WorldWideScience

Sample records for monosodium glutamate electronic

  1. Histochemical Studies of the Effects of Monosodium Glutamate on ...

    African Journals Online (AJOL)

    Uche

    Background: Monosodium glutamate (MSG) is a commonly used food ... The rats were given water ad libitum. ... that monosodium glutamate consumption may have some deleterious effects on ..... (MSG); obese rat as a model for the study of.

  2. 78 FR 76321 - Monosodium Glutamate From China and Indonesia

    Science.gov (United States)

    2013-12-17

    ... COMMISSION Monosodium Glutamate From China and Indonesia Determinations On the basis of the record \\1... injured by reason of imports from China and Indonesia of monosodium glutamate, provided for in subheading... United States at less than fair value (LTFV) and subsidized by the Governments of China and Indonesia. \\1...

  3. The Effect of Monosodium Glutamate (MSG On Rat Liver And The Ameliorating Effect Of "Guanidino Ethane Sulfonic acid (GES" (Histological, Histochemical and Electron Microscopy Studies

    Directory of Open Access Journals (Sweden)

    Hanaa F. Waer and *Saleh Edress

    2006-09-01

    Full Text Available Food additives are chemical substances added intentionally to food stuffs to preserve, color, sweeten and flavor food. Monosodium glutamate (MSG is used as a flavor enhancer and found in most soups, salad dressing and processed meat. The use of MSG in food is growing. Irrational fear had increased in the last few years due to the adverse reactions and toxicity of MSG. The present study was designed to investigate the effect of MSG on the rat liver and the ameliorating effect of taurine analog "Guanidinoethane sulfonic acid (GES". Sixty albino rats (2-3 months old were used in the present study. MSG was given orally at a daily dose of 60 mg/1000 g for one month, two months and was given at a daily dose of 100mg/1000gm for one month. The results revealed that the deleterious effects of MSG were dose related and cumulative. In MSG treated rats, the examined sections showed remarkable alterations varied considerably from moderate structural changes to cytoplasmic lysis and signs of degeneration of cellular organelles. The histological changes showed disturbed liver architecture, hemorrhage in the central veins, areas of necrosis, vacuolation and increased inflammatory cells infiltration. The glycogen granules increased as well as the collagen fibers in the liver cells. Ultrastructural changes showed loss of cytoplasmic differentiation, vacuolation, pyknotic nuclei with irregular nuclear membranes and elongated electron dense mitochondria. Conversely, treatment of rats with taurine analog (GES significantly attenuated the cellular toxicity of MSG.

  4. Monosodium glutamate induced histomorphometric changes in thyroid gland of adult

    Directory of Open Access Journals (Sweden)

    Pooja Rani1, Kamlesh Khatri2, Renu Chauhan1

    2013-08-01

    Full Text Available Monosodium Glutamate (MSG is widely used as a flavor enhanc-er throughout the world. MSG contains glutamic acid, sodium and water. Glutamic acid serves as a neurotransmitter vital to the transmission of nerve impulses in many parts of the central nerv-ous system, and in excess it may cause neurotoxicity leading to endocrinal disorders. The present study was conducted to eva-luate histomorphometrically the effects of monosodium glutamate on the thyroid gland of adult albino rats. The experimental group was given 4mg/g body weight of monosodium glutamate intra-peritoneally for seven days. Controls were maintained. After thirty days of the last dose, all the animals were sacrificed, their thyroid glands were dissected out, processed and sections stained with haematoxylin and eosin (H&E and Periodic Acid Schiff (PAS and examined for histomorphometry under Zeiss light microscope and Image Pro-Express Analyzer. The results of the present study showed a significant increase in the body weight of the MSG treated animals, although these animals consumed less food than the controls. A significant increase in the size of the follicles ac-companied by an increase in the mean height and area of the folli-cular cells and decreased colloid in some of the follicles was ob-served, pointing towards an increase in thyroid gland activity.

  5. Effect of L (+) ascorbic acid and monosodium glutamate concentration on the morphology of calcium carbonate

    Science.gov (United States)

    Saraya, Mohamed El-shahte Ismaiel

    2015-11-01

    In this study, monosodium glutamate and ascorbic acid were used as crystal and growth modifiers to control the crystallization of CaCO3. Calcium carbonate prepared by reacting a mixed solution of Na2CO3 with CaCl2 at ambient temperature, (25 °C), constant Ca++/ CO3- - molar ratio and pH with stirring. The polymorph and morphology of the crystals were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The results indicate that rhombohedral calcite was only formed in water without organic additives, and both calcite and spherical vaterite with various morphologies were produced in the presence of monosodium glutamate. The content of vaterite increased as the monosodium glutamate increased. In addition, spherical vaterite was obtained in the presence of different concentrations of ascorbic acid. The spherical vaterite posses an aggregate shape composed of nano-particles, ranging from 30 to 50 nm as demonstrated by the SEM and TEM analyses. Therefore, the ascorbic stabilizes vaterite and result in nano-particles compared to monosodium glutamate.

  6. Monosodium glutamate and aspartame in perceived pain in fibromyalgia.

    Science.gov (United States)

    Vellisca, María Y; Latorre, José I

    2014-07-01

    Our aim was to assess the effect of dietary elimination of monosodium glutamate (MSG) and aspartame on perceived pain in fibromyalgia. A total of 72 female patients with fibromyalgia were randomized to discontinuation of dietary MSG and aspartame (n = 36) or waiting list (n = 36). Patients were requested to rate their pain using a seven-point scale. Comparisons between both groups showed no significant differences on pain referred during the baseline or after the elimination of dietary MSG and aspartame. The discontinuation of dietary MSG and aspartame did not improve the symptoms of fibromyalgia.

  7. 78 FR 57881 - Monosodium Glutamate from China and Indonesia; Institution of Antidumping and Countervailing Duty...

    Science.gov (United States)

    2013-09-20

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Monosodium Glutamate from China and Indonesia; Institution of Antidumping and Countervailing Duty... Indonesia of monosodium glutamate, provided for in subheading 2922.42.10 of the Harmonized Tariff...

  8. Reduction of sodium content in spicy soups using monosodium glutamate

    DEFF Research Database (Denmark)

    Jinap, Selamat; Hajeb, Parvaneh; Karim, Roslina

    2016-01-01

    Background: Excessive dietary sodium intake causes several diseases, such as hypertension, cardiovascular and renal disease, etc. Hence, reducing sodium intake has been highly recommended. In this study the effect of monosodium glutamate (MSG), as an umami substance, on saltiness and sodium...... reduction was investigated.Methods and Results: The trained panellists were presented with basic spicy soups (curry chicken and chili chicken) containing different amounts of sodium chloride (NaCl) (0-1.2%) and MSG (0-1.2%). They tasted the optimum concentrations of NaCl and MSG for the two spicy soups...... that with the addition of MSG, it is possible to reduce sodium intake without changing the overall acceptability of the spicy soup. A 32.5% reduction in sodium level is made feasible by adding 0.7% MSG to the spicy soups.Conclusions: This study suggests that low-sodium soups can be developed by the addition...

  9. 78 FR 74115 - Monosodium Glutamate From the People's Republic of China and the Republic of Indonesia...

    Science.gov (United States)

    2013-12-10

    ... Indonesia: Postponement of Preliminary Determination in the Countervailing Duty Investigations AGENCY... (PRC)); Nicholas Czajkowski at (202) 482- 1395 (the Republic of Indonesia (Indonesia)), AD/CVD... investigations of monosodium glutamate from Indonesia and the PRC.\\1\\ Currently, the preliminary...

  10. Monosodium glutamate intake, dietary patterns and asthma in Chinese adults.

    Directory of Open Access Journals (Sweden)

    Zumin Shi

    Full Text Available OBJECTIVES: Emerging evidence shows that diet is related to asthma. The aim of this analysis was to investigate the association between monosodium glutamate (MSG intake, overall dietary patterns and asthma. METHODS: Data from 1486 Chinese men and women who participated in the Jiangsu Nutrition Study (JIN were analyzed. In this study, MSG intake and dietary patterns were quantitatively assessed in 2002. Information on asthma history was collected during followed-up in 2007. RESULTS: Of the sample, 1.4% reported ever having asthma. MSG intake was not positively associated with asthma. There was a significant positive association between 'traditional' (high loadings on rice, wheat flour, and vegetable food pattern and asthma. No association between 'macho' (rich in meat and alcohol, 'sweet tooth' (high loadings on cake, milk, and yoghurt 'vegetable rich' (high loadings on whole grain, fruit, and vegetable food patterns and asthma was found. Smoking and overweight were not associated with asthma in the sample. CONCLUSION: While a 'Traditional' food pattern was positively associated with asthma among Chinese adults, there was no significant association between MSG intake and asthma.

  11. Reduction of sodium content in spicy soups using monosodium glutamate

    Directory of Open Access Journals (Sweden)

    Selamat Jinap

    2016-06-01

    Full Text Available Background: Excessive dietary sodium intake causes several diseases, such as hypertension, cardiovascular and renal disease, etc. Hence, reducing sodium intake has been highly recommended. In this study the effect of monosodium glutamate (MSG, as an umami substance, on saltiness and sodium reduction was investigated. Methods and Results: The trained panellists were presented with basic spicy soups (curry chicken and chili chicken containing different amounts of sodium chloride (NaCl (0–1.2% and MSG (0–1.2%. They tasted the optimum concentrations of NaCl and MSG for the two spicy soups and the overall acceptability were 0.8% and 0.7%, respectively. There was no significant effect of spiciness level on the saltiness and umami taste of both soups. The optimum levels of combined NaCl and MSG for overall acceptance in the chili and curry soups were 0.3% and 0.7%, respectively. The results showed that with the addition of MSG, it is possible to reduce sodium intake without changing the overall acceptability of the spicy soup. A 32.5% reduction in sodium level is made feasible by adding 0.7% MSG to the spicy soups. Conclusions: This study suggests that low-sodium soups can be developed by the addition of appropriate amounts of MSG, while maintaining the acceptability of the spicy soups. It was also proven that it is feasible to reduce sodium intake by replacing NaCl with MSG.

  12. Supplementing monosodium glutamate to partial enteral nutrition slows gastric emptying in preterm pigs

    Science.gov (United States)

    Emerging evidence suggests that free glutamate may play a functional role in modulating gastroduodenal motor function. We hypothesized that supplementing monosodium glutamate (MSG) to partial enteral nutrition stimulates gastric emptying in preterm pigs. Ten-day-old preterm, parenterally fed pigs re...

  13. The sensitivity of male rat reproductive organs to monosodium glutamate

    Directory of Open Access Journals (Sweden)

    Sitthichai Iamsaard

    2014-05-01

    Full Text Available Objective. This study aimed to investigate the sensitivity of the testis, epididymis, seminal vesicle, and sperm acrosome reaction (AR to monosodium L- glutamate (MSG in rats. Materials and methods. Rats were divided into four groups and fed with non-acidic MSG at 0.25, 3 or 6 g/kg body weight for 30 days or without MSG. The morphological changes in the reproductive organs were studied. The plasma testosterone level, epididymal sperm concentration, and sperm AR status were assayed. Results. Compared to the control, no significant changes were discerned in the morphology and weight of the testes, or the histological structures of epididymis, vas deferens and seminal vesicle. In contrast, significant decreases were detected in the weight of the epididymis, testosterone levels, and sperm concentration of rats treated with 6 g/kg body weight of MSG. The weight loss was evident in the seminal vesicle in MSG-administered rats. Moreover, rats treated with MSG 3 and 6 g/kg exhibited partial testicular damage, characterized by sloughing of spermatogenic cells into the seminiferous tubular lumen, and their plasma testosterone levels were significantly decreased. In the 6 g/kg MSG group, the sperm concentration was significantly decreased compared with the control or two lower dose MSG groups. In AR assays, there was no statistically significant difference between MSG-rats and normal rats. Conclusion. Testicular morphological changes, testosterone level, and sperm concentration were sensitive to high doses of MSG while the rate of AR was not affected. Therefore, the consumption of high dose MSG must be avoided because it may cause partial infertility in male.

  14. The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids

    Science.gov (United States)

    Ault, Addison

    2004-01-01

    Monosodium glutamate (MSG) is both the basis of a trillion dollar worldwide industry and a presence in the diet of a majority of the inhabitants of the world. Some parts of the "story" of MSG that might be of most interest to chemists, chemistry teachers and their students are presented.

  15. Micro-Raman studies on the conformational behaviors of monosodium glutamate in dehydration process

    Institute of Scientific and Technical Information of China (English)

    Jing Jing Shou; Guang Zeng; Hao Zhang; Yun Hong Zhang

    2011-01-01

    The conformational behaviors of monosodium glutamate (MSG) in a dehydration process were studied by Micro-Raman spectroscopy in combination with Hartree-Fock calculations using 6-31+G* method. The dehydration process of the MSG droplet was performed by decreasing the ambient relative humidity (RH). The intensity ratio of the 935 cm"1 band to 884 cm-1 band (I935/ I884) kept decreasing when RH decreased. By optimizing the geometries with different fixed dihedral angles, the downtrend of (I935/ I884) is found to be due to the reduction of MSG molecular volume.

  16. Histological studies of the effects of monosodium glutamate of the Fallopian tubes of adult female Wistar rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-01-01

    Full Text Available Background: The effect of monosodium glutamate used as food additive on the fallopian tubes of adult Wistar rat was investigated. Material and Methods: Adult female Wistar rats (n=24 of average weight of 230g were randomly assigned into three groups A, B and C in each group (n=8. The treatment groups (A & B were given 0.04mg/kg and 0.08mg/kg of monosodium glutamate thoroughly mixed with the growers′ mash, respectively on a daily basis. The control group (C received equal amount of feeds (Growers′ mash without monosodium glutamate added for fourteen days. The growers′ mash was obtained from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and the rats were given water liberally. The rats were sacrificed on day fifteen of the experiment. The fallopian tubes were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological procedures. Result: The histological findings in the treated groups showed evidence of cellular hypertrophy, degenerative and atrophic changes, and lysed red blood cells in lumen with the group that received 0.08mg/kg of monosodium glutamate more severe. Conclusion: MSG may have some deleterious effects on the fallopian tubes of adult female Wistar rats at higher doses and by extension may contribute to the causes of female infertility. It is recommended that further studies aimed at corroborating these findings be carried out.

  17. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater.

    Science.gov (United States)

    Ji, Yan; Hu, Wenrong; Li, Xiuqing; Ma, Guixia; Song, Mingming; Pei, Haiyan

    2014-01-01

    Monosodium glutamate wastewater (MSGW) is a potential medium for microbial cultivation because of containing abundant organic nutrient. This paper seeks to evaluate the feasibility of growing Chlorella vulgaris with MSGW and assess the influence of MSGW concentration on the biomass productivity and biochemical compositions. The MSGW diluted in different concentrations was prepared for microalga cultivation. C. vulgaris growth was greatly promoted with MSGW compared with the inorganic BG11 medium. C. vulgaris obtained the maximum biomass concentration (1.02 g/L) and biomass productivity (61.47 mg/Ld) with 100-time diluted MSGW. The harvested biomass was rich in protein (36.01-50.64%) and low in lipid (13.47-25.4%) and carbohydrate (8.94-20.1%). The protein nutritional quality and unsaturated fatty acids content of algal increased significantly with diluted MSGW. These results indicated that the MSGW is a feasible alternative for mass cultivation of C. vulgaris.

  18. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nakadate

    2016-01-01

    Full Text Available Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.

  19. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity.

    Science.gov (United States)

    Nakadate, Kazuhiko; Motojima, Kento; Hirakawa, Tomoya; Tanaka-Nakadate, Sawako

    2016-01-01

    Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.

  20. The efficacy of probiotics for monosodium glutamate-induced obesity: dietology concerns and opportunities for prevention.

    Science.gov (United States)

    Savcheniuk, Oleksandr A; Virchenko, Oleksandr V; Falalyeyeva, Tetyana M; Beregova, Tetyana V; Babenko, Lidia P; Lazarenko, Liudmyla M; Demchenko, Olga M; Bubnov, Rostyslav V; Spivak, Mykola Ya

    2014-01-13

    Obesity becomes endemic today. Monosodium glutamate was proved as obesogenic food additive. Probiotics are discussed to impact on obesity development. The aim was to study the effects of probiotics on the development of monosodium glutamate (MSG)-induced obesity in rats. We included 45 Wistar male rats and divided into three groups (n = 15). Newborn rats of group 1 (control) received subcutaneously 8 μl/g saline. Group 2 received 3 to 4 mg/g MSG subcutaneously on the second, fourth, sixth, eighth and tenth day of life. Within 4 months after birth, rats were on a standard diet. Group 3 received an aqueous solution of probiotics mixture (2:1:1 Lactobacillus casei IMVB-7280, Bifidobacterium animalis VKL, B. animalis VKB) at the dose of 5 × 109 CFU/kg (50 mg/kg) intragastrically. Administration of probiotics was started at the age of 4 weeks just after weaning and continued for 3 months during 2-week courses. Group 2 received intragastrically 2.5 ml/kg water. Organometric and biochemical parameters in all groups of rats were analyzed over 4 months. The concentration of adiponectin was determined in serum, and leptin - in adipose tissue. Administration of MSG led to the development of obesity in rats; body weight had increased by 7.9% vs controls (p < 0.05); body length had increased by 5.4% (p < 0.05). Body mass index and Lee index and visceral fat mass had increased (p < 0.001). Under the neonatal injection of MSG, the concentration of total cholesterol, triglycerides, VLDL cholesterol and LDL cholesterol significantly increased (p < 0.001), in comparison with controls. Adipose-derived hormones changed in MSG obesity rats: adiponectin decreased by 58.8% (p < 0.01), and leptin concentration in adipose tissue had increased by 74.7% (p < 0.01). The probiotic therapy of rats from group 3 prevented obesity development. Parameters of rats treated with probiotic mixture did not differ from that in the control. The introduction of MSG to newborn rats caused the

  1. EXPRESSION OF BAX AND BCL-2 IN MOUSE OFFSPRING BRAIN AFIER MATERNAL ORAL ADMINISTRATION OF MONOSODIUM GLUTAMATE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective:To analyze the excitotoxicity of monosodium glutamate(MSG)in the offspring crebral cortex and hippocampal subresions after maternal oral administration of MSG.Methods:Kunming mice were given per os MSG(4.0g/kg)at 17-21 days of pregnancy and their offspring behaviors were studied at 10,20,30days postnatally.By using inmunohistochemical means,the involvment of Bcl-2 and bax in the glutamate-induced cell death in cortical and hippocampal neurons were examined.Cell damage was assessed by direct cell counting.Results:administration of monosodium glutamate during the fetal period in mice resulted in a moderate increase in the expression of Bax in principal neurons in CA1,CA2,CA3,CA4 and in the cerebral cortex at postpartum 10,20,30 days in the offspring mice,whereas Bcl-2 protein expressions were reduced significantly in the same regions as compared with those of controls.Conclusion:These findings suggest that glutamate toxicity results in cellular death via an apoptotic mechanism in which the Bcl-2/Bax-alpha molecular complex may be involved.The glutamate-induced apoptosis appears to be related to the modulation of Bcl-2 family gene products such as Bcl-2 and Bax.

  2. Does monosodium glutamate interact with macronutrient composition to influence subsequent appetite?

    Science.gov (United States)

    Masic, Una; Yeomans, Martin R

    2013-05-27

    The influence of flavour enhancers such as monosodium glutamate (MSG) on satiation and satiety is unclear, and the present study aimed to explore this by examining the effects consumption of soups varying in MSG (1% MSG added or no MSG) and macronutrient content (added carbohydrate, protein or control) had on appetite. 24 non-obese, low-restraint male participants consumed a fixed portion of soup and rated their appetite before, immediately after intake and at 15 minute intervals for 120 min post-ingestion across six sessions. Added MSG significantly increased flavour pleasantness and tended to result in a smaller decrease in hunger immediately after soup ingestion. MSG also reduced rather than enhanced feelings of fullness immediately after ingestion of the high protein soup. As expected, hunger increased, and fullness decreased, over the subsequent 120 min, but the increase in hunger was significantly lower in the MSG than no-MSG conditions with the protein soup between 30 and 60 min post-ingestion. Overall these data suggest that MSG may have a bi-phasic effect on appetite, with reduced satiation mediated by effects on palatability, but potential for enhanced post-ingestive satiety particularly in the context of protein ingestion.

  3. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity.

    Science.gov (United States)

    Pelantová, Helena; Bártová, Simona; Anýž, Jiří; Holubová, Martina; Železná, Blanka; Maletínská, Lenka; Novák, Daniel; Lacinová, Zdena; Šulc, Miroslav; Haluzík, Martin; Kuzma, Marek

    2016-01-01

    Obesity with related complications represents a widespread health problem. The etiopathogenesis of obesity is often studied using numerous rodent models. The mouse model of monosodium glutamate (MSG)-induced obesity was exploited as a model of obesity combined with insulin resistance. The aim of this work was to characterize the metabolic status of MSG mice by NMR-based metabolomics in combination with relevant biochemical and hormonal parameters. NMR analysis of urine at 2, 6, and 9 months revealed altered metabolism of nicotinamide and polyamines, attenuated excretion of major urinary proteins, increased levels of phenylacetylglycine and allantoin, and decreased concentrations of methylamine in urine of MSG-treated mice. Altered levels of creatine, citrate, succinate, and acetate were observed at 2 months of age and approached the values of control mice with aging. The development of obesity and insulin resistance in 6-month-old MSG mice was also accompanied by decreased mRNA expressions of adiponectin, lipogenetic and lipolytic enzymes and peroxisome proliferator-activated receptor-gamma in fat while mRNA expressions of lipogenetic enzymes in the liver were enhanced. At the age of 9 months, biochemical parameters of MSG mice were normalized to the values of the controls. This fact pointed to a limited predictive value of biochemical data up to age of 6 months as NMR metabolomics confirmed altered urine metabolic composition even at 9 months.

  4. Monosodium glutamate (MSG consumption is associated with urolithiasis and urinary tract obstruction in rats.

    Directory of Open Access Journals (Sweden)

    Amod Sharma

    Full Text Available BACKGROUND: The peritoneal injection of monosodium glutamate (MSG can induce kidney injury in adult rats but the effects of long-term oral intake have not been determined. METHODS: We investigated the kidney histology and function in adult male Wistar rats that were fed ad libitum with a standard rat chow pellet and water with or without the addition of 2 mg/g body weight MSG/day in drinking water (n=10 per group. Both MSG-treated and control animals were sacrificed after 9 months when renal function parameters, blood and urine electrolytes, and tissue histopathology were determined. RESULTS: MSG-treated rats were more prone to kidney stone formation, as represented by the alkaline urine and significantly higher activity product of calcium phosphate. Accordingly, 3/10 MSG-treated rats developed kidney stones over 9 months versus none of the control animals. Further, 2/10 MSG-treated rats but none (0/10 of the controls manifested hydronephrosis. MSG-treated rats had significantly higher levels of serum creatinine and potassium including urine output volume, urinary excretion sodium and citrate compared to controls. In contrast, MSG-treated rats had significantly lower ammonium and magnesium urinary excretion. CONCLUSION: Oral MSG consumption appears to cause alkaline urine and may increase the risks of kidney stones with hydronephrosis in rats. Similar effects in humans must be verified by dedicated studies.

  5. Acquired flavor acceptance and intake facilitated by monosodium glutamate in humans.

    Science.gov (United States)

    Yeomans, Martin R; Gould, Natalie J; Mobini, Sirous; Prescott, John

    2008-03-18

    Monosodium glutamate (MSG) is known to enhance liking for the flavor of savory foods, but whether associations between flavors and effects of MSG lead to changes in subsequent liking and intake for the flavor alone is unclear. To test this, 32 volunteers evaluated and consumed a novel savory soup with no added MSG before and after four training sessions where the same soup was consumed either unchanged (Control) or with added MSG. The addition of MSG during training increased both pleasantness and savory character of the soup and resulted in a larger increase in rated pleasantness of the soup in the MSG-trained relative to control condition when the soup was re-evaluated Post-training without MSG. There was also a significant increase in voluntary soup intake Post-training after the soup had been paired with MSG but not in the Control condition, and rated hunger increased more after tasting the soup Post-training in the MSG-trained but not Control condition. These findings demonstrate that co-experience of a savory flavor and MSG can result in increased subsequent liking and intake for the flavor in the absence of MSG, and possible explanations for how MSG reinforces learning are discussed.

  6. HISTOLOGICAL STUDIES OF THE EFFECTS OF MONOSODIUM GLUTAMATE ON THE INFERIOR COLLICULUS OF ADULT WISTAR RATS.

    Directory of Open Access Journals (Sweden)

    A.O. Eweka.

    2008-01-01

    Full Text Available Histological effects of Monosodium glutamate (MSG commonly used as food additive on the inferior colliculus (IC of adult Wistar rats were carefully studied. The rats of both sexes (n=24, average weight of 185g were randomly assigned into two treatments (n=16 and control (n=8 groups. The rats in the treatment groups received 3g and 6g of MSG thoroughly mixed with their feeds for fourteen days, while the control rats received equal amounts of feeds without MSG added. The rats were fed with growers' mash purchased from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day fifteen of the experiment. The inferior colliculus was carefully dissected out and quickly fixed in 10% formal saline for routine histological study after H&E method.The histological findings after H&E methods indicated that the treated sections of the inferior colliculus showed some cellular degenerative changes, cellular hypertrophy, and autophagic vacuoles with some intercellular vacuolations appearing in the stroma, and some degree of neuronal hypertrophy when compared to the control sections.These findings indicate that MSG consumption may have a deleterious effect on the neurons of the inferior colliculus (IC. MSG may probably have adverse effects on the auditory sensibilities by its deleterious effects on the nerve cells of the IC of adult Wistar rats. It is recommended that further studies aimed at corroborating these observations be carried out.

  7. Monosodium glutamate-sensitive hypothalamic neurons contribute to the control of bone mass

    Science.gov (United States)

    Elefteriou, Florent; Takeda, Shu; Liu, Xiuyun; Armstrong, Dawna; Karsenty, Gerard

    2003-01-01

    Using chemical lesioning we previously identified hypothalamic neurons that are required for leptin antiosteogenic function. In the course of these studies we observed that destruction of neurons sensitive to monosodium glutamate (MSG) in arcuate nuclei did not affect bone mass. However MSG treatment leads to hypogonadism, a condition inducing bone loss. Therefore the normal bone mass of MSG-treated mice suggested that MSG-sensitive neurons may be implicated in the control of bone mass. To test this hypothesis we assessed bone resorption and bone formation parameters in MSG-treated mice. We show here that MSG-treated mice display the expected increase in bone resorption and that their normal bone mass is due to a concomitant increase in bone formation. Correction of MSG-induced hypogonadism by physiological doses of estradiol corrected the abnormal bone resorptive activity in MSG-treated mice and uncovered their high bone mass phenotype. Because neuropeptide Y (NPY) is highly expressed in MSG-sensitive neurons we tested whether NPY regulates bone formation. Surprisingly, NPY-deficient mice had a normal bone mass. This study reveals that distinct populations of hypothalamic neurons are involved in the control of bone mass and demonstrates that MSG-sensitive neurons control bone formation in a leptin-independent manner. It also indicates that NPY deficiency does not affect bone mass.

  8. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Collison Kate S

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests that the effects of certain food additives may be synergistic or additive. Aspartame (ASP and Monosodium Glutamate (MSG are ubiquitous food additives with a common moiety: both contain acidic amino acids which can act as neurotransmitters, interacting with NMDA receptors concentrated in areas of the Central Nervous System regulating energy expenditure and conservation. MSG has been shown to promote a neuroendocrine dysfunction when large quantities are administered to mammals during the neonatal period. ASP is a low-calorie dipeptide sweetener found in a wide variety of diet beverages and foods. However, recent reports suggest that ASP may promote weight gain and hyperglycemia in a zebrafish nutritional model. Methods We investigated the effects of ASP, MSG or a combination of both on glucose and insulin homeostasis, weight change and adiposity, in C57BL/6 J mice chronically exposed to these food additives commencing in-utero, compared to an additive-free diet. Pearson correlation analysis was used to investigate the associations between body characteristics and variables in glucose and insulin homeostasis. Results ASP alone (50 mg/Kgbw/day caused an increase in fasting blood glucose of 1.6-fold, together with reduced insulin sensitivity during an Insulin Tolerance Test (ITT P  Conclusions Aspartame exposure may promote hyperglycemia and insulin intolerance. MSG may interact with aspartame to further impair glucose homeostasis. This is the first study to ascertain the hyperglycemic effects of chronic exposure to a combination of these commonly consumed food additives; however these observations are limited to a C57BL/6 J mouse model. Caution should be applied in extrapolating these findings to other species.

  9. Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats.

    Directory of Open Access Journals (Sweden)

    Piyanard Boonnate

    Full Text Available The amount of dietary monosodium glutamate (MSG is increasing worldwide, in parallel with the epidemics of metabolic syndrome. Parenteral administration of MSG to rodents induces obesity, hyperglycemia, hyperlipidemia, insulin resistance, and type 2 diabetes. However, the impact of dietary MSG is still being debated. We investigated the morphological and functional effects of prolonged MSG consumption on rat glucose metabolism and on pancreatic islet histology.Eighty adult male Wistar rats were randomly subdivided into 4 groups, and test rats in each group were supplemented with MSG for a different duration (1, 3, 6, or 9 months, n=20 for each group. All rats were fed ad libitum with a standard rat chow and water. Ten test rats in each group were provided MSG 2 mg/g body weight/day in drinking water and the 10 remaining rats in each group served as non-MSG treated controls. Oral glucose tolerance tests (OGTT were performed and serum insulin measured at 9 months. Animals were sacrificed at 1, 3, 6, or 9 months to examine the histopathology of pancreatic islets.MSG-treated rats had significantly lower pancreatic β-cell mass at 1, 6 and 9 months of study. Islet hemorrhages increased with age in all groups and fibrosis was significantly more frequent in MSG-treated rats at 1 and 3 months. Serum insulin levels and glucose tolerance in MSG-treated and untreated rats were similar at all time points we investigated.Daily MSG dietary consumption was associated with reduced pancreatic β-cell mass and enhanced hemorrhages and fibrosis, but did not affect glucose homeostasis. We speculate that high dietary MSG intake may exert a negative effect on the pancreas and such effect might become functionally significant in the presence or susceptibility to diabetes or NaCl; future experiments will take these crucial cofactors into account.

  10. Histological changes in kidneys of adult rats treated with Monosodium glutamate: A light microscopic study

    Directory of Open Access Journals (Sweden)

    Singh BR, Ujwal Gajbe, Anil Kumar Reddy, Vandana Kumbhare

    2015-01-01

    Full Text Available Introduction: Monosodium Glutamate (MSG, which is chemically known as AJI-NO-MOTO also familiar as MSG in routine life. MSG is always considered to be a controversial food additive used in the world. It is a natural excitatory neurotransmitter, helps in transmitting the fast synaptic signals in one third of CNS. Liver and kidney play a crucial role in metabolism as well as elimination of MSG from the body. Present study is to detect structural changes in adult rat kidney tissue treated with MSG; observations are done with a light microscope. Materials & Methods: The study was conducted in the department of Anatomy, J.N.M.C, Sawangi (M Wardha. Thirty (30 adult Wistar rats (2-3 months old weighing about (200 ± 20g were used in the current study, animals were divided into three groups (Group – A, B, C. Group A: Control, Group B: 3 mg /gm body weight, Group C: 6 mg /gm body weight, MSG were administered orally daily for 45 days along with the regular diet. Observations & Results: The Mean values of animals weight at the end of experiment (46th day respectively were 251.2 ± 13, 244.4 ± 19.9 and 320 ± 31.1. Early degenerative changes like, Glomerular shrinkage (GSr, loss of brush border in proximal convoluted tubules and Cloudy degeneration was observed in sections of kidney treated with 3 mg/gm body weight of MSG. Animals treated with 6 mg/gm body weight of MSG showed rare changes like interstitial chronic inflammatory infiltrate with vacuolation in some of the glomeruli, and much glomerular shrinkage invaginated by fatty lobules. Conclusion: The effects of MSG on kidney tissues of adult rats revealed that the revelatory changes are directly proportional to the doses of MSG.

  11. Using monosodium glutamate to initiate ethanol self-administration in inbred mouse strains.

    Science.gov (United States)

    McCool, Brian A; Chappell, Ann M

    2012-01-01

    Voluntary oral ethanol consumption in rodents is generally limited by strong taste-aversion in these species. Historically, this has been overcome by combining ethanol with a sweetener, typically sucrose or saccharine, and then slowly 'fading' away the sweetener. While useful in most instances, this approach has not proven as successful for some inbred strains of mice (e.g. DBA/2J) despite consistent evidence in the literature that these same strains express strong conditioned place preference for intraperitoneal- or intragastric-administered ethanol. Importantly, DBA/2J mice express a polymorphism in a 'sweet' taste receptor subunit gene that reduces the potency of sweet substances in these mice. We hypothesized that the presence of this polymorphism might help explain the contrasting behavioral findings of weak voluntary oral ethanol consumption following sucrose-fade yet robust conditioned place preference for ethanol in this strain. To test this, we compared ethanol consumption initiated by either a 'traditional' sucrose-fade or a fade from an alternative tastant, monosodium glutamate (MSG). We found that in both C57BL/6J and DBA/2J mice, the MSG-fade produced robust increases in home cage ethanol consumption relative to the traditional sucrose-fade. This increased ethanol intake following MSG-fade was evident across a range of ethanol concentrations. Our findings suggest the potential utility of the MSG-fade to establish stable voluntary oral ethanol consumption in mice, particularly ethanol 'non-preferring' strains such as DBA/2J and lend additional support to the notion that ethanol consumption in DBA/2J mice is limited by pronounced taste aversion.

  12. Scientific Opinion on the safety of the change in the production method of L-glutamic acid (E620, monosodium L-glutamate (E621, monopotassium L-glutamate (E622, calcium di-L-glutamate (E623, monoammonium L-glutamate (E624 and magnesium di-L-glutamate (E625

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Additives and Nutrient Sources added to food (ANS

    2015-01-01

    Full Text Available The Panel on Food Additives and Nutrient Sources added to Food (ANS was asked to deliver a scientific opinion evaluating   the safety of the change in the production method for the production of L-glutamic acid (E620, monosodium - L-glutamate (E621, monopotassium L-glutamate (E622, calcium di-L-glutamate (E623, monoammonium L-glutamate (E624 and magnesium di-L-glutamate (E625. The L-glutamic acid is produced by the genetically modified Corynebacterium glutamicum EA-12 strain. The recipient strain Corynebacterium glutamicum  strain2256  has been recommended for Qualified Presumption of Safety (QPS status. No antibiotic resistance genes were left in the genome and neither the production strain nor its recombinant DNA were detected in the final product. The Panel considered there were no safety concerns for consumers from the genetic modification. The proposed uses or use levels of L-glutamic acid and its salt derivatives produced with the current strain and the new genetically modified microorganism (GMM strain will be identical and thus the Panel considered that the exposure to the food additive will remain unaffected. Provided that the L-glutamic acid and its salts both produced with the current strain and with the GMM strain are equal in the specifications and physicochemical characteristics, the biological and toxicological data for the L-glutamic acid and its salts produced with the current strain are considered by the Panel to support the safety of the food additives produced with the GMM strain. The Panel concluded that there are no safety concerns from the  change in the production method of the food additives L-glutamic acid (E620, monosodium L-glutamate (E621, monopotassium L-glutamate (E622, calcium di-L-glutamate (E623, monoammonium L-glutamate (E624 and magnesium di-L-glutamate (E625 meeting their existing specifications.

  13. EXPRESSION OF BAX AND BCL-2 IN MOUSE OFFSPRING BRAIN AFTER MATERNAL ORAL ADMINIS TRATION OF MONOSODIUM GLUTAMATE

    Institute of Scientific and Technical Information of China (English)

    徐磊; 赵晏; 展淑琴; 王会生; 史文春

    2002-01-01

    Objective To analyze the excitotoxicity of monoso dium glutamate (MSG) in the offspring cerebral cortex and hippocampal subregions after maternal oral administration of MSG. Methods Kunming mi ce were given per os MSG ( 4.0 g/kg ) at 17~21 days of pregnancy and their offs pring behaviors were studied at 10, 20 , 30 days postnatally. By using immunohis tochemical means, the involvement of Bcl-2 and Bax in the glutamate-induced c ell death in cortical and hippocampal neur ons were examined. Cell damage was assessed by direct cell counting. Res ults Administration of monosodium glutamate during the fetal period in mice resulted in a moderate increase in the expression of Bax in principal neuro ns in CA1, CA2, CA3, CA4 and in the cerebral cortex at postpartum 10, 20, 30 day s in the offspring mice, whereas Bcl-2 protein expressions were reduced signif icantly in the same regions as compared with those of controls. Conclusi on These findings suggest that glutamate toxicity results in cellular d eath via an apoptotic mechanism in which the Bcl-2/Bax-alpha molecular comple x may be involved. The glutamate-induced apoptosis appears to be related to the modulation of Bcl-2 family gene products such as Bcl-2 and Bax.

  14. No effect on intake and liking of soup enhanced with mono-sodium glutamate and celery powder among elderly people with olfactory and/or gustatory loss

    NARCIS (Netherlands)

    Essed, N.H.; Kleikers, S.M.; Staveren, van W.A.; Kok, F.J.; Graaf, de C.

    2009-01-01

    Mono-sodium glutamate (MSG) and/or flavors may improve palatability and intake in elderly people. Whether this improvement is related to a decline in chemosensory sensitivity is unclear. We examined the effect of flavor-enhanced tomato soup (1,200 mg/l MSG (0.12% MSG) + 3 g/l celery powder) versus n

  15. No effect on intake and liking of soup enhanced with mono-sodium glutamate and celery powder among elderly people with olfactory and/or gustatory loss

    NARCIS (Netherlands)

    Essed, N.H.; Kleikers, S.M.; Staveren, van W.A.; Kok, F.J.; Graaf, de C.

    2009-01-01

    Mono-sodium glutamate (MSG) and/or flavors may improve palatability and intake in elderly people. Whether this improvement is related to a decline in chemosensory sensitivity is unclear. We examined the effect of flavor-enhanced tomato soup (1,200 mg/l MSG (0.12% MSG) + 3 g/l celery powder) versus n

  16. Microscopic Study of Testicular Tissue Structure and Spermatogenesis Following Long Term Dose Dependent Administration of Monosodium Glutamate in Adult Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Kianifard Davoud

    2016-06-01

    Full Text Available Background and aims: Diabetic hyperglycemia leads to structural and functional alterations in body organs including testis. Monosodium glutamate (MSG is a food additive which has toxic effects on human and animal’s tissues. The aim of this study was to evaluate the effects of MSG on diabetic complications of testicular tissue.

  17. Dietary consumption of monosodium L-glutamate induces adaptive response and reduction in the life span of Drosophila melanogaster.

    Science.gov (United States)

    Abolaji, Amos O; Olaiya, Charles O; Oluwadahunsi, Oluwagbenga J; Farombi, Ebenezer O

    2017-04-01

    Adaptive response is the ability of an organism to better counterattack stress-induced damage in response to a number of different cytotoxic agents. Monosodium L-glutamate (MSG), the sodium salt of amino acid glutamate, is commonly used as a food additive. We investigated the effects of MSG on the life span and antioxidant response in Drosophila melanogaster (D. melanogaster). Both genders (1 to 3 days old) of flies were fed with diet containing MSG (0.1, 0.5, and 2.5-g/kg diet) for 5 days to assess selected antioxidant and oxidative stress markers, while flies for longevity were fed for lifetime. Thereafter, the longevity assay, hydrogen peroxide (H2 O2 ), and reactive oxygen and nitrogen species levels were determined. Also, catalase, glutathione S-transferase and acetylcholinesterase activities, and total thiol content were evaluated in the flies. We found that MSG reduced the life span of the flies by up to 23% after continuous exposure. Also, MSG increased reactive oxygen and nitrogen species and H2 O2 generations and total thiol content as well as the activities of catalase and glutathione S-transferase in D. melanogaster (P melanogaster induced adaptive response, but long-term exposure reduced life span of flies. This study may therefore have public health significance in humans, and thus, moderate consumption of MSG is advocated by the authors. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl.

    Science.gov (United States)

    dos Santos, Bibiana Alves; Campagnol, Paulo Cezar Bastianello; Morgano, Marcelo Antônio; Pollonio, Marise Aparecida Rodrigues

    2014-01-01

    Fermented cooked sausages were produced by replacing 50% and 75% of NaCl with KCl and adding monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine. The manufacturing process was monitored by pH and water activity measurements. The sodium and potassium contents of the resulting products were measured. The color values (L*, a* and b*), texture profiles and sensory profiles were also examined. Replacing 50% and 75% NaCl with KCl depreciated the sensory quality of the products. The reformulated sausages containing monosodium glutamate combined with lysine, taurine, disodium inosinate and disodium guanylate masked the undesirable sensory attributes associated with the replacement of 50% and 75% NaCl with KCl, allowing the production of fermented cooked sausages with good sensory acceptance and approximately 68% sodium reduction.

  19. Controlled Water Content, Crispness and Retrogradation of Fried Coatings with Monosodium Glutamate-compounded Starch

    National Research Council Canada - National Science Library

    Yagishita, Takahiro; Ito, Koichi; Uemura, Ryuji; Endo, Shigeru; Takahashi, Koji

    2011-01-01

    A mono sodium glutamate (GluNa)-compounded starch prepared by autoclaving a mixture of tapioca starch and GluNa under limited water content was applied to improve the physical properties of the fried coatings of Vienna sausages...

  20. Economical production of poly(γ-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2.

    Science.gov (United States)

    Zhang, Dan; Feng, Xiaohai; Zhou, Zhe; Zhang, Yang; Xu, Hong

    2012-06-01

    The production of poly(γ-glutamic acid) by Bacillus subtilis NX-2 from cane molasses and monosodium glutamate waste liquor (MGWL) was studied for the first time in this work. When batch fermentation was carried out with untreated molasses, 33.6±0.37 g L(-1) PGA was obtained with a productivity of 0.46±0.006 g L(-1) h(-1). In order to minimize the substrate inhibition, fed-batch fermentation was performed with untreated or hydrolyzed molasses in 7.5 L bioreactor, giving 50.2±0.53 and 51.1±0.51 g L(-1) of PGA at 96 h, respectively. Further studies were carried out by using MGWL as another carbon source, resulting in a PGA concentration of 52.1±0.52 g L(-1) with a productivity of 0.54±0.003 g L(-1) h(-1). These results suggest that the low-cost cane molasses and MGWL can be used for the environmental-friendly and economical production of PGA by B. subtilis NX-2.

  1. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-β1 expression in nuclei of arcuate hypothalamus of monosodium glutamate -liver regeneration rats

    Institute of Scientific and Technical Information of China (English)

    Han-Min Li; Xiang Gao; Mu-Lan Yang; Jia-Jun Mei; Liu-Tong Zhang; Xing-Fan Qiu

    2004-01-01

    AIM: To inquire into the effects and mechanism of Zuogui Wan (Pills for Kidney Yin) on neurocyte apoptosis in nuclei of arcuate hypothalamus (ARN) of monosodium glutamate(MSG)-liver regeneration rats, and the mechanism of liver regeneration by using optic microscope, electron microscope and in situ end labeling technology to adjust nerve-endocrineimmunity network.METHODS: Neurocyte apoptosis in ARN of the experiment rats was observed by using optic microscope, electron microscope andin situ end labeling technology. Expression of TGF-β1 in ARN was observed by using immunohistochemistry method.RESULTS: The expression of TGF-β1 in rats of model group was increased with the increase of ARN neurocyte apoptosis index (AI) (t = 8.3097, 12.9884, P<0.01). As compared with the rats of model group, the expression of TGF-β1 in rats of Zuogui Wan treatment group was decreased with the significant decrease of ARN neurocyte apoptosis (t = 4.5624,11.1420, P<0.01).CONCLUSION: Brain neurocyte calcium ion overexertion and TGF-β1 protein participate in the adjustment and control of ARN neurocyte apoptosis in MSG-liver regeneration-rats. Zuogui Wan can prevent ARN neurocyte apoptosis of MSG-liver regeneration in rats by downregulating the expression of TGF-β1, and influence liver regeneration through adjusting nerve-endocrine-immune network.

  2. The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids

    Science.gov (United States)

    Ault, Addison

    2004-03-01

    Examples of the industrial synthesis of pure amino acids are presented. The emphasis is on the synthesis of ( S )-glutamic acid and, to a lesser extent, ( S )-lysine and ( R,S )-methionine. These amino acids account for about 90% of the total world production of amino acids, ( S )-glutamic acid being used as a flavor-enhancing additive (MSG) for the human diet, and ( S )-lysine and ( R,S )-methionine as supplements for the feeding of domestic animals. Examples include chemical, enzymatic, and fermentation synthesis, and two clever continuous processes for the resolution of enantiomers. See Featured Molecules .

  3. High dosage of monosodium glutamate causes deficits of the motor coordination and the number of cerebellar Purkinje cells of rats.

    Science.gov (United States)

    Prastiwi, D; Djunaidi, A; Partadiredja, G

    2015-11-01

    Monosodium glutamate (MSG) has been widely used throughout the world as a flavoring agent of food. However, MSG at certain dosages is also thought to cause damage to many organs, including cerebellum. This study aimed at investigating the effects of different doses of MSG on the motor coordination and the number of Purkinje cells of the cerebellum of Wistar rats. A total of 24 male rats aged 4 to 5 weeks were divided into four groups, namely, control (C), T2.5, T3, and T3.5 groups, which received intraperitoneal injection of 0.9% sodium chloride solution, 2.5 mg/g body weight (bw) of MSG, 3.0 mg/g bw of MSG, and 3.5 mg/g bw of MSG, respectively, for 10 consecutive days. The motor coordination of the rats was examined prior and subsequent to the treatment. The number of cerebellar Purkinje cells was estimated using physical fractionator method. It has been found that the administration of MSG at a dosage of 3.5 mg/g bw, but not at lower dosages, caused a significant decrease of motor coordination and the estimated total number of Purkinje cells of rats. There was also a significant correlation between motor coordination and the total number of Purkinje cells.

  4. Toxic effects of wastewater from various phases of monosodium glutamate production on seed germination and root elongation of crops

    Institute of Scientific and Technical Information of China (English)

    LIU Rui; ZHOU Qixing; ZHANG Lanying; GUO Hao

    2007-01-01

    To make a comprehensive assessment on monosodium glutamate(MSG)wastewater pollution,a pollution exposure experiment was carried out on the seed germination and root elongation of wheat,Chinese cabbage and tomato by using the wastewater discharged from different processing phases of MSG production.The results showed that there were significantly positive linear relationships between the inhibitory rates of wheat seed germination and root elongation and the CODcr of the mother liquor scraps.The toxicity of MSG wastewater to the test crops was in the order of tomato>Chinese cabbage>wheat,indicating that tomato was the most sensitive to the wastewater,and could be considered as an ideal toxic bioindicator.The half-effect concentrations(IC50)based on the seed germination and root elongation of the test crops exposed to the wastewater discharged from various processing phases of MSG production was 22.0-32432 and 17.3-3320 mg/L,respectively.

  5. Monosodium glutamate (MSG intake is associated with the prevalence of metabolic syndrome in a rural Thai population

    Directory of Open Access Journals (Sweden)

    Insawang Tonkla

    2012-06-01

    Full Text Available Abstract Background Epidemiology and animal models suggest that dietary monosodium glutamate (MSG may contribute to the onset of obesity and the metabolic syndrome. Methods Families (n = 324 from a rural area of Thailand were selected and provided MSG as the sole source for the use in meal preparation for 10 days. Three hundred forty-nine subjects aged 35–55 years completed the study and were evaluated for energy and nutrient intake, physical activity, and tobacco smoking. The prevalence of overweight and obesity (BMI ≥ 25 kg/m2, insulin resistance (HOMA-IR >3, and the metabolic syndrome (ATP III criteria were evaluated according to the daily MSG intake. Results The prevalence of the metabolic syndrome was significantly higher in the tertile with the highest MSG intake. Further, every 1 g increase in MSG intake significantly increased the risk of having the metabolic syndrome (odds ratio 1.14, 95% confidence interval-CI- 1.12 - 1.28 or being overweight (odds ratio 1.16, 95% CI 1.04 - 1.29, independent of the total energy intake and the level of physical activity. Conclusion Higher amounts of individual MSG consumption are associated with the risk of having the metabolic syndrome and being overweight independent of other major determinants.

  6. Protective effect of Trigonella foenum-graecum Linn. on monosodium glutamate-induced dyslipidemia and oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2013-01-01

    Full Text Available Objectives: The present study was designed to evaluate the effect of aqueous extract of Trigonella foenum-graecum(AqE-TFG seeds on monosodium glutamate (MSG-induced dyslipidemia and oxidative stress in Wistar rats. Materials and Methods: Neonatal Wistar rats were treated subcutaneously with MSG (4 g/kg b.w. from day 2 to 14 after birth, on alternate days. After attaining six-weeks of age, MSG-treated rats were administered with AqE-TFG (0.5 and 1 g/kg b.w., orally or orlistat (10 mg/kg b.w., orally for 28 days, respectively. Serum chemistry and relevant enzymes in hepato-cardiac tissues were assessed on day 29. Results: AqE-TFG produced significant reduction in serum total cholesterol (TC, triglycerides (TGs, lactate dehydrogenase (LDH, aspartate amino transferase (AST, alanine amino transferase (ALT, hepatic and cardiac lipid peroxides (MDA levels and elevation in serum high density lipoprotein cholesterol (HDL-C, hepatic and cardiac antioxidant enzymes [glutathione (GSH, and superoxide dismutase (SOD and catalase (CAT] levels. Conclusion: Results were comparable with orlistat, a standard anti-obesity drug, and provide clear evidence that the AqE-TFG treatment offered significant protection against MSG-induced dyslipidemia and oxidative stress, and may play an important role in amelioration of the free radical generated consequences like dyslipidemia and atherosclerosis.

  7. Monosodium L-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs.

    Science.gov (United States)

    Feng, Zemeng; Li, Tiejun; Wu, Chunli; Tao, Lihua; Blachier, Francois; Yin, Yulong

    2015-04-01

    The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG) is widely used as a flavour enhancer in China. Previous studies have reported that high-fat diet modifies intestinal metabolism and physiology. However, little information is available on the effects of oral MSG on intestine, and no study focus on the interaction of dietary fat and MSG for intestinal health. The aim of the present study was to evaluate the effects of MSG and dietary fat on intestinal health in growing pigs, and to try to identify possible interactions between these 2 nutrients for such effects. A total of 32 growing pigs were used and fed with 4 isonitrogenous and isocaloric diets (basal diet, high-fat diet, basal diet with 3% MSG and high fat diet with 3% MSG). Parameters related to reactive oxygen species metabolism, epithelial morphology, pro-inflammation factors and tight junction protein expression and several species of intestinal microbe were measured. Overall, dietary fat and MSG had detrimental effects on several of the physiological and inflammatory parameters measured in the proximal intestine, while exerting beneficial effects on the distal intestine in growing pigs, with generally antagonistic effects. These results may be of particular relevance for nutritional concerns in patients with intestinal diseases.

  8. HISTOLOGICAL STUDIES OF THE EFFECTS OF MONOSODIUM GLUTAMATE ON THE MEDIAL GENICULATE BODY OF ADULT WISTAR RATS

    Directory of Open Access Journals (Sweden)

    A.O.Eweka

    2007-01-01

    Full Text Available Histological effects of Monosodium glutamate (MSG commonly used as food additive on the medial geniculate body (MGB of adult wistar rats were carefully studied. The rats of both sexes (n=24, average weight of 185g were randomly assigned into two treatments (n=16 and control (n=8 groups.The rats in the treatment groups received 3g and 6g of MSG thoroughly mixed with their feeds for fourteen days, while the control rats received equal amounts of feeds without MSG added. The rats were fed with grower's mash purchased from Edo Feeds and Flour Mill Ltd, Ewu, Edo State and were given water liberally. The rats were sacrificed on day fifteen of the experiment. The medial geniculate body was carefully dissected out and quickly fixed in 10% formal saline for routine histological study after H&E method.The histological findings after H&E methods indicated that the treated sections of the medial geniculate body showed some cellular degenerative changes, autophagic vacuoles with some vacuolations appearing in the stroma, and some degree of neuronal hypertrophy when compared to the control sections. These findings indicate that MSG consumption may have a deleterious effect on the neurons of the medial geniculate body (MGB. MSG may probably have adverse effects on the auditory sensibilities by its deleterious effects on the nerve cells of the MGB of adult wistar rats. It is recommended that further studies aimed at corroborating these observations be carried out.

  9. Research progress on pyroglutamic acid detection methods in monosodium glutamate%味精中焦谷氨酸检测方法的研究进展

    Institute of Scientific and Technical Information of China (English)

    潘馨; 冯旭东; 刘明明

    2013-01-01

      焦谷氨酸是一种环状氨基酸,是许多氨基酸和蛋白质生成过程中的中间产物,广泛存在于动植物界。在味精生产过程中,谷氨酸受热会脱水环化成焦谷氨酸,影响谷氨酸的提取收率,所以为了对焦谷氨酸进行控制,在味精生产过程中对其检测是非常必要的。本文综述了焦谷氨酸的结构及性质,并对味精生产过程可能产生焦谷氨酸的环节做了阐述,重点介绍了焦谷氨酸的检测方法:化学法和高压液相色谱法,并对高压液相色谱法进行了展望。%Pyroglutamic acid is a cyclic amino acid. It is an intermediate during amino acid and protein biosyn-thesis. It is widely distributed in plants and animals. When heated, glutamate is highly unstable and prone to sponta-neous cyclization into pyroglutamic acid during the monosodium glutamate production, which could reduce the yielding amount of glutamic acid. So in order to control the content of pyroglutamic, it was detected during the mo-nosodium glutamate production. This paper provides a brief overview of the structure and chemical properties of py-roglutamic acid and the possible reasons of pyroglutamic acid generation in monosodium glutamate production proc-ess. Focus on chemical method and high pressure liquid chromatography, the development of detection of pyroglu-tamic acid is also viewed.

  10. Potent protection of Danshensu(β-3,4-dihydroxyphenyl-lactic acid)against excitotoxic effects of maternal intragastric administration of monosodium glutamate at a late stage of pregnancy on developing mouse fetal brain

    Institute of Scientific and Technical Information of China (English)

    Jingen Shen; Lijian Yu; Rundi Ma; Yongping Zhang; Xiaoyu Zhang; Juanzhi Fang; Tingxi Yu

    2010-01-01

    Recent studies have demonstrated that ferulic acid[3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid]and sodium ferulate produce protective effects against glutamate-induced neurotoxicity in adult mice.Danshensu(β-3,4-dihydroxyphenyl-lactic acid)has a similar molecular structure and pharmacological action to caffeic acid.This study aimed to validate the protection conferred by Danshensu against excitotoxic effects of maternal intragastric administration of monosodium glutamate at late stages of pregnancy in the developing mouse fetal brain.Behavioral tests,as well as histopathological and immunohistochemical examination of hippocampi were performed in filial mice.Results revealed that maternal intragastric administration of excessive monosodium glutamate(1.0,2.0,4.0 g/kg body weight)at a late stage of pregnancy resulted in a series of behavioral disorders(hyperactivity,lesions of learning and memory,and disturbance in cooperation of movement ability under high-altitude stress),histopathological impairment(neuronal edema,degeneration,necrosis,and hyperplasia)and molecular cellular biological changes(upregulated expression of N-methyI-D-aspartate receptor type 1 and neuropeptide Y in the hippocampal region of the brain of the filial mice from mothers treated with monosodium glutamate).Simultaneous administration of sodium Danshensu partially reversed the effects of monosodium glutamate on the above mentioned phenomena.These findings indicate that sodium Danshensu exhibits obvious protective effects on the excitotoxicity of monosodium glutamate.

  11. Long term effect of monosodium glutamate in liver of albino mice after neo-natal exposure.

    Science.gov (United States)

    Bhattacharya, T; Bhakta, A; Ghosh, S K

    2011-03-01

    Mono Sodium Glutamate (MSG) is a naturally occurring excitatory neurotransmitter. It is extensively used as a food additive and flavoring agent for its UMAMI taste. Simultaneously it is being implicated for varied pathological condition like obesity, gonadal dysfunction, learning difficulty etc. It produces oxygen derived free radicals and metabolized in liver. Neonate mice are sensitive and suffer from adverse effects. Present work was undertaken to study the long term effects on histology of liver following MSG injection in neonates. The changes in the liver parenchyma of 75 days old mice showed variable changes. Areas around central vein were most affected. The liver cords were disrupted, dilated sinusoids, prominent Kupffer cells with accumulation of particulate matter.There were inflammatory cells around central vein. The hepatocyte cell membrane were disrupted, cytoplasm vacuolated, nucleus were pyknotic. Even the normal looking cells showed depletion of PAS +ve material in the cytoplasm.The long term effect on histology showed moderate and patchy hepatocellular damage.

  12. Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice.

    Science.gov (United States)

    Alarcon-Aguilar, F J; Almanza-Perez, Julio; Blancas, Gerardo; Angeles, Selene; Garcia-Macedo, Rebeca; Roman, Ruben; Cruz, Miguel

    2008-12-03

    Fat tissue plays an important role in the regulation of inflammatory processes. Increased visceral fat has been associated with a higher production of cytokines that triggers a low-grade inflammatory response, which eventually may contribute to the development of insulin resistance. In the present study, we investigated whether glycine, an amino acid that represses the expression in vitro of pro-inflammatory cytokines in Kupffer and 3T3-L1 cells, can affect in vivo cytokine production in lean and monosodium glutamate-induced obese mice (MSG/Ob mice). Our data demonstrate that glycine treatment in lean mice suppressed TNF-alpha transcriptional expression in fat tissue, and serum protein levels of IL-6 were suppressed, while adiponectin levels were increased. In MSG/Ob mice, glycine suppressed TNF-alpha and IL-6 gene expression in fat tissue and significantly reduced protein levels of IL-6, resistin and leptin. To determine the role of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in the modulation of this inflammatory response evoked by glycine, we examined its expression levels in fat tissue. Glycine clearly increased PPAR-gamma expression in lean mice but not in MSG/Ob mice. Finally, to identify alterations in glucose metabolism by glycine, we also examined insulin levels and other biochemical parameters during an oral glucose tolerance test. Glycine significantly reduced glucose tolerance and raised insulin levels in lean but not in obese mice. In conclusion, our findings suggest that glycine suppresses the pro-inflammatory cytokines production and increases adiponectin secretion in vivo through the activation of PPAR-gamma. Glycine might prevent insulin resistance and associated inflammatory diseases.

  13. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG-Treated Mice

    Directory of Open Access Journals (Sweden)

    René J. Hernández-Bautista

    2014-06-01

    Full Text Available Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old, the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline.

  14. Cognitive and biochemical effects of monosodium glutamate and aspartame, administered individually and in combination in male albino mice.

    Science.gov (United States)

    Abu-Taweel, Gasem M; A, Zyadah M; Ajarem, Jamaan S; Ahmad, Mohammad

    2014-01-01

    The present study was designed to investigate the in vivo effects of monosodium glutamate (MSG) and aspartame (ASM) individually and in combination on the cognitive behavior and biochemical parameters like neurotransmitters and oxidative stress indices in the brain tissue of mice. Forty male Swiss albino mice were randomly divided into four groups of ten each and were exposed to MSG and ASM through drinking water for one month. Group I was the control and was given normal tap water. Groups II and III received MSG (8 mg/kg) and ASM (32 mg/kg) respectively dissolved in tap water. Group IV received MSG and ASM together in the same doses. After the exposure period, the animals were subjected to cognitive behavioral tests in a shuttle box and a water maze. Thereafter, the animals were sacrificed and the neurotransmitters and oxidative stress indices were estimated in their forebrain tissue. Both MSG and ASM individually as well as in combination had significant disruptive effects on the cognitive responses, memory retention and learning capabilities of the mice in the order (MSG+ASM)>ASM>MSG. Furthermore, while MSG and ASM individually were unable to alter the brain neurotransmitters and the oxidative stress indices, their combination dose (MSG+ASM) decreased significantly the levels of neurotransmitters (dopamine and serotonin) and it also caused oxidative stress by increasing the lipid peroxides measured in the form of thiobarbituric acid-reactive substances (TBARS) and decreasing the level of total glutathione (GSH). Further studies are required to evaluate the synergistic effects of MSG and ASM on the neurotransmitters and oxidative stress indices and their involvement in cognitive dysfunctions.

  15. (p-ClPhSe)2 Reduces Hepatotoxicity Induced by Monosodium Glutamate by Improving Mitochondrial Function in Rats.

    Science.gov (United States)

    Quines, Caroline B; Chagas, Pietro M; Hartmann, Diane; Carvalho, Nélson R; Soares, Félix A; Nogueira, Cristina W

    2017-02-18

    It is has been demonstrated that mitochondrial dysfunction, oxidative stress and chronic inflammatory process are associated with progress of morbid obesity in human patients. For this reason, the searching for safe and effective antiobesity drugs has been the subject of intense research. In this context, the organic selenium compounds have attracted much attention due to their pharmacological properties, such as antihyperglycemic, antioxidant and anti-inflammatory. The aim of this study was to evaluate the hepatoprotective action of p-chloro-diphenyl diselenide (p-ClPhSe)2 , an organic selenium compound, in a model of obesity induced by monosodium glutamate (MSG) administration in rats. Wistar rats were treated during the first ten postnatal days with MSG (4 g/kg by subcutaneous injections) and received (p-ClPhSe)2 (10 mg/kg, intragastrically) from 90(th) to 97(th) postnatal day. Mitochondrial function, purine content and the levels of proteins involved in apoptotic (poly (ADP-ribose) polymerase (PARP)) and inflammatory processes (inducible nitric oxide synthases (iNOS) and p38) were determined in the liver of rats. The present study demonstrated that postnatal administration of MSG to male rats induced a mitochondrial dysfunction, accompanied by oxidative stress and an increase in the ADP levels, without altering the efficiency of phosphorylation in the liver of adult rats. Furthermore, the MSG administration also induces hepatotoxicity, through an increase in PARP, iNOS and p38 levels. (p-ClPhSe)2 treatment had beneficial effects against mitochondrial dysfunction, oxidative stress and modulated protein markers of apoptosis and inflammation in the liver of MSG-treated rats. This article is protected by copyright. All rights reserved.

