0.9, and r values for rs28659182- rs10087214-rs28491316-rs7463212 SNPs were >0.8 and showed strong linkage intensity. Haplotype T-G-T may therefore be a useful genetic marker for EH.

  10. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  11. Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric CO 2 concentration

    Science.gov (United States)

    Vuorinen, Terhi; Reddy, G. V. P.; Nerg, Anne-Marja; Holopainen, Jarmo K.

    The warming of the lower atmosphere due to elevating CO 2 concentration may increase volatile organic compound (VOC) emissions from plants. Also, direct effects of elevated CO 2 on plant secondary metabolism are expected to lead to increased VOC emissions due to allocation of excess carbon on secondary metabolites, of which many are volatile. We investigated how growing at doubled ambient CO 2 concentration affects emissions from cabbage plants ( Brassica oleracea subsp. capitata) damaged by either the leaf-chewing larvae of crucifer specialist diamondback moth ( Plutella xylostella L.) or generalist Egyptian cotton leafworm ( Spodoptera littoralis (Boisduval)). The emission from cabbage cv. Lennox grown in both CO 2 concentrations, consisted mainly of monoterpenes (sabinene, limonene, α-thujene, 1,8-cineole, β-pinene, myrcene, α-pinene and γ-terpinene). ( Z)-3-Hexenyl acetate, sesquiterpene ( E, E)- α-farnesene and homoterpene ( E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) were emitted mainly from herbivore-damaged plants. Plants grown at 720 μmol mol -1 of CO 2 had significantly lower total monoterpene emissions per shoot dry weight than plants grown at 360 μmol mol -1 of CO 2, while damage by both herbivores significantly increased the total monoterpene emissions compared to intact plants. ( Z)-3-Hexenyl acetate, ( E, E)- α-farnesene and DMNT emissions per shoot dry weight were not affected by the growth at elevated CO 2. The emission of DMNT was significantly enhanced from plants damaged by the specialist P. xylostella compared to the plants damaged by the generalist S. littoralis. The relative proportions of total monoterpenes and total herbivore-induced compounds of total VOCs did not change due to the growth at elevated CO 2, while insect damage increased significantly the proportion of induced compounds. The results suggest that VOC emissions that are induced by the leaf-chewing herbivores will not be influenced by elevated CO 2 concentration.

  12. Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico.

    Science.gov (United States)

    Gastelum, Sandra L; Mejía-Velázquez, G M; Lozano-García, D Fabián

    2016-06-01

    In addition to oxygen, hydrocarbons are the most reactive chemical compounds produced by plants into the atmosphere. These compounds are part of the family of volatile organic compounds (VOCs) and are discharged in a great variety of forms. Among the VOCs produced by natural sources such as vegetation, the most studied until today are the isoprene and monoterpene. These substances can play an important role in the chemical balance of the atmosphere of a region. In this project, we develop a methodology to estimate the natural (vegetation) emission of isoprene and monoterpenes and applied it to the Monterrey Metropolitan Area, Mexico and its surrounding areas. Landsat-TM data was used to identify the dominant vegetation communities and field work to determine the foliage biomass density of key species. The studied communities were submontane scrub, oak, and pine forests and a combination of both. We carried out the estimation of emissions for isoprene and monoterpenes compounds in the different plant communities, with two different criteria: (1) taking into account the average foliage biomass density obtained from the various sample point in each vegetation community, and (2) using the foliage biomass density obtained for each transect, associated to an individual spectral class within a particular vegetation type. With this information, we obtained emission maps for each case. The results show that the main producers of isoprene are the communities that include species of the genus Quercus, located mainly on the Sierra Madre Oriental and Sierra de Picachos, with average isoprene emissions of 314.6 ton/day and 207.3 ton/day for the two methods utilized. The higher estimates of monoterpenes were found in the submontane scrub areas distributed along the valley of the metropolitan zone, with an estimated average emissions of 47.1 ton/day and 181.4 tons for the two methods respectively.

  13. POLYMORPHISMS OF ENDOTHELIAL NITRIC OXIDE SYNTHASE GENE AS PREDICTORS OF WOLFF-PARKINSON-WHITE SYNDROME

    Directory of Open Access Journals (Sweden)

    G. V. Matyushin

    2017-01-01

    Full Text Available Background. The discovery of new genetic predictors of cardiovascular diseases can be used in predicting and diagnosing latent forms of the disease. Wolff-Parkinson-White syndrome (WPW occurs in all age groups  and detected in 1-30 people per 10000, it manifests mainly in young age (on average 20 years, and the risk of sudden cardiac death is higher than in general population.Aim. To study the relationship of WPW syndrome with the polymorphism of endothelial nitric synthase gene (NOS3, and to identify genetic predictors of this syndrome.Material and methods. The study included 51 people with ECG proven WPW syndrome and 153 people with no cardiovascular disease. The patients were divided into subgroups according to sex: 21 women, 30 men. All patients underwent a standard cardiac examination (anamnesis, electrocardiography, echocardiography, bicycle ergometry, transesophageal electrical stimulation of the atria, Holter monitoring and blood was taken for molecular genetic testing of DNA.Results. The results showed a statistically significant prevalence of rare genotype 4b\\4b NOS3 gene in the control group of women (16.3%; р<0.05 compared with women from the main group, who did not have this genotype, while there was significant prevalence of genotype 4a\\4a in the main group of women (81.0%; р<0.05 compared with women from the control group.  In men this prevalence was not found.Conclusion. The presence of genotype 4b\\4b NOS3 gene reduces the likelihood of WPW syndrome and its symptoms in females. In men,  this prevalence is not found, presumably, in connection with some mechanisms of hormonal regulation. The results can be used in the genetic prediction of the course of the disease.

  14. Optimization of β-glucan synthase gene primers for molecular DNA fingerprinting in Pleurotus pulmonarious

    Science.gov (United States)

    Kadir, Zaiton Abdul; Daud, Fauzi; Mohamad, Azhar; Senafi, Sahidan; Jamaludin, Ferlynda Fazleen

    2015-09-01

    Pleurotus pulmonarius is an edible mushroom in Malaysia and commonly known as Oyster mushroom. The species are important not only for nutritional values but also for pharmaceutical importance related to bioactive compounds in polysaccharides such as β glucan. Hence, β-glucan synthase gene (BGS) pathways which are related to the production of the β-glucan might be useful as marker for molecular DNA fingerprinting in P. pulmonarius. Conserved regions of β-glucan gene were mined from public database and aligned. Consensus from the alignment was used to design the primers by using Primer 3 software. Eight primers were designed and a single primer pair (BGF3: 5' TCTTGGCGAGTTCGAAGAAT 3'; BGR3: 5' TTCCGATCTTGGTCTGGAAG 3') was optimized at Ta (annealing temperature) 57.1°C to produce PCR product ranging from 400-500 bp. Optimum components for PCR reactions were 5.0 µl of 10× PCR buffer, 1.5 µl of 25 mM MgCl2, 1 µl of 10 mM dNTP, 1 µl of β-glucan primers, 0.1 µl of 5 units/ml Taq polymerase and 2 µl DNA template. PCR program was set at 34 PCR cycles by using Bio-Rad T100 Thermal Cycler. Initial denaturation was set at 94°C for 2 min, denaturation at 94°C for 1 minute, primer annealing at 45°C to 60°C (gradient temperature) for 50 seconds, followed by elongation at 72°C for 1 minute and further extension 5 minutes for last cycle PCR prior to end the program cycle. Thus, this information revealed that the primer of β-glucan gene designed could be used as targeted markers in screening population strains of P. pulmonarius.

  15. Supercritical CO2 Extraction of Lavandula angustifolia Mill. Flowers: Optimisation of Oxygenated Monoterpenes, Coumarin and Herniarin Content.

    Science.gov (United States)

    Jerković, Igor; Molnar, Maja; Vidović, Senka; Vladić, Jelena; Jokić, Stela

    2017-11-01

    Lavandula angustifolia is good source of oxygenated monoterpenes containing coumarins as well, which are all soluble in supercritical CO 2 (SC-CO 2 ). The study objective is to investigate SC-CO 2 extraction parameters on: the total yield; GC-MS profile of the extracts; relative content of oxygenated monoterpenes; the amount of coumarin and herniarin; and to determine optimal SC-CO 2 extraction conditions by response surface methodology (RSM). SC-CO 2 extraction was performed under different pressure, temperature and CO 2 flow rate determined by Box-Behnken design (BBD). The sample mass and the extraction time were kept constant. The chemical profiles and relative content of oxygenated monoterpenes (as coumarin equivalents, CE) were determined by GC-MS. Coumarin and herniarin concentrations were dosed by HPLC. SC-CO 2 extracts contained linalool (57.4-217.9 mg CE/100 g), camphor (10.6-154.4 mg CE/100 g), borneol (6.2-99.9 mg CE/100 g), 1,8-cineole (5.0-70.4 mg CE/100 g), linalyl acetate (86.1-267.9 mg CE/100 g), coumarin (0.95-18.16 mg/100 g), and herniarin (0.95-13.63 mg/100 g). The interaction between the pressure and CO 2 flow rate as well as between the temperature and CO 2 flow rate showed statistically significant influence on the extraction yield. Applying BBD, the optimum extraction conditions for higher monoterpenes and lower coumarin content were at 10 MPa, 41°C and CO 2 flow rate 2.3 kg/h, and at 30 MPa, 50°C and CO 2 flow rate 3 kg/h for higher monoterpenes and coumarin content. SC-CO 2 extraction is a viable technique for obtaining lavender extracts with desirable flavour components. The second-order model based on BBD predicts the results for SC-CO 2 extraction quite satisfactorily. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species

    International Nuclear Information System (INIS)

    Croteau, R.; Kjonaas, R.

    1983-01-01

    The volatile oil of mature Mentha piperita (peppermint) leaves contains as major components the oxygenated p-menthane monoterpenes l-menthol (47%) and l-menthone (24%) as well as very low levels of the monoterpene olefins limonene (1%) and terpinolene (0.1%), which are considered to be probable precursors of the oxygenated derivatives. Immature leaves, which are actively synthesizing monoterpenes, produce an oil with comparatively higher levels of limonene approx.3%), and isolation of the pure olefin showed this compound to consist of approx.80% of the l-(4S)-enantiomer and approx.20% of the d-(4R)-enantiomer. The time course of incorporation of [U- 14 C]sucrose into the monoterpenes of M. piperita shoot tips was consistent with the inital formation of limonene and its subsequent conversion to menthone via pulegone. d,l-[9- 3 H]Limonene and [9,10- 3 H]terpinolene were prepared and tested directly as precursors of oxygenated p-menthane monoterpenes in M. piperita shoot tips. Limonene was readily incorporated into pulegone, menthone, and other oxygenated derivatives, whereas terpinolene was not appreciably incorporated into these compounds. Similarly, d,l-[9- 3 H]limonene was specifically incorporated into pulegone in Mentha pulegium and into the C-2-oxygenated derivative carvone in Mentha spicata, confirming the role of this olefin as the essential precursor of oxygenated p-menthane monoterpenes. Soluble enzyme preparations from the epidermis of immature M. piperita leaves converted the acyclic terpenoid precursor [1- 3 H]geranyl pyrophosphate to limonene as the major cyclic product

  17. Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The synthesis of novel phosphatidylcholines with geranic and citronellic acids in sn-1 and sn-2 positions is described. The structured phospholipids were obtained in high yields (59-87% and evaluated in vitro for their cytotoxic activity against several cancer cell lines of different origin: MV4-11, A-549, MCF-7, LOVO, LOVO/DX, HepG2 and also towards non-cancer cell line BALB/3T3 (normal mice fibroblasts. The phosphatidylcholines modified with monoterpene acid showed a significantly higher antiproliferative activity than free monoterpene acids. The highest activity was observed for the terpene-phospholipids containing the isoprenoid acids in sn-1 position of phosphatidylcholine and palmitic acid in sn-2.

  18. A Genome-Wide Association Study for Culm Cellulose Content in Barley Reveals Candidate Genes Co-Expressed with Members of the CELLULOSE SYNTHASE A Gene Family

    Science.gov (United States)

    Houston, Kelly; Burton, Rachel A.; Sznajder, Beata; Rafalski, Antoni J.; Dhugga, Kanwarpal S.; Mather, Diane E.; Taylor, Jillian; Steffenson, Brian J.; Waugh, Robbie; Fincher, Geoffrey B.

    2015-01-01

    Cellulose is a fundamentally important component of cell walls of higher plants. It provides a scaffold that allows the development and growth of the plant to occur in an ordered fashion. Cellulose also provides mechanical strength, which is crucial for both normal development and to enable the plant to withstand both abiotic and biotic stresses. We quantified the cellulose concentration in the culm of 288 two – rowed and 288 six – rowed spring type barley accessions that were part of the USDA funded barley Coordinated Agricultural Project (CAP) program in the USA. When the population structure of these accessions was analysed we identified six distinct populations, four of which we considered to be comprised of a sufficient number of accessions to be suitable for genome-wide association studies (GWAS). These lines had been genotyped with 3072 SNPs so we combined the trait and genetic data to carry out GWAS. The analysis allowed us to identify regions of the genome containing significant associations between molecular markers and cellulose concentration data, including one region cross-validated in multiple populations. To identify candidate genes we assembled the gene content of these regions and used these to query a comprehensive RNA-seq based gene expression atlas. This provided us with gene annotations and associated expression data across multiple tissues, which allowed us to formulate a supported list of candidate genes that regulate cellulose biosynthesis. Several regions identified by our analysis contain genes that are co-expressed with CELLULOSE SYNTHASE A (HvCesA) across a range of tissues and developmental stages. These genes are involved in both primary and secondary cell wall development. In addition, genes that have been previously linked with cellulose synthesis by biochemical methods, such as HvCOBRA, a gene of unknown function, were also associated with cellulose levels in the association panel. Our analyses provide new insights into the

  19. Association between Polymorphism of Endothelial Nitric Oxide Synthase Gene (Glu298Asp) and Chronic Heart Failure in Patients with Ischemic Heart Disease and Obesity

    OpenAIRE

    O.I. Kadykova; P.P. Kravchun

    2016-01-01

    The article reviewed the links between polymorphism of endothelial nitric oxide synthase gene (Glu298Asp) and the development and progression of chronic heart failure in patients with ischemic heart disease and obesity. There has been a comprehensive survey of 222 patients with ischemic heart disease. Comparison group consisted of 115 patients with ischemic heart disease with normal body weight. The control group included 35 healthy individuals. G allele and genotype G/G polymorphism of the g...

  20. Erratum Aldosterone synthase C-344T, angiotensin II type 1 receptor ...

    Indian Academy of Sciences (India)

    Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11-β hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India. Manisha Patnaik, Pallabi Pati, Surendra N. Swain, Manoj K. Mohapatra, Bhagirathi Dwibedi, Shantanu K. Kar.

  1. Chemical analysis of particulate and gaseous products from the monoterpene oxidation in the SAPHIR chamber during the EUCAARI campaign 2008

    Science.gov (United States)

    Kahnt, A.; Iinuma, Y.; Herrmann, H.; Mentel, T. F.; Fisseha, R.; Kiendler-Scharr, A.

    2009-04-01

    The atmospheric oxidation of monoterpenes leads to multifunctional products with lower vapour pressure. These products condense and coagulate to existing particles leading to particle formation and growth. In order to obtain better insights into the mechanisms and the importance of sources to organic aerosol, a mixture of monoterpenes was oxidised in the SAPHIR outdoor chamber during the EUCAARI campaign in 2008. The mixture was made of α-pinene, β-pinene, limonene, 3-carene and ocimene, representing a typical monoterpene emission from a boreal forest. In addition, two sesquiterpenes (α-farnesene and caryophyllene) were reacted together with the monoterpene mixture in some experiments. The VOC (volatile organic compound) mixture was reacted under tropospheric oxidation and light conditions in a prolonged time scale over two days. In the present study, a special emphasis is put on the detection of carbonyl compounds from the off-line analysis of collected filter and denuder samples from the campaign in 2008. The oxidation products which contain carbonyl groups are important first stable intermediates during the monoterpene and sesquiterpene oxidation. They react further with atmospheric oxidants to form lower volatile acidic compounds, contributing to secondary organic aerosol (SOA). Commonly used methods for the analysis of carbonyl compounds involve derivatisation steps prior to separation and subsequent UV or MS detection. In the present study, 2,4-dinitrophenylhydrazine (DNPH) was used to derivatise the extracted filter and denuder samples. The DNPH converts aldehyde- and keto-groups to stable hydrazones, which can be purified afterwards using a solid phase extraction (SPE) cartridge. The derivatised samples were analysed with HPLC/ESI-TOFMS which allowed us to determine the exact chemical formula of unknown products. In addition to known carbonyl compounds from monoterpene oxidation such as pinonaldehyde and nopinon, previously unreported molecular masses

  2. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial......beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N...

  3. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    Science.gov (United States)

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  4. Hyperthermal surface ionization mass spectrometry of organic molecules: monoterpenes

    International Nuclear Information System (INIS)

    Kishi, Hiroshi; Fujii, Toshihiro.

    1997-01-01

    This paper describes an experimental study on the influence of kinetic energy of fast monoterpene molecules on the surface ionization efficiency and on the mass spectral patterns, using rhenium oxide (ReO 2 ) surface. Molecular kinetic energy, given to the molecules through the acceleration in the seeded supersonic molecular beam, ranged from 1 to 10 eV. Hyperthermal surface ionization mass spectra (HSIMS) were taken for various incident kinetic energies and surface temperatures. The observed mass spectra were interpreted in a purely empirical way, by means of evidence from the previous investigations, and they were compared with conventional EI techniques and with the thermal energy surface ionization technique (SIOMS; Surface Ionization Organic Mass Spectrometry). Ionization efficiency (β) was also studied. Under hyperthermal surface ionization (HSI) conditions, many kinds of fragment ions, including quite abundant odd electron ions (OE +· ) are observed. HSIMS patterns of monoterpenes are different among 6-isomers, contrary to those of SIOMS and EIMS, where very similar patterns for isomers are observed. HSIMS patterns are strongly dependent on the molecular kinetic energies. The surface temperature does not affect much the spectral patterns, but it controls the total amount of ion formation. We conclude from these mass spectral findings, HSI-mechanism contains an impulsive process of ion formation, followed by the fragmentation process as a results of the internal energies acquired through the collision processes. (author)

  5. Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower.

    Science.gov (United States)

    Ruocco, Michelina; Baroncelli, Riccardo; Cacciola, Santa Olga; Pane, Catello; Monti, Maurilia Maria; Firrao, Giuseppe; Vergara, Mariarosaria; Magnano di San Lio, Gaetano; Vannacci, Giovanni; Scala, Felice

    2018-01-06

    The early phases of Diaporthe helianthi pathogenesis on sunflower are characterized by the production of phytotoxins that may play a role in host colonisation. In previous studies, phytotoxins of a polyketidic nature were isolated and purified from culture filtrates of virulent strains of D. helianthi isolated from sunflower. A highly aggressive isolate (7/96) from France contained a gene fragment of a putative nonaketide synthase (lovB) which was conserved in a virulent D. helianthi population. In order to investigate the role of polyketide synthases in D. helianthi 7/96, a draft genome of this isolate was examined. We were able to find and phylogenetically analyse 40 genes putatively coding for polyketide synthases (PKSs). Analysis of their domains revealed that most PKS genes of D. helianthi are reducing PKSs, whereas only eight lacked reducing domains. Most of the identified PKSs have orthologs shown to be virulence factors or genetic determinants for toxin production in other pathogenic fungi. One of the genes (DhPKS1) corresponded to the previously cloned D. helianthi lovB gene fragment and clustered with a nonribosomal peptide synthetase (NRPS) -PKS hybrid/lovastatin nonaketide like A. nidulans LovB. We used DhPKS1 as a case study and carried out its disruption through Agrobacterium-mediated transformation in the isolate 7/96. D. helianthi DhPKS1 deleted mutants were less virulent to sunflower compared to the wild type, indicating a role for this gene in the pathogenesis of the fungus. The PKS sequences analysed and reported here constitute a new genomic resource that will be useful for further research on the biology, ecology and evolution of D. helianthi and generally of fungal plant pathogens.