  16. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice

    Science.gov (United States)

    Hernández-Bautista, René J.; Alarcón-Aguilar, Francisco J.; Escobar-Villanueva, María Del C.; Almanza-Pérez, Julio C.; Merino-Aguilar, Héctor; Konigsberg Fainstein, Mina; López-Diazguerrero, Norma E.

    2014-01-01

    Obesity, from children to the elderly, has increased in the world at an alarming rate over the past three decades, implying long-term detrimental consequences for individual’s health. Obesity and aging are known to be risk factors for metabolic disorder development, insulin resistance and inflammation, but their relationship is not fully understood. Prevention and appropriate therapies for metabolic disorders and physical disabilities in older adults have become a major public health challenge. Hence, the aim of this study was to evaluate inflammation markers, biochemical parameters and glucose homeostasis during the obese-aging process, to understand the relationship between obesity and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in both female and male mice. Our results showed that obesity was a major factor contributing to premature alterations in MSG-treated mice metabolism; however, at older ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α and transaminases levels increased; while adiponectin decreased and glucose tolerance and insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the Lee index and TNF-α levels diminished significantly, while adiponectin increased, and glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice showed metabolic changes and differential susceptibility by gender throughout life and during the aging process. Understanding metabolic differences between genders during the lifespan will allow the discovery of specific preventive treatment strategies for chronic diseases and functional decline. PMID:24979131

  17. Choline chloride (ChCl) and monosodium glutamate (MSG)-based green solvents from optimized cactus malic acid for biomass delignification.

    Science.gov (United States)

    Yiin, Chung Loong; Quitain, Armando T; Yusup, Suzana; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2017-08-10

    This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of diet containing monosodium glutamate on organ weights, acute blood steroidal sex hor mone levels, lipid profile and er ythrocyte antioxidant enzymes activities of rats

    Directory of Open Access Journals (Sweden)

    Chiedozie Onyejiaka Ibegbulem

    2016-09-01

    Full Text Available Objective: To study the effects of diet containing monosodium glutamate on visceral organ weights, acute blood steroidal sex hormone levels, serum lipid profile (SLP and erythrocyte antioxidant enzymes activities of Wistar rats. Methods: The Wistar rats were grouped into two groups of six rats each. The ones in Group 1 (control group were placed on water and pelletized standard guinea feed ad libitum, whereas Group 2 was regarded as test group [Wistar rats (WR-monosodium glutamate (MSG group] and the Wistar rats received water, compounded diet of MSG and pelletized standard guinea feed ad libitum. After 33 days of feeding study, rat body weight was obtained. Rats were sacrificed and the incisions were made into the thoracic cavity and blood samples were drawn by cardiac puncture as a terminal event. Plasma was assayed for estradiol and testosterone concentrations, SLP and erythrocyte peroxidase and catalase activities. Visceral organ weights were also measured. Results: WR-MSG exhibited marginal alterations in blood estradiol and testosterone concentrations. Elevation of serum triacylglycerol concentration in WR-MSG was corresponded to 77.7%. Increases in serum concentrations of very low-density lipoprotein cholesterol and low-density lipoprotein cholesterol in WR-MSG were corresponded to 70.6% and 41.0% respectively. Erythrocyte peroxidase and catalase activities showed marginal alterations. Alterations in visceral organs-to-body weights ratios were not profound. Conclusions: Blood testosterone and estradiol concentrations were not significantly (P > 0.05 altered, which may not be connected with the low dose of MSG in the diet. Marginal alterations of SLP did not indicate atherogenicity in WR-MSG. The visceral organs were not atrophic or hypertrophic because of the comparatively low dose of MSG consumed by WR-MSG and the duration of the feeding experiment.

  19. The fifth dimension of the taste in Spirulina platensis feed. Study on the influence of monosodium glutamate in the development and composition of the Spirulina platensis algae

    Directory of Open Access Journals (Sweden)

    Ştefan MANEA

    2010-12-01

    Full Text Available Food additives have become a way of life, creating pleasure and food request. But from the point of view of health promotion, it is necessary to demonstrate the risks and find out new possibilities for a good sensorial aspect of the food. This would apply especially in the case of long-term consumption, or in some particular conditions (allergies to different ingredients which appear more often to consumers. Cheap products are manufactured by using E-dangerous. The explanation is simple: the natural E extracted from various fruits and vegetables are very expensive. The study wants to demonstrate that the monosodium glutamate (MSG into the culture medium of plantscan affect their healthiness. Spirulina platensis has the same type of amino acids as humans and this is why it has been chosen as an experiment plant. Four samples obtained from the Spirulina’s culturemedium were studied: one blank and three with 0.2%, 0.4% and respectively 0.6% MSG in the culture medium. The mineral content was evaluated using the Atomic Absorption Spectroscopy (AAS and a rapid increase of calcium and magnesium content was registered for the sample with the biggest amount of MSG. The structure of the filaments and the cells appearance were evaluated microscopically. There were changes identified in the structure after three days of cultivating. Also, the sample with 0.6% MSG presented dead cells and the ones which were still alive had profound changes in form and structure.

  20. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model.

    Science.gov (United States)

    Sadek, Kadry; Abouzed, Tarek; Nasr, Sherif

    2016-04-01

    The effect of monosodium glutamate (MSG) on brain tissue and the relative ability of lycopene to avert these neurotoxic effects were investigated. Thirty-two male Wistar rats were distributed into 4 groups: group I, untreated (placebo); group II, injected with MSG (5 mg·kg(-1)) s.c.; group III, gastrogavaged with lycopene (10 mg·kg(-1)) p.o.; and group IV received MSG with lycopene with the same mentioned doses for 30 days. The results showed that MSG induced elevation in lipid peroxidation marker and perturbation in the antioxidant homeostasis and increased the levels of brain and serum cholinesterase (ChE), total creatine phosphokinase (CPK), creatine phosphokinase isoenzymes BB (CPK-BB), and lactate dehydrogenase (LDH). Glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities and gene expression were increased and glutathione content was reduced in the MSG-challenged rats, and these effects were ameliorated by lycopene. Furthermore, MSG induced apoptosis in brain tissues reflected in upregulation of pro-apoptotic Bax while lycopene upregulated the anti-apoptotic Bcl-2. Our results indicate that lycopene appears to be highly effective in relieving the toxic effects of MSG by inhibiting lipid peroxidation and inducing modifications in the activity of cholinesterase and antioxidant pathways. Interestingly, lycopene protects brain tissue by inhibiting apoptosis signaling induced by MSG.

  1. Study on the Decreasing of COD in Monosodium Glutamate Wastewater by Electrical Aggregation%电凝聚法降低味精废水中COD的研究

    Institute of Scientific and Technical Information of China (English)

    丁忠浩; 黄久贵; 翁达; 张惠灵

    2001-01-01

    The monosodium glutamate wastewater is treated by means of electrical aggregation. Theoretical analysis is carried out of the mechanism of the electrical aggregation. With the help of the analysis and of an electrical aggregation efficiency equation deduced from reasonable hypotheses ,the influence of three main factors in electrical aggregation, namely the current intensity, operation time and the organic compound concentration in the wastewater, on the aggregation efficiency has been discussed.%采用电凝聚法对味精废水进行处理,进行了电凝聚机理探讨和理论分析。根据论分析和合理假设推导出的电凝聚效率公式,描述了电凝聚过程中三个主要影响因素-电流强度、通电时间、废水中有机物浓度对电凝聚效率的影响。

  2. Mesophilic batch anaerobic co-digestion of pulp and paper sludge and monosodium glutamate waste liquor for methane production in a bench-scale digester.

    Science.gov (United States)

    Lin, Yunqin; Wang, Dehan; Li, Qing; Xiao, Minquan

    2011-02-01

    This paper presented results from anaerobic co-digestion of pulp and paper sludge (PPS) and monosodium glutamate waste liquor (MGWL). A bench-scale anaerobic digester, 10 L in volume was developed, to operate under mesophilic (37 ± 2°C) batch condition. Under versatile and reliable anaerobic conduct, high efficiency for bioconversion of PPS and MGWL were obtained in the system. The accumulative methane yield attained to 200 mL g(-1) VS(added) and the peak value of methane daily production was 0.5m(3)/(m(3)d). No inhibitions of volatile fatty acids (VFAs) and ammonia on anaerobic co-digestion were found. pH 6.0-8.0 and alkalinity 1000-4000 mg CaCO(3)/L were got without adjustment. This work showed that there was a good potential to the use of PPS and MGWL to anaerobic co-digestion for methane production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Effect of Nigella Sativa Extract on Inflammatory Cells, Interleukin-10, Interferon-γ and Histological of Kidney in Monosodium Glutamate-Induced Rats

    Directory of Open Access Journals (Sweden)

    Abdalrauf A Mahmud Yousif

    2016-04-01

    Full Text Available There is considerable evidence, suggest that, consumption of food additives monosodium glutamate (MSG, a flavor enhancer was unhealthy. Herbal medicine Nigella sativa (NS has antioxidant properties able to cure the toxic induced by MSG. This study aimed to evaluate the risks of excessive use of MSG and to study the role of NS to inhibit inflammation and renal damage. Treated rats (twenty four male wistar rats were divided into six group and analyzed by measuring the cells in blood, interleukin-10, interferon-γ serum levels by ELISA method and remove kidneys for histological examination. Histological of kidney for all groups except control, were showed different abnormalities include congestion of some blood vessels, hemorrhage between tubules, widening in the renal tubules, revealed severe dilatation of Bowman's capsule and shrinkage of glomeruli, and areas of huge vacuole, were observed compared with control. Interleukin-10 was reduced in Groups 2,3,4 and 5, whereas increase in NS group compared with control. Interferon-γ was increased in groups 2,3,4 and reduced in groups 5,6 compared with control. Eosinophil was increased in groups 2,5 and reduced in groups 3,4, 6 compared with control. This present study showed that administration of MSG to rats induced many changes effects on inflammatory cells, cytokines and histological of kidneys. NS has benefit in blood parameters, whereas harmful on kidney at these doses.

  4. The Neuroprotective Effect of Dark Chocolate in Monosodium Glutamate-Induced Nontransgenic Alzheimer Disease Model Rats: Biochemical, Behavioral, and Histological Studies.

    Science.gov (United States)

    Madhavadas, Sowmya; Kapgal, Vijaya Kumar; Kutty, Bindu M; Subramanian, Sarada

    2016-01-01

    The vulnerability to oxidative stress and cognitive decline continue to increase during both normal and pathological aging. Dietary changes and sedentary life style resulting in mid-life obesity and type 2 diabetes, if left uncorrected, further add to the risk of cognitive decline and Alzheimer disease (AD) in the later stages of life. Certain antioxidant agents such as dietary polyphenols, taken in adequate quantities, have been suggested to improve the cognitive processes. In this study, we examined the effect of oral administration of dark chocolate (DC) containing 70% cocoa solids and 4% total polyphenol content for three months at a dose of 500 mg/Kg body weight per day to 17-month-old monosodium glutamate treated obese Sprague-Dawley rats, earlier characterized as a nontransgenic AD (NTAD) rat model after reversal of obesity, diabetes, and consequent cognitive impairments. The results demonstrated that DC reduced the hyperglycemia, inhibited the cholinesterase activity in the hippocampal tissue homogenates, and improved the cognitive performance in spatial memory related Barnes maze task. Histological studies revealed an increase in cell volume in the DC treated rats in the CA3 region of the hippocampus. These findings demonstrated the benefits of DC in enhancing cognitive function and cholinergic activity in the hippocampus of the aged NTAD rats while correcting their metabolic disturbances.

  5. Mechanisms underlying hypertriglyceridemia in rats with monosodium L-glutamate-induced obesity: evidence of XBP-1/PDI/MTP axis activation.

    Science.gov (United States)

    França, Lucas Martins; Freitas, Larissa Nara Costa; Chagas, Vinicyus Teles; Coêlho, Caio Fernando Ferreira; Barroso, Wermerson Assunção; Costa, Graciomar Conceição; Silva, Lucilene Amorim; Debbas, Victor; Laurindo, Francisco Rafael Martins; Paes, Antonio Marcus de Andrade

    2014-01-10

    Non-alcoholic fatty liver disease (NAFLD) is intimately associated with insulin resistance and hypertriglyceridemia, whereas many of the mechanisms underlying this association are still poorly understood. In the present study, we investigated the relationship between microsomal triglyceride transfer protein (MTP) and markers of endoplasmic reticulum (ER) stress in the liver of rats subjected to neonatal monosodium L-glutamate (MSG)-induced obesity. At age 120 days old, the MSG-obese animals exhibited hyperglycemia, hypertriglyceridemia, insulin resistance, and liver steatosis, while the control (CTR) group did not. Analysis using fast protein liquid chromatography of the serum lipoproteins revealed that the triacylglycerol content of the very low-density lipoprotein (VLDL) particles was twice as high in the MSG animals compared with the CTR animals. The expression of ER stress markers, GRP76 and GRP94, was increased in the MSG rats, promoting a higher expression of X-box binding protein 1 (XBP-1), protein disulfide isomerase (PDI), and MTP. As the XBP-1/PDI/MTP axis has been suggested to represent a significant lipogenic mechanism in the liver response to ER stress, our data indicate that hypertriglyceridemia and liver steatosis occurring in the MSG rats are associated with increased MTP expression.

  6. Both dietary supplementation with monosodium L-glutamate and fat modify circulating and tissue amino acid pools in growing pigs, but with little interactive effect.

    Directory of Open Access Journals (Sweden)

    Zemeng Feng

    Full Text Available BACKGROUND: The Chinese population has undergone rapid transition to a high-fat diet. Furthermore, monosodium L-glutamate (MSG is widely used as a daily food additive in China. Little information is available on the effects of oral MSG and dietary fat supplementation on the amino acid balance in tissues. The present study aimed to determine the effects of both dietary fat and MSG on amino acid metabolism in growing pigs, and to assess any possible interactions between these two nutrients. METHODS AND RESULTS: Four iso-nitrogenous and iso-caloric diets (basal diet, high fat diet, basal diet with 3% MSG and high fat diet with 3% MSG were provided to growing pigs. The dietary supplementation with fat and MSG used alone and in combination were found to modify circulating and tissue amino acid pools in growing pigs. Both dietary fat and MSG modified the expression of gene related to amino acid transport in jejunum. CONCLUSIONS: Both dietary fat and MSG clearly influenced amino acid content in tissues but in different ways. Both dietary fat and MSG enhance the absorption of amino acids in jejunum. However, there was little interaction between the effects of dietary fat and MSG.

  7. Neonatal monosodium glutamate treatment counteracts circadian arrhythmicity induced by phase shifts of the light-dark cycle in female and male Siberian hamsters.

    Science.gov (United States)

    Prendergast, Brian J; Onishi, Kenneth G; Zucker, Irving

    2013-07-12

    Studies of rats and voles suggest that distinct pathways emanating from the anterior hypothalamic-retrochiasmatic area and the mediobasal hypothalamic arcuate nucleus independently generate ultradian rhythms (URs) in hormone secretion and behavior. We evaluated the hypothesis that destruction of arcuate nucleus (ARC) neurons, in concert with dampening of suprachiasmatic nucleus (SCN) circadian rhythmicity, would compromize the generation of ultradian rhythms (URs) of locomotor activity. Siberian hamsters retain-->of both sexes treated neonatally with monosodium glutamate (MSG) that destroys ARC neurons were subjected in adulthood to a circadian disrupting phase-shift protocol (DPS) that produces SCN arrhythmia. MSG treatments induced hypogonadism and obesity, retain-->and markedly reduced the size of the optic chiasm and optic nerves. MSG-treated hamsters exhibited normal entrainment to the light-dark cycle, but MSG treatretain-->ment counteracted the circadian arrhythmicity induced by the DPS protocol: only 6% of retain-->MSG-treated hamsters exhibited circadian arrhythmia, whereas 50% of control hamsters were circadian disrupted. In MSG-treated hamsters that retained circadian rhythmicity after DPS treatment, quantitative parameters of URs appeared normal, but in the two MSG-treated hamsters that became circadian arrhythmic after DPS, both dark-phase and light-phase URs were abolished. Although preliminary, these data are consistent with reports in voles suggesting that the combined disruption of SCN and ARC function impairs the expression of behavioral URs. The data also suggest that light thresholds for entrainment of circadian rhythms may be lower than those required to disrupt circadian organization.

  8. Supplementing chicken broth with monosodium glutamate reduces energy intake from high fat and sweet snacks in middle-aged healthy women.

    Science.gov (United States)

    Imada, Toshifumi; Hao, Susan Shuzhen; Torii, Kunio; Kimura, Eiichiro

    2014-08-01

    Monosodium L-glutamate (MSG) and inosine monophosphate-5 (IMP) are flavor enhancers for umami taste. However, their effects on appetite and food intake are not well-researched. The objective of the current study was to test their additions in a broth preload on subsequent appetite ratings, energy intake and food choice. Eighty-six healthy middle-aged women with normal body weight received three preload conditions on 3 test days 1 week apart - a low-energy chicken flavor broth (200 ml) as the control preload, and broths with added MSG alone (0.5 g/100 ml, MSG broth) or in combination with IMP (0.05 g/100 ml) (MSG+ broth) served as the experimental conditions. Fifteen minutes after preload administration subjects were provided an ad libitum testing meal which consisted of 16 snacks varying in taste and fat content. MSG and MSG+ enhanced savory taste and broth properties of liking and pleasantness. In comparison with control, the MSG preload resulted in less consumption of total energy, as well as energy from sweet and high-fat snacks. Furthermore, MSG broth preload reduced added sugar intake. These findings were not observed after MSG+ preload. Appetite ratings were not different across the three preloads. Results suggest a potential role of MSG addition to a low-energy broth preload in subsequent energy intake and food choice. This trial was registered at clinicaltrials.gov as NCT01761045.

  9. Polyphenol-rich extract of Syzygium cumini leaf dually improves peripheral insulin sensitivity and pancreatic islet function in monosodium L-glutamate-induced obese rats

    Directory of Open Access Journals (Sweden)

    Jonas Rodrigues Sanches

    2016-03-01

    Full Text Available Syzygium cumini (L. Skeels (Myrtaceae has been traditionally used to treat a number of illnesses. Ethnopharmacological studies have particularly addressed antidiabetic and metabolic-related effects of extracts prepared from its different parts, especially seed and pulp-fruit, however there is a lack of studies on phytochemical profile and biological properties of its leaf. As there is considerable interest in bioactive compounds to treat metabolic syndrome and its clustered risk factors, we sought to characterize the metabolic effects of hydroethanolic extract of S. cumini leaf (HESc on lean and monosodium L-glutamate (MSG-induced obese rats. HPLC-MS/MS characterization of the HESc polyphenolic profile, at 254 nm, identified 15 compounds pertaining to hydrolysable tannin and flavanol subclasses. At 60 days of age, both groups were randomly assigned to receive HESc (500 mg/kg or vehicle for 30 days. At the end of treatment, obese+HESc exhibited significantly lower body weight gain, body mass index, and white adipose tissue mass, compared to obese rats receiving vehicle. Obese rats treated with HESc showed a 2-fold increase in lipolytic activity in the periepididymal fat pad, as well as, brought triglyceride levels in serum, liver and skeletal muscle back to levels close those found in lean animals. Furthermore, HESc also improved hyperinsulinemia and insulin resistance in obese+HESc rats, which resulted in partial reversal of glucose intolerance, as compared to obese rats. HESc had no effect in lean rats. Assessment of ex vivo glucose-stimulated insulin secretion showed HESc potentiated pancreatic function in islets isolated from both lean and obese rats treated with HESc. In addition, HESc (10 – 1000 ug/mL increased glucose stimulated insulin secretion from both isolated rat islets and INS-1E beta cells. These data demonstrate that S. cumini leaf improved peripheral insulin sensitivity via stimulating/modulating beta cell insulin release

  10. The Effect of Nigella Sativa Extract on Alpha-ketoglutarate Activity and Histopathologic Changes on Rat Liver Induced by Monosodium Glutamate

    Directory of Open Access Journals (Sweden)

    Ala Sh Emhemed Eshami

    2015-09-01

    Full Text Available Monosodium glutamate (MSG is a commonly used food additive and found in most soups, fish, and processed meat. The use of MSG in food is growing. However, the fear of consuming MSG has increased in the last few years due to the adverse reactions and toxicity in the liver. Nigella sativa (NS is used as traditional medicine for the treatment of many diseases. It has been extensively investigated in recent years due to its notable pharmacological properties such as inhibit oxidative stress. The present study was undertaken to investigate the effect of different doses of Nigella Sativa on alpha KGDH activity and liver histology of MSG-induced rats. The animals (n=30 were grouped into A (control, B (treated with MSG 1g/kg.bw , C (treated with MSG 1g/kg.bw and NS 0.1 g/kg.bw, D (treated with MSG 1g/kg.bw and NS 0.2 g/kg.bw, E (treated with MSG 1g/kg.bw and NS 0.4 g/kg.bw and F (given a daily NS extract 0.2 g/kg.bw. Alpha KGDH activity was investigated using ELISA method and liver histopathology by light microscope. The MSG treatment increased Alpha KGDH activity and disturbed liver architecture, hemorrhage in the central veins, areas of necrosis, vacuolation and increased inflammatory cells infiltration. The condition was normalized by treatment NS on dose 0.2 and 0.4 g/kg.bw. The findings showed that the administration of MSG increases alpha KGDH and induces damage in liver tissue. Nigella sativa extract can reduce alpha KGDH and prevent liver damage caused by MSG.

  11. Monosodium L-glutamate in soup reduces subsequent energy intake from high-fat savoury food in overweight and obese women.

    Science.gov (United States)

    Miyaki, Takashi; Imada, Toshifumi; Hao, Susan Shuzhen; Kimura, Eiichiro

    2016-01-14

    The umami seasoning, monosodium L-glutamate (MSG), has been shown to increase satiety in normal body weight adults, although the results have not been consistent. The satiety effect of MSG in overweight and obese adults has not been examined yet. The objective of the present study was to investigate the effect of MSG in a vegetable soup on subsequent energy intakes as well as food selection in overweight and obese adult women without eating disorders. A total of sixty-eight overweight and obese women (BMI range: 25·0-39·9 kg/m²), otherwise healthy, were recruited to our study. A fixed portion (200 ml) of control vegetable soup or the same soup with added MSG (0·5 g/100 ml) was provided 10 min before an ad libitum lunch and an ad libitum snack in the mid-afternoon. The control soup had equivalent amount of Na to the soup with added MSG. Energy intakes at the ad libitum lunch and ad libitum snack time after the soup preload were assessed using a randomised, double-blind, two-way cross-over design. The soup with MSG in comparison with the control soup resulted in significantly lower consumption of energy at lunch. The addition of MSG in the soup also reduced energy intake from high-fat savoury foods. The soup with MSG showed lower but no significant difference in energy intake at mid-afternoon. The addition of umami seasoning MSG in a vegetable soup may decrease subsequent energy intake in overweight and obese women who do not have eating disorders.

  12. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity.

    Science.gov (United States)

    Quines, Caroline B; Rosa, Suzan G; Velasquez, Daniela; Da Rocha, Juliana T; Neto, José S S; Nogueira, Cristina W

    2016-03-15

    Depression is a disorder with symptoms manifested at the psychological, behavioral and physiological levels. Monosodium glutamate (MSG) is the most widely used additive in the food industry; however, some adverse effects induced by this additive have been demonstrated in experimental animals and humans, including functional and behavioral alterations. The aim of this study was to investigate the possible antidepressant-like effect of diphenyl diselenide (PhSe)2, an organoselenium compound with pharmacological properties already documented, in the depressive-like behavior induced by MSG in rats. Male and female newborn Wistar rats were divided in control and MSG groups, which received, respectively, a daily subcutaneous injection of saline (0.9%) or MSG (4g/kg/day) from the 1st to 5th postnatal day. At 60th day of life, animals received (PhSe)2 (10mg/kg, intragastrically) 25min before spontaneous locomotor and forced swimming tests (FST). The cerebral cortices of rats were removed to determine [(3)H] serotonin (5-HT) uptake and Na(+), K(+)-ATPase activity. A single administration of (PhSe)2 was effective against locomotor hyperactivity caused by MSG in rats. (PhSe)2 treatment protected against the increase in the immobility time and a decrease in the latency for the first episode of immobility in the FST induced by MSG. Furthermore, (PhSe)2 reduced the [(3)H] 5-HT uptake and restored Na(+), K(+)-ATPase activity altered by MSG. In the present study a single administration of (PhSe)2 elicited an antidepressant-like effect and decrease the synaptosomal [(3)H] 5-HT uptake and an increase in the Na(+), K(+)-ATPase activity in MSG-treated rats.

  13. 新生期注射谷氨酸单钠对大鼠脑区损伤程度的比较观察%Comparative Study of Damage to Different Parts of Brain with Injected Monosodium Glutamate in Newborn Rat

    Institute of Scientific and Technical Information of China (English)

    张金平; 史玉兰; 金凤霞; 白文忠; 高志国

    2000-01-01

    The damage to 16 parts of brain is comparatively researched in the adult rat. Those experimental animals are injected intraperitoneal different dose monosodium glutamate in the newborn period. The neurons are decrease markedly in most parts of the brain in the experimental rats. But some parts of brain are protected from the neurotoxicity of monosodium glutamate.%比较观察了在新生期腹腔内注射不同剂量谷氨酸单钠后,成年大鼠16个脑区的神经元损伤程度.发现大多数脑区的神经元显著减少,但有的脑区对谷氨酸单钠的神经毒性具有一定保护作用.

  14. 提高味精生产中和料液浓度的研究与实践%Research and practice on increasing the concentration of neut ralization liquid during the monosodium glutamate production

    Institute of Scientific and Technical Information of China (English)

    梁利和

    2009-01-01

    According to scientific experiments and improvements on the manufacturing technique of monosodium glutamate (MSG), the concentration of the to calculations and experiments, the consumption of the steam will decrease 45 by 1 h. As for a MSG manufacturer whose annual capacity is 100,000 tones, the turnover can be increased by more than RMB 5 Million.%通过科学实验和对生产工艺的调整改造,将味精生产中的中和料液浓度从22°Bé 提到至28°Bé,单个中和罐料液最高浓度可达30°Bé.根据计算和实验,每提高1°Bé浓度,吨味精汽耗可降低45kg,可缩短浓缩结晶锅1h的操作周期,对于生产10万t味精的生产厂,年可增加利润500多万元.

  15. Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives.

    Science.gov (United States)

    Bonatsou, Stamatoula; Iliopoulos, Vasilis; Mallouchos, Athanasios; Gogou, Eleni; Oikonomopoulou, Vasiliki; Krokida, Magdalini; Taoukis, Petros; Panagou, Efstathios Z

    2017-05-01

    This study examined the effect of osmotic dehydration of Kalamata natural black olives as pre-fermentation treatment in combination with partial substitution of NaCl by monosodium glutamate (MSG) on the fermentation profile of olives. Osmotic dehydration was undertaken by immersing the olives in 70% (w/w) glucose syrup overnight at room temperature. Further on, three different mixtures of NaCl and MSG with/without prior osmotic dehydration of olives were investigated, namely (i) 6.65% NaCl - 0.35% MSG (5% substitution), (ii) 6.30% NaCl - 0.70% MSG (10% substitution), (iii) 5.95% NaCl - 1.05% MSG (15% substitution), and (iv) 7% NaCl without osmotic dehydration (control treatment). Changes in the microbial association (lactic acid bacteria [LAB], yeasts, Enterobacteriaceae), pH, titratable acidity, organic acids, sugars, and volatile compounds in the brine were analyzed for a period of 4 months. The final product was subjected to sensory analysis and the content of MSG in olives was determined. Results demonstrated that osmotic dehydration of olives prior to brining led to vigorous lactic acid processes as indicated by the obtained values of pH (3.7-4.1) and acidity (0.7-0.8%) regardless of the amount of MSG used. However, in non-osmotically dehydrated olives, the highest substitution level of MSG resulted in a final pH (4.5) that was beyond specification for this type of olives. MSG was degraded in the brines being almost completely converted to γ-aminobutyric acid (GABA) at the end of fermentation. Finally, the sensory assessment of fermented olives with/without osmotic dehydration and at all levels of MSG did not show any deviation compared to the control treatment.

  16. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats.

    Science.gov (United States)

    Hermawati, Ery; Sari, Dwi Cahyani Ratna; Partadiredja, Ginus

    2015-09-01

    Monosodium glutamate (MSG) is believed to exert deleterious effects on various organs, including the hippocampus, likely via the oxidative stress pathway. Garlic (Alium sativum L.), which is considered to possess potent antioxidant activity, has been used as traditional remedy for various ailments since ancient times. We have investigated the effects of black garlic, a fermented form of garlic, on spatial memory and estimated the total number of pyramidal cells of the hippocampus in adolescent male Wistar rats treated with MSG. Twenty-five rats were divided into five groups: C- group, which received normal saline; C+ group, which was exposed to 2 mg/g body weight (bw) of MSG; three treatment groups (T2.5, T5, T10), which were treated with black garlic extract (2.5, 5, 10 mg/200 g bw, respectively) and MSG. The spatial memory test was carried out using the Morris water maze (MWM) procedure, and the total number of pyramidal cells of the hippocampus was estimated using the physical disector design. The groups treated with black garlic extract were found to have a shorter path length than the C- and C+ groups in the escape acquisition phase of the MWM test. The estimated total number of pyramidal cells in the CA1 region of the hippocampus was higher in all treated groups than that of the C+ group. Based on these results, we conclude that combined administration of black garlic and MSG may alter the spatial memory functioning and total number of pyramidal neurons of the CA1 region of the hippocampus of rats.

  17. 从味精醪母液中回收谷氨酸工艺研究(Ⅱ)%Recycle of glutamic acid from the monosodium glutamate mother liquid (Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    梁利和

    2011-01-01

    The concentration of the last mother solution was lowered firstly, α-glutamic acid was added for crystallization after the pH value was regulated, and then the pH was adjusted to glutamic acid's isoelectric point for the separation of glutamic acid (GA) crystal. The wet GA just after separation could be directly used for further production. The supematant and filtrate were hydrolyzed by HCl. Then, the pH ofhydrolyzed supernatant and filtrate were adjusted to GA isoelectric point by last mother solution. The wet GA separated by crystallization contained too much NaCl, and should be washed before further production. The wash water and filtrate should be carried down to sewage treatment works.%先将醪母液降低浓度,调整pH后加入a-型谷氨酸晶种育晶,然后调谷氨酸等电点进行结晶分离,分离的湿谷氨酸直接投入生产中.分离的上清液和滤液加盐酸水解后,再用醪母液调整水解液pH至谷氨酸等电点,结晶分离的湿谷氨酸由于NaCl含量较高,需水洗后才能投入生产.洗水和滤液则投入污水处理厂.

  18. 利用味精废液发酵枯草芽孢杆菌的培养基配方优化%Optimization of a culture medium for Bacillus subtilis based on monosodium glutamate wastewater

    Institute of Scientific and Technical Information of China (English)

    刘丽; 曾真; 方萍

    2016-01-01

    以营养肉汤(nutrient broth,NB)培养基为对照,通过对比试验、正交试验和单因素试验,对以味精废液为主要营养源的摇瓶培养的枯草芽孢杆菌 F-2培养基配方及培养条件进行优化,以提高 F-2发酵液的活菌密度并实现味精废液的资源化利用.对比试验表明,用12.5 g/L 浓缩味精废液(concentrated monosodium glutamate wastewater,CMGW)培养的 F-2菌悬液的 D(600 nm)值及活菌密度显著高于 NB 培养基,其培养 F-2后的氨基酸含量显著降低.通过 L16(43×26)正交试验筛选出 F-2的优化配方为 CMGW 12.5 g/L,牛肉膏1.0 g/L,蛋白胨4.0 g/L,MnSO4·2 H 2 O 0.5 g/L,H 3 BO30.02 g/L,FeSO4·7 H 2 O 0.1 g/L,MgSO4·7 H 2 O 0.5 g/L.按此优化配方接种培养 F-2菌株,其菌液的活菌密度分别是未经优化的 CMGW 培养基和 NB 培养基的2.9倍和6.3倍.通过单因素试验,筛选出基于该优化配方的 F-2菌株适宜的初始 pH 范围为6.5~7.5,适宜的培养温度为30~35℃.以上结果显示,培养基 CMGW 对菌株 F-2的发酵效果优于 NB 培养基,其优化配方的效果更佳.%Summary Concentrated monosodium glutamate wastewater (CMGW) generated from the production of monosodium glutamate is an organic wastewater with high concentration of ammonia,chemical oxygen demand, biochemical oxygen demand and SO2-4 and low pH. Discharge of CMGW has raised serious environmental problems,and potential secondary pollution existed even treated with traditional physical and chemical processes. It has already been reported that the richness of nitrogen and carbon makes the recycling of this wastewater possible in the way of microbial fermentation as medium.However,the differences of strain and fermentation purpose require that the medium contains different nutritional compositions with a certain dosage.Bacillus subtilis F-2,isolated from a commercial organic fertilizer,can inhibit the growth of 18 plant pathogenic fungi with varying degrees,especially in F

  19. Monosodium glutamate: Potentials at inducing prostate pathologies ...

    African Journals Online (AJOL)

    ONOS

    2010-09-06

    Sep 6, 2010 ... with typical adverse effects associated with its oral intake without food ... PAP, prostatic acid phosphatase; ANOVA, one-way analysis of ... urinogenital system, is to produce prostatic fluid which ..... and oxidative stress in rats.

  20. Emerging aspects of dietary glutamate metabolism in the developing gut

    Science.gov (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as a flavour additive in the form of monosodium glutamate (MSG). Evidence from human and animal studies indicates that glutamate is the major oxidative fuel for the gut and that dietary glutamate is exten...

  1. Metabolic fate and function of dietary glutamate in the gut

    Science.gov (United States)

    Glutamate is a major constituent of dietary protein and is also consumed in many prepared foods as an additive in the form of monosodium glutamate. Evidence from human and animal studies indicates that glutamate is a major oxidative fuel for the gut and that dietary glutamate is extensively metabol...

  2. Evaluation of body growth and myoenteric neurons of Wistar rats after neonatal treatment with monosodium glutamate = Avaliação do crescimento corporal e dos neurônios mioentéricos de ratos Wistar após tratamento neonatal com glutamato monossódico

    Directory of Open Access Journals (Sweden)

    Fernando Carlos Sousa

    2007-01-01

    Full Text Available This work aimed at evaluating how the neonatal treatment withmonosodium glutamate reflects on body parameters and on myoenteric neurons of Wistar rats. Male rats were injected with monosodium glutamate during the first five postnatal days. Body growth was recorded until the age of 90 days, when the animals were killed.Fasting plasma glucose, caloric density and weight of organs were assayed. Gastric and duodenal whole-mounts stained with NADH diaphorase were observed for neuronal numbers and sizes. Growth, relative weight of organs and testicular caloric density of theinjected rats were smaller than those of the controls, while their Lee index and relative fat content were greater. The number of duodenal neurons and the mean size of gastric neurons were smaller in the injected animals. These results are discussed in light of theendocrine, autonomic and behavioral changes stemming from the lesion of the hypothalamic arcuate nucleus by monosodium glutamate.Este trabalho objetivou avaliar como o tratamento neonatal com glutamato monossódico se reflete em parâmetros corporais e nos neurônios mioentéricos de ratos Wistar. Ratos machos foram injetados com glutamato monossódico durante os primeiros 5 dias após o nascimento. O crescimento corporal foi registrado até os 90 dias, quando os animais foram sacrificados. Glicose plasmática de jejum, densidade calórica e peso dos órgãos foram avaliados. Preparados de membrana gástricos e duodenais corados com NADH-diaforase foramobservados quanto a número e tamanho dos neurônios. Crescimento, peso relativo dos órgãos e densidade calórica testicular dos ratos injetados foram menores que nos controles, enquanto o índice de Lee e o conteúdo relativo de gordura foram maiores. O número de neurônios duodenais e o tamanho médio dos neurônios gástricos foram menores nosanimais injetados. Esses resultados são discutidos à luz das alterações endócrinas, autonômicas e comportamentais

  3. Scientific Opinion on the safety evaluation of the active substances iron, sodium chloride, water, silica gel, activated carbon, monosodium glutamate, potassium acid tartrate, powdered cellulose, malic acid, chabazite, hydroxypropyl cellulose, potassium carbonate, sodium thiosulfate, propylene glycol, glycerin, polyethyleneglycol sorbitan monooleate, sodium propionate and clinoptilolite for use in food contact materials

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF

    2013-04-01

    Full Text Available This scientific opinion of the EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids deals with the safety evaluation of iron based oxygen absorber systems comprising iron, sodium chloride, water, silica gel, activated carbon, monosodium glutamate, potassium acid tartrate, powdered cellulose, malic acid, chabazite, hydroxypropyl cellulose, potassium carbonate, sodium thiosulfate, propylene glycol, glycerin, polyethyleneglycol sorbitan monooleate, sodium propionate and clinoptilolite, incorporated in sachets, patches and cards. Iron, the main active ingredient reacts with oxygen to form iron hydroxide and iron oxide, thereby removing oxygen from the primary packaging. Only activated carbon has not been evaluated as such, but it meets the specifications for activated charcoal which is authorised as additive for plastic materials and articles in contact with foods. All other ingredients of the oxygen absorber formulations have been evaluated and approved for use as additives in plastic food contact materials and/or as food additives and/or food supplements or feed additives. The active system being based on solid ingredients and not intended for direct contact with liquid food or food with an external liquid surface, migration through the gas phase was screened for 9 representative active systems. No volatiles derived from the active mixtures were detected. Therefore the CEF Panel concluded that the substances do not raise a safety concern when used in oxygen absorbers in sachets, patches or cards, placed in the headspace of the packaging or when used in direct contact with food, excluding liquid food or foods that have an external aqueous liquid phase on the surface such as sliced fruits and fresh meat.

  4. Dietary glutamate will not affect pain in fibromyalgia

    NARCIS (Netherlands)

    Geenen, R.; Janssens, E.L.; Jacobs, J.W.G.; Staveren, van W.A.

    2004-01-01

    Injection of glutamate into the masseter muscle has been suggested-to evoke an increase in intensity of and sensitivity to pain. A case study showed that a diet low in monosodium glutamate (MSG) might accomplish pain relief in fibromyalgia (FM). To clarify the possible pain-modulating effect of diet

  5. Effects of Food Restriction on Fat Metabolism Index of Monosodium Glutamate in Obese Rats and Human%限食对谷氨酸钠肥胖大鼠及人体肥胖代谢指标的影响

    Institute of Scientific and Technical Information of China (English)

    关真民; 王慧; 程俊美; 鹿勇

    2013-01-01

    Investigation has been conducted to observe the effect of short-term food restriction on fat metabolism index of obesity and rat by means not only of animal experiment:glutamate obese rats have been divided into control group and food restriction group,and the Lee index weight,fat index and glycerin three greases' change of the two groups observed,but also of human experiment:the subjects were 21women,aged 22-45 years old.Limited food have been given seven days of fasting,first days for the buff er,the first 2-6 days for fasting days,seventh days for the restoration of day,food restriction for first days of acupuncture points and massage.Observation has been done on the body fat,body fat percentage,body weight,BMI and the change of waist circumference before and after food restriction.Results show that glutamate obese rats with food restriction group's weight,Lee index,fat index and glycerin three greases is markedly decreased with a very significant difference (p<0.01) compared with the control group; 21 subjects in the dietary restriction of body fat,body fat percentage and waist circumference are also significantly decreased and had significant difference (p<0.05),and the body weight and BMI decreased with a very significant difference (p<0.01).It is concluded that food restriction therapy has im portant significance for obesity treatment and prevention of complications.%目的 观察短期限食对肥胖人群及大鼠脂肪代谢指标的影响.方法 动物实验:将谷氨酸钠肥胖大鼠分为对照组和限食组,并分别观察两组体重、Lee指数、脂肪指数和甘油三酯的变化;人体实验:受试者为21名女性,年龄22~45岁.限食者均限食7天,第1天为缓冲日,第2~6天为禁食日,第7天为恢复日.观察限食前后体脂、体脂百分率、体重、BMI和腰围的变化.结果 谷氨酸钠肥胖大鼠限食组体重、Lee指数、脂肪指数和甘油三酯与对照组相比明显下降,

  6. 有机负荷对厌氧流化床反应器处理模拟味精废水的影响%Effect of organic loading on treatment efficiency of synthetic monosodium glutamate wastewater by anaerobic fluidized bed reactor

    Institute of Scientific and Technical Information of China (English)

    郝景曼; 钟浩源; 王新华; 李秀芬

    2012-01-01

    在中温(35±1℃)条件下,以新型橡胶颗粒为载体的厌氧流化床(AFB)反应器处理模拟味精废水为研究体系,考察有机负荷(OLR)由2.08 kg/(m3.d)提高到19.20 kg/(m3.d)期间,污染物去除率、胞外聚合物(EPS)含量及其在生物膜和混合液中的分布、生物膜中MLVSS含量及脱氢酶活性等的变化情况。结果表明,随有机负荷增加,污染物去除稳定,COD去除率维持在80%左右;EPS在生物膜中的量大于在混合液中的量,并以蛋白质为主要成分,但其总量呈递减趋势;当有机负荷为19.20 kg/(m3.d)时,生物膜中MLVSS含量约为23.1 mg/g载体,脱氢酶活性则为22.6 mg/(L.h);载体生物膜的生物相以独缩虫属、聚缩虫属、累枝虫属和钟虫等为主。%The treatment efficiency of synthetic monosodium glutamate wastewater,under the mesophilic condition(35±1 ℃) by the anaerobic fIuidized bed reactor(AFB)with a novel carrier made of rubber particles,was investigated.The variations in pollutant removals,the contents of extracellular polymeric substances(EPS) and its distribution in biofilm and mixed liquor,MLVSS in biofilm and the dehydrogenase activity were studied,respectively,when the organic loading(OLR) increased from 2.08 kg/(m3·d) to 19.20 kg/(m3·d).The results showed that,with the increase in OLR of AFB,the COD removal kept steady at about 80%.EPS content in biofilm was higher than those in mixed liquor,but its total amount decreased with the increase in OLR.Proteins were its dominating components.When the OLR amounted to 19.20 kg/(m3·d),MLVSS in the biofilm and dehydrogenase activity were 23.1 mg/g carrier and 22.6 mg/(L·h),respectively.Carchesium,Zoothamnium,Genus Epistylis and Vorticella were dominating the microbial biofilm.

  7. Effect of the oral administration of monosodium glutamate during pregnancy and breast-feeding in the offspring of pregnant Wistar rats Efeito da administração de glutamato monossódico durante a gestação e amamentação na prole de ratas Wistar prenhes

    Directory of Open Access Journals (Sweden)

    Vinicius von Diemen

    2010-02-01

    Full Text Available PURPOSE: Determine the effects of the MSG (monosodium glutamate in the offspring of pregnant rats through the comparison of the weight, NAL (nasal-anal length and IL (Index of Lee at birth and with 21 days of life. METHODS: Pregnant Wistar rats and their offspring were divided into 3 groups: GC, G10 and G20. Each of the groups received 0%, 10% and 20% of MSG, respectively from coupling until the end of the weaning period. RESULTS: Neither weight nor NAL were different among the groups at birth. The group G20 at birth had an IL lower than the group GC (pOBJETIVO: Avaliar o efeito do glutamato monossódico (GMS nos fetos de ratas prenhes por meio da comparação do peso, comprimento nasal-anal (CNA e índice de Lee (IL ao nascimento e com 21 dias de vida. MÉTODOS: Foram utilizadas ratas prenhes da linhagem Wistar distribuídas em três grupos: grupo controle (GC, G10 e G20. Estes, respectivamente, foram alimentados com ração contendo 0, 10 e 20% de GMS desde o período de acasalamento até o final da amamentação. RESULTADOS: O peso e o CNA não foram diferentes entre os grupos ao nascimento. O grupo G20, ao nascimento, teve IL menor que o grupo GC (p < 0,05 e, aos 21 dias de vida, apresentou peso e CNA menores que o grupo G10, o qual foi menor que o GC (p < 0,01. O grupo G20, aos 21 dias de vida, teve IL semelhante aos outros dois grupos. O percentual de ganho de peso do nascimento ao 21º dia de vida foi menor no G20 em relação aos outros dois grupos (p < 0,01. O grupo G20 teve percentual de aumento de CNA do nascimento ao 21º dia de vida menor que o grupo G10, e este menor que o grupo GC (p < 0,01. CONCLUSÕES: O GMS nas concentrações de 10 e 20% na ração de ratas prenhes Wistar apresentou uma relação dose-dependente nas variáveis peso e CNA. Houve diminuição no padrão de ganho de peso e de aumento de CNA do nascimento ao 21º dia de vida com uso de GMS. O IL na prole do grupo G20 aumentou em relação ao do grupo GC após 3

  8. Appropriate adding time of concentrated monosodium glutamate wastewater as acidity adjusting and nitrogen loss control agent in high temperature composting%浓缩味精废液作为高温堆肥调酸保氮剂的适宜添加时间研究

    Institute of Scientific and Technical Information of China (English)

    孔海民; 刘丽; 李田宇; 汪继兵; 方萍

    2016-01-01

    Summary The pH rise of the compost mixture is one of the main causes for nitrogen volatilization loss in the composting process.As a consequence of organic degradation,accumulated ammonium nitrogen will trigger pH rise spontaneously.It is generally believed that ammonia nitrogen (NH 3) will volatilize once the pH of compost mixture exceeds 8.0.And the higher the pH is,the more the NH3 volatilization will be.In this way,the pH rise of mixture will result in substandard compost products,not only because its pH is out of the upper limit(pH=8.5)of the NY 525—2012 standard,but also significant decline of nutrition content due to NH3 volatilization.Hence,adjusting the pH of materials to control nitrogen loss becomes one of the hot issues in the organic fertilizer industry.A lot of chemical agents have been applied to adjust the pH in composting.However,most of them are difficult to implement efficiency and decrease production cost,let alone the dilution effects and imbalance of nutrition.The concentrated monosodium glutamate wastewater (CMGW) is an evaporative and concentrated liquid waste from discharged organic water in production of monosodium glutamate,characterized by rich nutrients and free heavy metal pollution.Previous studies have indicated that CMGW is a promising conditioning agent to adjust acidity and reduce NH 3 volatilization for composting,and the suggested optimum dosage is 2% of the mixture in mass. The appropriate adding time of CMGW for adjusting pH and decreasing nitrogen loss due to NH 3 volatilization in composting was further discussed in present study by a compost simulation experiment.The simulation experiment took place in a composting device(patent number:ZL 201010589910X)with the mixture of fresh pig manure and mushroom residues at a ratio of 3∶1 in mass,as well as 1% fermentation bacterial agent of the mixture.Three treatments were conducted as follows:1) M1 ,application of 2% CMGW before composting;2) M2 ,application of 2% CMGW at the

  9. Effects of losartan and handle region peptide on serum insulin and GLP-1 in rats neonatally treated ;with monosodium L-glutamate%氯沙坦和手把区域多肽对左旋谷氨酸钠大鼠血清胰岛素与胰高血糖素样肽-1的影响

    Institute of Scientific and Technical Information of China (English)

    孙如琼; 林少达; 徐冬川; 林锟

    2014-01-01

    losartan and handle region peptide (HRP) of monosodium L-glutamate (MSG) rats. Methods Newborn male rats were subcutaneously injected with MSG at the age of 2, 4, 6, 8, 10 days, while the control rats were injected with Nacl (CON group). At the age of 3 weeks, the rats neonatally injected with MSG were randomly divided into MSG group, MSG+HRP group, MSG+L group, MSG+HRP+L group and fed with high-fat diet, while the control rats were fed with normal diet. From 8 to 12 weeks, MSG+HRP and MSG+HRP+L group received HRP treatment, while MSG+L and MSG+HRP+L received losartan treatment in drinking water. At the age of 12 weeks, oral glucose tolerance test (OGTT) was performed for evaluation of the glucose status. Obesity was evaluated by measuring weight, length, peritoneal fat of rats. The serum insulin, ghrelin and GLP-1 was detected by ELISA at 0 min, 30 min, 60 min, 120 min after glucose load. Results (1)Compared with the CON group, MSG rats had higher body weight, Lee's index and wet weight of peritoneal adipose tissue and lower body length(P<0.05). MSG+L group and MSG+HRP+L group had lower body weight(P<0.05). (2)The AUCglucose after glucose load was higher in the MSG group compared with the CON group, whereas the MSG+HRP had higher AUCglucose than the MSG group. The MSG+L group had lower AUCglucose compared with the MSG+HRP and MSG+HRP+L group(P<0.05). (3)Compare with CON group, the serum insulin and glucagon and GLP-1 of the else four groups was obviously decreased at 0, 30, 60 min and the AUC of insulin and glucagon and GLP-1 of the four groups were lower as well(P<0.05). The AUCGLP-1 and AUCInsulin of MSG+HRP group was less than MSG group, but the AUCGLP-1 and AUCInsulin of MSG+L group were higher than MSG group(P<0.05);The AUC of insulin was positive relevant with AUC of GLP-1(r=0.924,P<0.01);The result of AUCGlucagon did not have statistical different in the four groups which rats were subcutaneously injected with MSG. (4)The result of AUCGhrelin showed that MSG

  10. Purification of L-glutamate-dependent citrate lyase from Clostridium sphenoides and electron microscopic analysis of citrate lyase isolated from Rhodopseudomonas gelatinosa, Streptococcus diacetilactis and C. sphenoides.

    Science.gov (United States)

    Antranikian, G; Klinner, C; Kümmel, A; Schwanitz, D; Zimmermann, T; Mayer, F; Gottschalk, G

    1982-08-01

    Citrate lyase from Clostridium sphenoides was purified 72-fold with a yield of 11%. In contrast to citrate lyase from other sources the activity of this enzyme was strictly dependent on the presence of L-glutamate. The purified enzyme was only stable in the presence of 150 mM L-glutamate or 7 mM L-glutamate plus glycerol, sucrose or bovine serum albumin. Changes of the L-glutamate pool and of enzyme activity in growing cells of C. sphenoides indicated that citrate lyase activity in this organism was regulated by the intracellular L-glutamate concentration. Citrate lyase isolated from C. sphenoides, Rhodopseudomonas gelatinosa and Streptococcus diacetilactis was investigated by electron microscopy using the negative staining technique. Three different projections of enzyme molecules were observed: 'star' form, 'ring' form and 'triangle' form. In samples from R. gelatinosa and S. diacetilactis, star and ring forms occurred in a ratio of about 1:9. Using the enzyme from S. diacetilactis it was demonstrated that this ratio could be altered in favour of the star form by the addition of citrate or tricarballylate. The triangle form was observed in less than 1% of all evaluated molecules and may represent a transition form. In lyase samples from C. sphenoides there existed a correlation between enzyme activity and the proportion of stars and rings at varying concentrations of L-glutamate.

  11. PENGETAHUAN DAN PERILAKU KONSUMSI MAHASISWA PUTRA TINGKAT PERSIAPAN BERSAMA IPB TENTANG MONOSODIUM GLUTAMAT DAN KEAMANANNYA

    Directory of Open Access Journals (Sweden)

    Made Mita Dwi Saraswati

    2013-10-01

    Full Text Available ABSTRACTThe aim of this study was to analyze the knowledge and consumption behaviour of the first year boy students of IPB on Monosodium Glutamate (MSG and its safety. Data were collected using self administered questionnaire. Questionnaires were given to the students through cooperation with one of internal club in IPB’s Dormitory. There were 1 324 questionnaires that were given, but only 808 questionnaires were collected back and 24 of them not filled out completely. Thus there were 784 questionnaires that qualified to be research data. Knowledge on MSG and its safety was classified into 3 levels of knowledge, such as low (80% of total score. The results showed that most students have low level of knowledge on the MSG (81.4% and it’s safety (94.3%. However, most of them frequently consume foods containing MSG (39—86%. Level of knowledge on MSG is not correlated to consumption behavior of MSG (p>0.05.Key words: consumption behavior, knowledge, Monosodium Glutamate (MSGABSTRAKPenelitian ini bertujuan untuk menganalisis pengetahuan dan perilaku mahasiswa putra Tingkat Persiapan Bersama (TPB IPB tentang Monosodium Glutamat (MSG dan keamanannya. Data penelitian diperoleh melalui kuesioner yang diisi sendiri oleh mahasiswa putra. Penyebaran kuesioner dilakukan melalui kerjasama dengan salah satu klub internal Asrama Putra TPB. Kuesioner survei diberikan kepada seluruh mahasiswa putra, yaitu sebanyak 1 324 orang. Jumlah mahasiswa yang mengisi kuesioner adalah 808 orang, namun 24 orang diantara- nya tidak mengisi kuesioner dengan lengkap sehingga diperoleh 784 orang sebagai subjek dalam penelitian ini. Tingkat pengetahuan tentang MSG dan keamanannya diklasifikasikan menjadi tiga, yaitu tingkat pengetahuan kurang (skor total80%. Hasil penelitian menunjukkan bahwa sebagian besar mahasiswa putra mempunyai tingkat pengetahuan yang rendah tentang MSG (81.4% dan keamanan MSG (94.3%, namun sebagian besar dari mereka (39—86% juga sering mengonsumsi

  12. Monosodium Luminol for Improving Brain Function in Gulf War Illness

    Science.gov (United States)

    2015-10-01

    whether administration of monosodium luminol-GVT (MSL-GVT, an antioxidant drug from Bach Pharma) in a rat model of Gulf war illness (GWI) would...antioxidant and anti-inflammatory drug monosodium luminol-GVT (MSL-GVT from Bach Pharma) for easing memory and mood dysfunction in a rat model of GWI...examine the efficacy of monosodium luminol-GVT (MSL-GVT from Bach Pharma) for alleviating mood and memory dysfunction in a rat model of GWI. The chosen

  13. ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT 46000908120

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.

    2014-04-09

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The original Harrell Industries Lot #46000908120 qualification and 16 verification samples received in October 2012 failed to meet the specification for weight percent solids. All of the pails sampled and tested contained less than 15 wt % MST solids. The lot was returned to the vendor, and in February 2014 a new qualification sample and set of 16 verification samples were received from this lot. The new lot met each of the selected specification requirements that were tested and, consequently, the material is acceptable for use in the ARP process.

  14. ANALYSIS OF HARRELL MONOSODIUM TITANATE LOT 46000824120

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.

    2014-04-09

    Monosodium titanate (MST) for use in the Actinide Removal Process (ARP) must be qualified and verified in advance. A single qualification sample for each batch of material is sent to SRNL for analysis, as well as a statistical sampling of verification samples. The original Harrell Industries Lot #46000824120 qualification and 16 verification samples received in September 2012 failed to meet the specification for weight percent solids. All of the pails sampled and tested contained less than 15 wt % MST solids. The lot was returned to the vendor, and in February 2014 a new qualification sample and set of 14 verification samples were received from this lot. The new lot met each of the selected specification requirements that were tested and, consequently, the material is acceptable for use in the ARP process.

  15. Differentiated effect of ageing on the enzymes of Krebs' cycle, electron transfer complexes and glutamate metabolism of non-synaptic and intra-synaptic mitochondria from cerebral cortex.

    Science.gov (United States)

    Villa, R F; Gorini, A; Hoyer, S

    2006-11-01

    The effect of ageing on the activity of enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism was studied in three different types of mitochondria of cerebral cortex of 1-year old and 2-year old male Wistar rats. We assessed the maximum rate (V(max)) of the mitochondrial enzyme activities in non-synaptic perikaryal mitochondria, and in two populations of intra-synaptic mitochondria. The results indicated that: (i) in normal, steady-state cerebral cortex the values of the catalytic activities of the enzymes markedly differed in the various populations of mitochondria; (ii) in intra-synaptic mitochondria, ageing affected the catalytic properties of the enzymes linked to Krebs' cycle, electron transfer chain and glutamate metabolism; (iii) these changes were more evident in intra-synaptic "heavy" than "light" mitochondria. These results indicate a different age-related vulnerability of subpopulations of mitochondria in vivo located into synapses than non-synaptic ones.

  16. Effect of ageing and ischemia on enzymatic activities linked to Krebs' cycle, electron transfer chain, glutamate and aminoacids metabolism of free and intrasynaptic mitochondria of cerebral cortex.

    Science.gov (United States)

    Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried

    2009-12-01

    The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light

  17. 40 CFR 721.3848 - Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt.

    Science.gov (United States)

    2010-07-01

    ...-, monosodium salt. 721.3848 Section 721.3848 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3848 Glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt. (a... glycine, N-(carboxymethyl)-N-dodecyl-, monosodium salt (PMN P-00-469; CAS No. 141321-68-8) is subject to...

  18. Gambaran Histologi Regenerasi Hati Pasca Penghentian Pajanan Monosodium Glutamat pada Tikus Wistar

    Directory of Open Access Journals (Sweden)

    Heryanto Andreas

    2015-09-01

    (28, 42, and 56 days. 1 positivecontrol goup were given akuades for 28, 42, and 56 days; 1st, 2nd, and 3rdst,  negative control goup weregiven 5 mg/gBW/day of MSG for for 28, 42, and 56 days; 1st, 2nd, and 3 treatment goup were given 5mg/gBW/day of MSG for 28, 42, and 56 days, then stopped for 0, 14, and 28 days. Measured variablewere liver damage degree. One Way ANOVA data analysis found a significant difference (p<0.05and there was no significant difference between positive control and regeneration treatment goup day 14th (p>0.05 and regeneration treatment group day 28thrd2nd3, and 3rd (p>0.05. MSG exposure causes liver damage and liver regeneration occurs after 14 days cessation of MSG exposure. Keywords: monosodium glutamate (MSG, regeneration, liver damage

  19. DEVELOPMENT OF MONOSODIUM TITANATE (MST) PURCHASE SPECIFICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2006-04-30

    Savannah River National Laboratory (SRNL) evaluated the previous monosodium titanate (MST) purchase specifications for particle size and strontium decontamination factor. Based on the measured particle size and filtration performance characteristics of several MST samples with simulated waste solutions and various filter membranes we recommend changing the particle size specification as follows. The recommended specification varies with the size and manufacturer of the filter membrane as shown below. We recommend that future batches of MST received at SRS be tested for particle size and filtration performance. This will increase the available database and provide increased confidence that particle size parameters are an accurate prediction of filtration performance. Testing demonstrated the feasibility of a non-radiochemical method for evaluating strontium removal performance of MST samples. Using this analytical methodology we recommend that the purchase specification include the requirement that the MST exhibits a strontium DF factor of >1.79 upon contact with a simulated waste solution with composition as reported for simulated waste solution SWS-7-2005-1 in Table 1 and containing 5.2 to 5.7 mg L{sup -1} strontium with 0.1 g L{sup -1} of the MST. We also recommend performing additional tests with these simulants and MST samples and, if available, new MST samples, to determine the reproducibility and increase the available database for the measurements by the ICP-ES instrument. These measurements will provide increased confidence that the non-radiological method provides a reliable method for evaluating the strontium and actinide removal performance for MST samples.

  20. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    Science.gov (United States)

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  1. Effect of glutamate on inflammatory responses of intestine and brain after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Lei Xu; Jie Sun; Ran Lu; Qing Ji; Jian-Guo Xu

    2005-01-01

    AIM: To study the modulation of glutamate on post-ischemic intestinal and cerebral inflammatory responses in a ischemic and excitotoxic rat model.METHODS: Adult male rats were subjected to bilateral carotid artery occlusion for 15 min and injection of monosodium glutamate intraperitoneally, to decapitate them at selected time points. Tumor necrosis factor alpha (TNF-α) level and nuclear factor kappa B (NF-κB) activity were determined by enzyme-linked immunosorbant assay (ELISA) and electrophoretic mobility shift assay (EMSA), respectively.Hemodynamic parameters were monitored continuously during the whole process of cerebral ischemia and reperfusion.RESULTS: Monosodium glutamate (MSG) treated rats displayed statistically significant high levels of TNF-α in cerebral and intestinal tissuess within the first 6 h of ischemia. The rats with cerebral ischemia showed a minor decrease of TNF-α production in cerebral and intestinal tissuess. The rats with cerebral ischemia and treated with MSG displayed statistically significant low levels of TNF-α in cerebral and intestinal tissues. These results correlated significantly with NF-κB production calculated at the same intervals. During experiment, the mean blood pressure and heart rates in all groups were stable.CONCLUSION: Glutamate is involved in the mechanism of intestinal and cerebral inflammation responses. The effects of glutamate on cerebral and intestinal inflammatory responses after ischemia are up-regulated at the transcriptional level,through the NF-κB signal transduction pathway.

  2. Sodium glutamate and gamma-aminobutyric acid affect iron metabolism in the rat caudate putamen

    Institute of Scientific and Technical Information of China (English)

    Na Wang; Peng Guan; Fei Li; Yujian Fu; Xianglin Duan; Yanzhong Chang

    2010-01-01

    Glutamic acid and gamma-aminobutyric acid (GABA) influence iron content in the substantia nigra and globus pallidus, although the mechanisms of action remain unclear. The present study measured iron content and changes in divalent metal transporter 1 (DMT1) and hephaestin expression in the substantia nigra and caudate putamen, and explored the effects of GABA and glutamic acid on iron metabolism, Results demonstrated that iron content and DMT1 non iron response element [DMT1 (-IRE)] expression were significantly greater but hephaestin expression was significantly lower in the caudate putamen of the monosodium glutamate group compared with the control group. No significant difference in iron content was detected between the GABA and control groups. DMT1(-IRE) expression was significantly reduced, but hephaestin expression was significantly increased in the GABA group compared with the control group. In addition, there was no significant difference in tyrosine hydroxylase expression between monosodium glutamate and GABA groups and the control group. These results suggested that glutamate affected iron metabolism in the caudate putamen by increasing DMT1(-IRE) and decreasing hephaestin expression. In addition, GABA decreased DMT1(-IRE) expression in the caudate putamen.