  6. Expression of phytoene synthase1 and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.).

    Science.gov (United States)

    Cong, Ling; Wang, Cheng; Chen, Ling; Liu, Huijuan; Yang, Guangxiao; He, Guangyuan

    2009-09-23

    Dietary micronutrient deficiencies, such as the lack of vitamin A, are a major source of morbidity and mortality worldwide. Carotenoids in food can function as provitamin A in humans, while grains of Chinese elite wheat cultivars generally have low carotenoid contents. To increase the carotenoid contents in common wheat endosperm, transgenic wheat has been generated by expressing the maize y1 gene encoding phytoene synthase driven by a endosperm-specific 1Dx5 promoter in the elite wheat (Triticum aestivum L.) variety EM12, together with the bacterial phytoene desaturase crtI gene from Erwinia uredovora under the constitutive CaMV 35S promoter control. A clear increase of the carotenoid content was detected in the endosperms of transgenic wheat that visually showed a light yellow color. The total carotenoids content was increased up to 10.8-fold as compared with the nontransgenic EM12 cultivar. To test whether the variability of total carotenoid content in different transgenic lines was due to differences in the transgene copy number or expression pattern, Southern hybridization and semiquantitative reverse transcriptase polymerase chain reaction analyses were curried out. The results showed that transgene copy numbers and transcript levels did not associate well with carotenoid contents. The expression patterns of endogenous carotenoid genes, such as the phytoene synthases and carotene desaturases, were also investigated in wild-type and transgenic wheat lines. No significant changes in expression levels of these genes were detected in the transgenic endosperms, indicating that the increase in carotenoid transgenic wheat endosperms resulted from the expression of transgenes.

  7. Temperature Dependency of the Correlation between Secondary Organic Aerosol and Monoterpenes Concentrations at a Boreal Forest Site in Finland

    Science.gov (United States)

    Zhou, Y.; Zhang, W.; Rinne, J.

    2016-12-01

    Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.

  8. Monoterpene concentrations in fresh, senescent, and decaying foliage of singleleaf pinyon (Pinus monophylla Torr. & Frem.: Pinaceae) from the western Great Basin.

    Science.gov (United States)

    Wilt, F M; Miller, G C; Everett, R L; Hackett, M

    1993-02-01

    Senescent foliage from pines is potentially a large contributor to the total monoterpene content of the litter layer, and the availability of these compounds as phytotoxins may result from release of these compounds into the vapor phase. In order to determine the fate of several monoterpene hydrocarbons in the natural environment, we examined their concentrations in fresh, senescent, and decaying needles from 32 single-leaf pinyon pine (Pinus monophylla Torr. & Frem.: Pinaceae) trees growing at two different locations. Total monoterpene content was highest in the fresh needles (mean=5.6 ± 2.2 mg/g extracted air dry weight), but also remained relatively high in senescent needles (mean=3.6 ±1.8 mg/g extracted air dry weight), either still attached to the tree or forming the freshest layer of understory litter. Decaying needles within a dark decomposing layer of litter material 5-20 cm from the surface were found to contain much lower amounts of total monoterpenes (average: =0.12 ±0.06 mg/g extracted air dry weight). Further investigation of the fate of these compounds in the pinyon understory is required to determine if these hydrocarbons are indeed exerting phytotoxic characteristics.

  9. Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C.

    Science.gov (United States)

    Lamontagne Boulet, Maxime; Isabelle, Charles; Guay, Isabelle; Brouillette, Eric; Langlois, Jean-Philippe; Jacques, Pierre-Étienne; Rodrigue, Sébastien; Brzezinski, Ryszard; Beauregard, Pascale B; Bouarab, Kamal; Boyapelly, Kumaraswamy; Boudreault, Pierre-Luc; Marsault, Éric; Malouin, François

    2018-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti- Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro -generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >10 5 -fold for FC04-100. Copyright © 2018 American Society for Microbiology.

  10. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  11. Multi-substrate terpene synthases: their occurrence and physiological significance

    Directory of Open Access Journals (Sweden)

    Leila Pazouki

    2016-07-01

    Full Text Available Terpene synthases are responsible for synthesis of a large number of terpenes in plants using substrates provided by two distinct metabolic pathways, the mevalonate-dependent pathway that is located in cytosol and has been suggested to be responsible for synthesis of sesquiterpenes (C15, and 2-C-methyl-D-erythritol-4-phosphate pathway located in plastids and suggested to be responsible for the synthesis of hemi- (C5, mono- (C10 and diterpenes (C20. Recent advances in characterization of genes and enzymes responsible for substrate and end product biosynthesis as well as efforts in metabolic engineering have demonstrated existence of a number of multi-substrate terpene synthases. This review summarizes the progress in the characterization of such multi-substrate terpene synthases and suggests that the presence of multi-substrate use might have been significantly underestimated. Multi-substrate use could lead to important changes in terpene product profiles upon substrate profile changes under perturbation of metabolism in stressed plants as well as under certain developmental stages. We therefore argue that multi-substrate use can be significant under physiological conditions and can result in complicate modifications in terpene profiles.

  12. Wet effluent diffusion denuder: The tool for determination of monoterpenes in forest

    Czech Academy of Sciences Publication Activity Database

    Křůmal, Kamil; Mikuška, Pavel; Večeřová, Kristýna; Urban, Otmar; Pallozzi, E.; Večeřa, Zbyněk

    2016-01-01

    Roč. 153, JUN (2016), s. 260-267 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:68081715 ; RVO:67179843 Keywords : diffusion denuder * monoterpene * biogenic volatile organic compounds * tenax tubes Subject RIV: CB - Analytical Chemistry , Separation; EH - Ecology, Behaviour (UEK-B) Impact factor: 4.162, year: 2016

  13. Wet effluent diffusion denuder: The tool for determination of monoterpenes in forest

    Czech Academy of Sciences Publication Activity Database

    Křůmal, Kamil; Mikuška, Pavel; Večeřová, Kristýna; Urban, Otmar; Pallozzi, E.; Večeřa, Zbyněk

    2016-01-01

    Roč. 153, JUN (2016), s. 260-267 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:68081715 ; RVO:67179843 Keywords : diffusion denuder * monoterpene * biogenic volatile organic compounds * tenax tubes Subject RIV: CB - Analytical Chemistry, Separation; EH - Ecology, Behaviour (UEK-B) Impact factor: 4.162, year: 2016

  14. International collaborative study of the endogenous reference gene, sucrose phosphate synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice.

    Science.gov (United States)

    Jiang, Lingxi; Yang, Litao; Zhang, Haibo; Guo, Jinchao; Mazzara, Marco; Van den Eede, Guy; Zhang, Dabing

    2009-05-13

    One rice ( Oryza sativa ) gene, sucrose phosphate synthase (SPS), has been proven to be a suitable endogenous reference gene for genetically modified (GM) rice detection in a previous study. Herein are the reported results of an international collaborative ring trial for validation of the SPS gene as an endogenous reference gene and its optimized qualitative and quantitative polymerase chain reaction (PCR) systems. A total of 12 genetically modified organism (GMO) detection laboratories from seven countries participated in the ring trial and returned their results. The validated results confirmed the species specificity of the method through testing 10 plant genomic DNAs, low heterogeneity, and a stable single-copy number of the rice SPS gene among 7 indica varieties and 5 japonica varieties. The SPS qualitative PCR assay was validated with a limit of detection (LOD) of 0.1%, which corresponded to about 230 copies of haploid rice genomic DNA, while the limit of quantification (LOQ) for the quantitative PCR system was about 23 copies of haploid rice genomic DNA, with acceptable PCR efficiency and linearity. Furthermore, the bias between the test and true values of eight blind samples ranged from 5.22 to 26.53%. Thus, we believe that the SPS gene is suitable for use as an endogenous reference gene for the identification and quantification of GM rice and its derivates.

  15. The impact of bark beetle infestations on monoterpene emissions and secondary organic aerosol formation in western North America

    Directory of Open Access Journals (Sweden)

    A. R. Berg

    2013-03-01

    Full Text Available Over the last decade, extensive beetle outbreaks in western North America have destroyed over 100 000 km2 of forest throughout British Columbia and the western United States. Beetle infestations impact monoterpene emissions through both decreased emissions as trees are killed (mortality effect and increased emissions in trees under attack (attack effect. We use 14 yr of beetle-induced tree mortality data together with beetle-induced monoterpene emission data in the National Center for Atmospheric Research (NCAR Community Earth System Model (CESM to investigate the impact of beetle-induced tree mortality and attack on monoterpene emissions and secondary organic aerosol (SOA formation in western North America. Regionally, beetle infestations may have a significant impact on monoterpene emissions and SOA concentrations, with up to a 4-fold increase in monoterpene emissions and up to a 40% increase in SOA concentrations in some years (in a scenario where the attack effect is based on observed lodgepole pine response. Responses to beetle attack depend on the extent of previous mortality and the number of trees under attack in a given year, which can vary greatly over space and time. Simulated enhancements peak in 2004 (British Columbia and 2008 (US. Responses to beetle attack are shown to be substantially larger (up to a 3-fold localized increase in summertime SOA concentrations in a scenario based on bark-beetle attack in spruce trees. Placed in the context of observations from the IMPROVE network, the changes in SOA concentrations due to beetle attack are in most cases small compared to the large annual and interannual variability in total organic aerosol which is driven by wildfire activity in western North America. This indicates that most beetle-induced SOA changes are not likely detectable in current observation networks; however, these changes may impede efforts to achieve natural visibility conditions in the national parks and wilderness

  16. In situ measurements of isoprene and monoterpenes within a south-east Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    C. E. Jones

    2011-07-01

    Full Text Available Biogenic volatile organic compounds (BVOCs emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, as well as oxygenated VOCs (OVOCs of biogenic origin such as methacrolein, in ambient air above a tropical rainforest in Malaysian Borneo during the Oxidant and Particle Photochemical Processes above a south-east Asian tropical rainforest (OP3 project in 2008. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt respectively, and with an average monoterpene toisoprene ratio of 0.3 during sunlit hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission continued into the late afternoon/evening, under relatively low temperature and light conditions. The contributions of isoprene, monoterpenes and other classes of VOC to the volatile carbon budget and OH reactivity have been summarised for this rainforest location. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.

  17. The Role of ?786T/C Polymorphism in the Endothelial Nitric Oxide Synthase Gene in Males with Clinical and Biochemical Features of the Metabolic Syndrome

    OpenAIRE

    Misiak, Blazej; Krolik, Marta; Kukowka, Anna; Lewera, Anna; Leszczynski, Przemyslaw; Stankiewicz-Olczyk, Joanna; Slezak, Ryszard

    2011-01-01

    Background. Extensive evidence, arising from models of endothelial nitric oxide synthase gene (NOS3)-knockout mice supports the role of endothelial malfunction in the pathogenesis of the metabolic syndrome (MS). Aims. The aim of this study was to evaluate the role of −786T/C polymorphism in the etiology of MS and assess previously reported interaction with cigarette smoking. Methods. Based on International Diabetes Federation 2005 criteria, we recruited randomly 152 subjects with MS and 75 su...

  18. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 Synergistically Activate Transcription of Fatty-acid Synthase Gene (FASN)*S⃞

    Science.gov (United States)

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook

    2008-01-01

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  19. Dynamic 1-aminocyclopropane-1-carboxylate-synthase and -oxidase transcript accumulation patterns during pollen tube growth in tobacco styles.