  3. Antimutagenic Effect of Hibiscus sabdariffa L. Aqueous Extract on Rats Treated with Monosodium Glutamate

    Science.gov (United States)

    Kerkhoff, Jacqueline; Vieira Júnior, Gerardo Magela; de Campos, Kleber Eduardo; Sugui, Marina Mariko

    2017-01-01

    Hibiscus sabdariffa L. is a plant of the Malvaceae family, commonly known as roselle. H. sabdariffa is known to contain antioxidant, cholesterol-lowering, antiobesity, insulin resistance reduction, antihypertensive, and skin cancer chemopreventive properties. This study evaluated the effects of H. sabdariffa aqueous extract against cyclophosphamide (CPA, 25 mg/Kg) induced damage to DNA in male Wistar rats by micronucleus test. Samples of H. sabdariffa calyx were obtained in the municipality of Barra do Garças, Mato Grosso, Brazil. The aqueous extract was prepared by infusion and each animal received a daily dose of 400 mg/Kg by gavage for 15 consecutive days of treatment. The presence of anthocyanins was confirmed by ferric chloride test and phenolic compounds using high-performance liquid chromatography, with emphasis on the identification of rutin. The animals were sacrificed by deepening of anaesthesia to obtain bone marrow and determination of the frequency of micronucleated polychromatic erythrocytes. The group treated with the aqueous extract of H. sabdariffa revealed a 91% reduction in micronucleus frequency when compared with the positive control group. Under the conditions tested, H. sabdariffa L. presented a protective effect to CPA-induced damage to DNA of the treated animals, and it is a potential candidate as a chemopreventive agent against carcinogenesis. PMID:28197528

  4. 78 FR 65278 - Monosodium Glutamate From the People's Republic of China, and the Republic of Indonesia...

    Science.gov (United States)

    2013-10-31

    ... of PT Budi Acid Jaya, an Indonesian manufacturer of citric acid (a product that Petitioner claims is..., dry powders of any particle size, or unfinished forms such as MSG slurry), end- use application, or...

  5. 78 FR 65269 - Monosodium Glutamate From the People's Republic of China and the Republic of Indonesia...

    Science.gov (United States)

    2013-10-31

    ... proceedings, imports of subject merchandise from developing countries must exceed the negligibility threshold... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE... Import Administration, International Trade Administration, Department of Commerce. DATES:...

  6. Foraging enrichment modulates open field response to monosodium glutamate in mice

    National Research Council Canada - National Science Library

    Onaolapo, Olakunle J; Onaolapo, Adejoke Y; Akanmu, Moses A; Olayiwola, Gbola

    2015-01-01

    Environmental enrichment can enhance expression of species-specific behaviour. While foraging enrichment is encouraged in laboratory animals, its impact on novelty induced behaviour remain largely unknown...

  7. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  8. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  9. Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa

    DEFF Research Database (Denmark)

    Weihe, Johan Petur; Birger Morillon, Melanie; Lambrechtsen, Jess;

    2014-01-01

    Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa......Dual-energy CT (DECT) imaging of tophi and monosodium urate deposits in a patient with longstanding anorexia nervosa...

  10. Mechanism for the activation of glutamate receptors

    Science.gov (United States)

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  11. Phase IV testing of monosodium titanate adsorption with radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    1999-12-08

    Testing examined the extent and rate of strontium, plutonium, uranium, and neptunium removal from radioactive waste solutions at 4.5M and 7.5M in Na concentration by adsorption onto monosodium titanate (MST) at 0.2 g/L. Results indicate that the extents and rates of strontium, plutonium, and neptunium removal in radioactive waste solutions agree well with those previously measured using simulated waste solutions. Uranium removal in the 7.5M Na radioactive waste solution proved similar to that observed with simulated waste solutions. Uranium removal in the 4.5M Na radioactive waste solution proved lower than expected from previous simulant tests. The authors conclude that MST adsorption data obtained from simulated waste solutions provide reliable predictions for use in facility design and flowsheet modeling studies in the Salt Disposition Alternatives program.

  12. Glutamate signalling in bone.

    Directory of Open Access Journals (Sweden)

    Karen eBrakspear

    2012-08-01

    Full Text Available Mechanical loading plays a key role in the physiology of bone, allowing bone to functionally adapt to its environment, however characterisation of the signalling events linking load to bone formation is incomplete. A screen for genes associated with mechanical load-induced bone formation identified the glutamate transporter GLAST, implicating the excitatory amino acid, glutamate, in the mechanoresponse. When an osteogenic load (10N, 10Hz was externally applied to the rat ulna, GLAST (EAAT1 mRNA, was significantly down-regulated in osteocytes in the loaded limb. Functional components from each stage of the glutamate signalling pathway have since been identified within bone, including proteins necessary for calcium-mediated glutamate exocytosis, receptors, transporters and signal propagation. Activation of ionotropic glutamate receptors has been shown to regulate the phenotype of osteoblasts and osteoclasts in vitro and bone mass in vivo. Furthermore, glutamatergic nerves have been identified in the vicinity of bone cells expressing glutamate receptors in vivo. However, it is not yet known how a glutamate signalling event is initiated in bone or its physiological significance. This review will examine the role of the glutamate signalling pathway in bone, with emphasis on the functions of glutamate transporters in osteoblasts.

  13. Effects of added glutamate on liking for novel food flavors.

    Science.gov (United States)

    Prescott, John

    2004-04-01

    Adding glutamate to foods increases their umami quality, their acceptability and their consumption. The functional significance of this palatability is unclear. Other highly palatable substances, e.g. sugar and fats, also increase liking for novel flavors with which they are repeatedly paired, especially when ingested. This is thought to reflect the rewarding effects of sugar and fat energy, post-ingestion. To determine if a liking for novel flavors can also be conditioned using glutamate, 44 subjects rated 10 ml samples of three novel soups for liking and familiarity, both before and after seven daily exposures to each of two soup flavors-one with added monosodium l-glutamate (MSG) (0.5% w/w; MSG+) and one without (MSG-). During exposure, subjects received either a 250 ml bowl of soup (Consume group) or a 10 ml sample (Taste group). There were no significant differences as a function of samples or groups, despite some trends for changes in liking to be higher in the consumed MSG+ condition. In a second experiment, 69 subjects were divided into three groups (Consume MSG+; Consume MSG-; Taste MSG+) in which they received nine exposures to one novel soup flavor. The Consume MSG+ group showed a significantly greater increase in liking than either the Consume MSG- or the Taste MSG+ groups, which did not differ. Changes in familiarity ratings reflected amount consumed, not MSG content. Pairing glutamate with a novel flavor can condition liking for that flavor. While post-ingestive effects of glutamate may be rewarding, flavor conditioning cannot be ruled out.

  14. Effects of Glutamate and Na+ on the Development and Enzyme Activity of the Oriental Migratory Locust, Locusta migratoria manilensis (Meyen) in Successive Generations

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xia; JIA Miao; WANG Lei; CAO Guang-chun; ZHANG Ze-hua

    2014-01-01

    Rapid and mass rearing of Locusta migratoria manilensis is an urgent need to meet the increasing demand for food of people. In this study, the effects of four artiifcial feeds on the development, reproduction and the activities of detoxiifcation and protective enzymes of L. migratoria manilensis in three successive generations were investigated. The results showed that sucrose and monosodium glutamate (MSG) signiifcantly increased the net reproductive rate (R0) and the intrinsic growth rate (rm) of L. migratoria manilensis, but sodium chloride (0.17%) suppressed this increase. Furthermore, the artiifcial feed with sucrose and monosodium glutamate increased the activities of esterase (EST), acetylcholinesterase (AChE), glutathione-S-transferase (GST), multi-function oxidase (MFO), phenol oxidase (PO), catalase (CAT) and peroxidase (POD), but inhibited the activity of superoxide dismutase (SOD). However, sodium chloride (0.17%) increased the activities of EST, AChE, CAT and SOD, and inhibited the activities of MFO, GST, PO and POD. Correlation analysis found that the increasing of PO activity and the decreasing of SOD activities were signiifcantly related with the increasing of the intrinsic growth rate (rm). The above results indicated that sucrose and monosodium glutamate could promote the development and reproduction of L. migratoria manilensis, but Na+ inhibit such promotion with the concentration above 0.2%. The activities of PO and SOD can be used as biochemical standard to assess the effect of artiifcial feed.

  15. Mechanisms of Strontium and Uranium Removal From Radioactive Waste Simulant Solutions by the Sorbent Monosodium Titanate

    Energy Technology Data Exchange (ETDEWEB)

    DUFF, MARTINE

    2004-12-03

    High-Level Radioactive Waste (HLW) is the priority problem for the U.S. Dept. of Energy's Environmental Management Program. Current HLW treatment processes at the Savannah River Site (Aiken, SC) include the use of monosodium titanate (MST, similar to NaTi{sub 2}O{sub 5}xH{sub 2}O) to concentrate radioactive strontium (Sr) and actinides. Mechanistic information about radionuclide uptake will provide us with insight about the reliability of MST treatments. We characterized the morphology of MST and the chemistry of sorbed Sr{sup 2+} and uranium [U(VI)] on MST with x-ray based spectroscopic and electron microscopic techniques. Sorbed Sr{sup 2+} exhibited specific adsorption as partially-hydrated species, whereas sorbed U exhibited site-specific adsorption as monomeric and dimeric U(VI)-carbonate complexes. These differences in site specificity and mechanism may account for the difficulties associated with predicting MST loading and removal kinetics.

  16. Glutamate and Neurodegenerative Disease

    Science.gov (United States)

    Schaeffer, Eric; Duplantier, Allen

    As the main excitatory neurotransmitter in the mammalian central nervous system, glutamate is critically involved in most aspects of CNS function. Given this critical role, it is not surprising that glutamatergic dysfunction is associated with many CNS disorders. In this chapter, we review the literature that links aberrant glutamate neurotransmission with CNS pathology, with a focus on neurodegenerative diseases. The biology and pharmacology of the various glutamate receptor families are discussed, along with data which links these receptors with neurodegenerative conditions. In addition, we review progress that has been made in developing small molecule modulators of glutamate receptors and transporters, and describe how these compounds have helped us understand the complex pharmacology of glutamate in normal CNS function, as well as their potential for the treatment of neurodegenerative diseases.

  17. Adsorption of biometals to monosodium titanate in biological environments

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D.T.; MESSER, R. L. W.; LEWIS, J. B.; CLICK, D. R. LOCKWOOD, P. E.; WATAHA, J. C.

    2005-06-06

    Monosodium titanate (MST) is an inorganic sorbent/ion exchanger developed for the removal of radionuclides from nuclear wastes. We investigated the ability of MST to bind Cd(II), Hg(II), or Au(III) to establish the utility of MST for applications in environmental decontamination or medical therapy (drug delivery). Adsorption isotherms for MST were determined at pH 7-7.5 in water or phosphate-buffered saline. The extent of metal binding was determined spectroscopically by measuring the concentrations of the metals in solution before and after contact with the MST. Cytotoxic responses to MST were assessed using THP1 monocytes and succinate dehydrogenase activity. Monocytic activation by MST was assessed by TNF{alpha} secretion (ELISA) with or without lipopolysaccharide (LPS) activation. MST sorbed Cd(II), Hg(II), and Au(III) under conditions similar to that in physiological systems. MST exhibited the highest affinity for Cd(II) followed by Hg(II) and Au (III). MST (up to 100 mg/L) exhibited only minor (< 25% suppression of succinate dehydrogenase) cytotoxicity and did not trigger TNF{alpha} secretion nor modulate LPS-induced TNF{alpha} secretion from monocytes. MST exhibits high affinity for biometals with no significant biological liabilities in these introductory studies. MST deserves further scrutiny as a substance with the capacity to decontaminate biological environments or deliver metals in a controlled fashion.

  18. Evaluation of umami taste in mushroom extracts by chemical analysis, sensory evaluation, and an electronic tongue system.

    Science.gov (United States)

    Phat, Chanvorleak; Moon, BoKyung; Lee, Chan

    2016-02-01

    Seventeen edible mushrooms commercially available in Korea were analysed for their umami taste compounds (5'-nucleotides: AMP, GMP, IMP, UMP, XMP; free amino acids: aspartic, glutamic acid) and subjected to human sensory evaluation and electronic tongue measurements. Amanita virgineoides featured the highest total 5'-nucleotide content (36.9 ± 1.50 mg/g), while monosodium glutamate-like components (42.4 ± 6.90 mg/g) were highest in Agaricus bisporus. The equivalent umami concentration (EUC) ranged from 1.51 ± 0.42 to 3890 ± 833 mg MSG/g dry weight; most mushrooms exhibited a high umami taste. Pleurotus ostreatus scored the highest in the human sensory evaluation, while Flammulina velutipes obtained the maximum score in the electronic tongue measurement. The EUC and the sensory score from the electronic tongue test were highly correlated, and also showed significant correlation with the human sensory evaluation score. These results suggest that the electronic tongue is suitable to determine the characteristic umami taste of mushrooms.

  19. Evaluation of genotoxic effects of five flavour enhancers (glutamates) on the root meristem cells of Allium cepa.

    Science.gov (United States)

    Türkoğlu, Şifa

    2015-09-01

    The effects of different treatments with flavour enhancers monosodium glutamate, monopotassium glutamate, calcium diglutamate, monoammonium glutamate, and magnesium diglutamate on the cytology, DNA content, and interphase nuclear volume (INV) of A. cepa were investigated. Three concentrations of these additives - 20, 40, and 60 ppm - were applied for 6, 12, and 24 h. All the concentrations of these chemicals showed an inhibitory effect on cell division in root tips of A. cepa and caused a decrease in mitotic index values. Additionally, all the treatments changed the frequency of mitotic phases when compared with the control groups. These compounds increased chromosome abnormalities, among them are micronuclei, c-mitosis, anaphase bridges, stickiness, binucleus, laggards, and breaks. The nuclear DNA content and INV decreased when compared with control groups.

  20. II. Glutamine and glutamate.

    Science.gov (United States)

    Tapiero, H; Mathé, G; Couvreur, P; Tew, K D

    2002-11-01

    Glutamine and glutamate with proline, histidine, arginine and ornithine, comprise 25% of the dietary amino acid intake and constitute the "glutamate family" of amino acids, which are disposed of through conversion to glutamate. Although glutamine has been classified as a nonessential amino acid, in major trauma, major surgery, sepsis, bone marrow transplantation, intense chemotherapy and radiotherapy, when its consumption exceeds its synthesis, it becomes a conditionally essential amino acid. In mammals the physiological levels of glutamine is 650 micromol/l and it is one of the most important substrate for ammoniagenesis in the gut and in the kidney due to its important role in the regulation of acid-base homeostasis. In cells, glutamine is a key link between carbon metabolism of carbohydrates and proteins and plays an important role in the growth of fibroblasts, lymphocytes and enterocytes. It improves nitrogen balance and preserves the concentration of glutamine in skeletal muscle. Deamidation of glutamine via glutaminase produces glutamate a precursor of gamma-amino butyric acid, a neurotransmission inhibitor. L-Glutamic acid is a ubiquitous amino acid present in many foods either in free form or in peptides and proteins. Animal protein may contain from 11 to 22% and plants protein as much as 40% glutamate by weight. The sodium salt of glutamic acid is added to several foods to enhance flavor. L-Glutamate is the most abundant free amino acid in brain and it is the major excitatory neurotransmitter of the vertebrate central nervous system. Most free L-glutamic acid in brain is derived from local synthesis from L-glutamine and Kreb's cycle intermediates. It clearly plays an important role in neuronal differentiation, migration and survival in the developing brain via facilitated Ca++ transport. Glutamate also plays a critical role in synaptic maintenance and plasticity. It contributes to learning and memory through use-dependent changes in synaptic efficacy and

  1. Attenuation of gouty arthritis by emodinol in monosodium urate crystal-treated mice.

    Science.gov (United States)

    Chen, Lvyi; Lan, Zhou; Ma, Shuwei; Zhao, Ling; Yang, Xinzhou

    2013-05-01

    A series of studies have recently demonstrated that the release of interleukin 1β induced by monosodium urate crystals is central to the experimental gouty arthritis. Elaeagnus pungens has been traditionally used for the treatment of gouty arthritis in China for more than thousands years. However, there is still little known about the active ingredients and mechanisms of E. pungens against gouty arthritis. Emodinol, as a major triterpene compound in E. pungens, has been seldom reported to have an effect on gouty arthritis. Therefore, the potential beneficial effects and mechanisms of emodinol on gouty arthritis were investigated in this study. Results showed that it significantly ameliorated the hyperalgesia, inflammation, and levels of multiple proinflammatory cytokines in monosodium urate crystals-treated mice. These findings elucidate that emodinol exhibits a prominent effect on improving symptoms of acute gouty arthritis induced by monosodium urate crystals through inhibiting the generation of proinflammatory cytokines.

  2. Glutamate receptor agonists

    DEFF Research Database (Denmark)

    Vogensen, Stine Byskov; Greenwood, Jeremy R; Bunch, Lennart;

    2011-01-01

    The neurotransmitter (S)-glutamate [(S)-Glu] is responsible for most of the excitatory neurotransmission in the central nervous system. The effect of (S)-Glu is mediated by both ionotropic and metabotropic receptors. Glutamate receptor agonists are generally a-amino acids with one or more...... stereogenic centers due to strict requirements in the agonist binding pocket of the activated state of the receptor. By contrast, there are many examples of achiral competitive antagonists. The present review addresses how stereochemistry affects the activity of glutamate receptor ligands. The review focuses...... mainly on agonists and discusses stereochemical and conformational considerations as well as biostructural knowledge of the agonist binding pockets, which is useful in the design of glutamate receptor agonists. Examples are chosen to demonstrate how stereochemistry not only determines how the agonist...

  3. Efficient gamma-aminobutyric acid bioconversion by employing synthetic complex between glutamate decarboxylase and glutamate/GABA antiporter in engineered Escherichia coli.

    Science.gov (United States)

    Le Vo, Tam Dinh; Ko, Ji-seun; Park, Si Jae; Lee, Seung Hwan; Hong, Soon Ho

    2013-08-01

    Gamma-aminobutyric acid (GABA) is a precursor of one of the most promising heat-resistant biopolymers, Nylon-4, and can be produced by the decarboxylation of monosodium glutamate (MSG). In this study, a synthetic protein complex was applied to improve the GABA conversion in engineered Escherichia coli. Complexes were constructed by assembling a single protein-protein interaction domain SH3 to the glutamate decarboxylase (GadA and GadB) and attaching a cognate peptide ligand to the glutamate/GABA antiporter (GadC) at the N-terminus, C-terminus, and the 233rd amino acid residue. When GadA and GadC were co-overexpressed via the C-terminus complex, a GABA concentration of 5.65 g/l was obtained from 10 g/l MSG, which corresponds to a GABA yield of 93 %. A significant increase of the GABA productivity was also observed where the GABA productivity increased 2.5-fold in the early culture period due to the introduction of the synthetic protein complex. The GABA pathway efficiency and GABA productivity were enhanced by the introduction of the complex between Gad and glutamate/GABA antiporter.

  4. Riluzole and gabapentinoids activate glutamate transporters to facilitate glutamate-induced glutamate release from cultured astrocytes

    OpenAIRE

    Yoshizumi, Masaru; Eisenach, James C.; Hayashida, Ken-ichiro

    2011-01-01

    We have recently demonstrated that the glutamate transporter activator riluzole paradoxically enhanced glutamate-induced glutamate release from cultured astrocytes. We further showed that both riluzole and the α2δ subunit ligand gabapentin activated descending inhibition in rats by increasing glutamate receptor signaling in the locus coeruleus and hypothesized that these drugs share common mechanisms to enhance glutamate release from astrocytes. In the present study, we examined the effects o...

  5. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    Science.gov (United States)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  6. 掺伪味精中糊精的测定%Determination of dextrin in adulterated monosodium glutamate

    Institute of Scientific and Technical Information of China (English)

    鲍忠定; 孙荣华; 吴婷婷

    2008-01-01

    通过掺伪味精在沸水浴下酸水解后测定其还原糖的含量来定量检测其糊精的含量.实验结果表明,该方法具有快速准确、操作简便的优点,可满足掺伪味精中糊精的日常测定.

  7. Combination of vitamin C and E modulated monosodium glutamate-induced endometrial toxicily in female Wistar rats

    Institute of Scientific and Technical Information of China (English)

    Elly Dwi Wahyuni; Cory Chorajon Situmorang; Yuyun Yueniwati; Wisnu Barlianto; Pande Made Dwijayasa

    2014-01-01

    Objective: To investigate whether combination of vitamin C and E able to inhibit decreasing angiogenesis, endometrial thickness, andα-estrogen receptor level in female rats receiving orally MSG-treatment. Methods:Twenty five female Wistar rats were divided into five group, control group, MSG [140 mg/200 gram body weight (bw)] group non treated and treated with combined vitamin C (0.2;0.4;or 0.8 mg/g bw) and E (0.04 IU/g bw). Analysis of vascular endothelial growth factor (VEGF) level were done by immunohistochemistry technique. Analysis of the number of arteriole and thickness of endometrium was done histopathologically with hematoxylin eosin staining. Analysis of uterus α-estrogen receptor was done using flowcytometer. Results: The expression of VEGF, number of arteriole, thickness of endometrium, and α-estrogen receptor were significantly lower in MSG-treatment group compared to control group (P0.05). Administration of vitamin C and E significanlty increased the thickness of endometrium, and expression of α-estrogen receptor compared to MSG-treatment group (P 0.05). Conclusions: The present data suggesting that combined vitamin C and E able to inhibit endometrial toxicity caused by orally MSG treatment via modulating angiogenesis, increase endometrial thickness and expression ofα-estrogen receptor.

  8. A High Sensitivity IDC-Electronic Tongue Using Dielectric/Sensing Membranes with Solvatochromic Dyes

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-05-01

    Full Text Available In this paper, an electronic tongue/taste sensor array containing different interdigitated capacitor (IDC sensing elements to detect different types of tastes, such as sweetness (glucose, saltiness (NaCl, sourness (HCl, bitterness (quinine-HCl, and umami (monosodium glutamate is proposed. We present for the first time an IDC electronic tongue using sensing membranes containing solvatochromic dyes. The proposed highly sensitive (30.64 mV/decade sensitivity IDC electronic tongue has fast response and recovery times of about 6 s and 5 s, respectively, with extremely stable responses, and is capable of linear sensing performance (R2 ≈ 0.985 correlation coefficient over the wide dynamic range of 1 µM to 1 M. The designed IDC electronic tongue offers excellent reproducibility, with a relative standard deviation (RSD of about 0.029. The proposed device was found to have better sensing performance than potentiometric-, cascoded compatible lateral bipolar transistor (C-CLBT-, Electronic Tongue (SA402-, and fiber-optic-based taste sensing systems in what concerns dynamic range width, response time, sensitivity, and linearity. Finally, we applied principal component analysis (PCA to distinguish between various kinds of taste in mixed taste compounds.

  9. Glutamate oxidation in astrocytes: Roles of glutamate dehydrogenase and aminotransferases

    DEFF Research Database (Denmark)

    McKenna, Mary C; Stridh, Malin H; McNair, Laura Frendrup;

    2016-01-01

    The cellular distribution of transporters and enzymes related to glutamate metabolism led to the concept of the glutamate–glutamine cycle. Glutamate is released as a neurotransmitter and taken up primarily by astrocytes ensheathing the synapses. The glutamate carbon skeleton is transferred back...... oxidative degradation; thus, quantitative formation of glutamine from the glutamate taken up is not possible. Oxidation of glutamate is initiated by transamination catalyzed by an aminotransferase, or oxidative deamination catalyzed by glutamate dehydrogenase (GDH). We discuss methods available to elucidate...... the enzymes that mediate this conversion. Methods include pharmacological tools such as the transaminase inhibitor aminooxyacetic acid, studies using GDH knockout mice, and siRNA-mediated knockdown of GDH in astrocytes. Studies in brain slices incubated with [15N]glutamate demonstrated activity of GDH...

  10. Corticotropin-releasing hormone (CRH)-containing neurons in the immature rat hippocampal formation: light and electron microscopic features and colocalization with glutamate decarboxylase and parvalbumin.

    Science.gov (United States)

    Yan, X X; Toth, Z; Schultz, L; Ribak, C E; Baram, T Z

    1998-01-01

    Corticotropin-releasing hormone (CRH) excites hippocampal neurons and induces death of selected CA3 pyramidal cells in immature rats. These actions of CRH require activation of specific receptors that are abundant in CA3 during early postnatal development. Given the dramatic effects of CRH on hippocampal neurons and the absence of CRH-containing afferents to this region, we hypothesized that a significant population of CRHergic neurons exists in developing rat hippocampus. This study defined and characterized hippocampal CRH-containing cells by using immunocytochemistry, ultrastructural examination, and colocalization with gamma-aminobutyric acid (GABA)-synthesizing enzyme and calcium-binding proteins. Numerous, large CRH-immunoreactive (ir) neurons were demonstrated in CA3 strata pyramidale and oriens, fewer were observed in the corresponding layers of CA1, and smaller CRH-ir cells were found in stratum lacunosum-moleculare of Ammon's horn. In the dentate gyrus, CRH-ir somata resided in the granule cell layer and hilus. Ultrastructurally, CRH-ir neurons had aspiny dendrites and were postsynaptic to both asymmetric and symmetric synapses. CRH-ir axon terminals formed axosomatic and axodendritic symmetric synapses with pyramidal and granule cells. Other CRH-ir terminals synapsed on axon initial segments of principal neurons. Most CRH-ir neurons were coimmunolabeled for glutamate decarboxylase (GAD)-65 and GAD-67 and the majority also contained parvalbumin, but none were labeled for calbindin. These results confirm the identity of hippocampal CRH-ir cells as GABAergic interneurons. Further, a subpopulation of neurons immunoreactive for both CRH and parvalbumin and located within and adjacent to the principal cell layers consists of basket and chandelier cells. Thus, axon terminals of CRH-ir interneurons are strategically positioned to influence the excitability of the principal hippocampal neurons via release of both CRH and GABA.

  11. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  12. Changes in Simpson’s Diversity Index in Microcosms Impacted with Monosodium Methane Arsenate

    OpenAIRE

    Peter A. Kish; Nelson W. Daniel

    2009-01-01

    The objective of our studies is to analyze environmental impacts of Monosodium Methane Arsenate, MSMA, on aquatic habitats using the Aqua-Terra microcosm system. MSMA was applied at environmentally relevant(recommended) doses to microcosms to determine the change in biodiversity and the bio-concentration of arsenic in the aquatic plants (_Elodea Sp._) used in the microcosms as an oxygen source. The microcosms are filled with unfiltered pond water and the diversity of each microcosm was deter...

  13. Blood Glutamate Scavenging: Insight into Neuroprotection

    Directory of Open Access Journals (Sweden)

    Alexander Zlotnik

    2012-08-01

    Full Text Available Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from brain interstitial fluids by making use of the naturally occurring brain-to-blood glutamate efflux has been shown to be effective in various animal studies. This is facilitated by gradient driven transport across brain capillary endothelial glutamate transporters. Blood glutamate scavengers enhance this naturally occurring mechanism by reducing the blood glutamate concentration, thus increasing the rate at which excess glutamate is cleared. Blood glutamate scavenging is achieved by several mechanisms including: catalyzation of the enzymatic process involved in glutamate metabolism, redistribution of glutamate into tissue, and acute stress response. Regardless of the mechanism involved, decreased blood glutamate concentration is associated with improved neurological outcome. This review focuses on the physiological, mechanistic and clinical roles of blood glutamate scavenging, particularly in the context of acute and chronic CNS injury. We discuss the details of brain-to-blood glutamate efflux, auto-regulation mechanisms of blood glutamate, natural and exogenous blood glutamate scavenging systems, and redistribution of glutamate. We then propose different applied methodologies to reduce blood and brain glutamate concentrations and discuss the neuroprotective role of blood glutamate scavenging.

  14. Mechanisms of strontium and uranium removal from high-level radioactive waste simulant solutions by the sorbent monosodium titanate.

    Science.gov (United States)

    Duff, M C; Hunter, D B; Hobbs, D T; Fink, S D; Dai, Z; Bradley, J P

    2004-10-01

    High-level waste (HLW) is a waste associated with the dissolution of spent nuclear fuel for the recovery of weapons-grade material. It is the priority problem for the U.S. Department of Energy's Environmental Management Program. Current HLW treatment processes at the Savannah River Site (Aiken, SC) include the use of monosodium titanate (MST, with a similar stoichiometry to NaTi2O5 x xH2O) to concentrate strontium (Sr) and actinides. The high affinity of MST for Sr and actinides in HLW solutions rich in Na+ is poorly understood. Mechanistic information about the nature of radionuclide uptake will provide insight about MST treatment reliability. Our study characterized the morphology of MST and the chemistry of sorbed Sr2+ and uranium [U(VI)] as uranyl ion, UO2(2+), on MST, which were added (individually) from stock solutions of Sr and 238U(VI) with spectroscopic and transmission electron microscopic techniques. The local structure of sorbed U varied with loading, but the local structure of Sr did not vary with loading. Sorbed Sr exhibited specific adsorption as partially hydrated species whereas sorbed U exhibited specific adsorption as monomeric and dimeric U(VI)-carbonate complexes. Sorption proved site specific. These differences in site specificity and sorption mechanism may account forthe difficulties associated with predicting Sr and U loading and removal kinetics using MST.

  15. Does the thrifty phenotype result from chronic glutamate intoxication? A hypothesis.

    Science.gov (United States)

    Hermanussen, Michael; Tresguerres, Jesus A F

    2003-01-01

    The thrifty phenotype hypothesis proposes that the epidemiological associations between poor fetal and infant growth and the subsequent development of the metabolic syndrome, result from the effects of poor nutrition in early life. The present review however, considers an opposite explanation. We hypothesize that fetal over-nutrition plays a major role in the development of the metabolic syndrome. We found evidence that the thrifty phenotype may be the consequence of fetal hyperglutamatemia. Maternal glutamate (GLU) reaches the fetal circulation, as part of the materno-fetal glutamine-glutamate exchange. Glutamine is absorbed from the maternal circulation, and deaminated for nitrogen utilization, resulting in a fetal production of GLU. GLU is extracted as it returns to the placenta. When the umbilical plasma flow is low, GLU may be trapped in the fetal circulation, and reaches neurotoxic levels. Administering GLU to newborn rodents completely destructs arcuate nucleus neurons, and results in permanently elevated plasma leptin levels that fail to adequately counter-regulate food intake. Chronic fetal exposure to elevated levels of GLU may be caused by chronic maternal over-nutrition or by reduced umbilical plasma flow. We strongly suggest abandoing the flavoring agent monosodium glutamate and reconsidering the recommended daily allowances of protein and amino acids during pregnancy.

  16. Glucose replaces glutamate as energy substrate to fuel glutamate uptake in glutamate dehydrogenase-deficient astrocytes

    DEFF Research Database (Denmark)

    Pajęcka, Kamilla; Nissen, Jakob D; Stridh, Malin H;

    2015-01-01

    Cultured astrocytes treated with siRNA to knock down glutamate dehydrogenase (GDH) were used to investigate whether this enzyme is important for the utilization of glutamate as an energy substrate. By incubation of these cells in media containing different concentrations of glutamate (range 100......-500 µM) in the presence or in the absence of glucose, the metabolism of these substrates was studied by using tritiated glutamate or 2-deoxyglucose as tracers. In addition, the cellular contents of glutamate and ATP were determined. The astrocytes were able to maintain physiological levels of ATP...... regardless of the expression level of GDH and the incubation condition, indicating a high degree of flexibility with regard to regulatory mechanisms involved in maintaining an adequate energy level in the cells. Glutamate uptake was found to be increased in these cells when exposed to increasing levels...

  17. Pre-treatment with capsaicin in a rat osteoarthritis model reduces the symptoms of pain and bone damage induced by monosodium iodoacetate.

    NARCIS (Netherlands)

    Kalff, K.M.; ElMouedden, M.; Egmond, J. van; Veening, J.G.; Joosten, L.A.B.; Scheffer, G.J.; Meert, T.F.; Vissers, K.C.P.

    2010-01-01

    A rat model of osteoarthritis was used to investigate the effect of pre-treatment with capsaicin on the symptoms of osteoarthritis induced by the injection of monosodium iodoacetate. This model mimics both histopathology and symptoms associated of human osteoarthritis. Injection of monosodium iodoac

  18. SORPTION BEHAVIOR OF MONOSODIUM TITANATE AND AMORPHOUS PEROXOTITANATE MATERIALS UNDER WEAKLY ACIDIC CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Elvington, M.; Click, D.

    2009-11-11

    Inorganic, titanate-based sorbents are tested with respect to adsorption of a variety of sorbates under weakly acidic conditions (pH 3). Specifically, monosodium titanate (MST) and amorphous peroxotitanate (APT) sorption characteristics are initially probed through a screening process consisting of a pair of mixed metal solutions containing a total of 29 sorbates including alkali metals, alkaline earth metals, transition metals, metalloids and nonmetals. MST and APT sorption characteristics are further analyzed individually with chromium(III) and cadmium(II) using a batch method at ambient laboratory temperature, varying concentrations of the sorbents and sorbates and contact times. Maximum sorbate loadings are obtained from the respective adsorption isotherms.

  19. Inhibition of Monosodium Urate Monohydrate-mediated Hemolysis by Vitamin E

    Institute of Scientific and Technical Information of China (English)

    Qiong XIE; Shude LI; Weiyang FENG; Yongzhi LI; Yuanliang WU; Wei HU; Youguang HUANG

    2007-01-01

    Microcrystals of monosodium urate monohydrate (MSUM) induce cytolysis and hemolysis in erythrocytes. In this report, we studied the effect of vitamin E on MSUM-mediated hemolysis in human erythrocytes. Vitamin E significantly inhibited hemolysis induced by MSUM. The hydroxyl group in the chromanol ring of vitamin E is dispensable for protecting erythrocytes against hemolysis induced by MSUM,indicating that the inhibitory effect of vitamin E is not due to its antioxidant properties. However, both the chromanol ring and the isoprenoid side chain are important for vitamin E to suppress MSUM-induced hemolysis.Our current study suggests that vitamin E inhibits hemolysis induced by MSUM as a membrane stabilizer.

  20. Pivotal Enzyme in Glutamate Metabolism of Poly-γ-Glutamate-Producing Microbes

    OpenAIRE

    Tohru Kamei; Takashi Yamamoto; Makoto Ashiuchi

    2013-01-01

    The extremely halophilic archaeon Natrialba aegyptiaca secretes the L-homo type of poly-g-glutamate (PGA) as an extremolyte. We examined the enzymes involved in glutamate metabolism and verified the presence of L-glutamate dehydrogenases, L-aspartate aminotransferase, and L-glutamate synthase. However, neither glutamate racemase nor D-amino acid aminotransferase activity was detected, suggesting the absence of sources of D-glutamate. In contrast, D-glutamate-rich PGA producers mostly possess ...

  1. The role of malate in the synthesis of glutamate in Pisum arvense roots

    Directory of Open Access Journals (Sweden)

    Genowefa Kubik-Dorosz

    2014-01-01

    Full Text Available The in vivo and in vitro activities of NADH-dependent glutamate synthase in excised Pisum arvense roots increased several-fold under the influence of malate while pyruvate oxaloacctate. citrate and succinate inhibited this entyme. The plastids isolated from Pisum arvense root,. ahen incubated with glutamine and α-ketoglutarate, released glutamate into the medium Malate clearly stimulated this process. Albizziin (25 mM completely reduced the presence of glutamate in the incubation mixture. These results indicate that reduced pyridine nucleotides arising in P. arvense root plastids during oxidation of malic acid may constitute the indispensable source of electrons for glutamic acid synthesis.

  2. Effects of glutamate on distortion-product otoacoustic emissions and auditory brainstem responses in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    SUN Qing; SUN Jian-he; SHAN Xi-zheng; LI Xing-qi

    2008-01-01

    Objective To investigate changes in evoked potentials and structure of the guinea pig cochleae during whole cochlear perfusion with glutamate. Methods CM, CAP, DPOAE, and ABR were recorded as indicators of cochlear functions during whole cochlear perfusion. The morphology of the cochlea was studied via transmission electron microscopy. Results There were no significant changes in DPOAE amplitude before and after glutamate perfusion. CM I/O function remained nonlinear during perfusion. ABR latencies were delayed following glutamate perfusion. The average CAP threshold was elevated 35 dB SPL following glutamate perfusion.. The OHCs appeared normal, but the IHCs and afferent dendrites showed cytoplasmic blebs after glutamate perfusion. Conclusions While being a primary amino acid neurotransmitter at the synapses between hair cells and spiral ganglion neurons, excessive glutamate is neurotoxic and can destroy IHCs and spiral ganglion neurons. The technique used in this study can also be used to build an animal model of auditory neuropathy.

  3. Glutamic acid as anticancer agent: An overview.

    Science.gov (United States)

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-10-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents. Besides these emphases are given especially for two endogenous derivatives of glutamic acid such as glutamine and glutamate. Glutamine is a derivative of glutamic acid and is formed in the body from glutamic acid and ammonia in an energy requiring reaction catalyzed by glutamine synthase. It also possesses anticancer activity. So the transportation and metabolism of glutamine are also discussed for better understanding the role of glutamic acid. Glutamates are the carboxylate anions and salts of glutamic acid. Here the roles of various enzymes required for the metabolism of glutamates are also discussed.

  4. Computational Studies of Glutamate Transporters

    Directory of Open Access Journals (Sweden)

    Jeffry Setiadi

    2015-11-01

    Full Text Available Glutamate is the major excitatory neurotransmitter in the human brain whose binding to receptors on neurons excites them while excess glutamate are removed from synapses via transporter proteins. Determination of the crystal structures of bacterial aspartate transporters has paved the way for computational investigation of their function and dynamics at the molecular level. Here, we review molecular dynamics and free energy calculation methods used in these computational studies and discuss the recent applications to glutamate transporters. The focus of the review is on the insights gained on the transport mechanism through computational methods, which otherwise is not directly accessible by experimental probes. Recent efforts to model the mammalian glutamate and other amino acid transporters, whose crystal structures have not been solved yet, are included in the review.

  5. Glutamate antagonists limit tumor growth

    OpenAIRE

    2001-01-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N...

  6. Glutamate Receptor Aptamers and ALS

    Science.gov (United States)

    2008-01-01

    too bright and too im. This was the same practice used qualitatively in choos - ng green cells for whole-cell recording. The corresponding ange of the...nitrobenzyl)glutamate (Molecular Probes, Inc., Eugene , OR) (22) was dissolved in the external bath buffer and applied to a cell using a cell-flow device (see...9). In brief, caged glutamate (Molecular Probes, Eugene , OR) was dissolved in the external bath buffer and applied to a cell in the whole-cell mode

  7. Blood Glutamate Scavenging: Insight into Neuroprotection

    OpenAIRE

    Alexander Zlotnik; Yoram Shapira; Matthew Boyko; Akiva Leibowitz

    2012-01-01

    Brain insults are characterized by a multitude of complex processes, of which glutamate release plays a major role. Deleterious excess of glutamate in the brain’s extracellular fluids stimulates glutamate receptors, which in turn lead to cell swelling, apoptosis, and neuronal death. These exacerbate neurological outcome. Approaches aimed at antagonizing the astrocytic and glial glutamate receptors have failed to demonstrate clinical benefit. Alternatively, eliminating excess glutamate from br...

  8. 21 CFR 582.4521 - Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat...

    Science.gov (United States)

    2010-04-01

    ... diglycerides of edible fats or oils, or edible fat-forming fatty acids. 582.4521 Section 582.4521 Food and... Monosodium phosphate derivatives of mono- and diglycerides of edible fats or oils, or edible fat-forming... oils, or edible fat-forming fatty acids. (b) Conditions of use. This substance is generally...

  9. Prefrontal cortex glutamate and extraversion.

    Science.gov (United States)

    Grimm, Simone; Schubert, Florian; Jaedke, Maren; Gallinat, Jürgen; Bajbouj, Malek

    2012-10-01

    Extraversion is considered one of the core traits of personality. Low extraversion has been associated with increased vulnerability to affective and anxiety disorders. Brain imaging studies have linked extraversion, approach behaviour and the production of positive emotional states to the dorsolateral prefrontal cortex (DLPFC) and glutamatergic neurotransmission. However, the relationship between extraversion and glutamate in the DLPFC has not been investigated so far. In order to address this issue, absolute glutamate concentrations in the DLPFC and the visual cortex as a control region were measured by 3-Tesla proton magnetic resonance spectroscopy (1H-MRS) in 29 subjects with high and low extraversion. We found increased glutamate levels in the DLPFC of introverts as compared with extraverts. The increased glutamate concentration was specific for the DLPFC and negatively associated with state anxiety. Although preliminary, results indicate altered top-down control of DLPFC due to reduced glutamate concentration as a function of extraversion. Glutamate measurement with 1H-MRS may facilitate the understanding of biological underpinnings of personality traits and psychiatric diseases associated with dysfunctions in approach behaviour and the production of positive emotional states.

  10. Bicyclic glutamic acid derivatives.

    Science.gov (United States)

    Meyer, Udo; Bisel, Philippe; Weckert, Edgar; Frahm, August Wilhelm

    2006-05-15

    For the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC. The pure secondary trans-alpha-amino alpha-carbamoyl-gamma-esters cyclise on heating and treatment with concentrated H(2)SO(4), respectively, to diastereomeric cis-fused angular secondary alpha-amino imides. Their hydrogenolysis led to the enantiomeric cis-fused angular primary alpha-amino imides. The configuration of all compounds was completely established by NMR methods, CD-spectra, and by X-ray analyses of the (alphaR,1R,5R)-1-carbamoyl-2-(1-phenylethyl)-2-azabicyclo[3.3.0]octan-3-one and of the trans-alphaS,1S,2R-2-ethoxycarbonylmethyl-1-(1-phenylethylamino)cyclopentanecarboxamide.

  11. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea;

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA......-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar...... limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e...

  12. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases

    Directory of Open Access Journals (Sweden)

    Makoto Ishikawa

    2013-01-01

    Full Text Available In the physiological condition, glutamate acts as an excitatory neurotransmitter in the retina. However, excessive glutamate can be toxic to retinal neurons by overstimulation of the glutamate receptors. Glutamate excess is primarily attributed to perturbation in the homeostasis of the glutamate metabolism. Major pathway of glutamate metabolism consists of glutamate uptake by glutamate transporters followed by enzymatic conversion of glutamate to nontoxic glutamine by glutamine synthetase. Glutamate metabolism requires energy supply, and the energy loss inhibits the functions of both glutamate transporters and glutamine synthetase. In this review, we describe the present knowledge concerning the retinal glutamate metabolism under the physiological and pathological conditions.

  13. Buffer-free production of gamma-aminobutyric acid using an engineered glutamate decarboxylase from Escherichia coli.

    Science.gov (United States)

    Kang, Taek Jin; Ho, Ngoc Anh Thu; Pack, Seung Pil

    2013-08-15

    Escherichia coli glutamate decarboxylase (GAD) converts glutamate into γ-aminobutyric acid (GABA) through decarboxylation using proton as a co-substrate. Since GAD is active only at acidic conditions even though pH increases as the reaction proceeds, the conventional practice of using this enzyme involved the use of relatively high concentration of buffers, which might complicate the downstream purification steps. Here we show by simulation and experiments that the free acid substrate, glutamic acid, rather than its monosodium salt can act as a substrate and buffer at the same time. This yielded the buffer- and salt-free synthesis of GABA conveniently in a batch mode. Furthermore, we engineered GAD to hyper active ones by extending or reducing the length of the enzyme by just one residue at its C-terminus. Through the buffer-free reaction with engineered GAD, we could synthesize 1M GABA in 3h, which can be translated into a space-time yield of 34.3g/L/h. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Pyridoxine Supplementation Improves the Activity of Recombinant Glutamate Decarboxylase and the Enzymatic Production of Gama-Aminobutyric Acid.

    Directory of Open Access Journals (Sweden)

    Yan Huang

    Full Text Available Glutamate decarboxylase (GAD catalyzes the irreversible decarboxylation of L-glutamate to the valuable food supplement γ-aminobutyric acid (GABA. In this study, GAD from Escherichia coli K12, a pyridoxal phosphate (PLP-dependent enzyme, was overexpressed in E. coli. The GAD produced in media supplemented with 0.05 mM soluble vitamin B6 analog pyridoxine hydrochloride (GAD-V activity was 154.8 U mL-1, 1.8-fold higher than that of GAD obtained without supplementation (GAD-C. Purified GAD-V exhibited increased activity (193.4 U mg-1, 1.5-fold higher than that of GAD-C, superior thermostability (2.8-fold greater than that of GAD-C, and higher kcat/Km (1.6-fold higher than that of GAD-C. Under optimal conditions in reactions mixtures lacking added PLP, crude GAD-V converted 500 g L-1 monosodium glutamate (MSG to GABA with a yield of 100%, and 750 g L-1 MSG with a yield of 88.7%. These results establish the utility of pyridoxine supplementation and lay the foundation for large-scale enzymatic production of GABA.

  15. STRONTIUM AND ACTINIDE SEPARATIONS FROM HIGH LEVEL NUCLEAR WASTE SOLUTIONS USING MONOSODIUM TITANATE 1. SIMULANT TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HOBBS, D. T.; BARNES, M. J.; PULMANO, R. L.; MARSHALL, K. M.; EDWARDS, T. B.; BRONIKOWSKI, M. G.; FINK, S. D.

    2005-04-14

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and ion exchange/sorption of {sup 90}Sr and alpha-emitting radionuclides with an inorganic material, monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from simulated waste solutions. These tests evaluated the influence of ionic strength, temperature, solution composition and the oxidation state of plutonium.

  16. CHARACTERIZATION OF MODIFIED MONOSODIUM TITANATE - AN IMPROVED SORBENT FOR STRONTIUM AND ACTINIDE SEPARATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Taylor-Pashow, K.; Missimer, D.

    2010-12-21

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. An inorganic sorbent, monosodium titanate (MST), is currently used to remove {sup 90}Sr and alpha-emitting radionuclides, while a caustic-side solvent extraction process is used for removing {sup 134,137}Cs. A new peroxotitanate material, modified MST, or mMST, has recently been developed and has shown increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST. This paper describes recent results focused on further characterization of this material.

  17. DNA nanopore translocation in glutamate solutions

    NARCIS (Netherlands)

    Plesa, C.; Van Loo, N.; Dekker, C.

    2015-01-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate

  18. Glutamic acid as anticancer agent: An overview

    National Research Council Canada - National Science Library

    Dutta, Satyajit; Ray, Supratim; Nagarajan, K

    2013-01-01

    The objective of the article is to highlight various roles of glutamic acid like endogenic anticancer agent, conjugates to anticancer agents, and derivatives of glutamic acid as possible anticancer agents...

  19. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence.

    Science.gov (United States)

    Frahm, Silke; Antolin-Fontes, Beatriz; Görlich, Andreas; Zander, Johannes-Friedrich; Ahnert-Hilger, Gudrun; Ibañez-Tallon, Ines

    2015-12-01

    A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior.

  20. 21 CFR 182.1045 - Glutamic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid. 182.1045 Section 182.1045 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1045 Glutamic acid. (a) Product. Glutamic acid. (b) (c) Limitations, restrictions, or explanation....

  1. 21 CFR 182.1500 - Monoammonium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monoammonium glutamate. 182.1500 Section 182.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  2. 21 CFR 582.1516 - Monopotassium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monopotassium glutamate. 582.1516 Section 582.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  3. 21 CFR 582.1500 - Monoammonium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monoammonium glutamate. 582.1500 Section 582.1500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1500 Monoammonium glutamate. (a) Product. Monoammonium glutamate. (b) Conditions of...

  4. 21 CFR 182.1516 - Monopotassium glutamate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monopotassium glutamate. 182.1516 Section 182.1516 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1516 Monopotassium glutamate. (a) Product. Monopotassium glutamate. (b) Conditions of...

  5. Ciprofloxacin triggered glutamate production by Corynebacterium glutamicum.

    Science.gov (United States)

    Lubitz, Dorit; Wendisch, Volker F

    2016-10-07

    Corynebacterium glutamicum is a well-studied bacterium which naturally overproduces glutamate when induced by an elicitor. Glutamate production is accompanied by decreased 2-oxoglutatate dehydrogenase activity. Elicitors of glutamate production by C. glutamicum analyzed to molecular detail target the cell envelope. Ciprofloxacin, an inhibitor of bacterial DNA gyrase and topoisomerase IV, was shown to inhibit growth of C. glutamicum wild type with concomitant excretion of glutamate. Enzyme assays showed that 2-oxoglutarate dehydrogenase activity was decreased due to ciprofloxacin addition. Transcriptome analysis revealed that this inhibitor of DNA gyrase increased RNA levels of genes involved in DNA synthesis, repair and modification. Glutamate production triggered by ciprofloxacin led to glutamate titers of up to 37 ± 1 mM and a substrate specific glutamate yield of 0.13 g/g. Even in the absence of the putative glutamate exporter gene yggB, ciprofloxacin effectively triggered glutamate production. When C. glutamicum wild type was cultivated under nitrogen-limiting conditions, 2-oxoglutarate rather than glutamate was produced as consequence of exposure to ciprofloxacin. Recombinant C. glutamicum strains overproducing lysine, arginine, ornithine, and putrescine, respectively, secreted glutamate instead of the desired amino acid when exposed to ciprofloxacin. Ciprofloxacin induced DNA synthesis and repair genes, reduced 2-oxoglutarate dehydrogenase activity and elicited glutamate production by C. glutamicum. Production of 2-oxoglutarate could be triggered by ciprofloxacin under nitrogen-limiting conditions.

  6. Protein adsorption to monosodium urate crystals: differential responses of human peripheral blood neutrophils. [Etiology of acute gouty arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Skosey, J.L.; Kozin, F.; Ginsberg, M.

    1976-01-01

    In order for acute gouty arthritis to occur, neutrophils must interact with monosodium urate (MSU) crystals. As a result of this interaction, enzymes, chemotactic factors, and other mediators of the inflammatory response are released from neutrophil lysosomes. It was observed that MSU crystals adsorb gamma globulin, albumin, and other proteins found in serum and joint fluid. Results are reported from a study designed to demonstrate the effects of coating of MSU crystals with proteins on the phlogistic responses of neutrophils to crystals.

  7. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... affected by a reduction of the flux of glutamate derived carbon through the malic enzyme and pyruvate carboxylase catalyzed reactions. Finally, it was found that in the presence of glutamate as an additional substrate, glucose metabolism monitored by the use of tritiated deoxyglucose was unaffected by AMPK...

  8. Effects of Tribulus terrestris on monosodium iodoacetate‑induced osteoarthritis pain in rats.

    Science.gov (United States)

    Park, Young Jin; Cho, Young-Rak; Oh, Joa Sub; Ahn, Eun-Kyung

    2017-08-21

    Tribulus terrestris L. (T. terrestris) has been used as a traditional medicine for the treatment of diuretic, lithontriptic, edema and urinary infections. Previous studies have indicated that it is effective in improving inflammation by regulating tumor necrosis factor‑α (TNF)‑α, interleukin (IL)‑6, IL‑10, nitric oxide (NO) and cyclooxygenase (COX)‑2. However, the effects and mechanism of action of T. terrestris on osteoarthritis (OA) remain unknown. Therefore, the present study aimed to evaluate the effects of the ethanolic extract of T. terrestris (ETT) in a monosodium iodoacetate (MIA)‑induced OA animal model. OA was induced in LEW/SSNHSD rats by intra‑articular injection of MIA. Morphometric changes and parameters of the tibial trabecular bone were determined using micro‑computed tomography. The molecular mechanisms of ETT in OA were investigated using reverse transcription‑polymerase chain reaction, western blotting and gelatin zymogram analysis. Treatment with ETT attenuated MIA‑induced OA, and this effect was mediated by the downregulation of NO synthase 2, COX‑2, TNF‑α and IL‑6. Furthermore, the ETT‑mediated attenuation of OA was also dependent on the expression of matrix metalloproteinases‑2 and ‑9. The results of the current study indicate that further evaluation of the mechanisms underlying the attenuation of MIA‑induced OA by ETT are required, and may support the development of ETT as a potential therapeutic agent for the treatment of inflammatory diseases such as OA.

  9. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won [Samsung Medical Center, Sungkyunkwan University, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-10-15

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

  10. Vitamin C Protects Chondrocytes against Monosodium Iodoacetate-Induced Osteoarthritis by Multiple Pathways.

    Science.gov (United States)

    Chiu, Pu-Rong; Hu, Yu-Chen; Huang, Tzu-Ching; Hsieh, Bau-Shan; Yeh, Jou-Pei; Cheng, Hsiao-Ling; Huang, Li-Wen; Chang, Kee-Lung

    2016-12-27

    Osteoarthritis (OA) is the most prevalent joint disease. Dietary intake of vitamin C relates to a reduction in cartilage loss and OA. This study examined the efficacy of vitamin C to prevent OA with the in vitro chondrosarcoma cell line (SW1353) and the in vivo monosodium iodoacetate (MIA)-induced OA rat. Results demonstrated that, in SW1353 cells, treatment with 5 μM MIA inhibited cell growth and increased oxidative stress, apoptosis, and proteoglycan loss. In addition, the expression levels of the pro-inflammatory cytokines IL-6, IL-17A, and TNF-α and matrix metalloproteinases (MMPs) MMP-1, MMP-3, and MMP-13 were increased. All of these MIA-induced changes could be prevented with treatment of 100 μM vitamin C. In an animal model, intra-articular injection of MIA-induced cartilage degradation resembled the pathological changes of OA, and treatment of vitamin C could lessen these changes. Unexpectedly, vitamin C's effects did not strengthen with the increasing dosage, while the 100 mg/kg dosage was more efficient than the 200 or 300 mg/kg dosages. Vitamin C possessed multiple capacities for prevention of OA progress, including a decrease in apoptosis and in the expression of pro-inflammatory cytokines and MMPs in addition to the well-known antioxidation.

  11. REVIEW OF EXPERIMENTAL STUDIES INVESTIGATING THE RATE OF STRONTIUM AND ACTINIDE ADSORPTION BY MONOSODIUM TITANATE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-10-01

    A number of laboratory studies have been conducted to determine the influence of mixing and mixing intensity, solution ionic strength, initial sorbate concentrations, temperature, and monosodium titanate (MST) concentration on the rates of sorbate removal by MST in high-level nuclear waste solutions. Of these parameters, initial sorbate concentrations, ionic strength, and MST concentration have the greater impact on sorbate removal rates. The lack of a significant influence of mixing and mixing intensity on sorbate removal rates indicates that bulk solution transport is not the rate controlling step in the removal of strontium and actinides over the range of conditions and laboratory-scales investigated. However, bulk solution transport may be a significant parameter upon use of MST in a 1.3 million-gallon waste tank such as that planned for the Small Column Ion Exchange (SCIX) program. Thus, Savannah River National Laboratory (SRNL) recommends completing the experiments in progress to determine if mixing intensity influences sorption rates under conditions appropriate for this program. Adsorption models have been developed from these experimental studies that allow prediction of strontium (Sr), plutonium (Pu), neptunium (Np) and uranium (U) concentrations as a function of contact time with MST. Fairly good agreement has been observed between the predicted and measured sorbate concentrations in the laboratory-scale experiments.

  12. PENGARUH PEMBERIAN MONOSODIUM GLUTAMAT (MSG PADA TIKUS JANTAN (Rattus Norvegicus TERHADAP FSH DAN LH

    Directory of Open Access Journals (Sweden)

    Zulkarnain Edward

    2010-09-01

    Full Text Available AbstrakKemajuan teknologi informasi membawa dampak terhadap perubahan gaya hidup masyarakat, termasuk perubahan pola konsumsi makanan yang lebih banyak mengkonsumsi jenis makanan cepat saji, makanan kemasan dan makanan awetan yang belakangan ini semakin banyak dijual dipasar tradisional dan swalayan. Penggunaan bahan tambahan makanan sering dijumpai, salah satunya adalah bahan penyedap yang banyak sekali digunakan seperti senyawa L-asam glutamat yang digunakan dalam bentuk garam yaitu monosodium glutamat (MSG. Berbagai merk dagang MSG telah dikenal dimasyarakat secara luas seperti ajinomoto, vetsin, micin, sasa, miwon dan sebagainya.MSG adalah garam monosodium dengan asam glutamat yang sering digunakan sebagai bahan penyedap masakan untuk merangsang selera makan. Pemberian MSG mengakibatkan gangguan hormonal pada hewan coba, ion glutamat dalam sirkulasi portal akan mempengaruhi hipotalamus dalam memproduksi GnRH yang selanjutnya akan mengganggu hipofise anterior dalam memproduksi FSH dan LH. Fungsi FSH adalah untuk bekerja pada tubulus seminiferus terutama pada sel sertoli untuk meningkatkan spermatogenesis, sedangkan LH berfungsi pada sel Leydig untuk mengatur sekresi testosteron.Penelitian ini bersifat eksperimen dengan rancangan post only group design. Penelitian dilakukan di laboratorium Biologi dan laboratorium Biokimia Fakultas Kedokteran Unand Padang dari tanggal 20 Desember 2009 sampai 30 Februari 2010. Populasi adalah tikus putih jantan strain Jepang (Rattus norvegicus yang berasal dari laboratorium Fakultas Matematika dan Ilmu Pengetahuan Alam Unand. Sampel berjumlah 20 ekor dibagi atas 4 kelompok dengan satu kelompok kontrol dan tiga kelompok perlakuan. Dosis MSG yang digunakan yaitu P1= 4800 mg/kgbb/hari, P2=7200 mg/kgbb/hari dan P3= 9600 mg/kgbb/hari diberikan peroral sebanyak dua siklus epitel seminiferus. Analisa dengan uji Anova dengan derajat kepercayaan 95% dan jika bermakna dilanjutkan dengan uji Multiple Comparissons jenis

  13. Effect of monosodium methanarsonate application on cuticle wax content of cocklebur and cotton plants.

    Science.gov (United States)

    Keese, Renee J; Camper, N Dwight

    2006-01-01

    Leaf cuticle waxes were extracted from monosodium methanearsonate (MSMA)-resistant (R) and -susceptible (S) common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) plants at 0, 3, 5, and 7 days after treatment (DAT) following 1x and 2x MSMA applications. Wax constituents were analyzed by gas chromatography (GC) with flame ionization detection and compared to alkane and alcohol standards of carbon lengths varying from C21 to C30. Differences in waxes were calculated and reported as change per ng mm2-1. Tricosane (C23) was found to increase following MSMA applications. All other alkanes decreased by 7 DAT, with some showing a linear effect over time in the R-cocklebur. Alcohol constituents were also observed to decrease by 7 DAT. Total arsenic in the extracted wax fraction was determined, with greatest quantities detected in the R-cocklebur. Wax changes are not believed to play a role in cotton tolerance, since changes in cuticle concentrations were minimal. Cocklebur resistance to MSMA is not due to cuticle constituents; the wax changes are a secondary effect in response to herbicide application.

  14. Trikatu, a herbal compound that suppresses monosodium urate crystal-induced inflammation in rats, an experimental model for acute gouty arthritis.

    Science.gov (United States)

    Murunikkara, Vachana; Rasool, Mahaboobkhan

    2014-01-01

    Gout is an inflammatory joint disorder characterized by hyperuricaemia and precipitation of monosodium urate crystals in the joints. In the present study, we aimed to investigate the anti-inflammatory effect of trikatu, a herbal compound in monosodium urate crystal-induced inflammation in rats, an experimental model for acute gouty arthritis. Paw volume and levels/activities of lysosomal enzymes, lipid peroxidation, anti-oxidant status and histopathological examination of ankle joints were determined in control and monosodium urate crystal-induced rats. In addition, analgesic (acetic acid-induced writhing response), anti-pyretic (yeast-induced pyrexia) and gastric ulceration effects were tested. The levels of lysosomal enzymes, lipid peroxidation and paw volume were significantly increased, and anti-oxidant status was found to be reduced in monosodium urate crystal-induced rats, whereas the biochemical changes were reverted to near normal levels upon trikatu (1000 mg/kg b.wt) administration. The trikatu has also been found to exhibit significant analgesic and anti-pyretic effects with the absence of gastric damage. In conclusion, the present results clearly indicated that trikatu exert a potent anti-inflammatory effect against monosodium urate crystal-induced inflammation in rats in association with analgesic and anti-pyretic effects in the absence of gastrointestinal damage.

  15. Monosodium glutamate-induced arcuate nucleus damage affects both natural torpor and 2DG-induced torpor-like hypothermia in Siberian hamsters.

    Science.gov (United States)

    Pelz, Kimberly M; Routman, David; Driscoll, Joseph R; Kriegsfeld, Lance J; Dark, John

    2008-01-01

    Siberian hamsters (Phodopus sungorus) have the ability to express daily torpor and decrease their body temperature to approximately 15 degrees C, providing a significant savings in energy expenditure. Daily torpor in hamsters is cued by winterlike photoperiods and occurs coincident with the annual nadirs in body fat reserves and chronic leptin concentrations. To better understand the neural mechanisms underlying torpor, Siberian hamster pups were postnatally treated with saline or MSG to ablate arcuate nucleus neurons that likely possess leptin receptors. Body temperature was studied telemetrically in cold-acclimated (10 degrees C) male and female hamsters moved to a winterlike photoperiod (10:14-h light-dark cycle) (experiments 1 and 2) or that remained in a summerlike photoperiod (14:10-h light-dark cycle) (experiment 3). In experiment 1, even though other photoperiodic responses persisted, MSG-induced arcuate nucleus ablations prevented the photoperiod-dependent torpor observed in saline-treated Siberian hamsters. MSG-treated hamsters tended to possess greater fat reserves. To determine whether reductions in body fat would increase frequency of photoperiod-induced torpor after MSG treatment, hamsters underwent 2 wk of food restriction (70% of ad libitum) in experiment 2. Although food restriction did increase the frequency of torpor in both MSG- and saline-treated hamsters, it failed to normalize the proportion of MSG-treated hamsters undergoing photoperiod-dependent torpor. In experiment 3, postnatal MSG treatments reduced the proportion of hamsters entering 2DG-induced torpor-like hypothermia by approximately 50% compared with saline-treated hamsters (38 vs. 72%). In those MSG-treated hamsters that did become hypothermic, their minimum temperature during hypothermia was significantly greater than comparable saline-treated hamsters. We conclude that 1) arcuate nucleus mechanisms mediate photoperiod-induced torpor, 2) food-restriction-induced torpor may also be reduced by MSG treatments, and 3) arcuate nucleus neurons make an important, albeit partial, contribution to 2DG-induced torpor-like hypothermia.

  16. Determination of Monosodium L-Glutamate by Volumetry%容量滴定法测定味精中谷氨酸钠含量的研究

    Institute of Scientific and Technical Information of China (English)

    陆益民

    2004-01-01

    采用标准试剂合成味精试样,对GB/T 5009.43-1996酸度计法测定味精中谷氨酸钠含量进行了研究.结果表明,其滴定终点控制在pH9.40~9.60或9.80~10.00时,测定结果与旋光法及理论值有明显差异;当滴定终点控制在pH9.67时,与后二者结果一致,最佳终点pH值为9.67.对味精中其它添加物呈味核苷酸钠、蔗糖及淀粉的干扰情况也作了进一步实验摸索.

  17. Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation.

    Science.gov (United States)

    Tang, Bao; Xu, Hong; Xu, Zongqi; Xu, Cen; Xu, Zheng; Lei, Peng; Qiu, Yibin; Liang, Jinfeng; Feng, Xiaohai

    2015-04-01

    Poly(γ-glutamic acid) (γ-PGA) production by Bacillus subtilis NX-2 was carried out through solid-state fermentation with dry mushroom residues (DMR) and monosodium glutamate production residues (MGPR; a substitute of glutamate) for the first time. Dry shiitake mushroom residue (DSMR) was found to be the most suitable solid substrate among these DMRs; the optimal DSMR-to-MGPR ratio was optimized as 12:8. To increase γ-PGA production, industrial waste glycerol was added as a carbon source supplement to the solid-state medium. As a result, γ-PGA production increased by 34.8%. The batch fermentation obtained an outcome of 115.6 g kg(-1) γ-PGA and 39.5×10(8) colony forming units g(-1) cells. Furthermore, a satisfactory yield of 107.7 g kg(-1) γ-PGA was achieved by compost experiment on a scale of 50 kg in open air, indicating that economically large-scale γ-PGA production was feasible. Therefore, this study provided a novel method to produce γ-PGA from abundant and low-cost agroindustrial residues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.

    Science.gov (United States)

    Bannai, M; Torii, K

    2013-05-01

    Gustatory and visceral stimulation from food regulates digestion and nutrient use. Free L-glutamate (Glu) release from digested protein is responsible for umami taste perception in the gut. Moreover, monosodium Glu (MSG) is widely used as a flavor enhancer to add umami taste in various cuisines. Recent studies indicate that dietary Glu sensors and their signal transduction system exist in both gut mucosa and taste cells. Oral Glu sensing has been well studied. In this review, we focus on the role of Glu on digestion and absorption of food. Infusion of Glu into the stomach and intestine increase afferent nerve activity of the gastric and the celiac branches of the vagus nerve, respectively. Luminal Glu also evokes efferent nerve activation of the abdominal vagus nerve branches simultaneously. Additionally, intragastric infusion of Glu activates the insular cortex, limbic system, hypothalamus, nucleus tractus solitaries, and amygdala, as determined by functional magnetic resonance imaging, and is able to induce flavor-preference learning as a result of postingestive effects in rats. These results indicate that Glu signaling via gustatory and visceral pathways plays an important role in the processes of digestion, absorption, metabolism, and other physiological functions via activation of the brain.

  19. The glutamate/GABA-glutamine cycle

    DEFF Research Database (Denmark)

    Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S

    2006-01-01

    Neurons are metabolically handicapped in the sense that they are not able to perform de novo synthesis of neurotransmitter glutamate and gamma-aminobutyric acid (GABA) from glucose. A metabolite shuttle known as the glutamate/GABA-glutamine cycle describes the release of neurotransmitter glutamate...... or GABA from neurons and subsequent uptake into astrocytes. In return, astrocytes release glutamine to be taken up into neurons for use as neurotransmitter precursor. In this review, the basic properties of the glutamate/GABA-glutamine cycle will be discussed, including aspects of transport and metabolism...

  20. RADIUM AND THORIUM SORPTION BY MONOSODIUM TITANATE (MST) AND MODIFIED MST (mMST)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.

    2012-02-15

    A series of tests were planned to examine the removal of Ra and Th by monosodium titanate (MST) and modified monosodium titanate (mMST). Simulated waste solutions were prepared containing Ra and Th, along with Sr, Np, Pu, and U. Following simulant preparation the simulants were filtered through 0.45-m filters. Analysis of the simulants indicated no Th in the filtered solution. This is due to the very low solubility of Th in alkaline solutions. Based on the reported detection limits for {sup 228}Th by gamma analyses, the solubility of Th in the simulant solutions is < 3.0E-10 g/L or < 1.3E-12 M. Therefore, data could not be obtained regarding the removal of Th by MST and mMST; however, testing proceeded to examine the removal of Ra. Sorption testing indicated that Ra, like Sr, is very rapidly removed from solution by both MST and mMST. The Ra concentration in solution fell below the method detection limit (MDL) within 30 minutes of contact with MST, and within 2 hours of contact with mMST, when tested at 25 C using a 5.6 M Na simulant. Additional testing examined the effects of ionic strength and temperature on the MST and mMST performance. Results from these tests showed that the majority of samples still reached a Ra concentration below the MDL, indicating excellent removal. For the highest ionic strength solution (6.6 M Na), there did appear to be a slight decrease in the Ra removal by mMST, as indicated by a larger number of samples just above the MDL. The effect of temperature on {sup 226}Ra removal is indeterminate for either MST or mMST in the temperature range (25-60 C) and concentrations studied since the final soluble concentration of Ra remained at or below the detection limits for all tests. Desorption testing was also performed using decontaminated salt solution (DSS) diluted to sodium concentrations of 2 M and 0.5 M, to represent the intermediate and final stages of washing. Results from these tests indicated no desorption of any sorbents, with the

  1. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide

    NARCIS (Netherlands)

    Zhao, J.; Verwer, R.W.; Wamelen, D.J. van; Qi, X.R.; Gao, S.F.; Lucassen, P.J.; Swaab, D.F.

    2016-01-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the neu

  2. Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved.

    Science.gov (United States)

    Thiele, Ralf G; Schlesinger, Naomi

    2010-02-01

    This study aimed at determining whether lowering serum urate (SU) to less than 6 mg/dl in patients with gout affects ultrasonographic findings. Seven joints in five patients with monosodium urate (MSU) crystal proven gout and hyperuricemia were examined over time with serial ultrasonography. Four of the five patients were treated with urate lowering drugs (ULDs) (allopurinol, n = 3; probenecid, n = 1). One patient was treated with colchicine alone. Attention was given to changes in a hyperechoic, irregular coating of the hyaline cartilage in the examined joints (double contour sign or "urate icing"). This coating was considered to represent precipitate of MSU crystals. Index joints included metacarpophalangeal (MCP) joints (n = 2), knee joints (n = 3), and first metatarsophalangeal (MTP) joints (n = 2). The interval between baseline and follow-up images ranged from 7 to 18 months. Serial SU levels were obtained during the follow-up period. During the follow-up period, three patients treated with ULD (allopurinol, n = 2; probenecid, n = 1) achieved a SU level of or =7 mg/dl. In one patient treated with allopurinol, SU levels improved from 13 to 7 mg/dl during the follow-up period. Decrease, but not resolution of the hyperechoic coating was seen in this patient. In the patient treated with colchicine alone, SU levels remained >8 mg/dl, and no sonographic change was observed. In our patients, sonographic signs of deposition of MSU crystals on the surface of hyaline cartilage disappeared completely if sustained normouricemia was achieved. This is the first report showing that characteristic sonographic changes are influenced by ULDs once SU levels remain < or =6 mg/dl for 7 months or more. Sonographic changes of gout correlate with SU levels and may be a non-invasive means to track changes in the uric acid pool. Larger prospective studies are needed to further assess these potentially important findings.

  3. Bonding the foe – NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals

    Directory of Open Access Journals (Sweden)

    Christine eSchorn

    2012-12-01

    Full Text Available In the presence of sodium, uric acid from purine metabolism precipitates as monosodium urate (MSU needles and forms renal calculi or causes gouty arthritis in kidneys and joints, respectively. The latter is characterized by red, hot and swollen arthritic joints.Here we report the in vitro effect of MSU crystals on blood granulocytes and analyse their contribution to granuloma formation and neutrophil extracellular traps (NETs formation (NETosis in synovial fluid of patients with gouty arthritis in vivo. We observed that MSU crystals induce NETosis in vitro in a reactive oxygen species (ROS-dependent manner. Indeed, blocking ROS (e.g. the oxidative burst by various antioxidants partially inhibited NETosis induced by MSU crystals. Analyses of synovial fluids and of tissue sections of patients suffering from gout revealed that NETs are also formed in vivo, especially during acute gouty flares and/or granuloma formation. Since prolonged exposure to NETs carries the risk for the development of chronic inflammation we also studied the opsonisation of NETs, as a prerequisite for their clearance. The established dead cells’ opsonins C3b, galectin-9 and CRP decorated the residual dead cells` corpses and opsonized these for disposal. Surprisingly, all three soluble pattern recognizing molecules spared the spread NET structures. We conclude that (I MSU crystals are strong inducers of ROS-dependent NETosis and (II that the prolonged presence of NET-pathogen or NET-crystal aggregates observed in patients with systemic autoimmunity, especially in those with low serum DNase-1 activity, cannot be compensated by CRP, complement and galectin mediated phagocytic clearance.

  4. Activation of a7 Nicotinic Acetylcholine Receptors Prevents Monosodium Iodoacetate-Induced Osteoarthritis in Rats

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2015-01-01

    Full Text Available Background/Aims: Although some evidence suggests that the prevalence of osteoarthritis (OA is lower in smokers compared to nonsmokers, the mechanisms of nicotine-induced protection remain unclear. Stimulation of the a7 nicotinic acetylcholine receptor (a7-nAChR appears to be a critical mechanism underlying the anti-inflammatory potential of cholinergic agonists in immune cells. The inhibition of secreted inflammatory molecules and the subsequent inflammatory processes have been proposed as a novel strategy for the treatment of OA. The objective of the present study was to determine whether nicotine-induced protection in a monosodium iodoacetate (MIA rat model of OA occurs via a7-nAChR-mediated inhibition of chondrocytes. Methods: Both in vivo (MIA and in vitro (MIA; Interleukin-1ß, IL-1ß models of OA were used to investigate the roles and the possible mechanisms whereby a7-nAChRs protect against knee joint degradation. Multiple experimental approaches, including macroscopic, histological analysis, chondrocyte cell cultures, confocal microscopy, and western blotting, were employed to elucidate the mechanisms of a7-nAChR-mediated protection. Results: Systemic administration of nicotine alleviated MIA-induced joint degradation. The protective effects of nicotine were abolished by administration of the a7-nAChR-selective antagonist methyllycaconitine (MLA. In primary cultured rat chondrocytes, pretreatment with nicotine suppressed both p38, extracellular regulated kinase (Erk 1/2 and c-Jun-N-terminal kinase (JNK mitogen-activated protein kinases (MAPK phosphorylation and phosphorylated nuclear factor-kappa B (NF-κB p65 activation induced by MIA- or IL-1ß, and these effects were also reversed by MLA. Conclusion: Taken together, our results suggest that activation a7-nAChRs is an important mechanism underlying the protective effects of nicotine.

  5. Therapeutic effects of sesame oil on monosodium urate crystal-induced acute inflammatory response in rats.

    Science.gov (United States)

    Hsu, Dur-Zong; Chen, Si-Jin; Chu, Pei-Yi; Liu, Ming-Yie

    2013-01-01

    Sesame oil has been used in traditional Taiwanese medicine to relieve the inflammatory pain in people with joint inflammation, toothache, scrapes, and cuts. However, scientific evidence related to the effectiveness or action mechanism of sesame oil on relief of pain and inflammation has not been examined experimentally. Here, we investigated the therapeutic effect of sesame oil on monosodium urate monohydrate (MSU) crystal-induced acute inflammatory response in rats. Air pouch, a pseudosynovial cavity, was established by injecting 24 mL of filtered sterile air subcutaneously in the backs of the rats. At day 0, inflammation in air pouch was induced by injecting MSU crystal (5 mg/rat, suspended in sterilized phosphate buffered saline, pH 7.4), while sesame oil (0, 1, 2, or 4 mL/kg, orally) was given 6 h after MSU crystal injection. Parameters in lavage and skin tissue from the air pouches were assessed 6 h after sesame oil was given. Sesame oil decreased MSU crystal-induced total cell counts, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 levels in lavage and pouch tissue. Sesame oil significantly decreased leukocyte and neutrophil counts in lavage compared with MSU crystal alone group. Sesame oil decreased activated mast cell counts in skin tissue in MSU crystal-treated rats. Sesame oil significantly decreased nuclear factor (NF)-κB activity and IL-4 level in isolated mast cells from rats treated with MSU crystal. Furthermore, sesame oil decreased lavage complement proteins C3a and C5a levels in MSU crystal-treated rats. In conclusion, sesame oil shows a potent therapeutic effect against MSU crystal-induced acute inflammatory response in rats.

  6. Evaluation of hydrogel-coated glutamate microsensors

    NARCIS (Netherlands)

    Oldenziel, Weite Hendrik; Dijkstra, G; Cremers, T.I.F.H.; Westerink, B.H.C.

    2006-01-01

    Glutamate microsensors form a promising analytical tool for monitoring neuronally derived glutamate directly in the brain. However, when a microsensor is implanted in brain tissue, many factors can diminish its performance. Consequently, a thorough characterization and evaluation of a microsensor is

  7. Glutamate Fermentation-2: Mechanism of L-Glutamate Overproduction in Corynebacterium glutamicum.

    Science.gov (United States)

    Hirasawa, Takashi; Wachi, Masaaki

    2016-12-03

    The nonpathogenic coryneform bacterium, Corynebacterium glutamicum, was isolated as an L-glutamate-overproducing microorganism by Japanese researchers and is currently utilized in various amino acid fermentation processes. L-Glutamate production by C. glutamicum is induced by limitation of biotin and addition of fatty acid ester surfactants and β-lactam antibiotics. These treatments affect the cell surface structures of C. glutamicum. After the discovery of C. glutamicum, many researchers have investigated the underlying mechanism of L-glutamate overproduction with respect to the cell surface structures of this organism. Furthermore, metabolic regulation during L-glutamate overproduction by C. glutamicum, particularly, the relationship between central carbon metabolism and L-glutamate biosynthesis, has been investigated. Recently, the role of a mechanosensitive channel protein in L-glutamate overproduction has been reported. In this chapter, mechanisms of L-glutamate overproduction by C. glutamicum have been reviewed.

  8. Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Daniela Pereira; Zanoni, Maria Valnice Boldrin; Bergamini, Marcio Fernando [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual Paulista, Caixa Postal 355, 14800-900 Araraquara, S.P. (Brazil); Chiorcea-Paquim, Ana-Maria; Diculescu, Victor Constantin [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal); Oliveira Brett, Ana-Maria [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra (Portugal)], E-mail: brett@ci.uc.pt

    2008-04-20

    Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks.

  9. xperimental Study of Protective Effect of Qingkailing(清开灵) on Brain Damage Induced by Glutamate

    Institute of Scientific and Technical Information of China (English)

    岳少杰; 虞佩兰; 罗自强; 曾庆善; 陶永光; 伍赶球

    2001-01-01

    Objective: To observe the effect of Qingkailing (QKL) on brain damage induced by glutamate, in order to seek for effective drugs for antagonizing neurotoxicity of glutamate. Methods:The number and morphological metrology of neurocytes in cerebral cortex and hippocampus were detected by MIAS-300 image analyser, electron microscope and immunohistochemical methods. Results:QKL could alleviate the glutamate induced accumulation of water and sodium in brain tissue,relieve the metrological and structural damage of cerebral cells in cortex and hippocampus, reduce the percentage of c-fos positive cell in brain. Conclusion: QKL could protect brain damage induced by glutamate, which might be related to the inhibition of QKL on the enhancement of c-fos gene expression induced by glutamate.

  10. The dissolution of monosodium urate monohydrate crystals: formulation of a biocompatible buffer solution with potential use in the treatment of gouty arthropathies

    Directory of Open Access Journals (Sweden)

    Gabriella Tamasi

    2013-04-01

    Full Text Available The dissolving abilities (DAs of several aqueous media for microcrystalline monosodium\turate\tmonohydrate\t(MSU, NaC5N4O3H3·H2O have been investigated using UV spectrophotometry for quantitative analytical determinations and X-ray diffraction, scanning electron microscopy and polarized light optical microscopy to assess structural aspects. High DAs were found for a buffer labeled TMT which contains tris(hydroxymethylaminomethane (TRIS, tris(hydroxymethylaminomethane\thydrochloride (TRIS·HCl, D-mannitol (MAN and taurine (TAU and gave DA30=1298(5 mg/L for synthetic MSU after 30 min incubation at 37°C and pH 7.4, most of the dissolution taking place within the first 5-10 min. Semiempirical molecular modelling techniques (ZINDO/1 show a favorable energy balance for the formation of a TRIS-urate-TRIS adduct which might explain the high DA values. Buffers containing linear or dendrimeric polyamines gave DA values which suggest that complex formation toward sodium cations is less important. An ex vivo MSU sample was found to have a significantly lower DA value (DA30=1124(5 mg/L in TMT as well as a lower crystallinity than its synthetic counterpart, possibly related to the presence of a non-crystalline impurity such as endogenous proteins. Cytotoxicity tests based on the MTT assay were used to check the biocompatibility of the TMT buffer and showed only moderate cell mortality after 24 h contact with the buffer solution.

  11. Intra-articular basic calcium phosphate and monosodium urate crystals inhibit anti-osteoclastogenic cytokine signalling.

    Science.gov (United States)

    Cunningham, C C; Corr, E M; McCarthy, G M; Dunne, A

    2016-12-01

    Basic calcium phosphate (BCP) and monosodium urate (MSU) crystals are particulates with potent pro-inflammatory effects, associated with osteoarthritis (OA) and gout, respectively. Bone erosion, due to increased osteoclastogenesis, is a hallmark of both arthropathies and results in severe joint destruction. The aim of this study was to investigate the effect of these endogenous particulates on anti-osteoclastogenic cytokine signalling. Human osteoclast precursors (OcP) were treated with BCP and MSU crystals prior to stimulation with Interleukin (IL-6) or Interferon (IFN-γ) and the effect on Signal Transducer and Activator of Transcription (STAT)-3 and STAT-1 activation in addition to Mitogen Activated Protein Kinase (MAPK) activation was examined by immunoblotting. Crystal-induced suppressor of cytokine signalling (SOCS) protein and SH-2 containing tyrosine phosphatase (SHP) expression was assessed by real-time polymerase chain reaction (PCR) in the presence and absence of MAPK inhibitors. Pre-treatment with BCP or MSU crystals for 1 h inhibited IL-6-induced STAT-3 activation in human OcP, while pre-treatment for 3 h inhibited IFN-γ-induced STAT-1 activation. Both crystals activated p38 and extracellular signal-regulated (ERK) MAPKs with BCP crystals also activating c-Jun N-terminal kinase (JNK). Inhibition of p38 counteracted the inhibitory effect of BCP and MSU crystals and restored STAT-3 phosphorylation. In contrast, STAT-1 phosphorylation was not restored by MAPK inhibition. Finally, both crystals potently induced the expression of SOCS-3 in a MAPK dependent manner, while BCP crystals also induced expression of SHP-1 and SHP-2. This study provides further insight into the pathogenic effects of endogenous particulates in joint arthropathies and demonstrates how they may contribute to bone erosion via the inhibition of anti-osteoclastogenic cytokine signalling. Potential targets to overcome these effects include p38 MAPK, SOCS-3 and SHP phosphatases

  12. Resveratrol, a natural antioxidant, protects monosodium iodoacetate-induced osteoarthritic pain in rats.

    Science.gov (United States)

    Wang, Zhu-Min; Chen, Yong-Cai; Wang, Da-Peng

    2016-10-01

    Osteoarthritis (OA) is a chronic progressive joint disease characterized by advanced joint pain, subchondral bone sclerosis and articular cartilage degeneration. Resveratrol has been shown to have anti-inflammatory, cardioprotective and antioxidant properties and to inhibit platelet aggregation and coagulation. However, the effects of resveratrol on OA have not been examined. In this study, we investigate the protective effects of resveratrol on monosodium iodoacetate (MIA)-induced OA through inhibition of cyclooxygenase (COX-2) and inducible nitric oxide synthase (iNOS) signaling pathway in a rat model. A single intra-articular injection of MIA was injected into rats for the induction of OA. The mechanical, heat and cold hyperalgesia were measured at days 0, 7 and 14. The serum and synovial fluid levels of IL-1β, IL-10 and TNF-α and osteocalcin were measured by enzyme-linked immunosorbent assay. The mRNA and protein expressions of IL-1β, IL-10, TNF-α, Il-6, MMP-13 and COX-2 and iNOS were determined by RT-PCR and western blot, respectively. Osteoarthritic lesion in the knee joint was evaluated by histological analysis. MIA-injected rats treated with resveratrol at a dose of either 5 or 10mg/kg body weight were significantly reduced hyperalgesia of mechanical, heat and cold and increased the vertical and horizontal movements. Subsequently, MIA-injected rats increased serum and synovial fluid levels of IL-1β, IL-10, IL-6, TNF-α, MMP-13 and osteoclastic activity marker, osteocalcin and its articular cartilage mRNA and protein expressions. Further, MIA-injected rats increased COX-2 and iNOS mRNA and protein expressions were decreased by resveratrol. The protective effect of resveratrol was comparable to a reference drug, etoricoxib. The cartilage damage induced by MIA were attenuated by resveratrol. Taken together, resveratrol has the potential to improve MIA-induced cartilage damage by inhibiting the levels and expressions of inflammatory mediators suggesting

  13. PILOT SCALE TESTING OF MONOSODIUM TITANATE MIXING FOR THE SRS SMALL COLUMN ION EXCHANGE PROCESS - 11224

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Restivo, M.; Williams, M.; Herman, D.; Steeper, T.

    2011-01-25

    The Small Column Ion Exchange (SCIX) process is being developed to remove cesium, strontium, and select actinides from Savannah River Site (SRS) Liquid Waste using an existing waste tank (i.e., Tank 41H) to house the process. Savannah River National Laboratory (SRNL) is conducting pilot-scale mixing tests to determine the pump requirements for suspending monosodium titanate (MST), crystalline silicotitanate (CST), and simulated sludge. The purpose of this pilot scale testing is to determine the requirements for the pumps to suspend the MST particles so that they can contact the strontium and actinides in the liquid and be removed from the tank. The pilot-scale tank is a 1/10.85 linear scaled model of SRS Tank 41H. The tank diameter, tank liquid level, pump nozzle diameter, pump elevation, and cooling coil diameter are all 1/10.85 of their dimensions in Tank 41H. The pump locations correspond to the proposed locations in Tank 41H by the SCIX program (Risers B5 and B2 for two pump configurations and Risers B5, B3, and B1 for three pump configurations). The conclusions from this work follow: (i) Neither two standard slurry pumps nor two quad volute slurry pumps will provide sufficient power to initially suspend MST in an SRS waste tank. (ii) Two Submersible Mixer Pumps (SMPs) will provide sufficient power to initially suspend MST in an SRS waste tank. However, the testing shows the required pump discharge velocity is close to the maximum discharge velocity of the pump (within 12%). (iii) Three SMPs will provide sufficient power to initially suspend MST in an SRS waste tank. The testing shows the required pump discharge velocity is 66% of the maximum discharge velocity of the pump. (iv) Three SMPs are needed to resuspend MST that has settled in a waste tank at nominal 45 C for four weeks. The testing shows the required pump discharge velocity is 77% of the maximum discharge velocity of the pump. Two SMPs are not sufficient to resuspend MST that settled under these

  14. Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid.

    Science.gov (United States)

    Monier, M; El-Sokkary, A M A

    2010-08-01

    In the present study, separation of L-glutamic acid from dilute aqueous solution by solid-phase extraction based on molecular imprinting technique using cross-linked chitosan/glutaraldehyde resin was investigated. L-Glutamic acid imprinted cross-linked chitosan (LGIC) was prepared by cross-linking of chitosan by glutaraldehyde cross-linker, in the presence of L-glutamic acid. Non-imprinted cross-linked chitosan (NIC) as control was also prepared by the same procedure in the absence of template molecules. The morphological structures of both LGIC and NIC were examined by scanning electron microscope (SEM). LGIC particles were applied to determine the optimum operational condition for l-glutamic acid separation from dilute aqueous solution. In adsorption step, optimum pH and retention time were 5.5 and 100 min, while corresponding values in extraction step were 2.5 and 60 min, respectively. The adsorption isotherms indicated that the maximum adsorption capacities of L- and D-glutamic acid on LGIC were 42+/-0.8 and 26+/-1.2mg/g, respectively, while in case of NIC, both L- and D-glutamic acid present the same maximum adsorption capacity 7+/-0.6 mg/g, which confirm that the molecular imprinting technique creates an enantioselectivity of LGIC toward L-glutamic acid. In addition, chiral resolution of l-, d-glutamic acid racemic mixture was carried out using column of LGIC. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1 beta by mononuclear cells through a caspase 1-mediated process.

    NARCIS (Netherlands)

    Giamarellos, E.J.; Mouktaroudi, M.; Bodar, E.J.; Ven, J. van de; Kullberg, B.J.; Netea, M.G.; Meer, J.W.M. van der

    2009-01-01

    OBJECTIVE: Recent studies suggest that crystals of monosodium urate (MSU), deposited in joints of patients with acute gouty arthritis, activate the NACHT domain, leucine-rich repeat and pyrin domain-containing protein (NALP)3 inflammasome. In the present study we have investigated whether production

  16. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex.

    Directory of Open Access Journals (Sweden)

    Christel Genoud

    2006-10-01

    Full Text Available Astrocytes play a major role in the removal of glutamate from the extracellular compartment. This clearance limits the glutamate receptor activation and affects the synaptic response. This function of the astrocyte is dependent on its positioning around the synapse, as well as on the level of expression of its high-affinity glutamate transporters, GLT1 and GLAST. Using Western blot analysis and serial section electron microscopy, we studied how a change in sensory activity affected these parameters in the adult cortex. Using mice, we found that 24 h of whisker stimulation elicited a 2-fold increase in the expression of GLT1 and GLAST in the corresponding cortical column of the barrel cortex. This returns to basal levels 4 d after the stimulation was stopped, whereas the expression of the neuronal glutamate transporter EAAC1 remained unaltered throughout. Ultrastructural analysis from the same region showed that sensory stimulation also causes a significant increase in the astrocytic envelopment of excitatory synapses on dendritic spines. We conclude that a period of modified neuronal activity and synaptic release of glutamate leads to an increased astrocytic coverage of the bouton-spine interface and an increase in glutamate transporter expression in astrocytic processes.

  17. Glutamate and Brain Glutaminases in Drug Addiction.

    Science.gov (United States)

    Márquez, Javier; Campos-Sandoval, José A; Peñalver, Ana; Matés, José M; Segura, Juan A; Blanco, Eduardo; Alonso, Francisco J; de Fonseca, Fernando Rodríguez

    2016-12-23

    Glutamate is the principal excitatory neurotransmitter in the central nervous system and its actions are related to the behavioral effects of psychostimulant drugs. In the last two decades, basic neuroscience research and preclinical studies with animal models are suggesting a critical role for glutamate transmission in drug reward, reinforcement, and relapse. Although most of the interest has been centered in post-synaptic glutamate receptors, the presynaptic synthesis of glutamate through brain glutaminases may also contribute to imbalances in glutamate homeostasis, a key feature of the glutamatergic hypothesis of addiction. Glutaminases are the main glutamate-producing enzymes in brain and dysregulation of their function have been associated with neurodegenerative diseases and neurological disorders; however, the possible implication of these enzymes in drug addiction remains largely unknown. This mini-review focuses on brain glutaminase isozymes and their alterations by in vivo exposure to drugs of abuse, which are discussed in the context of the glutamate homeostasis theory of addiction. Recent findings from mouse models have shown that drugs induce changes in the expression profiles of key glutamatergic transmission genes, although the molecular mechanisms that regulate drug-induced neuronal sensitization and behavioral plasticity are not clear.

  18. Determination of Glutamic Acid by Potassium Permanganate-glyoxal Chemiluminescence System%高锰酸钾-乙二醛化学发光体系测定谷氨酸

    Institute of Scientific and Technical Information of China (English)

    樊雪梅; 王书民

    2014-01-01

    !押建立了测定谷氨酸的化学发光新方法,确定了该方法的测定最佳条件,并研究了抑制体系的机理。在最佳条件下,谷氨酸浓度在2.0×10-8-5.0×10-5 mol·L-1范围内与相对发光强度成正比,方法的检出限为6.0×10-9 mol·L-1,对1.0×10-6 mol·L-1的谷氨酸平行测定9次,相对标准偏差为2.5%。该法用于味精产品中谷氨酸含量分析。%A novel flow injection chemiluminescence method was developed for the determination of glutamic acid, based on the inhibited effect of glutamic acid on the chemiluminescence reaction of potassium permanganate and glyoxal in the acidic medium. The optimum conditions and the possible inhibitory mechanism was also discussed. Under optimum conditions, the relative chemiluminescence intensity was 1inearly related to the concentration of glutamic acid in the range of 2.0×10-8-5.0×10-5 mol·L-1 with a detection limit of 6.0×10-9 mol·L-1, the RSD for measurement of 1.0×10-6 mol·L-1 glutamic acid (n=9) is 2.5%. This method was applied to the determination of glutamic acid in monosodium glutamate samples with satisfatory results.

  19. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells

    Institute of Scientific and Technical Information of China (English)

    Min-fang XU; Yu-yun XIONG; Jian-kang LIU; Jin-jun QIAN; Li ZHU; Jing GAO

    2012-01-01

    To investigate whether asiatic acid (AA),a pentacyclic triterpene in Centella asiatica,exerted neuroprotective effects in vitro and in vivo,and to determine the underlying mechanisms.Methods:Human neuroblastoma SH-SY5Y cells were used for in vitro study.Cell viability was determined with the MTT assay.Hoechst 33342 staining and flow cytometry were used to examine the apoptosis.The mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured using fluorescent dye.PGC-1α and Sift1 levels were examined using Western blotting.Neonatal mice were given monosodium glutamate (2.5 mg/g) subcutaneously at the neck from postnatal day (PD) 7 to 13,and orally administered with AA on PD 14 daily for 30 d.The learning and memory of the mice were evaluated with the Morris water maze test.HE staining was used to analyze the pyramidal layer structure in the CA1 and CA3 regions.Results:Pretreatment of SH-SY5Y cells with AA (0.1-100 nmol/L) attenuated toxicity induced by 10 mmol/L glutamate in a concentration-dependent manner.AA 10 nmol/L significantly decreased apoptotic cell death and reduced reactive oxygen species (ROS),stabilized the mitochondrial membrane potential (MMP),and promoted the expression of PGC-1α and Sirt1.In the mice models,oral administration of AA (100 mg/kg) significantly attenuated cognitive deficits in the Morris water maze test,and restored lipid peroxidation and glutathione and the activity of SOD in the hippocampus and cortex to the control levels.AA (50 and 100 mg/kg) also attenuated neuronal damage of the pyramidal layer In the CA1 and CA3 regions.Conclusion:AA attenuates glutamate-induced cognitive deficits of mice and protects SH-SY5Y cells against glutamate-induced apoptosis in vitro.

  20. Screening for glutamate-induced and dexamethasone-downregulated epilepsy-related genes in rats by mRNA differential display

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background It is known that excessive release of glutamate can induce excitotoxicity in neurons and lead to seizure. Dexamethasone has anti-seizure function. The aim of this study was to investigate glutamate- dexamethasone interaction in the pathogenesis of epilepsy, identify differentially expressed genes in the hippocampus of glutamate-induced epileptic rats by mRNA differential display, and observe the effects of dexamethasone on these genes expression.Methods Seizure models were established by injecting 5 μl (250 μg/μl) monosodium glutamate (MSG) into the lateral cerebral ventricle in rats. Dexamethasone (5 mg/kg) was injected intraperitoneally at 30 minutes after MSG inducing convulsion. The rats' behavior and electroencephalogram (EEG) were then recorded for 1 hour. The effects of dexamethasone on gene expression were observed in MSG-induced epileptic rats at 1 hour and 6 hours after the onset of seizure by mRNA differential display. The differentially expressed genes were confirmed by Dot blot.Results EEG and behaviors showed that MSG did induce seizure, and dexamethasone could clearly alleviate the symptom. mRNA differential display showed that MSG increased the expression of some genes in epileptic rats and dexamethasone could downregulate their expression. From more than 10 differentially expressed cDNA fragments, we identified a 226 bp cDNA fragment that was expressed higher in the hippocampus of epileptic rats than that in the control group. Its expression was reduced after the administration of dexamethasone. Sequence analysis and protein alignment showed that the predicted amino acid sequence of this cDNA fragment kept 43% identity to agmatinase, a member of the ureohydrolase superfamily. Conclusions The results of the current study suggest that the product of the 226 bp cDNA has a function similar to agmatinase. Dexamethasone might relax alleviate seizure by inhibiting expression of the gene.

  1. SYNTHESIS AND pH-SENSITIVE SELF-ASSEMBLY OF DENDRITIC POLY(AMIDOAMINE)-b-POLY(L-GLUTAMATE) BIOHYBRIDS

    Institute of Scientific and Technical Information of China (English)

    董常明

    2009-01-01

    Dendritic poly(amidoamine)-b-poly(L-glutamate)(PAMAM-b-PLG) biohybrids were synthesized by the ring-opening polymerization ofγ-benzyl-L-glutamate N-carboxyanhydride monomer,followed by the deprotection of benzyl groups on poly(benzyl-L-glutamate),and were characterized by ~1H-NMR,FT-IR and gel permeation chromatography.The self-assembly behavior of the PAMAM-b-PLG biohybrid was investigated by means of UV-Vis,dynamic light scattering (DLS),transmission electronic microscopy(TEM) and ~1H-NMR.UV-Vis analys...

  2. Glutamate transporters combine transporter- and channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Glutamate transporters in the mammalian central nervous system have a unique position among secondary transport proteins as they exhibit glutamate-gated chloride-channel activity in addition to glutamate-transport activity. In this article, the available data on the structure of the glutamate transp

  3. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    Science.gov (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  4. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  5. Genetics Home Reference: glutamate formiminotransferase deficiency

    Science.gov (United States)

    ... glutamate formiminotransferase deficiency is also characterized by megaloblastic anemia. Megaloblastic anemia occurs when a person has a low number ... named? Additional Information & Resources MedlinePlus (4 ... Encyclopedia: Megaloblastic Anemia (image) Health Topic: Amino Acid Metabolism Disorders Health ...

  6. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  7. DNA nanopore translocation in glutamate solutions

    Science.gov (United States)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  8. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation o...... of NMDA receptors in pyramidal neurons, which in turn leads to neuronal dynamics that is qualitatively identical to epileptiform activity. We identify by chaos analysis a surprising possibility that muscarinergic receptors can help the system out of a chaotic regime....

  9. [Glutamate neurotransmission, stress and hormone secretion].

    Science.gov (United States)

    Jezová, D; Juránková, E; Vigas, M

    1995-11-01

    Glutamate neurotransmission has been investigated in relation to several physiological processes (learning, memory) as well as to neurodegenerative and other disorders. Little attention has been paid to its involvement in neuroendocrine response during stress. Penetration of excitatory amino acids from blood to the brain is limited by the blood-brain barrier. As a consequence, several toxic effects but also bioavailability for therapeutic purposes are reduced. A free access to circulating glutamate is possible only in brain structures lacking the blood-brain barrier or under conditions of its increased permeability. Excitatory amino acids were shown to stimulate the pituitary hormone release, though the mechanism of their action is still not fully understood. Stress exposure in experimental animals induced specific changes in mRNA levels coding the glutamate receptor subunits in the hippocampus and hypothalamus. The results obtained with the use of glutamate receptor antagonists indicate that a number of specific receptor subtypes contribute to the stimulation of ACTH release during stress. The authors provided also data on the role of NMDA receptors in the control of catecholamine release, particularly in stress-induced secretion of epinephrine. These results were the first piece of evidence on the involvement of endogenous excitatory amino acids in neuroendocrine activation during stress. Neurotoxic effects of glutamate in animals are well described, especially after its administration in the neonatal period. In men, glutamate toxicity and its use as a food additive are a continuous subject of discussions. The authors found an increase in plasma cortisol and norepinephrine, but not epinephrine and prolactin, in response to the administration of a high dose of glutamate. It cannot be excluded that these effects might be induced even by lower doses in situations with increased vulnerability to glutamate action (age, individual variability). (Tab. 1, Fig. 6, Ref. 44.).

  10. : Glutamate receptor 6 gene and autism

    OpenAIRE

    Jamain, Stéphane; Betancur, Catalina; Quach, Hélène; Philippe, Anne; Fellous, Marc; Giros, Bruno; Gillberg, Christopher; Leboyer, Marion; Bourgeron, Thomas

    2002-01-01

    International audience; A genome scan was previously performed and pointed to chromosome 6q21 as a candidate region for autism. This region contains the glutamate receptor 6 (GluR6 or GRIK2) gene, a functional candidate for the syndrome. Glutamate is the principal excitatory neurotransmitter in the brain and is directly involved in cognitive functions such as memory and learning. We used two different approaches, the affected sib-pair (ASP) method and the transmission disequilibrium test (TDT...

  11. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATE PHASE II FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Thomas Peters, T; Michael Poirier, M; Mark Barnes, M; Major Thompson, M; Samuel Fink, S

    2007-06-29

    This document provides a final report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger scale by a commercial vendor, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and measurement of filtration characteristics. Key findings and conclusions include the following. Testing evaluated three synthetic methods and eleven process parameters for the optimum synthesis conditions for the preparation on an improved form of MST. We selected the post synthesis method (Method 3) for continued development based on overall sorbate removal performance. We successfully prepared three batches of the modified MST using Method 3 procedure at a 25-gram scale. The laboratory prepared modified MST exhibited increased sorption kinetics with simulated and actual waste solutions and similar filtration characteristics to the baseline MST. Characterization of the modified MST indicated that the post synthesis treatment did not significantly alter the particle size distribution, but did significantly increase the surface area and porosity compared to the original MST. Testing indicated that the modified MST exhibits reduced affinity for uranium compared to the baseline MST, reducing risk of fissile loading. Shelf-life testing indicated no change in strontium and actinide performance removal after storing the modified MST for 12-months at ambient laboratory temperature. The material releases oxygen during the synthesis and continues to offgas after the synthesis at a rapidly diminishing rate until below a measurable rate after 4 months. Optima Chemical Group LLC prepared a 15-kilogram batch of the modified MST using the post synthesis procedure (Method

  12. Ionotropic glutamate receptors & CNS disorders.

    Science.gov (United States)

    Bowie, Derek

    2008-04-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although aetilogy is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual's susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor (AMPAR) trafficking are important to fragile X mental retardation and ectopic expression of kainate receptor (KAR) synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms.

  13. Intracellular synthesis of glutamic acid in Bacillus methylotrophicus SK19.001, a glutamate-independent poly(γ-glutamic acid)-producing strain.

    Science.gov (United States)

    Peng, Yingyun; Zhang, Tao; Mu, Wanmeng; Miao, Ming; Jiang, Bo

    2016-01-15

    Bacillus methylotrophicus SK19.001 is a glutamate-independent strain that produces poly(γ-glutamic acid) (γ-PGA), a polymer of D- and L-glutamic acids that possesses applications in food, the environment, agriculture, etc. This study was undertaken to explore the synthetic pathway of intracellular L- and D-glutamic acid in SK19.001 by investigating the effects of tricarboxylic acid cycle intermediates and different amino acids as metabolic precursors on the production of γ-PGA and analyzing the activities of the enzymes involved in the synthesis of L- and D-glutamate. Tricarboxylic acid cycle intermediates and amino acids could participate in the synthesis of γ-PGA via independent pathways in SK19.001. L-Aspartate aminotransferase, L-glutaminase and L-glutamate synthase were the enzymatic sources of L-glutamate. Glutamate racemase was responsible for the formation of D-glutamate for the synthesis of γ-PGA, and the synthetase had stereoselectivity for glutamate substrate. The enzymatic sources of L-glutamate were investigated for the first time in the glutamate-independent γ-PGA-producing strain, and multiple enzymatic sources of L-glutamate were verified in SK19.001, which will benefit efforts to improve production of γ-PGA with metabolic engineering strategies. © 2015 Society of Chemical Industry.

  14. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  15. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the decar

  16. The application of glutamic acid alpha-decarboxylase for the valorization of glutamic acid

    NARCIS (Netherlands)

    Lammens, T.M.; Biase, De Daniela; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Glutamic acid is an important constituent of waste streams from biofuels production. It is an interesting starting material for the synthesis of nitrogen containing bulk chemicals, thereby decreasing the dependency on fossil fuels. On the pathway from glutamic acid to a range of molecules, the decar

  17. Activation of Pedunculopontine Glutamate Neurons Is Reinforcing.

    Science.gov (United States)

    Yoo, Ji Hoon; Zell, Vivien; Wu, Johnathan; Punta, Cindy; Ramajayam, Nivedita; Shen, Xinyi; Faget, Lauren; Lilascharoen, Varoth; Lim, Byung Kook; Hnasko, Thomas S

    2017-01-04

    Dopamine transmission from midbrain ventral tegmental area (VTA) neurons underlies behavioral processes related to motivation and drug addiction. The pedunculopontine tegmental nucleus (PPTg) is a brainstem nucleus containing glutamate-, acetylcholine-, and GABA-releasing neurons with connections to basal ganglia and limbic brain regions. Here we investigated the role of PPTg glutamate neurons in reinforcement, with an emphasis on their projections to VTA dopamine neurons. We used cell-type-specific anterograde tracing and optogenetic methods to selectively label and manipulate glutamate projections from PPTg neurons in mice. We used anatomical, electrophysiological, and behavioral assays to determine their patterns of connectivity and ascribe functional roles in reinforcement. We found that photoactivation of PPTg glutamate cell bodies could serve as a direct positive reinforcer on intracranial self-photostimulation assays. Further, PPTg glutamate neurons directly innervate VTA; photostimulation of this pathway preferentially excites VTA dopamine neurons and is sufficient to induce behavioral reinforcement. These results demonstrate that ascending PPTg glutamate projections can drive motivated behavior, and PPTg to VTA synapses may represent an important target relevant to drug addiction and other mental health disorders. Uncovering brain circuits underlying reward-seeking is an important step toward understanding the circuit bases of drug addiction and other psychiatric disorders. The dopaminergic system emanating from the ventral tegmental area (VTA) plays a key role in regulating reward-seeking behaviors. We used optogenetics to demonstrate that the pedunculopontine tegmental nucleus sends glutamatergic projections to VTA dopamine neurons, and that stimulation of this circuit promotes behavioral reinforcement. The findings support a critical role for pedunculopontine tegmental nucleus glutamate neurotransmission in modulating VTA dopamine neuron activity and

  18. Exposure to Enriched Environment Decreases Neurobehavioral Deficits Induced by Neonatal Glutamate Toxicity

    Directory of Open Access Journals (Sweden)

    Peter Kiss

    2013-09-01

    Full Text Available Environmental enrichment is a popular strategy to enhance motor and cognitive performance and to counteract the effects of various harmful stimuli. The protective effects of enriched environment have been shown in traumatic, ischemic and toxic nervous system lesions. Monosodium glutamate (MSG is a commonly used taste enhancer causing excitotoxic effects when given in newborn animals. We have previously demonstrated that MSG leads to a delay in neurobehavioral development, as shown by the delayed appearance of neurological reflexes and maturation of motor coordination. In the present study we aimed at investigating whether environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal MSG treatment. Newborn pups were treated with MSG subcutaneously on postnatal days 1, 5 and 9. For environmental enrichment, we placed rats in larger cages, supplemented with different toys that were altered daily. Normal control and enriched control rats received saline treatment only. Physical parameters such as weight, day of eye opening, incisor eruption and ear unfolding were recorded. Animals were observed for appearance of reflexes such as negative geotaxis, righting reflexes, fore- and hindlimb grasp, fore- and hindlimb placing, sensory reflexes and gait. In cases of negative geotaxis, surface righting and gait, the time to perform the reflex was also recorded daily. For examining motor coordination, we performed grid walking, footfault, rope suspension, rota-rod, inclined board and walk initiation tests. We found that enriched environment alone did not lead to marked alterations in the course of development. On the other hand, MSG treatment caused a slight delay in reflex development and a pronounced delay in weight gain and motor coordination maturation. This delay in most signs and tests could be reversed by enriched environment: MSG-treated pups kept under enriched conditions showed no weight retardation, no reflex delay in

  19. In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan/Glutamic Acid Films

    Institute of Scientific and Technical Information of China (English)

    FENG Fang; LIU Yu; ZHAO Binyuan; HU Keao

    2009-01-01

    In vitrobiomineralization ofglutaraldehyde crosslinked chitosan/glutamicacid films were studied. IR and ESCA (electron spectroscopy for chemical analysis) determinations confirm that chitosan and glutamic acid are successfully crosslinked by glutaraldehyde to form chitosan-glutamic acid surfaces. Composite films were soaked in saturated Ca(OH)2 solution for 8 d and then immersed in simulated body fluid (SBF) for more than 20 d. Morphological characterizations and structure of cal-cium phosphate coatings deposited on the films were studied by SEM, XRD, and EDAX (energy dispersive X-ray analysis). Initially, the treatment in SBF results in the formation of single-layer cal-cium phosphate particles over the film surface. As immersion time increases, further nucleation and growth produce the simulated calcium-carbonate hydroxyapatite coating. ICP results show Ca/P ratio of calcium phosphate coating is a function of SBF immersion time. The inducing of glutamic acid improves the biomineralization property of chitosan films.

  20. Glutamic acid promotes monacolin K production and monacolin K biosynthetic gene cluster expression in Monascus.

    Science.gov (United States)

    Zhang, Chan; Liang, Jian; Yang, Le; Chai, Shiyuan; Zhang, Chenxi; Sun, Baoguo; Wang, Chengtao

    2017-12-01

    This study investigated the effects of glutamic acid on production of monacolin K and expression of the monacolin K biosynthetic gene cluster. When Monascus M1 was grown in glutamic medium instead of in the original medium, monacolin K production increased from 48.4 to 215.4 mg l(-1), monacolin K production increased by 3.5 times. Glutamic acid enhanced monacolin K production by upregulating the expression of mokB-mokI; on day 8, the expression level of mokA tended to decrease by Reverse Transcription-polymerase Chain Reaction. Our findings demonstrated that mokA was not a key gene responsible for the quantity of monacolin K production in the presence of glutamic acid. Observation of Monascus mycelium morphology using Scanning Electron Microscope showed glutamic acid significantly increased the content of Monascus mycelium, altered the permeability of Monascus mycelium, enhanced secretion of monacolin K from the cell, and reduced the monacolin K content in Monascus mycelium, thereby enhancing monacolin K production.

  1. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: MODIFIED MONOSODIUM TITANATE PHASE III FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.

    2010-09-01

    This document provides a final report of Phase III testing activities for the development of modified monosodium titanate (mMST), which exhibits improved strontium and actinide removal characteristics compared to the baseline MST material. The activities included characterization of the crystalline phases present at varying temperatures, solids settling characteristics, quantification of the peroxide content; evaluation of the post-synthesis gas release under different conditions; the extent of desorption of {sup 85}Sr, Np, and Pu under washing conditions; and the effects of age and radiation on the performance of the mMST. Key findings and conclusions include the following. The peroxide content of several mMST samples was determined using iodometric titration. The peroxide content was found to decrease with age or upon extended exposure to elevated temperature. A loss of peroxide was also measured after exposure of the material to an alkaline salt solution similar in composition to the simulated waste solution. To determine if the loss of peroxide with age affects the performance of the material, Sr and actinide removal tests were conducted with samples of varying age. The oldest sample (4 years and 8 months) did show lower Sr and Pu removal performance. When compared to the youngest sample tested (1 month), the oldest sample retained only 15% of the DF for Pu. Previous testing with this sample indicated no decrease in Pu removal performance up to an age of 30 months. No loss in Np removal performance was observed for any of the aged samples, and no uptake of uranium occurred at the typical sorbent loading of 0.2 g/L. Additional testing with a uranium only simulant and higher mMST loading (3.0 g/L) indicated a 10% increase of uranium uptake for a sample aged 3 years and 8 months when compared to the results of the same sample measured at an age of 1 year and 5 months. Performance testing with both baseline-MST and mMST that had been irradiated in a gamma source to

  2. Mechanistic insights into ferredoxin-NADP(H) reductase catalysis involving the conserved glutamate in the active site.

    Science.gov (United States)

    Dumit, Verónica I; Essigke, Timm; Cortez, Néstor; Ullmann, G Matthias

    2010-04-02

    Plant-type ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes harboring one molecule of noncovalently bound flavin adenine dinucleotide that catalyze reversible reactions between obligatory one-electron carriers and obligatory two-electron carriers. A glutamate next to the C-terminus is strictly conserved in FNR and has been proposed to function as proton donor/acceptor during catalysis. However, experimental studies of this proposed function led to contradicting conclusions about the role of this glutamate in the catalytic mechanism. In the present work, we study the titration behavior of the glutamate in the active site of FNR using theoretical methods. Protonation probabilities for maize FNR were computed for the reaction intermediates of the catalytic cycle by Poisson-Boltzmann electrostatic calculations and Metropolis Monte Carlo titration. The titration behavior of the highly conserved glutamate was found to vary depending on the bound substrates NADP(H) and ferredoxin and also on the redox states of these substrates and the flavin adenine dinucleotide. Our results support the involvement of the glutamate in the FNR catalytic mechanism not only as a proton donor but also as a key residue for stabilizing and destabilizing reaction intermediates. On the basis of our findings, we propose a model rationalizing the function of the glutamate in the reaction cycle, which allows reinterpretation of previous experimental results. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    OpenAIRE

    Jarvis Michael F; Hsieh Gin; Wilcox Denise; Brederson Jill-Desiree; Pai Madhavi; Lee Younglim; Bitner Robert S

    2011-01-01

    Abstract Background Intra-articular injection of monosodium iodoacetate (MIA) in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA) pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs) is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal ...

  4. GLT-1: The elusive presynaptic glutamate transporter.

    Science.gov (United States)

    Rimmele, Theresa S; Rosenberg, Paul A

    2016-09-01

    Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiological significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5-10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate

  5. Effects of Berberine on NLRP3 and IL-1β Expressions in Monocytic THP-1 Cells with Monosodium Urate Crystals-Induced Inflammation

    Science.gov (United States)

    Wen, Cai-Yu-Zhu; Chen, Zhe; Wang, Yu; Huang, Ying

    2016-01-01

    Background. Urate crystals-induced inflammation is a critical factor during the initiation of gouty arthritis. Berberine is well known for its anti-inflammatory activity. However, the underlying effects of berberine on monosodium urate crystals-induced inflammation remain obscure. Objectives. This study is set to explore the protective effect and mechanism of berberine on monosodium urate crystals-induced inflammation in human monocytic THP-1 cells. Methods. The mRNA levels of NLRP3 and IL-1β were measured by Real-Time PCR, and the protein levels of NLRP3 and IL-1β were determined by ELISA, Western blot, and immunofluorescence. Results. The NLRP3 and IL-1β expressions were significantly increased in model group compared to that in normal group (P < 0.05). Meanwhile, there was significant reduction in the expressions of NLRP3 and IL-1β mRNA in groups 6.25 μM berberine and 25 μM berberine when compared with model group (P < 0.05). Conclusions. Therefore, berberine alleviates monosodium urate crystals-induced inflammation by downregulating NLRP3 and IL-1β expressions. The regulatory effects of berberine may be related to the inactivation of NLRP3 inflammasome. PMID:27689075

  6. Effects of Berberine on NLRP3 and IL-1β Expressions in Monocytic THP-1 Cells with Monosodium Urate Crystals-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Ya-Fei Liu

    2016-01-01

    Full Text Available Background. Urate crystals-induced inflammation is a critical factor during the initiation of gouty arthritis. Berberine is well known for its anti-inflammatory activity. However, the underlying effects of berberine on monosodium urate crystals-induced inflammation remain obscure. Objectives. This study is set to explore the protective effect and mechanism of berberine on monosodium urate crystals-induced inflammation in human monocytic THP-1 cells. Methods. The mRNA levels of NLRP3 and IL-1β were measured by Real-Time PCR, and the protein levels of NLRP3 and IL-1β were determined by ELISA, Western blot, and immunofluorescence. Results. The NLRP3 and IL-1β expressions were significantly increased in model group compared to that in normal group (P<0.05. Meanwhile, there was significant reduction in the expressions of NLRP3 and IL-1β mRNA in groups 6.25 μM berberine and 25 μM berberine when compared with model group (P<0.05. Conclusions. Therefore, berberine alleviates monosodium urate crystals-induced inflammation by downregulating NLRP3 and IL-1β expressions. The regulatory effects of berberine may be related to the inactivation of NLRP3 inflammasome.

  7. Dual-Energy Computed Tomography of the Knee, Ankle, and Foot: Noninvasive Diagnosis of Gout and Quantification of Monosodium Urate in Tendons and Ligaments.

    Science.gov (United States)

    Fritz, Jan; Henes, Joerg C; Fuld, Matthew K; Fishman, Elliot K; Horger, Marius S

    2016-02-01

    Gout is a true crystal deposition arthropathy caused by the precipitation of monosodium urate into joints and periarticular soft tissues. It is the most common inflammatory arthropathy in men and women of older age with a male-to-female ratio of 3 to 8:1. The disease may progress from asymptomatic hyperuricemia through symptomatic acute gout attacks with asymptomatic periods into chronic symptomatic tophaceous gout. Although invasive arthrocentesis and demonstration of monosodium urate crystals on polarized light microscopy is definitive for the diagnosis of gout, dual-energy computed tomography (CT) allows for noninvasive visualization and reproducible volume quantification of monosodium urate crystals. Based on the high diagnostic performance, dual-energy CT has been included in the 2015 American College of Rheumatology/European League Against Rheumatism Collaborative Initiative Classification Criteria for Gout. Increasing evidence indicates the usefulness of dual-energy CT to guide the management of patients with suspected gout and monitor the effectiveness of urate-lowering medical therapy.

  8. 13C–Metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae

    OpenAIRE

    Tang, Yijin; Sieg, Alex; Trotter, Pamela J.

    2011-01-01

    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ~ 4 hours. NADP-dependent GDH a...

  9. Molecular physiology of vesicular glutamate transporters in the digestive system

    Institute of Scientific and Technical Information of China (English)

    Tao Li; Fayez K. Ghishan; Liqun Bai

    2005-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas,skin, and testis. The glutamate receptors and VGLUTs in digestivesystem have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs.

  10. The structure of glutamate transporters shows channel-like features

    NARCIS (Netherlands)

    Slotboom, DJ; Konings, WN; Lolkema, JS

    2001-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft and thus prevent neurotoxicity, The proteins belong to a large family of secondary transporters, which includes transporters from a variety of bacterial, archaeal and eukaryotic organis

  11. Regulation of Synaptic Transmission by Ambient Extracellular Glutamate

    OpenAIRE

    Featherstone, David E.; Scott A. Shippy

    2007-01-01

    Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are ~0.5 to ~5 μM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 μ...

  12. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  13. Pharmacological Treatment of Glutamate Excitotoxicity Following Traumatic Brain Injury

    Science.gov (United States)

    2009-01-14

    Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci. 1996 Jul 15;16(14):4322-34...19 Glutamate Receptor Antagonists...Glutamate excitotoxicity, another form of secondary injury, is defined as cell damage resulting from the overactivation of glutamate receptors . It

  14. 21 CFR 182.1047 - Glutamic acid hydrochloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Glutamic acid hydrochloride. 182.1047 Section 182.1047 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1047 Glutamic acid hydrochloride. (a) Product. Glutamic acid hydrochloride....

  15. Influence of Glutamic Acid on the Properties of Poly(xylitol glutamate sebacate Bioelastomer

    Directory of Open Access Journals (Sweden)

    Weifu Dong

    2013-11-01

    Full Text Available In order to further improve the biocompatibility of xylitol based poly(xylitol sebacate (PXS bioelastomer, a novel kind of amino acid based poly(xylitol glutamate sebacate (PXGS has been successfully prepared in this work by melt polycondensation of xylitol, N-Boc glutamic acid and sebacic acid. Differential scanning calorimetry (DSC results indicated the glass-transition temperatures could be decreased by feeding N-Boc glutamic acid. In comparison to PXS, PXGS exhibited comparable tensile strength and much higher elongation at break at the same ratio of acid/xylitol. The introduction of glutamic acid increased the hydrophilicity and in vitro degradation rate of the bioelastomer. It was found that PXGS exhibited excellent properties, such as tensile properties, biodegradability and hydrophilicity, which could be easily tuned by altering the feeding monomer ratios. The amino groups in the PXGS polyester side chains are readily functionalized, thus the biomelastomers can be considered as potential biomaterials for biomedical application.

  16. Evaluation of hydrogel-coated glutamate microsensors.

    Science.gov (United States)

    Oldenziel, Weite H; Dijkstra, Gerrit; Cremers, Thomas I F H; Westerink, Ben H C

    2006-05-15

    Glutamate microsensors form a promising analytical tool for monitoring neuronally derived glutamate directly in the brain. However, when a microsensor is implanted in brain tissue, many factors can diminish its performance. Consequently, a thorough characterization and evaluation of a microsensor is required concerning all factors that may possibly be encountered in vivo. The present report deals with the validation of a hydrogel-coated glutamate microsensor. This microsensor is constructed by coating a carbon fiber electrode (10-microm diameter; 300-500 microm long) with a five-component redox hydrogel, in which L-glutamate oxidase, horseradish peroxidase, and ascorbate oxidase are wired via poly(ethylene glycol) diglycidyl ether to an osmium-containing redox polymer. A thin Nafion coating completes the construction. Although this microsensor was previously used in vivo, information concerning its validation is limited. In the present study, attention was given to its selectivity, specificity, calibration, oxygen dependency, biofouling, operating potential dependency, and linear range. In addition, successful microsensor experiments in microdialysate, in vitro (in organotypic hippocampal slice cultures), and in vivo (in anesthesized rats) are shown.

  17. ¹³C-metabolic enrichment of glutamate in glutamate dehydrogenase mutants of Saccharomyces cerevisiae.

    Science.gov (United States)

    Tang, Yijin; Sieg, Alex; Trotter, Pamela J

    2011-10-20

    Glutamate dehydrogenases (GDH) interconvert α-ketoglutarate and glutamate. In yeast, NADP-dependent enzymes, encoded by GDH1 and GDH3, are reported to synthesize glutamate from α-ketoglutarate, while an NAD-dependent enzyme, encoded by GDH2, catalyzes the reverse. Cells were grown in acetate/raffinose (YNAceRaf) to examine the role(s) of these enzymes during aerobic metabolism. In YNAceRaf the doubling time of wild type, gdh2Δ, and gdh3Δ cells was comparable at ∼4 h. NADP-dependent GDH activity (Gdh1p+Gdh3p) in wild type, gdh2Δ, and gdh3Δ was decreased ∼80% and NAD-dependent activity (Gdh2p) in wild type and gdh3Δ was increased ∼20-fold in YNAceRaf as compared to glucose. Cells carrying the gdh1Δ allele did not divide in YNAceRaf, yet both the NADP-dependent (Gdh3p) and NAD-dependent (Gdh2p) GDH activity was ∼3-fold higher than in glucose. Metabolism of [1,2-(13)C]-acetate and analysis of carbon NMR spectra were used to examine glutamate metabolism. Incorporation of (13)C into glutamate was nearly undetectable in gdh1Δ cells, reflecting a GDH activity at <15% of wild type. Analysis of (13)C-enrichment of glutamate carbons indicates a decreased rate of glutamate biosynthesis from acetate in gdh2Δ and gdh3Δ strains as compared to wild type. Further, the relative complexity of (13)C-isotopomers at early time points was noticeably greater in gdh3Δ as compared to wild type and gdh2Δ cells. These in vivo data show that Gdh1p is the primary GDH enzyme and Gdh2p and Gdh3p play evident roles during aerobic glutamate metabolism.

  18. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China); Zhang, Shu [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Lang, Qiaolin [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Song, Jianxia; Han, Lihui [Key Laboratory of Marine Chemistry Theory and Technology of Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100 (China); Liu, Aihua, E-mail: liuah@qibebt.ac.cn [Laboratory for Biosensing, Key Laboratory of Biofuels, and Shandong Provinicial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy & Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049 (China)

    2015-07-16

    Highlights: • E. coli surface-dispalyed Gldh exhibiting excellent enzyme activity and stability. • Sensitive amperometric biosensor for glutamate using Gldh-bacteria and MWNTs. • The glutamate biosensor exhibited high specificity and stability. - Abstract: A novel L-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP{sup +}-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP{sup +} involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.

  19. Glutamate-induced swelling of cultured astrocytes is mediated by metabotropic glutamate receptor

    Institute of Scientific and Technical Information of China (English)

    袁芳; 王天佑

    1996-01-01

    The effects of glutamate and its agonists and antagonists on the swelling of cultured astrocytes were studied. Swelling of astrocytes was measured by [3H]-O-methyl-D-glucose uptake. Glutamate at 0.5, 1 and 10mmol/L and irons-l-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD), a metabotropic glutamate receptor (mGluR) agonist, at 1 mmol/L caused a significant increase in astrocytic volume, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) was not effective. L-2-amino-3-phosphonopropionic acid (L-AP3), an antagonist of mGluR, blocked the astrocytic swelling induced by trans-ACPD or glutamate. In Ca2+-free condition, glutamate was no longer effective. Swelling of astrocytes induced by glutamate was not blocked by CdCl2 at 20 μmol/L, but significantly reduced by CdCl2 at 300 μmol/L and dantrolene at 30 μmol/L. These findings indicate that mGluR activation results in astrocytic swelling and both extracellular calcium and internal calcium stores play important roles in the genes

  20. Uptake, distribution and elimination of monosodium methanearsonate following long term oral administration of the herbicide to sheep and goats.