    Science.gov (United States)

    Weterings, Koen; Pezzotti, Mario; Cornelissen, Marc; Mariani, Celestina

    2002-11-01

    In flowering plants, pollination of the stigma sets off a cascade of responses in the distal flower organs. Ethylene and its biosynthetic precursor 1-aminocyclopropane-1-carboxylate (ACC) play an important role in regulating these responses. Because exogenous application of ethylene or ACC does not invoke the full postpollination syndrome, the pollination signal probably consists of a more complex set of stimuli. We set out to study how and when the pollination signal moves through the style of tobacco (Nicotiana tabacum) by analyzing the expression patterns of pistil-expressed ACC-synthase and -oxidase genes. Results from this analysis showed that pollination induces high ACC-oxidase transcript levels in all cells of the transmitting tissue. ACC-synthase mRNA accumulated only in a subset of transmitting tract cells and to lower levels as compared with ACC-oxidase. More significantly, we found that although ACC-oxidase transcripts accumulate to uniform high levels, the ACC-synthase transcripts accumulate in a wave-like pattern in which the peak coincides with the front of the ingrowing pollen tube tips. This wave of ACC-synthase expression can also be induced by incongruous pollination and (partially) by wounding. This indicates that wounding-like features of pollen tube invasion might be part of the stimuli evoking the postpollination response and that these stimuli are interpreted differently by the regulatory mechanisms of the ACC-synthase and -oxidase genes.

  20. Field Bioassays of Synthetic Pheromones and Host Monoterpenes for Conophthorus coniperda (Coleoptera: Scolytidae)

    Science.gov (United States)

    Peter de Groot; Gary L. DeBarr; Goran Birgersson

    1998-01-01

    Four major monoterpenes, (±)-a-pinene,1 (S)-(-)-ß-pinene,(R)-(+)-limonene, and myrcene are found in the cones of eastern white pines, Pinus strobus L. Mixtures ofthese, as well as. a-pinene or ß-pinene alone. increased catches of male white pine cone...

  1. Benzalacetone Synthase

    Directory of Open Access Journals (Sweden)

    Ikuro eAbe

    2012-03-01

    Full Text Available Benzalacetone synthase, from the medicinal plant Rheum palmatum (Polygonaceae (RpBAS, is a plant-specific chalcone synthase (CHS superfamily of type III polyketide synthase (PKS. RpBAS catalyzes the one-step, decarboxylative condensation of 4-coumaroyl-CoA with malonyl-CoA to produce the C6-C4 benzalacetone scaffold. The X-ray crystal structures of RpBAS confirmed that the diketide-forming activity is attributable to the characteristic substitution of the conserved active-site "gatekeeper" Phe with Leu. Furthermore, the crystal structures suggested that RpBAS employs novel catalytic machinery for the thioester bond cleavage of the enzyme-bound diketide intermediate and the final decarboxylation reaction to produce benzalacetone. Finally, by exploiting the remarkable substrate tolerance and catalytic versatility of RpBAS, precursor-directed biosynthesis efficiently generated chemically and structurally divergent, unnatural novel polyketide scaffolds. These findings provided a structural basis for the functional diversity of the type III PKS enzymes.

  2. A comparison of GC-FID and PTR-MS toluene measurements in ambient air under conditions of enhanced monoterpene loading

    Directory of Open Access Journals (Sweden)

    J. L. Ambrose

    2010-07-01

    Full Text Available Toluene was measured using both a gas chromatographic system (GC, with a flame ionization detector (FID, and a proton transfer reaction-mass spectrometer (PTR-MS at the AIRMAP atmospheric monitoring station Thompson Farm (THF in rural Durham, NH during the summer of 2004. Simultaneous measurements of monoterpenes, including α- and β-pinene, camphene, Δ 3-carene, and d-limonene, by GC-FID demonstrated large enhancements in monoterpene mixing ratios relative to toluene, with median and maximum enhancement ratios of ~2 and ~30, respectively. A detailed comparison between the GC-FID and PTR-MS toluene measurements was conducted to test the specificity of PTR-MS for atmospheric toluene measurements under conditions often dominated by biogenic emissions. We derived quantitative estimates of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products via reactions with H3O+, O2+ and NO+ in the PTR-MS drift tube. The PTR-MS and GC-FID toluene measurements were in good quantitative agreement and the two systems tracked one another well from the instrumental limits of detection to maximum mixing ratios of ~0.5 ppbv. A correlation plot of the PTR-MS versus GC-FID toluene measurements was described by the least squares regression equation y=(1.13± 0.02x−(0.008±0.003 ppbv, suggesting a small ~13% positive bias in the PTR-MS measurements. The bias corresponded with a ~0.055 ppbv difference at the highest measured toluene level. The two systems agreed quantitatively within the combined 1σ measurement precisions for 60% of the measurements. Discrepancies in the measured mixing ratios were not well correlated with enhancements in the monoterpenes. Better quantitative agreement between the two systems was obtained by

  3. [Analysis of variation of monoterpene glycosides and polyhydroxy compounds in paeoniae radix alba during preliminary processing].

    Science.gov (United States)

    Xu, Yuan; Liu, Pei; Yan, Hui; Qian, Da-Wei; Duan, Jin-Ao

    2014-05-01

    To investigate variation of monoterpene glycosides and polyhydroxy compounds in Paeoniae Radix Alba dried by different processing methods. The crude drugs were processed sequentially as washed, removed the head, tail, fine roots and dried. The samples were divided into eight groups by whether peeled and decocted or not. Each group was dried by 35, 45, 60, 80,100, 120 degrees C, sun-dried and shade-dried. HPLC-PDA method was adopted to determine the content of monoterpene glycosides compounds (paeoniflorin alibiflorin, oxypaeoniflorin and benzoylpaeoniflorin), polyhydroxy compounds (catechin and gallic acid) and benzoic acid. Chromatographic conditions: Phecad C18 column (250 mm x 4.6 mm, 5 microm). A principal component analysis (PCA) method was used subsequently to get data processed. The retained content of seven constituents decreased in those peeled crude drug, and after cooked, monoterpene glycosides and polyhydroxy compounds increased while the benzoic acid decreased. It was believed that rele- vant enzymes were inactivated while being cooked so that drying temperature showed little influence on the biotransformation. Contents of effective ingredients in Paeoniae Radix Alba are influenced by drying processing. The preferable method shows to be that crude drug should be cooked before being peeled and dried. As a matter of processing convtence, it is suggested to be peeled and sliced before being dried.

  4. Pondering the monoterpene composition of Pinus serotina Michx.: can limonene be used as a chemotaxonomic marker for the identification of old turpentine stumps?

    Science.gov (United States)

    Thomas L. Eberhardt; Jolie M. Mahfouz; Philip M. Sheridan

    2010-01-01

    Wood samples from old turpentine stumps in Virginia were analyzed by GC-MS to determine if the monoterpene compositions could be used for species identification. Given that limonene is reported to be the predominant monoterpene for pond pine (Pinus serotina Michx.), low relative proportions of limonene in these samples appeared to suggest that these...

  5. Xylem monoterpenes of some hard pines of Western North America: three studies

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Monoterpene composition was studied in a number of hard pine species and results were compared with earlier work. (1) Intratree measurements showed strong constancy of composition in both single-stemmed and forked trees of ponderosa, Jeffrey, Coulter, and Jeffrey x ponderosa pines. In grafts of these and other pines, the scion influenced the root stock, but not the...

  6. 2C-Methyl- D- erythritol 2,4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene.

    Science.gov (United States)

    Kumar, Hitesh; Singh, Kashmir; Kumar, Sanjay

    2012-12-01

    Stevia [Stevia rebaudiana (Bertoni)] is a perennial herb which accumulates sweet diterpenoid steviol glycosides (SGs) in its leaf tissue. SGs are synthesized by 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Of the various enzymes of the MEP pathway, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MDS) (encoded by MDS) catalyzes the cyclization of 4-(cytidine 5' diphospho)-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Complementation of the MDS knockout mutant strain of Escherichia coli, EB370 with putative MDS of stevia (SrMDS) rescued the lethal mutant, suggesting SrMDS to be a functional gene. Experiments conducted in plant growth chamber and in the field suggested SrMDS to be a light regulated gene. Indole 3-acetic acid (IAA; 50, 100 μM) down-regulated the expression of SrMDS at 4 h of the treatment, whereas, abscisic acid did not modulate its expression. A high expression of SrMDS was observed during the light hours of the day as compared to the dark hours. The present work established functionality of SrMDS and showed the role of light and IAA in regulating expression of SrMDS.

  7. Bioengineering of the Plant Culture of Capsicum frutescens with Vanillin Synthase Gene for the Production of Vanillin.

    Science.gov (United States)

    Chee, Marcus Jenn Yang; Lycett, Grantley W; Khoo, Teng-Jin; Chin, Chiew Foan

    2017-01-01

    Production of vanillin by bioengineering has gained popularity due to consumer demand toward vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High-performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli.

  8. Isolation of Monoterpene Dihydrochalcones from Piper montealegreanum Yuncker (Piperaceae).

    Science.gov (United States)

    Alves, Harley da Silva; Rocha, Wilma Raianny Vieira da; Braz-Filho, Raimundo; Chaves, Maria Célia de Oliveira

    2017-06-09

    Four new compounds were isolated from the branches of Piper montealegreanum Yuncker, a shrub found in the Amazon rainforest, including two new dihydrochalcones named claricine ( 1 ) and maisine ( 2 ), a cinnamic acid derivative 3 and a phenylalkanoid 4 , along with a porphyrin identified as the known compound phaeophytin a ( 5 ). The structures were established using spectroscopic experiments, including 1D and 2D NMR and HRESIMS experiments, performed on the two monoterpene dihydrochalcones and their monoacetyl derivatives. The structural diversity of these substances is very important for the Piper genus chemotaxonomy.

  9. The Dictyostelium discoideum cellulose synthase: Structure/function analysis and identification of interacting proteins

    Energy Technology Data Exchange (ETDEWEB)

    Richard L. Blanton

    2004-02-19

    OAK-B135 The major accomplishments of this project were: (1) the initial characterization of dcsA, the gene for the putative catalytic subunit of cellulose synthase in the cellular slime mold Dictyostelium discoideum; (2) the detection of a developmentally regulated event (unidentified, but perhaps a protein modification or association with a protein partner) that is required for cellulose synthase activity (i.e., the dcsA product is necessary, but not sufficient for cellulose synthesis); (3) the continued exploration of the developmental context of cellulose synthesis and DcsA; (4) the isolation of a GFP-DcsA-expressing strain (work in progress); and (5) the identification of Dictyostelium homologues for plant genes whose products play roles in cellulose biosynthesis. Although our progress was slow and many of our results negative, we did develop a number of promising avenues of investigation that can serve as the foundation for future projects.

  10. Enhanced Toxic Metal Accumulation in Engineered Bacterial Cells Expressing Arabidopsis thaliana Phytochelatin Synthase

    Science.gov (United States)

    Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles

    2003-01-01

    Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032

  11. Organellar and cytosolic localization of four phosphoribosyl diphosphate synthase isozymes in spinach

    DEFF Research Database (Denmark)

    Krath, Britta N.; Hove-Jensen, Bjarne

    1999-01-01

    Four cDNAs encoding phosphoribosyl diphosphate (PRPP) synthase were isolated from a spinach (Spinacia oleracea) cDNA library by complementation of an Escherichia coli Δprs mutation. The four gene products produced PRPP in vitro from ATP and ribose-5-phosphate. Two of the enzymes (isozymes 1 and 2...

  12. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    International Nuclear Information System (INIS)

    Páez, David; Salazar, Juliana; Paré, Laia; Pertriz, Lourdes; Targarona, Eduardo; Rio, Elisabeth del; Barnadas, Agusti; Marcuello, Eugenio; Baiget, Montserrat

    2011-01-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5′UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The ∗3/∗3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in ∗3/∗3 vs. 35% in ∗2/∗2 and ∗2/∗3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the ∗3/∗3 patients and 84 months for the ∗2/∗2 and ∗2/∗3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate

  13. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    Energy Technology Data Exchange (ETDEWEB)

    Paez, David, E-mail: dpaez@santpau.cat [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Salazar, Juliana; Pare, Laia [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Pertriz, Lourdes [Department of Radiotherapy, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Targarona, Eduardo [Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Rio, Elisabeth del [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Barnadas, Agusti; Marcuello, Eugenio [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Baiget, Montserrat [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2011-12-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk

  14. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?

    Science.gov (United States)

    Iason, Glenn R.; O'Reilly-Wapstra, Julianne M.; Brewer, Mark J.; Summers, Ron W.; Moore, Ben D.

    2011-01-01

    A central issue in our understanding of the evolution of the diversity of plant secondary metabolites (PSMs) is whether or not compounds are functional, conferring an advantage to the plant, or non-functional. We examine the hypothesis that the diversity of monoterpene PSMs within a plant species (Scots pine Pinus sylvestris) may be explained by different compounds acting as defences against high-impact herbivores operating at different life stages. We also hypothesize that pairwise coevolution, with uncorrelated interactions, is more likely to result in greater PSM diversity, than diffuse coevolution. We tested whether up to 13 different monoterpenes in Scots pine were inhibitory to herbivory by slugs (Arion ater), bank voles (Clethrionomys glareolus), red deer (Cervus elaphus) and capercaillie (Tetrao urogallus), each of which attack trees at a different life stage. Plants containing more α-pinene were avoided by both slugs and capercaillie, which may act as reinforcing selective agents for this dominant defensive compound. Herbivory by red deer and capercaillie were, respectively, weakly negatively associated with δ3-carene, and strongly negatively correlated with the minor compound β-ocimene. Three of the four herbivores are probably contributory selective agents on some of the terpenes, and thus maintain some, but by no means all, of the phytochemical diversity in the species. The correlated defensive function of α-pinene against slugs and capercaillie is consistent with diffuse coevolutionary processes. PMID:21444308

  15. The Use of Monoterpenes as Kairomones by Ips latidens (LeConte) (Coleoptera: Scolytidae)

    Science.gov (United States)

    D.R. Miller; J.H. Borden

    1990-01-01

    The responses of Ips lutidens (LeConte) to multiple-funnel traps baited with various monoterpenes were determined in stands of lodgepole pine in British Columbia. ß-Phellandrene was attractive to I. lutidens in the absence of the pheromone ipsenol ß-Phellandrene increased the attraction of I. lutidens to...

  16. Polymorphisms in nitric oxide synthase and endothelin genes among children with obstructive sleep apnea.

    Science.gov (United States)

    Chatsuriyawong, Siriporn; Gozal, David; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Khalyfa, Ahamed A; Wang, Yang; Sukhumsirichart, Wasana; Khalyfa, Abdelnaby

    2013-09-06

    Obstructive sleep apnea (OSA) is associated with adverse and interdependent cognitive and cardiovascular consequences. Increasing evidence suggests that nitric oxide synthase (NOS) and endothelin family (EDN) genes underlie mechanistic aspects of OSA-associated morbidities. We aimed to identify single nucleotide polymorphisms (SNPs) in the NOS family (3 isoforms), and EDN family (3 isoforms) to identify potential associations of these SNPs in children with OSA. A pediatric community cohort (ages 5-10 years) enriched for snoring underwent overnight polysomnographic (NPSG) and a fasting morning blood draw. The diagnostic criteria for OSA were an obstructive apnea-hypopnea Index (AHI) >2/h total sleep time (TST), snoring during the night, and a nadir oxyhemoglobin saturation DNA from peripheral blood was extracted and allelic frequencies were assessed for, NOS1 (209 SNPs), NOS2 (122 SNPs), NOS3 (50 SNPs), EDN1 (43 SNPs), EDN2 (48 SNPs), EDN3 (14 SNPs), endothelin receptor A, EDNRA, (27 SNPs), and endothelin receptor B, EDNRB (23 SNPs) using a custom SNPs array. The relative frequencies of NOS-1,-2, and -3, and EDN-1,-2,-3,-EDNRA, and-EDNRB genotypes were evaluated in 608 subjects [128 with OSA, and 480 without OSA (NOSA)]. Furthermore, subjects with OSA were divided into 2 subgroups: OSA with normal endothelial function (OSA-NEF), and OSA with endothelial dysfunction (OSA-ED). Linkage disequilibrium was analyzed using Haploview version 4.2 software. For NOSA vs. OSA groups, 15 differentially distributed SNPs for NOS1 gene, and 1 SNP for NOS3 emerged, while 4 SNPs for EDN1 and 1 SNP for both EDN2 and EDN3 were identified. However, in the smaller sub-group for whom endothelial function was available, none of the significant SNPs was retained due to lack of statistical power. Differences in the distribution of polymorphisms among NOS and EDN gene families suggest that these SNPs could play a contributory role in the pathophysiology and risk of OSA-induced cardiovascular

  17. An In Planta-Expressed Polyketide Synthase Produces (R)-Mellein in the Wheat Pathogen Parastagonospora nodorum

    Science.gov (United States)

    Krill, Christian; Barrow, Russell A.; Chen, Shasha; Trengove, Robert; Oliver, Richard P.; Solomon, Peter S.

    2014-01-01

    Parastagonospora nodorum is a pathogen of wheat that affects yields globally. Previous transcriptional analysis identified a partially reducing polyketide synthase (PR-PKS) gene, SNOG_00477 (SN477), in P. nodorum that is highly upregulated during infection of wheat leaves. Disruption of the corresponding SN477 gene resulted in the loss of production of two compounds, which we identified as (R)-mellein and (R)-O-methylmellein. Using a Saccharomyces cerevisiae yeast heterologous expression system, we successfully demonstrated that SN477 is the only enzyme required for the production of (R)-mellein. This is the first identification of a fungal PKS that is responsible for the synthesis of (R)-mellein. The P. nodorum ΔSN477 mutant did not show any significant difference from the wild-type strain in its virulence against wheat. However, (R)-mellein at 200 μg/ml inhibited the germination of wheat (Triticum aestivum) and barrel medic (Medicago truncatula) seeds. Comparative sequence analysis identified the presence of mellein synthase (MLNS) homologues in several Dothideomycetes and two sodariomycete genera. Phylogenetic analysis suggests that the MLNSs in fungi and bacteria evolved convergently from fungal and bacterial 6-methylsalicylic acid synthases. PMID:25326302

  18. Thermodynamic study of selected monoterpenes III

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-trans-Pinane, (+)-Δ-carene, eucalyptol, and limonene were studied. • New thermodynamic data were measured and calculated. • Many of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-trans-pinane, (+)-Δ-carene, eucalyptol, (+)-limonene, and (−)-limonene, is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range (238 to 308) K. Liquid heat capacities were measured by Tian–Calvet calorimetry in the temperature interval (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from T = 183 K. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  19. Evolution and functional insights of different ancestral orthologous clades of chitin synthase genes in the fungal tree of life

    Directory of Open Access Journals (Sweden)

    Mu eLi

    2016-02-01

    Full Text Available Chitin synthases (CHSs are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene

  20. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria ananassa)

    NARCIS (Netherlands)

    Lunkenbein, S.; Coiner, H.; Vos, de C.H.; Schaart, J.G.; Boone, M.J.; Krens, F.A.; Schwab, W.; Salentijn, E.M.J.

    2006-01-01

    An octaploid (Fragaria × ananassa cv. Calypso) genotype of strawberry was transformed with an antisense chalcone synthase (CHS) gene construct using a ripening related CHS cDNA from Fragaria × ananassa cv. Elsanta under the control of the constitutive CaMV 35S promoter via Agrobacterium tumefaciens.

  1. Short communication: Effect of inhibition of fatty acid synthase on triglyceride accumulation and effect on lipid metabolism genes in goat mammary epithelial cells.

    Science.gov (United States)

    Zhu, J J; Luo, J; Sun, Y T; Shi, H B; Li, J; Wu, M; Yu, K; Haile, A B; Loor, J J

    2015-05-01

    The role of fatty acid synthase (FASN) on de novo fatty acid synthesis has been well established. In monogastrics, unlike acetyl-coenzyme A carboxylase, FASN is primarily controlled at the transcriptional level. However, no data exist on ruminant mammary cells evaluating effects of FASN knockdown on mRNA expression of lipogenic genes. Inhibition of FASN in mammary cells by C75-mediated interference, a synthetic inhibitor of FASN activity, and short hairpin RNA-mediated interference markedly reduced cellular triglyceride content at least in part by decreasing the expression of genes related to triglyceride synthesis (GPAT, AGPAT6, and DGAT2) and enhancing the expression of lipolysis-related genes (ATGL and HSL). Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47, ADFP, BTN1A1, and XDH), cellular lipid droplets also were reduced sharply after incubation with C75 or adenovirus-short-hairpin-RNA. The results underscored the essential role of FASN in the overall process of milk-fat formation in goat mammary epithelial cells. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Science.gov (United States)

    Ehlers, Bodil K

    2011-01-01

    Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  3. Soil microorganisms alleviate the allelochemical effects of a thyme monoterpene on the performance of an associated grass species.