    Science.gov (United States)

    Shariatpanahi, M; Anderson, A C

    1984-08-01

    The rate and extent of accumulation and washout of arsenic, during daily oral administration of the herbicide monosodium methanearsonate (MSMA) were evaluated in Iranian dairy sheep and goats. Subjects received a dose of 10 mg of MSMA as arsenic per kg of body weight daily for 28 consecutive days. The total arsenic concentration in blood and milk was measured during and after the period of MSMA administration while arsenic in urine and feces was measured for 10 days following administration of last dosage of MSMA. Arsenic was accumulated slowly during 28 days of MSMA administration and steady states were essentially complete in sheep after 20 days and in goats following 25 days of MSMA administration. Blood arsenic concentration decreased rapidly after termination of MSMA administration. In both test animals, the half-lives of washout were smaller than accumulation. The concentration of arsenic in the urine and feces of both species did not increase significantly over controls and animals were free of arsenic relatively shortly after administration stopped. These data indicate that arsenic from MSMA is mainly absorbed from gastrointestinal tract and is not significantly accumulated in the body. Arsenic is eliminated from body by way of urine and feces with urinary excretion being the most important route.

  1. Distribution and toxicity of monosodium methanearsonate following oral administration of the herbicide to dairy sheep and goats.

    Science.gov (United States)

    Shariatpanahi, M; Anderson, A C

    1984-01-01

    Iranian fat-tailed sheep and dairy goats were administered the herbicide monosodium methanearsonate orally at a dose of 10 mg. MSMA (as arsenic) per kg. of body weight. The concentration time curves of MSMA in the blood of sheep and goats followed a first order composite exponential equation of the form: Cb(t) = Ae- alpha t + Be- beta t - C degrees be-kat. Absorption, distribution and elimination of MSMA, therefore, corresponds to an open two-compartment model. Arsenic from MSMA was readily absorbed from gastrointestinal tract and distributed in the body fluids and the various tissues. Approximately 90% of the arsenic was excreted in the urine within 120 hrs and small amounts were also recovered in feces. Arsenic accumulation in the tissues was low and urinary excretion was the most important exit route. Arsenic concentrations in milk were low when compared to the controls, which indicates that arsenic is not excreted in the milk to significant levels. The absorption, distribution and overall elimination rate constants for the two animal species studied were statistically different at the 0.95 level of confidence which indicates that there are apparently differences in MSMA metabolism by sheep and goats.

  2. The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain

    Directory of Open Access Journals (Sweden)

    Sagar Devi

    2011-11-01

    Full Text Available Abstract Background Clinical studies of osteoarthritis (OA suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia was assessed. Spinal cord microglia (Iba1 staining and astrocyte (GFAP immunofluorescence activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed. Results Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p Conclusions Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.

  3. Effects of RuPeng15 Powder (RPP15 on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Y.-Y. Kou

    2015-01-01

    Full Text Available RuPeng15 Powder (RPP15 is a herbal multicompound remedy that originates from traditional Tibetan medicine and possesses antigout, anti-inflammatory, and antihyperuricemic properties based on the traditional conceptions. The present study was undertaken to evaluate the therapeutic effect of PRP15 in rat gouty arthritis induced by monosodium urate (MSU crystals. In the present study, we found that treatment with RPP15 (0.4, 0.8, and 1.2 g/kg in rats with gouty arthritis induced by MSU crystals significantly attenuated the knee swelling. Histomorphometric and immunohistochemistry analyses revealed that MSU-induced inflammatory cell infiltration and the elevated expressions of nuclear transcription factor-κB p65 (NF-κB p65 in synovial tissues were significantly inhibited, and enzyme-linked immunosorbent assay (ELISA result showed that MSU-induced high levels of tumor necrosis factor-alpha (TNF-α, interleukin-1 beta (IL-1β, and interleukin-8 (IL-8 in synovial fluid were reduced by treatment with RPP15 (0.4, 0.8, and 1.2 g/kg. We conclude that RPP15 may be a promising candidate for the development of a new treatment for gout and its activity of antigout may be partially related to inhibiting TNF-α, IL-1β, IL-8, and NF-κB p65 expression in the synovial tissues.

  4. Monosodium Urate in the Presence of RANKL Promotes Osteoclast Formation through Activation of c-Jun N-Terminal Kinase

    Directory of Open Access Journals (Sweden)

    Jung-Yoon Choe

    2015-01-01

    Full Text Available The aim of this study was to clarify the role of monosodium urate (MSU crystals in receptor activator of nuclear factor kB ligand- (RANKL- RANK-induced osteoclast formation. RAW 264.7 murine macrophage cells were incubated with MSU crystals or RANKL and differentiated into osteoclast-like cells as confirmed by staining for tartrate-resistant acid phosphatase (TRAP and actin ring, pit formation assay, and TRAP activity assay. MSU crystals in the presence of RANKL augmented osteoclast differentiation, with enhanced mRNA expression of NFATc1, cathepsin K, carbonic anhydrase II, and matrix metalloproteinase-9 (MMP-9, in comparison to RAW 264.7 macrophages incubated in the presence of RANKL alone. Treatment with both MSU crystals and RANKL induced osteoclast differentiation by activating downstream molecules in the RANKL-RANK pathway including tumor necrosis factor receptor-associated factor 6 (TRAF-6, JNK, c-Jun, and NFATc1. IL-1b produced in response to treatment with both MSU and RANKL is involved in osteoclast differentiation in part through the induction of TRAF-6 downstream of the IL-1b pathway. This study revealed that MSU crystals contribute to enhanced osteoclast formation through activation of RANKL-mediated pathways and recruitment of IL-1b. These findings suggest that MSU crystals might be a pathologic causative agent of bone destruction in gout.

  5. Augmented chondroprotective effect of coadministration of celecoxib and rebamipide in the monosodium iodoacetate rat model of osteoarthritis.

    Science.gov (United States)

    Moon, Su-Jin; Park, Jin-Sil; Jeong, Jeong-Hee; Yang, Eun-Ji; Park, Mi-Kyung; Kim, Eun-Kyung; Park, Sung-Hwan; Kim, Ho-Youn; Cho, Mi-La; Min, Jun-Ki

    2013-01-01

    Osteoarthritis (OA) is a degenerative joint disease characterized by the progressive loss of articular cartilage and chronic pain. Although cyclooxygenase-2 (COX-2) inhibitors such as celecoxib are recommended to patients at high risk of gastrointestinal (GI) adverse events, COX-2 inhibitors do not completely prevent GI adverse events. Rebamipide, a gastroprotective agent, has anti-inflammatory properties and acts as an oxygen radical scavenger. The aim of this study was to investigate the in vivo effects of coadministration of rebamipide and celecoxib in an OA rat model. OA was induced by intra-articular injection of monosodium iodoacetate. Oral administration of rebamipide was initiated on the day of OA induction. In this study, rebamipide showed antinociceptive properties and attenuated cartilage degeneration. Rebamipide reduced the expression of matrix metalloproteinase 13, interleukin-1β, inducible nitric oxide synthase, and nitrotyrosine in OA cartilage. OA rats treated with celecoxib in combination with rebamipide demonstrated a higher pain threshold than those treated with monotherapy. Histological examination also showed that the joints from OA animals treated with combination therapy demonstrated less cartilage damage than those of animals treated with monotherapy. We showed that the potential benefit of combination therapy with celecoxib and rebamipide on pain and cartilage degeneration in OA.

  6. Diff-Quik® staining method for detection and identification of monosodium urate and calcium pyrophosphate crystals in synovial fluids

    Directory of Open Access Journals (Sweden)

    M. Hammoud

    2011-09-01

    Full Text Available The aim of this study was to evaluate whether DQ could prove useful to identify monosodium urate (MSU and calcium pyrophosphate dehydrate (CPPD crystals on permanent mounted stained slides. To this end, we studied 27 synovial fluid (SF samples obtained from the knees of patients with the pseudogout (n=21 and acute gouty arthritis (n=6. Wet analysis for crystal detection and identification was performed within one hour of joint aspiration. In addition, we studied 16 inflammatory synovial effusions obtained from patients with knee arthritis not induced by crystals. For each SF, DQ stained slides were analyzed by 2 experienced doctors in SF analysis. The observers were blinded to the type of crystal present in the SF. Each slide was analyzed by compensated polarized and transmitted light microscopy. SF was considered positive if intracellular and/or extracellular crystals were clearly identified. In addition, the observers were asked to identify the type of the crystals using compensated polarized light microscopy. Sensitivity, specificity, accuracy, positive predictive value (PPV, and negative predictive value (NPV of the DQ staining method were determined. 51 true positive and 28 true negative specimens were correctly classified (39 CPPD samples, 12 MSU samples, and 28 samples of crystals-unrelated arthropathies. All MSU specimens were correctly diagnosed.

  7. Ibuprofen-loaded porous microspheres suppressed the progression of monosodium iodoacetate-induced osteoarthritis in a rat model.

    Science.gov (United States)

    Park, Jang Won; Yun, Young-Pil; Park, Kyeongsoon; Lee, Jae Yong; Kim, Hak-Jun; Kim, Sung Eun; Song, Hae-Ryong

    2016-11-01

    The objectives of this study were (1) to fabricate ibuprofen-loaded porous microspheres (IBU/PMSs), (2) to evaluate the in vitro anti-inflammatory effects of the microspheres using LPS-induced inflammation in cultured synoviocytes, and (3) to evaluate the in vivo effect of the IBU/PMSs on the progression of monosodium iodoacetate (MIA)-induced osteoarthritis (OA) in a rat model. A dose-dependent in vitro anti-inflammatory effect on pro-inflammatory cytokine markers (matrix metallopeptidase-3 (MMP-3), matrix metallopeptidase-13 (MMP-13), cyclooxygenase-2 (COX-2), a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5)), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α) was observed by confirming with real-time PCR analyses. In vivo, treatment with IBU/PMSs reduced MIA-stimulated mRNA expression of MMP-3, MMP-13, COX-2, ADAMTS-5, IL-6, and TNF-α in rat synoviocytes. In addition, we demonstrated that intra-articular IBU/PMSs suppressed the progression of MIA-induced OA in the rat model via anti-inflammatory mechanisms. In conclusion, IBU/PMSs are a promising therapeutic material to control the pain and progression of OA.

  8. Preliminary Study on Pain Reduction of Monosodium Iodoacetate-Induced Knee Osteoarthritis in Rats by Carbon Dioxide Laser Moxibustion

    Directory of Open Access Journals (Sweden)

    Fan Wu

    2014-01-01

    Full Text Available In order to study the effects of CO2 laser moxibustion on the pain and inflammatory cytokine expression in the spinal dorsal horn of rats with monosodium iodoacetate- (MIA- induced knee osteoarthritis (KOA, we designed an experiment by randomly assigning 8 SD rats into 3 groups, namely, a CO2 laser moxibustion group, a sham treatment group, and a blank control group. The treatment group received a laser moxibustion on acupoint Dubi (ST 35; 5 min/treatment, 1 treatment/day for 8 days, and after treatment, the rats exhibited significantly increased interhindpaw differences compared with their preinduction values. Meanwhile, cytokine microarray analysis showed that one cytokine (TIMP-1 was significantly upregulated and two cytokines (Agrin and MMP-8 were significantly downregulated in treatment group. The present study suggested that CO2 laser moxibustion created certain pain reduction in the rats with MIA-induced KOA and significantly inhibited the expression of most inflammatory cytokines in the ipsilateral spinal dorsal horn.

  9. Effects of Extract from Mangifera indica Leaf on Monosodium Urate Crystal-Induced Gouty Arthritis in Rats

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    2012-01-01

    Full Text Available The leaves of Mangifera indica L. (Anacardiaceae is used as a medicinal material in traditional herb medicine for a long time in India, China, and other Eastern Asian countries. Our present study investigated the therapeutic effects of the ethanol extract from Mangifera indica (EMI in rat with monosodium urate (MSU crystals-induced gouty arthritis. Effects of EMI (50, 100, and 200 mg/kg, p.o. administrated for 9 days on the ankle swelling, synovial tumor necrosis factor-alpha (TNF-α, and interleukin-1beta (IL-1β levels were assessed in MSU crystal rat. Data from our study showed that rat with gouty arthritis induced by MSU crystal demonstrated an elevation in ankle swelling, synovial TNF-α, IL-1β mRNA, and protein levels. Oral administration of 100 and 200 mg/kg EMI for 9 days reversed the abnormalities in ankle swelling, synovial TNF-α, IL-1β mRNA, and protein levels. The results indicated that the beneficial antigouty arthritis effect of EMI may be mediated, at least in part, by inhibiting TNF-α and IL-1β expression in the synovial tissues. Our study suggests that Mangifera indica and its extract may have a considerable potential for development as an anti-gouty arthritis agent for clinical application.

  10. THE HYDROTHERMAL REACTIONS OF MONOSODIUM TITANATE, CRYSTALLINE SILICOTITANATE AND SLUDGE IN THE MODULAR SALT PROCESS: A LITERATURE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Fondeur, F.; Pennebaker, F.; Fink, S.

    2010-11-11

    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  11. The prevalence of monosodium urate and calcium pyrophosphate crystals in synovial fluid from wrist and finger joints.

    Science.gov (United States)

    Galozzi, Paola; Oliviero, Francesca; Frallonardo, Paola; Favero, Marta; Hoxha, Ariela; Scanu, Anna; Lorenzin, Mariagrazia; Ortolan, Augusta; Punzi, Leonardo; Ramonda, Roberta

    2016-03-01

    The aim of this study was to assess the frequency of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals in synovial fluids (SFs) aspirated from wrist and finger joints of patients with previously diagnosed joint diseases. We reviewed the results of SF analysis of 1593 samples and identified 126 patients with effusions in the small joints of the hands and wrists. We reported from patients' medical files data about sex, age, diagnosis, disease duration and the microscopic SF results. The prevalence of CPP crystals in SF was 85.71% in CPP-crystals arthritis (CPP-CA), 19.35% in rheumatoid arthritis (RA), 13.89% in osteoarthritis (OA) and 0% in psoriatic arthritis (PsA), spondyloarthritis (SpA), gout and miscellanea. The prevalence of MSU crystals in SF was 83.3% in gout, 10% in PsA, 2.8% in OA and 0% in RA, SpA, miscellanea and CPP-CA. Consistent with previously reported data concerning the big joints, microcrystals can be frequently found also in the small joints of patients with previous diagnosis. The finding underlines the importance of analyzing SF from the hand and wrist joints in the attempt to identify comorbidities associated with the presence of crystals and to develop targeted treatment strategies.

  12. Deletion of glutamate dehydrogenase 1 (Glud1) in the central nervous system affects glutamate handling without altering synaptic transmission

    DEFF Research Database (Denmark)

    Frigerio, Francesca; Karaca, Melis; De Roo, Mathias;

    2012-01-01

    oxidative catabolism of glutamate in astrocytes, showing that GDH is required for Krebs cycle pathway. As revealed by NMR studies, brain glutamate levels remained unchanged, whereas glutamine levels were increased. This pattern was favored by up-regulation of astrocyte-type glutamate and glutamine...

  13. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes

    DEFF Research Database (Denmark)

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate...... synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle...

  14. Inhibitors of glutamate dehydrogenase block sodium-dependent glutamate uptake in rat brain membranes

    Directory of Open Access Journals (Sweden)

    Brendan S Whitelaw

    2013-09-01

    Full Text Available We recently found evidence for anatomic and physical linkages between the astroglial Na+-dependent glutamate transporters (GLT-1/EAAT2 and GLAST/EAAT1 and mitochondria. In these same studies, we found that the glutamate dehydrogenase (GDH inhibitor, epigallocatechin-monogallate (EGCG, inhibits both glutamate oxidation and Na+-dependent glutamate uptake in astrocytes. In the present study, we extend this finding by exploring the effects of EGCG on Na+-dependent L-[3H]-glutamate (Glu uptake in crude membranes (P2 prepared from rat brain cortex. In this preparation, uptake is almost exclusively mediated by GLT-1. EGCG inhibited L-[3H]-Glu uptake in cortical membranes with an IC50 value of 230 µM. We also studied the effects of two additional inhibitors of GDH, hexachlorophene (HCP and bithionol (BTH. Both of these compounds also caused concentration-dependent inhibition of glutamate uptake in cortical membranes. Pre-incubating with HCP for up to 15 min had no greater effect than that observed with no pre-incubation, showing that the effects occur rapidly. HCP decreased the Vmax for glutamate uptake without changing the Km, consistent with a non-competitive mechanism of action. EGCG, HCP, and BTH also inhibited Na+-dependent transport of D-[3H]-aspartate (Asp, a non-metabolizable substrate, and [3H]-γ-aminobutyric acid (GABA. In contrast to the forebrain, glutamate uptake in crude cerebellar membranes (P2 is likely mediated by GLAST (EAAT1. Therefore, the effects of these compounds were examined in cerebellar membranes. In this region, none of these compounds had any effect on uptake of either L-[3H]-Glu or D-[3H]-Asp, but they all inhibited [3H]-GABA uptake. Together these studies suggest that GDH is preferentially required for glutamate uptake in forebrain as compared to cerebellum, and GDH may be required for GABA uptake as well. They also provide further evidence for a functional linkage between glutamate transport and mitochondria.

  15. Identification of glutamate transporters and receptors in mouse testis

    Institute of Scientific and Technical Information of China (English)

    Jia-hua HU; Na YANG; Ying-hua MA; Jie JIANG; Jin-fu ZHANG; Jian FEI; Li-he GUO

    2004-01-01

    AIM: To investigate the presence of glutamate transporters and receptors in mouse testis. METHODS: Glutamate uptake analysis was performed to study the function of glutamate transporters in mouse testis. Comparative RT-PCR technique and sequencing analysis were used to study the expression of glutamate receptors and transporters in mouse testis. RESULTS: Mouse testis possessed glutamate uptake capacity with sodium-dependence. Vmax value of glutamate uptake was (1.60 ± 0.21) pmol/min per mg protein and Km value of glutamate uptake was (11.0±1.6) μmol/L in mouse testis according to saturation analysis. Furthermore, the uptake activity could be inhibited by DHK (GLT1 selective inhibitor) and THA (glutamate uptake inhibitor). In addition, RT-PCR results revealed that glutamate transporters (GLT1 and EAAC1) and ionotropic glutamate receptors (NR1, NR2B, GluR6 and KA2) were expressed in mouse testis. CONCLUSION: Glutamate transporters and receptors do exist in mouse testis.

  16. Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position Mitochondria Near Glutamate Transporters

    Science.gov (United States)

    Jackson, Joshua G.; O'Donnell, John C.; Takano, Hajime; Coulter, Douglas A.

    2014-01-01

    Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na+/K+-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na+/Ca2+ exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake. PMID:24478345

  17. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases.

    Science.gov (United States)

    Monnerie, Hubert; Le Roux, Peter D

    2008-09-01

    Brain cell vulnerability to neurologic insults varies greatly, depending on their neuronal subpopulation. Among cells that survive a pathological insult such as ischemia or brain trauma, some may undergo morphological and/or biochemical changes that could compromise brain function. We previously reported that surviving cortical GABAergic neurons exposed to glutamate in vitro displayed an NMDA receptor (NMDAR)-mediated alteration in the levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) [Monnerie, H., Le Roux, P., 2007. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp. Neurol. 205, 367-382]. In this study, we examined the mechanisms by which glutamate excitotoxicity caused a change in cortical GABAergic neurons' GAD protein levels. Removing extracellular calcium prevented the NMDAR-mediated decrease in GAD protein levels, measured using Western blot techniques, whereas inhibiting calcium entry through voltage-gated calcium channels had no effect. Glutamate's effect on GAD protein isoforms was significantly attenuated by preincubation with the cysteine protease inhibitor N-Acetyl-L-Leucyl-L-Leucyl-L-norleucinal (ALLN). Using class-specific protease inhibitors, we observed that ALLN's effect resulted from the blockade of calpain and cathepsin protease activities. Cell-free proteolysis assay confirmed that both proteases were involved in glutamate-induced alteration in GAD protein levels. Together these results suggest that glutamate-induced excitotoxic stimulation of NMDAR in cultured cortical neurons leads to altered GAD protein levels from GABAergic neurons through intracellular calcium increase and protease activation including calpain and cathepsin. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation

  18. The Glutamine-Glutamate/GABA Cycle

    DEFF Research Database (Denmark)

    Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse Kristoffer;

    2015-01-01

    inhibitor methionine sulfoximine and the tricarboxylic acid cycle (aconitase) inhibitors fluoro-acetate and -citrate. Acetate is metabolized exclusively by glial cells, and [(13)C]acetate is thus capable when used in combination with magnetic resonance spectroscopy or mass spectrometry, to provide......The operation of a glutamine-glutamate/GABA cycle in the brain consisting of the transfer of glutamine from astrocytes to neurons and neurotransmitter glutamate or GABA from neurons to astrocytes is a well-known concept. In neurons, glutamine is not only used for energy production and protein...... synthesis, as in other cells, but is also an essential precursor for biosynthesis of amino acid neurotransmitters. An excellent tool for the study of glutamine transfer from astrocytes to neurons is [(14)C]acetate or [(13)C]acetate and the glial specific enzyme inhibitors, i.e. the glutamine synthetase...

  19. Sertraline reduces glutamate uptake in human platelets.

    Science.gov (United States)

    Rodrigues, Débora Olmedo; Bristot, Ivi Juliana; Klamt, Fábio; Frizzo, Marcos Emílio

    2015-12-01

    Mitochondrial damage and declines in ATP levels have been recently attributed to sertraline. The effects of sertraline on different parameters were investigated in washed platelets from 18 healthy male volunteers, after 24h of drug exposure. Sertraline toxicity was observed only at the highest concentrations, 30 and 100 μM, which significantly reduced platelet viability to 76 ± 3% and 20 ± 2%, respectively. The same concentrations significantly decreased total ATP to 73 ± 3% and 13 ± 2%, respectively. Basal values of glycogen were not significantly affected by sertraline treatment. Glutamate uptake was significantly reduced after treatment with 3, 30 and 100 μM, by 28 ± 6%, 32 ± 5% and 54 ± 4%, respectively. Our data showed that sertraline at therapeutic concentrations does not compromise platelet viability and ATP levels, but they suggest that in a situation where extracellular glutamate levels are potentially increased, sertraline might aggravate an excitotoxic condition.

  20. PAR1 activation induces rapid changes in glutamate uptake and astrocyte morphology

    Science.gov (United States)

    Sweeney, Amanda M.; Fleming, Kelsey E.; McCauley, John P.; Rodriguez, Marvin F.; Martin, Elliot T.; Sousa, Alioscka A.; Leapman, Richard D.; Scimemi, Annalisa

    2017-01-01

    The G-protein coupled, protease-activated receptor 1 (PAR1) is a membrane protein expressed in astrocytes. Fine astrocytic processes are in tight contact with neurons and blood vessels and shape excitatory synaptic transmission due to their abundant expression of glutamate transporters. PAR1 is proteolytically-activated by bloodstream serine proteases also involved in the formation of blood clots. PAR1 activation has been suggested to play a key role in pathological states like thrombosis, hemostasis and inflammation. What remains unclear is whether PAR1 activation also regulates glutamate uptake in astrocytes and how this shapes excitatory synaptic transmission among neurons. Here we show that, in the mouse hippocampus, PAR1 activation induces a rapid structural re-organization of the neuropil surrounding glutamatergic synapses, which is associated with faster clearance of synaptically-released glutamate from the extracellular space. This effect can be recapitulated using realistic 3D Monte Carlo reaction-diffusion simulations, based on axial scanning transmission electron microscopy (STEM) tomography reconstructions of excitatory synapses. The faster glutamate clearance induced by PAR1 activation leads to short- and long-term changes in excitatory synaptic transmission. Together, these findings identify PAR1 as an important regulator of glutamatergic signaling in the hippocampus and a possible target molecule to limit brain damage during hemorrhagic stroke. PMID:28256580

  1. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.

    Science.gov (United States)

    Tian, Guangming; Wang, Qin; Wei, Xuetuan; Ma, Xin; Chen, Shouwen

    2017-04-01

    Poly-γ-glutamic acid (γ-PGA), a natural biopolymer, is widely used in cosmetics, medicine, food, water treatment, and agriculture owing to its features of moisture sequestration, cation chelation, non-toxicity and biodegradability. Intracellular glutamic acid, the substrate of γ-PGA, is a limiting factor for high yield in γ-PGA production. Bacillus subtilis and Bacillus licheniformis are both important γ-PGA producing strains, and B. subtilis synthesizes glutamic acid in vivo using the unique GOGAT/GS pathway. However, little is known about the glutamate synthesis pathway in B. licheniformis. The aim of this work was to characterize the glutamate dehydrogenase (RocG) in glutamic acid synthesis from B. licheniformis with both in vivo and in vitro experiments. By re-directing the carbon flux distribution, the rocG gene deletion mutant WX-02ΔrocG produced intracellular glutamic acid with a concentration of 90ng/log(CFU), which was only 23.7% that of the wild-type WX-02 (380ng/log(CFU)). Furthermore, the γ-PGA yield of mutant WX-02ΔrocG was 5.37g/L, a decrease of 45.3% compared to the wild type (9.82g/L). In vitro enzymatic assays of RocG showed that RocG has higher affinity for 2-oxoglutarate than glutamate, and the glutamate synthesis rate was far above degradation. This is probably the first study to reveal the glutamic acid synthesis pathway and the specific functions of RocG in B. licheniformis. The results indicate that γ-PGA production can be enhanced through improving intracellular glutamic acid synthesis.

  2. Glutamine and glutamate as vital metabolites

    Directory of Open Access Journals (Sweden)

    Newsholme P.

    2003-01-01

    Full Text Available Glucose is widely accepted as the primary nutrient for the maintenance and promotion of cell function. This metabolite leads to production of ATP, NADPH and precursors for the synthesis of macromolecules such as nucleic acids and phospholipids. We propose that, in addition to glucose, the 5-carbon amino acids glutamine and glutamate should be considered to be equally important for maintenance and promotion of cell function. The functions of glutamine/glutamate are many, i.e., they are substrates for protein synthesis, anabolic precursors for muscle growth, they regulate acid-base balance in the kidney, they are substrates for ureagenesis in the liver and for hepatic and renal gluconeogenesis, they act as an oxidative fuel for the intestine and cells of the immune system, provide inter-organ nitrogen transport, and act as precursors of neurotransmitter synthesis, of nucleotide and nucleic acid synthesis and of glutathione production. Many of these functions are interrelated with glucose metabolism. The specialized aspects of glutamine/glutamate metabolism of different glutamine-utilizing cells are discussed in the context of glucose requirements and cell function.

  3. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  4. Role of CB1 and CB2 cannabinoid receptors in the development of joint pain induced by monosodium iodoacetate.

    Science.gov (United States)

    La Porta, Carmen; Bura, Simona Andreea; Aracil-Fernández, Auxiliadora; Manzanares, Jorge; Maldonado, Rafael

    2013-01-01

    Joint pain is a common clinical problem for which both inflammatory and degenerative joint diseases are major causes. The purpose of this study was to investigate the role of CB1 and CB2 cannabinoid receptors in the behavioral, histological, and neurochemical alterations associated with joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for CB1 (CB1KO) and CB2 cannabinoid receptors (CB2KO) and transgenic mice overexpressing CB2 receptors (CB2xP). In addition, we evaluated the changes induced by MIA in gene expression of CB1 and CB2 cannabinoid receptors and μ-, δ- and κ-opioid receptors in the lumbar spinal cord of these mice. Wild-type mice, as well as CB1KO, CB2KO, and CB2xP mice, developed mechanical allodynia in the ipsilateral paw after MIA intra-articular injection. CB1KO and CB2KO demonstrated similar levels of mechanical allodynia of that observed in wild-type mice in the ipsilateral paw, whereas allodynia was significantly attenuated in CB2xP. Interestingly, CB2KO displayed a contralateral mirror image of pain developing mechanical allodynia also in the contralateral paw. All mouse lines developed similar histological changes after MIA intra-articular injection. Nevertheless, MIA intra-articular injection produced specific changes in the expression of cannabinoid and opioid receptor genes in lumbar spinal cord sections that were further modulated by the genetic alteration of the cannabinoid receptor system. These results revealed that CB2 receptor plays a predominant role in the control of joint pain manifestations and is involved in the adaptive changes induced in the opioid system under this pain state.

  5. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  6. Determination of Sodium Glutamate in Chicken powder by Amino Acid Autoanalyzer%氨基酸分析仪测定鸡粉调味料中谷氨酸钠的含量

    Institute of Scientific and Technical Information of China (English)

    朱惠绵; 冯志强; 罗小宝; 周兴起

    2013-01-01

    本文利用氨基酸自动分析仪测定鸡粉调味料中谷氨酸钠的含量,测得鸡粉调味科谷氨酸钠含量达0.27~0.32 g/g.该方法自动化程度高,重现性和准确度都较好,样品前处理简便易操作,经处理后直接上机分析,排出了其他物质的干扰,能够快速、准确地测出鸡粉中谷氨酸钠的含量.通过不同样品和相同样品两种加标方式,测得回收率可达到99.41~103.66%,方法精密度为0.39%.%This paper determined the content of sodium glutamate in chicken powder by amino acid autoanalyzer.The monosodium glutamate content in chicken powder was up to 0.27~0.32 g/g.This method had high degree of automation,reproducibility and accuracy.It was also easily operated with good reproducibility.Sample preparation was simple and direct.Its recovery can achieve 99.41~103.66% and the precision was 0.39 %.

  7. Pharmacokinetics of glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase and their blood glutamate-lowering activity in naïve rats.

    Science.gov (United States)

    Boyko, Matthew; Stepensky, David; Gruenbaum, Benjamin F; Gruenbaum, Shaun E; Melamed, Israel; Ohayon, Sharon; Glazer, Michael; Shapira, Yoram; Zlotnik, Alexander

    2012-10-01

    Traumatic brain injury (TBI) and stroke lead to elevated levels of glutamate in the brain that negatively affect the neurological outcomes in both animals and humans. Intravenous administration of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) enzymes can be used to lower the blood glutamate levels and to improve the neurological outcome following TBI and stroke. The objective of this study was to analyze the pharmacokinetics and to determine the glutamate-lowering effects of GOT and GPT enzymes in naïve rats. We determined the time course of serum GOT, GPT, and glutamate levels following a single intravenous administration of two different doses of each one of the studied enzymes. Forty-six male rats were randomly assigned into one of 5 treatment groups: saline (control), human GOT at dose 0.03 and 0.06 mg/kg and porcine GPT at dose 0.6 and 1.2 mg/kg. Blood samples were collected at baseline, 5 min, and 2, 4, 8, 12, and 24 h after the drug injection and GOT, GPT and glutamate levels were determined. The pharmacokinetics of both GOT and GPT followed one-compartment model, and both enzymes exhibited substantial glutamate-lowering effects following intravenous administration. Analysis of the pharmacokinetic data indicated that both enzymes were distributed predominantly in the blood (central circulation) and did not permeate to the peripheral organs and tissues. Several-hour delay was present between the time course of the enzyme levels and the glutamate-lowering effects (leading to clock-wise hysteresis on concentration-effect curves), apparently due to the time that is required to affect the pool of serum glutamate. We conclude that the interaction between the systemically-administered enzymes (GOT and GPT) and the glutamate takes place in the central circulation. Thus, glutamate-lowering effects of GOT and GPT apparently lead to redistribution of the excess glutamate from the brain's extracellular fluid into the blood and can

  8. A novel glutamate transport system in poly(γ-glutamic acid)-producing strain Bacillus subtilis CGMCC 0833.

    Science.gov (United States)

    Wu, Qun; Xu, Hong; Zhang, Dan; Ouyang, Pingkai

    2011-08-01

    Bacillus subtilis CGMCC 0833 is a poly(γ-glutamic acid) (γ-PGA)-producing strain. It has the capacity to tolerate high concentration of extracellular glutamate and to utilize glutamate actively. Such a high uptake capacity was owing to an active transport system for glutamate. Therefore, a specific transport system for L-glutamate has been observed in this strain. It was a novel transport process in which glutamate was symported with at least two protons, and an inward-directed sodium gradient had no stimulatory effect on it. K(m) and V(m) for glutamate transport were estimated to be 67 μM and 152 nmol⁻¹ min⁻¹ mg⁻¹ of protein, respectively. The transport system showed structural specificity and stereospecificity and was strongly dependent on extracellular pH. Moreover, it could be stimulated by Mg²⁺, NH₄⁺, and Ca²⁺. In addition, the glutamate transporter in this strain was studied at the molecular level. As there was no important mutation of the transporter protein, it appeared that the differences of glutamate transporter properties between this strain and other B. subtilis strains were not due to the differences of the amino acid sequence and the structure of transporter protein. This is the first extensive report on the properties of glutamate transport system in γ-PGA-producing strain.

  9. Topiramate antagonism of L-glutamate-induced paroxysms in planarians

    Science.gov (United States)

    Raffa, Robert B.; Finno, Kristin E.; Tallarida, Christopher S.; Rawls, Scott M.

    2010-01-01

    We recently reported that NMDA (N-Methyl-D-aspartate) and AMPA (α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid) induce concentration-dependent paroxysms in planarians (Dugesia dorotocephala). Since the postulated mechanisms of action of the sulfamate-substituted monosaccharide antiepileptic drug topiramate include inhibition of glutamate-activated ion channels, we tested the hypothesis that topiramate would inhibit glutamate-induced paroxysms in our model. We demonstrate that: (1) L-glutamate (1–10 mM), but not D-glutamate, induced dose-related paroxysms, and that (2) topiramate dose-relatedly (0.3–3 mM) inhibited L-glutamate-induced paroxysms. These results provide further evidence of a topiramate-sensitive glutamate receptor-mediated activity in this model. PMID:20863783

  10. From the Cover: Glutamate antagonists limit tumor growth

    Science.gov (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  11. [Determination of glutamic acid in biological material by capillary electrophoresis].

    Science.gov (United States)

    Narezhnaya, E; Krukier, I; Avrutskaya, V; Degtyareva, A; Igumnova, E A

    2015-01-01

    The conditions for the identification and determination of Glutamic acid by capillary zone electrophoresis without their preliminary derivatization have been optimized. The effect of concentration of buffer electrolyte and pH on determination of Glutamic acid has been investigated. It is shown that the 5 Mm borate buffer concentration and a pH 9.15 are optimal. Quantitative determination of glutamic acid has been carried out using a linear dependence between the concentration of the analyte and the area of the peak. The accuracy and reproducibility of the determination are confirmed by the method "introduced - found". Glutamic acid has been determined in the placenta homogenate. The duration of analysis doesn't exceed 30 minutes. The results showed a decrease in the level of glutamic acid in cases of pregnancy complicated by placental insufficiency compared with the physiological, and this fact allows to consider the level of glutamic acid as a possible marker of complicated pregnancy.

  12. Glutamate neurotransmission is affected in prenatally stressed offspring

    DEFF Research Database (Denmark)

    Adrover, Ezequiela; Pallarés, Maria Eugenia; Baier, Carlos Javier

    2015-01-01

    with synaptic loss. Since metabolism of glutamate is dependent on interactions between neurons and surrounding astroglia, our results suggest that glutamate neurotransmitter pathways might be impaired in the brain of prenatally stressed rats. To study the effect of prenatal stress on the metabolism...... and neurotransmitter function of glutamate, pregnant rats were subjected to restrain stress during the last week of gestation. Brains of the adult offspring were used to assess glutamate metabolism, uptake and release as well as expression of glutamate receptors and transporters. While glutamate metabolism...... was not affected it was found that prenatal stress (PS) changed the expression of the transporters, thus, producing a higher level of vesicular vGluT-1 in the frontal cortex (FCx) and elevated levels of GLT1 protein and messenger RNA in the hippocampus (HPC) of adult male PS offspring. We also observed increased...

  13. [Autoantibodies to glutamate and GABA in opiate addiction].

    Science.gov (United States)

    Vetrile, L A; Fomina, V G; Nevidimova, T I; Vetlugina, T P; Batukhtina, E I; Savochkina, D N; Zakharova, I A; Davydova, T V

    2015-01-01

    Blood serum from 129 patients with opium addiction at different stages of the disease and 63 donors (control group) was examined for the presence of autoantibodies to the exciting and inhibitory amino acids glutamate and GABA. It was shown enhanced production of autoantibodies to glutamate and GABA. Dependence of the level and frequency of detec- tion of autoantibodies to glutamate and GABA on the stage of the disease was revealed.

  14. Increased expression of cystine/glutamate antiporter in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Villoslada Pablo

    2011-06-01

    Full Text Available Abstract Background Glutamate excitotoxicity contributes to oligodendrocyte and tissue damage in multiple sclerosis (MS. Intriguingly, glutamate level in plasma and cerebrospinal fluid of MS patients is elevated, a feature which may be related to the pathophysiology of this disease. In addition to glutamate transporters, levels of extracellular glutamate are controlled by cystine/glutamate antiporter xc-, an exchanger that provides intracellular cystine for production of glutathione, the major cellular antioxidant. The objective of this study was to analyze the role of the system xc- in glutamate homeostasis alterations in MS pathology. Methods Primary cultures of human monocytes and the cell line U-937 were used to investigate the mechanism of glutamate release. Expression of cystine glutamate exchanger (xCT was quantified by quantitative PCR, Western blot, flow cytometry and immunohistochemistry in monocytes in vitro, in animals with experimental autoimmune encephalomyelitis (EAE, the animal model of MS, and in samples of MS patients. Results and discussion We show here that human activated monocytes release glutamate through cystine/glutamate antiporter xc- and that the expression of the catalytic subunit xCT is upregulated as a consequence of monocyte activation. In addition, xCT expression is also increased in EAE and in the disease proper. In the later, high expression of xCT occurs both in the central nervous system (CNS and in peripheral blood cells. In particular, cells from monocyte-macrophage-microglia lineage have higher xCT expression in MS and in EAE, indicating that immune activation upregulates xCT levels, which may result in higher glutamate release and contribution to excitotoxic damage to oligodendrocytes. Conclusions Together, these results reveal that increased expression of the cystine/glutamate antiporter system xc- in MS provides a link between inflammation and excitotoxicity in demyelinating diseases.

  15. Exercise increases mitochondrial glutamate oxidation in the mouse cerebral cortex.

    Science.gov (United States)

    Herbst, Eric A F; Holloway, Graham P

    2016-07-01

    The present study investigated the impact of acute exercise on stimulating mitochondrial respiratory function in mouse cerebral cortex. Where pyruvate-stimulated respiration was not affected by acute exercise, glutamate respiration was enhanced following the exercise bout. Additional assessment revealed that this affect was dependent on the presence of malate and did not occur when substituting glutamine for glutamate. As such, our results suggest that glutamate oxidation is enhanced with acute exercise through activation of the malate-aspartate shuttle.

  16. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    Science.gov (United States)

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  17. Relationship between Increase in Astrocytic GLT-1 Glutamate Transport and Late-LTP

    Science.gov (United States)

    Pita-Almenar, Juan D.; Zou, Shengwei; Colbert, Costa M.; Eskin, Arnold

    2012-01-01

    Na[superscript +]-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early…

  18. How Glutamate Is Managed by the Blood–Brain Barrier

    Science.gov (United States)

    Hawkins, Richard A.; Viña, Juan R.

    2016-01-01

    A facilitative transport system exists on the blood–brain barrier (BBB) that has been tacitly assumed to be a path for glutamate entry to the brain. However, glutamate is a non-essential amino acid whose brain content is much greater than plasma, and studies in vivo show that glutamate does not enter the brain in appreciable quantities except in those small regions with fenestrated capillaries (circumventricular organs). The situation became understandable when luminal (blood facing) and abluminal (brain facing) membranes were isolated and studied separately. Facilitative transport of glutamate and glutamine exists only on the luminal membranes, whereas Na+-dependent transport systems for glutamate, glutamine, and some other amino acids are present only on the abluminal membrane. The Na+-dependent cotransporters of the abluminal membrane are in a position to actively transport amino acids from the extracellular fluid (ECF) into the endothelial cells of the BBB. These powerful secondary active transporters couple with the energy of the Na+-gradient to move glutamate and glutamine into endothelial cells, whereupon glutamate can exit to the blood on the luminal facilitative glutamate transporter. Glutamine may also exit the brain via separate facilitative transport system that exists on the luminal membranes, or glutamine can be hydrolyzed to glutamate within the BBB, thereby releasing ammonia that is freely diffusible. The γ-glutamyl cycle participates indirectly by producing oxoproline (pyroglutamate), which stimulates almost all secondary active transporters yet discovered in the abluminal membranes of the BBB. PMID:27740595

  19. How Glutamate Is Managed by the Blood–Brain Barrier

    Directory of Open Access Journals (Sweden)

    Richard A. Hawkins

    2016-10-01

    Full Text Available A facilitative transport system exists on the blood–brain barrier (BBB that has been tacitly assumed to be a path for glutamate entry to the brain. However, glutamate is a non-essential amino acid whose brain content is much greater than plasma, and studies in vivo show that glutamate does not enter the brain in appreciable quantities except in those small regions with fenestrated capillaries (circumventricular organs. The situation became understandable when luminal (blood facing and abluminal (brain facing membranes were isolated and studied separately. Facilitative transport of glutamate and glutamine exists only on the luminal membranes, whereas Na+-dependent transport systems for glutamate, glutamine, and some other amino acids are present only on the abluminal membrane. The Na+-dependent cotransporters of the abluminal membrane are in a position to actively transport amino acids from the extracellular fluid (ECF into the endothelial cells of the BBB. These powerful secondary active transporters couple with the energy of the Na+-gradient to move glutamate and glutamine into endothelial cells, whereupon glutamate can exit to the blood on the luminal facilitative glutamate transporter. Glutamine may also exit the brain via separate facilitative transport system that exists on the luminal membranes, or glutamine can be hydrolyzed to glutamate within the BBB, thereby releasing ammonia that is freely diffusible. The γ-glutamyl cycle participates indirectly by producing oxoproline (pyroglutamate, which stimulates almost all secondary active transporters yet discovered in the abluminal membranes of the BBB.

  20. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS.

    Science.gov (United States)

    BALAZS, R

    1965-05-01

    1. Glutamate oxidation in brain and liver mitochondrial systems proceeds mainly through transamination with oxaloacetate followed by oxidation of the alpha-oxoglutarate formed. Both in the presence and absence of dinitrophenol in liver mitochondria this pathway accounted for almost 80% of the uptake of glutamate. In brain preparations the transamination pathway accounted for about 90% of the glutamate uptake. 2. The oxidation of [1-(14)C]- and [5-(14)C]-glutamate in brain preparations is compatible with utilization through the tricarboxylic acid cycle, either after the formation of alpha-oxoglutarate or after decarboxylation to form gamma-aminobutyrate. There is no indication of gamma-decarboxylation of glutamate. 3. The high respiratory control ratio obtained with glutamate as substrate in brain mitochondrial preparations is due to the low respiration rate in the absence of ADP: this results from the low rate of formation of oxaloacetate under these conditions. When oxaloacetate is made available by the addition of malate or of NAD(+), the respiration rate is increased to the level obtained with other substrates. 4. When the transamination pathway of glutamate oxidation was blocked with malonate, the uptake of glutamate was inhibited in the presence of ADP or ADP plus dinitrophenol by about 70 and 80% respectively in brain mitochondrial systems, whereas the inhibition was only about 50% in dinitrophenol-stimulated liver preparations. In unstimulated liver mitochondria in the presence of malonate there was a sixfold increase in the oxidation of glutamate by the glutamate-dehydrogenase pathway. Thus the operating activity of glutamate dehydrogenase is much less than the ;free' (non-latent) activity. 5. The following explanation is put forward for the control of glutamate metabolism in liver and brain mitochondrial preparations. The oxidation of glutamate by either pathway yields alpha-oxoglutarate, which is further metabolized. Since aspartate aminotransferase is

  1. Permanent uncoupling of male-specific CYP2C11 transcription/translation by perinatal glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Sarmistha; Das, Rajat Kumar; Giffear, Kelly A.; Shapiro, Bernard H., E-mail: shapirob@vet.upenn.edu

    2015-04-01

    Perinatal exposure of rats and mice to the typically reported 4 mg/g bd wt dose of monosodium glutamate (MSG) results in a complete block in GH secretion as well as obesity, growth retardation and a profound suppression of several cytochrome P450s, including CYP2C11, the predominant male-specific isoform — all irreversible effects. In contrast, we have found that a lower dose of the food additive, 2 mg/g bd wt on alternate days for the first 9 days of life results in a transient neonatal depletion of plasma GH, a subsequent permanent overexpression of CYP2C11 as well as subnormal (mini) GH pulse amplitudes in an otherwise normal adult masculine episodic GH profile. The overexpressed CYP2C11 was characterized by a 250% increase in mRNA, but only a 40 to 50% increase in CYP2C11 protein and its catalytic activity. Using freshly isolated hepatocytes as well as primary cultures exposed to the masculine-like episodic GH profile, we observed normal induction, activation, nuclear translocation and binding to the CYP2C11 promoter of the GH-dependent signal transducers required for CYP2C11 transcription. The disproportionately lower expression levels of CYP2C11 protein were associated with dramatically high expression levels of an aberrant, presumably nontranslated CYP2C11 mRNA, a 200% increase in CYP2C11 ubiquitination and a 70–80% decline in miRNAs associated, at normal levels, with a suppression of CYP2C expression. Whereas the GH-responsiveness of CYP2C7 and CYP2C6 as well as albumin was normal in the MSG-derived hepatocytes, the abnormal expression of CYP2C11 was permanent and irreversible. - Highlights: • A “low” neonatal dose of MSG causes an immediate but transient growth hormone depletion. • Adult circulating growth hormone contains mini pulses in an otherwise male profile. • CYP2C11 is permanently overexpressed > 250%; CYP2C6, 2C7 and albumin remain normal. • The bulk of the overexpressed CYP2C11 mRNA consists of an intron-retained form. • SOCS2

  2. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.

    OpenAIRE

    Avendaño, A; DeLuna, A.; Olivera, H; Valenzuela, L.; A. Gonzalez

    1997-01-01

    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to ...

  3. Repeated Cycles of Chronic Intermittent Ethanol Exposure Increases Basal Glutamate in the Nucleus Accumbens of Mice without affecting glutamate transport

    Directory of Open Access Journals (Sweden)

    William C. Griffin

    2015-02-01

    Full Text Available Repeated cycles of chronic intermittent ethanol (CIE exposure increase voluntary consumption of ethanol in mice. Previous work has shown that extracellular glutamate in the nucleus accumbens (NAc is significantly elevated in ethanol dependent mice and that pharmacologically manipulating glutamate concentrations in the NAc will alter ethanol drinking, indicating that glutamate homeostasis plays a crucial role in ethanol drinking in this model. The present studies were designed to measure extracellular glutamate at a time point in which mice would ordinarily be allowed voluntary access to ethanol in the CIE model and, additionally, to measure glutamate transport capacity in the NAc at the same time point. Extracellular glutamate was measured using quantitative microdialysis procedures. Glutamate transport capacity was measured under Na+ dependent and Na+ independent conditions to determine whether the function of excitatory amino acid transporters (EAATs; also known as system XAG or of system Xc- (Glial cysteine-glutamate exchanger was influenced by CIE exposure. The results of the quantitative microdialysis experiment confirm increased extracellular glutamate (~2 –fold in the NAc of CIE exposed mice (i.e. ethanol-dependent compared to non-dependent mice in the NAc, consistent with earlier work. However, the increase in extracellular glutamate was not due to altered transporter function in the NAc of ethanol-dependent mice, because neither Na+ dependent nor Na+ independent glutamate transport was significantly altered by CIE exposure. These findings point to the possibility that hyperexcitability of cortical-striatal pathways underlies the increases in extracellular glutamate found in the nucleus accumbens of ethanol-dependent mice.

  4. High-level inhibition of mitochondrial complexes III and IV is required to increase glutamate release from the nerve terminal

    LENUS (Irish Health Repository)

    Kilbride, Sean M

    2011-07-26

    Abstract Background The activities of mitochondrial complex III (ubiquinol-cytochrome c reductase, EC 1.10.2.2) and complex IV (cytochrome c oxidase EC 1.9.3.1) are reduced by 30-70% in Huntington\\'s disease and Alzheimer\\'s disease, respectively, and are associated with excitotoxic cell death in these disorders. In this study, we investigated the control that complexes III and complex IV exert on glutamate release from the isolated nerve terminal. Results Inhibition of complex III activity by 60-90% was necessary for a major increase in the rate of Ca2+-independent glutamate release to occur from isolated nerve terminals (synaptosomes) depolarized with 4-aminopyridine or KCl. Similarly, an 85-90% inhibition of complex IV activity was required before a major increase in the rate of Ca2+-independent glutamate release from depolarized synaptosomes was observed. Inhibition of complex III and IV activities by ~ 60% and above was required before rates of glutamate efflux from polarized synaptosomes were increased. Conclusions These results suggest that nerve terminal mitochondria possess high reserves of complex III and IV activity and that high inhibition thresholds must be reached before excess glutamate is released from the nerve terminal. The implications of the results in the context of the relationship between electron transport chain enzyme deficiencies and excitotoxicity in neurodegenerative disorders are discussed.

  5. Introduction to the Glutamate-Glutamine Cycle

    DEFF Research Database (Denmark)

    Sonnewald, Ursula; Schousboe, Arne

    2016-01-01

    released from neurons is transported into astrocytes, converted to glutamine which is subsequently returned to neurons and converted to glutamate by an enzyme the activity of which is much higher in neurons than in astrocytes. Originally this cycle was supposed to function in a stoichiometric fashion...... but more recent research has seriously questioned this.This volume of Advances in Neurobiology is intended to provide a detailed discussion of recent developments in research aimed at delineating the functional roles of the cycle taking into account that in order for this system to work there must...

  6. A novel reagentless glutamate microband biosensor for real-time cell toxicity monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, G.; Pemberton, R.M. [Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol, BS16 1QY (United Kingdom); Fielden, P.R. [Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB (United Kingdom); Hart, J.P., E-mail: john.hart@uwe.ac.uk [Centre for Research in Biosciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, Coldharbour Lane, Bristol, BS16 1QY (United Kingdom)

    2016-08-24

    A reagentless glutamate biosensor was applied to the determination of glutamate released from liver hepatocellular carcinoma cells (HepG2) in response to toxic challenge from various concentrations of paracetamol. A screen printed carbon electrode (SPCE) containing the electrocatalyst Meldola's Blue (MB-SPCE) served as the electron mediator for the oxidation of NADH. A mixture of the enzyme glutamate dehydrogenase (GLDH), cofactor nicotinamide adenine dinucleotide (NAD{sup +}) and the biopolymer chitosan (CHIT) were drop-coated onto the surface of the transducer (MB-SPCE) in a simple one step fabrication process. The reagentless biosensor was used with amperometry in stirred solution at an applied potential of +0.1 V (vs. Ag/AgCl). All experiments were carried out at the following conditions: pH 7, temperature 37 °C, atmosphere 5% CO{sub 2}. The linear range of the device was found to be 25–125 μM in phosphate buffer (75 mM, containing 0.05 M NaCl) and 25–150 μM in cell culture medium. The limits of detection (LOD) were found to be 1.2 μM and 4.2 μM based on three times signal to noise, using PBS and culture medium respectively. The sensitivity was calculated to be 106 nA μM{sup −1} cm{sup −2} and 210 nA μM{sup −1} cm{sup −2} in PBS and cell medium respectively. The response time was ∼60 s in an agitated solution. HepG2 cells were exposed to various concentrations of paracetamol (1 mM, 5 mM and 10 mM) in order to investigate the drug-induced release of glutamate into the culture medium in real time. Two toxicity studies were investigated using different methods of exposure and analysis. The first method consisted of a single measurement of the glutamate concentration, using the method of standard addition, after 24 h incubation. The concentrations of glutamate were found to be 52 μM, 93 μM and 177 μM, released on exposure to 1 mM, 5 mM and 10 mM paracetamol respectively. The second method involved the

  7. Identification and characterization of a bacterial glutamic peptidase

    Directory of Open Access Journals (Sweden)

    Jensen Kenneth

    2010-12-01

    Full Text Available Abstract Background Glutamic peptidases, from the MEROPS family G1, are a distinct group of peptidases characterized by a catalytic dyad consisting of a glutamate and a glutamine residue, optimal activity at acidic pH and insensitivity towards the microbial derived protease inhibitor, pepstatin. Previously, only glutamic peptidases derived from filamentous fungi have been characterized. Results We report the first characterization of a bacterial glutamic peptidase (pepG1, derived from the thermoacidophilic bacteria Alicyclobacillus sp. DSM 15716. The amino acid sequence identity between pepG1 and known fungal glutamic peptidases is only 24-30% but homology modeling, the presence of the glutamate/glutamine catalytic dyad and a number of highly conserved motifs strongly support the inclusion of pepG1 as a glutamic peptidase. Phylogenetic analysis places pepG1 and other putative bacterial and archaeal glutamic peptidases in a cluster separate from the fungal glutamic peptidases, indicating a divergent and independent evolution of bacterial and fungal glutamic peptidases. Purification of pepG1, heterologously expressed in Bacillus subtilis, was performed using hydrophobic interaction chromatography and ion exchange chromatography. The purified peptidase was characterized with respect to its physical properties. Temperature and pH optimums were found to be 60°C and pH 3-4, in agreement with the values observed for the fungal members of family G1. In addition, pepG1 was found to be pepstatin-insensitive, a characteristic signature of glutamic peptidases. Conclusions Based on the obtained results, we suggest that pepG1 can be added to the MEROPS family G1 as the first characterized bacterial member.

  8. Engagement of fatty acids with Toll-like receptor 2 drives interleukin-1beta production via the ASC/caspase 1 pathway in monosodium urate monohydrate crystal-induced gouty arthritis.

    NARCIS (Netherlands)

    Joosten, L.A.B.; Netea, M.G.; Mylona, E.; Koenders, M.I.; Malireddi, R.K.; Oosting, M.; Stienstra, R.; Veerdonk, F.L. van de; Stalenhoef, A.F.H.; Giamarellos-Bourboulis, E.J.; Kanneganti, T.D.; Meer, J.W.M. van der

    2010-01-01

    OBJECTIVE: The concept that intraarticular crystals of uric acid by themselves trigger episodes of painful gouty arthritis is inconsistent with the clinical reality. Patients with large deposits of monosodium urate monohydrate (MSU) crystals (tophi) do not necessarily experience gouty attacks. In fa

  9. Linking tricyclic antidepressants to ionotropic glutamate receptors.

    Science.gov (United States)

    Stoll, Laura; Gentile, Lisa

    2005-07-29

    Although tricyclic antidepressants have been in existence since the 1940s when they were discovered upon screening iminodibenzyl derivatives for other potential therapeutic uses, their mechanism of action has remained unclear [A. Goodman Gilman, T.W. Rall, A.S. Nies, P. Taylor, Goodman and Gilman's The Pharmacological Basis of Therapeutics, eighth ed., Pergamon Press, New York, 1990]. In addition to their ability to hinder the reuptake of biogenic amines, there is mounting evidence that the tricyclic antidepressants inhibit glutamate transmission. Here, intrinsic tryptophan fluorescence spectroscopy is used to document the binding of desipramine, a member of the tricyclic antidepressant family, to a well-defined extracellular glutamate binding domain (S1S2) of the GluR2 subunit of the amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. The binding is distinct from those of other known effectors of the receptor, including the endogenous sulfated neurosteroids pregnenolone sulfate and 3alpha-hydroxy-5beta-pregnan-20-one sulfate, and is consistent with a conformational change upon binding that is allosterically transmitted to the channel region of the receptor.

  10. Therapeutic Promise and Principles: Metabotropic Glutamate Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2008-01-01

    Full Text Available For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.

  11. Therapeutic promise and principles: metabotropic glutamate receptors.

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling

    2008-01-01

    For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.

  12. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum.

    Science.gov (United States)

    Cao, Yan; Duan, Zuoying; Shi, Zhongping

    2014-02-01

    Biotin is an important factor affecting the performance of glutamate fermentation by biotin auxotrophic Corynebacterium glutamicum and glutamate is over-produced only when initial biotin content is controlled at suitable levels or initial biotin is excessive but with Tween 40 addition during fermentation. The transcription levels of key enzymes at pyruvate, isocitrate and α-ketoglutarate metabolic nodes, as well as transport protein (TP) of glutamate were investigated under the conditions of varied biotin contents and Tween 40 supplementation. When biotin was insufficient, the genes encoding key enzymes and TP were down-regulated in the early production phase, in particular, the transcription level of isocitrate dehydrogenase (ICDH) which was only 2% of that of control. Although the cells' morphology transformation and TP level were not affected, low transcription level of ICDH led to lower final glutamate concentration (64 g/L). When biotin was excessive, the transcription levels of key enzymes were at comparable levels as those of control with ICDH as an exception, which was only 3-22% of control level throughout production phase. In this case, little intracellular glutamate accumulation (1.5 mg/g DCW) and impermeable membrane resulted in non glutamate secretion into broth, even though the quantity of TP was more than 10-folds of control level. Addition of Tween 40 when biotin was excessive stimulated the expression of all key enzymes and TP, intracellular glutamate content was much higher (10-12 mg/g DCW), and final glutamate concentration reached control level (75-80 g/L). Hence, the membrane alteration and TP were indispensable in glutamate secretion. Biotin and Tween 40 influenced the expression level of ICDH and glutamate efflux, thereby influencing glutamate production.

  13. In vitro evidence for the brain glutamate efflux hypothesis

    DEFF Research Database (Denmark)

    Helms, Hans Christian; Madelung, Rasmus; Waagepetersen, Helle Sønderby

    2012-01-01

    The concentration of the excitotoxic amino acid, L-glutamate, in brain interstitial fluid is tightly regulated by uptake transporters and metabolism in astrocytes and neurons. The aim of this study was to investigate the possible role of the blood-brain barrier endothelium in brain L-glutamate ho...

  14. Glutamate Efflux at the Blood-Brain Barrier

    DEFF Research Database (Denmark)

    Cederberg-Helms, Hans Christian; Uhd-Nielsen, Carsten; Brodin, Birger

    2014-01-01

    L-Glutamate is considered the most important excitatory amino acid in the mammalian brain. Strict control of its concentration in the brain interstitial fluid is important to maintain neurotransmission and avoid excitotoxicity. The role of astrocytes in handling L-glutamate transport and metaboli...

  15. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13 grams per deciliter of polymerized hemoglobin of bovine origin in modified Lactated Ringer's...

  16. Brain microdialysis of GABA and glutamate : What does it signify?

    NARCIS (Netherlands)

    Timmerman, W; Westerink, BHC

    1997-01-01

    Microdialysis has become a frequently used method to study extracellular levels of GABA and glutamate in the central nervous system. However, the fact that the major part of GABA and glutamate as measured by microdialysis does not fulfill the classical criteria for exocytotic release questions the v

  17. Application of a glutamate microsensor to brain tissue

    NARCIS (Netherlands)

    Oldenziel, Weite Hendrik

    2006-01-01

    The amino acid l-glutamate is one of the most important neurotransmitters in the central nervous system (CNS). It is involved in many physiological processes and consequently in the pathophysiology of several psychiatric, neurological and neurodegenerative disorders. Therefore, glutamate is an impor

  18. Influence of glutamic acid enantiomers on C-mineralization.

    Science.gov (United States)

    Formánek, Pavel; Vranová, Valerie; Lojková, Lea

    2015-02-01

    Seasonal dynamics in the mineralization of glutamic acid enantiomers in soils from selected ecosystems was determined and subjected to a range of treatments: ambient x elevated CO2 level and meadow x dense x thinned forest environment. Mineralization of glutamic acid was determined by incubation of the soil with 2 mg L- or D-glutamic acid g(-1) of dry soil to induce the maximum respiration rate. Mineralization of glutamic acid enantiomers in soils fluctuates over the course of a vegetation season, following a similar trend across a range of ecosystems. Mineralization is affected by environmental changes and management practices, including elevated CO2 level and thinning intensity. L-glutamic acid metabolism is more dependent on soil type as compared to metabolism of its D-enantiomer. The results support the hypothesis that the slower rate of D- compared to L- amino acid mineralization is due to different roles in anabolism and catabolism of the soil microbial community.

  19. A novel glutamate dehydrogenase from bovine brain: purification and characterization.

    Science.gov (United States)

    Lee, J; Kim, S W; Cho, S W

    1995-08-01

    A soluble form of novel glutamate dehydrogenase has been purified from bovine brain. The preparation was homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and composed of six identical subunits having a subunit size of 57,500 Da. The biochemical properties of glutamate dehydrogenase such as N-terminal amino acids sequences, kinetic parameters, amino acids analysis, and optimum pH were examined in both reductive amination of alpha-ketoglutarate and oxidative deamination of glutamate. N-terminal amino acid sequences of the bovine brain enzyme showed the significant differences in the first 5 amino acids compared to other glutamate dehydrogenases from various sources. These results indicate that glutamate dehydrogenase isolated from bovine brain is a novel polypeptide.

  20. Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide.

    Science.gov (United States)

    Zhao, J; Verwer, R W H; van Wamelen, D J; Qi, X-R; Gao, S-F; Lucassen, P J; Swaab, D F

    2016-11-01

    There are indications for changes in glutamate metabolism in relation to depression or suicide. The glutamate-glutamine cycle and neuronal/glial glutamate transporters mediate the uptake of the glutamate and glutamine. The expression of various components of the glutamate-glutamine cycle and the neuronal/glial glutamate transporters was determined by qPCR in postmortem prefrontal cortex. The anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) were selected from young MDD patients who had committed suicide (MDD-S; n = 17), from MDD patients who died of non-suicide related causes (MDD-NS; n = 7) and from matched control subjects (n = 12). We also compared elderly depressed patients who had not committed suicide (n = 14) with matched control subjects (n = 22). We found that neuronal located components (EAAT3, EAAT4, ASCT1, SNAT1, SNAT2) of the glutamate-glutamine cycle were increased in the ACC while the astroglia located components (EAAT1, EAAT2, GLUL) were decreased in the DLPFC of MDD-S patients. In contrast, most of the components in the cycle were increased in the DLPFC of MDD-NS patients. In conclusion, the glutamate-glutamine cycle - and thus glutamine transmission - is differentially affected in depressed suicide patients and depressed non-suicide patients in an area specific way. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Glutamate monitoring in vitro and in vivo: recent progress in the field of glutamate biosensors

    DEFF Research Database (Denmark)

    Rieben, Nathalie Ines; Rose, Nadia Cherouati; Martinez, Karen Laurence

    2009-01-01

    , and different techniques have been developed to this end. This review presents and discusses these techniques, especially the recent progress in the field of glutamate biosensors, as well as the great potential of nanotechnology in glutamate sensing. Microdialysis coupled to analytical detection techniques...

  2. Untangling the glutamate dehydrogenase allosteric nightmare.

    Science.gov (United States)

    Smith, Thomas J; Stanley, Charles A

    2008-11-01

    Glutamate dehydrogenase (GDH) is found in all living organisms, but only animal GDH is regulated by a large repertoire of metabolites. More than 50 years of research to better understand the mechanism and role of this allosteric network has been frustrated by its sheer complexity. However, recent studies have begun to tease out how and why this complex behavior evolved. Much of GDH regulation probably occurs by controlling a complex ballet of motion necessary for catalytic turnover and has evolved concomitantly with a long antenna-like feature of the structure of the enzyme. Ciliates, the 'missing link' in GDH evolution, might have created the antenna to accommodate changing organelle functions and was refined in humans to, at least in part, link amino acid catabolism with insulin secretion.

  3. Co-localization of Gamma-Aminobutyric Acid and Glutamate in Neurons of the Spider Central Nervous System.

    Science.gov (United States)

    Fabian-Fine, Ruth; Meisner, Shannon; Torkkeli, Päivi H; Meinertzhagen, Ian A

    2015-12-01

    Spider sensory neurons with cell bodies close to various sensory organs are innervated by putative efferent axons from the central nervous system (CNS). Light and electronmicroscopic imaging of immunolabeled neurons has demonstrated that neurotransmitters present at peripheral synapses include γ-aminobutyric acid (GABA), glutamate and octopamine. Moreover, electrophysiological studies show that these neurotransmitters modulate the sensitivity of peripheral sensory neurons. Here, we undertook immunocytochemical investigations to characterize GABA and glutamate-immunoreactive neurons in three-dimensional reconstructions of the spider CNS. We document that both neurotransmitters are abundant in morphologically distinct neurons throughout the CNS. Labeling for the vesicular transporters, VGAT for GABA and VGLUT for glutamate, showed corresponding patterns, supporting the specificity of antibody binding. Whereas some neurons displayed strong immunolabeling, others were only weakly labeled. Double labeling showed that a subpopulation of weakly labeled neurons present in all ganglia expresses both GABA and glutamate. Double labeled, strongly and weakly labeled GABA and glutamate immunoreactive axons were also observed in the periphery along muscle fibers and peripheral sensory neurons. Electron microscopic investigations showed presynaptic profiles of various diameters with mixed vesicle populations innervating muscle tissue as well as sensory neurons. Our findings provide evidence that: (1) sensory neurons and muscle fibers are innervated by morphologically distinct, centrally located GABA- and glutamate immunoreactive neurons; (2) a subpopulation of these neurons may co-release both neurotransmitters; and (3) sensory neurons and muscles are innervated by all of these neurochemically and morphologically distinct types of neurons. The biochemical diversity of presynaptic innervation may contribute to how spiders filter natural stimuli and coordinate appropriate response

  4. Glutamate and GABA in appetite regulation

    Directory of Open Access Journals (Sweden)

    Teresa Cardoso Delgado

    2013-08-01

    Full Text Available Appetite is regulated by a coordinated interplay between gut, adipose tissue and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms.Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using 13C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-13C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-13C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the

  5. Glutamate and GABA in Appetite Regulation.

    Science.gov (United States)

    Delgado, Teresa C

    2013-01-01

    Appetite is regulated by a coordinated interplay between gut, adipose tissue, and brain. A primary site for the regulation of appetite is the hypothalamus where interaction between orexigenic neurons, expressing Neuropeptide Y/Agouti-related protein, and anorexigenic neurons, expressing Pro-opiomelanocortin cocaine/Amphetamine-related transcript, controls energy homeostasis. Within the hypothalamus, several peripheral signals have been shown to modulate the activity of these neurons, including the orexigenic peptide ghrelin and the anorexigenic hormones insulin and leptin. In addition to the accumulated knowledge on neuropeptide signaling, presence and function of amino acid neurotransmitters in key hypothalamic neurons brought a new light into appetite regulation. Therefore, the principal aim of this review will be to describe the current knowledge of the role of amino acid neurotransmitters in the mechanism of neuronal activation during appetite regulation and the associated neuronal-astrocytic metabolic coupling mechanisms. Glutamate and GABA dominate synaptic transmission in the hypothalamus and administration of their receptors agonists into hypothalamic nuclei stimulates feeding. By using (13)C High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy based analysis, the Cerdán group has shown that increased neuronal firing in mice hypothalamus, as triggered by appetite during the feeding-fasting paradigm, may stimulate the use of lactate as neuronal fuel leading to increased astrocytic glucose consumption and glycolysis. Moreover, fasted mice showed increased hypothalamic [2-(13)C]GABA content, which may be explained by the existence of GABAergic neurons in key appetite regulation hypothalamic nuclei. Interestingly, increased [2-(13)C]GABA concentration in the hypothalamus of fasted animals appears to result mainly from reduction in GABA metabolizing pathways, rather than increased GABA synthesis by augmented activity of the glutamate

  6. Calcium regulates glutamate dehydrogenase and poly-γ-glutamic acid synthesis in Bacillus natto.

    Science.gov (United States)

    Meng, Yonghong; Dong, Guiru; Zhang, Chen; Ren, Yuanyuan; Qu, Yuling; Chen, Weifeng

    2016-04-01

    To study the effect of Ca(2+) on glutamate dehydrogenase (GDH) and its role in poly-γ-glutamic acid (γ-PGA) synthesis in Bacillus natto HSF 1410. When the concentration of Ca(2+) varied from 0 to 0.1 g/l in the growth medium of B. natto HSF 1410, γ-PGA production increased from 6.8 to 9.7 g/l, while GDH specific activity and NH4Cl consumption improved from 183 to 295 U/mg and from 0.65 to 0.77 g/l, respectively. GDH with α-ketoglutarate as substrate primarily used NADPH as coenzyme with a K m of 0.08 mM. GDH was responsible for the synthesis of endogenous glutamate. The specific activity of GDH remained essentially unchanged in the presence of CaCl2 (0.05-0.2 g/l) in vitro. However, the specific activity of GDH and its expression was significantly increased by CaCl2 in vivo. Therefore, the regulation of GDH and PGA synthesis by Ca(2+) is an intracellular process. Calcium regulation may be an effective approach for producing γ-PGA on an industrial scale.

  7. TAILORING INORGANIC SORBENTS FOR SRS STRONTIUM AND ACTINIDE SEPARATIONS: OPTIMIZED MONOSODIUM TITANATEPHASE II INTERIM REPORT FOR EXTERNAL RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D; Michael Poirier, M; Mark Barnes, M; Mary Thompson, M

    2006-08-31

    This document provides an interim summary report of Phase II testing activities for the development of a modified monosodium titanate (MST) that exhibits improved strontium and actinide removal characteristics compared to the baseline MST materials. The activities included determining the key synthesis conditions for preparation of the modified MST, preparation of the modified MST at a larger laboratory scale, demonstration of the strontium and actinide removal characteristics with actual tank waste supernate and characterization of the modified MST. Key findings and conclusions include the following: (1) Samples of the modified MST prepared by Method 2 and Method 3 exhibited the best combination of strontium and actinide removal. (2) We selected Method 3 to scale up and test performance with actual waste solution. (3) We successfully prepared three batches of the modified MST using the Method 3 procedure at a 25-gram scale. (4) Performance tests indicated successful scale-up to the 25-gram scale with excellent performance and reproducibility among each of the three batches. For example, the plutonium decontamination factors (6-hour contact time) for the modified MST samples averaged 13 times higher than that of the baseline MST sample at half the sorbent concentration (0.2 g L{sup -1} for modified MST versus 0.4 g L{sup -1} for baseline MST). (5) Performance tests with actual waste supernate demonstrated that the modified MST exhibited better strontium and plutonium removal performance than that of the baseline MST. For example, the decontamination factors for the modified MST measured 2.6 times higher for strontium and between 5.2 to 11 times higher for plutonium compared to the baseline MST sample. The modified MST did not exhibit improved neptunium removal performance over that of the baseline MST. (6) Two strikes of the modified MST provided increased removal of strontium and actinides from actual waste compared to a single strike. The improved performance

  8. FATE OF FISSILE MATERIAL BOUND TO MONOSODIUM TITANATE DURING COOPER CATALYZED PEROXIDE OXIDATION OF TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.

    2012-08-09

    At the Savannah River Site (SRS), Tank 48H currently holds approximately 240,000 gallons of slurry which contains potassium and cesium tetraphenylborate (TPB). A copper catalyzed peroxide oxidation (CCPO) reaction is currently being examined as a method for destroying the TPB present in Tank 48H. Part of the development of that process includes an examination of the fate of the Tank 48H fissile material which is adsorbed onto monosodium titanate (MST) particles. This report details results from experiments designed to examine the potential degradation of MST during CCPO processing and the subsequent fate of the adsorbed fissile material. Experiments were conducted to simulate the CCPO process on MST solids loaded with sorbates in a simplified Tank 48H simulant. Loaded MST solids were placed into the Tank 48H simplified simulant without TPB, and the experiments were then carried through acid addition (pH adjustment to 11), peroxide addition, holding at temperature (50 C) for one week, and finally NaOH addition to bring the free hydroxide concentration to a target concentration of 1 M. Testing was conducted without TPB to show the maximum possible impact on MST since the competing oxidation of TPB with peroxide was absent. In addition, the Cu catalyst was also omitted, which will maximize the interaction of H{sub 2}O{sub 2} with the MST; however, the results may be non-conservative assuming the Cu-peroxide active intermediate is more reactive than the peroxide radical itself. The study found that both U and Pu desorb from the MST when the peroxide addition begins, although to different extents. Virtually all of the U goes into solution at the beginning of the peroxide addition, whereas Pu reaches a maximum of {approx}34% leached during the peroxide addition. Ti from the MST was also found to come into solution during the peroxide addition. Therefore, Ti is present with the fissile in solution. After the peroxide addition is complete, the Pu and Ti are found to

  9. Conformation of protonated glutamic acid at room and cryogenic temperatures.

    Science.gov (United States)

    Bouchet, Aude; Klyne, Johanna; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Dopfer, Otto

    2017-05-03

    Recognition properties of biologically relevant molecules depend on their conformation. Herein, the conformation of protonated glutamic acid (H(+)Glu) isolated in quadruple ion traps is characterized by vibrational spectroscopy at room and cryogenic temperatures and dispersion-corrected density functional theory calculations at the B3LYP-D3/aug-cc-pVTZ level. The infrared multiple photon dissociation (IRMPD) spectrum recorded in the fingerprint range at room temperature using an IR free electron laser is attributed to the two most stable and nearly isoenergetic conformations (1-cc and 2-cc) with roughly equal population (ΔG298 = 0.0 kJ mol(-1)). Both have bridging C[double bond, length as m-dash]O(HNH)(+)O[double bond, length as m-dash]C ionic H-bonds of rather different strengths but cannot be distinguished by their similar IRMPD spectra. In contrast, the higher-resolution single-photon IRPD spectrum of H2-tagged H(+)Glu recorded in the conformation-sensitive X-H stretch range in a trap held at 10 K distinguishes both conformers. At low temperature, 1-cc is roughly twice more abundant than 2-cc, in line with its slightly lower calculated energy (ΔE0 = 0.5 kJ mol(-1)). This example illustrates the importance of cryogenic cooling, single-photon absorption conditions, and the consideration of the X-H stretch range for the identification of biomolecular conformations involving hydrogen bonds.

  10. Glutamine-Glutamate Cycle Flux Is Similar in Cultured Astrocytes and Brain and Both Glutamate Production and Oxidation Are Mainly Catalyzed by Aspartate Aminotransferase

    Directory of Open Access Journals (Sweden)

    Leif Hertz

    2017-02-01

    Full Text Available The glutamine-glutamate cycle provides neurons with astrocyte-generated glutamate/γ-aminobutyric acid (GABA and oxidizes glutamate in astrocytes, and it returns released transmitter glutamate/GABA to neurons after astrocytic uptake. This review deals primarily with the glutamate/GABA generation/oxidation, although it also shows similarity between metabolic rates in cultured astrocytes and intact brain. A key point is identification of the enzyme(s converting astrocytic α-ketoglutarate to glutamate and vice versa. Most experiments in cultured astrocytes, including those by one of us, suggest that glutamate formation is catalyzed by aspartate aminotransferase (AAT and its degradation by glutamate dehydrogenase (GDH. Strongly supported by results shown in Table 1 we now propose that both reactions are primarily catalyzed by AAT. This is possible because the formation occurs in the cytosol and the degradation in mitochondria and they are temporally separate. High glutamate/glutamine concentrations abolish the need for glutamate production from α-ketoglutarate and due to metabolic coupling between glutamate synthesis and oxidation these high concentrations render AAT-mediated glutamate oxidation impossible. This necessitates the use of GDH under these conditions, shown by insensitivity of the oxidation to the transamination inhibitor aminooxyacetic acid (AOAA. Experiments using lower glutamate/glutamine concentration show inhibition of glutamate oxidation by AOAA, consistent with the coupled transamination reactions described here.

  11. Posttranslational Modification Biology of Glutamate Receptors and Drug Addiction

    Directory of Open Access Journals (Sweden)

    Li-Min eMao

    2011-03-01

    Full Text Available Posttranslational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues on their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling and protein-protein interactions, subcellular redistribution (trafficking, endocytosis, synaptic delivery and clustering, and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamines. Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.

  12. Role of aminotransferases in glutamate metabolism of human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ellinger, James J. [University of Wisconsin-Madison, Department of Biochemistry (United States); Lewis, Ian A. [Princeton University, Lewis-Sigler Institute for Integrative Genomics (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, Department of Biochemistry (United States)

    2011-04-15

    Human erythrocytes require a continual supply of glutamate to support glutathione synthesis, but are unable to transport this amino acid across their cell membrane. Consequently, erythrocytes rely on de novo glutamate biosynthesis from {alpha}-ketoglutarate and glutamine to maintain intracellular levels of glutamate. Erythrocytic glutamate biosynthesis is catalyzed by three enzymes, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and glutamine aminohydrolase (GA). Although the presence of these enzymes in RBCs has been well documented, the relative contributions of each pathway have not been established. Understanding the relative contributions of each biosynthetic pathway is critical for designing effective therapies for sickle cell disease, hemolytic anemia, pulmonary hypertension, and other glutathione-related disorders. In this study, we use multidimensional {sup 1}H-{sup 13}C nuclear magnetic resonance (NMR) spectroscopy and multiple reaction mode mass spectrometry (MRM-MS) to measure the kinetics of de novo glutamate biosynthesis via AST, ALT, and GA in intact cells and RBC lysates. We show that up to 89% of the erythrocyte glutamate pool can be derived from ALT and that ALT-derived glutamate is subsequently used for glutathione synthesis.

  13. FURTHER DEVELOPMENT OF MODIFIED MONOSODIUM TITANATE, AN IMPROVED SORBENT FOR PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.; Fondeur, F.; Fink, S.

    2011-01-12

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for Cs-137 removal, and sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239, and Pu-240. This paper describes recent results from the development of an improved titanate material that exhibits increased removal kinetics and effective capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  14. Immobilization of Ni–Pd/core–shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Huicheng, E-mail: doyhc@126.com [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008 (China); School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530008 (China); Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, 530008 (China); Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Guangxi University for Nationalities, Nanning, 530008 (China); Ma, Zhenzhen [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China); Wu, Zhaoyang, E-mail: zywu@hnu.edu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 (China)

    2015-10-08

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni–Pd/core–shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni–Pd/core–shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM{sup −1} cm{sup −2}), and a wide, useful linear range (0.1–500 μM). No interference from potential interfering species such as L-cysteine, ascorbic acid, and L-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. - Highlights: • Ni–Pd/core–shell nanoparticles were synthesized. • Nanoparticles were immobilized onto electrodes through thermal polymerization. • The modified sensor exhibited excellent stability and sensitivity for glutamate detection. • The biosensor exhibited remarkable electrocatalytic activity toward glutamate. • The sensor successfully detected glutamate in tomato soup samples.

  15. Study on Pretreatment Technology of Ion-exchange Waste water from the Production of Monosodium L-glutamate%味精废水中离交废水的预处理技术

    Institute of Scientific and Technical Information of China (English)

    白晓慧; 贺兰喜

    2001-01-01

    采用铁碳法、吹脱法和化学沉淀法对味精废水中离交废水的预处理进行了中试和小试.结果表明,以铸铁屑为主的Fe-C法,当HRT为2 h时,pH从1.97升至4.88,可大大减少后续中和吹氨所需石灰量,但Fe-C还原和加石灰调节pH处理成本相差并不大,Fe-C还原对去除COD、氨氮和提高可生化性无明显效果.pH中和至9.5~10,鼓气量在100m3/h左右,水温加至55℃左右,经8 h,可将原水NH4+-N从12 mg/L左右降至4 g/L左右,脱除率65%以上.磷酸氨镁法去除废水中NH4+-N试验结果表明,在ω(Mg2+):ω(PO43-):ω(NH4+-N)=1:1:1时,随废水pH升高,NH4+-N去除率逐步增大,pH10时去除率达54%.

  16. 味精废水SCP发酵菌种筛选及工艺条件研究%Studies on screening of strain for SCP fermentation with waste water from monosodium glutamate industry

    Institute of Scientific and Technical Information of China (English)

    贠建民

    2005-01-01

    以味精生产中的发酵母液--味精废水为实验对象,选用3种不同的酵母菌种,采用液体通气搅拌发酵方式,对味精废水SCP发酵菌种进行了筛选,同时对其发酵工艺条件进行了研究.结果表明,供试的3种菌种均能在味精废水中良好生长,其中以产朊假丝酵母2.120(Candidautilis)为SCP发酵的最佳菌种,生物量得率为0.619g/100mL,而脆壁酵母(Saccharomyces fragilis)的COD去除率最高,达到45.5%.

  17. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction

    OpenAIRE

    Monastyrskaia, Katherine; Lundstrom, Kenneth; Plahl, Doris; Acuna, Gonzalo; Schweitzer, Christophe; Malherbe, Pari; Mutel, Vincent

    1999-01-01

    The effect of several metabotropic ligands and di- or tripeptides were tested on the binding of [3H]-L(+)-2-amino-4-phosphonobutyric acid ([3H]-L-AP4) on rat mGlu4 receptor. For selected compounds, the functional activity was determined on this receptor using the guanosine-5′[γ-35S]-thiotriphosphate [γ-35S]-GTP binding assay.Using the scintillation proximity assay, [3H]-L-AP4 saturation analysis gave binding parameters KD and Bmax values of 150 nM and 9.3 pmoles mg−1 protein, respectively. Th...

  18. 利用味精废水发酵生产苏云金芽孢杆菌的发酵条件研究%Study on the Conditions of Bacillus thuringiensis Fermentation in Monosodium Glutamate Wastewater

    Institute of Scientific and Technical Information of China (English)

    杨建州; 张松鹏

    2002-01-01

    利用搅拌转速为180 r/min的5 L发酵罐, 研究了1株驯化后的苏云金芽孢杆菌(Bacillus thuringiensis)在味精废水中发酵生产生物农药的适宜工艺条件,并对发酵过程中的各个指标进行了检测.在1.2 m3规模的发酵罐中发酵菌数可达68.7×108/mL,毒力效价与标准品相当.

  19. SBBR在味精废水深度脱氮中的应用研究%Research on the application of sequencing batch biofilm reactor to advanced denitrification from monosodium glutamate wastewater

    Institute of Scientific and Technical Information of China (English)

    何争光; 贾胜勇; 郑敏

    2013-01-01

    实验研究了投加填料、DO浓度、碳氮比、设置厌氧段、pH等因素对SBR系统处理味精废水的脱氮效果的影响,通过测定COD、氨氮及TN的去除率,确定了最佳的脱氮环境.结果表明,挂膜成功后TN的去除率可达75.82%;通过控制DO浓度以满足好氧菌需求又不破坏生物膜厌氧微环境;设置前置厌氧段,可丰富反硝化碳源的种类和数量,有助于提高生物脱氮效果.%The factors,such as fillings added,DO concentration,C/N,settings of pre-anaerobic stage,pH,etc.,have been researched. The optimum denitrifying conditions are decided by determining the removing rates of COD, ammonia nitrogen and total nitrogen. The results show that the removing rate of TN can reach 75.82%,after the biofilm has been formed successfully. When DO concentration is controlled at about 3.3 mg/L,the demands for aerobic bacteria can be satisfied without destroying the micro-environment in the biofilm. Setting the pre-anaerobic stage can enrich the type and quantity of denitrifying carbon sources, which helps to improve the denitrification effect.

  20. Fabrication of Implantable, Enzyme-Immobilized Glutamate Sensors for the Monitoring of Glutamate Concentration Changes in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tina T.-C. Tseng

    2014-06-01

    Full Text Available Glutamate sensors based on the immobilization of glutamate oxidase (GlutOx were prepared by adsorption on electrodeposited chitosan (Method 1 and by crosslinking with glutaraldehyde (Method 2 on micromachined platinum microelectrodes. It was observed that glutamate sensors prepared by Method 1 have faster response time (<2 s and lower detection limit (2.5 ± 1.1 μM compared to that prepared by Method 2 (response time: <5 sec and detection limit: 6.5 ± 1.7 μM; glutamate sensors prepared by Method 2 have a larger linear detection range (20–352 μM and higher sensitivity (86.8 ± 8.8 nA·μM−1·cm−2, N = 12 compared to those prepared by Method 1 (linear detection range: 20–217 μM and sensitivity: 34.9 ± 4.8 nA·μM−1·cm−2, N = 8. The applicability of the glutamate sensors in vivo was also demonstrated. The glutamate sensors were implanted into the rat brain to monitor the stress-induced extracellular glutamate release in the hypothalamus of the awake, freely moving rat.

  1. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Avendaño, A; Deluna, A; Olivera, H; Valenzuela, L; Gonzalez, A

    1997-09-01

    It has been considered that the yeast Saccharomyces cerevisiae, like many other microorganisms, synthesizes glutamate through the action of NADP+-glutamate dehydrogenase (NADP+-GDH), encoded by GDH1, or through the combined action of glutamine synthetase and glutamate synthase (GOGAT), encoded by GLN1 and GLT1, respectively. A double mutant of S. cerevisiae lacking NADP+-GDH and GOGAT activities was constructed. This strain was able to grow on ammonium as the sole nitrogen source and thus to synthesize glutamate through an alternative pathway. A computer search for similarities between the GDH1 nucleotide sequence and the complete yeast genome was carried out. In addition to identifying its cognate sequence at chromosome XIV, the search found that GDH1 showed high identity with a previously recognized open reading frame (GDH3) of chromosome I. Triple mutants impaired in GDH1, GLT1, and GDH3 were obtained. These were strict glutamate auxotrophs. Our results indicate that GDH3 plays a significant physiological role, providing glutamate when GDH1 and GLT1 are impaired. This is the first example of a microorganism possessing three pathways for glutamate biosynthesis.

  2. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation

    Directory of Open Access Journals (Sweden)

    Emmanuelle Goubert

    2017-05-01

    Full Text Available The solute carrier family 25 (SLC25 drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1 have been identified in early epileptic encephalopathy (EEE and migrating partial seizures in infancy (MPSI but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate (NAD(PH formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in

  3. Kynurenines and Glutamate: Multiple Links and Therapeutic Implications.

    Science.gov (United States)

    Schwarcz, R

    2016-01-01

    Glutamate is firmly established as the major excitatory neurotransmitter in the mammalian brain and is actively involved in most aspects of neurophysiology. Moreover, glutamatergic impairments are associated with a wide variety of dysfunctional states, and both hypo- and hyperfunction of glutamate have been plausibly linked to the pathophysiology of neurological and psychiatric diseases. Metabolites of the kynurenine pathway (KP), the major catabolic route of the essential amino acid tryptophan, influence glutamatergic activity in several distinct ways. This includes direct effects of these "kynurenines" on ionotropic and metabotropic glutamate receptors or vesicular glutamate transport, and indirect effects, which are initiated by actions at various other recognition sites. In addition, some KP metabolites affect glutamatergic functions by generating or scavenging highly reactive free radicals. This review summarizes these phenomena and discusses implications for brain physiology and pathology.

  4. Neuroprotective Effects of Glutamate Antagonists and Extracellular Acidity

    Science.gov (United States)

    Kaku, David A.; Giffard, Rona G.; Choi, Dennis W.

    1993-06-01

    Glutamate antagonists protect neurons from hypoxic injury both in vivo and in vitro, but in vitro studies have not been done under the acidic conditions typical of hypoxia-ischemia in vivo. Consistent with glutamate receptor antagonism, extracellular acidity reduced neuronal death in murine cortical cultures that were deprived of oxygen and glucose. Under these acid conditions, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isox-azolepropionate-kainate antagonists further reduced neuronal death, such that some neurons tolerated prolonged oxygen and glucose deprivation almost as well as did astrocytes. Neuroprotection induced by this combination exceeded that induced by glutamate antagonists alone, suggesting that extracellular acidity has beneficial effects beyond the attenuation of ionotropic glutamate receptor activation.

  5. GLUTAMATE DEHYDROGENASE 1 AND SIRT4 REGULATE GLIAL DEVELOPMENT

    OpenAIRE

    Komlos, Daniel; Mann, Kara D.; Zhuo, Yue; Ricupero, Christopher L.; Hart, Ronald P.; Liu, Alice Y.-C.; Firestein, Bonnie L.

    2012-01-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and a frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological de...

  6. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  7. Metabotropic glutamate receptors: From the workbench to the bedside

    OpenAIRE

    Nicoletti, F.; Bockaert, J; Collingridge, G L; Conn, P. J.; Ferraguti, F.; Schoepp, D. D.; Wroblewski, J T; Pin, J P

    2010-01-01

    Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson’s disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophag...

  8. [Glutamic acid as a universal extracellular signal].

    Science.gov (United States)

    Yoneda, Yukio

    2015-08-01

    The prevailing view is that both glutamic (Glu) and gamma-aminobutyric (GABA) acids play a role as an amino acid neurotransmitter released from neurons. However, little attention has been paid to the possible expression and functionality of signaling machineries required for amino acidergic neurotransmission in cells other than central neurons. In line with our first demonstration of the presence of Glu receptors outside the brain, in this review I will outline our recent findings accumulated since then on the physiological and pathological significance of neuronal amino acids as an extracellular signal essential for homeostasis in a variety of phenotypic cells. In undifferentiated neural progenitor cells, for instance, functional expression is seen with different signaling machineries used for glutamatergic and GABAergic neurotransmission in neurons. Moreover, Glu plays a role in mechanisms underlying suppression of proliferation for self-replication in undifferentiated mesenchymal stem cells. There is more accumulating evidence for neuronal amino acids playing a role as an extracellular autocrine or paracrine signal commonly used in different phenotypic cells. Evaluation of drugs currently used could be thus beneficial for the efficient prophylaxis and/or the therapy of a variety of diseases relevant to disturbance of amino acid signaling in diverse organs.

  9. Comparative evaluation of glutamate-sensitive radiopharmaceuticals: Technetium-99m-glutamic acid and technetium-99m-diethylenetriaminepentaacetic acid-bis(glutamate) conjugate for tumor imaging.

    Science.gov (United States)

    Kakkar, Dipti; Tiwari, Anjani K; Chuttani, Krishna; Kaul, Ankur; Singh, Harpal; Mishra, Anil K

    2010-12-01

    Single-photon emission computed tomography has become a significant imaging modality with huge potential to visualize and provide information of anatomic dysfunctions that are predictive of future diseases. This imaging tool is complimented by radiopharmaceuticals/radiosubstrates that help in imaging specific physiological aspects of the human body. The present study was undertaken to explore the utility of technetium-99m (⁹⁹(m)Tc)-labeled glutamate conjugates for tumor scintigraphy. As part of our efforts to further utilize the application of chelating agents, glutamic acid was conjugated with a multidentate ligand, diethylenetriaminepentaacetic acid (DTPA). The DTPA-glutamate conjugate [DTPA-bis(Glu)] was well characterized by IR, NMR, and mass spectroscopy. The biological activity of glutamic acid was compared with its DTPA conjugate by radiocomplexation with ⁹⁹(m)Tc (labeling efficiency ≥98%). In vivo studies of both the radiolabeled complexes ⁹⁹(m)Tc-Glu and ⁹⁹(m)Tc-DTPA-bis(Glu) were then carried out, followed by gamma scintigraphy in New Zealand albino rabbits. Improved serum stability of ⁹⁹(m)Tc-labeled DTPA conjugate indicated that ⁹⁹(m)Tc remained bound to the conjugate up to 24 hours. Blood clearance showed a relatively slow washout of the DTPA conjugate when compared with the labeled glutamate. Biodistribution characteristics of the conjugate in Balb/c mice revealed that DTPA conjugation of glutamic acid favors less accumulation in the liver and bone and rapid renal clearance. Tumor scintigraphy in mice showed increasing tumor accumulation, stable up to 4 hours. These preliminary studies show that ⁹⁹(m)Tc-DTPA-bis(Glu) can be a useful radiopharmaceutical for diagnostic applications in single-photon emission computed tomography imaging.

  10. Group I metabotropic glutamate receptors in the medial prefrontal cortex: role in mesocorticolimbic glutamate release in cocaine sensitization.

    Science.gov (United States)

    Timmer, Kristin M; Steketee, Jeffery D

    2013-12-01

    Cocaine sensitization is associated with increased excitability of pyramidal projection neurons in the medial prefrontal cortex. Such hyperexcitability is presumed to increase glutamatergic input to the nucleus accumbens and ventral tegmental area. This study examined the effects of medial prefrontal cortex Group I metabotropic glutamate receptor activation on glutamate levels in the medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in sensitized and control animals. Male Sprague-Dawley rats received four daily injections of cocaine (15 mg/kg, i.p.) or saline (1 mL/kg i.p.). One, 7, or 21 days from the fourth injection, dual-probe microdialysis experiments were performed wherein Group I metabotropic glutamate receptor agonist DHPG was infused into the medial prefrontal cortex and glutamate levels in this region as well as the nucleus accumbens or ventral tegmental area were examined. Intra-mPFC DHPG infusion increased glutamate levels in the medial prefrontal cortex at 1 and 7 days withdrawal, and in the nucleus accumbens at 21 days withdrawal in sensitized rats. These results suggest Group I metabotropic glutamate receptor activation may contribute to the increased excitability of medial prefrontal cortex pyramidal neurons in sensitized animals.

  11. Pharmacological and structural characterization of conformationally restricted (S)-glutamate analogues at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Juknaite, Lina; Venskutonyte, Raminta; Assaf, Zeinab

    2012-01-01

    A2 and the kainate receptor GluK3. These structures show that CBG-IV interacts with the binding pocket in the same way as (S)-glutamate. The binding affinities reveal that CBG-IV has high affinity at the AMPA and kainate receptor subtypes. Appreciable binding affinity of CBG-IV was not observed......Conformationally restricted glutamate analogues have been pharmacologically characterized at AMPA and kainate receptors and the crystal structures have been solved of the ligand (2S,1'R,2'S)-2-(2'-carboxycyclobutyl)glycine (CBG-IV) in complex with the ligand binding domains of the AMPA receptor Glu...... at NMDA receptors, where the introduction of the carbocyclic ring is expected to lead to a steric clash with binding site residues. CBG-IV was demonstrated to be an agonist at both GluA2 and the kainate receptor GluK1. CBG-IV showed high affinity binding to GluK1 compared to GluA2, GluK2 and GluK3, which...

  12. Mitochondrial Glutamate Carrier GC1 as a Newly Identified Player in the Control of Glucose-stimulated Insulin Secretion*

    Science.gov (United States)

    Casimir, Marina; Lasorsa, Francesco M.; Rubi, Blanca; Caille, Dorothée; Palmieri, Ferdinando; Meda, Paolo; Maechler, Pierre

    2009-01-01

    The SLC25 carrier family mediates solute transport across the inner mitochondrial membrane, a process that is still poorly characterized regarding both the mechanisms and proteins implicated. This study investigated mitochondrial glutamate carrier GC1 in insulin-secreting β-cells. GC1 was cloned from insulin-secreting cells, and sequence analysis revealed hydropathy profile of a six-transmembrane protein, characteristic of mitochondrial solute carriers. GC1 was found to be expressed at the mRNA and protein levels in INS-1E β-cells and pancreatic rat islets. Immunohistochemistry showed that GC1 was present in mitochondria, and ultrastructural analysis by electron microscopy revealed inner mitochondrial membrane localization of the transporter. Silencing of GC1 in INS-1E β-cells, mediated by adenoviral delivery of short hairpin RNA, reduced mitochondrial glutamate transport by 48% (p < 0.001). Insulin secretion at basal 2.5 mm glucose and stimulated either by intermediate 7.5 mm glucose or non-nutrient 30 mm KCl was not modified by GC1 silencing. Conversely, insulin secretion stimulated with optimal 15 mm glucose was reduced by 23% (p < 0.005) in GC1 knocked down cells compared with controls. Adjunct of cell-permeant glutamate (5 mm dimethyl glutamate) fully restored the secretory response at 15 mm glucose (p < 0.005). Kinetics of insulin secretion were investigated in perifused isolated rat islets. GC1 silencing in islets inhibited the secretory response induced by 16.7 mm glucose, both during first (−25%, p < 0.05) and second (−33%, p < 0.05) phases. This study demonstrates that insulin-secreting cells depend on GC1 for maximal glucose response, thereby assigning a physiological function to this newly identified mitochondrial glutamate carrier. PMID:19584051

  13. Poly (γ-glutamic acid)/beta-TCP nanocomposites via in situ copolymerization: Preparation and characterization.

    Science.gov (United States)

    Shu, Xiu-Lin; Shi, Qing-Shan; Feng, Jin; Yang, Yun-Hua; Zhou, Gang; Li, Wen-Ru

    2016-07-01

    A series biodegradable poly (γ-glutamic acid)/beta-tricalcium phosphate (γ-PGA/TCP) nanocomposites were prepared which were composed of poly-γ-glutamic acid polymerized in situ with β-tricalcium phosphate and physiochemically characterized as bone graft substitutes. The particle size via dynamic light scattering, the direct morphological characterization via transmission electron microscopy and field emission scanning electron microscope, which showed that γ-PGA and β-TCP were combined compactly at 80℃, and the γ-PGA/TCP nanocomposites had homogenous and nano-sized grains with narrow particle size distributions. The water uptake and retention abilities, in vitro degradation properties, cytotoxicity in the simulated medium, and protein release of these novel γ-PGA/TCP composites were investigated. Cell proliferation in composites was nearly twice than β-TCP when checked in vitro using MC3T3 cell line. We also envision the potential use of γ-PGA/TCP systems in bone growth factor or orthopedic drug delivery applications in future bone tissue engineering applications. These observations suggest that the γ-PGA/TCP are novel nanocomposites with great potential for application in the field of bone tissue engineering.

  14. A NADP-glutamate dehydrogenase mutant of the petit-negative yeast Kluyveromyces lactis uses the glutamine synthetase-glutamate synthase pathway for glutamate biosynthesis.

    Science.gov (United States)

    Valenzuela, L; Guzmán-León, S; Coria, R; Ramírez, J; Aranda, C; González, A

    1995-10-01

    The activities of the enzymes involved in ammonium assimilation and glutamate biosynthesis were determined in wild-type and NADP-glutamate dehydrogenase (GDH) null mutant strains of Kluyveromyces lactis. The specific NADP-GDH activity from K. lactis was fivefold lower than that found in Saccharomyces cerevisiae. The glutamine synthetase (GS) and glutamate synthase (GOGAT) activities were similar to those reported in S. cerevisiae. The NADP-GDH null mutant was obtained by transforming the uraA strain MD2/1 with a linearized integrative yeast vector harbouring a 390 bp fragment of the NADP-GDH structural gene. This mutant grew as well as the parent strain on ammonium, but showed GS and GOGAT activities higher that those found in the wild-type strain, implying that the GS-GOGAT pathway could play a leading role in glutamate biosynthesis in K. lactis. Southern blotting analysis of K. lactis chromosomes separated by contour-clamped homogeneous electric field electrophoresis, indicated that the NADP-GDH structural gene is localized on chromosome VI.

  15. Partial mitochondrial complex I inhibition induces oxidative damage and perturbs glutamate transport in primary retinal cultures. Relevance to Leber Hereditary Optic Neuropathy (LHON).

    Science.gov (United States)

    Beretta, Simone; Wood, John P M; Derham, Barry; Sala, Gessica; Tremolizzo, Lucio; Ferrarese, Carlo; Osborne, Neville N

    2006-11-01

    Leber Hereditary Optic Neuropathy (LHON) is a maternally inherited form of visual loss, due to selective degeneration of retinal ganglion cells. Despite the established aetiological association between LHON and mitochondrial DNA mutations affecting complex I of the electron transport chain, the pathophysiology of this disorder remains obscure. Primary rat retinal cultures were exposed to increasing concentrations of rotenone to titrate complex I inhibition. Neural cells were more sensitive than Müller glial cells to rotenone toxicity. Rotenone induced an increase in mitochondrial-derived free radicals and lipid peroxidation. Sodium-dependent glutamate uptake, which is mostly mediated by the glutamate transporter GLAST expressed by Müller glial cells, was reduced dose-dependently by rotenone with no changes in GLAST expression. Our findings suggest that complex I-derived free radicals and disruption of glutamate transport might represent key elements for explaining the selective retinal ganglion cell death in LHON.

  16. Single rodent mesohabenular axons release glutamate and GABA

    Science.gov (United States)

    Root, David H.; Mejias-Aponte, Carlos; Zhang, Shiliang; Wang, Huiling; Hoffman, Alexander F.; Lupica, Carl R.; Morales, Marisela

    2016-01-01

    The lateral habenula (LHb) is involved in reward, aversion, addiction, and depression, through descending interactions with several brain structures, including the ventral tegmental area (VTA). VTA provides reciprocal inputs to LHb, but their actions are unclear. Here we show that the majority of rat and mouse VTA neurons innervating LHb co-express markers for both glutamate-signaling (vesicular glutamate transporter 2, VGluT2) and GABA-signaling (glutamate decarboxylase, GAD; and vesicular GABA transporter, VGaT). A single axon from these mesohabenular neurons co-expresses VGluT2-protein and VGaT-protein, and surprisingly establishes symmetric and asymmetric synapses on LHb neurons. In LHb slices, light activation of mesohabenular fibers expressing channelrhodopsin-2 (ChR2) driven by VGluT2 or VGaT promoters elicits release of both glutamate and GABA onto single LHb neurons. In vivo light-activation of mesohabenular terminals inhibits or excites LHb neurons. Our findings reveal an unanticipated type of VTA neuron that co-transmits glutamate and GABA, and provides the majority of mesohabenular inputs. PMID:25242304

  17. Methylphenidate Increases Glutamate Uptake in Bergmann Glial Cells.

    Science.gov (United States)

    Guillem, Alain M; Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; López-Bayghen, Esther; López-Bayghen, Bruno; Calleros, Oscar A; Campuzano, Marco R; Ortega, Arturo

    2015-11-01

    Glutamate, the main excitatory transmitter in the vertebrate brain, exerts its actions through the activation of specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of glutamate uptake systems, mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing an excessive glutamatergic stimulation and thus neuronal damage. Autism spectrum disorders comprise a group of syndromes characterized by impaired social interactions and anxiety. One or the most common drugs prescribed to treat these disorders is Methylphenidate, known to increase dopamine extracellular levels, although it is not clear if its sedative effects are related to a plausible regulation of the glutamatergic tone via the regulation of the glial glutamate uptake systems. To gain insight into this possibility, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity and protein levels of glutamate transporters was detected upon Methylphenidate exposure. Interestingly, this increase is the result of an augmentation of both the synthesis as well as the insertion of these protein complexes in the plasma membrane. These results favour the notion that glial cells are Methylphenidate targets, and that by these means could regulate dopamine turnover.

  18. Distribution of vesicular glutamate transporters in the human brain

    Directory of Open Access Journals (Sweden)

    Erika eVigneault

    2015-03-01

    Full Text Available Glutamate is the major excitatory transmitter in the brain. Vesicular glutamate transporters (VGLUT1-3 are responsible for uploading glutamate into synaptic vesicles. VGLUT1 and VGLUT2 are considered as specific markers of canonical glutamatergic neurons, while VGLUT3 is found in neurons previously shown to use other neurotransmitters than glutamate. Although there exists a rich literature on the localization of these glutamatergic markers in the rodent brain, little is currently known about the distribution of VGLUT1-3 in the human brain. In the present study, using subtype specific probes and antisera, we examined the localization of the three vesicular glutamate transporters in the human brain by in situ hybridization, immunoautoradiography and immunohistochemistry. We found that the VGLUT1 transcript was highly expressed in the cerebral cortex, hippocampus and cerebellum, whereas VGLUT2 mRNA was mainly found in the thalamus and brainstem. VGLUT3 mRNA was localized in scarce neurons within the cerebral cortex, hippocampus, striatum and raphe nuclei. Following immunoautoradiographic labeling, intense VGLUT1- and VGLUT2-immunoreactivities were observed in all regions investigated (cerebral cortex, hippocampus, caudate-putamen, cerebellum, thalamus, amygdala, substantia nigra, raphe while VGLUT3 was absent from the thalamus and cerebellum. This extensive mapping of VGLUT1-3 in human brain reveals distributions that correspond for the most part to those previously described in rodent brains.

  19. Existence of an Endogenous Glutamate and Aspartate Transporter in Chinese Hamster Ovary Cells

    Institute of Scientific and Technical Information of China (English)

    Xunhe JI; Yuhua JIN; Yaoyue CHEN; Chongyong LI; Lihe GUO

    2007-01-01

    Chinese hamster ovary cells show endogenous high-affinity Na+-dependent glutamate transport activity. This transport activity is kinetically similar to a glutamate transporter family strategically expressed in the central nervous system and is pharmacologically unlike glutamate transporter-1 or excitatory amino acid carrier 1. The cDNA of a glutamate/aspartate transporter (GLAST)-like transporter was obtained and analyzed. The deduced amino acid sequence showed high similarity to human, mouse, and rat GLAST. We concluded that a GLAST-like glutamate transporter exists in Chinese hamster ovary cells that might confer the endogenous high-affinity Na+-dependent glutamate transport activity evident in these cells.

  20. EPR, optical and superposition model study of Mn2+ doped L+ glutamic acid

    Science.gov (United States)

    Kripal, Ram; Singh, Manju

    2015-12-01

    Electron paramagnetic resonance (EPR) study of Mn2+ doped L+ glutamic acid single crystal is done at room temperature. Four interstitial sites are observed and the spin Hamiltonian parameters are calculated with the help of large number of resonant lines for various angular positions of external magnetic field. The optical absorption study is also done at room temperature. The energy values for different orbital levels are calculated, and observed bands are assigned as transitions from 6A1g(s) ground state to various excited states. With the help of these assigned bands, Racah inter-electronic repulsion parameters B = 869 cm-1, C = 2080 cm-1 and cubic crystal field splitting parameter Dq = 730 cm-1 are calculated. Zero field splitting (ZFS) parameters D and E are calculated by the perturbation formulae and crystal field parameters obtained using superposition model. The calculated values of ZFS parameters are in good agreement with the experimental values obtained by EPR.

  1. Studies on in vitro release of CPM from semi-interpenetrating polymer network (IPN) composed of chitosan and glutamic acid

    Indian Academy of Sciences (India)

    K Kumari; P P Kundu

    2008-04-01

    Interpenetrating polymer network (IPN) beads consisting of chitosan–glutamic acid were prepared for in vitro study of controlled release of chlorpheniramine maleate (CPM). A viscous solution of chitosan–glutamic acid was prepared in 2% acetic acid solution, extruded as droplets through a syringe to alkali–methanol solution and the precipitated beads were crosslinked using glutaraldehyde solution. Swelling and drug release studies were carried out. Transport of release medium through the semi-IPN depended upon its pH and extent of crosslinking. The structural and morphological studies of beads were carried out by using a scanning electron microscope (SEM). The larger surface area of beads as well as their ease of handling makes them ideal agents of controlled release.

  2. A noncanonical release of GABA and glutamate modulates neuronal migration.

    Science.gov (United States)

    Manent, Jean-Bernard; Demarque, Michaël; Jorquera, Isabel; Pellegrino, Christophe; Ben-Ari, Yehezkel; Aniksztejn, Laurent; Represa, Alfonso

    2005-05-11

    Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2'-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA(A) or NMDA receptor antagonist treatments. These effects were also present in munc18-1 knock-out slices in which soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicular secretion of transmitters has been deleted. GABA(A) antagonists were more efficient than NMDA antagonists to reduce cell migration, in keeping with the earlier maturation of GABAergic mechanisms. We conclude that GABA and, to a lesser degree, glutamate released in a SNARE-independent mechanism exert a paracrine action on neuronal migration.

  3. [PECULIARITIES OF THE CEREBROVASCULAR EFFECTS OF GLUTAMIC ACID].

    Science.gov (United States)

    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S

    2016-01-01

    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives.

  4. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Marisa S Goo

    2015-10-01

    Full Text Available Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

  5. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci.

    Science.gov (United States)

    Peralta, Guillermo Hugo; Bergamini, Carina Viviana; Hynes, Erica Rut

    2016-01-01

    Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  6. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    Science.gov (United States)

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5.

  7. Chronic glutamate toxicity in neurodegenerative diseases-what is the evidence?

    Directory of Open Access Journals (Sweden)

    Pamela eMaher

    2015-12-01

    Full Text Available Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors and a class of G-protein coupled receptors (metabotropic glutamate receptors. Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

  8. Zisheng Shenqi decoction ameliorates monosodium urate crystal-induced gouty arthritis in rats through anti-inflammatory and anti-oxidative effects.

    Science.gov (United States)

    Han, Jieru; Xie, Ying; Sui, Fangyu; Liu, Chunhong; Du, Xiaowei; Liu, Chenggang; Feng, Xiaoling; Jiang, Deyou

    2016-09-01

    Based on traditional Chinese medicinal theories on gouty arthritis, Zisheng Shenqi decoction (ZSD), a novel Chinese medicinal formula, was developed due to its multiple functions, including reinforcing renal function, promoting blood circulation and relieving pain. In the present study, the effect of ZSD on monosodium urate (MSU) crystal-induced gouty arthritis in rats was investigated and the underlying mechanisms were examined. The data from these investigations showed that the injection of MSU crystals into the ankle joint cavity caused significant elevations in ankle swelling and inflammatory cell infiltration into the synovium, whereas these abnormal changes were markedly suppressed by oral administration of ZSD (40 mg/kg) for 7 days. Mechanically, ZSD treatment prevented MSU crystal‑induced inflammatory responses, as evidenced by downregulation in the expression levels of NACHT domain, leucine‑rich repeat and pyrin domain containing protein (NALP) 1 and NALP6 inflammasomes, decreased serum levels of tumor necrosis factor‑α and interleukin‑1β, and inhibited activation of nuclear factor‑κB. In addition, ZSD administration markedly enhanced the anti-oxidant status in MSU crystal‑induced rats by the increase in the activities of superoxide dismutase and glutathione peroxidase, and the levels of reduced glutathione. These results indicated that ZSD effectively prevented MSU crystal-induced gouty arthritis via modulating multiple anti‑oxidative and anti‑inflammatory pathways, suggesting a promising herbal formula for the prevention and treatment of gouty arthritis.

  9. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone.

    Science.gov (United States)

    Chen, Jian; Bhattacharjee, Hiranmoy; Rosen, Barry P

    2015-06-01

    Environmental organoarsenicals are produced by microorganisms and are introduced anthropogenically as herbicides and antimicrobial growth promoters for poultry and swine. Nearly every prokaryote has an ars (arsenic resistance) operon, and some have an arsH gene encoding an atypical flavodoxin. The role of ArsH in arsenic resistance has been unclear. Here we demonstrate that ArsH is an organoarsenical oxidase that detoxifies trivalent methylated and aromatic arsenicals by oxidation to pentavalent species. Escherichia coli, which does not have an arsH gene, is very sensitive to the trivalent forms of the herbicide monosodium methylarsenate [MSMA or MAs(V)] and antimicrobial growth promoter roxarsone [Rox(V)], as well as to phenylarsenite [PhAs(III), also called phenylarsine oxide or PAO]. Pseudomonas putida has two chromosomally encoded arsH genes and is highly resistant to the trivalent forms of these organoarsenicals. A derivative of P. putida with both arsH genes deleted is sensitive to MAs(III), PhAs(III) or Rox(III). P. putida arsH expressed in E. coli conferred resistance to each trivalent organoarsenical. Cells expressing PpArsH oxidized the trivalent organoarsenicals. PpArsH was purified, and the enzyme in vitro similarly oxidized the trivalent organoarsenicals. These results suggest that ArsH catalyzes a novel biotransformation that confers resistance to environmental methylated and aromatic arsenicals.

  10. Rebamipide Suppresses Monosodium Urate Crystal-Induced Interleukin-1β Production Through Regulation of Oxidative Stress and Caspase-1 in THP-1 Cells.

    Science.gov (United States)

    Kim, Seong-Kyu; Choe, Jung-Yoon; Park, Ki-Yeun

    2016-02-01

    This study investigated the effect of rebamipide on activation of the NLRP3 inflammasome and generation of reactive oxygen species (ROS) in monosodium urate (MSU) crystal-induced interleukin-1β (IL-1β) production. Human monocyte cell line THP-1 and human umbilical venous endothelial cells (HUVECs) were used to assess the inflammatory response to MSU crystals. NADP/NADPH activity assays were used as a marker of ROS generation. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were performed to evaluate levels of IL-1β, caspase-1, NLRP3, associated speck-like protein (ASC), nuclear factor-κB (NF-κB), p65, IκBα, intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1). Experimental pharmaceuticals included rebamipide, colchicine, dexamethasone, and ascorbic acid. In THP-1 cells, treatment with MSU crystals increased NADP/NADPH ratios and IL-1β expression, and both of these responses were potently inhibited by addition of rebamipide. Rebamipide also attenuated enhanced expression of caspase-1 gene by MSU crystals (p rebamipide. Stimulation of HUVECs with MSU crystals increased expression of VCAM-1 and ICAM-1, which were markedly inhibited by both rebamipide and dexamethasone. This study demonstrated that rebamipide inhibits IL-1β activation through suppression of ROS-mediated NF-κB signaling pathways and caspase-1 activation in MSU crystal-induced inflammation.

  11. Effects of Modified Simiao Decoction on IL-1β and TNFα Secretion in Monocytic THP-1 Cells with Monosodium Urate Crystals-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Ya-Fei Liu

    2014-01-01

    Full Text Available Simiao pill, a Chinese herbal formula containing four herbs, has been used in the treatment of gouty arthritis for many years. The aim of this study was to explore the effects of modified Simiao decoction (MSD on IL-1β and TNFα secretion in monocytic THP-1 cells with monosodium urate (MSU crystals-induced inflammation. The MSU crystals-induced inflammation model in THP-1 cells was successfully established by the stimulation of phorbol 12-myristate 13-acetate (PMA and MSU crystals. Then, the MSD-derived serum or control serum extracted from rat was administered to different treatment groups. The morphology of MSU crystals and THP-1 cells was observed. IL-1β and TNFα protein expression in supernatant of THP-1 cells were determined by ELISA. Our data demonstrated that MSU crystals induced time-dependent increase of IL-1β and TNFα. Moreover, MSD significantly decreased IL-1β release in THP-1 cells with MSU crystals-induced inflammation. These results suggest that MSD is promising in the treatment of MSU crystals-induced inflammation in THP-1 cells. MSD may act as an anti-IL-1 agent in treating gout. The underlying mechanism may be related to NALP3 inflammasome which needs to be validated in future studies.

  12. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    Science.gov (United States)

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (Pglutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  13. Brain glutamate metabolism during metabolic alkalosis and acidosis.

    Science.gov (United States)

    Ang, R C; Hoop, B; Kazemi, H

    1992-12-01

    Glutamate modifies ventilation by altering neural excitability centrally. Metabolic acid-base perturbations may also alter cerebral glutamate metabolism locally and thus affect ventilation. Therefore, the effect of metabolic acid-base perturbations on central nervous system glutamate metabolism was studied in pentobarbital-anesthetized dogs under normal acid-base conditions and during isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid transfer rates of radiotracer [13N]ammonia and of [13N]glutamine synthesized de novo via the reaction glutamate+NH3-->glutamine in brain glia were measured during normal acid-base conditions and after 90 min of acute isocapnic metabolic alkalosis and acidosis. Cerebrospinal fluid [13N]ammonia and [13N]glutamine transfer rates decreased in metabolic acidosis. Maximal glial glutamine efflux rate jm equals 85.6 +/- 9.5 (SE) mumol.l-1 x min-1 in all animals. No difference in jm was observed in metabolic alkalosis or acidosis. Mean cerebral cortical glutamate concentration was significantly lower in acidosis [7.01 +/- 0.45 (SE) mumol/g brain tissue] and tended to be larger in alkalosis, compared with 7.97 +/- 0.89 mumol/g in normal acid-base conditions. There was a similar change in cerebral cortical gamma-aminobutyric acid concentration. Within the limits of the present method and measurements, the results suggest that acute metabolic acidosis but not alkalosis reduces glial glutamine efflux, corresponding to changes in cerebral cortical glutamate metabolism. These results suggest that glutamatergic mechanisms may contribute to central respiratory control in metabolic acidosis.

  14. Glutamate-based magnetic resonance spectroscopy in neuroleptic malignant syndrome

    Directory of Open Access Journals (Sweden)

    Atri Chatterjee

    2014-01-01

    Full Text Available Glutamate neurotoxicity is implicated in a number of neurological diseases, including Neuroleptic Malignant syndrome. Therefore, functional magnetic resonance imaging can help in diagnosis and monitoring such conditions. However, reports of this application are scarce in the literature. In this manuscript, glutamate based imaging of the basal ganglia showed increased levels of the neurotransmitter bilaterally. In addition, a radon transform of the functional image was performed to look for any asymmetry in cerebral activation. Although no asymmetry was detected in this case, this novel analysis can be applied in physiological and pathological scenarios to visualize contribution of different brain structures.

  15. Complexity analysis of the glutamic acid ion-exchanged wastewater

    Institute of Scientific and Technical Information of China (English)

    林艳; 王瑞明; 徐国华; 王腾飞; 井瑞洁

    2008-01-01

    In this paper,the glutamic acid ion-exchanged wastewater has been studied.Kjeldahl determination method,Fehling reagent.muffle furnace method.and so on were used.It can be sure that the wastewater's COD is 50250 mg/L.and total solids is 13.76%.it contains:glutamic acid 0.3%:total reducing sugar 0.414%;fat 0.4274%;ammonium sulphate 10.0758%;microbial protein 0.8045%;ash 0.27%:others 1.4683%.

  16. Anaplerosis for Glutamate Synthesis in the Neonate and in Adulthood

    DEFF Research Database (Denmark)

    Brekke, Eva; Morken, Tora Sund; Walls, Anne B

    2016-01-01

    A central task of the tricarboxylic acid (TCA, Krebs, citric acid) cycle in brain is to provide precursors for biosynthesis of glutamate, GABA, aspartate and glutamine. Three of these amino acids are the partners in the intricate interaction between astrocytes and neurons and form the so......-called glutamine-glutamate (GABA) cycle. The ketoacids α-ketoglutarate and oxaloacetate are removed from the cycle for this process. When something is removed from the TCA cycle it must be replaced to permit the continued function of this essential pathway, a process termed anaplerosis. This anaplerotic process...

  17. [Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid].

    Science.gov (United States)

    Niu, Panqing; Zhang, Zhenyu; Liu, Liming

    2014-08-01

    We produced α-ketoglutaric acid (α-KG) from L-glutamic acid, using enzymatic transformation approach with L-glutamate oxidase (LGOX). First, wild strain Streptomyces sp. FMME066 was mutated with NTG, a genetically stable mutant Streptomyces sp. FMME067 was obtained. Under the optimal nutrition conditions with fructose 10 g/L, peptone 7.5 g/L, KH2PO4 1 g/L and CaCl2 0.05 g/L, the maximum LGOX activity reached 0.14 U/mL. The LGOX was stable to pH and temperature, and Mn2+ had a stimulating effect. Finally, after 24 h enzymatic conversion under the optimal conditions, the maximum titer of α-KG reached 38.1 g/L from 47 g/L L-glutamic acid. Enzymatic transformation by LGOX is a potential approach for α-KG production.

  18. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    NARCIS (Netherlands)

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault

    2003-01-01

    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  19. Induction of glutamate dehydrogenase in the ovine fetal liver by dexamethasone infusion during late gestation

    NARCIS (Netherlands)

    M. Timmerman (Michelle); R.B. Wilkening; T.R. Regnault

    2003-01-01

    textabstractGlucocorticoids near term are known to upregulate many important enzyme systems prior to birth. Glutamate dehydrogenase (GDH) is a mitochondrial enzyme that catalyzes both the reversible conversion of ammonium nitrogen into organic nitrogen (glutamate production) and th

  20. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    Science.gov (United States)

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  1. The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse.

    Science.gov (United States)

    Bjørnsen, Lars Petter; Hadera, Mussie G; Zhou, Yun; Danbolt, Niels C; Sonnewald, Ursula

    2014-03-01

    Glutamate is the major excitatory neurotransmitter, and is inactivated by cellular uptake catalyzed mostly by the glutamate transporter subtypes GLT-1 (EAAT2) and GLAST (EAAT1). Astrocytes express both GLT-1 and GLAST, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we injected GLT-1 knockout (KO) mice and wild-type littermates with [1-(13)C]glucose and [1,2-(13)C]acetate 15 min before euthanization. Metabolite levels were analyzed in extracts from neocortex and cerebellum and (13)C labeling in neocortex. Whereas the cerebellum in GLT-1-deficient mice had normal levels of glutamate, glutamine, and (13)C labeling of metabolites, glutamate level was decreased but labeling from [1-(13)C] glucose was unchanged in the neocortex. The contribution from pyruvate carboxylation toward labeling of these metabolites was unchanged. Labeling from [1,2-(13)C] acetate, originating in astrocytes, was decreased in glutamate and glutamine in the neocortex indicating reduced mitochondrial metabolism in astrocytes. The decreased amount of glutamate in the cortex indicates that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the cortex. Glutamate is the major excitatory neurotransmitter, and is inactivated by uptake via GLT-1 (EAAT2) and GLAST (EAAT1) transporters, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we used [1-(13)C]glucose and [1,2-(13)C]acetate injection and NMR spectroscopy. The results indicate that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the neocortex.

  2. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells

    OpenAIRE

    Bringmann, Andreas; Grosche, Antje; Pannicke, Thomas; Reichenbach, Andreas

    2013-01-01

    Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and γ-aminobutyric acid (GABA). Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the s...

  3. Glutamate carboxypeptidase II (GCPII) inhibitor displays anti-glutamate and anti-cocaine effects in an invertebrate assay.

    Science.gov (United States)

    Tallarida, Chris; Song, Kevin; Raffa, Robert B; Rawls, Scott M

    2012-06-01

    Glutamate carboxypeptidase II (GCPII) inhibitors are promising anti-glutamatergic and anti-addictive agents. We hypothesized that a GCPII inhibitor 2 (phosphonomethyl) pentanedioic acid (2-PMPA) would display anti-stereotypical activity in planarians. Experiments revealed that 2-PMPA displayed no overt behavioral activity by itself but attenuated stereotypical counts (C-shape hyperkinesias) elicited by four compounds (2-PMPA rank order potency: glutamate>NMDA>pilocarpine>cocaine). These data suggest GCPII inhibitors display broad-spectrum efficacy against behavioral activity produced by glutamatergic and non-glutamatergic compounds in an invertebrate assay.

  4. Using Glutamic Acid, Phenylalanine and Tryptophan to Synthesize Capped Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamyar Khoshnevisan

    2011-01-01

    Full Text Available Introduction: The study and investigation of gold nanoparticles produced by amino acid is one of the interesting and applied issues in nanotechnology. In this study, amino acids were used to reduce gold cations as well as an agent to cap gold nanoparticles. In fact, strong bound of amino groups to amino acid and protein on the gold nanoparticles surface indicate the medical applications of these materials. Methods: In this study, gold nanoparticles were prepared and functionalized by using solution reduction containing gold cations with optimum concentration (0.005 M, and also prepared by using glutamic acid, phenylalanine and tryptophan with optimum concentration (0.025 M. Results: The investigation of optimum condition for gold solution and amino acids and also determination of gold nanoparticles were done by UV-Vis. The nanoparticles size were reported 5-20, 10-20 and 20-30 nm respectively by transmission electron microscopy and dynamic light scattering techniques, which is appropriate for biological activities. Conclusion: The comparison of the data from experimental and quantum calculations demonstrated that amino acids have strong band when they are conjugated by anion state. Free carboxylic groups of capped gold nanoparticles with glutamic acid are one of the suitable and capable beads for binding to biological agents.