    Directory of Open Access Journals (Sweden)

    Bodil K Ehlers

    Full Text Available Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms.To explore if the allelopathic effects on a grass by the common thyme monoterpene "carvacrol" are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms or not (soil microorganisms present in soil. The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene.The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions.

  4. Soil Microorganisms Alleviate the Allelochemical Effects of a Thyme Monoterpene on the Performance of an Associated Grass Species

    Science.gov (United States)

    Ehlers, Bodil K.

    2011-01-01

    Background Plant allelochemicals released into the soil can significantly impact the performance of associated plant species thereby affecting their competitive ability. Soil microbes can potentially affect the interaction between plant and plant chemicals by degrading the allelochemicals. However, most often plant-plant chemical interactions are studied using filter paper bioassays examining the pair-wise interaction between a plant and a plant chemical, not taking into account the potential role of soil microorganisms. Methodology/Principal findings To explore if the allelopathic effects on a grass by the common thyme monoterpene “carvacrol” are affected by soil microorganisms. Seedlings of the grass Agrostis capillaris originating from 3 different thyme sites were raised in the greenhouse. Seedlings were grown under four different soil treatments in a 2*2 fully factorial experiment. The monoterpene carvacrol was either added to standard greenhouse soil or left out, and soil was either sterilized (no soil microorganisms) or not (soil microorganisms present in soil). The presence of carvacrol in the soil strongly increased mortality of Agrostis plants, and this increase was highest on sterile soil. Plant biomass was reduced on soil amended with carvacrol, but only when the soil was also sterilized. Plants originating from sites where thyme produces essential oils containing mostly carvacrol had higher survival on soil treated with that monoterpene than plants originating from a site where thyme produced different types of terpenes, suggesting an adaptive response to the locally occurring terpene. Conclusions/Significance The study shows that presence of soil microorganisms can alleviate the negative effect of a common thyme monoterpene on the performance of an associated plant species, emphasizing the role of soil microbes in modulating plant-plant chemical interactions. PMID:22125596

  5. Association of endothelial nitric oxide synthase gene polymorphism with the risk of Henoch-Schönlein purpura/Henoch-Schönlein purpura nephritis.

    Science.gov (United States)

    Zhong, Weiqiang; Zhou, Tian-Biao; Jiang, Zongpei

    2015-04-01

    Association between endothelial nitric oxide synthase (eNOS) gene polymorphism and Henoch-Schönlein purpura (HSP)/Henoch-Schönlein purpura nephritis (HSPN) risk is still controversial. A meta-analysis was performed to evaluate the association between eNOS gene polymorphism and HSP/HSPN susceptibility. A predefined literature search and selection of eligible relevant studies were performed to collect data from electronic database. Three articles were identified for the analysis of association between eNOS gene polymorphism and HSPN/HSP risk. eNOS G894T gene polymorphism was not associated with HSPN susceptibility and the risk of patients with HSP developing into HSPN. Interestingly, eNOS G894T T allele and GG genotype were associated with HSP susceptibility, but not the TT genotype. eNOS T786C TT genotype was associated with HSPN susceptibility, but not C allele and CC genotype. Furthermore, eNOS T786C gene polymorphism was not associated with HSP risk and the risk of patients with HSP developing into HSPN. In conclusion, eNOS T786C TT genotype was associated with and eNOS G894T T allele and GG genotype were associated with HSP susceptibility. However, more studies should be performed in the future.

  6. ATP Synthase Deficiency due to TMEM70 Mutation Leads to Ultrastructural Mitochondrial Degeneration and Is Amenable to Treatment

    Directory of Open Access Journals (Sweden)

    Anne K. Braczynski

    2015-01-01

    Full Text Available TMEM70 is involved in the biogenesis of mitochondrial ATP synthase and mutations in the TMEM70 gene impair oxidative phosphorylation. Herein, we report on pathology and treatment of ATP synthase deficiency in four siblings. A consanguineous family of Roma (Gipsy ethnic origin gave birth to 6 children of which 4 were affected presenting with dysmorphic features, failure to thrive, cardiomyopathy, metabolic crises, and 3-methylglutaconic aciduria as clinical symptoms. Genetic testing revealed a homozygous mutation (c.317-2A>G in the TMEM70 gene. While light microscopy was unremarkable, ultrastructural investigation of muscle tissue revealed accumulation of swollen degenerated mitochondria with lipid crystalloid inclusions, cristae aggregation, and exocytosis of mitochondrial material. Biochemical analysis of mitochondrial complexes showed an almost complete ATP synthase deficiency. Despite harbouring the same mutation, the clinical outcome in the four siblings was different. Two children died within 60 h after birth; the other two had recurrent life-threatening metabolic crises but were successfully managed with supplementation of anaplerotic amino acids, lipids, and symptomatic treatment during metabolic crisis. In summary, TMEM70 mutations can cause distinct ultrastructural mitochondrial degeneration and almost complete deficiency of ATP synthase but are still amenable to treatment.

  7. A Malus crabapple chalcone synthase gene, McCHS, regulates red petal color and flavonoid biosynthesis.

    Directory of Open Access Journals (Sweden)

    Deqiang Tai

    Full Text Available Chalcone synthase is a key and often rate-limiting enzyme in the biosynthesis of anthocyanin pigments that accumulate in plant organs such as flowers and fruits, but the relationship between CHS expression and the petal coloration level in different cultivars is still unclear. In this study, three typical crabapple cultivars were chosen based on different petal colors and coloration patterns. The two extreme color cultivars, 'Royalty' and 'Flame', have dark red and white petals respectively, while the intermediate cultivar 'Radiant' has pink petals. We detected the flavoniods accumulation and the expression levels of McCHS during petals expansion process in different cultivars. The results showed McCHS have their special expression patterns in each tested cultivars, and is responsible for the red coloration and color variation in crabapple petals, especially for color fade process in 'Radiant'. Furthermore, tobacco plants constitutively expressing McCHS displayed a higher anthocyanins accumulation and a deeper red petal color compared with control untransformed lines. Moreover, the expression levels of several anthocyanin biosynthetic genes were higher in the transgenic McCHS overexpressing tobacco lines than in the control plants. A close relationship was observed between the expression of McCHS and the transcription factors McMYB4 and McMYB5 during petals development in different crabapple cultivars, suggesting that the expression of McCHS was regulated by these transcription factors. We conclude that the endogenous McCHS gene is a critical factor in the regulation of anthocyanin biosynthesis during petal coloration in Malus crabapple.

  8. Association of Nitric Oxide Synthase2 gene polymorphisms with leprosy reactions in northern Indian population.

    Science.gov (United States)

    Dubey, Amit; Biswas, Sanjay Kumar; Sinha, Ekata; Chakma, Joy Kumar; Kamal, Raj; Arora, Mamta; Sagar, Harish; Natarajan, Mohan; Bhagyawant, Sameer S; Mohanty, Keshar Kunja

    2017-07-01

    The pathogen Mycobacterium leprae causes leprosy that affects mainly skin and nerves. Polymorphisms of certain genes are substantiated to be associated with the susceptibility/resistance to leprosy. The present investigation addressed the association of Nitric Oxide Synthase2 gene polymorphisms and leprosy in a population from northern part of India. A total of 323 leprosy cases and 288 healthy controls were genotyped for four NOS2 promoter variants (rs1800482, rs2779249, rs8078340 and rs2301369) using FRET technology in Real Time PCR. None of these SNPs in promoter sites was associated with susceptibility/resistance to leprosy. NOS2 rs1800482 was found to be monomorphic with GG genotype. However, NOS2-1026T allele was observed to be in higher frequency with leprosy cases (BL and LL) who were not suffering from any reactional episodes compared to cases with ENL reaction {OR=0.30, 95% CI (0.10-0.86), p=0.024}. NOS2-1026GT genotype was more prevalent in cases without reaction (BT, BB and BL) compared to RR reactional patients {OR=0.38, 95% CI (0.17-0.86), p=0.02}. Although haplotype analysis revealed that no haplotype was associated with leprosy susceptibility/resistance with statistical significance, GTG haplotype was noted to be more frequent in healthy controls. These SNPs are observed to be in linkage disequilibrium. Although, these SNPs are not likely to influence leprosy vulnerability, -1026G>T SNP was indicated to have noteworthy role in leprosy reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Phytoene synthase gene family of apple (Malus x domestica) and its role in controlling fruit carotenoid content.

    Science.gov (United States)

    Ampomah-Dwamena, Charles; Driedonks, Nicky; Lewis, David; Shumskaya, Maria; Chen, Xiuyin; Wurtzel, Eleanore T; Espley, Richard V; Allan, Andrew C

    2015-07-28

    Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.

  10. An antimutagenic monoterpene from Malachra fasciata (Malvaveae)

    International Nuclear Information System (INIS)

    Ragasa, Consolacion Y.; Agbayani, Virgilio; Hernandez, Reynan B.; Rideout, John A.

    1997-01-01

    A monoterpene was isolated from the leaves of Malachra fasciata by gravity column chromatography. Its structure was elucidated by extensive1D and 2D NMR spectroscopy. It was identified as loliolide by comparison of its 1 H and 1 3 C NMR spectral data with those found in the literature. The compound was tested for its antimutagenicity potential by the use of the micronucleus test. Results of the study indicated a 64.4% reduction in micronucleated polychromatic erythrocytes induced by mitomycin C, when loliolide at a dosage of 14.8 mg/kg was administered to mice of the Swiss strain. Another isolate from the leaves of the plant was stigmasterol which structure was determined by comparison of its 1 H NMR spectal data with those found in the literature. (Author)

  11. Distinct UV-B and UV-A/blue light signal transduction pathways induce chalcone synthase gene expression in Arabidopsis cells

    International Nuclear Information System (INIS)

    Christie, J.M.; Jenkins, G.I.

    1996-01-01

    UV and blue light control the expression of flavonoid biosynthesis genes in a range of higher plants. To investigate the signal transduction processes involved in the induction of chalcone synthase (CHS) gene expression by UV-B and UV-A/blue light, we examined the, effects of specific agonists and inhibitors of known signaling components in mammalian systems in a photomixotrophic Arabidopsis cell suspension culture. CHS expression is induced specifically by these wavelengths in the cell culture, in a manner similar to that in mature Arabidopsis leaf tissue. Both the UV-B and UV-A/blue phototransduction processes involve calcium, although the elevation of cytosolic calcium is insufficient on its own to stimulate CHS expression. The UV-A/blue light induction of CHS expression does not appear to involve calmodulin, whereas the UV-B response does; this difference indicates that the signal transduction pathways are, at least in part, distinct. We provide evidence that both pathways involve reversible protein phosphorylation and require protein synthesis. The UV-B and UV-A/blue light signaling pathways are therefore different from the phytochrome signal transduction pathway regulating CHS expression in other species

  12. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    Science.gov (United States)

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  13. Nuclear receptor 5A (NR5A) family regulates 5-aminolevulinic acid synthase 1 (ALAS1) gene expression in steroidogenic cells.