  5. The structure of apo human glutamate dehydrogenase details subunit communication and allostery.

    Science.gov (United States)

    Smith, Thomas J; Schmidt, Timothy; Fang, Jie; Wu, Jane; Siuzdak, Gary; Stanley, Charles A

    2002-05-01

    The structure of human glutamate dehydrogenase (GDH) has been determined in the absence of active site and regulatory ligands. Compared to the structures of bovine GDH that were complexed with coenzyme and substrate, the NAD binding domain is rotated away from the glutamate-binding domain. The electron density of this domain is more disordered the further it is from the pivot helix. Mass spectrometry results suggest that this is likely due to the apo form being more dynamic than the closed form. The antenna undergoes significant conformational changes as the catalytic cleft opens. The ascending helix in the antenna moves in a clockwise manner and the helix in the descending strand contracts in a manner akin to the relaxation of an extended spring. A number of spontaneous mutations in this antenna region cause the hyperinsulinism/hyperammonemia syndrome by decreasing GDH sensitivity to the inhibitor, GTP. Since these residues do not directly contact the bound GTP, the conformational changes in the antenna are apparently crucial to GTP inhibition. In the open conformation, the GTP binding site is distorted such that it can no longer bind GTP. In contrast, ADP binding benefits by the opening of the catalytic cleft since R463 on the pivot helix is pushed into contact distance with the beta-phosphate of ADP. These results support the previous proposal that purines regulate GDH activity by altering the dynamics of the NAD binding domain. Finally, a possible structural mechanism for negative cooperativity is presented.

  6. Cocaine-induced neuroadaptations in the dorsal striatum: glutamate dynamics and behavioral sensitization.

    Science.gov (United States)

    Parikh, Vinay; Naughton, Sean X; Shi, Xiangdang; Kelley, Leslie K; Yegla, Brittney; Tallarida, Christopher S; Rawls, Scott M; Unterwald, Ellen M

    2014-09-01

    Recent evidence suggests that diminished ability to control cocaine seeking arises from perturbations in glutamate homeostasis in the nucleus accumbens. However, the neurochemical substrates underlying cocaine-induced neuroadaptations in the dorsal striatum and how these mechanisms link to behavioral plasticity is not clear. We employed glutamate-sensitive microelectrodes and amperometry to study the impact of repeated cocaine administration on glutamate dynamics in the dorsolateral striatum of awake freely-moving rats. Depolarization-evoked glutamate release was robustly increased in cocaine-pretreated rats challenged with cocaine. Moreover, the clearance of glutamate signals elicited either by terminal depolarization or blockade of non-neuronal glutamate transporters slowed down dramatically in cocaine-sensitized rats. Repeated cocaine exposure also reduced the neuronal tone of striatal glutamate. Ceftriaxone, a β-lactam antibiotic that activates the astrocytic glutamate transporter, attenuated the effects of repeated cocaine exposure on synaptic glutamate release and glutamate clearance kinetics. Finally, the antagonism of AMPA glutamate receptors in the dorsolateral striatum blocked the development of behavioral sensitization to repeated cocaine administration. Collectively, these data suggest that repeated cocaine exposure disrupts presynaptic glutamate transmission and transporter-mediated clearance mechanisms in the dorsal striatum. Moreover, such alterations produce an over activation of AMPA receptors in this brain region leading to the sensitized behavioral response to repeated cocaine.

  7. 40 CFR 721.3821 - L-Glutamic acid, N-(1-oxododecyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false L-Glutamic acid, N-(1-oxododecyl... Substances § 721.3821 L-Glutamic acid, N-(1-oxododecyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as L-Glutamic acid, N-(1-oxododecyl)- (PMN...

  8. [The comparative investigation of antihypoxia activity of glutamic and N-acetylglutamic acids].

    Science.gov (United States)

    Makarova, L M; Pogorelyĭ, V E

    2013-01-01

    Comparative study of antihypoxic activity of glutamic and N-acetylglutamic acid in doses of 1, 10, 50 and 100 mg/kg was realized. It was experimentally ascertained that the most apparent antihypoxic action of study objects occurs in conditions of hypobaric hypoxia of acetylated derivative of glutamic acid considerably exceeds glutamic acid.

  9. 40 CFR 180.1187 - L-glutamic acid; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false L-glutamic acid; exemption from the... Exemptions From Tolerances § 180.1187 L-glutamic acid; exemption from the requirement of a tolerance. L-glutamic acid is exempt from the requirement of a tolerance on all food commodities when used in...

  10. Yokukansan, a Traditional Japanese Medicine, Adjusts Glutamate Signaling in Cultured Keratinocytes

    Directory of Open Access Journals (Sweden)

    Maki Wakabayashi

    2014-01-01

    Full Text Available Glutamate plays an important role in skin barrier signaling. In our previous study, Yokukansan (YKS affected glutamate receptors in NC/Nga mice and was ameliorated in atopic dermatitis lesions. The aim of this study was to assess the effect of YKS on skin and cultured human keratinocytes. Glutamate concentrations in skin of YKS-treated and nontreated NC/Nga mice were measured. Then, glutamate release from cultured keratinocytes was measured, and extracellular glutamate concentrations in YKS-stimulated cultured human keratinocytes were determined. The mRNA expression levels of NMDA receptor 2D (NMDAR2D and glutamate aspartate transporter (GLAST were also determined in YKS-stimulated cultured keratinocytes. The glutamate concentrations and dermatitis scores increased in conventional mice, whereas they decreased in YKS-treated mice. Glutamate concentrations in cell supernatants of cultured keratinocytes increased proportionally to the cell density. However, they decreased dose-dependently with YKS. YKS stimulation increased NMDAR2D in a concentration-dependent manner. Conversely, GLAST decreased in response to YKS. Our findings indicate that YKS affects peripheral glutamate signaling in keratinocytes. Glutamine is essential as a transmitter, and dermatitis lesions might produce and release excess glutamate. This study suggests that, in keratinocytes, YKS controls extracellular glutamate concentrations, suppresses N-methyl-D-aspartate (NMDA receptors, and activates glutamate transport.

  11. Feedback-induced glutamate spillover enhances negative feedback from horizontal cells to cones

    NARCIS (Netherlands)

    Vroman, Rozan; Kamermans, M.

    2015-01-01

    KEY POINTS: In the retina, horizontal cells feed back negatively to cone photoreceptors. Glutamate released from cones can spill over to neighbouring cones. Here we show that cone glutamate release induced by negative feedback can also spill over to neighbouring cones. This glutamate activates the g

  12. CHARACTERIZATION OF A BINDING PROTEIN-DEPENDENT GLUTAMATE TRANSPORT-SYSTEM OF RHODOBACTER-SPHAEROIDES

    NARCIS (Netherlands)

    Jacobs, M.H J; Driessen, A.J.M.; Konings, W.N

    1995-01-01

    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (K-t of 1.2 mu M), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein wa

  13. Characterization of a Binding Protein-Dependent Glutamate Transport System of Rhodobacter sphaeroides

    NARCIS (Netherlands)

    Jacobs, Mariken H.J.; Driessen, Arnold J.M.; Konings, Wil N.

    1995-01-01

    The mechanism of L-glutamate uptake was studied in Rhodobacter sphaeroides. Uptake of L-glutamate is mediated by a high-affinity (Kt of 1.2 µM), shock-sensitive transport system that is inhibited by vanadate and dependent on the internal pH. From the shock fluid, an L-glutamate-binding protein was i

  14. STUDY ON THE SEPARATION OF GLUTAMIC ACID BY ION—EXCHANGE

    Institute of Scientific and Technical Information of China (English)

    ShenJiyu; WangQinyu

    1995-01-01

    The feasibility of recovering glutamic acid by ion exchange method with macroporous resins was investigated.Their adsorption properties in stati state and the effective factors,such as pH,concentration of eeed and the ratio of ammonium ion to glutamic acid,were systematically explored.The best condition of separating glutamic acid from mother liquid were obtained.

  15. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange

    NARCIS (Netherlands)

    M. Timmerman (Michelle); C. Teng; R.B. Wilkening; P.V. Fennessey (Paul); F.C. Battaglia (Frederick); G. Meschia

    2000-01-01

    textabstractIntravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying mechanis

  16. Role of astrocytic glutamate transporter in alcohol use disorder.

    Science.gov (United States)

    Ayers-Ringler, Jennifer R; Jia, Yun-Fang; Qiu, Yan-Yan; Choi, Doo-Sup

    2016-03-22

    Alcohol use disorder (AUD) is one of the most widespread neuropsychiatric conditions, having a significant health and socioeconomic impact. According to the 2014 World Health Organization global status report on alcohol and health, the harmful use of alcohol is responsible for 5.9% of all deaths worldwide. Additionally, 5.1% of the global burden of disease and injury is ascribed to alcohol (measured in disability adjusted life years, or disability adjusted life years). Although the neurobiological basis of AUD is highly complex, the corticostriatal circuit contributes significantly to the development of addictive behaviors. In-depth investigation into the changes of the neurotransmitters in this circuit, dopamine, gamma-aminobutyricacid, and glutamate, and their corresponding neuronal receptors in AUD and other addictions enable us to understand the molecular basis of AUD. However, these discoveries have also revealed a dearth of knowledge regarding contributions from non-neuronal sources. Astrocytes, though intimately involved in synaptic function, had until recently been noticeably overlooked in their potential role in AUD. One major function of the astrocyte is protecting neurons from excitotoxicity by removing glutamate from the synapse via excitatory amino acid transporter type 2. The importance of this key transporter in addiction, as well as ethanol withdrawal, has recently become evident, though its regulation is still under investigation. Historically, pharmacotherapy for AUD has been focused on altering the activity of neuronal glutamate receptors. However, recent clinical evidence has supported the animal-based findings, showing that regulating glutamate homeostasis contributes to successful management of recovery from AUD.

  17. Control of cortical neuronal migration by glutamate and GABA

    Directory of Open Access Journals (Sweden)

    Heiko J Luhmann

    2015-01-01

    Full Text Available Neuronal migration in the cortex is controlled by the paracrine action of the classical neurotransmitters glutamate and GABA. Glutamate controls radial migration of pyramidal neurons by acting primarily on NMDA receptors and regulates tangential migration of inhibitory interneurons by activating non-NMDA and NMDA receptors. GABA, acting on ionotropic GABAA-rho and GABAA receptors, has a dichotomic action on radially migrating neurons by acting as a GO signal in lower layers and as a STOP signal in upper cortical plate (CP, respectively. Metabotropic GABAB receptors promote radial migration into the CP and tangential migration of interneurons. Besides GABA, the endogenous GABAergic agonist taurine is a relevant agonist controlling radial migration. To a smaller extent glycine receptor activation can also influence radial and tangential migration. Activation of glutamate and GABA receptors causes increases in intracellular Ca2+ transients, which promote neuronal migration by acting on the cytoskeleton. Pharmacological or genetic manipulation of glutamate or GABA receptors during early corticogenesis induce heterotopic cell clusters in upper layers and loss of cortical lamination, i.e. neuronal migration disorders which can be associated with neurological or neuropsychiatric diseases. The pivotal role of NMDA and ionotropic GABA receptors in cortical neuronal migration is of major clinical relevance, since a number of drugs acting on these receptors (e.g. anti-epileptics, anesthetics, alcohol may disturb the normal migration pattern when present during early corticogenesis.

  18. [Metabotropic glutamate receptors as targets for new drug development].

    Science.gov (United States)

    Arkhipov, V I; Kapralova, M V

    2011-01-01

    The review is devoted to experimental investigations of metabotropic glutamate receptors and the properties of drugs (ligands) belonging to agonists, antagonists, and modulators of the activity of these receptors. Possibilities of the treatment of neurodegenerative disorders, cognitive disturbances in schizophrenia patients, and narcotic dependency by using drugs of this class are considered.

  19. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...

  20. Examining the role of glutamic acid 183 in chloroperoxidase catalysis

    NARCIS (Netherlands)

    Yi, X.; Conesa, A.; Punt, P.J.; Hager, L.P.

    2003-01-01

    Site-directed mutagenesis has been used to investigate the role of glutamic acid 183 in chloroperoxidase catalysis. Based on the x-ray crystallographic structure of chloroperoxidase, Glu-183 is postulated to function on distal side of the heme prosthetic group as an acid-base catalyst in facilitatin

  1. Peripheral Glutamate Receptors Are Required for Hyperalgesia Induced by Capsaicin

    Directory of Open Access Journals (Sweden)

    You-Hong Jin

    2012-01-01

    Full Text Available Transient receptor potential vanilloid1 (TRPV1 and glutamate receptors (GluRs are located in small diameter primary afferent neurons (nociceptors, and it was speculated that glutamate released in the peripheral tissue in response to activation of TRPV1 might activate nociceptors retrogradely. But, it was not clear which types of GluRs are functioning in the nociceptive sensory transmission. In the present study, we examined the c-Fos expression in spinal cord dorsal horn following injection of drugs associated with glutamate receptors with/without capsaicin into the hindpaw. The subcutaneous injection of capsaicin or glutamate remarkably evoked c-Fos expression in ipsilateral sides of spinal cord dorsal horn. This capsaicin evoked increase of c-Fos expression was significantly prevented by concomitant administration of MK801, CNQX, and CPCCOEt. On the other hand, there were not any significant changes in coinjection of capsaicin and MCCG or MSOP. These results reveal that the activation of iGluRs and group I mGluR in peripheral afferent nerves play an important role in mechanisms whereby capsaicin evokes/maintains nociceptive responses.

  2. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermedia

  3. Glutamate metabolism in the brain focusing on astrocytes

    DEFF Research Database (Denmark)

    Schousboe, Arne; Scafidi, Susanna; Bak, Lasse Kristoffer

    2014-01-01

    Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both the anaplero......Metabolism of glutamate, the main excitatory neurotransmitter and precursor of GABA, is exceedingly complex and highly compartmentalized in brain. Maintenance of these neurotransmitter pools is strictly dependent on the de novo synthesis of glutamine in astrocytes which requires both...... the anaplerotic enzyme pyruvate carboxylase and glutamine synthetase. Glutamate is formed directly from glutamine by deamidation via phosphate activated glutaminase a reaction that also yields ammonia. Glutamate plays key roles linking carbohydrate and amino acid metabolism via the tricarboxylic acid (TCA) cycle......, as well as in nitrogen trafficking and ammonia homeostasis in brain. The anatomical specialization of astrocytic endfeet enables these cells to rapidly and efficiently remove neurotransmitters from the synaptic cleft to maintain homeostasis, and to provide glutamine to replenish neurotransmitter pools...

  4. The role of glutamate dehydrogenase in mammalian ammonia metabolism.

    Science.gov (United States)

    Spanaki, Cleanthe; Plaitakis, Andreas

    2012-01-01

    Glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia. High levels of GDH activity is found in mammalian liver, kidney, brain, and pancreas. In the liver, GDH reaction appears to be close-to-equilibrium, providing the appropriate ratio of ammonia and amino acids for urea synthesis in periportal hepatocytes. In addition, GDH produces glutamate for glutamine synthesis in a small rim of pericentral hepatocytes. Hence, hepatic GDH can be either a source for ammonia or an ammonia scavenger. In the kidney, GDH function produces ammonia from glutamate to control acidosis. In the human, the presence of two differentially regulated isoforms (hGDH1 and hGDH2) suggests a complex role for GDH in ammonia homeostasis. Whereas hGDH1 is sensitive to GTP inhibition, hGDH2 has dissociated its function from GTP control. Furthermore, hGDH2 shows a lower optimal pH than hGDH1. The hGDH2 enzyme is selectively expressed in human astrocytes and Sertoli cells, probably facilitating metabolic recycling processes essential for their supportive role. Here, we report that hGDH2 is also expressed in the epithelial cells lining the convoluted tubules of the renal cortex. As hGDH2 functions more efficiently under acidotic conditions without the operation of the GTP energy switch, its presence in the kidney may increase the efficacy of the organ to maintain acid base equilibrium.

  5. Synthesis of Biobased Succinonitrile from Glutamic Acid and Glutamine

    NARCIS (Netherlands)

    Lammens, T.M.; Nôtre, Le J.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2011-01-01

    Succinonitrile is the precursor of 1,4-diaminobutane, which is used for the industrial production of polyamides. This paper describes the synthesis of biobased succinonitrile from glutamic acid and glutamine, amino acids that are abundantly present in many plant proteins. Synthesis of the intermedia

  6. Dynamic DNA methylation controls glutamate receptor trafficking and synaptic scaling.

    Science.gov (United States)

    Sweatt, J David

    2016-05-01

    Hebbian plasticity, including long-term potentiation and long-term depression, has long been regarded as important for local circuit refinement in the context of memory formation and stabilization. However, circuit development and stabilization additionally relies on non-Hebbian, homeostatic, forms of plasticity such as synaptic scaling. Synaptic scaling is induced by chronic increases or decreases in neuronal activity. Synaptic scaling is associated with cell-wide adjustments in postsynaptic receptor density, and can occur in a multiplicative manner resulting in preservation of relative synaptic strengths across the entire neuron's population of synapses. Both active DNA methylation and demethylation have been validated as crucial regulators of gene transcription during learning, and synaptic scaling is known to be transcriptionally dependent. However, it has been unclear whether homeostatic forms of plasticity such as synaptic scaling are regulated via epigenetic mechanisms. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously largely considered separately: DNA methylation, homeostatic plasticity, and glutamate receptor trafficking. This review describes exciting recent work that has demonstrated a role for active changes in neuronal DNA methylation and demethylation as a controller of synaptic scaling and glutamate receptor trafficking. These findings bring together three major categories of memory-associated mechanisms that were previously considered separately: glutamate receptor trafficking, DNA methylation, and homeostatic plasticity.

  7. Chronic rhinitis with nasal polyposis associated with sodium glutamate intolerance.

    Science.gov (United States)

    Asero, Riccardo; Bottazzi, Gianna

    2007-01-01

    The study reports a case of perennial rhinitis with bilateral polyposis. A careful diagnostic workup revealed that the disorder was caused by sodium glutamate intolerance. This is the first study showing an association between intolerance to food additives and nasal polyposis. 2007 S. Karger AG, Basel

  8. Examining the role of glutamic acid 183 in chloroperoxidase catalysis

    NARCIS (Netherlands)

    Yi, X.; Conesa, A.; Punt, P.J.; Hager, L.P.

    2003-01-01

    Site-directed mutagenesis has been used to investigate the role of glutamic acid 183 in chloroperoxidase catalysis. Based on the x-ray crystallographic structure of chloroperoxidase, Glu-183 is postulated to function on distal side of the heme prosthetic group as an acid-base catalyst in

  9. Metabotropic glutamate receptors: From the workbench to the bedside

    Science.gov (United States)

    Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P.

    2013-01-01

    Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson’s disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled ‘Trends in Neuropharmacology: In Memory of Erminio Costa’. PMID:21036182

  10. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  11. Glutamate phase shifts circadian activity rhythms in hamsters

    NARCIS (Netherlands)

    Meijer, J.H.; van der Zee, E.A.; Dietz, M.

    1988-01-01

    The suprachiasmatic nuclei (SCN) have been identified as a pacemaker for many circadian rhythms in mammals. Photic entrainment of this pacemaker can be accomplished via the direct retino-hypothalamic tract (RHT). Glutamate is a putative transmitter of the RHT. In the present study it is demonstrated

  12. Does formate reduce alpha-ketoglutarate and ammonia to glutamate?

    Science.gov (United States)

    Maughan, Q.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    The reported reduction of alpha-ketoglutarate and ammonia by formate is much slower than described (Morowitz et al., 1995). The formate reduction if any is small under these conditions. Glutamate is produced from a reduction by a second molecule of alpha-ketoglutarate involving an oxidative decarboxylation.

  13. Blood and Brain Glutamate Levels in Children with Autistic Disorder

    Science.gov (United States)

    Hassan, Tamer H.; Abdelrahman, Hadeel M.; Fattah, Nelly R. Abdel; El-Masry, Nagda M.; Hashim, Haitham M.; El-Gerby, Khaled M.; Fattah, Nermin R. Abdel

    2013-01-01

    Despite of the great efforts that move forward to clarify the pathophysiologic mechanisms in autism, the cause of this disorder, however, remains largely unknown. There is an increasing body of literature concerning neurochemical contributions to the pathophysiology of autism. We aimed to determine blood and brain levels of glutamate in children…

  14. Molecular Characteristics of Membrane Glutamate Receptor-Ionophore Interaction.

    Science.gov (United States)

    1986-08-29

    Neurochemical - Research , 1984, 9, 29-44. Chang, H.H., Michaelis, E.K. & Roy, S. Functional characteristics of . -Z L-glutamate, N-methyl-D-aspartate and kainate...receptors in isolated brain synaptic membranes. Neurochemical Research , 1984, 9, 901-913. Michaelis, E. K., Galton, N. and Early, S. L. Spider venous

  15. Microbial production and chemical transformation of poly-γ-glutamate.

    Science.gov (United States)

    Ashiuchi, Makoto

    2013-11-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of D-glutamate (D-PGA), a homo polymer of L-glutamate (L-PGA), and a random copolymer consisting of D- and L-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented.

  16. Effect of dexamethasone on fetal hepatic glutamine-glutamate exchange

    NARCIS (Netherlands)

    M. Timmerman (Michelle); C. Teng; R.B. Wilkening; P.V. Fennessey (Paul); F.C. Battaglia (Frederick); G. Meschia

    2000-01-01

    textabstractIntravenous infusion of dexamethasone (Dex) in the fetal lamb causes a two- to threefold increase in plasma glutamine and other glucogenic amino acids and a decrease of plasma glutamate to approximately one-third of normal. To explore the underlying

  17. Differential distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs in the entopeduncular nucleus of the rat.

    Science.gov (United States)

    Yuan, P Q; Grånäs, C; Källström, L; Yu, J; Huhman, K; Larhammar, D; Albers, H E; Johnson, A E

    1997-05-01

    The entopeduncular nucleus is one of the major output nuclei of the basal ganglia, with topographically organized projections to both motor and limbic structures. Neurons of the entopeduncular nucleus use GABA as the principal transmitter, and glutamic acid decarboxylase (the GABA synthetic enzyme) is widely distributed throughout the region. Previous studies have shown that glutamate decarboxylase exists in two forms (glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67), and that the messenger RNAs for these different enzymes are widely distributed in rat brain. The purpose of the present experiment was to describe the distribution of glutamic acid decarboxylase-65 and glutamic decarboxylase-67 messenger RNAs throughout the entopeduncular nucleus using recently developed oligodeoxynucleotide probes and in situ hybridization histochemical methods. In agreement with previous studies, northern analysis of rat brain poly(A)+ messenger RNA preparations showed that the glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 probes used in the present study hybridized to messenger RNAs of approximately 5.7 and 3.7 kb, respectively. Film autoradiographic analysis revealed large region-dependent, isoform-specific differences in the levels of expression of the two messenger RNAs, with glutamic acid decarboxylase-65 messenger RNA predominating in rostral and medial regions of the entopeduncular nucleus and glutamic acid decarboxylase-67 messenger RNA most abundant in the caudal region. Cellular analysis showed that these region-dependent differences in labelling were due to differences in the relative amounts of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs expressed per cell rather than the number of cells expressing each form of glutamic acid decarboxylase messenger RNA. The differences in the distribution of glutamic acid decarboxylase-65 and glutamic acid decarboxylase-67 messenger RNAs are closely related to the

  18. On the potential role of glutamate transport in mental fatigue

    Directory of Open Access Journals (Sweden)

    Hansson Elisabeth

    2004-11-01

    Full Text Available Abstract Mental fatigue, with decreased concentration capacity, is common in neuroinflammatory and neurodegenerative diseases, often appearing prior to other major mental or physical neurological symptoms. Mental fatigue also makes rehabilitation more difficult after a stroke, brain trauma, meningitis or encephalitis. As increased levels of proinflammatory cytokines are reported in these disorders, we wanted to explore whether or not proinflammatory cytokines could induce mental fatigue, and if so, by what mechanisms. It is well known that proinflammatory cytokines are increased in major depression, "sickness behavior" and sleep deprivation, which are all disorders associated with mental fatigue. Furthermore, an influence by specific proinflammatory cytokines, such as interleukin (IL-1, on learning and memory capacities has been observed in several experimental systems. As glutamate signaling is crucial for information intake and processing within the brain, and due to the pivotal role for glutamate in brain metabolism, dynamic alterations in glutamate transmission could be of pathophysiological importance in mental fatigue. Based on this literature and observations from our own laboratory and others on the role of astroglial cells in the fine-tuning of glutamate neurotransmission we present the hypothesis that the proinflammatory cytokines tumor necrosis factor-α, IL-1β and IL-6 could be involved in the pathophysiology of mental fatigue through their ability to attenuate the astroglial clearance of extracellular glutamate, their disintegration of the blood brain barrier, and effects on astroglial metabolism and metabolic supply for the neurons, thereby attenuating glutamate transmission. To test whether our hypothesis is valid or not, brain imaging techniques should be applied with the ability to register, over time and with increasing cognitive loading, the extracellular concentrations of glutamate and potassium (K+ in humans suffering from

  19. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  20. Fluctuations in endogenous kynurenic acid control hippocampal glutamate and memory.

    Science.gov (United States)

    Pocivavsek, Ana; Wu, Hui-Qiu; Potter, Michelle C; Elmer, Greg I; Pellicciari, Roberto; Schwarcz, Robert

    2011-10-01

    Kynurenic acid (KYNA), an astrocyte-derived metabolite, antagonizes the α7 nicotinic acetylcholine receptor (α7nAChR) and, possibly, the glycine co-agonist site of the NMDA receptor at endogenous brain concentrations. As both receptors are involved in cognitive processes, KYNA elevations may aggravate, whereas reductions may improve, cognitive functions. We tested this hypothesis in rats by examining the effects of acute up- or downregulation of endogenous KYNA on extracellular glutamate in the hippocampus and on performance in the Morris water maze (MWM). Applied directly by reverse dialysis, KYNA (30-300 nM) reduced, whereas the specific kynurenine aminotransferase-II inhibitor (S)-4-(ethylsulfonyl)benzoylalanine (ESBA; 0.3-3 mM) raised, extracellular glutamate levels in the hippocampus. Co-application of KYNA (100 nM) with ESBA (1 mM) prevented the ESBA-induced glutamate increase. Comparable effects on hippocampal glutamate levels were seen after intra-cerebroventricular (i.c.v.) application of the KYNA precursor kynurenine (1 mM, 10 μl) or ESBA (10 mM, 10 μl), respectively. In separate animals, i.c.v. treatment with kynurenine impaired, whereas i.c.v. ESBA improved, performance in the MWM. I.c.v. co-application of KYNA (10 μM) eliminated the pro-cognitive effects of ESBA. Collectively, these studies show that KYNA serves as an endogenous modulator of extracellular glutamate in the hippocampus and regulates hippocampus-related cognitive function. Our results suggest that pharmacological interventions leading to acute reductions in hippocampal KYNA constitute an effective strategy for cognitive improvement. This approach might be especially useful in the treatment of cognitive deficits in neurological and psychiatric diseases that are associated with increased brain KYNA levels.

  1. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  2. Glutamate-mediated excitotoxicity in schizophrenia: a review.

    Science.gov (United States)

    Plitman, Eric; Nakajima, Shinichiro; de la Fuente-Sandoval, Camilo; Gerretsen, Philip; Chakravarty, M Mallar; Kobylianskii, Jane; Chung, Jun Ku; Caravaggio, Fernando; Iwata, Yusuke; Remington, Gary; Graff-Guerrero, Ariel

    2014-10-01

    Findings from neuroimaging studies in patients with schizophrenia suggest widespread structural changes although the mechanisms through which these changes occur are currently unknown. Glutamatergic activity appears to be increased in the early phases of schizophrenia and may contribute to these structural alterations through an excitotoxic effect. The primary aim of this review was to describe the possible role of glutamate-mediated excitotoxicity in explaining the presence of neuroanatomical changes within schizophrenia. A Medline(®) literature search was conducted, identifying English language studies on the topic of glutamate-mediated excitotoxicity in schizophrenia, using the terms "schizophreni" and "glutam" and (("MRS" or "MRI" or "magnetic resonance") or ("computed tomography" or "CT")). Studies concomitantly investigating glutamatergic activity and brain structure in patients with schizophrenia were included. Results are discussed in the context of findings from preclinical studies. Seven studies were identified that met the inclusion criteria. These studies provide inconclusive support for the role of glutamate-mediated excitotoxicity in the occurrence of structural changes within schizophrenia, with the caveat that there is a paucity of human studies investigating this topic. Preclinical data suggest that an excitotoxic effect may occur as a result of a paradoxical increase in glutamatergic activity following N-methyl-D-aspartate receptor hypofunction. Based on animal literature, glutamate-mediated excitotoxicity may account for certain structural changes present in schizophrenia, but additional human studies are required to substantiate these findings. Future studies should adopt a longitudinal design and employ magnetic resonance imaging techniques to investigate whether an association between glutamatergic activity and structural changes exists in patients with schizophrenia.

  3. Prefrontal cortex glutamate correlates with mental perspective-taking.

    Directory of Open Access Journals (Sweden)

    Christiane Montag

    Full Text Available BACKGROUND: Dysfunctions in theory of mind and empathic abilities have been suggested as core symptoms in major psychiatric disorders including schizophrenia and autism. Since self monitoring, perspective taking and empathy have been linked to prefrontal (PFC and anterior cingulate cortex (ACC function, neurotransmitter variations in these areas may account for normal and pathological variations of these functions. Converging evidence indicates an essential role of glutamatergic neurotransmission in psychiatric diseases with pronounced deficits in empathy. However, the role of the glutamate system for different dimensions of empathy has not been investigated so far. METHODOLOGY/PRINCIPAL FINDINGS: Absolute concentrations of cerebral glutamate in the ACC, left dorsolateral PFC and left hippocampus were determined by 3-tesla proton magnetic resonance spectroscopy (1H-MRS in 17 healthy individuals. Three dimensions of empathy were estimated by a self-rating questionnaire, the Interpersonal Reactivity Index (IRI. Linear regression analysis showed that dorsolateral PFC glutamate concentration was predicted by IRI factor "perspective taking" (T = -2.710, p = 0.018; adjusted alpha-level of 0.017, Bonferroni but not by "empathic concern" or "personal distress". No significant relationship between IRI subscores and the glutamate levels in the ACC or left hippocampus was detected. CONCLUSIONS/SIGNIFICANCE: This is the first study to investigate the role of the glutamate system for dimensions of theory of mind and empathy. Results are in line with recent concepts that executive top-down control of behavior is mediated by prefrontal glutamatergic projections. This is a preliminary finding that needs a replication in an independent sample.

  4. Laser-scanning astrocyte mapping reveals increased glutamate-responsive domain size and disrupted maturation of glutamate uptake following neonatal cortical freeze-lesion

    Directory of Open Access Journals (Sweden)

    Mortiz eArmbruster

    2014-09-01

    Full Text Available Astrocytic uptake of glutamate shapes extracellular neurotransmitter dynamics, receptor activation, and synaptogenesis. During development, glutamate transport becomes more robust. How neonatal brain insult affects the functional maturation of glutamate transport remains unanswered. Neonatal brain insult can lead to developmental delays, cognitive losses, and epilepsy; the disruption of glutamate transport is known to cause changes in synaptogenesis, receptor activation, and seizure. Using the neonatal freeze-lesion (FL model, we have investigated how insult affects the maturation of astrocytic glutamate transport. As lesioning occurs on the day of birth, a time when astrocytes are still functionally immature, this model is ideal for identifying changes in astrocyte maturation following insult. Reactive astrocytosis, astrocyte proliferation, and in vitro hyperexcitability are known to occur in this model. To probe astrocyte glutamate transport with better spatial precision we have developed a novel technique, Laser Scanning Astrocyte Mapping (LSAM, which combines glutamate transport current (TC recording from astrocytes with laser scanning glutamate photolysis. LSAM allows us to identify the area from which a single astrocyte can transport glutamate and to quantify spatial heterogeneity in the rate of glutamate clearance kinetics within that domain. Using LSAM, we report that cortical astrocytes have an increased glutamate-responsive area following FL and that TCs have faster decay times in distal, as compared to proximal processes. Furthermore, the developmental shift from GLAST- to GLT-1-dominated clearance is disrupted following FL. These findings introduce a novel method to probe astrocyte glutamate uptake and show that neonatal cortical FL disrupts the functional maturation of cortical astrocytes.

  5. Delineation of glutamate pathways and secretory responses in pancreatic islets with β-cell-specific abrogation of the glutamate dehydrogenase

    DEFF Research Database (Denmark)

    Vetterli, Laurène; Carobbio, Stefania; Pournourmohammadi, Shirin;

    2012-01-01

    In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell-specific GDH knockout mouse model, called βGlud1(-/-). The absence of GDH in islets isolated ...

  6. Differential contribution of the proline and glutamine pathways to glutamate biosynthesis and nitrogen assimilation in yeast lacking glutamate dehydrogenase.

    Science.gov (United States)

    Sieg, Alex G; Trotter, Pamela J

    2014-01-01

    In Saccharomyces cerevisiae, the glutamate dehydrogenase (GDH) enzymes play a pivotal role in glutamate biosynthesis and nitrogen assimilation. It has been proposed that, in GDH-deficient yeast, either the proline utilization (PUT) or the glutamine synthetase-glutamate synthase (GS/GOGAT) pathway serves as the alternative pathway for glutamate production and nitrogen assimilation to the exclusion of the other. Using a gdh-null mutant (gdh1Δ2Δ3Δ), this ambiguity was addressed using a combination of growth studies and pathway-specific enzyme assays on a variety of nitrogen sources (ammonia, glutamine, proline and urea). The GDH-null mutant was viable on all nitrogen sources tested, confirming that alternate pathways for nitrogen assimilation exist in the gdh-null strain. Enzyme assays point to GS/GOGAT as the primary alternative pathway on the preferred nitrogen sources ammonia and glutamine, whereas growth on proline required both the PUT and GS/GOGAT pathways. In contrast, growth on glucose-urea media elicited a decrease in GOGAT activity along with an increase in activity of the PUT pathway specific enzyme Δ(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH). Together, these results suggest the alternative pathway for nitrogen assimilation in strains lacking the preferred GDH-dependent route is nitrogen source dependent and that neither GS/GOGAT nor PUT serves as the sole compensatory pathway.

  7. Deletion of genes involved in glutamate metabolism to improve poly-gamma-glutamic acid production in B. amyloliquefaciens LL3.

    Science.gov (United States)

    Zhang, Wei; He, Yulian; Gao, Weixia; Feng, Jun; Cao, Mingfeng; Yang, Chao; Song, Cunjiang; Wang, Shufang

    2015-02-01

    Here, we attempted to elevate poly-gamma-glutamic acid (γ-PGA) production by modifying genes involved in glutamate metabolism in Bacillus amyloliquefaciens LL3. Products of rocR, rocG and gudB facilitate the conversion from glutamate to 2-oxoglutarate in Bacillus subtillis. The gene odhA is responsible for the synthesis of a component of the 2-oxoglutarate dehydrogenase complex that catalyzes the oxidative decarboxylation of 2-oxoglutarate to succinyl coenzyme A. In-frame deletions of these four genes were performed. In shake flask experiments the gudB/rocG double mutant presented enhanced production of γ-PGA, a 38 % increase compared with wild type. When fermented in a 5-L fermenter with pH control, the γ-PGA yield of the rocR mutant was increased to 5.83 g/L from 4.55 g/L for shake flask experiments. The gudB/rocG double mutant produced 5.68 g/L γ-PGA compared with that of 4.03 g/L for the wild type, a 40 % increase. Those results indicated the possibility of improving γ-PGA production by modifying glutamate metabolism, and identified potential genetic targets to improve γ-PGA production.

  8. C5a Regulates IL-1β Production and Leukocyte Recruitment in a Murine Model of Monosodium Urate Crystal-Induced Peritonitis

    Science.gov (United States)

    Khameneh, Hanif J.; Ho, Adrian W. S.; Laudisi, Federica; Derks, Heidi; Kandasamy, Matheswaran; Sivasankar, Baalasubramanian; Teng, Gim Gee; Mortellaro, Alessandra

    2017-01-01

    Gouty arthritis results from the generation of monosodium urate (MSU) crystals within joints. These MSU crystals elicit acute inflammation characterized by massive infiltration of neutrophils and monocytes that are mobilized by the pro-inflammatory cytokine IL-1β. MSU crystals also activate the complement system, which regulates the inflammatory response; however, it is unclear whether or how MSU-mediated complement activation is linked to IL-1β release in vivo, and the various roles that might be played by individual components of the complement cascade. Here we show that exposure to MSU crystals in vivo triggers the complement cascade, leading to the generation of the biologically active complement proteins C3a and C5a. C5a, but not C3a, potentiated IL-1β and IL-1α release from LPS–primed MSU-exposed peritoneal macrophages and human monocytic cells in vitro; while in vivo MSU–induced C5a mediated murine neutrophil recruitment as well as IL-1β production at the site of inflammation. These effects were significantly ameliorated by treatment of mice with a C5a receptor antagonist. Mechanistic studies revealed that C5a most likely increased NLRP3 inflammasome activation via production of reactive oxygen species (ROS), and not through increased transcription of inflammasome components. Therefore we conclude that C5a generated upon MSU-induced complement activation increases neutrophil recruitment in vivo by promoting IL-1 production via the generation of ROS, which activate the NLRP3 inflammasome. Identification of the C5a receptor as a key determinant of IL-1-mediated recruitment of inflammatory cells provides a novel potential target for therapeutic intervention to mitigate gouty arthritis. PMID:28167912

  9. Comparison between oral and intra-articular antinociceptive effect of dexketoprofen and tramadol combination in monosodium iodoacetate-induced osteoarthritis in rats.

    Science.gov (United States)

    Cialdai, Cecilia; Giuliani, Sandro; Valenti, Claudio; Tramontana, Manuela; Maggi, Carlo Alberto

    2013-08-15

    Dexketoprofen and tramadol, alone or in combination, were evaluated after oral or intra-articular administration on knee osteoarthritis nociception induced by intra-articular (i.ar.) monosodium iodoacetate (MIA, 1 mg/25 µl) in the rat right knee while the left knee received saline (25 µl). Seven days after MIA treatment, dexketoprofen, tramadol, their combination or the vehicle were administered. Nociception was evaluated as alteration in hind limb weight distribution with Incapacitance tester at different time-points after drug administration. Oral dexketoprofen (0.1-1 mg/kg) or tramadol (0.5-5 mg/kg) induced maximal antinociception at 1 and 5 mg/kg, respectively. Their combination dose-dependently increased the intensity and duration of antinociception, that was additive and lasted up to 3 days. Also the intra-articular administration of dexketoprofen or tramadol (10-100 µg/25 µl) inhibited MIA-induced nociception, and the combination of the lower doses (10 µg/25 µl) produced a long lasting more than additive antinociceptive effect indicating a synergistic interaction between the two drugs. This effect was significantly reduced by naloxone (10 μg/25 μl, i.ar.) co-administered with both compounds. The intra-articular administration of both drugs at 10 µg/25 µl in the contralateral control knee joint provoked a marked synergistic antinociceptive effect indicating significant systemic diffusion through synovial membrane. The oral or intra-articular combination of dexketoprofen and tramadol produced additive or synergistic antinociceptive effects, respectively, in the model of MIA-induced osteoarthritis in rats, that might allow to obtain therapeutic advantages with lower side effects. © 2013 Elsevier B.V. All rights reserved.

  10. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    Science.gov (United States)

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  11. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals.

    Science.gov (United States)

    Sil, Payel; Hayes, Craig P; Reaves, Barbara J; Breen, Patrick; Quinn, Shannon; Sokolove, Jeremy; Rada, Balázs

    2017-01-01

    Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.

  12. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  13. Monosodium urate crystal-induced pro-interleukin-1β production is post-transcriptionally regulated via the p38 signaling pathway in human monocytes.

    Science.gov (United States)

    Chung, Yeon-Ho; Kim, Dong-Hyun; Lee, Won-Woo

    2016-10-03

    IL-1β is a key mediator of sterile inflammation in response to endogenous particulates, a type of damage-associated molecular pattern (DAMPs) molecule derived from damaged cells. Despite the well-known role of sterile particulates such as monosodium urate (MSU) crystals as inflammasome inducers in monocytes/macrophages, little is known regarding how pro-IL-1β synthesis is induced under sterile inflammatory conditions. We provide evidence that MSU crystals post-transcriptionally induce the rapid production of pro-IL-1β in human primary monocytes. Metabolic labeling and pull-down assays for newly-synthesized proteins clearly showed that MSU crystals rapidly, within 30 min, induce the synthesis of pro-IL-1β as well as global proteins. Notably, MSU crystal-induced pro-IL-1β synthesis is selectively dependent on the p38 MAPK pathway, whereas global protein synthesis is mediated via the mTOR, ERK1/2, and p38 pathways. Furthermore, inhibition of Mnk1, a substrate of p38, blocked MSU crystal-induced pro-IL-1β synthesis downstream of eIF4E phosphorylation. In addition, the p38 MAPK pathway leading to phosphorylation of MK2 was also critical for stabilization of pro-IL-1β mRNA following MSU stimulation. Our findings demonstrate that post-transcriptional regulation via p38 MAPK plays a central role in the rapid synthesis of pro-IL-1β in response to MSU crystals, which is an essential step for IL-1β production in human monocytes.

  14. Enhanced p62 Is Responsible for Mitochondrial Pathway-Dependent Apoptosis and Interleukin-1β Production at the Early Phase by Monosodium Urate Crystals in Murine Macrophage.

    Science.gov (United States)

    Kim, Seong-Kyu; Choe, Jung-Yoon; Park, Ki-Yeun

    2016-10-01

    The aim of this study was to clarify the role of p62-dependent mitochondrial apoptosis in the initiation of monosodium urate (MSU) crystal-induced inflammation in macrophages. The induction of mitochondrial apoptosis in RAW 264.7 murine macrophages by MSU crystals was measured using western blotting and quantitative real-time polymerase chain reaction for Bax, caspase-3, caspase-9, or PARP1, and by flow cytometric analysis. Immunoprecipitation and western blotting was applied to detect ubiquitination of p62, TRAF6, and caspase-9. Mitochondrial apoptosis, reactive oxygen species (ROS) generation, and cell proliferation were assessed in cells transfected with p62 small interfering RNA (siRNA). Treatment of RAW 264.7 cells with MSU crystals induced activation of Bax, caspase-3, caspase-9, and PARP1 at the early phase, in addition to enhancing IL-1β expression, but these findings were attenuated at the late phase. MSU crystals induced ubiquitination of p62, followed by ubiquitination of TRAF6 and caspase-9, which were significantly reversed by ascorbic acid. RAW 264.7 cells transfected with p62 siRNA showed attenuated expression of Bax, caspase-3, caspase-9, and PARP1, decreased ROS and IL-1β production, and increased cell proliferation, compared to controls. The antioxidant ascorbic acid inhibited p62, caspase-9, and IL-1β expression increased by MSU crystals. p62 may be a crucial mediator for the mitochondrial apoptosis pathway in MSU crystal-induced inflammation, which is linked to the acute inflammatory response during the early phase of gout.

  15. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis.

    Science.gov (United States)

    Shih, Ing-Lung; Yu, Yun-Ti

    2005-01-01

    Bacillus subtilis(natto) Takahashi, used to prepare the fermented soybean product natto, was grown in a basal medium containing 5% (w/w) sucrose and 1.5% (w/w) L-glutamate and produced 58% (w/w) poly(gamma-glutamic acid) and 42% (w/w) levan simultaneously. After 21 h, 40-50 mg levan ml-1 had been produced in medium containing 20% (w/w) sucrose but without L-glutamate. In medium containing L-glutamic acid but without sucrose, mainly poly(gamma-glutamic acid) was produced.

  16. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures.

  17. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  18. Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy.

    Science.gov (United States)

    Yin, Wei-Yong; Ye, Qiang; Huang, Huan-Jie; Xia, Nian-Ge; Chen, Yan-Yan; Zhang, Yi; Qu, Qiu-Min

    2016-08-01

    Recent evidence suggests that glutamate-induced cytotoxicity contributes to autophagic neuron death and is partially mediated by increased oxidative stress. Salidroside has been demonstrated to have neuroprotective effects in glutamate-induced neuronal damage. The precise mechanism of its regulatory role in neuronal autophagy is, however, poorly understood. This study aimed to probe the effects and mechanisms of salidroside in glutamate-induced autophagy activation in cultured rat cortical neurons. Cell viability assay, Western blotting, coimmunoprecipitation, and small interfering RNA were performed to analyze autophagy activities during glutamate-evoked oxidative injury. We found that salidroside protected neonatal neurons from glutamate-induced apoptotic cell death. Salidroside significantly attenuated the LC3-II/LC3-I ratio and expression of Beclin-1, but increased (SQSTM1)/p62 expression under glutamate exposure. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, decreased LC3-II/LC3-I ratio, attenuated glutamate-induced cell injury, and mimicked some of the protective effects of salidroside against glutamate-induced cell injury. Molecular analysis demonstrated that salidroside inhibited cortical neuron autophagy in response to glutamate exposure through p53 signaling by increasing the accumulation of cytoplasmic p53. Salidroside inhibited the glutamate-induced dissociation of the Bcl-2-Beclin-1 complex with minor affects on the PI3K/Akt/mTOR signaling pathways. These data demonstrate that the inhibition of autophagy could be responsible for the neuroprotective effects of salidroside on glutamate-induced neuronal injury.

  19. ELECTROSPRAYING/ELECTROSPINNING OF POLY(y-STEARYL-L-GLUTAMATE):FORMATION OF SURFACES WITH SUPERHYDROPHOBICITY

    Institute of Scientific and Technical Information of China (English)

    Lin-jun Shao; Jian Wu; Zhi-kang Xu

    2009-01-01

    Electrospraying/electrospinning of poly(y-stearyl-L-glutamate) (PSLG) was investigated on a series solutions with different concentrations in chloroform.Field emission scanning electron microscopy (FESEM) and attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR) were used to characterize the morphology and structure of the electrosprayed/electrospun polypeptide mats.It was found that electrospraying of PSLG with concentrations lower than 16 wt% afforded beads,while microfibers could be electrospun at the concentration of 22 wt%.The hydrophobieity of the electrosprayed/electrospun PSLG mats was investigated with static water contact angle (WCA) and tilt angle measurements.It was demonstrated that the superhydrophobic surfaces of PSLG with WCAs and tilt angles in the ranges of 150°-170°and16.5°-4.2°,respectively,were obtained through electrospraying/electrospinning process.

  20. Self-assembly of glutamic acid linked paclitaxel dimers into nanoparticles for chemotherapy.

    Science.gov (United States)

    Wang, Zhanfeng; Zhuang, Miao; Sun, Tingting; Wang, Xin; Xie, Zhigang

    2017-06-01

    In this work, a glutamic acid linked paclitaxel (PTX) dimer (Glu-PTX2) with high PTX content of 88.9wt% was designed and synthesized. Glu-PTX2 could self-assemble into nanoparticles (Glu-PTX2 NPs) in aqueous solution to increase the water solubility of PTX. Glu-PTX2 NPs were characterized by electron microscopy and dynamic light scattering, exhibiting spherical morphology and favorable structural stability in aqueous media. Glu-PTX2 NPs could be internalized by cancer cells as revealed by confocal laser scanning microscopy and exert potent cytotoxicity. It is envisaged that Glu-PTX2 NPs would be an alternative formulation for PTX, and such amino acid linked drug dimers could also be applied to other therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metabolic pathways and activity-dependent modulation of glutamate concentration in the human brain.

    Science.gov (United States)

    Mangia, Silvia; Giove, Federico; Dinuzzo, Mauro

    2012-11-01

    Glutamate is one of the most versatile molecules present in the human brain, involved in protein synthesis, energy production, ammonia detoxification, and transport of reducing equivalents. Aside from these critical metabolic roles, glutamate plays a major part in brain function, being not only the most abundant excitatory neurotransmitter, but also the precursor for γ-aminobutyric acid, the predominant inhibitory neurotransmitter. Regulation of glutamate levels is pivotal for normal brain function, as abnormal extracellular concentration of glutamate can lead to impaired neurotransmission, neurodegeneration and even neuronal death. Understanding how the neuron-astrocyte functional and metabolic interactions modulate glutamate concentration during different activation status and under physiological and pathological conditions is a challenging task, and can only be tentatively estimated from current literature. In this paper, we focus on describing the various metabolic pathways which potentially affect glutamate concentration in the brain, and emphasize which ones are likely to produce the variations in glutamate concentration observed during enhanced neuronal activity in human studies.

  2. GDH-Dependent Glutamate Oxidation in the Brain Dictates Peripheral Energy Substrate Distribution

    DEFF Research Database (Denmark)

    Karaca, Melis; Frigerio, Francesca; Migrenne, Stephanie;

    2015-01-01

    Glucose, the main energy substrate used in the CNS, is continuously supplied by the periphery. Glutamate, the major excitatory neurotransmitter, is foreseen as a complementary energy contributor in the brain. In particular, astrocytes actively take up glutamate and may use it through oxidative...... glutamate dehydrogenase (GDH) activity. Here, we investigated the significance of glutamate as energy substrate for the brain. Upon glutamate exposure, astrocytes generated ATP in a GDH-dependent way. The observed lack of glutamate oxidation in brain-specific GDH null CnsGlud1(-/-) mice resulted....... Our data reveal the importance of glutamate as necessary energy substrate for the brain and the role of central GDH in the regulation of whole-body energy homeostasis....

  3. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  4. Glutamate Metabolism in Brain Structures in Experimental Hemorrhagic Shock

    Directory of Open Access Journals (Sweden)

    V. N. Jakovlev

    2017-01-01

    Full Text Available Purpose. To study glutamate metabolism characteristics in phylogenetically different parts of the mammalian brain in experimentally induced hemorrhagic shock (HS in cats.Material and methods. Experiments were performed on 76 cats. HS was induced by intermittent bloodletting from femoral artery at a rate of 10ml/kg•10 minutes, with the average volume of 24±0.8 ml/kg. The bloodletting was discontinued after arterial pressure (BP drop to 60.0±1.5 mmHg. We studied ammonia, glutamate (Gt, and α-ketoglutarate (α-KG levels and glutaminase (GS and glutamate dehydrogenase (GDG activity in specimens harvested from phylogenetically different parts of the brain (cortex, limbic system, diencephalon, and medulla oblongata.Results. In intact animals, the peak GDG activity was found in the medulla oblongata (phylogenetically the oldest part of the brain and the peak GS activity was registered in the sensorimotor cortex (phylogenetically the youngest part of the brain; the glutaminase activity did not depend on the phylogenetic age of brain structures.In the case of HS, Gt metabolism changes began in the sensorimotor cortex manifested by decreased GS activity, which progresses by the 70th minute of the post%hemorrhagic period (PHP accompanied by delayed increase in the GDG and glutaminase activity, as well as Gt accumulation. In the limbic system and diencephalon the Gt metabolism was changing (impaired glutamine synthesis, stimuled Gt synthesis with glutamine desamidization and α%KG amination when developed by the 70th minute of the PHP. Similarly to sensorimotor cortex, changes were associated with Gt accumulation. During the agony, α%KG deficiency developed in all parts of the brain as a result of its increased contribution to Gt synthesis. At the same period of time, in the sensorimotor cortex, limbic system and diencephalon the Gt synthesis from glutamine was stimulated, however, the Gt contribution tothe formation of glutamine was decreased. The

  5. Genes involved in Drosophila glutamate receptor expression and localization

    Directory of Open Access Journals (Sweden)

    Featherstone David E

    2005-06-01

    Full Text Available Abstract Background A clear picture of the mechanisms controlling glutamate receptor expression, localization, and stability remains elusive, possibly due to an incomplete understanding of the proteins involved. We screened transposon mutants generated by the ongoing Drosophila Gene Disruption Project in an effort to identify the different types of genes required for glutamate receptor cluster development. Results To enrich for non-silent insertions with severe disruptions in glutamate receptor clustering, we identified and focused on homozygous lethal mutants in a collection of 2185 BG and KG transposon mutants generated by the BDGP Gene Disruption Project. 202 lethal mutant lines were individually dissected to expose glutamatergic neuromuscular junctions, stained using antibodies that recognize neuronal membrane and the glutamate receptor subunit GluRIIA, and viewed using laser-scanning confocal microscopy. We identified 57 mutants with qualitative differences in GluRIIA expression and/or localization. 84% of mutants showed loss of receptors and/or clusters; 16% of mutants showed an increase in receptors. Insertion loci encode a variety of protein types, including cytoskeleton proteins and regulators, kinases, phosphatases, ubiquitin ligases, mucins, cell adhesion proteins, transporters, proteins controlling gene expression and protein translation, and proteins of unknown/novel function. Expression pattern analyses and complementation tests, however, suggest that any single mutant – even if a mutant gene is uniquely tagged – must be interpreted with caution until the mutation is validated genetically and phenotypically. Conclusion Our study identified 57 transposon mutants with qualitative differences in glutamate receptor expression and localization. Despite transposon tagging of every insertion locus, extensive validation is needed before one can have confidence in the role of any individual gene. Alternatively, one can focus on the

  6. A conserved serine-rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop

    NARCIS (Netherlands)

    Slotboom, Dirk Jan; Sobczak, Iwona; Konings, Wil N.; Lolkema, Juke S.

    1999-01-01

    Neuronal and glial glutamate transporters remove the excitatory neurotransmitter glutamate from the synaptic cleft. The proteins belong to a large family of secondary transporters, which includes bacterial glutamate transporters. The C-terminal half of the glutamate transporters is well conserved an

  7. Activation of astroglial group Ⅱ and Ⅲ metabotropic glutamate receptors protects midbrain neurons against LPS or MPP+ -induced neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    Hong-HongYao; FangWang; FangZhou; Li-FangHu; TaoSun; Jian-HuaDing; GangHu

    2004-01-01

    AIM: Activation of glial metabotropic glutamate receptors (mGluRs) may be proved to play a critical role for neuroprotection in neurodegenerative diseases. Excess glutamate induced-excitoxicity is implicated in the initiation or progression of the neurodegenerative process. Glutamate accumulation in the central nervous system mediated by inhibiting glutamate

  8. High-Throughput Assay Development for Cystine-Glutamate Antiporter (xc-) Highlights Faster Cystine Uptake than Glutamate Release in Glioma Cells.

    Science.gov (United States)

    Thomas, Ajit G; Sattler, Rita; Tendyke, Karen; Loiacono, Kara A; Hansen, Hans; Sahni, Vishal; Hashizume, Yutaka; Rojas, Camilo; Slusher, Barbara S

    2015-01-01

    The cystine-glutamate antiporter (system xc-) is a Na+-independent amino acid transporter that exchanges extracellular cystine for intracellular glutamate. It is thought to play a critical role in cellular redox processes through regulation of intracellular glutathione synthesis via cystine uptake. In gliomas, system xc- expression is universally up-regulated while that of glutamate transporters down-regulated, leading to a progressive accumulation of extracellular glutamate and excitotoxic cell death of the surrounding non-tumorous tissue. Additionally, up-regulation of system xc- in activated microglia has been implicated in the pathogenesis of several neurodegenerative disorders mediated by excess glutamate. Consequently, system xc- is a new drug target for brain cancer and neuroinflammatory diseases associated with excess extracellular glutamate. Unfortunately no potent and selective small molecule system xc- inhibitors exist and to our knowledge, no high throughput screening (HTS) assay has been developed to identify new scaffolds for inhibitor design. To develop such an assay, various neuronal and non-neuronal human cells were evaluated as sources of system xc-. Human glioma cells were chosen based on their high system xc- activity. Using these cells, [14C]-cystine uptake and cystine-induced glutamate release assays were characterized and optimized with respect to cystine and protein concentrations and time of incubation. A pilot screen of the LOPAC/NINDS libraries using glutamate release demonstrated that the logistics of the assay were in place but unfortunately, did not yield meaningful pharmacophores. A larger, HTS campaign using the 384-well cystine-induced glutamate release as primary assay and the 96-well 14C-cystine uptake as confirmatory assay is currently underway. Unexpectedly, we observed that the rate of cystine uptake was significantly faster than the rate of glutamate release in human glioma cells. This was in contrast to the same rates of

  9. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia.

    Science.gov (United States)

    Maj, Carlo; Minelli, Alessandra; Giacopuzzi, Edoardo; Sacchetti, Emilio; Gennarelli, Massimo

    2016-01-01

    Genomic studies revealed two main components in the genetic architecture of schizophrenia, one constituted by common variants determining a distributed polygenic effect and one represented by a large number of heterogeneous rare and highly disruptive mutations. These gene modifications often affect neural transmission and different studies proved an involvement of metabotropic glutamate receptors in schizophrenia phenotype. Through the combination of literature information with genomic data from public repositories, we analyzed the current knowledge on the involvement of genetic variations of the human metabotropic glutamate receptors in schizophrenia and related endophenotypes. Despite the analysis did not reveal a definitive connection, different suggestive associations have been identified and in particular a relevant role has emerged for GRM3 in affecting specific schizophrenia endophenotypes. This supports the hypothesis that these receptors are directly involved in schizophrenia disorder.

  10. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes

    Science.gov (United States)

    Fuente-Martín, Esther; García-Cáceres, Cristina; Granado, Miriam; de Ceballos, María L.; Sánchez-Garrido, Miguel Ángel; Sarman, Beatrix; Liu, Zhong-Wu; Dietrich, Marcelo O.; Tena-Sempere, Manuel; Argente-Arizón, Pilar; Díaz, Francisca; Argente, Jesús; Horvath, Tamas L.; Chowen, Julie A.

    2012-01-01

    Glial cells perform critical functions that alter the metabolism and activity of neurons, and there is increasing interest in their role in appetite and energy balance. Leptin, a key regulator of appetite and metabolism, has previously been reported to influence glial structural proteins and morphology. Here, we demonstrate that metabolic status and leptin also modify astrocyte-specific glutamate and glucose transporters, indicating that metabolic signals influence synaptic efficacy and glucose uptake and, ultimately, neuronal function. We found that basal and glucose-stimulated electrical activity of hypothalamic proopiomelanocortin (POMC) neurons in mice were altered in the offspring of mothers fed a high-fat diet. In adulthood, increased body weight and fasting also altered the expression of glucose and glutamate transporters. These results demonstrate that whole-organism metabolism alters hypothalamic glial cell activity and suggest that these cells play an important role in the pathology of obesity. PMID:23064363

  11. Conformation of poly(γ-glutamic acid) in aqueous solution.

    Science.gov (United States)

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε acidic media.

  12. Glutamic acid decarboxylase autoimmunity in Batten disease and other disorders.

    Science.gov (United States)

    Pearce, David A; Atkinson, Mark; Tagle, Danilo A

    2004-12-14

    Degenerative diseases of the CNS, such as stiff-person syndrome (SPS), progressive cerebellar ataxia, and Rasmussen encephalitis, have been characterized by the presence of autoantibodies. Recent findings in individuals with Batten disease and in animal models for the disorder indicate that this condition may be associated with autoantibodies against glutamic acid decarboxylase (GAD), an enzyme that converts the excitatory neurotransmitter glutamate to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Anti-GAD autoantibodies could result in excess excitatory neurotransmitters, leading to the seizures and other symptoms observed in patients with Batten disease. The pathogenic potential of GAD autoantibodies is examined in light of what is known for other autoimmune disorders, such as multiple sclerosis, SPS, Rasmussen encephalitis, and type 1 diabetes, and may have radical implications for diagnosis and management of Batten disease.

  13. [Cardioprotective properties of new glutamic acid derivative under stress conditions].

    Science.gov (United States)

    Perfilova, V N; Sadikova, N V; Berestovitskaia, V M; Vasil'eva, O S

    2014-01-01

    The effect of new glutamic acid derivative on the cardiac ino- and chronotropic functions has been studied in experiments on rats exposed to 24-hour immobilization-and-pain stress. It is established that glutamic acid derivative RGPU-238 (glufimet) at a dose of 28.7 mg/kg increases the increment of myocardial contractility and relaxation rates and left ventricular pressure in stress-tested animals by 13 1,1, 72.4, and 118.6%, respectively, as compared to the control group during the test for adrenoreactivity. Compound RGPU-238 increases the increment of the maximum intensity of myocardium functioning by 196.5 % at 30 sec of isometric workload as compared to the control group. The cardioprotective effect of compound RGPU-238 is 1.5 - 2 times higher than that of the reference drug phenibut.

  14. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Ho [Institute of Tissue Regeneration Engineering (ITREN), Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Pradhan, Jonu [Department of Nanobio Medical Science, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Maskey, Dhiraj; Park, Ki Sup [Department of Anatomy, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Hong, Sung Hwa [Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University, School of Medicine, 50, Irwon-dong, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Suh, Myung-Whan [Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Kim, Myeung Ju, E-mail: mjukim99@dankook.ac.kr [Department of Anatomy, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Ahn, Seung Cheol, E-mail: ansil67@hanmail.net [Department of Physiology, College of Medicine, Dankook University, San 29, Anseo-dong, Cheonan-si, Chungnam 330-714 (Korea, Republic of)

    2011-02-11

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltage clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.

  15. Fingolimod effects in neuroinflammation: Regulation of astroglial glutamate transporters?

    Science.gov (United States)

    Lee, De-Hyung; Seubert, Silvia; Huhn, Konstantin; Brecht, Lukas; Rötger, Caroline; Waschbisch, Anne; Schlachetzki, Johannes; Klausmeyer, Alice; Melms, Arthur; Wiese, Stefan; Winkler, Jürgen; Linker, Ralf A

    2017-01-01

    Fingolimod is an oral sphingosine-1-phosphate-receptor modulator which reduces the recirculation of immune cells and may also directly target glial cells. Here we investigate effects of fingolimod on expression of astroglial glutamate transporters under pro-inflammatory conditions. In astrocyte cell culture, the addition of pro-inflammatory cytokines led to a significant downregulation of glutamate transporters glutamate transporter-1 (slc1a2/SLC1A2) and glutamate aspartate transporter (slc1a3/SLC1A3) expression on the mRNA or protein level. In this setting, the direct application of fingolimod-1 phosphate (F1P) on astrocytes did not change expression levels of slc1a2 and slc1a3 mRNA. The analysis of both transporters on the protein level by Western Blot and immunocytochemistry did also not reveal any effect of F1P. On a functional level, the addition of conditioned supernatants from F1P treated astrocytes to neuronal cell culture did not result in increased neurite growth. In experimental autoimmune encephalomyelitis as a model of multiple sclerosis, fingolimod treatment reduced T cell and macrophages/microglia mediated inflammation and also diminished astrocyte activation. At the same time, fingolimod restored the reduced expression of slc1a2 and slc1a3 in the inflamed spinal cord on the mRNA level and of SLC1A2 and SLC1A3 on the protein level, presumably via indirect, anti-inflammatory mechanisms. These findings provide further evidence for a predominantly peripheral effect of the compound in neuroinflammation.