    Science.gov (United States)

    Ju, Yunfeng; Mizutani, Tetsuya; Imamichi, Yoshitaka; Yazawa, Takashi; Matsumura, Takehiro; Kawabe, Shinya; Kanno, Masafumi; Umezawa, Akihiro; Kangawa, Kenji; Miyamoto, Kaoru

    2012-11-01

    5-Aminolevulinic acid synthase 1 (ALAS1) is a rate-limiting enzyme for heme biosynthesis in mammals. Heme is essential for the catalytic activities of P450 enzymes including steroid metabolic enzymes. Nuclear receptor 5A (NR5A) family proteins, steroidogenic factor-1 (SF-1), and liver receptor homolog-1 (LRH-1) play pivotal roles in regulation of steroidogenic enzymes. Recently, we showed that expression of SF-1/LRH-1 induces differentiation of mesenchymal stem cells into steroidogenic cells. In this study, genome-wide analysis revealed that ALAS1 was a novel SF-1-target gene in differentiated mesenchymal stem cells. Chromatin immunoprecipitation and reporter assays revealed that SF-1/LRH-1 up-regulated ALAS1 gene transcription in steroidogenic cells via binding to a 3.5-kb upstream region of ALAS1. The ALAS1 gene was up-regulated by overexpression of SF-1/LRH-1 in steroidogenic cells and down-regulated by knockdown of SF-1 in these cells. Peroxisome proliferator-activated receptor-γ coactivator-1α, a coactivator of nuclear receptors, also strongly coactivated expression of NR5A-target genes. Reporter analysis revealed that peroxisome proliferator-activated receptor-γ coactivator-1α strongly augmented ALAS1 gene transcription caused by SF-1 binding to the 3.5-kb upstream region. Finally knockdown of ALAS1 resulted in reduced progesterone production by steroidogenic cells. These results indicate that ALAS1 is a novel NR5A-target gene and participates in steroid hormone production.

  14. Methionine synthase A2756G and reduced folate carrier1 A80G ...

    African Journals Online (AJOL)

    Background: Polymorphisms of genes encoding enzymes involved in folate metabolism have long been hypothesized to be maternal risk factors for Down syndrome, however, results are conflicting and inconclusive. Aim of the study: To analyze the effect of methionine synthase (MTR) A2756G, and reduced folate carrier ...

  15. Nitric Oxide Synthase Type III Overexpression By Gene Therapy Exerts Antitumoral Activity In Mouse Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Raúl González

    2015-08-01

    Full Text Available Hepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO synthase type III (NOS-3 overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers. Liver fibrosis was induced by CCl4 administration in mice. Hepa 1-6 cells were used for in vitro and in vivo experiments. The first generation adenovirus was designed to overexpress NOS-3 (or GFP and luciferase cDNA under the regulation of murine alpha-fetoprotein (AFP and Rous Sarcoma Virus (RSV promoters, respectively. Both adenoviruses were administered through the tail vein two weeks after orthotopic tumor cell implantation. AFP-NOS-3/RSV-Luciferase increased oxidative-related DNA damage, p53, CD95/CD95L expression and caspase-8 activity in cultured Hepa 1-6 cells. The increased expression of CD95/CD95L and caspase-8 activity was abolished by l-NAME or p53 siRNA. The tail vein infusion of AFP-NOS- 3/RSV-Luciferase adenovirus increased cell death markers, and reduced cell proliferation of established tumors in fibrotic livers. The increase of oxidative/nitrosative stress induced by NOS-3 overexpression induced DNA damage, p53, CD95/CD95L expression and cell death in hepatocellular carcinoma cells. The effectiveness of the gene therapy has been demonstrated in vitro and in vivo.

  16. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Robert; Ludwig, Martha L. (Michigan)

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  17. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    International Nuclear Information System (INIS)

    Pejcha, Robert; Ludwig, Martha L.

    2005-01-01

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα) 8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys) 3 Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E · Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  18. Cobalamin-independent methionine synthase (MetE: a face-to-face double barrel that evolved by gene duplication.

    Directory of Open Access Journals (Sweden)

    Robert Pejchal

    2005-02-01

    Full Text Available Cobalamin-independent methionine synthase (MetE catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH, both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (betaalpha(8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys(3Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E.Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  19. The Class II trehalose 6-phosphate synthase gene PvTPS9 modulates trehalose metabolism in Phaseolus vulgaris nodules.

    Directory of Open Access Journals (Sweden)

    Aarón Barraza

    2016-11-01

    Full Text Available Legumes form symbioses with rhizobia, producing nitrogen-fixing nodules on the roots of the plant host. The network of plant signaling pathways affecting carbon metabolism may determine the final number of nodules. The trehalose biosynthetic pathway regulates carbon metabolism and plays a fundamental role in plant growth and development, as well as in plant-microbe interactions. The expression of genes for trehalose synthesis during nodule development suggests that this metabolite may play a role in legume-rhizobia symbiosis. In this work, PvTPS9, which encodes a Class II trehalose-6-phosphate synthase (TPS of common bean (Phaseolus vulgaris, was silenced by RNA interference in transgenic nodules. The silencing of PvTPS9 in root nodules resulted in a reduction of 85% (± 1% of its transcript, which correlated with a 30% decrease in trehalose contents of transgenic nodules and in untransformed leaves. Composite transgenic plants with PvTPS9 silenced in the roots showed no changes in nodule number and nitrogen fixation, but a severe reduction in plant biomass and altered transcript profiles of all Class II TPS genes. Our data suggest that PvTPS9 plays a key role in modulating trehalose metabolism in the symbiotic nodule and, therefore, in the whole plant.

  20. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    Science.gov (United States)

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  1. Tissue-specific gene-expression patterns of genes associated with thymol/carvacrol biosynthesis in thyme (Thymus vulgaris L.) and their differential changes upon treatment with abiotic elicitors

    DEFF Research Database (Denmark)

    Majdi, Mohammad; Malekzadeh-Mashhady, Atefe; Maroufi, Asad

    2017-01-01

    of the regulation of monoterpene biosynthesis in thyme, the expression of genes related to thymol and carvacrol biosynthesis in different tissues and in response to abiotic elicitors was analyzed. Methyl jasmonate (MeJA), salicylic acid (SA), trans-cinnamic acid (tCA) and UV-C irradiation were applied to T. vulgare...

  2. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  3. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli

    DEFF Research Database (Denmark)

    Heo, Min-Ji; Jung, Hwi-Min; Um, Jaeyong

    2017-01-01

    Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically...... prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate...

  4. Thermodynamic study of selected monoterpenes II

    International Nuclear Information System (INIS)

    Štejfa, Vojtěch; Fulem, Michal; Růžička, Květoslav; Červinka, Ctirad

    2014-01-01

    Highlights: • (−)-Borneol, (−)-camphor, (±)-camphene, and (+)-fenchone were studied. • New thermodynamic data were measured and calculated. • Most of thermodynamic data are reported for the first time. - Abstract: A thermodynamic study of selected monoterpenes, (−)-borneol, (−)-camphor, (±)-camphene, and (+)-fenchone is presented in this work. The vapor pressure measurements were performed using the static method over the environmentally important temperature range from (238 to 308) K. Heat capacities of condensed phases were measured by Tian–Calvet calorimetry in the temperature interval from (258 to 355) K. The phase behavior was investigated by differential scanning calorimetry (DSC) from subambient temperatures up to the fusion temperatures. The thermodynamic properties in the ideal-gas state were calculated by combining statistical thermodynamic and density functional theory (DFT) calculations. Calculated ideal-gas heat capacities and experimental data for vapor pressures and condensed phase heat capacities were treated simultaneously to obtain a consistent thermodynamic description

  5. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic.

    Science.gov (United States)

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m³ in the boundary layer over remote oceans.

  6. Friedelin Synthase from Maytenus ilicifolia: Leucine 482 Plays an Essential Role in the Production of the Most Rearranged Pentacyclic Triterpene

    Science.gov (United States)

    Souza-Moreira, Tatiana M.; Alves, Thaís B.; Pinheiro, Karina A.; Felippe, Lidiane G.; de Lima, Gustavo M. A.; Watanabe, Tatiana F.; Barbosa, Cristina C.; Santos, Vânia A. F. F. M.; Lopes, Norberto P.; Valentini, Sandro R.; Guido, Rafael V. C.; Furlan, Maysa; Zanelli, Cleslei F.

    2016-11-01

    Among the biologically active triterpenes, friedelin has the most-rearranged structure produced by the oxidosqualene cyclases and is the only one containing a cetonic group. In this study, we cloned and functionally characterized friedelin synthase and one cycloartenol synthase from Maytenus ilicifolia (Celastraceae). The complete coding sequences of these 2 genes were cloned from leaf mRNA, and their functions were characterized by heterologous expression in yeast. The cycloartenol synthase sequence is very similar to other known OSCs of this type (approximately 80% identity), although the M. ilicifolia friedelin synthase amino acid sequence is more related to β-amyrin synthases (65-74% identity), which is similar to the friedelin synthase cloned from Kalanchoe daigremontiana. Multiple sequence alignments demonstrated the presence of a leucine residue two positions upstream of the friedelin synthase Asp-Cys-Thr-Ala-Glu (DCTAE) active site motif, while the vast majority of OSCs identified so far have a valine or isoleucine residue at the same position. The substitution of the leucine residue with valine, threonine or isoleucine in M. ilicifolia friedelin synthase interfered with substrate recognition and lead to the production of different pentacyclic triterpenes. Hence, our data indicate a key role for the leucine residue in the structure and function of this oxidosqualene cyclase.

  7. The antimutagenic effect of monoterpenes against UV-irradiation-, 4NQO- and t-BOOH-induced mutagenesis in coli

    Directory of Open Access Journals (Sweden)

    Nikolić Biljana

    2011-01-01

    Full Text Available The aim of this work was to investigate the antimutagenic potential of monoterpenes from sage and basil in Escherichia coli. The mutagenic potential of monoterpenes was pre-screened with Salmonella/microsome reversion assay in strain TA100 and no mutagenic effect was detected. The antimutagenic potential against UV- 4NQO- and t-BOOH induced mutagenesis was evaluated in E. coli K12 and E. coli WP2 by reversion assays. The obtained results indicate that camphor and thujone reduce UV- and 4NQO-induced mutations; myrcene reduces t-BOOH-induced mutations, while eucalyptol and linalool reduce mutagenicity by all tested mutagens. Considering evolutionary conservation of DNA repair and antioxidative protection, the obtained results indicate that further antigenotoxicity studies should be undertaken in eukaryotes.

  8. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  9. A new assay based on terminal restriction fragment length polymorphism of homocitrate synthase gene fragments for Candida species identification.

    Science.gov (United States)

    Szemiako, Kasjan; Śledzińska, Anna; Krawczyk, Beata

    2017-08-01

    Candida sp. have been responsible for an increasing number of infections, especially in patients with immunodeficiency. Species-specific differentiation of Candida sp. is difficult in routine diagnosis. This identification can have a highly significant association in therapy and prophylaxis. This work has shown a new application of the terminal restriction fragment length polymorphism (t-RFLP) method in the molecular identification of six species of Candida, which are the most common causes of fungal infections. Specific for fungi homocitrate synthase gene was chosen as a molecular target for amplification. The use of three restriction enzymes, DraI, RsaI, and BglII, for amplicon digestion can generate species-specific fluorescence labeled DNA fragment profiles, which can be used to determine the diagnostic algorithm. The designed method can be a cost-efficient high-throughput molecular technique for the identification of six clinically important Candida species.

  10. A product of the bicistronic Drosophila melanogaster gene CG31241, which also encodes a trimethylguanosine synthase, plays a role in telomere protection.

    Science.gov (United States)

    Komonyi, Orban; Schauer, Tamas; Papai, Gabor; Deak, Peter; Boros, Imre M

    2009-03-15

    Although telomere formation occurs through a different mechanism in Drosophila compared with other organisms, telomere associations result from mutations in homologous genes, indicating the involvement of similar pathways in chromosome end protection. We report here that mutations of the Drosophila melanogaster gene CG31241 lead to high frequency chromosome end fusions. CG31241 is a bicistronic gene that encodes trimethylguanosine synthase (TGS1), which forms the m3G caps of noncoding small RNAs, and a novel protein, DTL. We show that although TGS1 has no role in telomere protection, DTL is localized at specific sites, including the ends of polytene chromosomes, and its loss results in telomere associations. Mutations of ATM- and Rad3-related (ATR) kinase suppress telomere fusions in the absence of DTL. Thus, genetic interactions place DTL in an ATR-related pathway in telomere protection. In contrast to ATR kinase, mutations of ATM (ataxia telangiectasia mutated) kinase, which acts in a partially overlapping pathway of telomere protection, do not suppress formation of telomere associations in the absence of DTL. Thus, uncovering the role of DTL will help to dissect the evolutionary conserved pathway(s) controlling ATM-ATR-related telomere protection.

  11. Metabolite profiling of Arabidopsis thaliana (L.) plants transformed with an antisense chalcone synthase gene

    DEFF Research Database (Denmark)

    Le Gall, G.; Metzdorff, Stine Broeng; Pedersen, Jan W.

    2005-01-01

    A metabolite profiling study has been carried out on Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija and a series of transgenic lines of the ecotype transformed with a CHS (chalcone synthase) antisense construct. Compound identifications by LC/MS and H-1 NMR are discussed. The glucosinolate...

  12. Predicted cycloartenol synthase protein from Kandelia obovata and Rhizophora stylosa using online software of Phyre2 and Swiss-model

    Science.gov (United States)

    Basyuni, M.; Sulistiyono, N.; Wati, R.; Sumardi; Oku, H.; Baba, S.; Sagami, H.

    2018-03-01

    Cloning of Kandelia obovata KcCAS gene (previously known as Kandelia candel) and Rhizophora stylosa RsCAS have already have been reported and encoded cycloartenol synthases. In this study, the predicted KcCAS and RsCAS protein were analyzed using online software of Phyre2 and Swiss-model. The protein modelling for KcCAS and RsCAS cycloartenol synthases was determined using Pyre2 had similar results with slightly different in sequence identity. By contrast, the Swiss-model for KcCAS slightly had higher sequence identity (47.31%) and Qmean (0.70) compared to RsCAS. No difference of ligands binding site which is considered as modulators for both cycloartenol synthases. The range of predicted protein derived from 91-757 amino acid residues with coverage sequence similarities 0.86, respectively from template model of lanosterol synthase from the human. Homology modelling revealed that 706 residues (93% of the amino acid sequence) had been modelled with 100.0% confidence by the single highest scoring template for both KcCAS and RsCAS using Phyre2. This coverage was more elevated than swiss-model predicted (86%). The present study suggested that both genes are responsible for the genesis of cycloartenol in these mangrove plants.

  13. Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema.

    Science.gov (United States)

    Games, Ellen; Guerreiro, Marina; Santana, Fernanda R; Pinheiro, Nathalia M; de Oliveira, Emerson A; Lopes, Fernanda D T Q S; Olivo, Clarice R; Tibério, Iolanda F L C; Martins, Mílton A; Lago, João Henrique G; Prado, Carla M

    2016-10-20

    Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes ( p -cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). Mices received porcine pancreatic elastase (PPE) and were treated with p -cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma ( p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide ( p < 0.05). Monoterpenes p -cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.

  14. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Lampugnani, Edwin R.; Persson, Staffan

    2016-01-01

    Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated with the ...

  15. Disruption of ATCSLD5 results in reduced growth, reduced xylan and homogalacturonan synthase activity and altered xylan occurrence in Arabidopsis

    DEFF Research Database (Denmark)

    Bernal Giraldo, Adriana Jimena; Jensen, Jacob Krüger; Harholt, Jesper

    2007-01-01

    Members of a large family of cellulose synthase-like genes (CSLs) are predicted to encode glycosyl transferases (GTs) involved in the biosynthesis of plant cell walls. The CSLA and CSLF families are known to contain mannan and glucan synthases, respectively, but the products of other CSLs...... are unknown. Here we report the effects of disrupting ATCSLD5 expression in Arabidopsis. Both stem and root growth were significantly reduced in ATCSLD5 knock-out plants, and these plants also had increased susceptibility to the cellulose synthase inhibitor isoxaben. Antibody and carbohydrate-binding module...

  16. Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO)

    Science.gov (United States)

    María Yáñez-Serrano, Ana; Nölscher, Anke Christine; Bourtsoukidis, Efstratios; Gomes Alves, Eliane; Ganzeveld, Laurens; Bonn, Boris; Wolff, Stefan; Sa, Marta; Yamasoe, Marcia; Williams, Jonathan; Andreae, Meinrat O.; Kesselmeier, Jürgen

    2018-03-01

    Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography-flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter- and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.

  17. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase

    DEFF Research Database (Denmark)

    Maile, C A; Hingst, Janne Rasmuss; Mahalingan, K K

    2017-01-01

    BACKGROUND: Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS: Equine muscle biochemical...... had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6...

  18. Functional specificity of cardiolipin synthase revealed by the identification of a cardiolipin synthase CrCLS1 in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Chun-Hsien eHung

    2016-01-01

    Full Text Available Phosphatidylglycerol (PG and cardiolipin (CL are two essential classes of phospholipid in plants and algae. Phosphatidylglycerophosphate synthase (PGPS and cardiolipin synthase (CLS involved in the biosynthesis of PG and CL belong to CDP-alcohol phosphotransferase and share overall amino acid sequence homology. However, it remains elusive whether PGPS and CLS are functionally distinct in vivo. Here, we report identification of a gene encoding CLS in Chlamydomonas reinhardtii, CrCLS1, and its functional compatibility. Whereas CrCLS1 did not complement the growth phenotype of a PGPS mutant of Synechocystis sp. PCC 6803, it rescued the temperature-sensitive growth phenotype, growth profile with different carbon sources, phospholipid composition and enzyme activity of ∆crd1, a CLS mutant of Saccharomyces cerevisiae. These results suggest that CrCLS1 encodes a functional CLS of C. reinhardtii as the first identified algal CLS, whose enzyme function is distinct from that of PGPSs from C. reinhardtii. Comparison of CDP-alcohol phosphotransferase motif between PGPS and CLS among different species revealed a possible additional motif that might define the substrate specificity of these closely related enzymes.

  19. Chalcone synthase genes from milk thistle (Silybum marianum)

    Indian Academy of Sciences (India)

    ... the identification of encoding genes in milk thistle plant can be of great importance. In the current research, fragments of genes were amplified using degenerate primers based on the conserved parts of Asteraceae genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced ...

  20. Silencing of Soybean Raffinose Synthase Gene Reduced Raffinose Family Oligosaccharides and Increased True Metabolizable Energy of Poultry Feed

    Directory of Open Access Journals (Sweden)

    Michelle F. Valentine

    2017-05-01

    Full Text Available Soybean [Glycine max (L. Merr.] is the number one oil and protein crop in the United States, but the seed contains several anti-nutritional factors that are toxic to both humans and livestock. RNA interference technology has become an increasingly popular technique in gene silencing because it allows for both temporal and spatial targeting of specific genes. The objective of this research is to use RNA-mediated gene silencing to down-regulate the soybean gene raffinose synthase 2 (RS2, to reduce total raffinose content in mature seed. Raffinose is a trisaccharide that is indigestible to humans and monogastric animals, and as monogastric animals are the largest consumers of soy products, reducing raffinose would improve the nutritional quality of soybean. An RNAi construct targeting RS2 was designed, cloned, and transformed to the soybean genome via Agrobacterium-mediated transformation. Resulting plants were analyzed for the presence and number of copies of the transgene by PCR and Southern blot. The efficiency of mRNA silencing was confirmed by real-time quantitative PCR. Total raffinose content was determined by HPLC analysis. Transgenic plant lines were recovered that exhibited dramatically reduced levels of raffinose in mature seed, and these lines were further analyzed for other phenotypes such as development and yield. Additionally, a precision-fed rooster assay was conducted to measure the true metabolizable energy (TME in full-fat soybean meal made from the wild-type or transgenic low-raffinose soybean lines. Transgenic low-raffinose soy had a measured TME of 2,703 kcal/kg, an increase as compared with 2,411 kcal/kg for wild-type. As low digestible energy is a major limiting factor in the percent of soybean meal that can be used in poultry diets, these results may substantiate the use of higher concentrations of low-raffinose, full-fat soy in formulated livestock diets.