  16. Phytogenic additives and glutamine plus glutamic acid in broiler diets

    OpenAIRE

    VC Pelícia; AC Stradiotti; PC Araujo; MK Maruno; FB Carvalho; AC Pezzato; JR Sartori

    2013-01-01

    The objective of this study was to evaluate the effect of the dietary supplementation of phytogenic additives (PAs) and glutamine plus glutamic acid (Gln/Glu), associated or not, in replacement of antibiotic growth promoters and anticoccidials (AGP/AC) on the performance and carcass yield of broilers. Five hundred male Cobb broilers were housed in an experimental house and randomly distributed into five treatments, with four replicates of 25 birds each. Treatments consisted of a control diet ...

  17. Genetic dys-regulation of astrocytic glutamate transporter EAAT2 and its implications in neurological disorders and manganese toxicity

    OpenAIRE

    2014-01-01

    Astrocytic glutamate transporters, the excitatory amino acid transporter (EAAT) 2 and EAAT1 [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST) in rodents, respectively], are the main transporters for maintaining optimal glutamate levels in the synaptic clefts by taking up more than 90% of glutamate from extracellular space thus preventing excitotoxic neuronal death. Reduced expression and function of these transporters, especially EAAT2, has been reported in numerous...

  18. Pharmacology of Glutamate Transport in the CNS: Substrates and Inhibitors of Excitatory Amino Acid Transporters (EAATs) and the Glutamate/Cystine Exchanger System x c -

    Science.gov (United States)

    Bridges, Richard J.; Patel, Sarjubhai A.

    As the primary excitatory neurotransmitter in the mammalian CNS, l-glutamate participates not only in standard fast synaptic communication, but also contributes to higher order signal processing, as well as neuropathology. Given this variety of functional roles, interest has been growing as to how the extracellular concentrations of l-glutamate surrounding neurons are regulated by cellular transporter proteins. This review focuses on two prominent systems, each of which appears capable of influencing both the signaling and pathological actions of l-glutamate within the CNS: the sodium-dependent excitatory amino acid transporters (EAATs) and the glutamate/cystine exchanger, system x c - (Sx c -). While the family of EAAT subtypes limit access to glutamate receptors by rapidly and efficiently sequestering l-glutamate in neurons and glia, Sxc - provides a route for the export of glutamate from cells into the extracellular environment. The primary intent of this work is to provide an overview of the inhibitors and substrates that have been developed to delineate the pharmacological specificity of these transport systems, as well as be exploited as probes with which to selectively investigate function. Particular attention is paid to the development of small molecule templates that mimic the structural properties of the endogenous substrates, l-glutamate, l-aspartate and l-cystine and how strategic control of functional group position and/or the introduction of lipophilic R-groups can impact multiple aspects of the transport process, including: subtype selectivity, inhibitory potency, and substrate activity.

  19. Glutamate dehydrogenase from pumpkin cotyledons: characterization and isoenzymes.

    Science.gov (United States)

    Chou, K H; Splittstoesser, W E

    1972-04-01

    Glutamate dehydrogenase from pumpkin (Cucurbita moschata Pior. cultivar Dickinson Field) cotyledons was found in both soluble and particulate fractions with the bulk of the activity in the soluble fraction. Both enzymes used NAD(H) and NADP(H) but NAD(H) was favored. The enzymes were classified as glutamate-NAD oxidoreductase, deaminating (EC 1.4.1.3). Both enzymes were heat stable, had a pH optimum for reductive amination of 8.0, and were inhibited by high concentrations of NH(4) (+) or alpha-ketoglutarate. The soluble enzyme was more sensitive to NH(4) (+) inhibition and was activated by metal ions after ammonium sulfate fractionation while the solubilized particulate enzyme was not. Inhibition by ethylenediaminetetraacetate was restored by several divalent ions and inhibition by p-hydroxymercuribenzoate was reversed by glutathione. Particulate glutamate dehydrogenase showed a greater activity with NADP. The molecular weights of the enzymes are 250,000. Separation of the enzymes by disc gel electrophoresis showed that during germination the soluble isoenzymes increased from 1 to 7 in number, while only one particulate isoenzyme was found at any time. This particulate isoenzyme was identical with one of the soluble isoenzymes. A number of methods indicated that the soluble isoenzymes were not simply removed from the particulate fraction and that true isoenzymes were found.

  20. Molecular products from the thermal degradation of glutamic acid.

    Science.gov (United States)

    Kibet, Joshua K; Khachatryan, Lavrent; Dellinger, Barry

    2013-08-14

    The thermal behavior of glutamic acid was investigated in N2 and 4% O2 in N2 under flow reactor conditions at a constant residence time of 0.2 s, within a total pyrolysis time of 3 min at 1 atm. The identification of the main pyrolysis products has been reported. Accordingly, the principal products for pyrolysis in order of decreasing abundance were succinimide, pyrrole, acetonitrile, and 2-pyrrolidone. For oxidative pyrolysis, the main products were succinimide, propiolactone, ethanol, and hydrogen cyanide. Whereas benzene, toluene, and a few low molecular weight hydrocarbons (propene, propane, 1-butene, and 2-butene) were detected during pyrolysis, no polycyclic aromatic hydrocarbons (PAHs) were detected. Oxidative pyrolysis yielded low molecular weight hydrocarbon products in trace amounts. The mechanistic channels describing the formation of the major product succinimide have been explored. The detection of succinimide (major product) and maleimide (minor product) from the thermal decomposition of glutamic acid has been reported for the first time in this study. Toxicological implications of some reaction products (HCN, acetonitrile, and acyrolnitrile), which are believed to form during heat treatment of food, tobacco burning, and drug processing, have been discussed in relation to the thermal degradation of glutamic acid.

  1. Synaptic modulation by astrocytes via Ca2+-dependent glutamate release.

    Science.gov (United States)

    Santello, M; Volterra, A

    2009-01-12

    In the past 15 years the classical view that astrocytes play a relatively passive role in brain function has been overturned and it has become increasingly clear that signaling between neurons and astrocytes may play a crucial role in the information processing that the brain carries out. This new view stems from two seminal observations made in the early 1990s: 1. astrocytes respond to neurotransmitters released during synaptic activity with elevation of their intracellular Ca2+ concentration ([Ca2+]i); 2. astrocytes release chemical transmitters, including glutamate, in response to [Ca2+]i elevations. The simultaneous recognition that astrocytes sense neuronal activity and release neuroactive agents has been instrumental for understanding previously unknown roles of these cells in the control of synapse formation, function and plasticity. These findings open a conceptual revolution, leading to rethink how brain communication works, as they imply that information travels (and is processed) not just in the neuronal circuitry but in an expanded neuron-glia network. In this review we critically discuss the available information concerning: 1. the characteristics of the astrocytic Ca2+ responses to synaptic activity; 2. the basis of Ca2+-dependent glutamate exocytosis from astrocytes; 3. the modes of action of astrocytic glutamate on synaptic function.

  2. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  3. Computational design of glutamate dehydrogenase in Bacillus subtilis natto.

    Science.gov (United States)

    Chen, Li-Li; Wang, Jia-Le; Hu, Yu; Qian, Bing-Jun; Yao, Xiao-Min; Wang, Jing-Fang; Zhang, Jian-Hua

    2013-04-01

    Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD(+) or NADP(+) as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP(+) was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.

  4. MicroRNA-223 is neuroprotective by targeting glutamate receptors

    Science.gov (United States)

    Harraz, Maged M.; Eacker, Stephen M.; Wang, Xueqing; Dawson, Ted M.; Dawson, Valina L.

    2012-01-01

    Stroke is a major cause of mortality and morbidity worldwide. Extracellular glutamate accumulation leading to overstimulation of the ionotropic glutamate receptors mediates neuronal injury in stroke and in neurodegenerative disorders. Here we show that miR-223 controls the response to neuronal injury by regulating the functional expression of the glutamate receptor subunits GluR2 and NR2B in brain. Overexpression of miR-223 lowers the levels of GluR2 and NR2B by targeting 3′-UTR target sites (TSs) in GluR2 and NR2B, inhibits NMDA-induced calcium influx in hippocampal neurons, and protects the brain from neuronal cell death following transient global ischemia and excitotoxic injury. MiR-223 deficiency results in higher levels of NR2B and GluR2, enhanced NMDA-induced calcium influx, and increased miniature excitatory postsynaptic currents in hippocampal neurons. In addition, the absence of MiR-223 leads to contextual, but not cued memory deficits and increased neuronal cell death following transient global ischemia and excitotoxicity. These data identify miR-223 as a major regulator of the expression of GluR2 and NR2B, and suggest a therapeutic role for miR-223 in stroke and other excitotoxic neuronal disorders. PMID:23112146

  5. An Optimized Glutamate Receptor Photoswitch with Sensitized Azobenzene Isomerization.

    Science.gov (United States)

    Gascón-Moya, Marta; Pejoan, Arnau; Izquierdo-Serra, Mercè; Pittolo, Silvia; Cabré, Gisela; Hernando, Jordi; Alibés, Ramon; Gorostiza, Pau; Busqué, Félix

    2015-10-16

    A new azobenzene-based photoswitch, 2, has been designed to enable optical control of ionotropic glutamate receptors in neurons via sensitized two-photon excitation with NIR light. In order to develop an efficient and versatile synthetic route for this molecule, a modular strategy is described which relies on the use of a new linear fully protected glutamate derivative stable in basic media. The resulting compound undergoes one-photon trans-cis photoisomerization via two different mechanisms: direct excitation of its azoaromatic unit and irradiation of the pyrene sensitizer, a well-known two-photon sensitive chromophore. Moreover, 2 presents large thermal stability of its cis isomer, in contrast to other two-photon responsive switches relying on the intrinsic nonlinear optical properties of push-pull substituted azobenzenes. As a result, the molecular system developed herein is a very promising candidate for evoking large photoinduced biological responses during the multiphoton operation of neuronal glutamate receptors with NIR light, which require accumulation of the protein-bound cis state of the switch upon repeated illumination.

  6. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.; Khan, Amir R.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P)+as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD+versusNADP+, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies, as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP+cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.

  7. Glutamate may be an efferent transmitter that elicits inhibition in mouse taste buds.

    Directory of Open Access Journals (Sweden)

    Yijen A Huang

    Full Text Available Recent studies suggest that l-glutamate may be an efferent transmitter released from axons innervating taste buds. In this report, we determined the types of ionotropic synaptic glutamate receptors present on taste cells and that underlie this postulated efferent transmission. We also studied what effect glutamate exerts on taste bud function. We isolated mouse taste buds and taste cells, conducted functional imaging using Fura 2, and used cellular biosensors to monitor taste-evoked transmitter release. The findings show that a large fraction of Presynaptic (Type III taste bud cells (∼50% respond to 100 µM glutamate, NMDA, or kainic acid (KA with an increase in intracellular Ca(2+. In contrast, Receptor (Type II taste cells rarely (4% responded to 100 µM glutamate. At this concentration and with these compounds, these agonists activate glutamatergic synaptic receptors, not glutamate taste (umami receptors. Moreover, applying glutamate, NMDA, or KA caused taste buds to secrete 5-HT, a Presynaptic taste cell transmitter, but not ATP, a Receptor cell transmitter. Indeed, glutamate-evoked 5-HT release inhibited taste-evoked ATP secretion. The findings are consistent with a role for glutamate in taste buds as an inhibitory efferent transmitter that acts via ionotropic synaptic glutamate receptors.

  8. Differential effects of glutamate transporter inhibitors on the global electrophysiological response of astrocytes to neuronal stimulation.

    Science.gov (United States)

    Bernardinelli, Yann; Chatton, Jean-Yves

    2008-11-13

    Astrocytes are responsible for regulating extracellular levels of glutamate and potassium during neuronal activity. Glutamate clearance is handled by glutamate transporter subtypes glutamate transporter 1 and glutamate-aspartate transporter in astrocytes. DL-threo-beta-benzyloxyaspartate (TBOA) and dihydrokainate (DHK) are extensively used as inhibitors of glial glutamate transport activity. Using whole-cell recordings, we characterized the effects of both transporter inhibitors on afferent-evoked astrocyte currents in acute cortical slices of 3-week-old rats. When neuronal afferents were stimulated, passive astrocytes responded by a rapid inward current followed by a persistent tail current. The first current corresponded to a glutamate transporter current. This current was inhibited by both inhibitors and by tetrodotoxin. The tail current is an inward potassium current as it was blocked by barium. Besides inhibiting transporter currents, TBOA strongly enhanced the tail current. This effect was barium-sensitive and might be due to a rise in extracellular potassium level and increased glial potassium uptake. Unlike TBOA, DHK did not enhance the tail current but rather inhibited it. This result suggests that, in addition to inhibiting glutamate transport, DHK prevents astrocyte potassium uptake, possibly by blockade of inward-rectifier channels. This study revealed that, in brain slices, glutamate transporter inhibitors exert complex effects that cannot be attributed solely to glutamate transport inhibition.

  9. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    Science.gov (United States)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  10. Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2016-10-01

    Full Text Available Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS. Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress.

  11. Glutamate reduces experimental intestinal hyperpermeability and facilitates glutamine support of gut integrity

    Institute of Scientific and Technical Information of China (English)

    Mechteld AR Vermeulen; Jeffrey de Jong; Mathijs J Vaessen; Paul AM van Leeuwen; Alexander PJ Houdijk

    2011-01-01

    AIM: To assess whether glutamate plays a similar role to glutamine in preserving gut wall integrity. METHODS: The effects of glutamine and glutamate on induced hyperpermeability in intestinal cell lines were studied. Paracellular hyperpermeability was induced in Caco2.BBE and HT-29CL.19A cell lines by adding phorbol-12,13-dibutyrate (PDB) apically, after which the effects of glutamine and glutamate on horseradish peroxidase (HRP) diffusion were studied. An inhibitor of glutamate transport (L-trans-pyrrolidine-2,4-dicarboxylic acid: trans-PDC) and an irreversible blocker (acivicin) of the extracellular glutamine to glutamate converting enzyme, γ-glutamyltransferase, were used. RESULTS: Apical to basolateral HRP flux increased significantly compared to controls not exposed to PDB (n = 30, P < 0.001). Glutamine application reduced hyperpermeability by 19% and 39% in the respective cell lines. Glutamate application reduced hyperpermeability by 30% and 20%, respectively. Incubation of HT29CL.19A cells with acivicin and subsequent PDB and glutamine addition increased permeability levels. Incubation of Caco2.BBE cells with trans-PDC followed by PDB and glutamate addition also resulted in high permeability levels. CONCLUSION: Apical glutamate -similar to glutaminecan decrease induced paracellular hyperpermeability. Extracellular conversion of glutamine to glutamate and subsequent uptake of glutamate could be a pivotal step in the mechanism underlying the protective effect of glutamine.

  12. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods.

    Science.gov (United States)

    Zareian, Mohsen; Ebrahimpour, Afshin; Bakar, Fatimah Abu; Mohamed, Abdul Karim Sabo; Forghani, Bita; Ab-Kadir, Mohd Safuan B; Saari, Nazamid

    2012-01-01

    l-glutamaic acid is the principal excitatory neurotransmitter in the brain and an important intermediate in metabolism. In the present study, lactic acid bacteria (218) were isolated from six different fermented foods as potent sources of glutamic acid producers. The presumptive bacteria were tested for their ability to synthesize glutamic acid. Out of the 35 strains showing this capability, strain MNZ was determined as the highest glutamic-acid producer. Identification tests including 16S rRNA gene sequencing and sugar assimilation ability identified the strain MNZ as Lactobacillus plantarum. The characteristics of this microorganism related to its glutamic acid-producing ability, growth rate, glucose consumption and pH profile were studied. Results revealed that glutamic acid was formed inside the cell and excreted into the extracellular medium. Glutamic acid production was found to be growth-associated and glucose significantly enhanced glutamic acid production (1.032 mmol/L) compared to other carbon sources. A concentration of 0.7% ammonium nitrate as a nitrogen source effectively enhanced glutamic acid production. To the best of our knowledge this is the first report of glutamic acid production by lactic acid bacteria. The results of this study can be further applied for developing functional foods enriched in glutamic acid and subsequently γ-amino butyric acid (GABA) as a bioactive compound.

  13. Glutamate-related gene expression changes with age in the mouse auditory midbrain.

    Science.gov (United States)

    Tadros, Sherif F; D'Souza, Mary; Zettel, Martha L; Zhu, Xiaoxia; Waxmonsky, Nicole C; Frisina, Robert D

    2007-01-01

    Glutamate is the main excitatory neurotransmitter in both the peripheral and central auditory systems. Changes of glutamate and glutamate-related genes with age may be an important factor in the pathogenesis of age-related hearing loss-presbycusis. In this study, changes in glutamate-related mRNA gene expression in the CBA mouse inferior colliculus with age and hearing loss were examined and correlations were sought between these changes and functional hearing measures, such as the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs). Gene expression of 68 glutamate-related genes was investigated using both genechip microarray and real-time PCR (qPCR) molecular techniques for four different age/hearing loss CBA mouse subject groups. Two genes showed consistent differences between groups for both the genechip and qPCR. Pyrroline-5-carboxylate synthetase enzyme (Pycs) showed down-regulation with age and a high-affinity glutamate transporter (Slc1a3) showed up-regulation with age and hearing loss. Since Pycs plays a role in converting glutamate to proline, its deficiency in old age may lead to both glutamate increases and proline deficiencies in the auditory midbrain, playing a role in the subsequent inducement of glutamate toxicity and loss of proline neuroprotective effects. The up-regulation of Slc1a3 gene expression may reflect a cellular compensatory mechanism to protect against age-related glutamate or calcium excitoxicity.

  14. Subcellular fractionation on Percoll gradient of mossy fiber synaptosomes: evoked release of glutamate, GABA, aspartate and glutamate decarboxylase activity in control and degranulated rat hippocampus.

    Science.gov (United States)

    Taupin, P; Ben-Ari, Y; Roisin, M P

    1994-05-02

    Using discontinuous density gradient centrifugation in isotonic Percoll sucrose, we have characterized two subcellular fractions (PII and PIII) enriched in mossy fiber synaptosomes and two others (SII and SIII) enriched in small synaptosomes. These synaptosomal fractions were compared with those obtained from adult hippocampus irradiated at neonatal stage to destroy granule cells and their mossy fibers. Synaptosomes were viable as judged by their ability to release aspartate, glutamate and GABA upon K+ depolarization. After irradiation, compared to the control values, the release of glutamate and GABA was decreased by 57 and 74% in the PIII fraction, but not in the other fractions and the content of glutamate, aspartate and GABA was also decreased in PIII fraction by 62, 44 and 52% respectively. These results suggest that mossy fiber (MF) synaptosomes contain and release glutamate and GABA. Measurement of the GABA synthesizing enzyme, glutamate decarboxylase, exhibited no significant difference after irradiation, suggesting that GABA is not synthesized by this enzyme in mossy fibers.

  15. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    Science.gov (United States)

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  16. Synthesis and in vitro pharmacology at AMPA and kainate preferring glutamate receptors of 4-heteroarylmethylidene glutamate analogues

    DEFF Research Database (Denmark)

    Valgeirsson, Jon; Christensen, Jeppe K; Kristensen, Anders S;

    2003-01-01

    2-Amino-3-[3-hydroxy-5-(2-thiazolyl)-4-isoxazolyl]propionic acid (1) is a potent AMPA receptor agonist with moderate affinity for native kainic acid (KA) receptors, whereas (S)-E-4-(2,2-dimethylpropylidene)glutamic acid (3) show high affinity for the GluR5 subtype of KA receptors and much lower...... affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand...

  17. RAPID DETERMINATION OF L-GLUTAMIC ACIDWITH AN ENZYME REACTOR OF L-GLUTAMIC DECARBOXYLASE IMMOBILIZED ON ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The preparation and characterization of an immobilized L-glutamic decarboxylase (GDC)were studied This work is to develop a sensitive method for the determination of L-glutamate using a new biosensor, which consists of an enzyme column reactor of GDC immobilized on a novel ion exchange resin (carboxymethyl-copolymer of allyl dextran and N.N'-methylene-bisacrylamide CM-CADB) and ion analyzer coupled with a CO2 electrode. The conditions for the enzyme immobilization were optimized by the parameters: buffer composition and concentration, adsorption equilibration time, amount of enzyme, temperature, ionic strength and pH. The properties of the immobilized enzyme on CM-CADB were studied by investigating the initial rate of the enzyme reaction, the efffect of various parameters on the immobilized GDC activity and its stability. An immobilized GDC enzyme column reactor matched with a flow injection system-ion analyzer coupled with CO2 electrode-data collection system made up the original form of the apparatus of biosensor for determining of L-glutamate acid. The limit of detection is 1.O ×1O-5 M. The linearity response is in the range of 5 × 1O -2-5 × 1O -5 M. The equation of linear regression of the calibration curve is y= 43.3x + 181.6 (y is the milli-volt of electrical potential response, x is the logarithm of the concentration of the substrate of L-glutamate acid). The correlation coefficient equals 0.99. The coefficient of variation equals 2.7%.

  18. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jen Ming, E-mail: jmyang@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Yang, Jhe Hao [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Tsou, Shu Chun; Ding, Chian Hua [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan, ROC (China); Hsu, Chih Chin [Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan, ROC (China); School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan, ROC (China); Yang, Kai Chiang [School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, ROC (China); Yang, Chun Chen [Department of Chemical Engineering, Ming-Chi University of Science and Technology, New Taipei City, Taiwan, ROC (China); Chen, Ko Shao [Department of Materials Engineering, Tatung University, Taipei, Taiwan, ROC (China); Chen, Szi Wen [Department of Electronic Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Wang, Jong Shyan [Department of Physical Therapy and the Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-09-01

    To overcome the obstacles of easy dissolution of PVA nanofibers without crosslinking treatment and the poor electrospinnability of the PVA cross-linked nanofibers via electrospinning process, the PVA based electrospun hydrogel nanofibers are prepared with post-crosslinking method. To expect the electrospun hydrogel fibers might be a promising scaffold for cell culture and tissue engineering applications, the evaluation of cell proliferation on the post-crosslinking electrospun fibers is conducted in this study. At beginning, poly(vinyl alcohol) (PVA), PVA/sodium alginate (PVASA) and PVA/poly(γ-glutamic acid) (PVAPGA) electrospun fibers were prepared by electrospinning method. The electrospun PVA, PVASA and PVAPGA nanofibers were treated with post-cross-linking method with glutaraldehyde (Glu) as crosslinking agent. These electrospun fibers were characterized with thermogravimetry analysis (TGA) and their morphologies were observed with a scanning electron microscope (SEM). To support the evaluation and explanation of cell growth on the fiber, the study of 3T3 mouse fibroblast cell growth on the surface of pure PVA, SA, and PGA thin films is conducted. The proliferation of 3T3 on the electrospun fiber surface of PVA, PVASA, and PVAPGA was evaluated by seeding 3T3 fibroblast cells on these crosslinked electrospun fibers. The cell viability on electrospun fibers was conducted with water-soluble tetrazolium salt-1 assay (Cell Proliferation Reagent WST-1). The morphology of the cells on the fibers was also observed with SEM. The results of WST-1 assay revealed that 3T3 cells cultured on different electrospun fibers had similar viability, and the cell viability increased with time for all electrospun fibers. From the morphology of the cells on electrospun fibers, it is found that 3T3 cells attached on all electrospun fiber after 1 day seeded. Cell–cell communication was noticed on day 3 for all electrospun fibers. Extracellular matrix (ECM) productions were found and

  19. Topiramate-antagonism of L-glutamate-induced paroxysms in planarians.

    Science.gov (United States)

    Raffa, Robert B; Finno, Kristin E; Tallarida, Christopher S; Rawls, Scott M

    2010-12-15

    We recently reported that NMDA (N-methyl-D-aspartate) and AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) induce concentration-dependent paroxysms in planarians (Dugesia dorotocephala). Since the postulated mechanisms of action of the sulfamate-substituted monosaccharide antiepileptic drug topiramate include inhibition of glutamate-activated ion channels, we tested the hypothesis that topiramate would inhibit glutamate-induced paroxysms in our model. We demonstrate that: (1) L-glutamate (1-10 mM), but not D-glutamate, induced dose-related paroxysms, and that (2) topiramate dose-relatedly (0.3-3 mM) inhibited L-glutamate-induced paroxysms. These results provide further evidence of a topiramate-sensitive glutamate receptor-mediated activity in this model.

  20. Dual Effects of TARP γ-2 on Glutamate Efficacy Can Account for AMPA Receptor Autoinactivation

    Directory of Open Access Journals (Sweden)

    Ian D. Coombs

    2017-08-01

    Full Text Available Fast excitatory transmission in the CNS is mediated mainly by AMPA-type glutamate receptors (AMPARs associated with transmembrane AMPAR regulatory proteins (TARPs. At the high glutamate concentrations typically seen during synaptic transmission, TARPs slow receptor desensitization and enhance mean channel conductance. However, their influence on channels gated by low glutamate concentrations, as encountered during delayed transmitter clearance or synaptic spillover, is poorly understood. We report here that TARP γ-2 reduces the ability of low glutamate concentrations to cause AMPAR desensitization and enhances channel gating at low glutamate occupancy. Simulations show that, by shifting the balance between AMPAR activation and desensitization, TARPs can markedly facilitate the transduction of spillover-mediated synaptic signaling. Furthermore, the dual effects of TARPs can account for biphasic steady-state glutamate concentration-response curves—a phenomenon termed “autoinactivation,” previously thought to reflect desensitization-mediated AMPAR/TARP dissociation.

  1. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  2. Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement.

    Science.gov (United States)

    Yoo, Ji Hoon; Zell, Vivien; Gutierrez-Reed, Navarre; Wu, Johnathan; Ressler, Reed; Shenasa, Mohammad Ali; Johnson, Alexander B; Fife, Kathryn H; Faget, Lauren; Hnasko, Thomas S

    2016-12-15

    In addition to dopamine neurons, the ventral tegmental area (VTA) contains GABA-, glutamate- and co-releasing neurons, and recent reports suggest a complex role for the glutamate neurons in behavioural reinforcement. We report that optogenetic stimulation of VTA glutamate neurons or terminals serves as a positive reinforcer on operant behavioural assays. Mice display marked preference for brief over sustained VTA glutamate neuron stimulation resulting in behavioural responses that are notably distinct from dopamine neuron stimulation and resistant to dopamine receptor antagonists. Whole-cell recordings reveal EPSCs following stimulation of VTA glutamate terminals in the nucleus accumbens or local VTA collaterals; but reveal both excitatory and monosynaptic inhibitory currents in the ventral pallidum and lateral habenula, though the net effects on postsynaptic firing in each region are consistent with the observed rewarding behavioural effects. These data indicate that VTA glutamate neurons co-release GABA in a projection-target-dependent manner and that their transient activation drives positive reinforcement.

  3. Expression of Vesicular Glutamate Transporter 2 (vGluT2 on Large Dense-Core Vesicles within GnRH Neuroterminals of Aging Female Rats.

    Directory of Open Access Journals (Sweden)

    Weiling Yin

    Full Text Available The pulsatile release of GnRH is crucial for normal reproductive physiology across the life cycle, a process that is regulated by hypothalamic neurotransmitters. GnRH terminals co-express the vesicular glutamate transporter 2 (vGluT2 as a marker of a glutamatergic phenotype. The current study sought to elucidate the relationship between glutamate and GnRH nerve terminals in the median eminence--the site of GnRH release into the portal capillary vasculature. We also determined whether this co-expression may change during reproductive senescence, and if steroid hormones, which affect responsiveness of GnRH neurons to glutamate, may alter the co-expression pattern. Female Sprague-Dawley rats were ovariectomized at young adult, middle-aged and old ages (~4, 11, and 22 months, respectively and treated four weeks later with sequential vehicle + vehicle (VEH + VEH, estradiol + vehicle (E2 + VEH, or estradiol + progesterone (E2+P4. Rats were perfused 24 hours after the second hormone treatment. Confocal microscopy was used to determine colocalization of GnRH and vGluT2 immunofluorescence in the median eminence. Post-embedding immunogold labeling of GnRH and vGluT2, and a serial electron microscopy (EM technique were used to determine the cellular interaction between GnRH terminals and glutamate signaling. Confocal analysis showed that GnRH and vGluT2 immunofluorescent puncta were extensively colocalized in the median eminence and that their density declined with age but was unaffected by short-term hormone treatment. EM results showed that vGluT2 immunoreactivity was extensively associated with large dense-core vesicles, suggesting a unique glutamatergic signaling pathway in GnRH terminals. Our results provide novel subcellular information about the intimate relationship between GnRH terminals and glutamate in the median eminence.

  4. A role for glutamate transporters in the regulation of insulin secretion.

    Directory of Open Access Journals (Sweden)

    Runhild Gammelsaeter

    Full Text Available In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs. To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs. In the pancreatic islets of Langerhans, glutamate is proposed to act as an intracellular messenger, regulating insulin secretion from β-cells, but the mechanisms involved are unknown. By immunogold cytochemistry we show that insulin containing secretory granules express VGLUT3. Despite the fact that they have a VGLUT, the levels of glutamate in these granules are low, indicating the presence of a protein that can transport glutamate out of the granules. Surprisingly, in β-cells the glutamate transporter EAAT2 is located, not in the plasma membrane as it is in brain cells, but exclusively in insulin-containing secretory granules, together with VGLUT3. In EAAT2 knock out mice, the content of glutamate in secretory granules is higher than in wild type mice. These data imply a glutamate cycle in which glutamate is carried into the granules by VGLUT3 and carried out by EAAT2. Perturbing this cycle by knocking down EAAT2 expression with a small interfering RNA, or by over-expressing EAAT2 or a VGLUT in insulin granules, significantly reduced the rate of granule exocytosis. Simulations of granule energetics suggest that VGLUT3 and EAAT2 may regulate the pH and membrane potential of the granules and thereby regulate insulin secretion. These data suggest that insulin secretion from β-cells is modulated by the flux of glutamate through the secretory granules.

  5. Highly selective and stable microdisc biosensors for l-glutamate monitoring

    OpenAIRE

    Govindarajan, Sridhar; McNeil, Calum J.; Lowry, John P.; McMahon, Colm P.; O'Neill, Robert D.

    2013-01-01

    Glutamate mediates most of the excitatory synaptic transmission in the brain, and its abnormal regulation is considered a key factor underlying the appearance and progression of many neurodegenerative and psychiatric diseases. In this work, a microdisc-based amperometric biosensor for glutamate detection with highly enhanced selectivity and good stability is proposed. The biosensor utilizes the enzyme glutamate oxidase which was dip-coated onto 125 um diameter platinum discs. To i...

  6. Peripheral nerve injury increases glutamate-evoked calcium mobilization in adult spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Doolen Suzanne

    2012-07-01

    Full Text Available Abstract Background Central sensitization in the spinal cord requires glutamate receptor activation and intracellular Ca2+ mobilization. We used Fura-2 AM bulk loading of mouse slices together with wide-field Ca2+ imaging to measure glutamate-evoked increases in extracellular Ca2+ to test the hypotheses that: 1. Exogenous application of glutamate causes Ca2+ mobilization in a preponderance of dorsal horn neurons within spinal cord slices taken from adult mice; 2. Glutamate-evoked Ca2+ mobilization is associated with spontaneous and/or evoked action potentials; 3. Glutamate acts at glutamate receptor subtypes to evoked Ca2+ transients; and 4. The magnitude of glutamate-evoked Ca2+ responses increases in the setting of peripheral neuropathic pain. Results Bath-applied glutamate robustly increased [Ca2+]i in 14.4 ± 2.6 cells per dorsal horn within a 440 x 330 um field-of-view, with an average time-to-peak of 27 s and decay of 112 s. Repeated application produced sequential responses of similar magnitude, indicating the absence of sensitization, desensitization or tachyphylaxis. Ca2+ transients were glutamate concentration-dependent with a Kd = 0.64 mM. Ca2+ responses predominantly occurred on neurons since: 1 Over 95% of glutamate-responsive cells did not label with the astrocyte marker, SR-101; 2 62% of fura-2 AM loaded cells exhibited spontaneous action potentials; 3 75% of cells that responded to locally-applied glutamate with a rise in [Ca2+]i also showed a significant increase in AP frequency upon a subsequent glutamate exposure; 4 In experiments using simultaneous on-cell recordings and Ca2+ imaging, glutamate elicited a Ca2+ response and an increase in AP frequency. AMPA/kainate (CNQX- and AMPA (GYKI 52466-selective receptor antagonists significantly attenuated glutamate-evoked increases in [Ca2+]i, while NMDA (AP-5, kainate (UBP-301 and class I mGluRs (AIDA did not. Compared to sham controls, peripheral nerve injury

  7. Relationship between Zinc (Zn2+ and Glutamate Receptors in the Processes Underlying Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Bartłomiej Pochwat

    2015-01-01

    Full Text Available The results from numerous studies have shown that an imbalance between particular neurotransmitters may lead to brain circuit dysfunction and development of many pathological states. The significance of glutamate pathways for the functioning of the nervous system is equivocal. On the one hand, glutamate transmission is necessary for neuroplasticity, synaptogenesis, or cell survival, but on the other hand an excessive and long-lasting increased level of glutamate in the synapse may lead to cell death. Under clinical conditions, hyperactivity of the glutamate system is associated with ischemia, epilepsy, and neurodegenerative diseases such as Alzheimer’s, Huntington’s, and many others. The achievement of glutamate activity in the physiological range requires efficient control by endogenous regulatory factors. Due to the fact that the free pool of ion Zn2+ is a cotransmitter in some glutamate neurons; the role of this element in the pathophysiology of a neurodegenerative diseases has been intensively studied. There is a lot of evidence for Zn2+ dyshomeostasis and glutamate system abnormalities in ischemic and neurodegenerative disorders. However, the precise interaction between Zn2+ regulative function and the glutamate system is still not fully understood. This review describes the relationship between Zn2+ and glutamate dependent signaling pathways under selected pathological central nervous system (CNS conditions.

  8. GABA and glutamate uptake and metabolism in retinal glial (Müller cells

    Directory of Open Access Journals (Sweden)

    Andreas eBringmann

    2013-04-01

    Full Text Available Müller cells, the principal glial cells of the retina, support the synaptic activity by the uptake and metabolization of extracellular neurotransmitters. Müller cells express uptake and exchange systems for various neurotransmitters including glutamate and -aminobutyric acid (GABA. Müller cells remove the bulk of extracellular glutamate in the inner retina and contribute to the glutamate clearance around photoreceptor terminals. By the uptake of glutamate, Müller cells are involved in the shaping and termination of the synaptic activity, particularly in the inner retina. Reactive Müller cells are neuroprotective, e.g., by the clearance of excess extracellular glutamate, but may also contribute to neuronal degeneration by a malfunctioning or even reversal of glial glutamate transporters, or by a downregulation of the key enzyme, glutamine synthetase. This review summarizes the present knowledge about the role of Müller cells in the clearance and metabolization of extracellular glutamate and GABA. Some major pathways of GABA and glutamate metabolism in Müller cells are described; these pathways are involved in the glutamate-glutamine cycle of the retina, in the defense against oxidative stress via the production of glutathione, and in the production of substrates for the neuronal energy metabolism.

  9. EFFECTS OF GLUTAMATE ON SODIUM CHANNEL IN ACUTELY DISSOCIATED HIPPOCAMPAL CA1 PYRAMIDAL NEURONS OF RATS

    Institute of Scientific and Technical Information of China (English)

    高宾丽; 伍国锋; 杨艳; 刘智飞; 曾晓荣

    2011-01-01

    Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibitio...

  10. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    Science.gov (United States)

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  11. Microdialysis as a tool for in vivo investigation of glutamate transport capacity in rat brain

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1995-01-01

    The role of glutamate as a possible mediator of neurodegeneration is well described, and the homeostasis of extracellular glutamate is considered of major importance when addressing the pathogenesis of excitatory neurodegeneration. Applying the 'indicator diffusion' method to the microdialysis......-D-aspartate was due to cellular uptake by glutamate transporters. The cell membrane permeability towards 3H-D-aspartate was reduced by approximately 98% due to THA, indicating that the cell membranes per se are highly resistant to diffusion of 3H-D-aspartate. It is concluded that the present method can be used...... in studying the capacity of the glutamate transporters in vivo....

  12. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum.

    Science.gov (United States)

    Nagano-Shoji, Megumi; Hamamoto, Yuma; Mizuno, Yuta; Yamada, Ayuka; Kikuchi, Masaki; Shirouzu, Mikako; Umehara, Takashi; Yoshida, Minoru; Nishiyama, Makoto; Kosono, Saori

    2017-03-03

    Protein Nε-acylation is emerging as a ubiquitous post-translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of L-glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, we characterized the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction. We showed that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation-mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine-incorporated PEPC protein, we verified that K653-acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin-type deacetylase, deacetylated K653-acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin-type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate-producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate-producing conditions, supporting our hypothesis that PEPC is responsible for a large carbon flux change under glutamate-producing conditions. This article is protected by copyright. All rights reserved.

  13. An NAD-specific glutamate dehydrogenase from cyanobacteria. Identification and properties.

    Science.gov (United States)

    Chávez, S; Candau, P

    1991-07-08

    The unicellular cyanobacterium Synechocystis sp. PCC 6803 presents a hexameric NAD-specific glutamate dehydrogenase with a molecular mass of 295 kDa. The enzyme differs from the NADP-glutamate dehydrogenase found in the same strain and is coded by a different gene. NAD-glutamate dehydrogenase shows a high coenzyme specificity, catalyzes preferentially glutamate formation and presents Km values for ammonium, NADH and 2-oxoglutarate of 4.5 mM, 50 microM and 1.8 mM respectively. An animating role for the enzyme is discussed.

  14. Promotion of hexadecyltrimethyleamine bromide to the damage of Alexandrium sp. LC3 by cupric glutamate

    Institute of Scientific and Technical Information of China (English)

    LI Hao; MIAO Jin-lai; CUI Feng-xia; LI Guang-you

    2006-01-01

    The effect of hexadecyltrimethyleamine bromide (HDTMAB) on the removal of A lexandrium sp. LC3 under cupric glutamate stress was investigated. Toxic effect of cupric glutamate on A lexandrium sp. LC3 was significantly promoted in the presence of HDTMAB, especially at 3.0 cmc of HDTMAB. It was found that the sulfhydryl group content of the cell decreased, while the malonaldehyde content and membrane permeability increased when Alexandrium sp. LC3 was treated with HDTMAB and cupric glutamate complex, compared with cupric glutamate alone. The data suggest that HDTMAB might stimulate the damage of A lexandrium sp. LC3 by enhancing the membrane permeability.

  15. Inhibitory effects of 1-methyl-4-phenylpyridinium on glutamate uptake into cultured C6 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Hong-hong YAO; Jian-hua DING; Hai-rong HE; Gang HU

    2004-01-01

    To investigate the effect of 1-methyl-4-phenylpyridinium (MPP+) on the glutamate uptake into cultured C6glioma cells. METHODS: The glutamate uptake into C6 glioma cells was measured by radio-ligand binding assay method. The effect of MPP+ on the morphology of C6 glioma cells was observed under phase contrast microscopy;apoptosis of C6 glioma cells were measured by FITC-labeled Annexin V staining and flow cytometry. Cell viability was measured by MTT method. RESULTS: MPP+ inhibited glutamate uptake into C6 glioma cells. However,MPP+ failed to induce any morphological changes of C6 glioma cells, and exposure to MPP+ had no effect on the viability and the apoptotic percentage of C6 glioma cells. Incubation with 12-O-tetradecanoylphorbol -13-acetate (TPA), a protein kinase C activator, caused a significant increase in glutamate uptake and completely reversed MPP+-induced inhibitory effect on glutamate uptake. CONCLUSION: The present results indicate that glutamate transporters may have important pathogenetic implications in Parkinson disease. MPP+-induced inhibition of glutamate uptake was due to the dysfunction of glutamate transporters; TPA enhanced glutamate uptake and completely reversed the inhibitory effect of MPP+.

  16. Effect of Propofol on Glutamate and γ-aminobutyric Acid Release from Rat Hippocampal Synaptosomes

    Institute of Scientific and Technical Information of China (English)

    SHANG You; YAO Shanglong; ZENG Yinming; LIU Hongliang; CAO Junli

    2005-01-01

    To investigate the effect of propofol on the release of glutamate and γ-aminobutyric acid (GABA) from rat hippocampal synatosomes, synaptosomes was made from hippocampus and incubated with artificial cerebrospinal fluid (aCSF). With the experiment of Ca2+-dependent release of glutamate and GABA, dihydrokainic acid (DHK) and nipectic acid were added into aCSF. For the observation of Ca2+-independent release of glutamate and GABA, no DHK, nipectic acid and Ca2+were added from aCSF. The release of glutamate and GABA were evoked by 20μmol/L veratridine or 30 mmol/L KCl. The concentration of glutamate and GABA in aCSF was measured by using high-performance liquid chromatography (HPLC). 30, 100 and 300 μmol/L propofol significantly inhibited veratridine-evoked Ca2+-dependent release of glutamate and GABA (P<0.01 or P<0.05). However, propofol showed no effect on elevated KCl-evoked Ca2+-dependent release of glutamate and GABA (P>0.05). Veratridine or elevated KCl evoked Ca2+ -independent release of glutamate and GABA was not affected significantly by propofol (P>0.05). Propofol could inhibit Ca2+-dependent release of glutamate and GABA. However, it has no effect on the Ca2+-independent release ofglutamate and GABA.

  17. Effective Mechanism for Synthesis of Neurotransmitter Glutamate and its Loading into Synaptic Vesicles.

    Science.gov (United States)

    Takeda, Kouji; Ueda, Tetsufumi

    2017-01-01

    Glutamate accumulation into synaptic vesicles is a pivotal step in glutamate transmission. This process is achieved by a vesicular glutamate transporter (VGLUT) coupled to v-type proton ATPase. Normal synaptic transmission, in particular during intensive neuronal firing, would demand rapid transmitter re-filling of emptied synaptic vesicles. We have previously shown that isolated synaptic vesicles are capable of synthesizing glutamate from α-ketoglutarate (not from glutamine) by vesicle-bound aspartate aminotransferase for immediate uptake, in addition to ATP required for uptake by vesicle-bound glycolytic enzymes. This suggests that local synthesis of these substances, essential for glutamate transmission, could occur at the synaptic vesicle. Here we provide evidence that synaptosomes (pinched-off nerve terminals) also accumulate α-ketoglutarate-derived glutamate into synaptic vesicles within, at the expense of ATP generated through glycolysis. Glutamine-derived glutamate is also accumulated into synaptic vesicles in synaptosomes. The underlying mechanism is discussed. It is suggested that local synthesis of both glutamate and ATP at the presynaptic synaptic vesicle would represent an efficient mechanism for swift glutamate loading into synaptic vesicles, supporting maintenance of normal synaptic transmission.

  18. Downregulation of postsynaptic density-95-interacting regulator of spine morphogenesis reduces glutamate-induced excitotoxicity by differentially regulating glutamate receptors in rat cortical neurons.

    Science.gov (United States)

    Luo, Peng; Yang, Yuefan; Liu, Wei; Rao, Wei; Bian, Huan; Li, Xin; Chen, Tao; Liu, Mengdong; Zhao, Yongbo; Dai, Shuhui; Yan, Xu; Fei, Zhou

    2013-12-01

    Glutamate-induced excitotoxicity is involved in many neurological diseases. Preso, a novel postsynaptic scaffold protein, mediates excitatory synaptic transmission and various synaptic functions. In this study, we investigated the role of Preso in the regulation of glutamate-induced excitotoxicity in rat cortical neurons. Knockdown of Preso with small interfering RNA improved neuronal viability and attenuated the elevation of lactate dehydrogenase (LDH) release after glutamate treatment. Downregulation of Preso also inhibited an increase in the BAX/Bcl-2 ratio and cleavage of caspase-9 and caspase-3. Although the expression and distribution of metabotropic glutamate receptor (mGluR) 1/5, NR1, NR2A and NR2B were not changed by knockdown of Preso, downregulation of Preso protected neurons from glutamate-induced excitotoxicity by inhibiting mGluR and N-methyl-D-aspartate receptor function. However, downregulation of Preso neither affected the expression of GluR1 and GluR2 nor influenced the function of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor after glutamate treatment. Furthermore, intracellular Ca(2+) was an important downstream effector of Preso in the regulation of excitotoxicity. These results suggest that expression of Preso promotes the induction of excitotoxicity by facilitating different glutamate receptor signaling pathways. Therefore, Preso might be a potential pharmacological target for preventing and treating neurological diseases.

  19. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    Science.gov (United States)

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [(3) H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of (13) C and (14) C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488.

  20. The dissolution of natural and artificial dusts in glutamic acid

    Science.gov (United States)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  1. Rapid glutamate receptor 2 trafficking during retinal degeneration

    Directory of Open Access Journals (Sweden)

    Lin Yanhua

    2012-02-01

    Full Text Available Abstract Background Retinal degenerations, such as age-related macular degeneration (AMD and retinitis pigmentosa (RP, are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2 subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD. We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1 and postsynaptic density protein 95 (PSD-95, were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.

  2. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis.

    Science.gov (United States)

    Qian, Feng; Tang, Feng-Ru

    2016-01-01

    Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer's disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis.

  3. Design of a multi-enzyme reaction on an electrode surface for an L-glutamate biofuel anode.

    Science.gov (United States)

    Sakamoto, Hiroaki; Komatsu, Tomohiro; Yamasaki, Koji; Satomura, Takenori; Suye, Shin-Ichiro

    2017-02-01

    To design and construct a novel bio-anode electrode based on the oxidation of glutamic acid to produce 2-oxoglutarate, generating two electrons from NADH. Efficient enzyme reaction and electron transfer were observed owing to immobilization of the two enzymes using a mixed self-assembled monolayer. The ratio of the immobilized enzymes was an important factor affecting the efficiency of the system; thus, we quantified the amounts of immobilized enzyme using a quartz crystal microbalance to further evaluate the electrochemical reaction. The electrochemical reaction proceeded efficiently when approximately equimolar amounts of the enzyme were on the electrode. The largest oxidation peak current increase (171 nA) was observed under these conditions. Efficient multi-enzyme reaction on the electrode surface has been achieved which is applicable for biofuel cell application.

  4. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  5. Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles

    Science.gov (United States)

    Wilson, Christina L.; Natarajan, Vaishaali; Hayward, Stephen L.; Khalimonchuk, Oleh; Kidambi, Srivatsan

    2015-11-01

    O2) nanoparticles are currently the second most produced engineered nanomaterial in the world with vast usage in consumer products leading to recurrent human exposure. Animal studies indicate significant nanoparticle accumulation in the brain while cellular toxicity studies demonstrate negative effects on neuronal cell viability and function. However, the toxicological effects of nanoparticles on astrocytes, the most abundant cells in the brain, have not been extensively investigated. Therefore, we determined the sub-toxic effect of three different TiO2 nanoparticles (rutile, anatase and commercially available P25 TiO2 nanoparticles) on primary rat cortical astrocytes. We evaluated some events related to astrocyte functions and mitochondrial dysregulation: (1) glutamate uptake; (2) redox signaling mechanisms by measuring ROS production; (3) the expression patterns of dynamin-related proteins (DRPs) and mitofusins 1 and 2, whose expression is central to mitochondrial dynamics; and (4) mitochondrial morphology by MitoTracker® Red CMXRos staining. Anatase, rutile and P25 were found to have LC50 values of 88.22 +/- 10.56 ppm, 136.0 +/- 31.73 ppm and 62.37 +/- 9.06 ppm respectively indicating nanoparticle specific toxicity. All three TiO2 nanoparticles induced a significant loss in glutamate uptake indicative of a loss in vital astrocyte function. TiO2 nanoparticles also induced an increase in reactive oxygen species generation, and a decrease in mitochondrial membrane potential, suggesting mitochondrial damage. TiO2 nanoparticle exposure altered expression patterns of DRPs at low concentrations (25 ppm) and apoptotic fission at high concentrations (100 ppm). TiO2 nanoparticle exposure also resulted in changes to mitochondrial morphology confirmed by mitochondrial staining. Collectively, our data provide compelling evidence that TiO2 nanoparticle exposure has potential implications in astrocyte-mediated neurological dysfunction. Electronic supplementary information (ESI

  6. Dissection of mitogenic and neurodegenerative actions of cystine and glutamate in malignant gliomas.

    Science.gov (United States)

    Savaskan, N E; Seufert, S; Hauke, J; Tränkle, C; Eyüpoglu, I Y; Hahnen, E

    2011-01-06

    Malignant glioma represents one of the most aggressive and lethal human neoplasias. A hallmark of gliomas is their rapid proliferation and destruction of vital brain tissue, a process in which excessive glutamate release by glioma cells takes center stage. Pharmacologic antagonism with glutamate signaling through ionotropic glutamate receptors attenuates glioma progression in vivo, indicating that glutamate release by glioma cells is a prerequisite for rapid glioma growth. Glutamate has been suggested to promote glioma cell proliferation in an autocrine or paracrine manner, in particular by activation of the (RS)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrate (AMPA) subtype of glutamate receptors. Here, we dissect the effects of glutamate secretion on glioma progression. Glioma cells release glutamate through the amino-acid antiporter system X(c)(-), a process that is mechanistically linked with cystine incorporation. We show that disrupting glutamate secretion by interfering with the system X(c)(-) activity attenuates glioma cell proliferation solely cystine dependently, whereas glutamate itself does not augment glioma cell growth in vitro. Neither AMPA receptor agonism nor antagonism affects glioma growth in vitro. On a molecular level, AMPA insensitivity is concordant with a pronounced transcriptional downregulation of AMPA receptor subunits or overexpression of the fully edited GluR2 subunit, both of which block receptor activity. Strikingly, AMPA receptor inhibition in tumor-implanted brain slices resulted in markedly reduced tumor progression associated with alleviated neuronal cell death, suggesting that the ability of glutamate to promote glioma progression strictly requires the tumor microenvironment. Concerning a potential pharmacotherapy, targeting system X(c)(-) activity disrupts two major pathophysiological properties of glioma cells, that is, the induction of excitotoxic neuronal cell death and incorporation of cystine required for

  7. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  8. Ceftriaxone preserves glutamate transporters and prevents intermittent hypoxia-induced vulnerability to brain excitotoxic injury.

    Directory of Open Access Journals (Sweden)

    Rekha Jagadapillai

    Full Text Available Hypoxia alters cellular metabolism and although the effects of sustained hypoxia (SH have been extensively studied, less is known about chronic intermittent hypoxia (IH, commonly associated with cardiovascular morbidity and stroke. We hypothesize that impaired glutamate homeostasis after chronic IH may underlie vulnerability to stroke-induced excitotoxicity. P16 organotypic hippocampal slices, cultured for 7 days were exposed for 7 days to IH (alternating 2 min 5% O2-15 min 21% O2, SH (5% O2 or RA (21% O2, then 3 glutamate challenges. The first and last exposures were intended as a metabolic stimulus (200 µM glutamate, 15 min; the second emulated excitotoxicity (10 mM glutamate, 10 min. GFAP, MAP2, and EAAT1, EAAT2 glutamate transporters expression were assessed after exposure to each hypoxic protocol. Additionally, cell viability was determined at baseline and after each glutamate challenge, in presence or absence of ceftriaxone that increases glutamate transporter expression. GFAP and MAP2 decreased after 7 days IH and SH. Long-term IH but not SH decreased EAAT1 and EAAT2. Excitotoxic glutamate challenge decreased cell viability and the following 200 µM exposure further increased cell death, particularly in IH-exposed slices. Ceftriaxone prevented glutamate transporter decrease and improved cell viability after IH and excitotoxicity. We conclude that IH is more detrimental to cell survival and glutamate homeostasis than SH. These findings suggest that impaired regulation of extracellular glutamate levels is implicated in the increased brain susceptibility to excitotoxic insult after long-term IH.

  9. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals.

    Science.gov (United States)

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K; Waagepetersen, Helle S

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.

  10. Intoxicação aguda por metano arsonato ácido monossódico em bovinos Acute poisoning by monosodium methanearsonic acid in cattle

    Directory of Open Access Journals (Sweden)

    Gabriela N. Dantas

    2012-12-01

    Full Text Available O presente trabalho estudou a intoxicação acidental por arsênico em um lote de 24 vacas Girolando, as quais tiveram acesso a pasto pulverizado com herbicida à base de metano arsonato ácido monossódico (MSMA. Os bovinos apresentaram apatia, anorexia e diarreia profusa. Foram necropsiados na fazenda dois animais de 14 que morreram. Os principais achados macroscópicos foram úlceras abomasais e congestão renal. No exame microscópico, as principais lesões observadas foram abomasite e omasite necro-hemorrágica multifocal acentuada e, nos rins, necrose tubular difusa. As concentrações médias de arsênico em vacas com sinais clínicos foram 1,19±0,40, 10,52±2,16 e 76,06±48,37ppm no sangue, leite e fezes, respectivamente. Os níveis de arsênico encontrados em dois animais necropsiados foram 25,58 e 23,85ppm em fígado, e 28,71 e 35,94ppm em rins, respectivamente. No feto de uma vaca necropsiada, os níveis de arsênico mensurados no fígado e rim foram 9,0 e 8,92ppm, respectivamente. A concentração de arsênico no capim do piquete pulverizado foi 111,58ppm. No Brasil, o uso MSMA na composição de pesticidas e herbicidas é permitido somente para uso agrícola, mas não pecuário. A utilização desse ou de outros produtos à base de arsênico na pecuária pode causar altos índices de mortalidade no rebanho, além de diminuição da produção e contaminação de produtos de origem animal.Poisoning by monosodium methanearsonic acid (MSMA is reported in a herd of 24 Girolando cows that were introduced into a pasture sprayed with the herbicide. Clinical signs were apathy, anorexia, and profuse diarrhea. Fourteen cows died and two were necropsied. Abomasal ulcers and renal congestion was observed. Main histologic lesions were multifocal, accentuated, necrotizing and hemorrhagic abomasitis and omasitis, and tubular necrosis in the kidneys. Mean arsenic concentrations in cows with clinical signs were 1.19±0.40, 10.52±2.16, and 76.06

  11. Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae.

    Science.gov (United States)

    DeLuna, Alexander; Quezada, Héctor; Gómez-Puyou, Armando; González, Alicia

    2005-03-25

    The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.

  12. Glutamate dehydrogenase 1 and SIRT4 regulate glial development.

    Science.gov (United States)

    Komlos, Daniel; Mann, Kara D; Zhuo, Yue; Ricupero, Christopher L; Hart, Ronald P; Liu, Alice Y-C; Firestein, Bonnie L

    2013-03-01

    Congenital hyperinsulinism/hyperammonemia (HI/HA) syndrome is caused by an activation mutation of glutamate dehydrogenase 1 (GDH1), a mitochondrial enzyme responsible for the reversible interconversion between glutamate and α-ketoglutarate. The syndrome presents clinically with hyperammonemia, significant episodic hypoglycemia, seizures, and frequent incidences of developmental and learning defects. Clinical research has implicated that although some of the developmental and neurological defects may be attributed to hypoglycemia, some characteristics cannot be ascribed to low glucose and as hyperammonemia is generally mild and asymptomatic, there exists the possibility that altered GDH1 activity within the brain leads to some clinical changes. GDH1 is allosterically regulated by many factors, and has been shown to be inhibited by the ADP-ribosyltransferase sirtuin 4 (SIRT4), a mitochondrially localized sirtuin. Here we show that SIRT4 is localized to mitochondria within the brain. SIRT4 is highly expressed in glial cells, specifically astrocytes, in the postnatal brain and in radial glia during embryogenesis. Furthermore, SIRT4 protein decreases in expression during development. We show that factors known to allosterically regulate GDH1 alter gliogenesis in CTX8 cells, a novel radial glial cell line. We find that SIRT4 and GDH1 overexpression play antagonistic roles in regulating gliogenesis and that a mutant variant of GDH1 found in HI/HA patients accelerates the development of glia from cultured radial glia cells.

  13. The Role of Dopamine and Glutamate Modulation in Huntington Disease

    Science.gov (United States)

    Mittal, Sumeer K.; Eddy, Clare

    2013-01-01

    Background: Huntington disease (HD) is an inherited neuropsychiatric condition with progressive neurodegenerative changes, mainly affecting the striatum. Pathological processes within the striatum are likely to lead to alterations in dopamine and glutamate activity in frontostriatal circuitry, resulting in characteristic motor, behavioural and cognitive symptoms. Methods: We conducted a systematic literature search in order to identify and review randomised, double-blinded, placebo-controlled trials of anti-dopaminergic and anti-glutamatergic therapy in HD. Results: Ten studies satisfied our selection criteria. These studies investigated a range of agents which act to antagonise dopamine (tetrabenazine, typical and atypical antipsychotics) or glutamate (amantadine, riluzole) transmission. Discussion: Although most agents showed efficacy in terms of amelioration of chorea, the available evidence did not allow us to identify a universally effective treatment. One difficulty associated with analysing the available evidence was a high prevalence of side effects, which prevented the full therapeutic potential of the medications from being adequately investigated. A further limitation is that many studies evaluated treatment effectiveness only in relation to patients' motor symptoms, even though behavioural and cognitive changes may negatively impact patients' quality of life. There is a clear need for further higher-level evidence addressing the effects of dopaminergic and glutamatergic agents on global functioning in HD. PMID:22713410

  14. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.

    Science.gov (United States)

    Belay, A; Collins, A; Ruzgas, T; Kissinger, P T; Gorton, L; Csöregi, E

    1999-02-01

    Amperometric bienzyme electrodes based on coupled L-glutamate oxidase (GlOx) and horseradish peroxidase (HRP) were constructed for the direct monitoring of L-glutamate in a flow injection (FI)-system. The bienzyme electrodes were constructed by coating solid graphite rods with a premixed solution containing GlOx and HRP crosslinked with a redox polymer formed of poly(1-vinylimidazole) complexed with (osmium (4-4'-dimethylbpy)2 Cl)II/III. Poly(ethylene glycol) diglycidyl ether (PEGDGE) was used as the crosslinker and the modified electrodes were inserted as the working electrode in a conventional three electrode flow through amperometric cell operated at -0.05 V versus Ag¿AgCl (0.1 M KCl). The bienzyme electrode was optimized with regard to wire composition, Os-loading of the wires, enzyme ratios, coating procedure, flow rate, effect of poly(ethyleneimine) addition, etc. The optimized electrodes were characterized by a sensitivity of 88.36 +/- 0.14 microA mM(-1) cm(-2), a detection limit of 0.3 microM (calculated as three times the signal-to-noise ratio), a response time of less than 10 s and responded linearly between 0.3 and 250 microM (linear regression coefficient = 0.999) with an operational stability of only 3% sensitivity loss during 8 h of continuous FI operation at a sample throughput of 30 injections h(-1).

  15. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes

    Science.gov (United States)

    Matute, Carlos; Sánchez-Gómez, M. Victoria; Martínez-Millán, Luis; Miledi, Ricardo

    1997-01-01

    In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population. PMID:9238063

  16. Activity-Dependent Plasticity of Astroglial Potassium and Glutamate Clearance

    Science.gov (United States)

    Cheung, Giselle; Sibille, Jérémie; Zapata, Jonathan; Rouach, Nathalie

    2015-01-01

    Recent evidence has shown that astrocytes play essential roles in synaptic transmission and plasticity. Nevertheless, how neuronal activity alters astroglial functional properties and whether such properties also display specific forms of plasticity still remain elusive. Here, we review research findings supporting this aspect of astrocytes, focusing on their roles in the clearance of extracellular potassium and glutamate, two neuroactive substances promptly released during excitatory synaptic transmission. Their subsequent removal, which is primarily carried out by glial potassium channels and glutamate transporters, is essential for proper functioning of the brain. Similar to neurons, different forms of short- and long-term plasticity in astroglial uptake have been reported. In addition, we also present novel findings showing robust potentiation of astrocytic inward currents in response to repetitive stimulations at mild frequencies, as low as 0.75 Hz, in acute hippocampal slices. Interestingly, neurotransmission was hardly affected at this frequency range, suggesting that astrocytes may be more sensitive to low frequency stimulation and may exhibit stronger plasticity than neurons to prevent hyperexcitability. Taken together, these important findings strongly indicate that astrocytes display both short- and long-term plasticity in their clearance of excess neuroactive substances from the extracellular space, thereby regulating neuronal activity and brain homeostasis. PMID:26346563

  17. Glutamate dehydrogenase: structure, allosteric regulation, and role in insulin homeostasis.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2014-01-01

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine and inhibitors include GTP, palmitoyl CoA, and ATP. Spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds blocked the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  18. The structure and allosteric regulation of mammalian glutamate dehydrogenase.

    Science.gov (United States)

    Li, Ming; Li, Changhong; Allen, Aron; Stanley, Charles A; Smith, Thomas J

    2012-03-15

    Glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate. Only in the animal kingdom is this enzyme heavily allosterically regulated by a wide array of metabolites. The major activators are ADP and leucine, while the most important inhibitors include GTP, palmitoyl CoA, and ATP. Recently, spontaneous mutations in the GTP inhibitory site that lead to the hyperinsulinism/hyperammonemia (HHS) syndrome have shed light as to why mammalian GDH is so tightly regulated. Patients with HHS exhibit hypersecretion of insulin upon consumption of protein and concomitantly extremely high levels of ammonium in the serum. The atomic structures of four new inhibitors complexed with GDH complexes have identified three different allosteric binding sites. Using a transgenic mouse model expressing the human HHS form of GDH, at least three of these compounds were found to block the dysregulated form of GDH in pancreatic tissue. EGCG from green tea prevented the hyper-response to amino acids in whole animals and improved basal serum glucose levels. The atomic structure of the ECG-GDH complex and mutagenesis studies is directing structure-based drug design using these polyphenols as a base scaffold. In addition, all of these allosteric inhibitors are elucidating the atomic mechanisms of allostery in this complex enzyme.

  19. Abnormal glutamate release in aged BTBR mouse model of autism.

    Science.gov (United States)

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.

  20. Yokukansan, a kampo medicine, protects PC12 cells from glutamate-induced death by augmenting gene expression of cystine/glutamate antiporter system Xc-.

    Directory of Open Access Journals (Sweden)

    Hitomi Kanno

    Full Text Available Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc-, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells. Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc- subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook.