Baryon number violation catalysed by grand unified monopoles
Ellis, Jonathan Richard; Olive, Keith A
1982-01-01
It has been recognized for some time that grand unified monopoles may catalyze Delta B not=0 processes. The authors obtain model-independent upper bounds on the rates for such reactions from the survival of the baryon number generated in the early Universe and from present-day baryon stability. These constraints are compatible with recent estimates of large baryon number violating monopole cross sections, but a monopole flux close to present experimental upper limits could be detectable in forthcoming baryon decay experiments. The authors mention signatures for monopole-induced baryon 'decay' and point out that it could be used to solve the energy crisis.
Baryons, monopoles and dualities in Chern-Simons-matter theories
Energy Technology Data Exchange (ETDEWEB)
Aharony, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science,Rehovot, 7610001 (Israel)
2016-02-15
There is significant evidence for a duality between (non-supersymmetric) U(N) Chern-Simons theories at level k coupled to fermions, and U(k) Chern-Simons theories at level N coupled to scalars. Most of the evidence comes from the large N ’t Hooft limit, where many details of the duality (such as whether the gauge group is U(N) or SU(N), the precise level of the U(1) factor, and order one shifts in the level) are not important. The main evidence for the validity of the duality at finite N comes from adding masses and flowing to pure Chern-Simons theories related by level-rank duality, and from flowing to the non-supersymmetric duality from supersymmetric dualities, whose finite N validity is well-established. In this note we clarify the implications of these flows for the precise form of the duality; in particular we argue that in its simplest form the duality maps SU(N) theories to U(k) theories, though there is also another version relating U(N) to U(k). This precise form strongly affects the mapping under the duality of baryon and monopole operators, and we show, following arguments by Radičević, that their mapping is consistent with our claims. We also discuss the implications of our results for the additional duality between these Chern-Simons matter theories and (the UV completion of) high-spin gravity theories on AdS{sub 4}. The latter theories should contain heavy particles carrying electric and/or magnetic charges under their U(1) gauge symmetry.
New topological structures of Skyrme theory: baryon number and monopole number
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.M. [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China); Konkuk University, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of); Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, Seoul (Korea, Republic of); Zhang, Pengming [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China)
2017-02-15
Based on the observation that the skyrmion in Skyrme theory can be viewed as a dressed monopole, we show that the skyrmions have two independent topology, the baryon topology π{sub 3}(S{sup 3}) and the monopole topology π{sub 2}(S{sup 2}). With this we propose to classify the skyrmions by two topological numbers (m, n), the monopole number m and the shell (radial) number n. In this scheme the popular (non spherically symmetric) skyrmions are classified as the (m, 1) skyrmions but the spherically symmetric skyrmions are classified as the (1, n) skyrmions, and the baryon number B is given by B = mn. Moreover, we show that the vacuum of the Skyrme theory has the structure of the vacuum of the Sine-Gordon theory and QCD combined together, which can also be classified by two topological numbers (p, q). This puts the Skyrme theory in a totally new perspective. (orig.)
Monopole-Catalysed Baryon Decay A Boundary Conformal Field Theory Approach
Affleck, Ian K; Affleck, Ian; Sagi, Jacob
1994-01-01
Monopole-mediated baryon number violation, the Callan-Rubakov effect, is reexamined using boundary conformal field theory techniques. It is shown that the low-energy behaviour is described simply by free fermions with a conformally invariant boundary condition at the dyon location. When the number of fermion flavours is greater than two, this boundary condition is of a non-trivial type which has not been elucidated previously.
Numerical Evidence for Thermally Induced Monopoles
Wirnsberger, Peter; Lightwood, Roger Adam; Šarić, Anđela; Dellago, Christoph; Frenkel, Daan
2016-01-01
Electrical charges are conserved. The same would be expected to hold for magnetic charges, yet magnetic monopoles have never been observed. It is therefore surprising that the laws of non-equilibrium thermodynamics, combined with Maxwell's equations, suggest that colloidal particles heated or cooled in certain polar or paramagnetic solvents may behave as if they carry an electrical/magnetic charge [J. Phys. Chem. B $\\textbf{120}$, 5987 (2016)]. Here we present numerical simulations that show that the field distribution around a pair of such heated/cooled colloidal particles agrees quantitatively with the theoretical predictions for a pair of oppositely charged electrical or magnetic monopoles. However, in other respects, the non-equilibrium colloids do not behave as monopoles: they cannot be moved by a homogeneous applied field. The numerical evidence for the monopole-like fields around heated/cooled colloids is crucial because the experimental and numerical determination of forces between such colloids would...
Yablon, Jay R.
2013-10-01
Evidence is summarized from four recent papers that baryons including protons and neutrons are magnetic monopoles of non-commuting Yang-Mills gauge theories: 1) Protons and neutrons are ``resonant cavities'' with binding energies determined strictly by the masses of the quarks they contain. This is proven true at parts-per million accuracy for each of the 2H, 3H,3He, 4He binding energies and the neutron minus proton mass difference. 2) Respectively, each free proton and neutron contains 7.64 MeV and 9.81 MeV of mass/energy used to confine its quarks. When these nucleons bind, some, never all, of this energy is released and the mass deficit goes into binding. The balance continues to confine quarks. 56Fe releases 99.8429% of this energy for binding, more than any other nuclide. 3) Once we consider the Fermi vev one also finds an entirely theoretical explanation of proton and neutron masses, which also connects within experimental errors to the CKM quark mixing angles. 4) A related GUT explains fermion generation replication based on generator loss during symmetry breaking, and answers Rabi's question ``who ordered this?'' 5) Nuclear physics is governed by combining Maxwell's two classical equations into one equation using non-commuting gauge fields in view of Dirac theory and Fermi-Dirac-Pauli Exclusion. 6) Atoms themselves are core magnetic charges (nucleons) paired with orbital electric charges (electrons and elusive neutrinos), with the periodic table itself revealing an electric/magnetic symmetry of Maxwell's equations often pondered but heretofore unrecognized for a century and a half.
Search for nucleon decays induced by GUT magnetic monopoles with the MACRO experiment
Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R
2002-01-01
The interaction of a grand unification magnetic monopole with a nucleon can lead to a baryon-number violating process in which the nucleon decays into a lepton and one or more mesons (catalysis of nucleon decay). In this paper we report an experimental study of the effects of a catalysis process in the MACRO detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux upper limits at the level of ~3.10/sup -16/ cm/sup -2/ s/sup -1/ sr/sup -1/ for 1.1.10/sup -4/
Coupler induced monopole component and its minimization in deflecting cavities
Directory of Open Access Journals (Sweden)
P. K. Ambattu
2013-06-01
Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.
León, Alejandro
2016-11-01
Artificial spin ice systems exhibit monopole-like magnetic excitations. We develop here a theoretical study of the thermal phase transition of an artificial spin ice system, and we elucidate the role of the monopole excitations in the transition temperature. The dynamics of the spin ice is described by an efficient model based on cellular automata, which considers both thermal effects and dipolar interactions. We have established the critical temperature of the phase transition as function of the magnetic moment and the energy barrier of reversion. In addition, we predict that thermal gradients in the system induce the motion of elementary excitations, which could permit to manipulate monopole-like states.
Energy Technology Data Exchange (ETDEWEB)
León, Alejandro
2016-11-01
Artificial spin ice systems exhibit monopole-like magnetic excitations. We develop here a theoretical study of the thermal phase transition of an artificial spin ice system, and we elucidate the role of the monopole excitations in the transition temperature. The dynamics of the spin ice is described by an efficient model based on cellular automata, which considers both thermal effects and dipolar interactions. We have established the critical temperature of the phase transition as function of the magnetic moment and the energy barrier of reversion. In addition, we predict that thermal gradients in the system induce the motion of elementary excitations, which could permit to manipulate monopole-like states.
Radiatively induced symmetry breaking and the conformally coupled magnetic monopole in AdS space
Edery, Ariel
2013-01-01
We implement quantum corrections for a magnetic monopole in a classically conformally invariant theory containing gravity. This yields the trace (conformal) anomaly and introduces a length scale in a natural fashion via the process of renormalization. We evaluate the one-loop effective potential and extract the vacuum expectation value (VEV) from it; spontaneous symmetry breaking is radiatively induced. The VEV is set at the renormalization scale $M$ and we exchange the dimensionless scalar coupling constant for the dimensionful VEV via dimensional transmutation. The asymptotic (background) spacetime is anti-de Sitter (AdS) and its Ricci scalar is determined entirely by the VEV. We obtain analytical asymptotic solutions to the coupled set of equations governing gravitational, gauge and scalar fields that yield the magnetic monopole in an AdS spacetime.
Energy Technology Data Exchange (ETDEWEB)
Romero, Jesus Martin [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)
2015-05-15
The aim of this work is to apply Weitzeboeck Induced Matter Theory (WIMT) to Gullstraend-Painleve and Reissner-Nordstroem metrics in the framework of WIMT. This is a newly developed method that extends Induced Matter Theory from a curved 5D manifold using the Weitzeboeck's geometry, using the fact that the Riemann-Weitzenboeck curvature tensor is always null. We obtain the presence of currents whose interpretation can lead to the presence of stable gravito-magnetic monopoles. (orig.)
Global monopoles in dilaton gravity
Dando, Owen; Gregory, Ruth
1998-04-01
We analyse the gravitational field of a global monopole within the context of low-energy string gravity, allowing for an arbitrary coupling of the monopole fields to the dilaton. Both massive and massless dilatons are considered. We find that, for a massless dilaton, the spacetime is generically singular, whereas when the dilaton is massive, the monopole generically induces a long-range dilaton cloud. We compare and contrast these results with the literature.
Global Monopoles in Dilaton Gravity
Dando, O; Dando, Owen; Gregory, Ruth
1998-01-01
We analyse the gravitational field of a global monopole within the context of low energy string gravity, allowing for an arbitrary coupling of the monopole fields to the dilaton. Both massive and massless dilatons are considered. We find that, for a massless dilaton, the spacetime is generically singular, whereas when the dilaton is massive, the monopole generically induces a long range dilaton cloud. We compare and contrast these results with the literature.
Moduli induced cogenesis of baryon asymmetry and dark matter
Dhuria, Mansi; Sarkar, Utpal
2015-01-01
We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental vertex. In particular, we consider a model which could be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM) superfields. Assuming that the mass of the additional singlet fermions is O(GeV) and color triplet fermions is O(TeV), we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY) breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Assuming R-parity conservation, it follows that the singlet superfie...
Moduli induced cogenesis of baryon asymmetry and dark matter
Directory of Open Access Journals (Sweden)
Mansi Dhuria
2016-05-01
Full Text Available We study a cogenesis mechanism in which the observed baryon asymmetry of the universe and the dark matter abundance can be produced simultaneously at low reheating temperature without violating baryon number in the fundamental interactions. In particular, we consider a model which can be realized in the context of type IIB large volume string compactifications. The matter superfields in this model include additional pairs of color triplet and singlet superfields in addition to the Minimal Supersymmetric Standard Model (MSSM superfields. Assuming that the mass of the additional singlet fermions is O(GeV and of the color triplet fermions is O(TeV, we show that the modulus dominantly decays into the additional color triplet superfields. After soft supersymmetry (SUSY breaking, the lightest eigenstate of scalar component of color triplet superfield further decays into fermionic component of singlet superfield and quarks without violating baryon number. Imposing discrete Z2 symmetry, it follows that the singlet fermion will not further decay into the SM particles and therefore it can be considered as a stable asymmetric dark matter (ADM component. We find that the decay of the lightest eigenstate of scalar component of color triplet superfield gives the observed baryon asymmetry in the visible sector, an asymmetric dark matter component with the right abundance and naturally explains cosmic coincidence.
Sutcliffe, Paul
2011-01-01
Applications to holographic theories have led to some recent interest in magnetic monopoles in four-dimensional Anti-de Sitter spacetime. This paper is concerned with a study of these monopoles, using both analytic and numerical methods. An approximation is introduced in which the fields of a charge N monopole are explicitly given in terms of a degree N rational map. Within this approximation, it is shown that the minimal energy monopole of charge N has the same symmetry as the minimal energy Skyrmion with baryon number N in Minkowski spacetime. Beyond charge two the minimal energy monopole has only a discrete symmetry, which is often Platonic. The rational map approximation provides an upper bound on the monopole energy and may be viewed as a smooth non-abelian refinement of the magnetic bag approximation, to which it reverts under some additional approximations. The analytic results are supported by numerical solutions obtained from simulations of the non-abelian field theory. A similar analysis is performe...
The dynamics of vortex and monopole production by quench induced phase separation
Gill, A J; Gill, A J; Rivers, R J
1995-01-01
Our understanding of the mechanism by which topological defects are formed in symmetry breaking phase transitions has recently changed. We examine the non-equilibrium dynamics of defect formation for weakly-coupled global O(N) theories possessing vortices (strings) and monopoles. It is seen that, as domains form and grow, defects are swept along on their boundaries at a density of about one defect per coherence area (strings) or per coherence volume (monopoles).
Energy Technology Data Exchange (ETDEWEB)
Crull, E W; Brown Jr., C G; Perkins, M P; Ong, M M
2008-07-30
For short monopoles in this low-power case, it has been shown that a simple circuit model is capable of accurate predictions for the shape and magnitude of the antenna response to lightning-generated electric field coupling effects, provided that the elements of the circuit model have accurate values. Numerical EM simulation can be used to provide more accurate values for the circuit elements than the simple analytical formulas, since the analytical formulas are used outside of their region of validity. However, even with the approximate analytical formulas the simple circuit model produces reasonable results, which would improve if more accurate analytical models were used. This report discusses the coupling analysis approaches taken to understand the interaction between a time-varying EM field and a short monopole antenna, within the context of lightning safety for nuclear weapons at DOE facilities. It describes the validation of a simple circuit model using laboratory study in order to understand the indirect coupling of energy into a part, and the resulting voltage. Results show that in this low-power case, the circuit model predicts peak voltages within approximately 32% using circuit component values obtained from analytical formulas and about 13% using circuit component values obtained from numerical EM simulation. We note that the analytical formulas are used outside of their region of validity. First, the antenna is insulated and not a bare wire and there are perhaps fringing field effects near the termination of the outer conductor that the formula does not take into account. Also, the effective height formula is for a monopole directly over a ground plane, while in the time-domain measurement setup the monopole is elevated above the ground plane by about 1.5-inch (refer to Figure 5).
Correlations between Abelian monopoles and center vortices
Hosseini Nejad, Seyed Mohsen; Deldar, Sedigheh
2017-04-01
We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.
Search for GUT monopoles at Super-Kamiokande
Energy Technology Data Exchange (ETDEWEB)
Ueno, K., E-mail: ueno@suketto.icrr.u-tokyo.ac.jp [Kamioka Observatory, ICRR, Univ. of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan)
2012-08-15
GUT monopole-induced neutrinos from the Sun have been searched for using a 50000 ton water Cherenkov detector, Super-Kamiokande. The greatly improved limit on the monopole flux in the local universe is shown.
Exotic Theta^+ baryon production induced by photon and pion
Oh, Y; Lee, S H; Oh, Yongseok; Kim, Hungchong; Lee, Su Houng
2004-01-01
We investigate the photoproduction of the $\\Theta^+(1540)$ on a nucleon ($\\gamma n \\to K^- \\Theta^+$, $\\gamma p \\to \\bar{K}^0 \\Theta^+$) and the pion-induced $\\Theta^+$ production reaction on the proton ($\\pi^- p \\to K^- \\Theta^+$). The total cross sections near threshold are estimated by using hadronic models with effective interaction Lagrangians and form factors that preserve gauge-invariance of the electromagnetic current. The photoproduction cross sections are found to be a few hundred nb, with the cross section on the proton being larger than that on the neutron. The pion-induced production cross section is found to be around a few hundred $\\mu$b but sensitive to the $K^* N \\Theta$ coupling whose value is not yet known. We also study the production cross section assuming that the $\\Theta^+$ has negative parity. The cross sections are then found to be much suppressed compared to the case where $\\Theta^+$ has positive parity. Hence, the interpretation of the $\\Theta^+$ as an odd-parity pentaquark state se...
Manton, Nicholas
2014-01-01
We construct a number of explicit examples of hyperbolic monopoles, with various charges and often with some platonic symmetry. The fields are obtained from instanton data in four-dimensional Euclidean space that are invariant under a circle action, and the monopole charge is equal to the instanton charge. A key ingredient is the identification of a new set of constraints on ADHM instanton data that are sufficient to ensure the circle invariance. Algebraic formulae for the Higgs field magnitude are given and from these we compute and illustrate the energy density of the monopoles. For particular monopoles, the explicit formulae provide a proof that the number of zeros of the Higgs field is greater than the monopole charge. We also present some one-parameter families of monopoles analogous to known scattering events for Euclidean monopoles within the geodesic approximation.
Monopole annihilation at the electroweak scale
Terning, J
1992-01-01
We examine the issue of monopole annihilation at the electroweak scale induced by flux tube confinement, concentrating first on the simplest possibility---one which requires no new physics beyond the standard model. Monopoles existing at the time of the electroweak phase transition may trigger $W$ condensation which can confine magnetic flux into flux tubes. However we show on very general grounds, using several independent estimates, that such a mechanism is impotent. We then present several general dynamical arguments constraining the possibility of monopole annihilation through any confining phase near the electroweak scale.
Energy Technology Data Exchange (ETDEWEB)
Romero, Jesús Martín, E-mail: jesusromero@conicet.gov.ar [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-05-08
The aim of this work is to apply Weitzeböck Induced Matter Theory (WIMT) to Gullstränd–Painlevé and Reissner–Nordström metrics in the framework of WIMT. This is a newly developed method that extends Induced Matter Theory from a curved 5D manifold using the Weitzeböck’s geometry, using the fact that the Riemann–Weitzenböck curvature tensor is always null. We obtain the presence of currents whose interpretation can lead to the presence of stable gravito-magnetic monopoles.
Moss, I. G.; Shiiki, N.; Winstanley, E.
2000-01-01
Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.
Moss, I. G.; Shiiki, N.; Winstanley, E.
2000-01-01
Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.
Superluminal Neutrinos and Monopoles
Wang, Peng; Yang, Haitang
2011-01-01
In this letter, we show that superluminal neutrinos announced by OPERA could be explained by the existence of a monopole, which is left behind after the spontaneous symmetry braking (SSB) phase transition of some scalar fields in the universe. We assume the 't Hooft-Polyakov monopole couples to the neutrinos but not photon fields. The monopole causes effective metric to the neutrinos, different from the Minkovski one. We find that the monopoles have influences on neutrinos only within the range about $10^3$ cm. Neutrinos always arrive earlier than photons by the same amount of time, once there exists a monopole on or close to their trajectories. This result reconciles the contradiction between OPERA and supernova neutrinos.
De Rújula, Alvaro
1995-01-01
Electromagnetism would be a ``more unified'' theory if there were elementary magnetic monopoles and/or particles with both electric and magnetic charges (dyons). I discuss the simplest possibilities for the addition of these entities onto the Standard Model, and their empirical consequences. Lower limits on the masses of monopoles and dyons stemming from their quantum effects on current observables turn out to be much stronger than the existing limits from direct searches. Anomalies in the three-photon decay of the Z constitute good specific signatures for monopoles or dyons. T-odd observables in the e^+e^-\\!\\rightarrow\\! W^+W^- process are signatures for dyons, but they are severely constrained by existing data. The subjects of monopolium, monopole cosmology and non-elementary monopoles are also discussed.
Page, P R
2003-01-01
We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.
Oset, E; Sun, Bao Xi; Vacas, M J Vicente; Ramos, A; Gonzalez, P; Vijande, J; Torres, A Martinez; Khemchandani, K
2009-01-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the $\\Lambda(1405)$ resonance, as well as the prediction of one $1/2^+$ baryon state around 1920 MeV which might have been seen in the $\\gamma p \\to K^+ \\Lambda$ reaction.
Energy Technology Data Exchange (ETDEWEB)
Oset, E. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Sarkar, S. [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Sun Baoxi [Institute of Theoretical Physics, College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Vicente Vacas, M.J. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Ramos, A. [Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Universitat de Barcelona, 08028 Barcelona (Spain); Gonzalez, P. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Vijande, J. [Departamento de Fisica Atomica Molecular y Nuclear and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Martinez Torres, A. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Khemchandani, K. [Centro de Fisica Computacional, Departamento de Fisica, Universidade de Coimbra, P-3004-516 Coimbra (Portugal)
2010-04-01
In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the {lambda}(1405) resonance, as well as the prediction of one 1/2{sup +} baryon state around 1920 MeV which might have been seen in the {gamma}p{yields}K{sup +}{lambda} reaction.
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.; Barrow, J.D. (Sussex Univ., Brighton (UK). Astronomy Centre)
1983-02-24
We generalize previous analyses to consider the behaviour of magnetic monopoles with mass exceeding 7 x 10/sup 18/ GeV in the galaxy. The maximum allowed monopole density compatible with the existence and persistence of the galactic magnetic field is calculated when the monopole populated contains monopoles with mass both greater and less than 7 x 10/sup 18/ GeV.
Matrix Models, Monopoles and Modified Moduli
Erlich, J; Unsal, M; Erlich, Joshua; Hong, Sungho; Unsal, Mithat
2004-01-01
Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of N=1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an N=2 nonrenormalization theorem which is inherited by these N=1 theories. Specializing to the case Nf=Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.
Matrix Models, Monopoles and Modified Moduli
Erlich, Joshua; Hong, Sungho; Unsal, Mithat
2004-09-01
Motivated by the Dijkgraaf-Vafa correspondence, we consider the matrix model duals of Script N = 1 supersymmetric SU(Nc) gauge theories with Nf flavors. We demonstrate via the matrix model solutions a relation between vacua of theories with different numbers of colors and flavors. This relation is due to an Script N = 2 nonrenormalization theorem which is inherited by these Script N = 1 theories. Specializing to the case Nf = Nc, the simplest theory containing baryons, we demonstrate that the explicit matrix model predictions for the locations on the Coulomb branch at which monopoles condense are consistent with the quantum modified constraints on the moduli in the theory. The matrix model solutions include the case that baryons obtain vacuum expectation values. In specific cases we check explicitly that these results are also consistent with the factorization of corresponding Seiberg-Witten curves. Certain results are easily understood in terms of M5-brane constructions of these gauge theories.
Magnetic Monopoles from Global Monopoles in the presence of Kalb-Ramond Torsion
Mavromatos, Nick E
2016-01-01
Possible classical solutions for electromagnetic monopoles induced by gravitational (global) monopoles in the presence of torsion are found. Such solutions rely on a non-zero (Kalb-Ramond) torsion strength, which may characterise low energy theories inspired from string models. Bounds from the current run of the LHC experiments are used to constrain the parameters of the model, but because the production mechanism depends on the details of the model and its ultraviolet completion, such bounds are presently only indicative.
Searches for monopoles and quarks
Energy Technology Data Exchange (ETDEWEB)
Matis, H.S.
1986-07-01
Within the last year, several sensitive searches for monopoles and quarks have been done. Recent experiments at the Tevatron and at the CERN p anti p collider have detected no evidence for free fractional charge. An experiment in a iron refinery, which searched for GUT monopoles trapped in iron ore with two SQUID detectors, found no monopole candidate. However, an experiment looking for monopoles in cosmic rays has measured an interesting event which could be interpreted as a monopole. Several detectors are being built to achieve significant improvements in sensitivity for detection of quarks and monopoles. 21 refs.
Asymptotic Dynamics of Monopole Walls
Cross, R
2015-01-01
We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.
Search for magnetic monopoles in polar volcanic rocks
Bendtz, K; Hächler, H -P; Hirt, A M; Mermod, P; Michael, P; Sloan, T; Tegner, C; Thorarinsson, S B
2013-01-01
For a broad range of values of magnetic monopole mass and charge, the abundance of monopoles trapped inside the Earth would be expected to be enhanced in the mantle beneath the geomagnetic poles. A search for magnetic monopoles was conducted using the signature of an induced persistent current following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analysed. No monopoles were found and a 90% confidence level upper limit of $1.6\\cdot 10^{-28}$ is set on the monopole to nucleon ratio in the search samples.
Search for Magnetic Monopoles in Polar Volcanic Rocks
DEFF Research Database (Denmark)
Bendtz, K.; Milstead, D.; Hächler, H. -P.
2013-01-01
For a broad range of values of magnetic monopole mass and charge, the abundance of monopoles trapped inside Earth would be expected to be enhanced in the mantle beneath the geomagnetic poles. A search for magnetic monopoles was conducted using the signature of an induced persistent current...... following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analyzed. No monopoles were found, and a 90% confidence level upper limit of 9.8 x...... 10(-5)/g is set on the monopole density in the search samples. DOI:10.1103/PhysRevLett.110.121803...
2002-01-01
This experiment is proposed to investigate the possible production of magnetic monopoles at the ISR. Very different values are in principle possible for the magnetic charge of such objects, and the present experiment intends to cover a range of magnetic charges from g, to 12 g, where g is the classical minimum charge of the Dirac theory, .ce g = 1/2e The detector consists of three double layers of solid track detector, which are only sensitive to highly ionizing particles, such as monopoles should be. The detector is placed directly in the vacuum chamber, to avoid the large energy losses that a monopole would suffer in a solid wall. A solenoidal magnet is placed between the intersection region and the detector and around the detector itself, in order to accelerate monopoles to an energy such that they are able to traverse the successive sensitive layers of the detector. The thickness of the sensitive layers is chosen to avoid confusion with possible background arising from highly ionizing ions. The experiment...
Static Gravitational Global Monopoles
Liebling, S L
2000-01-01
Static solutions in spherical symmetry are found for gravitating global monopoles. Regular solutions lacking a horizon are found for $\\eta \\sqrt{3/8\\pi} \\approx 0.3455$ is consistent with findings that topological inflation begins at $\\eta \\approx 0.33$.
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.
1986-01-01
The status of the theory of the low-energy approach to hadron structure is reviewed briefly by surveying a few relevant models. A few examples of tests needed to sort out the predictions of different models pertaining to the quark-gluon structure of hadrons are discussed, and given the resulting physics objectives, a few experimental options for excited baryon research at CFBAF are suggested. (LEW)
Chiral symmetry breaking, instantons, and monopoles
Di Giacomo, Adriano
2015-01-01
The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...
Magnetic monopoles: a status report
Energy Technology Data Exchange (ETDEWEB)
Carrigan, R.A. Jr.; Trower, W.P.
1983-03-01
A solitary, uncorroborated Stanford candidate event is the only evidence that magnetic monpoles derives from Dirac's assertion that monopoles could explain charge quantization and the 't Hooft-Polyakov demonstration that monopoles are an inevitable consequence of many gauge theories currently being used to unify the electroweak (photon-lepton) and nuclear (quark) interactions. The monopole abundance implied by the Stanford event is in clear contradiction to bounds on their number from astronomical data. Fortunately, the already considerable and expanding arsenal of detection techniques are being fashioned to experimentally test the many open questions surrounding monopoles.
Magnetic Half-Monopole Solutions
Teh, Rosy; Lim, Kok-Geng; Koh, Pin-Wai
2009-07-01
We present exact SU(2) Yang-Mills-Higgs monopole solutions of one half topological charge. These non-Abelian solutions possess gauge potentials which are singular along either the positive or the negative z-axis and common magnetic fields that are singular only at the origin where the half-monopole is located. These half-monopoles are actually a half Wu-Yang monopole and they can possess a finite point electric charge and become half-dyons. They do not necessarily satisfy the first order Bogomol'nyi equations and they possess infinite energy density at r = 0.
Generalized BPS magnetic monopoles
Casana, R; da Hora, E
2012-01-01
We show the existence of Bogomol'nyi-Prasad-Sommerfield (BPS) magnetic monopoles in a generalized Yang-Mills-Higgs model which is controlled by two positive functions. This effective model, in principle, would describe the dynamics of the nonabelian fields in a chromoelectric media. We check the consistency of our generalized construction by analyzing an explicit case ruled by a real parameter. We also use the well-known spherically symmetric Ansatz to attain the corresponding self-dual equations describing the topological solutions. The overall conclusion is that the new solutions behave around the canonical one, with smaller or greater characteristic length.
Kaplunovsky, Vadim; Sonnenschein, Jacob
2012-01-01
In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2...
Polyhedral Scattering of Fundamental Monopoles
Battye, R; Rychenkova, P; Sutcliffe, P; Battye, Richard; Gibbons, Gary; Rychenkova, Paulina; Sutcliffe, Paul
2003-01-01
The dynamics of n slowly moving fundamental monopoles in the SU(n+1) BPS Yang-Mills-Higgs theory can be approximated by geodesic motion on the 4n-dimensional hyperkahler Lee-Weinberg-Yi manifold. In this paper we apply a variational method to construct some scaling geodesics on this manifold. These geodesics describe the scattering of n monopoles which lie on the vertices of a bouncing polyhedron; the polyhedron contracts from infinity to a point, representing the spherically symmetric n-monopole, and then expands back out to infinity. For different monopole masses the solutions generalize to form bouncing nested polyhedra. The relevance of these results to the dynamics of well separated SU(2) monopoles is also discussed.
Gudnason, Sven Bjarke
2014-01-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model, the first is the Skyrme model and the second has a sixth-order derivative term instead of the Skyrme term; both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions and they are characterized by two integers P and Q, representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B=PQ. We find stable Skyrmion solutions for P=1,2,3,4,5 with Q=1, while for P=6 and Q=1 it is only metastable. We further find that configurations with higher Q>1 are all unstable and split into Q configurations with Q=1.
Chiral symmetry breaking and monopoles
Di Giacomo, Adriano; Pucci, Fabrizio
2015-01-01
To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...
Magnetic monopoles and relativistic cosmological models
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1984-01-01
A dissertation is presented on magnetic monopoles and relativistic cosmological models. The maximum number density of monopoles in various astrophysical scenarios was investigated along with: the monopole flux in the galaxy, the allowed monopole abundance, and the formation of stable monopole orbits. Limits on the mass and lifetime of monopolonium were calculated. Boltzmann's equation was used to calculate the monopole abundance in a magnetic axisymmetric Bianchi I cosmological model, and a solution was found describing an axisymmetric Bianchi I magnetic cosmology with monopoles. New inhomogeneous solutions to Einstein's equations were found. Finally, stability and inflation in Kaluza-Klein cosmologies in d + D + 1 dimensions was studied.
Magnetic monopoles and strange matter
Sañudo, J.; Seguí, A.
1986-01-01
We show that if the density of grand unified monopoles at T⋍200 MeV id of the order of or greater than 4.4×1021 cm-3 they annihilate all of the strange matter produced in the quagma-hadron phase transition which of the unverse undergoes at this temperature. We also study gravitational capture of monopoles by lumps of strange matter. This yield upper limits on the density of monopoles for different sizes of strange ball. On leave of absence from Departamento de Física Atómica y Nuclear, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Production of charmed baryon $\\Lambda_c(2940)$ by kaon-induced reaction on a proton target
Huang, Yin; Xie, Ju-Jun; Chen, Xurong; Zhang, Hong-Fei
2016-01-01
We investigate the possibility to study the charmed baryon $\\Lambda_c(2940)$ by kaon-induced reaction on a proton target. By assuming the $\\Lambda_c(2940)$ as a $pD^{*0}$ molecular state with spin-parity $J^{p}=1/2^{\\pm}$, an effective Lagrangian approach was adopted to calculate the cross section, the $D^0p$ invariant mass spectrum and Dalitz plot of the $\\Lambda(2940)$ production. The total cross section of the $K^{-}p\\to\\Lambda_c(2940)D_s^{-}$ reaction is found at an order of magnitude about 10 $\\mu$b. By considering the sub sequential decay $\\Lambda_c(2940)\\to{}D^0p$ with contributions from the $\\Lambda_c(2286)$ and the $\\Sigma_c(2455)$ as background, the $K^{-}p\\to{}D_{s}^{-}D^{0}p$ reaction are studied. It is found that the $\\Lambda_c(2940)$ is produced mainly at forward angles. The $\\Lambda_c(2940)$ signal is predicted to be significant in the $D^0p$ invariant mass spectrum and the Dalitz plot of the $K^{-}p\\to{}D_{s}^{-}D^{0}p$ reaction. The results suggest that it is promising to study the $\\Lambda_c...
Generalized BPS magnetic monopoles
Casana, R.; Ferreira, M. M., Jr.; da Hora, E.
2012-10-01
We show the existence of Bogomol’nyi-Prasad-Sommerfield (BPS) magnetic monopoles in a generalized Yang-Mills-Higgs model which is controlled by two positive functions, g(ϕaϕa) and f(ϕaϕa). This effective model, in principle, would describe the dynamics of the nonabelian fields in a chromoelectric media. We check the consistency of our generalized construction by analyzing an explicit case ruled by a parameter β. We also use the well-known spherically symmetric Ansatz to attain the corresponding self-dual equations describing the topological solutions. The overall conclusion is that the new solutions behave around the canonical one, with smaller or greater characteristic length depending on the values of β.
Axion Isocurvature and Magnetic Monopoles.
Nomura, Yasunori; Rajendran, Surjeet; Sanches, Fabio
2016-04-08
We propose a simple mechanism to suppress axion isocurvature fluctuations using hidden sector magnetic monopoles. This allows for the Peccei-Quinn scale to be of the order of the unification scale consistently with high scale inflation.
Monopolium: the key to monopoles
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A. [Universidad Nacional de La Plata, Laboratorio de Fisica Teorica, Departamento de Fisica, IFLP, La Plata (Argentina); Vento, V. [Universidad de Valencia, Departamento de Fisica Teorica and Instituto de Fisica Corpuscular, Burjassot (Valencia) (Spain); CERN, TH-Division, PH Department, Geneve (Switzerland)
2008-07-15
Dirac showed that the existence of one magnetic pole in the universe could offer an explanation for the discrete nature of the electric charge. Magnetic poles appear naturally in most grand unified theories. Their discovery would be of the greatest importance for particle physics and cosmology. The intense experimental search carried out thus far has not met with success. Moreover, if the monopoles are very massive their production is outside the range of present day facilities. A way out of this impasse would be if the monopoles bind to form monopolium, a monopole-antimonopole bound state, which is so strongly bound that it has a relatively small mass. Under these circumstances it could be produced with present day facilities and the existence of monopoles could be indirectly proven. We study the feasibility of detecting monopolium in present and future accelerators. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiao-Yun [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China); Chen, Xu-Rong [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Institute of Modern Physics of CAS and Lanzhou University, Research Center for Hadron and CSR Physics, Lanzhou (China)
2015-07-15
The production of superheavy Λ{sub c} {sub anti} {sub c}{sup *}(4209) baryon in the K{sup -}p → η{sub c}Λ process via s-channel is investigated with an effective Lagrangian approach and the isobar model. Moreover, the background from the K{sup -}p → η{sub c}Λ reaction through the t-channel with K* exchange and u-channel with nucleon exchange are also considered. The numerical results indicate it is feasible to search for the superheavy Λ{sub c} {sub anti} {sub c}{sup *}(4209) via K{sup -}p scattering. The relevant calculations not only shed light on the further experiment of searching for the Λ{sub c} {sub anti} {sub c}{sup *}(4209) through kaon-induced reaction, but also enable us to have a better understanding of the exotic baryons. (orig.)
Gravitational Global Monopoles with Horizons
Maison, D
1999-01-01
We give arguments for the existence of ``radial excitations'' of gravitational global monopoles with any number of zeros of the Higgs field and present numerical results for solutions with up to two zeros. All these solutions possess a de Sitter like cosmological horizon, outside of which they become singular. In addition we study corresponding static ``hairy'' black hole solutions, representing black holes sitting inside a global monopole core. In particular, we determine their existence domains as a function of their horizon radius rh.
Seagrave, Wyken
2015-01-01
Truly bizarre, utterly unique I've never read a novel quite like this before. The author takes you on an exciting adventure full of unforgettable and vivid imagery. Solidly written with each character's personality shining through. If you find physics fascinating you will not be disappointed by the author's keen intellect and clear understanding of this most challenging (for me anyway) scientific subject. This is not a novel I will forget anytime soon, I would highly recommend it. Andrewly Very imaginative tale Anybody interested in a very imaginative and engrossing sci fi story needs to check this one out. I have been reading sci fi for decades and this story has elements that surprise me which is very unusual considering the number of novels and stories I have over the years. ric freeman Summary of the story The cosmic monopole has been wandering the Universe since it was created in the Big Bang. Its existence is fundamental to the way the Universe works. It is finally trapped by the powerful magnetic f...
Baryons and baryonic matter in four-fermion interaction models
Energy Technology Data Exchange (ETDEWEB)
Urlichs, K.
2007-02-23
In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon
Fukushima, Kenji
2014-01-01
We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.
QCD monopole and sigma meson coupling
Iwazaki, Aiichi
2016-01-01
Under the assumption of the Abelian dominance in QCD, we show that chiral condensate is locally present around a QCD monopole. The appearance of the chiral condensate around a GUT monopole was shown in the previous analysis of the Rubakov effect. We apply a similar analysis to the QCD monopole. It follows that the condensation of the monopole carrying the chiral condensate leads to the chiral symmetry breaking as well as quark confinement. To realize the result explicitly, we present a phenomenological linear sigma model coupled with the monopoles, in which the monopole condensation causes the chiral symmetry breaking as well as confinement. The monopoles are assumed to be described by a model of dual superconductor. We identify the monopoles with scalar isoscalar $f_0$ mesons with masses $1400\\sim 1700$ MeV as well as dual gauge fields with $h_1$ vector mesons with masses $\\sim 1500$MeV.
Some Remarks on Gravitational Global Monopoles
Maison, D; Maison, Dieter; Liebling, Steven L.
1999-01-01
Using mainly analytical arguments, we derive the exact relation static gravitational global monopoles. For this value, the global monopole bifurcates with the de Sitter solution obtained for vanishing Higgs field. In addition, we analyze the stability properties of the solutions.
Pion mean fields and heavy baryons
Yang, Ghil-Seok; Polyakov, Maxim V; Praszałowicz, Michał
2016-01-01
We show that the masses of the lowest-lying heavy baryons can be very well described in a pion mean-field approach. We consider a heavy baryon as a system consisting of the $N_c-1$ light quarks that induce the pion mean field, and a heavy quark as a static color source under the influence of this mean field. In this approach we derive a number of \\textit{model-independent} relations and calculate the heavy baryon masses using those of the lowest-lying light baryons as input. The results are in remarkable agreement with the experimental data. In addition, the mass of the $\\Omega_b^*$ baryon is predicted.
Black holes in magnetic monopoles
Lee, Kimyeong; Nair, V. P.; Weinberg, Erick J.
1992-04-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs-field vacuum expectation value v is less than or equal to a critical value vcr, which is of the order of the Planck mass. In the limiting case, the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordström solution. For vsolutions which are singular at r=0, but which have this singularity hidden within a horizon. These have nontrivial matter fields outside the horizon, and may be interpreted as small black holes lying within a magnetic monopole. The nature of these solutions as a function of v and of the total mass M and their relation to the Reissner-Nordström solutions are discussed.
Black Holes in Magnetic Monopoles
Lee, K; Weinberg, Erick J; Weinberg, Erick J.
1992-01-01
We study magnetically charged classical solutions of a spontaneously broken gauge theory interacting with gravity. We show that nonsingular monopole solutions exist only if the Higgs vacuum expectation value $v$ is less than or equal to a critical value $v_{cr}$, which is of the order of the Planck mass. In the limiting case the monopole becomes a black hole, with the region outside the horizon described by the critical Reissner-Nordstrom solution. For $v
Dynamics of slender monopoles and anti-monopoles in non-Abelian superconductor
Arai, Masato; Eto, Minoru; Sakai, Norisuke
2014-01-01
Low energy dynamics of magnetic monopoles and anti-monopoles in the U(2) gauge theory is studied in the Higgs (non-Abelian superconducting) phase. The monopoles in this superconducting phase are not spherical but are of slender ellipsoid which are pierced by a vortex string. We investigate scattering of the slender monopole and anti-monopole, and find that they do not always decay into radiation, contrary to our naive intuition. They can repel, make bound states (magnetic mesons) or resonances. Analytical solutions including any number of monopoles and anti-monopoles are obtained in the first non-trivial order of rigid-body approximation. We point out that some part of solutions of slender monopole system in 1+3 dimensions can be mapped exactly onto the sine-Gordon system in 1+1 dimensions. This observation allows us to visualize dynamics of monopole and anti-monopole scattering easily.
Moduli of monopole walls and amoebas
Cherkis, Sergey A.; Ward, Richard S.
2012-05-01
We study doubly-periodic monopoles, also called monopole walls, determining their spectral data and computing the dimensions of their moduli spaces. Using spectral data we identify the moduli, and compare our results with a perturbative analysis. We also identify an SL(2, {Z}) action on monopole walls, in which the S transformation corresponds to the Nahm transform.
Moduli of Monopole Walls and Amoebas
Cherkis, Sergey A
2012-01-01
We study doubly-periodic monopoles, also called monopole walls, determining their spectral data and computing the dimensions of their moduli spaces. Using spectral data we identify the moduli, and compare our results with a perturbative analysis. We also identify an SL(2,Z) action on monopole walls, in which the S transformation corresponds to the Nahm transform.
Magnetic Monopole Content of Hot Instantons
Brower, R C; Negele, John W; Orginos, K; Tan, C I
1999-01-01
We study the Abelian projection of an instanton in $R^3 \\times S^1$ as a function of temperature (T) and non-trivial holonomic twist ($\\omega$) of the Polyakov loop at infinity. These parameters interpolate between the circular monopole loop solution at T=0 and the static 't Hooft-Polyakov monopole/anti-monopole pair at high temperature.
DUAL BAND MONOPOLE ANTENNA DESIGN
Directory of Open Access Journals (Sweden)
P. Jithu
2013-06-01
Full Text Available The WLAN and Bluetooth applications become popular in mobile devices, integrating GSM and ISM bands operation in one compact antenna, can reduce the size of mobile devices. Recently, lot many investigations are carried out in designing a dual band antennas with operating frequencies in GSM band and in ISM band for mobile devices. Printed monopoles are under this investigation. In this paper, dual-band printed monopoles are presented to operate at GSM band i.e. 900 MHz and ISM band i.e. 2.4 GHz. We intend to observe the antenna characteristics on the network analyzer and verify the theoretical results with the practical ones.
Gravito-magnetic monopoles in traversable wormholes from WIMT
Romero, Jesús Martín; Bellini, Mauricio
2017-03-01
Using Weitzenböck Induced Matter Theory (WIMT), we study Schwarzschild wormholes performing different foliations on an extended (non-vacuum) 5D manifold. We explore the geodesic equations for observers which are in the interior of a traversable wormhole and how these observers can detect gravito-magnetic monopoles which are dual to gravito-electric sources observed in the outer zone of some Schwarzschild Black-Hole (BH). The densities of these monopoles are calculated and quantized in the Dirac sense. This kind of duality on the extended Einstein-Maxwell equations, relates electric and magnetic charges on causally disconnected space regions.
Search for magnetic monopoles trapped in matter
Jeon, H
1995-01-01
There have been many searches for magnetic monopoles in flight, but few for monopoles in matter. We have searched for magnetic monopoles in meteorites, schists, ferromanganese nodules, iron ores and other materials. The detector was a superconducting induction coil connected to a SQUID (Superconducting Quantum Interference Device) with a room temperature bore 15 cm in diameter. We tested a total of more than 331 kg of material including 112 kg of meteorites. We found no monopole and conclude the overall monopole/nucleon ratio in the samples is <1.2 \\times 10^{-29} with a 90\\% confidence level.
Magnetic monopole field exposed by electrons
Béché, A; Van Tendeloo, G; Verbeeck, J
2013-01-01
Magnetic monopoles have provided a rich field of study, leading to a wide area of research in particle physics, solid state physics, ultra-cold gases, superconductors, cosmology, and gauge theory. So far, no true magnetic monopoles were found experimentally. Using the Aharonov-Bohm effect, one of the central results of quantum physics, shows however, that an effective monopole field can be produced. Understanding the effects of such a monopole field on its surroundings is crucial to its observation and provides a better grasp of fundamental physical theory. We realize the diffraction of fast electrons at a magnetic monopole field generated by a nanoscopic magnetized ferromagnetic needle. Previous studies have been limited to theoretical semiclassical optical calculations of the motion of electrons in such a monopole field. Solid state systems like the recently studied 'spin ice' provide a constrained system to study similar fields, but make it impossible to separate the monopole from the material. Free space ...
Sierpinski-Based Conical Monopole Antenna
Directory of Open Access Journals (Sweden)
P. Vsetula
2010-12-01
Full Text Available Planar Sierpinski monopole exhibits a multi-band behavior, but its parameters in operation frequency bands are not optimal. By mapping the Sierpinski monopole on a conical surface, a symmetrical three-dimensional (3-D structure is obtained. In this way, a larger bandwidth and a better radiation pattern is achieved. The symmetrical 3D Sierpinski-based monopole is an original contribution of this paper. In the paper, different versions of the conical Sierpinski-based monopole are designed, and results of simulations performed in CST Microwave Studio are mutually compared. Then, the simulated versions of the conical monopole are optimized according to specified criteria. The optimized conical Sierpinski-based monopole is manufactured and its properties are experimentally verified. Results of measuring the Sierpinski-based conical monopole antenna are published here for the first time.
Ogilvy, Stephen
2015-01-01
The vast amount of $c\\overline{c}$ production that can be recorded by the LHCb detector makes it an ideal environment to study the hadronic production of charmed baryons, along with the properties of their decays. We briefly describe the LHCb experiment and the triggering mechanisms it uses for recording charm production. Previous charmed baryon results from LHCb are detailed, with a description of the future plans for the charmed baryon programme.
Experimental Realization of a Dirac Monopole through the Decay of an Isolated Monopole
Directory of Open Access Journals (Sweden)
T. Ollikainen
2017-05-01
Full Text Available We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin configuration hosting a Dirac monopole in its synthetic magnetic field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the monopole decay accelerates in weaker magnetic field gradients.
Redshift uncertainties and baryonic acoustic oscillations
Chaves-Montero, Jonás; Hernández-Monteagudo, Carlos
2016-01-01
In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of uncertain redshift estimators on cosmological observables. In this paper we present a detailed exploration of the galaxy clustering and baryonic acoustic oscillation (BAO) signal under the presence of redshift errors. We provide analytic expressions for how the monopole and the quadrupole of the redshift-space power spectrum (together with their covariances) are affected. Additionally, we discuss the modifications in the shape, signal to noise, and cosmological constraining power of the BAO signature. We show how and why the BAO contrast is $\\mathit{enhanced}$ with small redshift uncertainties, and explore in detail how the cosmological information is modulated by the interplay of redshift-space distortions, redshift errors, and the number density of the sample. We validate our results by comparing them with measurements from a ensemble of $N$-body simulations with $8100h^{-3}\\text{Gpc}^3$ aggregated volume....
Dual Mode Slotted Monopole Antenna
2017-01-05
of 15 DUAL MODE SLOTTED MONOPOLE ANTENNA STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention is directed...such as this that is capable of radiating at a different frequency below this cutoff. The present invention provides a means by which the overall
Baryon-Baryon coupling in hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Gibson, B.F.; Afnan, I.R.; Carlson, J.A. [and others
1995-04-01
Baryon-baryon coupling such as {Lambda}N-{Sigma}N in {Lambda} hypernuclei and {Lambda}{Lambda}-{Xi}N in {Lambda}{Lambda} hypernuclei produce novel physics not observed in conventional nonstrange nuclei. This is especially evident in few-body systems. To illustrate this, a comparison of S = {minus}1 and S = 0 baryon-separation energies is made. The role of {Lambda}N-{Sigma}N coupling suppression in the A = 4 {Lambda} hypernuclei due to Pauli blocking is reviewed. The analysis is extended to S = {minus}2 systems. Measurement of the {sub {Lambda}{Lambda}}{sup 4}H or {sub {Lambda}{Lambda}}{sup 5}He {Lambda}{Lambda} separation energy is proposed as a means to investigate the full {Lambda}{Lambda} and {Xi}N interaction.
Particlelike solutions in modified gravity: the Higgs monopole
Schlogel, Sandrine; Staelens, Francois; Fuzfa, Andre
2014-01-01
Higgs inflation has received a remarkable attention in the last few years due to its simplicity and predictive power. The key point of this model is the nonminimal coupling to gravity in unitary gauge. As such, this theory is in fact a scalar-tensor modification of gravity that needs to be studied also below the energy scales of inflation. Motivated by this goal, we study in great analytical and numerical detail the static and spherically symmetric solutions of the equations of motion in the presence of standard baryonic matter, called "Higgs monopoles" and presented in \\cite{monopole}. These particlelike solutions may arise naturally in tensor-scalar gravity with mexican hat potential and are the only globally regular asymptotically flat solutions with finite classical energy. In the case when the parameters of the potential are taken to be the ones of the standard model, we find that the deviations from general relativity are extremely small, especially for bodies of astrophysical size and density. This all...
Kubis, B; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.
1999-01-01
We calculate the form factors of the baryon octet in the framework of heavy baryon chiral perturbation theory. The calculated charge radius of the show that kaon loop effects can play a significant role in the neutron electric form factor. Furthermore. we derive generalized Caldi-Pagels relations between various charge radii which are free of chiral loop effects.
Naik, Paras
2016-01-01
The LHCb detector is an excellent instrument for studying the production and decay of charmed baryons in $pp$ collisions, due to efficient triggering mechanisms that capture the copious production of $c\\overline{c}$ at the Large Hadron Collider. The LHCb experiment and its charmed baryon results from LHCb are detailed, with a description of our future plans.
A Direct Search for Dirac Magnetic Monopoles
Energy Technology Data Exchange (ETDEWEB)
Mulhearn, Michael James
2004-10-01
Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, remains highly efficient to monopoles while consuming a tiny fraction of the available trigger bandwidth. A specialized offline reconstruction checks the central drift chamber for large dE/dx tracks which do not curve in the plane perpendicular to the magnetic field. We observed zero monopole candidate events in 35.7 pb{sup -1} of proton-antiproton collisions at {radical}s = 1.96 TeV. This implies a monopole production cross section limit {sigma} < 0.2 pb for monopoles with mass between 100 and 700 GeV, and, for a Drell-Yan like pair production mechanism, a mass limit m > 360 GeV.
A Direct Search for Dirac Magnetic Monopoles
Energy Technology Data Exchange (ETDEWEB)
Mulhearn, Michael James [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2004-10-01
Magnetic monopoles are highly ionizing and curve in the direction of the magnetic field. A new dedicated magnetic monopole trigger at CDF, which requires large light pulses in the scintillators of the time-of-flight system, remains highly efficient to monopoles while consuming a tiny fraction of the available trigger bandwidth. A specialized offline reconstruction checks the central drift chamber for large dE/dx tracks which do not curve in the plane perpendicular to the magnetic field. We observed zero monopole candidate events in 35.7 pb^{-1} of proton-antiproton collisions at √s = 1.96 TeV. This implies a monopole production cross section limit σ < 0.2 pb for monopoles with mass between 100 and 700 GeV, and, for a Drell-Yan like pair production mechanism, a mass limit m > 360 GeV.
Branch Processes of Regular Magnetic Monopole
Institute of Scientific and Technical Information of China (English)
MO Shu-Fan; REN Ji-Rong; ZHU Tao
2009-01-01
In this paper, by making use of Duan's topological current theory, the branch process of regular magnetic monopoles is discussed in detail Regular magnetic monopoles are found generating or annihilating at the limit point and encountering, splitting, or merging at the bifurcation point and the degenerate point systematically of the vector order parameter field φ(x).Furthermore, it is also shown that when regular magnetic monopoles split or merge at the degenerate point of field function φ, the total topological charges of the regular magnetic monopoles axe still unchanged.
Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study
Directory of Open Access Journals (Sweden)
J. Jilkova
2008-04-01
Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.
Charmed baryons on the lattice
Padmanath, M
2015-01-01
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
Baryon resonances without quarks: A chiral soliton perspective
Energy Technology Data Exchange (ETDEWEB)
Karliner, M.
1987-03-01
In many processes involving low momentum transfer it is fruitful to regard the nucleon as a soliton or ''monopole-like'' configuration of the pion field. In particular, within this framework it is possible to obtain detailed predictions for pion-nucleon scattering amplitudes and for properties of baryon resonances. One can also derive model-independent linear relations between scattering amplitudes, such as ..pi..N and anti KN. A short survey of some recent results is given, including comparison with experimental data.
Indian Academy of Sciences (India)
Torsten Leddig
2012-11-01
From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.
BRST formulation of 4-monopoles
Gianvittorio, R; Restuccia, A
1996-01-01
A supersymmetric gauge invariant action is constructed over any 4-dimensional Riemannian manifold describing Witten's theory of 4-monopoles. The topological supersymmetric algebra closes off-shell. The multiplets include the auxiliary fields and the Wess-Zumino fields in an unusual way, arising naturally from BRST gauge fixing. A new canonical approach over Riemann manifolds is followed, using a Morse function as an euclidean time and taking into account the BRST boundary conditions that come from the BFV formulation. This allows a construction of the effective action starting from gauge principles.
Monopole transitions in hot nuclei
Energy Technology Data Exchange (ETDEWEB)
Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1994-12-31
Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.
Monopole in the dilatonic gauge field theory
Karczewska, D
2000-01-01
A numerical study of coupled to the dilaton field, static, spherically symmetric monopole solutions inspired by the Kaluza-Klein theory with large extra dimensions are presented. The generalized Prasad-Sommerfield solution is obtained. We show that monopole may have also the dilaton cloud configurations.
Measuring global monopole velocities, one by one
Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana
2017-01-01
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.
The massive Kaluza-Klein monopole
Bergshoeff, E; Eyras, E; Lozano, Y
1998-01-01
We construct the (bosonic) effective worldvolume action of an M-theory Kaluza-Klein monopole in a background given by the bosonic sector of eleven-dimensional massive supergravity, i.e, a "massive Kaluza-Klein monopole". As a consistency check we show that the direct dimensional reduction along the
Monopole correlations in holographically flavored liquids
Iqbal, N.
2015-01-01
Many-body systems with a conserved U(1) current in (2+1) dimensions may be probed by weakly gauging this current and studying correlation functions of magnetic monopole operators in the resulting dynamical gauge theory. We study such monopole correlations in holographic liquids with fundamental flav
Search for Magnetic Monopoles with the NO$\
Energy Technology Data Exchange (ETDEWEB)
Wang, Zukai [Univ. of Virginia, Charlottesville, VA (United States)
2015-09-01
The magnetic monopole is a hypothetical particle, which is an important field configuration in many Grand Unified Theories, and whose mass may vary from 10^{4} to 10^{18} GeV. The quantization of magnetic charge derived by Dirac in 1931 suggests the heavy ionization nature of magnetic monopoles. The NO$\
Page, P R
2000-01-01
We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.
Energy Technology Data Exchange (ETDEWEB)
Carr, B.J. [Queen Mary and Westfield Coll., London (United Kingdom). Astronomy Unit]|[Fermi National Accelerator Lab., Batavia, IL (United States). NASA/Fermilab Astrophysics Center
1997-03-01
Dark matter may reside in galactic disks, galactic halos, clusters of galaxies and the background Universe. Cosmological nucleosynthesis arguments suggest that only some fraction of the baryons in the Universe are in visible form, so at least some of the dark matter problems could be baryonic. The dark matter in galactic disks (if real) is almost certainly baryonic and, in this case, it is either in white dwarfs or brown dwarfs. The dark matter in galactic halos could be at least partly baryonic and, in this case, it is likely to be contained in the remnants of a first generation of pregalactic or protogalatic stars. The various constrains on the nature of such remnants suggest that brown dwarfs are the most plausible candidates, although (rather perplexingly) microlensing searches currently favor white dwarfs. The dark matter in clusters or intergalactic space could be baryonic only if one gives up the standard cosmological nucleosynthesis scenario or assumes that the dark objects are primordial black holes which formed before nucleosynthesis. If it is non-baryonic and in the form of cold WIMPs (Weakly Interacting Massive Particles), then such particles should also provide some of the halo dark matter. 89 refs., 1 fig., 2 tabs.
Baryon Spectroscopy and Resonances
Energy Technology Data Exchange (ETDEWEB)
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of
The Kaluza-Klein monopole in a massive IIA background
Eyras, E; Lozano, Y
1999-01-01
We construct the effective action of the KK monopole in a massive Spe IIA background. We follow two approaches. First we construct a massive M-theory KK monopole from which the IIA monopole is obtained by double dimensional reduction. This eleven-dimensional monopole contains two isometries: one und
Measuring Global Monopole Velocities, one by one
Lopez-Eiguren, Asier; Achúcarro, Ana
2016-01-01
We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scaling solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics...
Dark matter monopoles, vectors and photons
Khoze, Valentin V
2014-01-01
In a secluded dark sector which is coupled to the Standard Model via a Higgs portal interaction we arrange for the existence of 't Hooft-Polyakov magnetic monopoles and study their implications for cosmology. We point out that a dark sector which can accommodate stable monopoles will also contain massless dark photons gamma' as well as charged massive vector bosons W'. The dark matter in this scenario will be a combination of magnetically and electrically charged species under the unbroken U(1) subgroup of the dark sector. We estimate the cosmological production rate of monopoles and the rate of monopole-anti-monopole annihilation and conclude that monopoles with masses of few hundred TeV or greater, can produce sizeable contributions to the observed dark matter relic density. We scan over the parameter space and compute the relic density for monopoles and vector bosons. Turning to the dark photon radiation, we compute their contribution to the measured density of relativistic particles Neff and also apply ob...
Monopole-antimonopole and vortex rings
Teh, Rosy; Wong, Khai-Ming
2005-08-01
The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always -1, while the net magnetic charge at the origin is always +1 for all positive integer values of the solution's parameter m. However, when m increases beyond 1, vortex rings appear coexisting with these AMA configurations. The number of vortex rings increases proportionally with the value of m. They are located in space where the Higgs field vanishes along rings. We also show that a single-point singularity in the Higgs field does not necessarily correspond to a structureless 1-monopole at the origin but to a zero-size monopole-antimonopole-monopole (MAM) structure when the solution's parameter m is odd. This monopole is the Wu-Yang-type monopole and it possesses the Dirac string potential in the Abelian gauge. These exact solutions are a different kind of Bogomol'nyi-Prasad-Sommerfield (BPS) solutions as they satisfy the first-order Bogomol'nyi equation but possess infinite energy due to a point singularity at the origin of the coordinate axes. They are all axially symmetrical about the z-axis.
ADHMN boundary conditions from removing monopoles
Chen, X; Chen, Xingang; Weinberg, Erick J.
2003-01-01
Boundary conditions play an important role in the ADHMN construction of BPS monopole solutions. In this paper we show how different types of boundary conditions can be related to each other by removing monopoles to spatial infinity. In particular, we use this method to show how the jumping data naturally emerge. The results can be interpreted in the D-brane picture and provide a better understanding of the derivation of the ADHMN construction from D-branes. We comment briefly on the cases with non-Abelian unbroken symmetry and massless monopoles.
Magnetic Monopole Search at the SPS
2002-01-01
A target made of fine grains of tungsten-iron powder will be exposed to the 400 GeV proton beam in front of the narrow-band neutrino beam dump. Magnetic monopoles if produced by the proton interactions will be trapped in the target. After exposure, the target will be placed in the centre of a pulse magnetic coil with nuclear emulsions acting as monopole detectors. .sp \\\\ \\\\ A monopole mass sensitivity up to 18 GeV is expected in this experiment.
Theoretical and Experimental Status of Magnetic Monopoles
Milton, K A; Luo, W; Gamberg, L P; Milton, Kimball A.; Kalbfleisch, George R.; Luo, Wei; Gamberg, Leonard
2002-01-01
The Tevatron has inspired new interest in the subject of magnetic monopoles. First there was the 1998 D0 limit on the virtual production of monopoles, based on the theory of Ginzberg and collaborators. In 2000 the first results from an experiment (Fermilab E882) searching for real magnetically charged particles bound to elements from the CDF and D0 detectors were reported. This also required new developments in theory. The status of the experimental limits on monopole masses will be discussed, as well as the limitation of the theory of magnetic charge at present.
Global Monopole in General Relativity
Bronnikov, K A; Podolyak, E R; Bronnikov, Kirill A.; Meierovich, Boris E.; Podolyak, Evgeny R.
2002-01-01
We consider the gravitational properties of a global monopole on the basis of the simplest Higgs scalar triplet model in general relativity. We begin with establishing some common features of hedgehog-type solutions with a regular center, independent of the choice of the symmetry-breaking potential. There are six types of qualitative behavior of the solutions; we show, in particular, that the metric can contain at most one simple horizon. For the standard Mexican hat potential, the previously known properties of the solutions are confirmed and some new results are obtained. Thus, we show analytically that solutions with monotonically growing Higgs field and finite energy in the static region exist only in the interval $1<\\gamma <3$, $\\gamma $ being the squared energy of spontaneous symmetry breaking in Planck units. The cosmological properties of these globally regular solutions apparently favor the idea that the standard Big Bang might be replaced with a nonsingular static core and a horizon appearing ...
Charmed Bottom Baryon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Brown, Zachary S; Detmold, William; Meinel, Stefan; Orginos, Kostas
2014-11-01
The spectrum of doubly and triply heavy baryons remains experimentally unexplored to a large extent. Although the detection of such heavy particle states may lie beyond the reach of exper- iments for some time, it is interesting compute this spectrum from QCD and compare results between lattice calculations and continuum theoretical models. Several lattice calculations ex- ist for both doubly and triply charmed as well as doubly and triply bottom baryons. Here, we present preliminary results from the first lattice calculation of doubly and triply heavy baryons including both charm and bottom quarks. We use domain wall fermions for 2+1 flavors (up down and strange) of sea and valence quarks, a relativistic heavy quark action for the charm quarks, and non-relativistic QCD for the heavier bottom quarks. We present preliminary results for the ground state spectrum.
Baryonic Spectroscopy at BESIII
Liu, Fang
Based on 106 million Ψ(3686) events collected with BESIII detector at BEPCII, some results on excited baryons from the partial wave analysis are presented. In the decay of ψ(3686) to pbar{p}π 0, two new baryonic excited states, Jpc = 1/2 + N(2300) and Jpc = 5/2 - N(2570) are significant, and additional 5 well known N* excited states are observed. In ψ(3686) to pbar{p}η , an excited-nucleon state N(1535) is dominant. In ψ(3686) to K - Λ bar{Ξ} + + c.c., two hyperons Ξ(1690) and Ξ(1820) are observed. In ψ(3686) to Λ bar{Σ }π + c.c., some excited strange baryons bar{Λ }* and Σ* are measured on the Σ+π- and Λπ- mass spectra.
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Status of Searches for Magnetic Monopoles
Patrizii, L
2015-01-01
The searches for magnetic monopoles (Ms) is a fascinating interdisciplinary field with implications in fundamental theories, in particle physics, astrophysics, and cosmology. The quantum theory of Ms and its consistency with electrodynamics was derived by Dirac. This marked the start of the searches for classical monopoles at every new accelerator, up to the LHC. Magnetic monopoles are required by Grand Unification Theories, but unlike classical monopoles they would be incredibly massive, out of the reach of any conceivable accelerator. Large efforts have been made to search for them in the cosmic radiation as relic particles from the early Universe in the widest range of mass and velocity experimentally accessible. In this paper the status of the searches for classical Ms at accelerators, for GUT, superheavy Ms in the penetrating cosmic radiation and for Intermediate Mass Ms at high altitudes is discussed, with emphasis on the most recent results and future perspectives.
Some comments on quantum magnetic monopoles
Energy Technology Data Exchange (ETDEWEB)
Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Matematica. Dept. de Matematica Aplicada]. E-mail: botelho.luiz@ig.com.br
2008-07-01
In this paper we intend to present some path-integral studies in the problem of confinement in the presence of fermionic and scalar magnetic monopole fields through: a Wilson loop path-integral evaluation associated to an effective second-quantized electromagnetic field generated by chiral abelian point-like monopole magnetic field current at its large mass London asymptotic limit; a path-integral bosonization analysis of quarks fields interacting with Kalb-Ramond fields considered as an effective disorder field theory of a Q.C.D. vacuum of heavier monopoles; improvements on the Wilson loops evaluations in the well-known ADHM Antonov-Ebert model for Cooper pairs of point-like fermionic magnetic monopoles. (author)
Hyperbolic monopoles, JNR data and spectral curves
Bolognesi, Stefano; Sutcliffe, Paul
2014-01-01
A large class of explicit hyperbolic monopole solutions can be obtained from JNR instanton data, if the curvature of hyperbolic space is suitably tuned. Here we provide explicit formulae for both the monopole spectral curve and its rational map in terms of JNR data. Examples with platonic symmetry are presented, together with some one-parameter families with cyclic and dihedral symmetries. These families include hyperbolic analogues of geodesics that describe symmetric monopole scatterings in Euclidean space and we illustrate the results with energy density isosurfaces. There is a metric on the moduli space of hyperbolic monopoles, defined using the abelian connection on the boundary of hyperbolic space, and we provide a simple integral formula for this metric on the space of JNR data.
Magnetic monopole solutions with a massive dilaton
Forgács, Péter; Forgacs, Peter; Gyurusi, Jozsef
1998-01-01
Static, spherically symmetric monopole solutions of a spontaneously broken SU(2) gauge theory coupled to a massive dilaton field are studied in detail in function of the dilaton coupling strength and of the dilaton mass.
Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD
Cherman, Aleksey; Unsal, Mithat
2016-01-01
We show that there exists a special compactification of QCD on $\\mathbb{R}^3 \\times S^1$ in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation $m_{\\pi}^2 f_{\\pi}^2 = m_q \\langle \\bar{q} q \\rangle$. Abelian duality, monopole operators, and flavor-twisted boundary conditions, or a background flavor holonomy, play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole-instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons". We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large $S^1$, and yield strong support for adiabatic continuity between the small-$S^1$ and larg...
Deformed self-dual magnetic monopoles
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande (Brazil); Casana, R.; Ferreira, M.M. [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, Maranhão (Brazil); Hora, E. da, E-mail: edahora.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, Maranhão (Brazil); Coordenadoria do Curso Interdisciplinar em Ciência e Tecnologia, Universidade Federal do Maranhão, 65080-805, São Luís, Maranhão (Brazil); Losano, L. [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande (Brazil)
2013-12-18
We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang–Mills–Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.
Deformed self-dual magnetic monopoles
Bazeia, D; Ferreira, M M; da Hora, E; Losano, L
2013-01-01
We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang-Mills-Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.
Deformed self-dual magnetic monopoles
Bazeia, D.; Casana, R.; Ferreira, M. M.; da Hora, E.; Losano, L.
2013-12-01
We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang-Mills-Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.
Nonminimal global monopoles and bound orbits
Nucamendi, U; Sudarsky, D; Nucamendi, Ulises; Salgado, Marcelo; Sudarsky, Daniel
2000-01-01
We perform a numerical analysis of the gravitational field of a global monopole coupled nonminimally to gravity, and find that, for some given nonminimal couplings (in constrast with the minimal coupling case), there is an attractive region where bound orbits exist. We exhibit the behavior of the frequency shifts that would be associated with `rotation curves' of stars in circular orbits in the spacetimes of such global monopoles.
Magnetic Monopole in the Loop Representation
Leal, L; Leal, Lorenzo; Lopez, Alexander
2004-01-01
We quantize the electromagnetic field in the presence of a static magnetic monopole, within the loop-representation formalism. We find that the loop-dependent wave functional becomes multivalued, in the sense that it acquires a dependence on the surfaces bounded by the loop. This generalizes what occurs in quantum mechanics in multiply connected spaces. When Dirac's quantization condition holds, this surface-dependence disappears, together with the effect of the monopole on the electromagnetic field.
(Hybrid) Baryons Symmetries and Masses
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and construct the flavour, spin and J^P of hybrid baryons from the symmetries of the system. The lowest mass hybrid baryon is estimated at approximately 2 GeV.
Babu, K S; Al-Binni, U; Banerjee, S; Baxter, D V; Berezhiani, Z; Bergevin, M; Bhattacharya, S; Brice, S; Brock, R; Burgess, T W; Castellanos, L; Chattopadhyay, S; Chen, M-C; Church, E; Coppola, C E; Cowen, D F; Cowsik, R; Crabtree, J A; Davoudiasl, H; Dermisek, R; Dolgov, A; Dutta, B; Dvali, G; Ferguson, P; Perez, P Fileviez; Gabriel, T; Gal, A; Gallmeier, F; Ganezer, K S; Gogoladze, I; Golubeva, E S; Graves, V B; Greene, G; Handler, T; Hartfiel, B; Hawari, A; Heilbronn, L; Hill, J; Jaffe, D; Johnson, C; Jung, C K; Kamyshkov, Y; Kerbikov, B; Kopeliovich, B Z; Kopeliovich, V B; Korsch, W; Lachenmaier, T; Langacker, P; Liu, C-Y; Marciano, W J; Mocko, M; Mohapatra, R N; Mokhov, N; Muhrer, G; Mumm, P; Nath, P; Obayashi, Y; Okun, L; Pati, J C; Pattie, R W; Phillips, D G; Quigg, C; Raaf, J L; Raby, S; Ramberg, E; Ray, A; Roy, A; Ruggles, A; Sarkar, U; Saunders, A; Serebrov, A; Shafi, Q; Shimizu, H; Shiozawa, M; Shrock, R; Sikdar, A K; Snow, W M; Soha, A; Spanier, S; Stavenga, G C; Striganov, S; Svoboda, R; Tang, Z; Tavartkiladze, Z; Townsend, L; Tulin, S; Vainshtein, A; Van Kooten, R; Wagner, C E M; Wang, Z; Wehring, B; Wilson, R J; Wise, M; Yokoyama, M; Young, A R
2013-01-01
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Present and future nucleon decay search experiments using large underground detectors, as well as planned neutron-antineutron oscillation search experiments with free neutron beams are highlighted.
Problems in baryon spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Capstick, S. [Florida State Univ., Tallahassee, FL (United States)
1994-04-01
Current issues and problems in the physics of ground- and excited-state baryons are considered, and are classified into those which should be resolved by CEBAF in its present form, and those which may require CEBAF to undergo an energy upgrade to 8 GeV or more. Recent theoretical developments designed to address these problems are outlined.
Spontaneous Baryogenesis without Baryon Isocurvature
De Simone, Andrea
2016-01-01
We propose a new class of spontaneous baryogenesis models that does not produce baryon isocurvature perturbations. The baryon chemical potential in these models is independent of the field value of the baryon-generating scalar, hence the scalar field fluctuations are blocked from propagating into the baryon isocurvature. We demonstrate this mechanism in simple examples where spontaneous baryogenesis is driven by a non-canonical scalar field. The suppression of the baryon isocurvature allows spontaneous baryogenesis to be compatible even with high-scale inflation.
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Econometric Methodology of Monopolization Process Evaluation
Directory of Open Access Journals (Sweden)
Dmitrijs Skoruks
2014-06-01
Full Text Available The research “Econometric Methodology of Monopolization Process Evaluation” gives a perspective description of monopolization process’ nature, occurrence source, development procedure and internal conjuncture specifics, as well as providing an example of modern econometrical method application within a unified framework of market competition analysis for the purpose of conducting a quantitative competition evaluation on an industry level for practical use in both private and public sectors. The main question of the aforementioned research is the definition and quantitative analysis of monopolization effects in modern day globalized markets, while con- structing an empirical model of the econometric analysis, based on the use of in- ternational historical experience of monopoly formations standings, with the goal of introducing a further development scheme for the use of both econometrical and statistical instruments in line with the forecasting and business research need of enterprises and regulatory functions of the public sector. The current research uses a vast variety of monopolization evaluation ratios and their econometrical updates on companies that are involved in the study procedure in order to detect and scallar measure their market monopolizing potential, based on the implemented acquired market positions, turnover shares and competition policies.
Finite Energy Magnetic Half-Monopole Solutions
Teh, Rosy; Wong, Khai-Ming
2011-01-01
We would like to present finite energy SU(2) Yang-Mills-Higgs monopole solutions of one half topological charge. These non-Abelian solutions possess gauge potentials that are singular at a point on either the positive or the negative z-axis at large distances, elsewhere they are regular. The gauge potentials of the Type $A$ half-monopole solutions are singular at a point at infinity on the negative z-axis whereas the Type $B$ half-monopole solutions are singular at a point at infinity on the positive z-axis. The 't Hooft magnetic fields of these solutions at large $r$ correspond to the magnetic field of a positive half-monopole located at the origin $r=0$. These solutions do not satisfy the first order Bogomol'nyi equations and are non-BPS solutions. The total energies of these half-monopole solutions were calculated for various strength of the Higgs field self coupling contstant $\\lambda$ from zero to 100 and they were found to increase logarithmically with $\\lambda$.
Monopole-Antimonopole and Vortex Rings
Teh, R; Teh, Rosy; Wong, Khai-Ming
2004-01-01
The SU(2) Yang-Mills-Higgs theory supports the existence of monopoles, antimonopoles, and vortex rings. In this paper, we would like to present new exact static antimonopole-monopole-antimonopole (A-M-A) configurations. The net magnetic charge of these configurations is always negative one, whilst the net magnetic charge at the origin is always positive one for all positive integer values of the solution parameter $m$. However, when $m$ increases beyond one, vortex rings appear coexisting with these A-M-A configurations. The number of vortex rings increases proportionally with the value of $m$. They are magnetically neutral and are located in space where the Higgs field vanishes. We also show that a single point singularity in the Higgs field need not corresponds to a structureless 1-monopole at the origin but to a zero size monopole-antimonopole-monopole (MAM) structure. These exact solutions are a different kind of BPS solutions as they satisfy the first order Bogomol'nyi equation but possess infinite energ...
Photoproduction of charmed baryons
Energy Technology Data Exchange (ETDEWEB)
Russell, J. J.
1980-01-01
The results of a search for the photoproduction of charmed baryons in the broad-band neutral beam at Fermi National Accelerator Laboratory are reported. The lowest lying charmed baryon ({lambda}/sub c//sup +/) is observed through its decay to p-anti K/sup 0/. The cross section times branching ratio of {gamma} + C --> {lambda}/sub c//sup +/ + X, {gamma} + C --> p + anti K/sup 0/ is measured to be sigma B = 3 nanobarns/nucleon. The total error on this measurement is estimated to be -20% to +40%. The mass of the {lambda}/sub c//sup +/ is found to be 2.284 +- 0.001 GeV/c/sup 2/, in good agreement with the Mark II result from SPEAR. Upper limits (90% confidence level) are set on sigma B for the modes {lambda}/sup 0/π, {lambda}/sup 0/πππ, pKπ.
Monopole Condensation and Confinement in SU(2) QCD (2)
Shiba, H; Shiba, Hiroshi; Suzuki, Tsuneo
1993-01-01
Monopole and photon contributions to Wilson loops are calculated using Monte-Carlo simulations of SU(2) QCD in the maximally abelian gauge. The string tensions of SU(2) QCD are well reproduced by extended monopole contributions alone.
Magnetic monopoles in quantum spin ice
Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji
Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.
Some remarkable spin physics with monopoles and fermions
Energy Technology Data Exchange (ETDEWEB)
Craigie, N.S.
1984-01-01
This review will cover the following topics, which follow the historical evolution of the subject: the Dirac monopole; the Kazama-Yang Goldhaber problem in electron-monopole scattering; the 't Hooft-Polyakov monopole and spin from isospin; the Rubakov analysis; monopole catalysis of proton decay the Rubakov-Callan effect; the role of exactly solvable 2-dimensional QFT's and finally observable consequences. 15 references.
Magnetic monopoles over topologically non trivial Riemann surfaces
Martin, I
1996-01-01
An explicit canonical construction of monopole connections on non trivial U(1) bundles over Riemann surfaces of any genus is given. The class of monopole solutions depend on the conformal class of the given Riemann surface and a set of integer weights. The reduction of Seiberg-Witten 4-monopole equations to Riemann surfaces is performed. It is shown then that the monopole connections constructed are solutions to these equations.
Jusufi, Kimet; Apostolovska, Gordana
2016-12-01
In this paper we study the quantum tunneling of Dirac magnetic monopoles from the global monopole black hole under quantum gravity effects. We start from the modified Maxwell's equations and the Generalized Uncertainty Relation (GUP), to recover the GUP corrected temperature for the global monopole black hole by solving the modified Dirac equation via Hamilton-Jacobi method. Furthermore, we also include the quantum corrections beyond the semiclassical approximation, in particular, first we find the logarithmic corrections of GUP corrected entropy and finally we calculate the GUP corrected specific heat capacity. It is argued that the GUP effects may prevent a black hole from complete evaporation and leave remnants.
Baryon spectroscopy in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti
2004-04-01
We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.
Magnetic Monopole Search with the SLIM Experiment
Medinaceli, E
2008-01-01
The SLIM experiment was an array of 427 m^2 of nuclear track detectors, exposed at a high altitude laboratory (Chacaltaya, Bolivia, 5230 m a.s.l.), for ~4.22 years. SLIM was sensitive to downgoing intermediate mass magnetic monopoles with masses in the range 10^5 to 10^12 GeV. The analysis of the full detector gives a flux upper limit of 1.3x10^{-15} 1/(cm^2*s*sr) (90% C.L.) for downgoing fast intermediate magnetic monopoles.
Search for Heavy Pointlike Dirac Monopoles
Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.
1998-07-01
We have searched for central production of a pair of photons with high transverse energies in pp¯ collisions at s = 1.8 TeV using 70 pb-1 of data collected with the D0 detector at the Fermilab Tevatron in 1994-1996. If they exist, virtual heavy pointlike Dirac monopoles could rescatter pairs of nearly real photons into this final state via a box diagram. We observe no excess of events above background, and set lower 95% C.L. limits of 610, 870, or 1580 GeV/c2 on the mass of a spin 0, 1/2, or 1 Dirac monopole.
More on core instabilities of magnetic monopoles
Striet, J
2003-01-01
In this paper we present new results on the core instability of the 't Hooft Polyakov monopoles we reported on before. This instability, where the spherical core decays in a toroidal one, typically occurs in models in which charge conjugation is gauged. In this paper we also discuss a third conceivable configuration denoted as ``split core'', which brings us to some details of the numerical methods we employed. We argue that a core instability of 't Hooft Polyakov type monopoles is quite a generic feature of models with charged Higgs particles.
Gravitational waves and magnetic monopoles during inflation with Weitzenb\\"ock torsion
Romero, Jesús Martín; Aguilar, José Edgar Madriz
2016-01-01
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represents the matter geometrically induced. We explore about the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude that the boundary terms can be identified as possible sources for the cosmological constant and torsion as the source of magnetic monopoles. We examine an example in which gravitational waves are produced during a de Sitter inflationary expansion of the universe.
Gravitational waves and magnetic monopoles during inflation with Weitzenböck torsion
Romero, Jesús Martín; Bellini, Mauricio; Aguilar, José Edgar Madriz
2016-09-01
We study the variational principle on a Hilbert-Einstein action in an extended geometry with torsion taking into account non-trivial boundary conditions. We obtain an effective energy-momentum tensor that has its source in the torsion, which represents the matter geometrically induced. We explore about the existence of magnetic monopoles and gravitational waves in this torsional geometry. We conclude that the boundary terms can be identified as possible sources for the cosmological constant and torsion as the source of magnetic monopoles. We examine an example in which gravitational waves are produced during a de Sitter inflationary expansion of the universe.
Stochastic isocurvature baryon fluctuations, baryon diffusion, and primordial nucleosynthesis
Kurki-Suonio, H; Mathews, G J; Kurki-Suonio, Hannu; Jedamzik, Karsten; Mathews, Grant J
1996-01-01
We examine effects on primordial nucleosynthesis from a truly random spatial distribution in the baryon-to-photon ratio (\\eta). We generate stochastic fluctuation spectra characterized by different spectral indices and root-mean-square fluctuation amplitudes. For the first time we explicitly calculate the effects of baryon diffusion on the nucleosynthesis yields of such stochastic fluctuations. We also consider the collapse instability of large-mass-scale inhomogeneities. Our results are generally applicable to any primordial mechanism producing fluctuations in \\eta which can be characterized by a spectral index. In particular, these results apply to primordial isocurvature baryon fluctuation (PIB) models. The amplitudes of scale-invariant baryon fluctuations are found to be severely constrained by primordial nucleosynthesis. However, when the \\eta distribution is characterized by decreasing fluctuation amplitudes with increasing length scale, surprisingly large fluctuation amplitudes on the baryon diffusion ...
Soberman, R K; Soberman, Robert K.; Dubin, Maurice
2001-01-01
A comet-like, but magnitudes smaller, extremely low albedo interstellar meteoroid population of fragile aggregates with solar type composition, measured in space and terrestrially, is most probably the universal dark matter. Although non-baryonic particles cannot be excluded, only "Big Bang" cosmology predicts an appreciable fraction of such alternate forms. As more counter-physics hypotheses are added to fit observation to the expanding universe assumption, a classical physics alternative proffers dark matter interactive red shifts normally correlated with distance. The cosmic microwave background results from size-independent thermal plateau radiation that emanates from dark matter gravitationally drawn into the Galaxy.
Pati, Jogesh C.; Salam, Abdus
We suggest that baryon-number conservation may not be absolute and that an integrally charged quark may disintegrate into two leptons and an antilepton with a coupling strength G Bmp2≲ 10-9. On the other hand, if quarks are much heavier than low-lying hadrons, the decay of a three-quark system like the proton is highly forbidden (proton lifetime ≳ 1028 y). Motivation for these ideas appears to arise within a unified theory of hadrons and leptons and their gauge interactions. We emphasize the consequences of such a possibility for real quark searches.
Dynamical Structure of Baryons
Aleksejevs, A
2013-01-01
Compton scattering offers a unique opportunity to study the dynamical structure of hadrons over a wide kinematic range, with polarizabilities characterizing the hadron active internal degrees of freedom. We present calculations and detailed analysis of electric and magnetic and the spin-dependent dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in chiral perturbation theory which allows evaluating polarizabilities from Compton scattering up to next-to-the-leading order. The dependencies for the range of photon energies covering the majority of the meson photoproduction channels are analyzed.
Bohr-Sommerfeld Theory of the Magnetic Monopole
Pankovic, Vladan
2010-01-01
In this work we consider a simple, Bohr-Sommerfeld (Old quantum atomic) theory of the magnetic monopole. We consider the system, simply called magnetic monopole "atom", consisting of the practically standing, massive magnetic monopole as the "nucleus" and electron rotating around magnetic monopole. At this system we apply quasi-classical, Bohr-Sommerfeld quantum atomic theory. Precisely, we apply firstly, by the electron rotation, Bohr-Sommerfeld momentum quantization postulate. Secondly we use equivalence between total centrifugal force acting at rotating electron and classical magnetostatic interaction between rotating electron and magnetic monopole. It yields result practically equivalent to the Dirac quantization relation between electrical and magnetic charge.
Creation of Magnetic Monopoles in Classical Scattering
Vachaspati, Tanmay
2016-01-01
We consider the creation of 't Hooft-Polyakov magnetic monopoles by scattering classical wave packets of gauge fields. An example with eight clearly separated magnetic poles created with parity violating helical initial conditions is shown. No clear separation of topological charge is observed with corresponding parity symmetric initial conditions.
Monopole star products are non-alternative
Bojowald, Martin; Buyukcam, Umut; Strobl, Thomas
2016-01-01
Non-associative algebras appear in some quantum-mechanical systems, for instance if a charged particle in a distribution of magnetic monopoles is considered. Using methods of deformation quantization it is shown here, that algebras for such systems cannot be alternative, i.e. their associator cannot be completely anti-symmetric.
Searches for Magnetic Monopoles and ... beyond
Giacomelli, G; Sahnoun, Z
2011-01-01
The searches for classical Magnetic Monopoles (MMs) at accelerators, for GUT Superheavy MMs in the penetrating cosmic radiation and for Intermediate Mass MMs at high altitudes are discussed. The status of the search for other massive exotic particles such as nuclearites and Q-balls is briefly reviewed.
Multidimensional Global Monopole and Nonsingular Cosmology
Bronnikov, K A; Bronnikov, Kirill A.; Meierovich, Boris E.
2003-01-01
We consider a spherically symmetric global monopole in general relativity in $(D=d+2)$-dimensional spacetime. The monopole is shown to be asymptotically flat up to a solid angle defect in case $\\gamma < d-1$, where $\\gamma$ is a parameter characterizing the gravitational field strength. In the range $d-1< \\gamma < 2d(d+1)/(d+2)$ the monopole space-time contains a cosmological horizon. Outside the horizon the metric corresponds to a cosmological model of Kantowski-Sachs type, where spatial sections have the topology ${\\R\\times \\S}^d$. In the important case when the horizon is far from the monopole core, the temporal evolution of the Kantowski-Sachs metric is described analytically. The Kantowski-Sachs space-time contains a subspace with a $(d+1)$-dimensional Friedmann-Robertson-Walker metric, and its possible cosmological application is discussed. Some numerical estimations in case $d=3$ are made showing that this class of nonsingular cosmologies can be viable. Other results, generalizing those known ...
Paola Catapano
2016-01-01
The LHC MoEDAL experiment publishes its first paper on its search for magnetic monopoles Geneva XXXX. In a paper published by the journal JHEP today, the MoEDAL experiment at CERN narrows the window of where to search for a hypothetical particle, the magnetic monopole. Over the last decades, experiments have been trying to find evidence for magnetic monopoles at accelerators, including at CERN’s Large Hadron Collider. Such particles were first predicted by physicist Paul Dirac in the 1930s but have never been observed so far. “Today MoEDAL celebrates the release of its first physics result and joins the other LHC experiments at the discovery frontier," says Spokesperson of the MoEDAL experiment, James Pinfold. Just as electricity comes with two charges, positive and negative, so magnetism comes with two poles, North and South. The difference is that while it’s easy to isolate a positive or negative electric charge, nobody has ever seen a solitary magnetic charge, or monopole. If you
The coexistence of a 't Hooft-Polyakov monopole and a one-half monopole
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2014-03-01
Recently we have reported on the existence of finite energy SU(2) Yang-Mills-Higgs particle of one-half topological charge. In this paper, we show that this one-half monopole can co-exist with a 't Hooft-Polyakov monopole. The magnetic charge of the one-half monopole is -1/2 while the magnetic charge of the 't Hooft-Polyakov monopole is positive unity. However the net magnetic charge of the configuration is zero due to the presence of a semi-infinite Dirac string along the positive z-axis that carries the magnetic monopole charge of another -1/2. The solution possesses gauge potentials that are singular along the z-axis, elsewhere they are regular. This monopole configuration possesses finite total energy and magnetic dipole moment. The total energy is found to increase with the strength of the Higgs field self-coupling constant λ. However the dipole separation and the magnetic dipole moment decrease with λ. This solution is non-BPS even in the BPS limit when the Higgs self-coupling constant vanishes.
Bijker, R; Leviatan, A
1993-01-01
We propose an algebraic description of the geometric structure of baryons in terms of the algebra $U(7)$. We construct a mass operator that preserves the threefold permutational symmetry and discuss a collective model of baryons with the geometry of an oblate top.
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within the $...
Baryon stopping probes deconfinement
Wolschin, Georg
2016-08-01
Stopping and baryon transport in central relativistic Pb + Pb and Au + Au collisions are reconsidered with the aim to find indications for the transition from hadronic to partonic processes. At energies reached at the CERN Super Proton Synchrotron ( √{s_{NN}} = 6.3-17.3 GeV) and at RHIC (62.4 GeV) the fragmentation-peak positions as obtained from the data depend linearly on the beam rapidity and are in agreement with earlier results from a QCD-based approach that accounts for gluon saturation. No discontinuities in the net-proton fragmentation peak positions occur in the expected transition region from partons to hadrons at 6-10GeV. In contrast, the mean rapidity loss is predicted to depend linearly on the beam rapidity only at high energies beyond the RHIC scale. The combination of both results offers a clue for the transition from hard partonic to soft hadronic processes in baryon stopping. NICA results could corroborate these findings.
A measure of monopole inertia in the quantum spin ice Yb2Ti2O7
Pan, Lidong; Laurita, N. J.; Ross, Kate A.; Gaulin, Bruce D.; Armitage, N. P.
2016-04-01
An important and continuing theme of modern solid state physics is the realization of exotic excitations in materials, known as quasiparticles, that have no analogy in the actual physical vacuum of free space. Although they are not fundamental, such quasiparticles do constitute the most basic description of the excited states of the `vacuum' in which they reside. In this regard the magnetic textures of the excited states of spin ices, magnetic pyrochlore oxides with dominant Ising interactions, have been proposed to behave as effective magnetic charge monopoles. Inelastic neutron scattering experiments have established the pyrochlore material Yb2Ti2O7 (YbTO) as a quantum spin ice, where, in addition to the Ising interactions, there are substantial transverse terms that may induce quantum dynamics and--in principle--coherent monopole motion. Here we report a combined time-domain terahertz spectroscopy (TDTS) and microwave cavity study of YbTO to probe its complex dynamic magnetic susceptibility. We find that the form of the susceptibility is consistent with that of a monopole gas, and a magnetic monopole conductivity can be defined and measured. Using the phase sensitive capabilities of these techniques, we observe a sign change in the reactive part of the magnetic response. In generic models of magnetic excitations this is possible only by introducing inertial effects, such as a mass-dependent term, to the equations of motion. Analogous to conventional electric charge systems, measurement of the conductivity's spectral weight allows us to derive a value for the magnetic monopole mass. Our results support the idea of magnetic monopoles of quantum spin ice as the true coherently propagating quasiparticles of this system.
Electromagnetic properties of baryons
Energy Technology Data Exchange (ETDEWEB)
Haupt, C.
2006-07-01
Static observables of bound state systems in field theoretic descriptions are usually extracted from form factors in the limit of vanishing squared four-momentum transfer of the probing exchange particle. On the other hand, static properties in nonrelativistic quantum mechanics can be formulated by means of expectation values involving essentially scalar products of wave functions. The main objective of this work is to show that a synthesis of both approaches is indeed possible - at least if certain restrictions are made to the kind of interactions between the constituents of the bound system - leading to new insights into the structure of static properties. The focus lies especially on the charge radii and magnetic moments of baryons described within a covariant constituent quark model having its field theoretic foundations in the Bethe-Salpeter equation. The current matrix element in the Breit frame between the vertex functions is derived. The charge radius and magnetic moment of a bound three-fermion system is then derived by starting from their usual definition from form factors and in case of the charge radius also from the well-known radius of a charge distribution in classical electrodynamics. In both cases the static limit at the photon point is taken analytically and subsequently the integration over the relative energy variables is done. Finally the vertex functions are replaced by Salpeter amplitudes and the expression is symmetrized over the three fermions. The final results express the charge radius and magnetic moment of the three-fermion system as expectation values with respect to Salpeter amplitudes. The numerical implementation of the analytic results is done within a covariant constituent quark model with quark confinement and a residual instanton interaction accounting for the fine structure of the observed mass spectra. The Salpeter amplitudes which where obtained by solving the Salpeter equation are used to compute the expectation values of
Algebraic properties of the monopole formula
Hanany, Amihay; Sperling, Marcus
2017-02-01
The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4 gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t = 1 and t → ∞ equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.
Algebraic properties of the monopole formula
Hanany, Amihay
2016-01-01
The monopole formula provides the Hilbert series of the Coulomb branch for a 3-dimensional N=4 gauge theory. Employing the concept of a fan defined by the matter content, and summing over the corresponding collection of monoids, allows the following: firstly, we provide explicit expressions for the Hilbert series for any gauge group. Secondly, we prove that the order of the pole at t=1 and t=infinity equals the complex or quaternionic dimension of the moduli space, respectively. Thirdly, we determine all bare and dressed BPS monopole operators that are sufficient to generate the entire chiral ring. As an application, we demonstrate the implementation of our approach to computer algebra programs and the applicability to higher rank gauge theories.
Compact, Frequency Reconfigurable, Printed Monopole Antenna
Directory of Open Access Journals (Sweden)
Ricardo Gonçalves
2012-01-01
Full Text Available This paper proposes a possible implementation of a compact printed monopole antenna, useful to operate in UMTS and WLAN bands. In order to accomplish that, a miniaturization technique based on the application of chip inductors is used in conjunction with frequency reconfiguration capability. The chip inductors change the impedance response of the monopole, allowing to reduce the resonant frequency. In order to be able to operate the antenna in these two different frequencies, an antenna reconfiguration technique based on PIN diodes is applied. This procedure allows the change of the active form of the antenna leading to a shift in the resonant frequency. The prototype measurements show good agreement with the simulation results.
On the Dirac Monopole Mass Scale
Caruso, Francisco
2013-01-01
It is shown, by a semi-classical argument, that the Dirac charge quantization is still valid in the (classical) Born-Infeld electromagnetic theory. Then it is possible to calculate Dirac's monopole mass in the framework of this theory, which is not possible in Maxwell's theory. The existence of an upper limit for the field intensities in this theory plays an important role in this proof.
Deformation effects in Giant Monopole Resonance
Kvasil, J; Repko, A; Bozik, D; Kleinig, W; Reinhard, P -G
2014-01-01
The isoscalar giant monopole resonance (GMR) in Samarium isotopes (from spherical $^{144}$Sm to deformed $^{148-154}$Sm) is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces. The exact RPA and its separable version (SRPA) are used for spherical and deformed nuclei, respectively. The quadrupole deformation is shown to yield two effects: the GMR broadens and attains a two-peak structure due to the coupling with the quadrupole giant resonance.
BPS Monopoles and Open Spin Chains
Doikou, Anastasia
2010-01-01
We construct SU(n+1) BPS monopoles with minimal symmetry breaking by solving the full Weyl equation. In this context, we explore and discuss the existence of an open spin chain-like part within the Weyl equation. For instance, in the SU(3) case the relevant spin chain is the 2-site spin 1/2 XXX chain with open boundary conditions. We exploit the existence of such a spin chain part in order to solve the full Weyl equation.
Compactness and gluing theory for monopoles
Frøyshov, Kim A
2008-01-01
This book is devoted to the study of moduli spaces of Seiberg-Witten monopoles over spinc Riemannian 4–manifolds with long necks and/or tubular ends. The original purpose of this work was to provide analytical foundations for a certain construction of Floer homology of rational homology 3–spheres; this is carried out in [Monopole Floer homology for rational homology 3–spheres arXiv:08094842]. However, along the way the project grew, and, except for some of the transversality results, most of the theory is developed more generally than is needed for that construction. Floer homology itself is hardly touched upon in this book, and, to compensate for that, I have included another application of the analytical machinery, namely a proof of a "generalized blow-up formula" which is an important tool for computing Seiberg–Witten invariants. The book is divided into three parts. Part 1 is almost identical to my paper [Monopoles over 4–manifolds containing long necks I, Geom. Topol. 9 (2005) 1–93]. The oth...
Magnetic monopoles at the LHC and in the Cosmos
Mermod, P
2013-01-01
The magnetic monopole was postulated in 1931 by Dirac to explain electric charge quantisation. Searches for pair-produced monopoles are performed at accelerator facilities whenever a new energy regime is made available. In addition, monopoles with masses too high to be accessible at colliders would still have been produced in the early Universe and such relics can be searched for either in flight or trapped in matter. Here we discuss recent results and future prospects at the LHC and in bulk matter searches, with emphasis on the complementarity between the various techniques. Significant improvements of the results from the ATLAS experiment are expected with the development of new triggers. Dedicated LHC experiments will allow to probe wider ranges of monopole charges and masses: the MoEDAL experiment using both nuclear-track detectors and absorbing arrays, and searches for trapped monopoles in accelerator material. Finally, it is highlighted how the first search for monopoles trapped in polar volcanic rocks ...
Searches for Relativistic Magnetic Monopoles in IceCube
Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M
2015-01-01
Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v>0.76c) and mildly relativistic (v>0.51c) monopoles, each using one year of data taken in 2008/09 and 2011/12 respectively. No monopole candidate was detected. For a velocity above 0.51c the monopole flux is constrained down to a level of 1.55x10^-18 cm-2 s-1 sr-1. This is an improvement of almost two orders of magnitude over previous limits.
Monopole action from vacuum configurations in compact QED
Shiba, H; Hiroshi Shiba; Tsuneo Suzuki
1994-01-01
It is possible to derive a monopole action from vacuum configurations obtained in Monte-Carlo simulations extending the method developed by Swendsen. We apply the method to compact QED both in the Villain and in the Wilson forms. The action of the natural monopoles in the Villain case is in fairly good agreement with that derived by the exact dual transformation. Comparing the monopole actions, we find (1) the DeGrand-Toussaint monopole definition may be useful for \\beta_V larger than about 0.5, (2) the Villain model well approximates the Wilson one for \\beta smaller than \\beta_c and (3) in the Wilson action the monopole condensation occurs in the confinement phase and \\beta_c may be explained by the energy-entropy balance of monopole loops like in the Villain case.
Leading-order decuplet contributions to the baryon magnetic moments in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Geng, L.S. [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain); Camalich, J. Martin [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain)], E-mail: camalich@ific.uv.es; Vacas, M.J. Vicente [Departamento de Fisica Teorica and IFIC, Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, 46071-Valencia (Spain)
2009-06-01
We extend an earlier study of the baryon magnetic moments in chiral perturbation theory by the explicit inclusion of the spin-3/2 decuplet resonances. We find that the corrections induced by these heavier degrees of freedom are relatively small in a covariant framework where unphysical spin-1/2 modes are removed. Consequently, implementing the leading SU(3)-breaking corrections given by both the baryon and decuplet contributions, we obtain a description of the baryon-octet magnetic moments that is better than the Coleman-Glashow relations. Finally, we discuss the uncertainties and compare between heavy baryon and covariant approaches.
Leading-order decuplet contributions to the baryon magnetic moments in Chiral Perturbation Theory
Geng, L S; Vacas, M J Vicente
2009-01-01
We extend an earlier study of the baryon magnetic moments in chiral perturbation theory by the explicit inclusion of the spin-3/2 decuplet resonances. We find that the corrections induced by these heavier degrees of freedom are relatively small in a covariant framework where unphysical spin-1/2 modes are removed. Consequently, implementing the leading SU(3)-breaking corrections given by both the baryon and decuplet contributions, we obtain a description of the baryon-octet magnetic moments that is better than the Coleman-Glashow relations. Finally, we discuss the uncertainties and compare between heavy baryon and covariant approaches.
Monopole Condensation and Confinement in SU(2) QCD (1)
Shiba, H; Shiba, Hiroshi; Suzuki, Tsuneo
1993-01-01
An effective monopole action is derived from vacuum configurations after abelian projection in the maximally abelian gauge in $SU(2)$ QCD. Entropy dominance over energy of monopole loops is seen on the renormalized lattice with the spacing $b>b_c\\simeq 5.2\\times10^{-3} \\Lambda_L^{-1}$ when the physical volume of the system is large enough. QCD confinement may be interpreted as the (dual) Meissner effect due to the monopole condensation.
Resolution of SU(2) monopole singularities by oxidation
Bueno, Pablo; Meessen, Patrick; Ortin, Tomas
2015-01-01
We show how "colored" SU(2) BPS monopoles (that is: SU(2) monopoles satisfying the Bogomol'nyi equation whose Higgs field and magnetic charge vanish at infinity and which are singular at the origin) can be obtained from the BPST instanton by a singular dimensional reduction, explaining the origin of the singularity and implying that the singularity can be cured by the oxidation of the solution. We study the oxidation of other monopole solutions in this scheme.
Resolution of SU (2) monopole singularities by oxidation
Bueno, Pablo; Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.
2015-06-01
We show how colored SU (2) BPS monopoles (that is: SU (2) monopoles satisfying the Bogomol'nyi equation whose Higgs field and magnetic charge vanish at infinity and which are singular at the origin) can be obtained from the BPST instanton by a singular dimensional reduction, explaining the origin of the singularity and implying that the singularity can be cured by the oxidation of the solution. We study the oxidation of other monopole solutions in this scheme.
Higher dimensional global monopole in Brans–Dicke theory
Indian Academy of Sciences (India)
Farook Rahaman; Subenoy Chakraborty; Mehedi Kalam
2002-01-01
The gravitational ﬁeld of a higher dimensional global monopole in the context of Brans–Dicke theory of gravity is investigated. The space time metric and the scalar ﬁeld generated by a global monopole are obtained using the weak ﬁeld approximation. Finally, the geodesic of a test particle due to the gravitational ﬁeld of the monopole is studied.
Resolution of SU(2 monopole singularities by oxidation
Directory of Open Access Journals (Sweden)
Pablo Bueno
2015-06-01
Full Text Available We show how colored SU(2 BPS monopoles (that is: SU(2 monopoles satisfying the Bogomol'nyi equation whose Higgs field and magnetic charge vanish at infinity and which are singular at the origin can be obtained from the BPST instanton by a singular dimensional reduction, explaining the origin of the singularity and implying that the singularity can be cured by the oxidation of the solution. We study the oxidation of other monopole solutions in this scheme.
Electric charges and magnetic monopoles in Gravity's Rainbow
Energy Technology Data Exchange (ETDEWEB)
Garattini, Remo, E-mail: Remo.Garattini@unibg.it [Università degli Studi di Bergamo, Dipartimento di Ingegneria, Viale Marconi 5, 24044 Dalmine (Bergamo) (Italy); I.N.F.N. – Sezione di Milano, Milan (Italy); Majumder, Barun, E-mail: barunbasanta@iitgn.ac.in [Indian Institute of Technology Gandhinagar, Ahmedabad, Gujarat 382424 (India)
2014-06-15
In this work, we explore the possibility that quantum fluctuations induce an electric or magnetic charge or both, in the context of Gravity's Rainbow. A semi-classical approach is adopted, where the graviton one-loop contribution to a classical energy in a background spacetime is computed through a variational approach with Gaussian trial wave functionals. The energy density of the graviton one-loop contribution, in this context, acts as a source for the electric/magnetic charge. The ultraviolet (UV) divergences, which arise analyzing this procedure, are kept under control with the help of an appropriate choice of the Rainbow's functions. In this way we avoid the introduction of any regularization/renormalization scheme. A comparison with the observed data leads us to determine the size of the electron and of the magnetic monopole which appear to be of Planckian size. Both results seem to be of the same order for a Schwarzschild and a de Sitter background, respectively. Estimates on the magnetic monopole size have been done with the help of the Dirac quantization procedure. We find that the monopole radius is larger than the electron radius. Even in this case the ratio between the electric and magnetic monopole radius appears to be of the same order for both geometries.
Algebraic Approach to Baryon Structure
Leviatan, A
1996-01-01
We present an algebraic approach to the internal structure of baryons in terms of three constituents. We investigate a collective model in which the nucleon is regarded as a rotating and vibrating oblate top with a prescribed distribution of charges and magnetization. We contrast the collective and single-particle descriptions of baryons and compare the predictions of the model with existing data on masses, electromagnetic elastic and transition form factors and strong decays widths.
Anomalous Dimensions of Conformal Baryons
DEFF Research Database (Denmark)
Pica, Claudio; Sannino, Francesco
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small, within...... the $\\delta$-expansion, for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm....
Excitations of strange bottom baryons
Woloshyn, R M
2016-01-01
The ground state and first excited state masses of Omega(b) and Omega(bb) baryons are calculated in lattice QCD using dynamical 2+1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations.
Excitations of strange bottom baryons
Energy Technology Data Exchange (ETDEWEB)
Woloshyn, R.M. [TRIUMF, Vancouver, British Columbia (Canada)
2016-09-15
The ground-state and first-excited-state masses of Ω{sub b} and Ω{sub bb} baryons are calculated in lattice QCD using dynamical 2 + 1 flavour gauge fields. A set of baryon operators employing different combinations of smeared quark fields was used in the framework of the variational method. Results for radial excitation energies were confirmed by carrying out a supplementary multiexponential fitting analysis. Comparison is made with quark model calculations. (orig.)
Anomalous Dimensions of Conformal Baryons
Pica, Claudio
2016-01-01
We determine the anomalous dimensions of baryon operators for the three color theory as function of the number of massless flavours within the conformal window to the maximum known order in perturbation theory. We show that the anomalous dimension of the baryon is controllably small for a wide range of number of flavours. We also find that this is always smaller than the anomalous dimension of the fermion mass operator. These findings challenge the partial compositeness paradigm.
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Galaxy Cluster Baryon Fractions Revisited
Gonzalez, Anthony H; Zabludoff, Ann I; Zaritsky, Dennis
2013-01-01
We measure the baryons contained in both the stellar and hot gas components for twelve galaxy clusters and groups at z~0.1 with M=1-5e14 Msun. This paper improves upon our previous work through the addition of XMM data, enabling measurements of the total mass and masses of each major baryonic component --- ICM, intracluster stars, and stars in galaxies --- for each system. We recover a relation for the stellar mass versus halo mass consistent with our previous result. We confirm that the partitioning of baryons between the stellar and hot gas components is a strong function of M500; the fractions of total mass in stars and X-ray gas within r500 scale as M500^-0.45 and M500^0.26, respectively. We also confirm that the combination of the BCG and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. We find a weak, but statistically significant, dependence of the total baryon fraction upon halo mass, scaling as M500^0.16. For M500>2e14, the total baryon fr...
Possible detection of super massive very slow GUTS monopole.
Khalil, A. E.
A conceptual design idea for a detector of super massive very slow grand unified theories (GUTS) monopoles is discussed. The idea is based on the total stopping power due to the field energy generated by the supercurrents when a slowly moving monopole β ≍ 10-4 passes through a superconductor. The detector incorporates a superconducting Al disc with dimensions chosen for maximum phonon thermalization energy, surrounded by an array of plastic scintillators to provide a monopole trigger and cosmic ray veto. The integrated system acts as a velocity filter for very slow Dirac galactic monopoles.
SU(5) monopoles and the dual standard model
Liu, H; Liu, Hong; Vachaspati, Tanmay
1997-01-01
We find the spectrum of magnetic monopoles produced in the symmetry breaking SU(5) \\rightarrow [SU(3)\\times SU(2)\\times U(1)']/Z_6 by constructing classical bound states of the fundamental monopoles. The spectrum of monopoles is found to correspond to the spectrum of one family of standard model fermions and hence, is a starting point for constructing the dual standard model. At this level, however, there is an extra monopole state - the ``diquark'' monopole - with no corresponding standard model fermion. If the SU(3) factor now breaks down to Z_3, the monopoles with non-trivial SU(3) charge get confined by strings in SU(3) singlets. Another outcome of this symmetry breaking is that the diquark monopole becomes unstable (metastable) to fragmentation into fundamental monopoles and the one-one correspondence with the standard model fermions is restored. We discuss the fate of the monopoles if the [SU(2)\\times U(1)']/Z_2 factor breaks down to U(1)_Q by a Higgs mechanism as in the electroweak model. Here we find ...
Monopole action and condensation in SU(2) QCD
Shiba, H; Hiroshi Shiba; Tsuneo Suzuki
1994-01-01
An effective monopole action for various extended monopoles is derived from vacuum configurations after abelian projection in the maximally abelian gauge in SU(2) QCD. The action appears to be independent of the lattice volume. Moreover it seems to depend only on the physical lattice spacing of the renormalized lattice, not on \\beta. Entropy dominance over energy of monopole loops is seen on the renormalized lattice with the spacing b>b_c\\simeq 5.2\\times10^{-3} \\Lambda_L^{-1}. This suggests that monopole condensation always (for all \\beta) occurs in the infinite-volume limit of lattice QCD.
Cosmic strings and baryon decay catalysis
Gregory, Ruth; Perkins, W. B.; Davis, A.-C.; Brandenberger, R. H.
1989-01-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. The catalysis processes are reviewed both in the free quark and skyrmion pictures and the implications for baryogenesis are discussed. A computation of the cross section for monopole catalyzed skyrmion decay is presented using classical physics. Also discussed are some effects which can screen catalysis processes.
Cosmic strings and baryon decay catalysis
Energy Technology Data Exchange (ETDEWEB)
Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)
1989-09-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.
Cosmic strings and baryon decay catalysis
Energy Technology Data Exchange (ETDEWEB)
Gregory, R.; Perkins, W.B.; Davis, A.C.; Brandenberger, R.H. (Fermi National Accelerator Lab., Batavia, IL (USA); Cambridge Univ. (UK); Brown Univ., Providence, RI (USA). Dept. of Physics)
1989-09-01
Cosmic strings, like monopoles, can catalyze proton decay. For integer charged fermions, the cross section for catalysis is not amplified, unlike in the case of monopoles. We review the catalysis processes both in the free quark and skyrmion pictures and discuss the implications for baryogenesis. We present a computation of the cross section for monopole catalyzed skyrmion decay using classical physics. We also discuss some effects which can screen catalysis processes. 32 refs., 1 fig.
Molecular dynamics simulation for the baryon-quark phase transition at finite baryon density
Energy Technology Data Exchange (ETDEWEB)
Akimura, Y. [Saitama University, Department of physics, Sakura-Ku, Saitama City (Japan); Japan Atomic Energy Research Institute, Advanced Science Research Center, Tokai (Japan); Maruyama, T.; Chiba, S. [Japan Atomic Energy Research Institute, Advanced Science Research Center, Tokai (Japan); Yoshinaga, N. [Saitama University, Department of physics, Sakura-Ku, Saitama City (Japan)
2005-09-01
We study the baryon-quark phase transition in the molecular dynamics (MD) of the quark degrees of freedom at finite baryon density. The baryon state at low baryon density, and the deconfined quark state at high baryon density are reproduced. We investigate the equations of state of matters with different u-d-s compositions. It is found that the baryon-quark transition is sensitive to the quark width. (orig.)
Galaxy Cluster Baryon Fractions Revisited
Gonzalez, Anthony H.; Sivanandam, Suresh; Zabludoff, Ann I.; Zaritsky, Dennis
2013-11-01
We measure the baryons contained in both the stellar and hot-gas components for 12 galaxy clusters and groups at z ~ 0.1 with M = 1-5 × 1014 M ⊙. This paper improves upon our previous work through the addition of XMM-Newton X-ray data, enabling measurements of the total mass and masses of each major baryonic component—intracluster medium, intracluster stars, and stars in galaxies—for each system. We recover a mean relation for the stellar mass versus halo mass, M_{\\star }\\propto M_{500}^{-0.52+/- 0.04}, that is 1σ shallower than in our previous result. We confirm that the partitioning of baryons between the stellar and hot-gas components is a strong function of M 500; the fractions of total mass in stars and X-ray gas within a sphere of radius r 500 scale as f_{\\star }\\propto M_{500}^{-0.45+/- 0.04} and f_{gas}\\propto M_{500}^{0.26+/- 0.03}, respectively. We also confirm that the combination of the brightest cluster galaxy and intracluster stars is an increasingly important contributor to the stellar baryon budget in lower halo masses. Studies that fail to fully account for intracluster stars typically underestimate the normalization of the stellar baryon fraction versus M 500 relation by ~25%. Our derived stellar baryon fractions are also higher, and the trend with halo mass weaker, than those derived from recent halo occupation distribution and abundance matching analyses. One difference from our previous work is the weak, but statistically significant, dependence here of the total baryon fraction upon halo mass: f_{bary}\\propto M_{500}^{0.16+/- 0.04}. For M 500 >~ 2 × 1014, the total baryon fractions within r 500 are on average 18% below the universal value from the seven year Wilkinson Microwave Anisotropy Probe (WMAP) analysis, or 7% below for the cosmological parameters from the Planck analysis. In the latter case, the difference between the universal value and cluster baryon fractions is less than the systematic uncertainties associated with
Dirac's monopole, quaternions, and the Zassenhaus formula
Soloviev, Michael A
2016-01-01
Starting from the quaternionic quantization scheme proposed by Emch and Jadczyk for describing the motion of a quantum particle in the magnetic monopole field, we derive an algorithm for finding the differential representation of the star product generated by the quaternionic Weyl correspondence on phase-space functions. This procedure is illustrated by explicit calculation of the star product up to the second order in the Planck constant. Our main tools are an operator analog of the twisted convolution and the Zassenhaus formula for the products of exponentials of noncommuting operators.
Non-geometric branes are DFT monopoles
Bakhmatov, Ilya; Musaev, Edvard T
2016-01-01
The double field theory monopole solution by Berman and Rudolph is shown to reproduce non-geometric backgrounds with non-vanishing Q- and R-flux upon an appropriate choice of physical and dual coordinates. The obtained backgrounds depend non-trivially on dual coordinates and have only trivial monodromies. Upon smearing the solutions along the dual coordinates one reproduces the known $5^2_2$ solution for the Q-brane and co-dimension 1 solution for the R-brane. The T-duality invariant magnetic charge is explicitly calculated for all these backgrounds and is found to be equal to the magnetic charge of (unsmeared) NS5-brane.
Dyons of One Half Monopole Charge
Teh, R; Teh, Rosy; Wong, Khai-Ming
2005-01-01
We would like to present some exact SU(2) Yang-Mills-Higgs dyon solutions of one half monopole charge. These static dyon solutions satisfy the first order Bogomol'nyi equations and are characterized by a parameter, $m$. They are axially symmetric. The gauge potentials and the electromagnetic fields possess a string singularity along the negative z-axis and hence they possess infinite energy density along the line singularity. However the net electric charges of these dyons which varies with the parameter $m$ are finite.
Dyons of One-Half Monopole Charge
Teh, Rosy; Wong, Khai-Ming
We would like to present some exact SU(2) Yang-Mills-Higgs dyon solutions of one-half monopole charge. These static dyon solutions satisfy the first order Bogomol'nyi equations and are characterized by a parameter, m. They are axially symmetric. The gauge potentials and the electromagnetic fields possess a string singularity along the negative z-axis and hence they possess infinite energy density along the line singularity. However the net electric charges of these dyons which varies with the parameter m are finite.
Finite Energy One-Half Monopole Solutions
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2012-12-01
We present finite energy SU(2) Yang-Mills-Higgs particles of one-half topological charge. The magnetic fields of these solutions at spatial infinity correspond to the magnetic field of a positive one-half magnetic monopole at the origin and a semi-infinite Dirac string on one-half of the z-axis carrying a magnetic flux of (2π )/(g) going into the origin. Hence the net magnetic charge is zero. The gauge potentials are singular along one-half of the z-axis, elsewhere they are regular.
Quark confinement mechanism for baryons
Goncharov, Yu P
2013-01-01
The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...
Baryon Transition in Holographic QCD
Li, Siwen
2015-01-01
We propose a mechanism of holographic baryon transition in the Sakai-Sugimoto (SS) model: baryons in this model can jump to different states under the mediated effect of gravitons (or glueballs by holography). We consider a time-dependent gravitational perturbation from M5-brane solution of D=11 supergravity and by employing the relations between 11D M-theory and IIA string theory, we get its 10 dimensional counterpart in the SS model. Such a perturbation is received by the D4-branes wrapped on the $S^{4}$ part of the 10D background, namely the baryon vertex. Technically, baryons in the SS model are described by BPST instanton ansatz and their dynamics can be analyzed using the quantum mechanical system in the instanton's moduli space. In this way, different baryonic states are marked by quantum numbers of moduli space quantum mechanics. By holographic spirit, the gravitational perturbation enters the Hamiltonian as a time-dependent perturbation and it is this time-dependent perturbative Hamiltonian produces ...
Baryonic Condensates on the Conifold
Benna, M K; Klebanov, I R; Benna, Marcus K.; Dymarsky, Anatoly; Klebanov, Igor R.
2007-01-01
We provide new evidence for the gauge/string duality between the baryonic branch of the cascading SU(k(M+1)) \\times SU(kM) gauge theory and a family of type IIB flux backgrounds based on warped products of the deformed conifold and R^{3,1}. We show that a Euclidean D5-brane wrapping all six deformed conifold directions can be used to measure the baryon expectation values, and present arguments based on kappa-symmetry and the equations of motion that identify the gauge bundles required to ensure worldvolume supersymmetry of this object. Furthermore, we investigate its coupling to the pseudoscalar and scalar modes associated with the phase and magnitude, respectively, of the baryon expectation value. We find that these massless modes perturb the Dirac-Born-Infeld and Chern-Simons terms of the D5-brane action in a way consistent with our identification of the baryonic condensates. We match the scaling dimension of the baryon operators computed from the D5-brane action with that found in the cascading gauge theor...
Vacuum less global monopole in Brans-Dicke theory
Rahaman, F; Kalam, M; Mukherjee, R; Roy, T
2007-01-01
In the present work, the gravitational field of a vacuum less global monopole has been investigated in Brans-Dicke theory under weak field assumption of the field equations. It has been shown that the vacuum less global monopole exerts attractive gravitational effects on a test particle. It is dissimilar to the case studied in general relativity.
Monopoles and string tension in SU(2) QCD
Shiba, H; Hiroshi Shiba; Tsuneo Suzuki
1994-01-01
Monopole and photon contributions to abelian Wilson loops are calculated using Monte-Carlo simulations of SU(2) QCD in the maximally abelian gauge. The string tension is well reproduced only by monopole contributions, whereas photons alone are responsible for the Coulomb coefficient of the abelian static potential.
Cho Decomposition of One-Half Integer Monopoles Solutions
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming
2013-11-01
We performed the Cho decomposition of the SU(2) Yang-Mills-Higgs gauge potentials of the finite energy (1) one-half monopole solution and (2) the one and a half monopoles solution into Abelian and non-Abelian components. We found that the semi-infinite string singularity in the gauge potentials is a contribution from the Higgs field of the one-half monopole in both of the solutions. The non-Abelian components of the gauge potentials are able to remove the point singularity of the Abelian components of the 't Hooft-Polyakov monopole but not the string singularity of the one-half monopole which is topological in nature. Hence the total energy of a one monopole is infinite in the Maxwell electromagnetic theory but the total energy of a one-half monopole is finite. By analyzing the magnetic fields and the gauge covariant derivatives of the Higgs field, we are able to conclude that both the one-half integer monopoles solutions are indeed non-BPS even in the limit of vanishing Higgs self-coupling constant.
ANALYSIS OF MONOPOLE ANTENNA ON CIRCULAR DISC BY MODE MATCHING
Institute of Scientific and Technical Information of China (English)
Sun Baohua; Zhang Fushun; Liu Qizhong
2001-01-01
Mode matching is used for the analysis of monopole antenna on circular disc, which is achieved by developing a novel model consisting of two artificial ground planes above and bellow the monopole antenna. Using this model, the input impedance is computed and compared with measured data reported in literatures, and excellent agreement is observed.
Cabo, Alejandro
2014-01-01
We investigate mechanisms which could generate transient monopole signals in measuring current source density (CSD), as it had been indicated to occur in recent small volume experiments. A simple model is defined for this purpose. It is emphasized that the active nature of the neural biological activity, with its ability to generate ionic density imbalances, might be able to induce appreciable monopole signals in CSD detectors at micrometer scales. Thus, it follows that when both diffusive and ohmic transport are considered to be present in neural tissues, potential measures in micrometer regions can include appreciable electric monopole signals, for sufficiently small values of the ratio (\\sigma a^{2})/(\\epsilon D), where "\\sigma" is the conductivity, "\\epsilon" is the dielectric constant, "D" is the diffusion constant and "a" is the linear dimension of the ionic charge densities generated by the neural processes. Ranges of possible magnitudes for these parameters in the considered experimental studies are e...
Another source of baryons in B meson decays
Dunietz, Isard; Falk, A F; Wise, M B; Isard Dunietz; Peter S Cooper; Adam F Falk; Mark B Wise
1994-01-01
It is usually assumed that the production of baryons in B meson decays is induced primarily by the quark level process b\\to c\\bar ud, where the charm quark hadronizes into a charmed baryon. With this assumption, the \\Lambda_c momentum spectrum would indicate that the transition B\\to\\Lambda_c X is dominated by multi-body B decays. However, a closer examination of the momentum spectrum reveals that the mass m_X against which the \\Lambda_c is recoiling almost always satisfies m_X\\agt m_{\\Xi_c}. This fact leads us to examine the hypothesis that the production of charmed baryons in B decays is in fact dominated by the underlying transition b\\to c\\bar cs, and is seen primarily in modes with two charmed baryons in the final state. We propose a number of tests of this hypothesis. If this mechanism is indeed important in baryon production, then there are interesting consequences and applications, including potentially important implications for the ``charm deficit'' in B decays.
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Kaiser, Norbert; Meißner, Ulf-G; Weise, Wolfram
2016-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the Lambda-nucleon in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the ...
Density-dependent effective baryon-baryon interaction from chiral three-baryon forces
Petschauer, Stefan; Haidenbauer, Johann; Kaiser, Norbert; Meißner, Ulf-G.; Weise, Wolfram
2017-01-01
A density-dependent effective potential for the baryon-baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon-nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.
Electric Monopole Transition Strengths in 62Ni
Evitts, L. J.; Garnsworthy, A. B.; Kibédi, T.; Moukaddam, M.; Alshahrani, B.; Eriksen, T. K.; Holt, J. D.; Hota, S. S.; Lane, G. J.; Lee, B. Q.; McCormick, B. P.; Palalani, N.; Reed, M. W.; Stroberg, S. R.; Stuchbery, A. E.
2016-09-01
Excited states in 62Ni were populated with a (p, p') reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0), were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77-34+23 × 10-3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0) value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0) values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0) value for the 22+ to 21+ transition.
Electric Monopole Transition Strengths in 62Ni
Directory of Open Access Journals (Sweden)
Evitts L. J.
2016-01-01
Full Text Available Excited states in 62Ni were populated with a (p, p’ reaction using the 14UD Pelletron accelerator at the Australian National University. Electric monopole transition strengths, ρ2(E0, were measured through simultaneous detection of the internal conversion electrons and γ rays emitted from the de-excitation of populated states, using the Super-e spectrometer coupled with a germanium detector. The strength of the 02+ to 01+ transition has been measured to be 77−34+23 × 10−3 and agrees with previously reported values. Upper limits have been placed on the 03+ to 01+ and 03+ to 02+ transitions. The measured ρ2(E0 value of the 22+ to 21+ transition in 62Ni has been measured for the first time and found to be one of the largest ρ2(E0 values measured to date in nuclei heavier than Ca. The low-lying states of 62Ni have previously been classified as one- and two-phonon vibrational states based on level energies. The measured electric quadrupole transition strengths are consistent with this interpretation. However as electric monopole transitions are forbidden between states which differ by one phonon number, the simple harmonic quadrupole vibrational picture is not suffcient to explain the large ρ2(E0 value for the 22+ to 21+ transition.
Decuplet baryons in hot medium
Azizi, K
2016-01-01
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the $\\Delta$, $\\Sigma^{*}$, $\\Xi^{*}$ and $\\Omega$ baryons with respect to temperature are analyzed taking into account the additional operators coming up in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to $T\\simeq150~MeV$ but, after this point, they start to diminish, considerably.
Dilatons in Dense Baryonic Matter
Lee, Hyun Kyu
2013-01-01
We discuss the role of dilaton, which is supposed to be representing a special feature of scale symmetry of QCD, trace anomaly, in dense baryonic matter. The idea that the scale symmetry breaking of QCD is responsible for the spontaneous breaking of chiral symmetry is presented along the similar spirit of Freund-Nambu model. The incorporation of dilaton field in the hidden local symmetric parity doublet model is briefly sketched with the possible role of dilaton at high density baryonic matter, the emergence of linear sigma model in dilaton limit.
Deforming baryons into confining strings
Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben
2004-01-01
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.
Dynamics of a magnetic monopole in matter; Dynamique d'un monopole magnetique dans la matiere
Energy Technology Data Exchange (ETDEWEB)
Fayolle, David [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)
1999-07-01
We study the dynamics of a slow (v/c {approx} 10{sup -4}) Dirac magnetic monopole in matter. First, we show at macroscopic scale that the force exerted on a monopole is F vector = g(H vector - v vector x D vector), as if the monopole was not allowed to cross neither microscopic current loops nor microscopic electric dipoles. We interpret this result in terms of adiabatic monopole-atom interactions. Secondly, we generalized the macroscopic Maxwell's equations in 'dual symmetric' matter which contains monopoles and dyons, from which we deduce several properties such as the velocity of light, the behaviour under C, P and T transformation, and we generalize the energy-momentum tensor. These equations also apply when nucleons or electrons possess an electric dipole moment and we propose two experimental methods for detecting this electric dipole moment via its macroscopic polarization effects. (author)
Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays
Energy Technology Data Exchange (ETDEWEB)
Li, Shi-Qiang; Bruce Buchholz, D. [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Zhou, Wei [Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138 (United States); Ketterson, John B. [Department of Physics, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208-3113 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); Ocola, Leonidas E. [Center for Nanoscale Materials, Argonne National Laboratory, 9700 S Cass Ave., Lemont, Illinois 60439 (United States); Sakoda, Kazuaki [NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Chang, Robert P. H., E-mail: r-chang@northwestern.edu [Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States); NU-NIMS Materials Innovation Center, 2220 Campus Dr., Evanston, Illinois 60208-3108 (United States)
2014-06-09
Diffractively coupled plasmonic resonances possess both ultra-sharp linewidths and giant electric field enhancement around plasmonic nanostructures. They can be applied to create a new generation of sensors, detectors, and nano-optical devices. However, all current designs require stringent index-matching at the resonance condition that limits their applicability. Here, we propose and demonstrate that it is possible to relieve the index-matching requirement and to induce ultra-sharp plasmon resonances in an ordered vertically aligned optical nano-antenna phased array by transforming a dipole resonance to a monopole resonance with a mirror plane. Due to the mirror image effect, the monopole resonance not only retained the dipole features but also enhanced them. The engineered resonances strongly suppressed the radiative decay channel, resulting in a four-order of magnitude enhancement in local electric field and a Q-factor greater than 200.
Energy Technology Data Exchange (ETDEWEB)
Berkes, I.
1996-12-31
This article discusses the nature of the dark matter and the possibility of the detection of non-baryonic dark matter in an underground experiment. Among the useful detectors the low temperature bolometers are considered in some detail. (author). 19 refs.
Algebraic model of baryon resonances
Bijker, R
1997-01-01
We discuss recent calculations of electromagnetic form factors and strong decay widths of nucleon and delta resonances. The calculations are done in a collective constituent model of the nucleon, in which the baryons are interpreted as rotations and vibrations of an oblate top.
Bijker, R; Leviatan, A
1997-01-01
We study strong decays of nonstrange baryons by making use of the algebraic approach to hadron structure. Within this framework we derive closed expressions for decay widths in an elementary-meson emission model and use these to analyze the experimental data for $N^* \\rightarrow N + \\pi$, $N^* + \\pi$, $\\Delta^* \\rightarrow \\Delta + \\pi$ and $\\Delta^* \\rightarrow \\Delta +
Beauty baryons: Recent CDF results
Energy Technology Data Exchange (ETDEWEB)
Tseng, J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)
1996-12-01
Using data collected between 1992 and 1995 at the Fermilab Tevatron, CDF has searched for the {Lambda}{sub b} baryon through both semileptonic and hadronic decay channels. This presentation reviews measurements of the {Lambda}{sub b} mass, lifetime, and production and decay rates performed with this data.
Predictions for Excited Strange Baryons
Energy Technology Data Exchange (ETDEWEB)
Fernando, Ishara P.; Goity, Jose L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
An assessment is made of predictions for excited hyperon masses which follow from flavor symmetry and consistency with a 1/N c expansion of QCD. Such predictions are based on presently established baryonic resonances. Low lying hyperon resonances which do not seem to fit into the proposed scheme are discussed.
Baryon Number Current in Chiral Soliton Model
Institute of Scientific and Technical Information of China (English)
LiXiguo
2003-01-01
Last year two exotic and narrow baryons, θ+(1540) and Ξ3/2--(1862), which are pentaquark states have been reported by several group. Their minimal quark content are uudds and ddssu, respectively. The θ+(1540) baryon was observed in few independent experiments. Its hypercharge, Y=2. The exotic baryon is an isosinglet. The Ξ3/2--(1862) baryon was also observed in the Ξ-π- invariant mass spectrum in proton-proton scattering at the CERN SPS . The search of exotic baryons was motivated by the flavor SU(3) extension of
Suppressing the QCD axion abundance by hidden monopoles
Energy Technology Data Exchange (ETDEWEB)
Kawasaki, Masahiro [Tokyo Univ., Chiba (Japan). Inst. for Cosmic Ray Research; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Takahashi, Fuminobu [Tokyo Univ., Miyagi (Japan). Dept. of Physics; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; Yamada, Masaki [Tokyo Univ., Chiba (Japan). Inst. for Cosmic Ray Research; Tokyo Univ., Chiba (Japan). Kavli IPMU (WPI), UTIAS; DESY Hamburg (Germany)
2015-11-15
We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 10{sup 12} GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei-Quinn symmetry is spontaneously broken after inflation.
Suppressing the QCD axion abundance by hidden monopoles
Directory of Open Access Journals (Sweden)
Masahiro Kawasaki
2016-02-01
Full Text Available We study the Witten effect of hidden monopoles on the QCD axion dynamics, and show that its abundance as well as isocurvature perturbations can be significantly suppressed if there is a sufficient amount of hidden monopoles. When the hidden monopoles make up a significant fraction of dark matter, the Witten effect suppresses the abundance of axion with the decay constant smaller than 1012GeV. The cosmological domain wall problem of the QCD axion can also be avoided, relaxing the upper bound on the decay constant when the Peccei–Quinn symmetry is spontaneously broken after inflation.
Parker limit for monopoles with large magnetic charge
Energy Technology Data Exchange (ETDEWEB)
Hodges, H.M.; Kolb, E.W.; Turner, M.S.
1986-04-28
The survival of galactic magnetic fields places a limit on the flux of magnetic monopoles, the so-called ''Parker limit.'' Previous discussions of the Parker limit have assumed that the charge of the monopole is the Dirac value, g/sub Dirac/ = 2..pi../e. However, if the grand unified group is broken by Wilson lines, as is assumed in some superstring models, the minimum value of the magnetic charge is not the Dirac quantum, but an integer multiple of it. In this brief report we investigate the dependence of the Parker limit on the charge of the magnetic monopole. 10 refs., 1 fig.
The Rubakov-Callan scattering on the supergravity monopole
Energy Technology Data Exchange (ETDEWEB)
Chamseddine, Ali H. [Physics Department, American University of Beirut (Lebanon); Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France); LE STUDIUM, Loire Valley Institute for Advanced Studies, Tours and Orleans (France); Volkov, Mikhail S., E-mail: volkov@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS-UMR 6083, Universite de Tours, Parc de Grandmont, 37200 Tours (France)
2011-10-05
We study small perturbations around the supersymmetric CVMN monopole solution of the gauged supergravity in D=4. We find that the perturbation spectrum contains an infinite tower of Coulomb-type bound states both in the bosonic and fermionic parts of the supergravity multiplet. Due to supersymmetry, the eigenvalues are the same for the two bosonic parity sectors, as well as for the fermionic sector. We also find that the fermion scattering on the monopole is accompanied by isospin flip. This is analogous to the Rubakov-Callan effect of monopole catalysis of proton decay and suggests that there could be a similar effect of catalysis for decay of fermionic systems in supergravity.
From Taub-NUT to Kaluza-Klein magnetic monopole
Riazi, Nematollah; Hashemi, S. Sedigheh
2016-03-01
We present a Kaluza-Klein vacuum solution which closely resembles the Taub-NUT magnetic monopole and we investigate its physical properties as viewed from four space-time dimensions. We show that the Taub-NUT Kaluza-Klein vacuum solution in five dimensions is a static magnetic monopole. We find that the four dimensional matter properties do not obey the equation of state of radiation and there is no event horizon. A comparison with the available magnetic monopole solutions and the issue of vanishing and negative mass are discussed.
From Taub-NUT to Kaluza-Klein magnetic monopole
Riazi, Nematollah
2016-01-01
We present a Kaluza-Klien vacuum solution which closely resembles the Taub-NUT magnetic monopole and we investigate its physical properties as viewed from four space-time dimensions. We show that the Taub-NUT Kaluza-Klein vacuum solution in five dimensions is a static magnetic monopole. We find that the four dimensional matter properties do not obey the equation of state of radiation and there is no event horizon. A comparison with the available magnetic monopole solutions and the issue of vanishing and negative mass are discussed.
A monopole homology for integral homology 3-spheres
Li, Weiping
2014-01-01
To an integral homology 3-sphere Y, we assign a well-defined {\\mathbb Z}-graded (monopole) homology MH*(Y, Ih(Q; h0)) whose construction in principle follows from the instanton Floer theory with the dependence of the spectral flow Ih(Q; h0), where Q is the unique U(1)-reducible monopole of the Seiberg-Witten equation on Y and h0 is a reference perturbation datum. The definition uses the moduli space of monopoles on Y \\times {\\mathbb R} introduced by Seiberg-Witten in studying smooth ...
Glueball-baryon interactions in holographic QCD
Li, Si-Wen
2017-10-01
Studying the Witten-Sakai-Sugimoto model with type IIA string theory, we find the glueball-baryon interaction is predicted in this model. The glueball is identified as the 11D gravitational waves or graviton described by the M5-brane supergravity solution. Employing the relation of M-theory and type IIA string theory, glueball is also 10D gravitational perturbations which are the excited modes by close strings in the bulk of this model. On the other hand, baryon is identified as a D4-brane wrapped on S4 which is named as baryon vertex, so the glueball-baryon interaction is nothing but the close string/baryon vertex interaction in this model. Since the baryon vertex could be equivalently treated as the instanton configurations on the flavor brane, we identify the glueball-baryon interaction as ;graviton-instanton; interaction in order to describe it quantitatively by the quantum mechanical system for the collective modes of baryons. So the effective Hamiltonian can be obtained by considering the gravitational perturbations in the flavor brane action. With this Hamiltonian, the amplitudes and the selection rules of the glueball-baryon interaction can be analytically calculated in the strong coupling limit. We show our calculations explicitly in two characteristic situations which are ;scalar and tensor glueball interacting with baryons;. Although there is a long way to go, our work provides a holographic way to understand the interactions of baryons in hadronic physics and nuclear physics by the underlying string theory.
Non-geometric branes are DFT monopoles
Energy Technology Data Exchange (ETDEWEB)
Bakhmatov, Ilya [Kazan Federal University, Institute of Physics, General Relativity Department,Kremlevskaya 16a, 420111, Kazan (Russian Federation); Kleinschmidt, Axel [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, DE-14476 Potsdam (Germany); International Solvay Institutes,Campus Plaine C.P. 231, Boulevard du Triomphe, 1050 Bruxelles (Belgium); Musaev, Edvard T. [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, DE-14476 Potsdam (Germany); Kazan Federal University, Institute of Physics, General Relativity Department,Kremlevskaya 16a, 420111, Kazan (Russian Federation)
2016-10-14
The double field theory monopole solution by Berman and Rudolph is shown to reproduce non-geometric backgrounds with non-vanishing Q- and R-flux upon an appropriate choice of physical and dual coordinates. The obtained backgrounds depend non-trivially on dual coordinates and have only trivial monodromies. Upon smearing the solutions along the dual coordinates one reproduces the known 5{sub 2}{sup 2} solution for the Q-brane and co-dimension 1 solution for the R-brane. The T-duality invariant magnetic charge is explicitly calculated for all these backgrounds and is found to be equal to the magnetic charge of (unsmeared) NS5-brane.
Magnetic-Moment Fragmentation and Monopole Crystallization
Directory of Open Access Journals (Sweden)
M. E. Brooks-Bartlett
2014-01-01
Full Text Available The Coulomb phase, with its dipolar correlations and pinch-point–scattering patterns, is central to discussions of geometrically frustrated systems, from water ice to binary and mixed-valence alloys, as well as numerous examples of frustrated magnets. The emergent Coulomb phase of lattice-based systems has been associated with divergence-free fields and the absence of long-range order. Here, we go beyond this paradigm, demonstrating that a Coulomb phase can emerge naturally as a persistent fluctuating background in an otherwise ordered system. To explain this behavior, we introduce the concept of the fragmentation of the field of magnetic moments into two parts, one giving rise to a magnetic monopole crystal, the other a magnetic fluid with all the characteristics of an emergent Coulomb phase. Our theory is backed up by numerical simulations, and we discuss its importance with regard to the interpretation of a number of experimental results.
Search for relativistic magnetic monopoles with the ANTARES neutrino telescope
Adrián-Martínez, S.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.
2012-05-01
Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 × 10-17 and 8.9 × 10-17 cm-2 s-1 sr-1 for monopoles with velocity β ⩾ 0.625.
Search for Relativistic Magnetic Monopoles with the ANTARES Neutrino Telescope
Adrián-Martínez, S; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J
2011-01-01
Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3E-17 and 8.9E-17 cm-2.s-1.sr-1 for monopoles with velocity beta greater than 0.625.
TDH solution of the Suzuki model of nuclear monopole oscillation
Skalski, J.
1987-09-01
The exact time-dependent Hartree solution of the schematic model describing nuclear monopole oscillation — the Suzuki model — is presented. The energies of vibrational states are quantized according to the gauge-invariant periodic quantization prescription.
Bandwidth enhanced electromagnetic bandgap structure structured closed ground monopole antenna
National Research Council Canada - National Science Library
Modali S. S. S. SRINIVAS; Tottempudi Venkata RAMAKRISHNA; Boddapati T. P. MADHAV; Sathuluri Venkata RAMA RAO; Shaik ASHRAF ALI
2016-01-01
.... To overcome this problem a coplanar wave guide fed square patch monopole antenna with closed ground structure is proposed in this paper and electromagnetic band gap structure is added to the antenna...
Search for GUT Monopoles at Super-Kamiokande
Ueno, K; Hayato, Y; Iida, T; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Ueshima, K; Yamada, S; Yokozawa, T; Martens, K; Schuemann, J; Vagins, M; Ishihara, C; Kaji, H; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Bays, K; Kropp, W R; Mine, S; Regis, C; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Ikeda, M; Minamino, A; Nakaya, T; Labarga, L; Marti, Ll; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Lopez, G; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Yoshida, M; Kim, S B; Yang, B S; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Yokoyama, M; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Thrane, E; Wilkes, R J
2012-01-01
GUT monopoles captured by the Sun's gravitation are expected to catalyze proton decays via the Callan-Rubakov process. In this scenario, protons, which initially decay into pions, will ultimately produce \
Monopole Floer homology for rational homology 3-spheres
Froyshov, Kim A.
2010-01-01
We give a new construction of monopole Floer homology for $\\text{spin}^c$ rational homology $3$ -spheres. As applications, we define two invariants of certain $4$ -manifolds with $b_1=1$ and $b^+=0$ .
Half-monopoles in the Yang–Mills theory
Indian Academy of Sciences (India)
E Harikumar; Indrajit Mitra; H S Sharatchandra
2003-11-01
Using a gauge-invariant characterization of monopoles deﬁned via their centres, we investigate the generic topological ﬁeld pattern for the three-dimensional Yang–Mills theory. This leads to ﬁeld patterns with one-half winding number. After presenting the main features through the simpler case of half-vortices, we consider half-monopoles in detail.
Monopoles in Space-Time Noncommutative Born-Infeld theory
Aschieri, Paolo
2001-01-01
We transform static solutions of space-noncommutative Dirac-Born-Infeld theory (DBI) into static solutions of space-time noncommutative DBI. Via Seiberg-Witten map we match this symmetry transformation with a corresponding symmetry of commutative DBI. This allows to: 1) study new BPS type magnetic monopoles, with constant electric and magnetic background and describe them both in the commutative and in the noncommutative setting; 2) relate by S-duality space-noncommutative magnetic monopoles ...
Does the Gursey-Tze solution represent a monopole condensate?
Nergiz, S; Nergiz, Serdar; Saclioglu, Cihan
1995-01-01
We recast the quaternionic Gursey-Tze solution, which is a fourfold quasi-periodic self-dual Yang-Mills field with a unit instanton number per Euclidean spacetime cell, into an ordinary coordinate formulation. After performing the sum in the Euclidean time direction, we use an observation by Rossi which suggests the solution represents an arrangement with a BPS monopole per space lattice cell. This may provide a concrete realization of a monopole condensate in pure Yang-Mills theory.
Searching for the missing baryons in clusters.
Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul
2011-03-01
Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This "missing baryon" puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above ∼5 x 10(13)h(-1)(72)M. This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons.
Excited Baryons in Holographic QCD
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-11-08
The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. The transition from the hard-scattering perturbative domain to the non-perturbative region is sensitive to the detailed dynamics of confined quarks and gluons. Computations of such phenomena from first principles in QCD are clearly very challenging. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time; however, dynamical observables in Minkowski space-time, such as the time-like hadronic form factors are not amenable to Euclidean numerical lattice computations.
Heavy Baryon Production and Decay
Dunietz, Isard
1998-01-01
The branching ratio B(Lambda_c -> p K- pi+) normalizes the production and decay of charmed and bottom baryons. At present, this crucial branching ratio is extracted dominantly from B.bar -> baryons analyses. This note questions several of the underlying assumptions and predicts sizable B.bar -> D(*) N N'.bar X transitions, which were traditionally neglected. It predicts B(Lambda_c -> p K- pi+) to be significantly larger (0.07 +/- 0.02) than the world average. Some consequences are briefly mentioned. Several techniques to measure B(Lambda_c -> p K- pi+) are outlined with existing or soon available data samples. By equating two recent CLEO results, an appendix obtains B(D0 -> K- pi+)= 0.035 +/- 0.002, which is somewhat smaller than the current world average.
Mathur, Smita; Williams, Rik J
2007-01-01
We review our attempts to discover lost baryons at low redshift with ``X-ray forest'' of absorption lines from the warm-hot intergalactic medium. We discuss the best evidence to date along the Mrk 421 sightline. We then discuss the missing baryons in the Local Group and the significance of the z=0 absorption systems in X-ray spectra. We argue that the debate over the Galactic vs. extragalactic origin of the z=0 systems is premature as these systems likely contain both components. Observations with next generation X-ray missions such as Constellation-X and XEUS will be crucial to map out the warm-hot intergalactic medium.
Searches for relativistic magnetic monopoles in IceCube
Energy Technology Data Exchange (ETDEWEB)
Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others
2016-03-15
Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)
Bandwidth Enhancement Technique of the Meandered Monopole Antenna
Directory of Open Access Journals (Sweden)
Chien-Jen Wang
2015-01-01
Full Text Available A small dual-band monopole antenna with coplanar waveguide (CPW feeding structure is presented in this paper. The antenna is composed of a meandered monopole, an extended conductor tail, and an asymmetrical ground plane. Tuning geometrical structure of the ground plane excites an additional resonant frequency band and thus enhances the impedance bandwidth of the meandered monopole antenna. Unlike the conventional monopole antenna, the new resonant mode is excited by a slot trace of the CPW transmission line. The radiation performance of the slot mode is as similar as that of the monopole. The parametrical effect of the size of the one-side ground plane on impedance matching condition has been derived by the simulation. The measured impedance bandwidths, which are defined by the reflection coefficient of −6 dB, are 186 MHz (863–1049 MHz, 19.4% at the lower resonant band and 1320 MHz (1490–2810 MHz, 61.3% at the upper band. From the results of the reflection coefficients of the proposed monopole antenna, the operated bandwidths of the commercial wireless communication systems, such as GSM 900, DCS, IMT-2000, UMTS, WLAN, LTE 2300, and LTE 2500, are covered for uses.
Searches for relativistic magnetic monopoles in IceCube
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Beiser, E.; Benabderrahmane, M. L.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2016-03-01
Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (vge 0.76c) and mildly relativistic (vge 0.51c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 × 10^{-18} text {cm}^{-2} text {s}^{-1} text {sr}^{-1}. This is an improvement of almost two orders of magnitude over previous limits.
Algebraic model of baryon structure
Bijker, R
2000-01-01
We discuss properties of baryon resonances belonging to the Nucleon, Delta, Sigma, Lambda, Xi and Omega families in a collective string-like model for the nucleon, in which the radial excitations are interpreted as rotations and vibrations of the string configuration. We find good overall agreement with the available data. The main discrepancies are found for low lying S-wave states, in particular N(1535), N(1650), Sigma(1750), Lambda*(1405), Lambda(1670) and Lambda(1800).
A New Statistic for Analyzing Baryon Acoustic Oscillations
Xu, X; Padmanabhan, N; Eisenstein, D; Eckel, J; Mehta, K; Metchnik, M; Pinto, P; Seo, H -J
2010-01-01
We introduce a new statistic omega_l for measuring and analyzing large-scale structure and particularly the baryon acoustic oscillations. omega_l is a band-filtered, configuration space statistic that is easily implemented and has advantages over the traditional power spectrum and correlation function estimators. Unlike these estimators, omega_l can localize most of the acoustic information into a single dip at the acoustic scale while also avoiding sensitivity to the poorly constrained large scale power (i.e., the integral constraint) through the use of a localized and compensated filter. It is also sensitive to anisotropic clustering through pair counting and does not require any binning. We measure the shift in the acoustic peak due to nonlinear effects using the monopole omega_0 derived from subsampled dark matter catalogues as well as from mock galaxy catalogues created via halo occupation distribution (HOD) modeling. All of these are drawn from 44 realizations of 1024^3 particle dark matter simulations ...
Transport coefficients of heavy baryons
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
Yasini, Siavash
2016-01-01
We present a method aimed at separating the motion-induced dipole of the cosmic microwave background (CMB) from the intrinsic, primordial dipole component. We show that in a moving frame, the leakage of an intrinsic dipole moment into the CMB monopole and quadrupole induces spectral distortions with distinct frequency functions that respectively peak at 266 GHz and 310 GHz at $\\sim 10$nK level. The leakage into the quadrupole moment also induces a geometrical distortion to the spatial morphology of this mode. The combination of these effects can be used to lift the degeneracy between the motion-induced dipole and any intrinsic dipole that the CMB might possess. The leakage of an intrinsic dipole of order $\\sim 10^{-5}$ into the monopole and quadrupole moments will be detectable by a PIXIE--like experiment at $\\sim 6\\sigma$ at the peak frequency.
De Mello, E R B
2002-01-01
In this paper we consider the presence of the Wu-Yang magnetic monopole in the global monopole spacetime and their influence on the vacuum polarization effects around these two monopoles placed together. According to Wu-Yang [Nucl. Phys. {\\bf B107}, 365 (1976)] the solution of the Klein-Gordon equation in such an external field will not be an ordinary function but, instead, {\\it section}. Because of the peculiar radial symmetry of the global monopole spacetime, it is possible to cover its space section by two overlapping regions, needed to define the singularity free vector potential, and to study the quantum effects due to a charged scalar field in this system. In order to develop this analysis we construct the explicit Euclidean scalar Green {\\it section} associated with a charged massless field in a global monopole spacetime in the presence of the Abelian Wu-Yang magnetic monopole. Having this Green section it is possible to study the vacuum polarization effects. We explicitly calculate the renormalized va...
Heavy Baryons and QCD Sum Rules
Yakovlev, O I
1996-01-01
We discuss an application of QCD sum rules to the heavy baryons $\\Lambda_Q$ and $\\Sigma_Q$. The predictions for the masses of heavy baryons, residues and Isgur-Wise function are presented. The new results on two loop anomalous dimensions of baryonic currents and QCD radiative corrections (two- and three- loop contributions) to the first two Wilson coefficients in OPE are explicitly presented.
Hadronic molecules in the heavy baryon spectrum
Entem, D. R.; Ortega, P. G.; Fernández, F.
2016-01-01
We study possible baryon molecules in the non-strange heavy baryon spectrum. We include configurations with a heavy-meson and a light baryon. We find several structures, in particular we can understand the Λc(2940) as a D*N molecule with JP = 3/2- quantum numbers. We also find D(*)Δ candidates for the recently discovered Xc(3250) resonance.
Directory of Open Access Journals (Sweden)
E. A. Ryzhov
2013-02-01
Full Text Available In the frame of a three-layer, quasi-geostrophic analytical model of an f-plane geophysical flow, the Lagrangian advection induced by the interaction of a monopole vortex with an isolated topographic feature is addressed. Two different cases when the monopole is located either within the upper or the middle layer are of our interest. In the bottom layer, there is a delta-function topographic feature, which generates a closed recirculation region in its vicinity due to the background flow. This recirculation region extends to the middle and upper layers, and it plays the role of a topographic vortex. The interaction between the monopole and the topographic vortex causes a complex, including chaotic, advection of fluid particles. We show that the model's parameters, namely the monopole and topographic vortices' strengths and initial positions, and the layers' depths and densities, are responsible for the diverse advection patterns. While the patterns are rather complicated, one can single out two major processes, which mostly govern the fluid particle advection. The first one is the variation in time of the system's phase space structure, so that within the closed region of the topographic vortex, there appear periodically unclosed particle pathways by which the particles leave the topographic vortex. The second one is chaotic advection that arises from the nonstationarity of the monopole–topography interaction.
Baryon Number Violation and String Topologies
Sjöstrand, Torbjörn
2003-01-01
In supersymmetric scenarios with broken R-parity, baryon number violating sparticle decays become possible. In order to search for such decays, a good understanding of expected event properties is essential. We here develop a complete framework that allows detailed studies. Special attention is given to the hadronization phase, wherein the baryon number violating vertex is associated with the appearance of a junction in the colour confinement field. This allows us to tell where to look for the extra (anti)baryon directly associated with the baryon number violating decay.
Abelian monopole or non-Abelian monopole responsible for quark confinement
Shibata, Akihiro; Kato, Seikou; Shinohara, Toru
2015-01-01
We have pointed out that the $SU(3)$ Yang-Mills theory has a new way of reformulation using new field variables (minimal option), in addition to the conventional option adopted by Cho, Faddeev and Niemi (maximal option). The reformulation enables us to change the original non-Abelian gauge field into the new field variables such that one of them called the restricted field gives the dominant contribution to quark confinement in the gauge-independent way. In the minimal option, especially, the restricted field is non-Abelian $U(2)$ and involves the non-Abelian magnetic monopole. In the preceding lattice conferences, we have accumulated the numerical evidences for the non-Abelian magnetic-monopole dominance in addition to the restricted non-Abelian field dominance for quark confinement supporting the non-Abelian dual superconductivity using the minimal option for the SU(3) Yang-Mills theory. This should be compared with the maximal option which is a gauge invarient version of the Abelian projection in the maxim...
Baryon currents in the C-broken phase of QCD
Lucini, B; Pica, C
2007-01-01
In a space with some sufficiently small compact dimension (with non-trivial cycles) and with periodic boundary conditions for the fermions, the charge conjugation (C), spatial parity (P), time reversal (T) and CPT symmetries are spontaneously broken in QCD. We have investigated what are the physical consequences of the breaking of these discrete symmetries, that is what local observables can be used to detect it. We show that the breaking induces the generation of baryon currents, propagating along the compact dimensions.
Beutler, Florian; Ross, Ashley J; McDonald, Patrick; Saito, Shun; Bolton, Adam S; Brownstein, Joel R; Chuang, Chia-Hsun; Cuesta, Antonio J; Eisenstein, Daniel J; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C; Percival, Will J; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A; Ross, Nicholas P; Salazar-Albornoz, Salvador; Sánchez, Ariel G; Schneider, Donald P; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A
2016-01-01
We analyse the Baryon Acoustic Oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in Fourier-space, using the power spectrum monopole and quadrupole. The dataset includes $1\\,198\\,006$ galaxies over the redshift range $0.2 < z < 0.75$. We divide this dataset into three (overlapping) redshift bins with the effective redshifts $\\zeff = 0.38$, $0.51$ and $0.61$. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as $\\sim 1000$ MultiDark-Patchy mock catalogues, which mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line-of-sight and angular modes, which allows us to constrain the angular diameter distance $D_A(z)$ and the Hubble parameter $H(z)$ separately. We obtain two independent $1.6\\%$ and $1.5\\%$ constraints on $D_A(z)$ and $2.9\\%$ and $2.3\\%$ constraints...
Baryon Form Factors at Threshold
Energy Technology Data Exchange (ETDEWEB)
Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)
2012-04-15
An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.
Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory
Taruya, Atsushi; Saito, Shun
2010-01-01
We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We...
Baryon form factors in chiral perturbation theory
Kubis, B; Kubis, Bastian; Meissner, Ulf-G.
2001-01-01
We analyze the electromagnetic form factors of the ground state baryon octet to fourth order in relativistic baryon chiral perturbation theory. Predictions for the \\Sigma^- charge radius and the \\Lambda-\\Sigma^0 transition moment are found to be in excellent agreement with the available experimental information. Furthermore, the convergence behavior of the hyperon charge radii is shown to be more than satisfactory.
Exactly solvable models of baryon structure
Bijker, R
1998-01-01
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study.
Exactly solvable models of baryon structure
Energy Technology Data Exchange (ETDEWEB)
Bijker, R. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico. Apartado Postal 70-543, 04510 Mexico D.F. (Mexico); Leviatan, A. [Racah Institute of Physics, The Hebrew University. Jerusalem 91904, Israel (Israel)
1998-12-31
We present a qualitative analysis of the gross features of baryon spectroscopy (masses and form factors) in terms of various exactly solvable models. It is shown that a collective model, in which baryon resonances are interpreted as rotations and vibrations of an oblate symmetric top, provides a good starting point for a more detailed quantitative study. (Author)
Baryon number violation in future accelerators
Energy Technology Data Exchange (ETDEWEB)
Tracas, N.D.; Zoupanos, G.
1989-03-30
As a demonstration of the possibility to observe baryon number violation in the next generation of accelerators we present a semirealistic GUT in which proton decay is forbidden and the unification scale is at approx. = 10/sup 3-4/ TeV, leading therefore to observable baryon number violating processes.
(Hybrid) Baryons Quantum Numbers and Adiabatic Potentials
Page, P R
1999-01-01
We construct (hybrid) baryons in the flux-tube model of Isgur and Paton. In the limit of adiabatic quark motion, we build proper eigenstates of orbital angular momentum and indicate the flavour, spin, chirality and J^P of (hybrid) baryons. The adiabatic potential is calculated as a function of the quark positions.
Pathways to Rare Baryonic B Decays
Hou Wei Shu; Hou, Wei-Shu
2001-01-01
We point out new ways to search for charmless baryonic B decays: baryon pair production in association with $\\eta^\\prime$ is very likely as large as or even a bit larger than two body $K\\pi/\\pi\\pi$ modes. We extend our argument, in weaker form, to $B\\to \\gamma + X_s$ and $\\ell\
Baryon and lepton violation in astrophysics.
Kolb, E. W.
The cosmological and astrophysical significance of baryon and lepton number violating process is the subject of this paper. The possibility of baryon-number violating processes in the electroweak transition in the early universe is reviewed. The implications of lepton-number violation via Nambu-Goldstone bosons are discussed in detail.
Baryon spectroscopy and the omega minus
Energy Technology Data Exchange (ETDEWEB)
Samios, N.P.
1994-12-31
In this report, I will mainly discuss baryon resonances with emphasis on the discovery of the {Omega}{sup {minus}}. However, for completeness, I will also present some data on the meson resonances which together with the baryons led to the uncovering of the SU(3) symmetry of particles and ultimately to the concept of quarks.
Exploring the simplest purely baryonic decay processes
Geng, C Q; Rodrigues, Eduardo
2016-01-01
We propose to search for purely baryonic decay processes at the LHCb experiment. In particular, we concentrate on the decay $\\Lambda_b^0\\to p\\bar pn$, which is the simplest purely baryonic decay mode, with solely spin-1/2 baryons involved. We predict its decay branching ratio to be ${\\cal B}(\\Lambda_b^0\\to p\\bar pn)=(2.0^{+0.3}_{-0.2})\\times 10^{-6}$, which is sufficiently large to make the decay mode accessible to LHCb. Though not considered in general, purely baryonic decays could shed light on the puzzle of the baryon number asymmetry in the universe by means of a better understanding of the baryonic nature of our matter world. As such, they constitute a yet unexplored class of decay processes worth investigating. Our study can be extended to the purely baryonic decays of $\\Lambda_b^0\\to p\\bar p \\Lambda$, $\\Lambda_b^0\\to \\Lambda \\bar p\\Lambda$ and $\\Lambda_b^0\\to \\Lambda\\bar \\Lambda\\Lambda$, as well as other similar anti-triplet $b$-baryon decays, such as $\\Xi_b^{0,-}$.
A rotating string model versus baryon spectra
Sonnenschein, Jacob
2014-01-01
We continue our program of describing hadrons as rotating strings with massive endpoints. In this paper we propose models of baryons and confront them with the baryon Regge trajectories. We show that these are best fitted by a model of a single string with a quark at one endpoint and a diquark at the other. This model is preferred over the Y-shaped string model with a quark at each endpoint. We show how the model follows from a stringy model of the holographic baryon which includes a baryonic vertex connected with $N_c$ strings to flavor probe branes. From fitting to baryonic data we find that there is no clear evidence for a non-zero baryonic vertex mass, but if there is such a mass it should be located at one of the string endpoints. The available baryon trajectories in the angular momentum plane $(J,M^2)$, involving light, strange, and charmed baryons, are rather well fitted when adding masses to the string endpoints, with a single universal slope $\\alp = 0.95$ GeV$^{-2}$. Most of the results for the quark...
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Strangeness in the baryon ground states
Semke, A
2012-01-01
We compute the strangeness content of the baryon ground states based on an analysis of recent lattice simulations of the BMW, PACS, LHPC and HSC groups for the pion-mass dependence of the baryon masses. Our results rely on the relativistic chiral Lagrangian and large-$N_c$ sum rule estimates of the counter terms relevant for the baryon masses at N$^3$LO. A partial summation is implied by the use of physical baryon and meson masses in the one-loop contributions to the baryon self energies. A simultaneous description of the lattice results of the BMW, LHPC, PACS and HSC groups is achieved. We predict the pion- and strangeness sigma terms and the pion-mass dependence of the octet and decuplet ground states at different strange quark masses.
Low-SAR metamaterial-inspired printed monopole antenna
Hossain, M. I.; Faruque, M. R. I.; Islam, M. T.; Ali, M. T.
2017-01-01
In this paper, a low-SAR metamaterial-embedded planar monopole antenna is introduced for a wireless communication system. A printed monopole antenna is designed for modern mobile, which operates in GSM, UMTS, LTE, WLAN, and Bluetooth frequency bands. A metamaterial structure is designed to use in the mobile handset with a multi-band printed monopole antenna. The finite integration technique of the CST microwave studio is used in this study. The measurement of antenna performances is taken in an anechoic chamber, and the SAR values are measured using COMOSAR system. The results indicate that metamaterial structure leads to reduce SAR without affecting antenna performance significantly. According to the measured results, the metamaterial attachment leads to reduce 87.7% peak SAR, 68.2% 1-g SAR, and 46.78% 10-g SAR compared to antenna without metamaterial.
Tri-band small monopole antenna based on SRR units
Directory of Open Access Journals (Sweden)
Gehan Shehata
2015-12-01
Full Text Available In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5 and WLAN (5.2 bands. In our proposal, a coplanar waveguide (CPW fed circular-disk monopole antenna is coupled with three split ring resonator (SRR units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.
Tri-band small monopole antenna based on SRR units
Shehata, Gehan; Mohanna, Mahmoud; Rabeh, Mohammed Lotfy
2015-12-01
In this paper a novel design for a tri-band monopole antenna coupled with metamaterial units is introduced. The proposed antenna was designed to cover WiMAX (2.5, 3.5) and WLAN (5.2) bands. In our proposal, a coplanar waveguide (CPW) fed circular-disk monopole antenna is coupled with three split ring resonator (SRR) units which exist on its back side. In our design a monopole antenna and SRR units are designed first to resonate at 5.2 GHz and 2.5 GHz respectively. In addition, antenna is loaded with post to force resonance at 3.5 GHz. SRR units are used for 2.5 GHz resonance to miniaturize antenna size, and our proposed antenna considered an electrically small antenna (ESA) at its first resonance frequency. Simulated and measured results exhibit a good agreement that validate our design.
Final results of magnetic monopole searches with the MACRO experiment
Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Kumar, A; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R
2002-01-01
We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles in the penetrating cosmic radiation, for the range 4*10/sup -5/< beta <1. Several searches with all the MACRO sub-detectors (i.e. scintillation counters, limited streamer tubes and nuclear track detectors) were performed, both in stand alone and combined ways. No candidates were detected and a 90% Confidence Level (C.L.) upper limit to the local magnetic monopole flux was set at the level of 1.4*10/sup -16/ cm/sup -2/ s/sup -1/ sr /sup -1/. This result is the first experimental limit obtained in direct searches which is well below the Parker bound in the whole beta range in which GUT magnetic monopoles are expected. (37 refs).
Are there Local Minima in the Magnetic Monopole Potential in Compact QED?
Bozkaya, H; Koppensteiner, P; Pitschmann, M
2004-01-01
We investigate the influence of the granularity of the lattice on the potential between monopoles. Using the flux definition of monopoles we introduce their centers of mass and are able to realize continuous shifts of the monopole positions. We find periodic deviations from the $1/r$-behavior of the monopole-antimonopole potential leading to local extrema. We suppose that these meta-stabilities may influence the order of the phase transition in compact QED.
Gravitational magnetic monopoles and Majumdar-Papapetrou stars
Lemos, José P. S.; Zanchin, Vilson T.
2006-04-01
A large amount of work has been dedicated to studying general relativity coupled to non-Abelian Yang-Mills type theories. It has been shown that the magnetic monopole, a solution of the Yang-Mills-Higgs equations can be coupled to gravitation. For a low Higgs mass there are regular solutions, and for a sufficiently massive monopole the system develops an extremal magnetic Reissner-Nordstrom quasi-horizon. These solutions, called quasi-black holes, although non-singular, are arbitrarily close to having a horizon. However, at the critical value the quasi-black hole turns into a degenerate spacetime. On the other hand, for a high Higgs mass, a sufficiently massive monopole develops also a quasi-black hole, but it turns into an extremal true horizon, with matter fields outside. One can also put a small Schwarzschild black hole inside the magnetic monopole, an example of a non-Abelian black hole. Surprisingly, Majumdar-Papapetrou systems, Abelian systems constructed from extremal dust, also show a resembling behavior. Previously, we have reported that one can find Majumdar-Papapetrou solutions which can be arbitrarily close of being a black hole, displaying quasi-black hole behavior. With the aim of better understanding the similarities between gravitational monopoles and Majumdar-Papapetrou systems, we study a system composed of two extremal electrically charged spherical shells (or stars, generically) in the Einstein--Maxwell--Majumdar-Papapetrou theory. We review the gravitational properties of the monopoles, and compare with the properties of the double extremal electric shell system. These quasi-black holes can help in the understanding of true black holes, and can give insight into the nature of the entropy of black holes in the form of entanglement.
Nonperturbative study of the 't Hooft-Polyakov monopole form factors
Rajantie, Arttu
2011-01-01
The mass and interactions of a quantum 't Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.
Nonperturbative study of the 't Hooft-Polyakov monopole form factors
Rajantie, Arttu; Weir, David J.
2012-01-01
The mass and interactions of a quantum ’t Hooft-Polyakov monopole are measured nonperturbatively using correlation functions in lattice Monte Carlo simulations. A method of measuring the form factors for interactions between the monopole and fundamental particles, such as the photon, is demonstrated. These quantities are potentially of experimental relevance in searches for magnetic monopoles.
A mild source for the Wu-Yang magnetic monopole
Constantinidis, C P; Luchini, G
2016-01-01
We establish that the Wu-Yang monopole needs the introduction of a magnetic point source at the origin in order for it to be a solution of the integral equations for the Yang-Mills theory. That result is corroborated by the analysis of the differential Yang-Mills equations using distribution theory. The subtlety lies on the fact that with the non-vanishing magnetic point source required by the Yang-Mills integral equations, the Wu-Yang monopole configuration does not violate, in the sense of distribution theory, the differential Bianchi identity.
Eikonal Scattering of Monopoles and Dyons in Dual QED
Gamberg, L P; Gamberg, Leonard; Milton, Kimball A.
2000-01-01
The quantum field theory of electron-point magnetic monopole interactions and dyon-dyon interactions, based on the string-dependent ``nonlocal'' action of Dirac and Schwinger is developed. We demonstrate that a nonperturbative quantum field theoretic formulation can be constructed resulting in a string {\\em independent} cross section for monopole-electron and dyon-dyon scattering. Such calculations can be done only by using nonperturbative approximations such as the eikonal and not by some mutilation of lowest-order perturbation theory.
Nontopological magnetic monopoles and new magnetically charged black holes
Lee, K; Kimyeong Lee; Erick J Weinberg
1994-01-01
The existence of nonsingular classical magnetic monopole solutions is usually understood in terms of topologically nontrivial Higgs field configurations. We show that finite energy magnetic monopole solutions also exist within a class of purely Abelian gauge theories containing charged vector mesons, even though the possibility of nontrivial topology does not even arise. provided that certain relationships among the parameters of the theory are satisfied. These solutions are singular if these relationships do not hold, but even then become meaningful once the theory is coupled to gravity, for they then give rise to an interesting new class of magnetically charged black holes with hair.
Nontopological magnetic monopoles and new magnetically charged black holes
Lee, Kimyeong; Weinberg, Erick J.
1994-08-01
The existence of nonsingular classical magnetic monopole solutions is usually understood in terms of topologically nontrivial Higgs field configurations. We show that finite energy magnetic monopole solutions also exist within a class of purely Abelian gauge theories containing charged vector mesons, even though the possibility of nontrivial topology does not even arise provided that certain relationships among the parameters of the theory are satisfied. These solutions are singular if these relationships do not hold, but even then become meaningful once the theory is coupled to gravity, for they then give rise to an interesting new class of magnetically charged black holes with hair.
Magnetic Monopole Search at high altitude with the SLIM experiment
Balestra, S; Cozzi, M; Errico, M; Fabbri, F; Giacomelli, G; Giacomelli, R; Giorgini, M; Kumar, A; Manzoor, S; McDonald, J; Mandrioli, G; Marcellini, S; Margiotta, A; Medinaceli, E; Patrizii, L; Pinfold, J L; Popa, V; Qureshi, I E; Saavedra, O; Sahnoun, Z; Sirri, G; Spurio, M; Togo, V; Velarde, A; Zanini, A
2008-01-01
The SLIM experiment was a large array of nuclear track detectors located at the Chacaltaya high altitude Laboratory (5230 m a.s.l.). The detector was in particular sensitive to Intermediate Mass Magnetic Monopoles, with masses 10^5 < M <10^{12} GeV. From the analysis of the full detector exposed for more than 4 years a flux upper limit of 1.3 x 10^{-15} cm^{-2} s^{-1} sr^{-1} for downgoing fast Intermediate Mass Monopoles was established at the 90% C.L.
Monopole condensation in two-flavour Adjoint QCD
Cossu, G; Di Giacomo, Adriano; Lacagnina, G; Pica, C
2006-01-01
Two distinct phase transitions occur at different temperatures in QCD with adjoint fermions (aQCD): deconfinement and chiral symmetry restoration. In this model, quarks do no explicitely break the center Z(3) symmetry and therefore the Polyakov loop is a good order parameter for the deconfinement transition. We study monopole condensation by inspecting the expectation value of an operator which creates a monopole. Such a quantity is expected to be an order parameter for the deconfinement transition as in the case of fundamental fermions.
Baryons and baryonic matter in the large Nc and heavy quark limits
Cohen, Thomas D; Ndousse, Kamal K
2011-01-01
This paper explores properties of baryons and finite density baryonic matter in an artificial world in which Nc, the number of colors, is large and the quarks of all species are degenerate and much larger than {\\Lambda}_QCD. It has long been known that in large Nc QCD, baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large Nc and heavy quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large Nc and heavy quark expansions the baryon mass is computed explicitly as is the baryon form factor. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin flavor structure, it is shown that in the formal heavy quark and large Nc limit interactions between baryons are strictly...
Diffuse baryonic matter beyond 2020
Markevitch, M; Nulsen, P; Rasia, E; Vikhlinin, A; Kravtsov, A; Forman, W; Brunetti, G; Sarazin, C; Elvis, M; Fabbiano, G; Hornschemeier, A; Brissenden, R
2009-01-01
The hot, diffuse gas that fills the largest overdense structures in the Universe -- clusters of galaxies and a web of giant filaments connecting them -- provides us with tools to address a wide array of fundamental astrophysical and cosmological questions via observations in the X-ray band. Clusters are sensitive cosmological probes. To utilize their full potential for precision cosmology in the following decades, we must precisely understand their physics -- from their cool cores stirred by jets produced by the central supermassive black hole (itself fed by inflow of intracluster gas), to their outskirts, where the infall of intergalactic medium (IGM) drives shocks and accelerates cosmic rays. Beyond the cluster confines lies the virtually unexplored warm IGM, believed to contain most of the baryonic matter in the present-day Universe. As a depository of all the matter ever ejected from galaxies, it carries unique information on the history of energy and metal production in the Universe. Currently planned ma...
Holography, charge and baryon asymmetry
Mongan, T R
2009-01-01
The holographic principle indicates the finite number of bits of information available on the particle horizon describes all physics within the horizon. Linking information on the horizon with Standard Model particles requires a holographic model describing constituents (preons) of Standard Model particles in terms of bits of information on the horizon. Standard Model particles have charges 0, 1/3, 2/3 or 1 in units of the electron charge e, so bits in a preon model must be identified with fractional charge. Energy must be transferred to change the state of a bit, and labeling the low energy state of a bit e/3n and the high energy state -e/3n amounts to defining electric charge. Any such charged preon model will produce more protons than anti-protons at the time of baryogenesis and require baryon asymmetry. It will also produce more positrons than electrons, as suggested by astrophysical measurements.
Light baryons and their excitations
Eichmann, Gernot; Fischer, Christian S.; Sanchis-Alepuz, Hèlios
2016-11-01
We study ground states and excitations of light octet and decuplet baryons within the framework of Dyson-Schwinger and Faddeev equations. We improve upon similar approaches by explicitly taking into account the momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. We perform calculations in both the three-body Faddeev framework and the quark-diquark approximation in order to assess the impact of the latter on the spectrum. Our results indicate that both approaches agree well with each other. The resulting spectra furthermore agree one-to-one with experiment, provided well-known deficiencies of the rainbow-ladder approximation are compensated for. We also discuss the mass evolution of the Roper and the excited Δ with varying pion mass and analyze the internal structure in terms of their partial wave decompositions.
Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---
Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.
We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of
Luo, W
2002-01-01
Magnetic monopoles can be used to explain the quantization of electric charge, and are predicted by gauge field theory. If monopoles exist, they could have been produced by the proton-antiproton collisions at the Tevatron collider—the highest energy accelerator existing in the world, and trapped in the CDF and DØ detectors. We took Al, Be, and Pb samples from the Tevatron and used the induction technique with SQUIDs (Superconducting Quantum Interference Devices) to detect monopoles in the samples. We did not find monopoles, but we have set new limits for the monopole mass and the relavant cross section based on a Drell-Yan model and Monte Carlo calculation.
Holographic heavy ion collisions with baryon charge
Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel
2016-01-01
We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.
More about the light baryon spectrum
Eichmann, Gernot
2016-01-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with 'anomalous' states, and we propose a method to eliminate them from the spectrum.
More About the Light Baryon Spectrum
Eichmann, Gernot
2017-03-01
We discuss the light baryon spectrum obtained from a recent quark-diquark calculation, implementing non-pointlike diquarks that are self-consistently calculated from their Bethe-Salpeter equations. We examine the orbital angular momentum content in the baryons' rest frame and highlight the fact that baryons carry all possible values of L compatible with their spin, without the restriction P=(-1)^L which is only valid nonrelativistically. We furthermore investigate the meaning of complex conjugate eigenvalues of Bethe-Salpeter equations, their possible connection with `anomalous' states, and we propose a method to eliminate them from the spectrum.
Analysis of Baryon Angular Correlations with Pythia
Mccune, Amara
2017-01-01
Our current understanding of baryon production is encompassed in the framework of the Lund String Fragmentation Model, which is then encoded in the Monte Carlo event generator program Pythia. In proton-proton collisions, daughter particles of the same baryon number produce an anti-correlation in $\\Delta\\eta\\Delta\\varphi$ space in ALICE data, while Pythia programs predict a correlation. To understand this unusual effect, where it comes from, and where our models of baryon production go wrong, correlation functions were systematically generated with Pythia. Effects of energy scaling, color reconnection, and popcorn parameters were investigated.
Pire, Bernard; Szymanowski, Lech
2010-01-01
We construct a spectral representation for the transition distribution amplitudes (TDAs), i.e. matrix elements of three quark correlators which arise e.g. in the description of baryon to meson and baryon to photon transitions within the factorization approach to hard exclusive reactions. We generalize for these quantities the notion of double distributions introduced in the context of generalized parton distributions. We propose the generalization of A.Radyushkin's factorized Ansatz for the case of baryon to meson and baryon to photon TDAs. Our construction opens the way to modeling of baryon to meson and baryon to photon TDAs in their complete domain of definition and quantitative estimates of cross-sections for various hard exclusive reactions.
Capacitance and effective area of flush monopole probes.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Johnson, William Arthur; Morris, Marvin E.; Basilio, Lorena I.; Lehr, Jane Marie; Higgins, Matthew B.
2004-08-01
Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry
Kaluza-Klein monopoles and gauged sigma-models
Bergshoeff, E; Janssen, B; Ortin, T; Alvarez-Gaumé, L.
1997-01-01
We propose an effective action for the eleven-dimensional (bosonic) Kaluza-Klein monopole solution. The construction of the action requires that the background fields admit an Abelian isometry group. The corresponding sigma-model is gauged with respect to this isometry. The gauged sigma-model is the
Kaluza-Klein Monopoles and Gauged Sigma Models
Bergshoeff, E.A.
1998-01-01
We review some aspects of branes. In particular, we discuss the worldvolume theory describing the dynamics of the Kaluza-Klein monopole which turns out to be a gauged sigma model. We also briefly review some recent applications of gauged sigma models to the worldvolume description of massive branes,
Primordial monopoles, proton decay, gravity waves and GUT inflation
Şenoğuz, Vedat Nefer
2016-01-01
We consider non-supersymmetric GUT inflation models in which intermediate mass monopoles may survive inflation because of the restricted number of e-foldings experienced by the accompanying symmetry breaking. Thus, an observable flux of primordial magnetic monopoles, comparable to or a few orders below the Parker limit, may be present in the galaxy. The mass scale associated with the intermediate symmetry breaking is $10^{13}$ GeV for an observable flux level, with the corresponding monopoles an order of magnitude or so heavier. Examples based on $SO(10)$ and $E_6$ yield such intermediate mass monopoles carrying respectively two and three units of Dirac magnetic charge. For GUT inflation driven by a gauge singlet scalar field with a Coleman-Weinberg or Higgs potential, compatibility with the Planck measurement of the scalar spectral index yields a Hubble constant (during horizon exit of cosmological scales) $H \\sim 7$--$9\\times10^{13}$ GeV, with the tensor to scalar ratio $r$ predicted to be $\\gtrsim0.02$. Pr...
Seiberg-Witten Like Monopole Equations on IR5
Institute of Scientific and Technical Information of China (English)
DE(G)IRMENCI Nedim; KARAPAZAR Senay
2011-01-01
We give an analogy of Seiberg-Witten monopole equations on flat Euclidian space R5. For this we used an irreducible representation of complex Clifford algebra Cl5. For the curvature equation we use a kind of self-duality notion of a 2-form on R5 which is given in[1].
Fermion dynamics in the Kaluza-Klein monopole geometry
Bais, F.A.; Batenburg, P.
1984-01-01
The behaviour of charged particles in the Kaluza-Klein monopole geometry is studied. A discussion of the five-dimensional geodesics is followed by an analysis of the corresponding Dirac equation. A main observation is that a charged particle cannot reach the core of the pole, in contrast with the co
Kaluza-Klein monopole and 5-brane effective actions
Eyras, E; Lozano, Y
2000-01-01
We review the construction of the Kaluza-Klein monopole of the Type IIA theory in the most general case of a massive background, as well as its relation via T-duality with the Type IIB NS-5-brane. This last effective action is shown to be related by S-duality to the D5-brane effective action. [GRAPH
Search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory
Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; De Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipcic, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; Garcia, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Dorosti Hasankiadeh, Qader; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Mueller, G.; Muller, M. A.; Mueller, S.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, H.; Nunez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Kala, J. Pe; Pelayo, R.; Pena-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rogozin, D.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanabria Gomez, J. D.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovanek, P.; Schroder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanic, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Duran, M.; Sudholz, T.; Suomijarvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tome, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villasenor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2016-01-01
We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Such particles, possibly a relic of phase transitions in the early Universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic r
Gravity of a noncanonical global monopole: conical topology and compactification
Prasetyo, Ilham
2015-01-01
We obtain solutions of Einstein's equations describing gravitational field outside a noncanonical global monopole with cosmological constant. In particular, we consider two models of k-monopoles: the Dirac-Born-Infeld (DBI) and the power-law types, and study their corresponding exterior gravitational fields. For each model we found two types of solutions. The first of which are global k-monopole black hole with conical global topology. These are generalizations of the Barriola-Vilenkin solution of global monopole. The appearance of noncanonical kinetic terms does not modify the critical symmetry-breaking scale, $\\eta_{crit}$, but it does affect the corresponding horizon(s). The second type of solution is compactification, whose topology is a product of two $2$-dimensional spaces with constant curvatures; ${\\mathcal Y}_4\\rightarrow {\\mathcal Z}_2\\times S^2$, with ${\\mathcal Y}, {\\mathcal Z}$ can be de Sitter, Minkowski, or Anti-de Sitter, and $S^2$ is the $2$-sphere. We investigate all possible compactificatio...
Gravitational magnetic monopoles and Majumdar-Papapetrou stars
Lemos, J P S; Lemos, Jose' P. S.; Zanchin, Vilson T.
2006-01-01
A large amount of work has been dedicated to studying general relativity coupled to non-Abelian Yang-Mills type theories. It has been shown that the magnetic monopole, a solution of the Yang-Mills-Higgs equations can be coupled to gravitation. For a low Higgs mass there are regular solutions, and for a sufficiently massive monopole the system develops an extremal magnetic Reissner-Nordstrom quasi-horizon. These solutions, called quasi-black holes, although non-singular, are arbitrarily close to having a horizon. However, at the critical value the quasi-black hole turns into a degenerate spacetime. On the other hand, for a high Higgs mass, a sufficiently massive monopole develops also a quasi-black hole, but it turns into an extremal true horizon, with matter fields outside. One can also put a small Schwarzschild black hole inside the magnetic monopole, an example of a non-Abelian black hole. Surprisingly, Majumdar-Papapetrou systems, Abelian systems constructed from extremal dust, also show a resembling behav...
Search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory
Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; De Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipcic, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; Garcia, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glas, D.; Glaser, C.; Glass, H.; Golup, G.; Gomez Berisso, M.; Gomez Vitale, P. F.; Gonzalez, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Dorosti Hasankiadeh, Qader; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Mezek, G. Kukec; Kunka, N.; Awad, A. Kuotb; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; Lopez, R.; Lopez Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Maris, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafa, M.; Mueller, G.; Muller, M. A.; Mueller, S.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, H.; Nunez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Kala, J. Pe; Pelayo, R.; Pena-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rogozin, D.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanabria Gomez, J. D.; Sanchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovanek, P.; Schroder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanic, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Duran, M.; Sudholz, T.; Suomijarvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tome, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villasenor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczynski, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2016-01-01
We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Such particles, possibly a relic of phase transitions in the early Universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic r
Primordial monopoles, proton decay, gravity waves and GUT inflation
Directory of Open Access Journals (Sweden)
Vedat Nefer Şenoğuz
2016-01-01
Full Text Available We consider non-supersymmetric GUT inflation models in which intermediate mass monopoles may survive inflation because of the restricted number of e-foldings experienced by the accompanying symmetry breaking. Thus, an observable flux of primordial magnetic monopoles, comparable to or a few orders below the Parker limit may be present in the galaxy. The mass scale associated with the intermediate symmetry breaking is 1013 GeV for an observable flux level, with the corresponding monopoles an order of magnitude or so heavier. Examples based on SO(10 and E6 yield such intermediate mass monopoles carrying respectively two and three units of Dirac magnetic charge. For GUT inflation driven by a gauge singlet scalar field with a Coleman–Weinberg or Higgs potential, compatibility with the Planck measurement of the scalar spectral index yields a Hubble constant (during horizon exit of cosmological scales H∼7–9×1013 GeV, with the tensor to scalar ratio r predicted to be ≳0.02. Proton lifetime estimates for decays mediated by the superheavy gauge bosons are also provided.
Search for relativistic magnetic monopoles with the ANTARES neutrino telescope
Adrián-Martínez, S.; Aguilar, J.A.; Kooijman, P.; Zuniga, J.
2012-01-01
Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magneti
Fermion dynamics in the Kaluza-Klein monopole geometry
Bais, F.A.; Batenburg, P.
1984-01-01
The behaviour of charged particles in the Kaluza-Klein monopole geometry is studied. A discussion of the five-dimensional geodesics is followed by an analysis of the corresponding Dirac equation. A main observation is that a charged particle cannot reach the core of the pole, in contrast with the co
Baryon Acoustic Oscillations in the Ly-\\alpha\\ forest of BOSS quasars
Busca, Nicolás G; Rich, James; Bailey, Stephen; Font-Ribera, Andreu; Kirkby, David; Goff, J -M Le; Pieri, Matthew M; Slosar, Anze; Aubourg, Éric; Bautista, Julian E; Bizyaev, Dmitry; Blomqvist, Michael; Bolton, Adam S; Bovy, Jo; Brewington, Howard; Borde, Arnaud; Brinkmann, J; Carithers, Bill; Croft, Rupert A C; Dawson, Kyle S; Ebelke, Garrett; Eisenstein, Daniel J; Hamilton, Jean-Christophe; Ho, Shirley; Hogg, David W; Honscheid, Klaus; Lee, Khee-Gan; Lundgren, Britt; Malanushenko, Elena; Malanushenko, Viktor; Margala, Daniel; Maraston, Claudia; Mehta, Kushal; Miralda-Escudé, Jordi; Myers, Adam D; Nichol, Robert C; Noterdaeme, Pasquier; Olmstead, Matthew D; Oravetz, Daniel; Palanque-Delabrouille, Nathalie; Pan, Kaike; Pâris, Isabelle; Percival, Will J; Petitjean, Patrick; Roe, N A; Rollinde, Emmanuel; Ross, Nicholas P; Rossi, Graziano; Schlegel, David J; Schneider, Donald P; Shelden, Alaina; Sheldon, Erin S; Simmons, Audrey; Snedden, Stephanie; Tinker, Jeremy L; Viel, Matteo; Weaver, Benjamin A; Weinberg, David H; White, Martin; Yèche, Christophe; York, Donald G; Zhao, Gong-Bo
2012-01-01
We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted flux fraction in the \\Lya forest of high-redshift quasars. The study uses 48,640 quasars in the redshift range $2.1\\le z \\le 3.5$ from the Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean redshift $z=2.3$, we measure the monopole and quadrupole components of the correlation function for separations in the range $20\\hMpc
Masses and magnetic moments of ground-state baryons in covariant baryon chiral perturbation theory
Geng, L S; Alvarez-Ruso, L; Vicente-Vacas, M J
2012-01-01
We report on some recent developments in our understanding of the light-quark mass dependence and the SU(3) flavor symmetry breaking corrections to the magnetic moments of the ground-state baryons in a covariant formulation of baryon chiral perturbation theory, the so-called EOMS formulation. We show that this covariant ChPT exhibits some promising features compared to its heavy-baryon and infrared counterparts.
Suppression of Baryon Diffusion and Transport in a Baryon Rich Strongly Coupled Quark-Gluon Plasma.
Rougemont, Romulo; Noronha, Jorge; Noronha-Hostler, Jacquelyn
2015-11-13
Five dimensional black hole solutions that describe the QCD crossover transition seen in (2+1)-flavor lattice QCD calculations at zero and nonzero baryon densities are used to obtain predictions for the baryon susceptibility, baryon conductivity, baryon diffusion constant, and thermal conductivity of the strongly coupled quark-gluon plasma in the range of temperatures 130 MeV≤T≤300 MeV and baryon chemical potentials 0≤μ(B)≤400 MeV. Diffusive transport is predicted to be suppressed in this region of the QCD phase diagram, which is consistent with the existence of a critical end point at larger baryon densities. We also calculate the fourth-order baryon susceptibility at zero baryon chemical potential and find quantitative agreement with recent lattice results. The baryon transport coefficients computed in this Letter can be readily implemented in state-of-the-art hydrodynamic codes used to investigate the dense QGP currently produced at RHIC's low energy beam scan.
Baryon asymmetry from primordial black holes
Hamada, Yuta
2016-01-01
We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming presence of a microscopic baryon (or lepton) number violation and a CP violating operator such as $\\partial_\\alpha F(\\mathcal{R_{....}} ) J^\\alpha$ where $F(\\mathcal{R_{....}})$ is a scalar function of the Riemann tensor, time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH enumerates asymmetric Hawking radiation between baryons (leptons) and anti-baryons (leptons). Though the operator is higher dimensional and largely suppressed by a high mass scale $M_*$, we show that sufficient amount of asymmetry can be generated for wide range of parameters of the PBH mass $M_{\\rm PBH}$, its abundance $\\Omega_{\\rm PBH}$, and the scale $M_*$.
Baryonic torii: Toroidal baryons in a generalized Skyrme model
Gudnason, Sven Bjarke; Nitta, Muneto
2015-02-01
We study a Skyrme-type model with a potential term motivated by Bose-Einstein condensates (BECs), which we call the BEC Skyrme model. We consider two flavors of the model: the first is the Skyrme model, and the second has a sixth-order derivative term instead of the Skyrme term, both with the added BEC-motivated potential. The model contains toroidally shaped Skyrmions, and they are characterized by two integers P and Q , representing the winding numbers of two complex scalar fields along the toroidal and poloidal cycles of the torus, respectively. The baryon number is B =P Q . We find stable Skyrmion solutions for P =1 ,2 ,3 ,4 ,5 with Q =1 , while for P =6 and Q =1 , it is only metastable. We further find that configurations with higher Q >1 are all unstable and split into Q configurations with Q =1 . Finally we discover a phase transition, possibly of first order, in the mass parameter of the potential under study.
Heavy Flavor Baryons at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Kuhr, Thomas
2011-09-01
The Tevatron experiments CDF and D0 have filled many empty spots in the spectrum of heavy baryons over the last few years. The most recent results are described in this article: The first direct observation of the {Xi}{sub b}{sup 0}, improved measurements of {Sigma}{sub b} properties, a new measurement of the {Lambda}{sub b} {yields} J/{psi}{Lambda} branching ratio, and a high-statistics study of charm baryons.
Structure and reactions of pentaquark baryons
Indian Academy of Sciences (India)
Atsushi Hosaka
2006-04-01
We review the current status of the exotic pentaquark baryons. After a brief look at experiments of both positive and negative results, we discuss theoretical methods to study the structure and reactions for the pentaquarks. First we introduce the quark model and the chiral soliton model, where we discuss the relation of mass spectrum and parity with some emphasis on the role of chiral symmetry. It is always useful to picture the structure of the pentaquarks in terms of quarks. As for other methods, we discuss a model-independent method, and briefly mention the results from the lattice and QCD sum rule. Decay properties are then studied in some detail, which is one of the important properties of +. We investigate the relation between the decay width and the quark structure having certain spin-parity quantum numbers. Through these analyses, we consider as plausible quantum numbers of +, = 3/2-. In the last part of this note, we discuss production reactions of + which provide links between the theoretical models and experimental information. We discuss photoproductions and hadron-induced reactions which are useful to explore the nature of +.
Baryon Acoustic Oscillations reconstruction with pixels
Obuljen, Andrej; Castorina, Emanuele; Viel, Matteo
2016-01-01
Gravitational non-linear evolution induces a shift in the position of the baryon acoustic oscillations (BAO) peak together with a damping and broadening of its shape that bias and degrades the accuracy with which the position of the peak can be determined. BAO reconstruction is a technique developed to undo part of the effect of non-linearities. We present a new reconstruction method that consists in displacing pixels instead of galaxies and whose implementation is easier than the standard reconstruction method. We show that our method is equivalent to the standard reconstruction technique in the limit where the number of pixels becomes very large. This method is particularly useful in surveys where individual galaxies are not resolved, as in 21cm intensity mapping observations. We validate our method by reconstructing mock pixelated maps, that we build from the distribution of matter and halos in real- and redshift-space, from a large set of numerical simulations. We find that our method is able to decrease ...
The baryon content of the Cosmic Web
Eckert, Dominique; Jauzac, Mathilde; Shan, HuanYuan; Kneib, Jean-Paul; Erben, Thomas; Israel, Holger; Jullo, Eric; Klein, Matthias; Massey, Richard; Richard, Johan; Tchernin, Céline
2015-01-01
Big-Bang nucleosynthesis indicates that baryons account for 5% of the Universe’s total energy content[1]. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two[2,3]. Cosmological simulations indicate that the missing baryons have not yet condensed into virialised halos, but reside throughout the filaments of the cosmic web: a low-density plasma at temperature 105–107 K known as the warm-hot intergalactic medium (WHIM)[3,4,5,6]. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars[7,8,9,10] and hot gas between interacting clusters[11,12,13,14]. These observations were however unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of ten-million-degree gas associated with the galaxy cluster Abell 2744. Previous observations of this cluster[15] were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over 8 Mpc scales. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. PMID:26632589
Spin-flavor composition of excited baryons
Fernando, Ishara; Goity, Jose
2015-10-01
The excited baryon masses are analyzed in the framework of the 1 /Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU (6) × O (3) , where the [ 56 ,lP =0+ ] ground state and excited baryons, and the [ 56 ,2+ ] and [ 70 ,1- ] excited states are analyzed. The analyses are carried out to O 1 /Nc and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. Predictions for physically unknown states for each multiplet are obtained. From the quark-mass dependence of the coefficients in the baryon mass formulas an increasingly simpler picture of the spin-flavor composition of the baryons is observed with increasing pion mass (equivalently, increasing mu , d masses), as measured by the number of significant mass operators. This work was supported in part by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility (J. L. G.), and by the NSF (USA) through Grant PHY-0855789 and PHY-1307413 (I. P. F and J. L. G).
Dirac Monopole from Lorentz Symmetry in N-Dimensions: II. The Generalized Monopole
Land, M
2006-01-01
In a previous paper, we found an extension of the N-dimensional Lorentz generators that partially restores the closed operator algebra in the presence of a Maxwell field, and is conserved under system evolution. Generalizing the construction found by Berard, Grandati, Lages and Mohrbach for the angular momentum operators in the O(3)-invariant nonrelativistic case, we showed that the construction can be maximally satisfied in a three dimensional subspace of the full Minkowski space; this subspace can be chosen to describe either the O(3)-invariant space sector, or an O(2,1)-invariant restriction of spacetime. When the O(3)-invariant subspace is selected, the field solution reduces to the Dirac monopole field found in the nonrelativistic case. For the O(2,1)-invariant subspace, the Maxwell field can be associated with a Coulomb-like potential on spacetime, similar to that used by Horwitz and Arshansky to obtain a covariant generalization of the hydrogen-like bound state. In this paper we elaborate on the genera...
Disentanglement of Electromagnetic Baryon Properties
Sadasivan, Daniel; Doring, Michael
2017-01-01
Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Energy Technology Data Exchange (ETDEWEB)
Kato, Y.; Iijima, T.; Adachi, I.; Aihara, H.; Asner, D. M.; Aushev, T.; Bakich, A. M.; Bala, A.; Ban, Y.; Bhardwaj, V.; Bhuyan, B.; Bobrov, A.; Bonvicini, G.; Bozek, A.; Bračko, M.; Browder, T. E.; Červenkov, D.; Chekelian, V.; Chen, A.; Cheon, B. G.; Chilikin, K.; Chistov, R.; Cho, K.; Chobanova, V.; Choi, Y.; Cinabro, D.; Dalseno, J.; Danilov, M.; Doležal, Z.; Drásal, Z.; Drutskoy, A.; Dutta, D.; Dutta, K.; Eidelman, S.; Farhat, H.; Fast, J. E.; Ferber, T.; Gaur, V.; Gabyshev, N.; Ganguly, S.; Garmash, A.; Gillard, R.; Goh, Y. M.; Golob, B.; Haba, J.; Hayasaka, K.; Hayashii, H.; He, X. H.; Horii, Y.; Hoshi, Y.; Hou, W. -S.; Hsiung, Y. B.; Inami, K.; Ishikawa, A.; Iwasaki, Y.; Iwashita, T.; Jaegle, I.; Julius, T.; Kang, J. H.; Kato, E.; Kawasaki, T.; Kiesling, C.; Kim, D. Y.; Kim, H. J.; Kim, J. B.; Kim, J. H.; Kim, M. J.; Kim, Y. J.; Klucar, J.; Ko, B. R.; Kodyš, P.; Korpar, S.; Krokovny, P.; Kuhr, T.; Kuzmin, A.; Kwon, Y. -J.; Lee, S. -H.; Li, J.; Li, Y.; Li Gioi, L.; Libby, J.; Liu, Y.; Liventsev, D.; Matvienko, D.; Miyabayashi, K.; Miyata, H.; Mizuk, R.; Moll, A.; Muramatsu, N.; Mussa, R.; Nagasaka, Y.; Nakano, E.; Nakao, M.; Nakazawa, H.; Nayak, M.; Nedelkovska, E.; Ng, C.; Niiyama, M.; Nisar, N. K.; Nishida, S.; Nitoh, O.; Ogawa, S.; Okuno, S.; Pakhlov, P.; Pakhlova, G.; Park, C. W.; Park, H.; Park, H. K.; Pedlar, T. K.; Peng, T.; Pestotnik, R.; Petrič, M.; Piilonen, L. E.; Ritter, M.; Röhrken, M.; Rostomyan, A.; Sahoo, H.; Saito, T.; Sakai, Y.; Sandilya, S.; Santelj, L.; Sanuki, T.; Savinov, V.; Schneider, O.; Schnell, G.; Schwanda, C.; Semmler, D.; Senyo, K.; Seon, O.; Shapkin, M.; Shen, C. P.; Shibata, T. -A.; Shiu, J. -G.; Shwartz, B.; Sibidanov, A.; Sohn, Y. -S.; Sokolov, A.; Solovieva, E.; Stanič, S.; Starič, M.; Steder, M.; Sumihama, M.; Sumiyoshi, T.; Tamponi, U.; Tanida, K.; Tatishvili, G.; Teramoto, Y.; Uchida, M.; Uehara, S.; Uglov, T.; Unno, Y.; Uno, S.; Van Hulse, C.; Vanhoefer, P.; Varner, G.; Vinokurova, A.; Vorobyev, V.; Wagner, M. N.; Wang, C. H.; Wang, M. -Z.; Wang, P.; Watanabe, M.; Watanabe, Y.; Williams, K. M.; Won, E.; Yamashita, Y.; Yashchenko, S.; Zhang, Z. P.; Zhilich, V.; Zhulanov, V.; Zupanc, A.
2014-03-17
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider.
Dielectric Analysis for Torque of a Solute Ion Coulomb Force Monopole Motor
Fresco, Anthony N.
ASME Technical Paper ES2010-90396 "Solute Ion Coulomb Force Monopole Motor and Solute Ion Linear Alignment Propulsion" by the author describes a motor that is based on an arrangement of solute ion electric field monopoles.[1] That is, through a process called capacitive deionization, sodium and chlorine ions in salt water are captured and confined by an electrically conductive material to form electric field monopoles. At least four of the like charged monopoles (all negative or all positive) can be arranged on a disc. At least one stationary monopole of the same charge is placed adjacent to the disc and positioned so that a repulsive electric field is formed between the stationary monopole and at least one of the monopoles positioned on the disc so that the disc is then forced to rotate a shaft at the center of the disc. This paper analyzes the behavior of the dielectric materials forming part of the monopoles to show that the net torque on the motor is greater than zero and also illustrates a novel effect of polarization of a dielectric material positioned between two like-charged monopoles as occurs in the configuration of the monopole motor and a deficiency in the conventional closed path analysis for work performed during movement of electric charges that emit electrostatic fields by failing to consider the effects of dielectric materials in shielding the electrostatic fields. The monopole motor connected to an to electrical generator can provide continuous on-board electrical power to electrical loads for local and deep space applications including power to electrode assemblies designed for linear alignment of like-charged solute ions as a means of propulsion and particle acceleration as described in the ES2010-90396 paper. Details of the monopole motor and the propulsion are available in WO 2008/024927 A2 (and US2010/0199632 A1) "Solute Ion Coulomb Force Acceleration and Electric Field Monopole Passive Voltage Source" by the author Ref.[2].
Baryon-baryon bound states in a (2+1)-dimensional lattice QCD model
Faria da Veiga, Paulo A.; O'Carroll, Michael; Schor, Ricardo
2003-08-01
We consider bound states of two baryons (antibaryons) in lattice QCD in a Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter 0<κ≪1 and large glueball mass, we recently showed the existence of a (anti)baryonlike particle, with an asymptotic mass of the order of -3 ln κ and with an isolated dispersion curve, i.e., an upper gap property persisting up to near the meson-baryon threshold, which is of order -5 ln κ. Here, we show that there is no baryon-baryon (or antibaryon-antibaryon) bound state solution to the Bethe-Salpeter equation up to the two-baryon threshold, which is approximately -6 ln κ.
Finite baryon density effects on gauge field dynamics
Bödeker, Dietrich
2001-01-01
We discuss the effective action for QCD gauge fields at finite temperatures and densities, obtained after integrating out the hardest momentum scales from the system. We show that a non-vanishing baryon density induces a charge conjugation (C) odd operator to the gauge field action, proportional to the chemical potential. Even though it is parametrically smaller than the leading C even operator, it could have an important effect on C odd observables. The same operator appears to be produced by classical kinetic theory, allowing in principle for a non-perturbative study of such processes.
Vanishing DC holographic conductivity from a magnetic monopole condensate
Rougemont, Romulo; Zarro, Carlos A D; Wotzasek, Clovis; Guimaraes, Marcelo S; Granado, Diego R
2015-01-01
We show how to obtain a vanishing DC conductivity in 3-dimensional strongly coupled QFT's using a massive 2-form field in the bulk that satisfies a special kind of boundary condition. The real and imaginary parts of the AC conductivity are evaluated in this holographic setup and we show that the DC conductivity identically vanishes even for an arbitrarily small (though nonzero) value of the 2-form mass in the bulk. We identify the bulk action of the massive 2-form with the low energy effective theory describing the long wavelength excitations of a magnetic monopole condensate in the bulk. Our results indicate that a condensate of magnetic monopoles in a 4-dimensional bulk lead to a vanishing DC holographic conductivity in 3-dimensional strongly coupled QFT's.
Change of radiation pattern in a plasma monopole antenna
Siahpoush, V.; Shokri, B.
2016-07-01
In the present work, we have numerically solved the dispersion equation of the surface wave propagating on a uniform collisional plasma column. The electric field and surface current distributions have been computed in different situations. We have investigated the effect of plasma frequency variation on the spatial distribution of the surface current. Results show that varying the electron density of the plasma column enables the plasma column to work as a plasma monopole antenna with a fixed geometrical structure and excited frequency which is able to create different radiation patterns. Our numerical analysis also shows that a little change in the radius of the plasma column has a strong influence on the current distribution at the excited frequency in RF region. This effect can be ignored in the usual (metallic) antenna while it is very important in designing of the plasma monopole antenna.
Monopoles and Modifications of Bundles over Elliptic Curves
Directory of Open Access Journals (Sweden)
Andrey M. Levin
2009-06-01
Full Text Available Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve. This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
Search for Relativistic Magnetic Monopoles with IceCube
Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M
2012-01-01
We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\\Phi_{\\mathrm{90%C.L.}}\\sim 3\\e{-18}\\fluxunits$ for $\\beta\\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass and kinetic energy values.
Intersections of S-branes with waves and monopoles
Energy Technology Data Exchange (ETDEWEB)
Besken, Mert, E-mail: mbesken@physics.ucla.edu [Dept. of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Deger, Nihat Sadik, E-mail: sadik.deger@boun.edu.tr [Dept. of Mathematics, Bogazici University, Bebek, 34342 Istanbul (Turkey)
2015-05-15
We construct intersections of S-branes with waves and Kaluza–Klein monopoles. There are several possible ways to add a monopole to an S-brane solution similar to p-branes. On the other hand, one may add a wave only to the transverse space of an S-brane unlike a p-brane where wave resides on its worldvolume. The metric function of the wave is a harmonic function of the remaining transverse directions and an extra condition on integration constants is needed. We also show that it is not possible to add an S-brane to p-brane intersections whose near horizon geometry has an AdS part.
Do Large Abelian Monopole Loops Survive the Continuum Limit?
Grady, M
1999-01-01
An analysis of the monopole loop length distribution is performed in Wilson-action SU(2) lattice gauge theory. A pure power law in the inverse length is found, at least for loops of length, $l$, less than the linear lattice size $N$. This power shows a definite $\\beta$ dependence, passing 5 around $\\beta =2.9$, and appears to have very little finite lattice size dependence. It is shown that when this power exceeds 5, no loops any finite fraction of the lattice size will survive the infinite lattice limit. This is true for any reasonable size distribution for loops larger than N. The apparent lack of finite size dependence in this quantity would seem to indicate that abelian monopole loops large enough to cause confinement do not survive the continuum limit. Indeed they are absent for all $\\beta > 2.9$.
Search for relativistic magnetic monopoles with IceCube
Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.
2013-01-01
We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1km3. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2km3 of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Φ90%C.L.˜3×10-18cm-2sr-1s-1 for β≥0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost γ below 107. This result is then interpreted for a wide range of mass and kinetic energy values.
Seiberg-Witten monopoles: Weyl semimetal coupled to chiral magnets
Yu, Yue
2016-01-01
We study a Weyl semimetal which couples to local magnets. In the continuum limit, the Hamiltonian of the system matches the Chern-Simons-Maxwell-Dirac functional and then the ground state is governed by generalized Seiberg-Witten (SW) or Freund equations in terms of the sign of Dzyaloshinskii-Moriya coupling. The ground states determined by the Freund equations may either be monopolar Weyl semimetal accompanied by the ferromagnetic magnets or SW monopoles which consist of spheric Weyl fermions coupled to chiral magnets, depending on the strength of the Kondo coupling. The latter topological ground state is characterized by SW invariants. There are also the SW monopole solutions carrying an opposite SW invariant for the SW equations. They are metastable because the ground state of the system in this case is a monopolar Weyl semimetal accompanied by the ferromagnetic magnets.
Electric transport in three-dimensional skyrmion/monopole crystal
Zhang, Xiao-Xiao; Mishchenko, Andrey S.; De Filippis, Giulio; Nagaosa, Naoto
2016-11-01
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by skyrmion strings. This spin structure is proposed for MnGe based on neutron scattering experiments as well as Lorentz transmission electron microscopy observations. Equipped with a sophisticated spectral analysis method, we adopt the finite temperature Green's function technique to calculate the longitudinal dc electric transport in such a system. We consider conduction electrons interacting with spin waves of the topologically nontrivial spin texture, wherein fluctuations of monopolar emergent magnetic fields enter. We study in detail the behavior of electric resistivity under the influence of temperature, external magnetic field, and a characteristic monopole motion, especially a novel magnetoresistivity effect describing the latest experimental observations in MnGe, wherein a topological phase transition signifying strong correlations is identified.
A Statistical Model of Current Loops and Magnetic Monopoles
Energy Technology Data Exchange (ETDEWEB)
Ayyer, Arvind, E-mail: arvind@math.iisc.ernet.in [Indian Institute of Science, Department of Mathematics (India)
2015-12-15
We formulate a natural model of loops and isolated vertices for arbitrary planar graphs, which we call the monopole-dimer model. We show that the partition function of this model can be expressed as a determinant. We then extend the method of Kasteleyn and Temperley-Fisher to calculate the partition function exactly in the case of rectangular grids. This partition function turns out to be a square of a polynomial with positive integer coefficients when the grid lengths are even. Finally, we analyse this formula in the infinite volume limit and show that the local monopole density, free energy and entropy can be expressed in terms of well-known elliptic functions. Our technique is a novel determinantal formula for the partition function of a model of isolated vertices and loops for arbitrary graphs.
Vanishing DC holographic conductivity from a magnetic monopole condensate
Energy Technology Data Exchange (ETDEWEB)
Rougemont, Romulo [Instituto de Física, Universidade de São Paulo,C.P. 66318, 05315-970, São Paulo, SP (Brazil); Noronha, Jorge [Instituto de Física, Universidade de São Paulo,C.P. 66318, 05315-970, São Paulo, SP (Brazil); Department of Physics, Columbia University,538 West 120th Street, New York, NY 10027 (United States); Zarro, Carlos A.D.; Wotzasek, Clovis [Instituto de Física, Universidade Federal do Rio de Janeiro,21941-972, Rio de Janeiro, RJ (Brazil); Guimaraes, Marcelo S. [Instituto de Física, Universidade do Estado do Rio de Janeiro,20550-013, Rio de Janeiro, RJ (Brazil); Granado, Diego R. [Instituto de Física, Universidade do Estado do Rio de Janeiro,20550-013, Rio de Janeiro, RJ (Brazil); Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent (Belgium)
2015-07-14
We show how to obtain a vanishing DC conductivity in 3-dimensional strongly coupled QFT’s using a massive 2-form field in the bulk that satisfies a special kind of boundary condition. The real and imaginary parts of the AC conductivity are evaluated in this holographic setup and we show that the DC conductivity identically vanishes even for an arbitrarily small (though nonzero) value of the 2-form mass in the bulk. We identify the bulk action of the massive 2-form with an effective theory describing a phase in which magnetic monopoles have condensed in the bulk. Our results indicate that a condensate of magnetic monopoles in a 4-dimensional bulk leads to a vanishing DC holographic conductivity in 3-dimensional strongly coupled QFT’s.
Complete Monopole Dominance of the Static Quark Potential
Cundy, Nigel
2016-01-01
In earlier work, we used a gauge independent Abelian Decomposition to show that Abelian degrees of freedom are wholly responsible for the static quark potential. The restricted Abelian field can be split into two terms, a Maxwell term and a $\\theta$ (Dirac) term. The $\\theta$ term's contribution to the string tension can be analysed theoretically and numerically, and arises because of the existence of a certain type of monopole. While the Abelian field can be constructed without gauge fixing, its two component parts are gauge-dependent, with a gauge transformation moving the topological features from one part to another. This allows us to isolate and identify the topological objects responsible for confinement by constructing a gauge where the $\\theta$ term wholly accounts for the string tension. We confirm the presence of these monopoles in lattice simulations of SU(2) Yang-Mills theory.
Vortex Lines and Monopoles in Electrically Conducting Plasmas
Institute of Scientific and Technical Information of China (English)
WANG Ji-Biao; REN Ji-Rong; LI Ran
2009-01-01
Based on the C-mapping topological current theory and the decomposition of gauge potential theory, the vortex lines and the monopoles in electrically conducting plasmas are studied.It is pointed out that these two topological structures respectively inhere in two-dimensional and three-dimensional topological currents, which can be derived from the same topological term , and both these topological structures are characterized by the φ-mapping topological numbers-Hopf indices and Brouwer degrees.Furthermore, the spatial bifurcation of vortex lines and the generation and annihilation of monopoles are also discussed.At last, we point out that the Hopf invariant is a proper topological invariant to describe the knotted solitons.
Searches for Magnetic Monopoles and Anomalously Charged Objects with ATLAS
Katre, Akshay; The ATLAS collaboration
2016-01-01
Results of searches for highly ionising particles and particles with anomalously high electric charge produced in proton-proton collisions in the ATLAS detector are presented. Such signatures, encompassing particles with charges from 10 to 60 times the electron charge, involve high levels of ionization in the ATLAS detector and can arise from magnetic monopoles or models involving technicolor, doubly charged Higgs bosons or composite dark matter models.
Quantum Entropy of Black Hole with Internal Global Monopole
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; YANG Shu-Zheng; LIU Wen-Biao
2005-01-01
Using the generalized uncertainty relation, the new equation of state density is obtained, and then the entropy of black hole with an internal global monopole is discussed. The divergence that appears in black hole entropy calculation through original brick-wall model is overcome. The result of the direct proportion between black hole entropy and its event horizon area is drawn and given. The result shows that the black hole entropy must be the entropy of quantum state near the event horizon.
Electric transport in three-dimensional Skyrmion/monopole crystal
Zhang, Xiao-Xiao; Mishchenko, Andrey S.; De Filippis, Giulio; Nagaosa, Naoto
2016-01-01
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for MnGe based on the neutron scattering experiment as well as the Lorentz transmission electron microscopy observation. Equipped with a sophisticated spectral analysis method, we adopt finite temperature Green's function technique to calculate the lon...
Monopole condensation in two-flavour Adjoint QCD
Cossu, G; Di Giacomo, A; Lacagnina, G; Pica, C
2008-01-01
In QCD with adjoint fermions (aQCD) the deconfining transition takes place at a lower temperature than the chiral transition. We study the two transitions by use of the Polyakov Loop, the monopole order parameter and the chiral condensate. The deconfining transition is first order, the chiral is a crossover. The order parameters for confinement are not affected by the chiral transition. We conclude that the degrees of freedom relevant to confinement are different from those describing chiral symmetry.
Second Hopf map and supersymmetric mechanics with Yang monopole
Energy Technology Data Exchange (ETDEWEB)
Gonzales, M.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z. [Universidade Federal do ABC, Santo Andre, SP (Brazil); Nersessian, F. [Artsakh State University, Stepanakert (Armenia); Yeghikyan, V. [Yerevan State University (Armenia)
2009-07-01
We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)
Search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory
Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; PÈ©kala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration
2016-10-01
We present a search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Such particles, possibly a relic of phase transitions in the early Universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air-shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultrarelativistic magnetic monopoles range from 10-19(cm2 sr s )-1 for a Lorentz factor γ =1 09 to 2.5 ×10-21(cm2 sr s )-1 for γ =1 012. These results—the first obtained with a UHECR detector—improve previously published limits by up to an order of magnitude.
Electrically charged one-and-a-half monopole solution
Energy Technology Data Exchange (ETDEWEB)
Teh, Rosy; Ng, Ban-Loong; Wong, Khai-Ming [Universiti Sains Malaysia, School of Physics, USM Penang (Malaysia)
2014-05-15
Recently, we have discussed the coexistence of a finite energy one-half monopole and a 't Hooft-Polyakov monopole of opposite magnetic charges. In this paper, we would like to introduce electric charge into this new monopoles configuration, thus creating a one-and-a-half dyon. This new dyon possesses finite energy, magnetic dipole moment, and angular momentum and is able to precess in the presence of an external magnetic field. Similar to the other dyon solutions, when the Higgs self-coupling constant, λ, is nonvanishing, this new dyon solution possesses critical electric charge, total energy, magnetic dipolemoment, and dipole separation as the electric charge parameter, η, approaches 1. The electric charge and total energy increase with η to maximum critical values as η → 1 for all nonvanishing λ. However, the magnetic dipole moment decreases with η when λ ≥ 0.1 and the dipole separation decreases with η when λ ≥ 1 to minimum critical values as η → 1. (orig.)
Monopole operators from the 4−ϵ expansion
Energy Technology Data Exchange (ETDEWEB)
Chester, Shai M. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University,Princeton, NJ 08544 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States); Yaakov, Itamar [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States); Kavli IPMU (WPI), UTIAS, The University of Tokyo,Kashiwa, Chiba 277-8583 (Japan)
2016-12-05
Three-dimensional quantum electrodynamics with N charged fermions contains monopole operators that have been studied perturbatively at large N. Here, we initiate the study of these monopole operators in the 4−ϵ expansion by generalizing them to codimension-3 defect operators in d=4−ϵ spacetime dimensions. Assuming the infrared dynamics is described by an interacting CFT, we define the “conformal weight” of these operators in terms of the free energy density on S{sup 2}×ℍ{sup 2−ϵ} in the presence of magnetic flux through the S{sup 2}, and calculate this quantity to next-to-leading order in ϵ. Extrapolating the conformal weight to ϵ=1 gives an estimate of the scaling dimension of the monopole operators in d=3 that does not rely on the 1/N expansion. We also perform the computation of the conformal weight in the large N expansion for any d and find agreement between the large N and the small ϵ expansions in their overlapping regime of validity.
Heavy baryon spectroscopy from the lattice
Energy Technology Data Exchange (ETDEWEB)
Bowler, K.C.; Kenway, R.D.; Oliveira, O.; Richards, D.G.; Ueberholz, P. [Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (Scotland); Lellouch, L.; Nieves, J.; Sachrajda, C.T.; Stella, N.; Wittig, H. [Physics Department, The University, Southampton SO17 1BJ (United Kingdom)
1996-09-01
The results of an exploratory lattice study of heavy baryon spectroscopy are presented. We have computed the full spectrum of the eight baryons containing a single heavy quark, on a 24{sup 3}{times}48 lattice at {beta}=6.2, using an {ital O}({ital a})-improved fermion action. We discuss the lattice baryon operators and give a method for isolating the contributions of the spin doublets ({Sigma},{Sigma}{sup {asterisk}}), ({Xi}{sup {prime}},{Xi}{sup {asterisk}}), and ({Omega},{Omega}{sup {asterisk}}) to the correlation function of the relevant operator. We compare our results with the available experimental data and find good agreement in both the charm and the {ital b}-quark sectors, despite the long extrapolation in the heavy quark mass needed in the latter case. We also predict the masses of several undiscovered baryons. We compute the {Lambda}-pseudoscalar meson and {Sigma}-{Lambda} mass splittings. Our results, which have errors in the range 10{endash}30{percent}, are in good agreement with the experimental numbers. For the {Sigma}{sup {asterisk}}-{Sigma} mass splitting, we find results considerably smaller than the experimental values for both the charm and the {ital b}-flavored baryons, although in the latter case the experimental results are still preliminary. This is also the case for the lattice results for the hyperfine splitting for the heavy mesons. {copyright} {ital 1996 The American Physical Society.}
The Baryonic Tully-Fisher relation revisited
Pfenniger, D
2004-01-01
The Baryonic Tully-Fisher relation (BTF) can be substantially improved when considering that the galactic baryonic mass is likely to consist not only from the detected baryons, stars and gas, but also from a dark baryonic component proportional to the HI gas. The BTF relation is optimally improved when the HI mass is multiplied by a factor of about 3, but larger factors up to 11-16 still improve the fit over the original one using only the detected baryons. The strength of this improved relation is quantified with up-to-date statistical tests such as the Akaike Information Criterion or the Bayesian Information Criterion. In particular they allow to show that supposing a variable $M_\\star/L$ ratio instead is much less significant. This result reinforces the suggestion made in several recent works that mass within galactic disks must be a multiple of the HI mass, and that galactic disks are substantially, but not necessarily fully, self-gravitating.
Strong decays of baryons and missing resonances
Bijker, R.; Ferretti, J.; Galatà, G.; García-Tecocoatzi, H.; Santopinto, E.
2016-10-01
We provide results for the open-flavor strong decays of strange and nonstrange baryons into a baryon-vector/pseudoscalar meson pair. The decay amplitudes are computed in the 3P0 pair-creation model, where s s ¯ pair-creation suppression is included for the first time in the baryon sector, in combination with the U (7 ) and hypercentral models. The effects of this s s ¯ suppression mechanism cannot be reabsorbed in a redefinition of the model parameters or in a different choice of the 3P0 model vertex factor. Our results for the decay amplitudes are compared with the existing experimental data and previous 3P0 and elementary meson emission model calculations. In this respect, we show that distinct quark models differ in the number of missing resonances they predict and also in the quantum numbers of states. Therefore, future experimental results will be important in order to disentangle different models of baryon structure. Finally, in the appendixes, we provide some details of our calculations, including the derivation of all relevant flavor couplings with strangeness suppression. This derivation may be helpful to calculate the open-flavor decay amplitudes starting from other models of baryons.
Beutler, Florian; Seo, Hee-Jong; Ross, Ashley J.; McDonald, Patrick; Saito, Shun; Bolton, Adam S.; Brownstein, Joel R.; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Font-Ribera, Andreu; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Percival, Will J.; Prada, Francisco; Rodriguez-Torres, Sergio; Roe, Natalie A.; Ross, Nicholas P.; Salazar-Albornoz, Salvador; Sánchez, Ariel G.; Schneider, Donald P.; Slosar, Anže; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana; Vazquez, Jose A.
2017-01-01
We analyse the baryon acoustic oscillation (BAO) signal of the final Baryon Oscillation Spectroscopic Survey (BOSS) data release (DR12). Our analysis is performed in the Fourier space, using the power spectrum monopole and quadrupole. The data set includes 1198 006 galaxies over the redshift range 0.2 < z < 0.75. We divide this data set into three (overlapping) redshift bins with the effective redshifts zeff = 0.38, 0.51 and 0.61. We demonstrate the reliability of our analysis pipeline using N-body simulations as well as ˜1000 MultiDark-Patchy mock catalogues that mimic the BOSS-DR12 target selection. We apply density field reconstruction to enhance the BAO signal-to-noise ratio. By including the power spectrum quadrupole we can separate the line of sight and angular modes, which allows us to constrain the angular diameter distance DA(z) and the Hubble parameter H(z) separately. We obtain two independent 1.6 and 1.5 per cent constraints on DA(z) and 2.9 and 2.3 per cent constraints on H(z) for the low (zeff = 0.38) and high (zeff = 0.61) redshift bin, respectively. We obtain two independent 1 and 0.9 per cent constraints on the angular averaged distance DV(z), when ignoring the Alcock-Paczynski effect. The detection significance of the BAO signal is of the order of 8σ (post-reconstruction) for each of the three redshift bins. Our results are in good agreement with the Planck prediction within Λ cold dark matter. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Magnetic monopole searches with the MoEDAL experiment at the LHC
Pinfold, J; Lacarrère, D; Mermod, P; Katre, A
2014-01-01
The magnetic monopole appears in theories of spontaneous ga uge symmetry breaking and its existence would explain the quantisation of electric charg e. MoEDAL is the latest approved LHC experiment, designed to search directly for monopoles. It h as now taken data for the first time. The MoEDAL detectors are based on two complementary techniq ues: nuclear-track detectors are sensitive to the high-ionisation signature expected fr om a monopole, and the new magnetic monopole trapper (MMT) relies on the stopping and trapping o f monopoles inside an aluminium array which is then analysed with a superconducting magneto meter. Preliminary results obtained with a subset of the MoEDAL MMT test array deployed in 2012 are presented, where monopoles with charge above the fundamental unit magnetic charge or ma ss above 1.5 TeV are probed for the first time at the LHC
Observations of 't Hooft's sublattices and Dirac's monopole by inhomogeneous phases of solitons
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Here, we experimentally generated photonic graphene by resonance of inhomogeneously strained one dimensional lattices of triangular solitons. Where mildly twisted solitons are considered as north and south monopoles, while strongly twisted solitons are considered as defect north monopoles. Weak bounding is observed between the opposite monopoles. Strong bounding occurred between the monopoles with same polarity. Where a defect north monopole is transformed into a flux-like tube. Which generated an optical analogue of the torus sublattice. Bogomolny's vortice-like symmetry is remained intact in all these observations. Dirac's north monopole along with the string is also observed. The results presented in this paper were also described in terms of supersymmetry and quantum phase transitions, and reported in ref[20].
Search for GUT magnetic monopoles and nuclearites with the MACRO experiment
Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Chiarusi, T; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kumar, A; Kyriazopoulou, S; Lamanna, E; Lane, C; Larocci, E; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maarou, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Matteuzzi, D; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Pistilli, P; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1016/S1350-4487(03)00140-9
2003-01-01
We present the final results obtained by the MACRO experiment in the search for GUT magnetic monopoles and nuclearites. Several searches were performed with different subdetectors, i.e. scintillation counters, limited streamer tubes and nuclear track detectors. No magnetic monopole or nuclearite candidates were found. The MACRO upper limit to the local flux of GUT magnetic monopoles is at the level of 1.4*10/sup -16/ cm/sup -2/s/sup -1/sr/sup -1/.
Search for relativistic magnetic monopoles with the AMANDA-II detector
Energy Technology Data Exchange (ETDEWEB)
Wissing, Henrike
2009-02-25
Cherenkov emissions of magnetically charged particles passing through a transparent medium will exceed those of electrically charged particles by several orders of magnitude. The Antarctic Muon And Neutrino Detector Array (AMANDA), a neutrino telescope utilizing the glacial ice at the geographic South Pole as Cherenkov medium, is capable of efficiently detecting relativistic magnetic monopoles that may pass through its sensitive volume. This thesis presents the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with AMANDA during the 2000. No such signal is observed in the data, and the analysis allows to place upper limits on the flux of relativistic magnetic monopoles. The limit obtained for monopoles reaching the detector from below the horizon, i.e., those monopoles that are capable of crossing the Earth, is the most stringent experimental constraint on the flux of magnetic monopoles to date: Dependent on the monopole speed, the flux limit (at 90% confidence level) varies between 3.8 x 10{sup -17} cm{sup -2}s{sup -1}sr{sup -1} (for monopoles moving at the vacuum speed of light) and 8.8 x 10{sup -16} cm{sup -2}s{sup -1}sr{sup -1} (for monopoles moving at a speed just above the Cherenkov threshold). The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, owing to the much larger background from down-going atmospheric muons. This looser limit is valid for a larger class of magnetic monopoles, since the monopole's capability to pass through the Earth is not a requirement. (orig.)
Definition of Magnetic Monopole Numbers for SU(N) Lattice Gauge-Higgs Models
Hollands, S
2001-01-01
A geometric definition for a magnetic charge of Abelian monopoles in SU(N) lattice gauge theories with Higgs fields is presented. The corresponding local monopole number defined for almost all field configurations does not require gauge fixing and is stable against small perturbations. Its topological content is that of a 3-cochain. A detailed prescription for calculating the local monopole number is worked out. Our method generalizes a magnetic charge definition previously invented by Phillips and Stone for SU(2).
The Spacetime Algebra Approach to Massive Classical Electrodynamics with Magnetic Monopoles
2007-01-01
Maxwell's equations with massive photons and magnetic monopoles are formulated using spacetime algebra. It is demonstrated that a single non-homogeneous multi-vectorial equation describes the theory. Two limiting cases are considered and their symmetries highlighted: massless photons with magnetic monopoles and finite photon mass in the absence of monopoles. Finally, it is shown that the EM-duality invariance is a symmetry of the Hamiltonian density (for Minkowskian spacetime) and Lagrangian ...
A Direct Search for Stable Magnetic Monopoles Produced in Positron-Proton Collisions at HERA
Aktas, A; Anthonis, T; Aplin, S; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baghdasaryan, A; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baudrand, S; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Bizot, J C; Boenig, M O; Boudry, V; Bracinik, J; Brandt, G; Brisson, V; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Contreras, J G; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dodonov, V; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, W; Essenov, S; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Finke, L; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Frisson, T; Gabathuler, Erwin; Garutti, E; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Glazov, A; Glushkov, I; Görlich, L; Göttlich, M; Gogitidze, N; Gorbounov, S; Goyon, C; Grab, C; Greenshaw, T; Gregori, M; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Haller, J; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, H; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Korbel, V; Kostka, P; Koutouev, R; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Krüger, K; Kuckens, J; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; List, B; Lobodzinska, E; Loktionova, N; López-Fernandez, R; Lubimov, V; Lucaci-Timoce, A I; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mohamed, A; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nankov, K; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikiforov, A; Nikitin, D K; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perez-Astudillo, D; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Pöschl, R; Portheault, B; Povh, B; Prideaux, P; Raicevic, N; Reimer, P; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rurikova, Z; Rusakov, S V; Salvaire, F; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schmidt, S; Schmitt, S; Schmitz, C; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsakov, I; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Urban, M; Usik, A; Utkin, D; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Van Remortel, N; Vargas-Trevino, A; Vazdik, Ya A; Veelken, C; Vest, A; Vinokurova, S; Volchinski, V; Vujicic, B; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Wigmore, C; Winter, G G; Wissing, C; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zimmermann, J; Zohrabyan, H G; Zomer, F
2005-01-01
A direct search has been made for magnetic monopoles produced in e^+ p collisions at a centre of mass energy of 300 GeV at HERA. The beam pipe surrounding the interaction region in 1995-1997 was investigated using a SQUID magnetometer to look for stopped magnetic monopoles. During this time an integrated luminosity of 62 pb^{-1} was delivered. No magnetic monopoles were observed and charge and mass dependent upper limits on the e^+ p production cross section are set.
How efficient is the Langacker-Pi mechanism of monopole annihilation?
Holman, R; Rey, S J; Rey, Soo-Jong
1992-01-01
We investigate the dynamics of monopole annihilation by the Langacker-Pi mechanism. We find taht considerations of causality, flux-tube energetics and the friction from Aharonov-Bohm scatteering suggest that the monopole annihilation is most efficient if electromagnetism is spontaneously broken at the lowest temperature ($T_{em} \\approx 10^6 GeV$) consistent with not having the monopoles dominate the energy density of the universe.
New limits on Magnetic Monopoles searches from accelerator and non-accelerator experiments
Cozzi, M
2007-01-01
Here the status of the searches for ``classical Dirac'' Magnetic Monopoles (MMs) at accelerators and for GUT MMs in the cosmic radiation is discussed. We present recent analysis for ``classical Dirac'' monopoles at accelerators and the lowest flux upper limit for Magnetic Monopoles in the mass range 10$^{5}$ - 10$^{12}$ GeV obtained with the SLIM experiment at the Chacaltaya High Altitude Laboratory (5290 m a.s.l.).
Papastergis, Emmanouil; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calculated using atomic hydrogen (HI) emission line data from the Arecibo Legacy Fast ALFA (ALFALFA) survey. By using the technique of abundance matching, we combine the measured baryonic function (BMF) of galaxies with the dark matter halo mass function in a LCDM universe, in order to determine the galactic baryon fraction as a function of host halo mass. We find that the baryon fraction of low-mass halos is much smaller than the cosmic value, even when atomic gas is taken into account. We find that the galactic baryon deficit increases monotonically with decreasing halo mass, in contrast with previous studies which suggested an approximately constant baryon fraction at the low-mass end. We argue that the observed baryon...
Dark matter assimilation into the baryon asymmetry
Energy Technology Data Exchange (ETDEWEB)
D' Eramo, Francesco; Fei, Lin; Thaler, Jesse, E-mail: fderamo@mit.edu, E-mail: lfei@mit.edu, E-mail: jthaler@mit.edu [Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)
2012-03-01
Pure singlets are typically disfavored as dark matter candidates, since they generically have a thermal relic abundance larger than the observed value. In this paper, we propose a new dark matter mechanism called {sup a}ssimilation{sup ,} which takes advantage of the baryon asymmetry of the universe to generate the correct relic abundance of singlet dark matter. Through assimilation, dark matter itself is efficiently destroyed, but dark matter number is stored in new quasi-stable heavy states which carry the baryon asymmetry. The subsequent annihilation and late-time decay of these heavy states yields (symmetric) dark matter as well as (asymmetric) standard model baryons. We study in detail the case of pure bino dark matter by augmenting the minimal supersymmetric standard model with vector-like chiral multiplets. In the parameter range where this mechanism is effective, the LHC can discover long-lived charged particles which were responsible for assimilating dark matter.
Spectroscopy of charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Dark Matter and the Baryon Asymmetry
Farrar, G R; Farrar, Glennys R.; Zaharijas, Gabrijela
2006-01-01
We present a mechanism to generate the baryon asymmetry of the Universe which preserves the net baryon number created in the Big Bang. If dark matter particles carry baryon number $B_X$, and $\\sigma^{\\rm annih}_{\\bar{X}} < \\sigma^{\\rm annih}_{X} $, the $\\bar{X}$'s freeze out at a higher temperature and have a larger relic density than $X$'s. If $m_X \\lsi 4.5 B_X $GeV and the annihilation cross sections differ by $\\mathcal{O}$(10%) or more, this type of scenario naturally explains the observed $\\Omega_{DM} \\approx 5 \\Omega_b$. Two concrete examples are given, one of which can be excluded on observational grounds.
Heavy Baryons in a Quark Model
Energy Technology Data Exchange (ETDEWEB)
Winston Roberts; Muslema Pervin
2007-11-14
A quark model is applied to the spectrum of baryons containing heavy quarks. The model gives masses for the known heavy baryons that are in agreement with experiment, but for the doubly-charmed baryon $\\Xi_{cc}$, the model prediction is too heavy. Mixing between the $\\Xi_Q$ and $\\Xi_Q^\\prime$ states is examined and is found to be small for the lowest lying states. In contrast with this, mixing between the $\\Xi_{bc}$ and $\\Xi_{bc}^\\prime$ states is found to be large, and the implication of this mixing for properties of these states is briefly discussed. We also examine heavy-quark spin-symmetry multiplets, and find that many states in the model can be placed in such multiplets.
Compressed Baryonic Matter: from Nuclei to Pulsars
Xu, Renxin
2013-01-01
Our world is wonderful because of the negligible baryonic part although unknown dark matter and dark energy dominate the Universe. Those nuclei in the daily life are forbidden to fuse by compression due to the Coulomb repulse, nevertheless, it is usually unexpected in extraterrestrial extreme-environments: the gravity in a core of massive evolved star is so strong that all the other forces (including the Coulomb one) could be neglected. Compressed baryonic matter is then produced after supernova, manifesting itself as pulsar-like stars observed. The study of this compressed baryonic matter can not only be meaningful in fundamental physics (e.g., the elementary color interaction at low-energy scale, testing gravity theories, detecting nano-Hertz background gravitational waves), but has also profound implications in engineering applications (including time standard and navigation), and additionally, is focused by Chinese advanced telescopes, either terrestrial or in space. Historically, in 1930s, L. Landau spec...
Production and decay of charmed baryons
Hosaka, Atsushi; Hiyama, Emiko; Kim, SangHo; Kim, Hyun-Chul; Nagahiro, Hideko; Noumi, Hiroyuki; Oka, Makoto; Shirotori, Kotaro; Yoshida, Tetsuya; Yasui, Shigehiro
2016-10-01
In this paper, we discuss reactions involving charmed baryons to explore their unique features. A well known phenomenon, the separation of the two internal motions of the ρ and λ types of a three-quark system is revisited. First we discuss the mass spectrum of low lying excitations as function of the heavy quark mass, smoothly connecting the SU (3) and heavy quark limits. The properties of these modes can be tested in the production and decay reactions of the baryons. For production, we consider a one step process which excites dominantly λ modes. We find abundant production rates for some of the excited states. For decay, we study a pion emission process which provides a clean tool to test the structure of heavy quark systems due to the well controlled low energy dynamics of pions and quarks. Both production and decay of charmed baryons are issues for future experiments at J-PARC.
Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope
Energy Technology Data Exchange (ETDEWEB)
Abbasi, R.; Aguilar, J.A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.C.; Dumm, J.P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G.C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J.L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Morse, R.; O' Murchadha, A.; Rodrigues, J.P.; Santander, M.; Toscano, S.; Santen, J. van; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Dept. of Physics, Madison, WI (United States); Abdou, Y.; Carson, M.; Descamps, F.; Vries-Uiterweerd, G. de; Feusels, T.; Ryckbosch, D.; Overloop, A. van [University of Gent, Dept. of Subatomic and Radiation Physics, Gent (Belgium); Abu-Zayyad, T.; Madsen, J.; Spiczak, G.M.; Tamburro, A. [University of Wisconsin, Dept. of Physics, River Falls, WI (United States); Adams, J.; Han, K.; Hickford, S. [University of Canterbury, Dept. of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Ahlers, M.; Sarkar, S. [University of Oxford, Dept. of Physics, Oxford (United Kingdom); Auffenberg, J.; Becker, K.H.; Gurtner, M.; Helbing, K.; Kampert, K.H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B. [University of Wuppertal, Dept. of Physics, Wuppertal (Germany); Bai, X.; Clem, J.; Evenson, P.A.; Gaisser, T.K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Nam, J.W.; Silvestri, A.; Yodh, G. [Univ. of California, Dept. of Physics and Astronomy, Irvine, CA (United States); Bay, R.; D' Agostino, M.V.; Filimonov, K.; Porrata, R.; Price, P.B.; Vandenbroucke, J.; Woschnagg, K. [Univ. of California, Dept. of Physics, Berkeley, CA (United States); Bazo Alba, J.L.; Benabderrahmane, M.L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R. [and others
2010-10-15
We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8 x 10{sup -17} cm{sup -2} s{sup -1} sr{sup -1} (for monopoles moving at the vacuum speed of light) and 8.8 x 10{sup -16} cm{sup -2} s{sup -1} sr{sup -1} (for monopoles moving at a speed {beta}=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth. (orig.)
Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2010-10-01
We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8×10-17 cm-2 s-1 sr-1 (for monopoles moving at the vacuum speed of light) and 8.8×10-16 cm-2 s-1 sr-1 (for monopoles moving at a speed β= v/ c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth.
On the search for the electric dipole moment of strange and charm baryons at LHC
Botella, F. J.; Garcia Martin, L. M.; Marangotto, D.; Martinez Vidal, F.; Merli, A.; Neri, N.; Oyanguren, A.; Ruiz Vidal, J.
2017-03-01
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in p p collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and \\overline{Λ} baryons. For short-lived {Λ} ^+c and {Ξ} ^+c baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed.
On the search for the electric dipole moment of strange and charm baryons at LHC
Energy Technology Data Exchange (ETDEWEB)
Botella, F.J.; Garcia Martin, L.M.; Martinez Vidal, F.; Oyanguren, A.; Ruiz Vidal, J. [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular (IFIC), Valencia (Spain); Marangotto, D.; Merli, A.; Neri, N. [INFN Sezione di Milano, Milan (Italy); Milano Univ., Milan (Italy)
2017-03-15
Permanent electric dipole moments (EDMs) of fundamental particles provide powerful probes for physics beyond the Standard Model. We propose to search for the EDM of strange and charm baryons at LHC, extending the ongoing experimental program on the neutron, muon, atoms, molecules and light nuclei. The EDM of strange Λ baryons, selected from weak decays of charm baryons produced in pp collisions at LHC, can be determined by studying the spin precession in the magnetic field of the detector tracking system. A test of CPT symmetry can be performed by measuring the magnetic dipole moment of Λ and anti Λ baryons. For short-lived Λ{sup +}{sub c} and Ξ{sup +}{sub c} baryons, to be produced in a fixed-target experiment using the 7 TeV LHC beam and channeled in a bent crystal, the spin precession is induced by the intense electromagnetic field between crystal atomic planes. The experimental layout based on the LHCb detector and the expected sensitivities in the coming years are discussed. (orig.)
Light Lepton Number Violating Sneutrinos and the Baryon Number of the Universe
Klapdor-Kleingrothaus, H V; Kuzmin, V A; Kolb, St.
2000-01-01
Recent results of neutrino oscillation experiments point to a nonvanishing neutrino mass. Neutrino mass models favour Majorana-type neutrinos. In such circumstances it is natural that the supersymmetric counterpart of the neutrino, the sneutrino, bears also lepton number violating properties. On the other hand, the fact that the universe exhibits an asymmetry in the baryon and antibaryon numbers poses constraints on the extent of lepton number violation in the light sneutrino sector. From the requirement that the Baryon Asymmetry of the Universe should not be washed out by sneutrino induced lepton number violating interactions we find that the mass splitting of the light sneutrino states is restricted to be very small.
Decuplet baryons in a hot medium
Energy Technology Data Exchange (ETDEWEB)
Azizi, K.; Bozkir, G. [Dogus Univ., Istanbul (Turkey). Dept. of Physics
2016-10-15
The thermal properties of the light decuplet baryons are investigated in the framework of the thermal QCD sum rules. In particular, the behavior of the mass and residue of the Δ, Σ*, Ξ*, and Ω baryons with respect to temperature are analyzed taking into account the additional operators appearing in the Wilson expansion at finite temperature. It is found that the mass and residue of these particles remain overall unaffected up to T ≅ 150 MeV but, beyond this point, they start to diminish considerably. (orig.)
Heavy flavor baryons in hypercentral model
Indian Academy of Sciences (India)
Bhavin Patel; Ajay Kumar Rai; P C Vinodkumar
2008-05-01
Heavy flavor baryons containing single and double charm (beauty) quarks with light flavor combinations are studied using the hypercentral description of the three-body problem. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state masses of the heavy flavor, $J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$ baryons are computed for different power indices, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value in each case of quark combinations beyond the power index = 1.0.
Roper resonance and the baryon spectrum
Elsey, J. A.; Afnan, I. R.
1989-10-01
We present a method for calculating the baryon spectrum in the cloudy-bag model in which the masses of the baryons are identical to the poles of the S matrix in the complex energy plane. In particular, we demonstrate that the width for the decay of these resonances by pion emission is dependent on whether the calculations are carried out on the real energy axis or at the resonance poles, the latter being consistent with the scattering experiments that determine these widths. Results for N*(1440) are presented.
Roper resonance and the baryon spectrum
Energy Technology Data Exchange (ETDEWEB)
Elsey, J.A.; Afnan, I.R. (School of Physical Sciences, The Flinders University of South Australia, Bedford Park, South Australia 5042, Australia (AU))
1989-10-01
We present a method for calculating the baryon spectrum in the cloudy-bag model in which the masses of the baryons are identical to the poles of the {ital S} matrix in the complex energy plane. In particular, we demonstrate that the width for the decay of these resonances by pion emission is dependent on whether the calculations are carried out on the real energy axis or at the resonance poles, the latter being consistent with the scattering experiments that determine these widths. Results for {ital N}{sup *}(1440) are presented.
Constructing Hybrid Baryons with Flux Tubes
Capstick, Simon; Capstick, Simon; Page, Philip R.
1999-01-01
Hybrid baryon states are described in quark potential models as having explicit excitation of the gluon degrees of freedom. Such states are described in a model motivated by the strong coupling limit of Hamiltonian lattice gauge theory, where three flux tubes meeting at a junction play the role of the glue. The adiabatic approximation for the quark motion is used, and the flux tubes and junction are modeled by beads which are attracted to each other and the quarks by a linear potential, and vibrate in various string modes. Quantum numbers and estimates of the energies of the lightest hybrid baryons are provided.
Exciting Baryons: now and in the future
Pennington, M R
2011-01-01
This is the final talk of NSTAR2011 conference. It is not a summary talk, but rather a looking forward to what still needs to be done in excited baryon physics. In particular, we need to hone our tools connecting experimental inputs with QCD. At present we rely on models that often have doubtful connections with the underlying theory, and this needs to be dramatically improved, if we are to reach definitive conclusions about the relevant degrees of freedom of excited baryons. Conclusions that we want to have by NSTAR2021.
Meson Production and Baryon Resonances at CLAS
Energy Technology Data Exchange (ETDEWEB)
Volker Burkert
2011-02-01
I give a brief overview of the exploration of baryon properties in meson photo- and electroproduction. These processes provide ample information for the study of electromagnetic couplings of baryon resonances and to search for states, yet to be discovered. The CLAS detector, combined with the use of energy-tagged polarized photons and polarized electrons, as well as polarized targets and the measurement of recoil polarization, provide the tools for a comprehensive nucleon resonance program. I briefly present the status of this program, prospects for the next few years, and plans for the Jefferson Lab 12 GeV upgrade.
Edery, Ariel; Graham, Noah
2015-05-01
We consider a massless conformally (Weyl) invariant classical action consisting of a magnetic monopole coupled to gravity in an anti-de Sitter background spacetime. We implement quantum corrections and this breaks the conformal (Weyl) symmetry, introduces a length scale via the process of renormalization and leads to the trace anomaly. We calculate the one-loop effective potential and determine from it the vacuum expectation value (VEV). Spontaneous symmetry breaking is radiatively induced a la Coleman-Weinberg and the scalar coupling constant is exchanged for the dimensionful VEV via dimensional transmutation. An important result is that the Ricci scalar of the AdS background spacetimeis determined entirely by the value of the VEV.
Dust detection in space using the monopole and dipole electric field antennas
Ye, S.-Y.; Kurth, W. S.; Hospodarsky, G. B.; Averkamp, T. F.; Gurnett, D. A.
2016-12-01
During the grand finale of the Cassini mission, the Radio and Plasma Wave Science instrument will be used to assess the risk involved in exposing the instruments to the dusty environment around the F and D rings. More specifically, the slope of the size distribution and the dust density will be determined based on the signals induced on the electric antennas by dust impacts. To reduce the uncertainties in the generation mechanism of the dust impact signals and the resulting dust properties based on the interpretation of data, we designed and carried out experiments in late 2015, when we switched antenna mode from monopole to dipole at the ring plane crossings. Comparison of the data collected with these two antenna setups provides valuable hints on how the dust impact signals are generated in each antenna mode.
Baryons, their interactions and the chiral symmetry of QCD
Glozman, L Ya
1997-01-01
An implication of the spontaneous chiral symmetry breaking in QCD is that at low energy and resolution there appear quasiparticles - constituent quarks and Goldstone bosons. Thus, light and strange baryons should be considered as systems of three constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons between the constituent quarks. We show how the flavor-spin structure and sign of the short-range part of the Goldstone boson exchange interaction reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. We present a unified description of light and strange baryon spectra calculated in a semirelativistic framework. It is demonstrated that the same short-range part of Goldstone boson exchange also induces strong short-range repulsion in $NN$ system when the latter is treated as $6Q$ system. Thus, all main ingredients of $NN$ interaction a...
Algebraic Treatment of Collective Excitations in Baryon Spectroscopy
Bijker, R
1993-01-01
We present an algebraic U(7) model for baryons which encompasses both single-particle and collective forms of quark dynamics. The mass operator by construction preserves the permutation symmetry between identical quarks. The underlying geometric structure of baryons is discussed in terms of a rigid rotating and vibrating oblate top shape. The model is applied to the mass spectrum of nonstrange baryons.
Heavy Baryon Transitions in a Relativistic Three-Quark Model
Ivanov, M A; Kroll, P; Lyubovitskij, V E
1997-01-01
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Strangeness -2 and -3 Baryons in a Constituent Quark Model
Energy Technology Data Exchange (ETDEWEB)
Muslema Pervin; Winston Roberts
2007-09-19
We apply a quark model developed in earlier work to the spectrum of baryons with strangeness -2 and -3. The model describes a number of well-established baryons successfully, and application to cascade baryons allows the quantum numbers of some known states to be deduced.
Energy Technology Data Exchange (ETDEWEB)
Knippschild, Bastian
2012-03-05
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point
Baryons in the unquenched quark model
Bijker, R; Lopez-Ruiz, M A; Santopinto, E
2016-01-01
In this contribution, we present the unquenched quark model as an extension of the constituent quark model that includes the effects of sea quarks via a $^{3}P_{0}$ quark-antiquark pair-creation mechanism. Particular attention is paid to the spin and flavor content of the proton, magnetic moments and $\\beta$ decays of octet baryons.
Beauty baryon decays: a theoretical overview
Wang, Yu-Ming
2014-11-01
I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.
Light element synthesis in baryon isocurvature models
Kumar, D L P
2006-01-01
The prejudice against baryon isocurvature models is primarily because of their inconsistency with early universe light element nucleosynthesis results. We propose that incipient low metallicity (Pop II) star forming regions can be expected to have environments conducive to Deuterium production by spallation, up to levels observed in the universe.
Baryon Ratios in Quark-Gluon Plasma
Institute of Scientific and Technical Information of China (English)
MA Zhong-Biao; MIAO Hong; GAO Chong-Shou
2003-01-01
A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.
The CMU Baryon Amplitude Analysis Program
Bellis, Matt
2007-05-01
The PWA group at Carnegie Mellon University has developed a comprehensive approach and analysis package for the purpose of extracting the amplitudes for photoproduced baryon resonances. The end goal is to identify any missing resonances that are predicted by the constituent quark model, but not definitively observed in experiments. The data comes from the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab.
Multiinstanton ladders in baryon number violating processes
Lazarides, G
1995-01-01
We estimate the contribution of a class of multiinstanton ladder graphs to baryon and lepton number violating processes in the standard model. We find that this contribution is negligible and does not alter the high energy behavior of the leading semiclassical approximation.
Valley Singularities and Baryon Number Violation
Provero, P
1994-01-01
We consider the valley--method computation of the inclusive cross section of baryon number violating processes in the Standard Model. We show that any physically correct model of the valley action should present a singularity in the saddle point valley parameters as functions of the energy of the process. This singularity prevents the saddle point configuration from collapsing into the perturbative vacuum.
Magnetic moments of negative-parity baryons in QCD
Aliev, T M
2014-01-01
Using the most general form of the interpolating current for the octet baryons, the magnetic moments of the negative-parity baryons are calculated within the light-cone sum rules. The contributions coming from diagonal transitions of the positive-parity baryons, and also from non-diagonal transition between positive and negative-parity baryons are eliminated by considering the combinations of different sum rules corresponding to the different Lorentz structures. A comparison of our results on magnetic moments of the negative-parity baryons with the other approaches existing in literature is presented.
Holographic black hole engineering at finite baryon chemical potential
Rougemont, Romulo
2016-01-01
This is a contribution for the Proceedings of the Conference Hot Quarks 2016, held at South Padre Island, Texas, USA, 12-17 September 2016. I briefly review some thermodynamic and baryon transport results obtained from a bottom-up Einstein-Maxwell-Dilaton holographic model engineered to describe the physics of the quark-gluon plasma at finite temperature and baryon density. The results for the equation of state, baryon susceptibilities, and the curvature of the crossover band are in quantitative agreement with the corresponding lattice QCD results with $2+1$ flavors and physical quark masses. Baryon diffusion is predicted to be suppressed by increasing the baryon chemical potential.
In-the-Ear Spiral Monopole Antenna for Hearing Instruments
DEFF Research Database (Denmark)
Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper
2014-01-01
A novel in-the-ear (ITE) antenna solution for hearing instruments that operates at 2.45 GHz is presented. The antenna consists of a quarter wave monopole and a ground plane that are placed in the ear. The simulated path gain | S 21 |is − 86 dB and the measured path gain is − 80 dB. Simulations...... and measurements show that the antenna covers the entire 2.40 – 2.48 GHz industrial, scientific and medical (ISM) band. It is the first ever ITE-antenna solution that demonstrates the possibility of establishing an ear-to-ear link by using a standard Bluetooth chip...
Continuum TDHF calculation of Isoscalar and Isovector Giant Monopole Resonances
Stevenson, P D
2013-01-01
We motivate and summarise some recent results in the application of formally exact boundary conditions in nuclear time-dependent Hartree-Fock calculations, making use of Laplace transformations to calculate the values of the wave functions at the boundaries. We have realised the method in the case of giant monopole resonances of spherically-symmetric nuclei, and present strength functions of O-16 and Ca-40 using a simplified version of the Skyrme force, showing that no artefacts from discretisation occur as contaminants
Acceleration of Universe by Nonlinear Magnetic Monopole Fields
Övgün, A
2016-01-01
Despite impressive phenomenological successes, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. Within the scope of Friedmann-Robertson-Walker (FRW) spacetime we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory which generalizes Maxwell's theory for strong fields. A mathematical new model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.
Electric monopoles in generalised B\\wedge F theories
Temple-Raston, M
1996-01-01
A tensor product generalisation of B\\wedge F theories is proposed to give a Bogomol'nyi structure. Non-singular, stable, finite-energy particle-like solutions to the Bogomol'nyi equations are studied. Unlike Yang-Mills(-Higgs) theory, the Bogomol'nyi structure does not appear as a perfect square in the Lagrangian. Consequently, the Bogomol'nyi energy can be obtained in more than one way. The added flexibility permits electric monopole solutions to the field equations.
Topology and quantum states: The electron-monopole system
Di Cosmo, F.; Marmo, G.; Zampini, A.
2016-09-01
This paper starts by describing the dynamics of the electron-monopole system at both classical and quantum level by a suitable reduction procedure. This suggests, in order to realise the space of states for quantum systems which are classically described on topologically non-trivial configuration spaces, to consider Hilbert spaces of exterior differential forms. Among the advantages of this formulation, we present--in the case of the group SU(2) , how it is possible to obtain all unitary irreducible representations on such a Hilbert space, and how it is possible to write scalar Dirac-type operators, following an idea by Kähler.
Quantum entropy for the fuzzy sphere and its monopoles
Acharyya, Nirmalendu; Chandra, Nitin; Vaidya, Sachindeo
2014-11-01
Using generalized bosons, we construct the fuzzy sphere SF 2 and monopoles on SF 2 in a reducible representation of SU(2). The corresponding quantum states are naturally obtained using the GNS-construction. We show that there is an emergent nonabelian unitary gauge symmetry which is in the commutant of the algebra of observables. The quantum states are necessarily mixed and have non-vanishing von Neumann entropy, which increases monotonically under a bistochastic Markov map. The maximum value of the entropy has a simple relation to the degeneracy of the irreps that constitute the reducible representation that underlies the fuzzy sphere.
A T-duality approach to the gravitational wave and the Kaluza-Klein monopole
Janssen, B
1999-01-01
We present a world volume action for the gravitational wave and the (bosonic) N = 1 Heterotic Kaluza-Klein monopole solution. In the construction of the action we make use of the fact that the wave and the Kaluza-Klein monopole are T-dual to the fundamental string and the solitonic five-brane, and w
Body-Worn Spiral Monopole Antenna for On-Body Communications (Invited Paper)
DEFF Research Database (Denmark)
Kammersgaard, Nikolaj Peter Iversen; Kvist, Søren Helstrup; Thaysen, Jesper
2015-01-01
A novel body-worn spiral monopole antenna is presented. The antenna consists of a ground plane and a spiral monopole. The antenna was designed for Ear-to-Ear (E2E) communication between In-the-Ear (ITE) hearing instruments at 2.45 GHz and has been simulated, prototyped, and measured. The antenna...
Angular momentum properties of haloes and their baryon content in the Illustris simulation
Zjupa, Jolanta; Springel, Volker
2017-04-01
The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ˜320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ˜1.3 in the non-radiative case and ˜1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.
Software Trigger Algorithms to Search for Magnetic Monopoles with the NO$\
Energy Technology Data Exchange (ETDEWEB)
Wang, Z. [Virginia U.; Dukes, E. [Virginia U.; Ehrlich, R. [Virginia U.; Frank, M. [Virginia U.; Group, C. [Fermilab; Norman, A. [Fermilab
2014-01-01
The NOvA far detector, due to its surface proximity, large size, good timing resolution, large energy dynamic range, and continuous readout, is sensitive to the detection of magnetic monopoles over a large range of velocities and masses. In order to record candidate magnetic monopole events with high efficiency we have designed a software-based trigger to make decisions based on the data recorded by the detector. The decisions must be fast, have high efficiency, and a large rejection factor for the over 100,000 cosmic rays that course through the detector every second. In this paper we briefly describe the simulation of magnetic monopoles, including the detector response, and then discuss the algorithms applied to identify magnetic monopole candidates. We also present the results of trigger efficiency and purity tests using simulated samples of magnetic monopoles with overlaid cosmic backgrounds and electronic noise.
Superconductivity due to Condensation of Monopoles around RCD Strings in SU(2 Gauge Theory
Directory of Open Access Journals (Sweden)
B. S. Rajput
2010-01-01
Full Text Available The study of the condensation of monopoles and the resulting chromomagnetic superconductivity have been undertaken in restricted chromodynamics of SU(2 gauge theory. Constructing the RCD Lagrangian and the partition function for monopoles in terms of string action and the action of the current around the strings, the monopole current in RCD chromo magnetic superconductor has been derived and it has shown that in London' limit the penetration length governs the monopole density around RCD string in chromo magnetic superconductors while with finite (nonzero coherence length the leading behavior of the monopole density at large distances from the string is controlled by the coherence length and not by the penetration length.
Planck Charges, Planck Currents and The Hermitic Shangri-La for Magnetic Monopole
Deng, Yanbin; Huang, Yong-Chang
2016-01-01
The concepts of Planck charges are summarized and extended in a consistent and unified manner to include Planck currents. These Planck parameters form a set of indicators serving as the boundary markers signaling the buffer zone separating the quantum gravity physics beyond Planck energy scale from the ordinary physics below the Planck scale. Combining the concepts of Planck charges with the Dirac electric-magnetic charge quantization relation, a lower bound is discovered and attributed to the value of magnetic monopole as half of the Planck magnetic monopole. The value of the running electric fine structure constant is required to be confined to a restricted interval to keep physics involving magnetic monopoles below the Planck scale. It provides a prediction about the hermitic Shangri-La, a remote place the magnetic monopoles are inhabiting near the boundary but still within the scope of ordinary physics. It opens a window of hope to the theoretical and/or experimental probe for magnetic monopoles realizing...
Beutler, Florian; Seo, Hee-Jong; Saito, Shun; Chuang, Chia-Hsun; Cuesta, Antonio J.; Eisenstein, Daniel J.; Gil-Marín, Héctor; Grieb, Jan Niklas; Hand, Nick; Kitaura, Francisco-Shu; Modi, Chirag; Nichol, Robert C.; Olmstead, Matthew D.; Percival, Will J.; Prada, Francisco; Sánchez, Ariel G.; Rodriguez-Torres, Sergio; Ross, Ashley J.; Ross, Nicholas P.; Schneider, Donald P.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magaña, Mariana
2017-04-01
We investigate the anisotropic clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 sample, which consists of 1198 006 galaxies in the redshift range 0.2 measure redshift-space distortions simultaneously with the Alcock-Paczynski effect and the baryon acoustic oscillation scale. We include the power-spectrum monopole, quadrupole and hexadecapole in our analysis and compare our measurements with a perturbation-theory-based model, while properly accounting for the survey window function. To evaluate the reliability of our analysis pipeline, we participate in a mock challenge, which results in systematic uncertainties significantly smaller than the statistical uncertainties. While the high-redshift constraint on fσ8 at zeff = 0.61 indicates a small (∼1.4σ) deviation from the prediction of the Planck ΛCDM (Λ cold dark matter) model, the low-redshift constraint is in good agreement with Planck ΛCDM. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Non-Abelian Monopoles in the Higgs Phase
Nitta, Muneto
2010-01-01
We use the moduli matrix approach to study the moduli space of 1/4 BPS kinks supported by vortices in the Higgs phase of N = 2 supersymmetric U(N) gauge theories when non-zero masses for the matter hypermultiplets are introduced. We focus on the case of degenerate masses. In these special cases vortices acquire new orientational degrees of freedom, and become "non-Abelian". Kinks acquire new degrees of freedom too, and we will refer to them as "non-Abelian". As already noticed for the Abelian case, non-Abelian kinks must correspond to non-Abelian monopoles of the unbroken phase of SU(N) Yang-Mills. We show, in some special cases, that the moduli spaces of the two objects are in one-to-one correspondence. We argue that the corre- spondence holds in the most general case. The consequence of our result is two-fold. First, it gives an alternative way to construct non-Abelian monopoles, in addition to other well- known techniques (Nahm transform, spectral curves, rational maps). Second, it opens the way to the stu...
Some exact BPS solutions for exotic vortices and monopoles
Ramadhan, Handhika S
2015-01-01
We present several analytical solutions of BPS vortices and monopoles in the generalized Abelian Maxwell-Higgs and Yang-Mills-Higgs theories, respectively. These models have recently been extensively studied and several exact solutions have already been obtained in~\\cite{Casana:2014qfa, Casana:2013lna}. In each theory, the dynamics is controlled by the additional two positive scalar-field-dependent functions, $f(|\\phi|)$ and $w(|\\phi|)$. For the case of vortices, we work in the ordinary symmetry-breaking Higgs potential, while for the case of monopoles we have the ordinary condition of the Prasad-Sommerfield limit. Our results generalize that of exact solutions found previously. We also present solutions for BPS vortices with higher winding number. These solutions suffer from the condition that $w(|\\phi|)$ has negative value at some finite range of $r$, but we argue that since it satisfies the weaker positive-value conditions then the corresponding energy density is still positive-definite and, thus, they are...
Measuring the Cosmological 21 cm Monopole with an Interferometer
Presley, Morgan; Parsons, Aaron
2015-01-01
A measurement of the cosmological 21 cm signal remains a promising but as-of-yet unattained ambition of radio astronomy. A positive detection would provide direct observations of key unexplored epochs of our cosmic history, including the cosmic dark ages and reionization. In this paper, we concentrate on measurements of the spatial monopole of the 21 cm brightness temperature as a function of redshift (the "global signal"). Most global experiments to date have been single-element experiments. In this paper, we show how an interferometer can be designed to be sensitive to the monopole mode of the sky, thus providing an alternate approach to accessing the global signature. We provide simple rules of thumb for designing a global signal interferometer and use numerical simulations to show that a modest array of tightly packed antenna elements with moderately sized primary beams (full-width-half-max of $\\sim$40$^\\circ$) can compete with typical single-element experiments in their ability to constrain phenomenologi...
AdS Monopole Black Hole and Phase Transition
Miyashita, Shoichiro
2016-01-01
We study the Einstein-SO(3)Yang-Mills-Higgs system with a negative cosmological constant, and find the monopole black hole solutions as well as the trivial Reissner-Nordstr\\"{o}m black hole. We discuss thermodynamical stability of the monopole black hole in an isolated system. We expect a phase transition between those two black holes when the mass of a black hole increases or decreases. The type of phase transition depends on the cosmological constant $\\Lambda$ as well as the vacuum expectation value $v$ and the coupling constant $\\lambda$ of the Higgs field. Fixing $\\lambda$ small, we find there are two critical values of the cosmological constant $\\Lambda_{\\rm cr (1)}(v)$ and $\\Lambda_{\\rm cr(2)}(v)$, which depend on $v$. If $\\Lambda_{\\rm cr(1)}(v)<\\Lambda (<0)$, we find the first order transition, while if $\\Lambda_{\\rm cr(2)}(v)<\\Lambda<\\Lambda_{\\rm cr(1)}(v)$, the transition becomes second order. For the case of $\\Lambda_{b}(v)<\\Lambda<\\Lambda_{\\rm (2)}(v)$, we again find the first ord...
Some exact BPS solutions for exotic vortices and monopoles
Ramadhan, Handhika S.
2016-07-01
We present several analytical solutions of BPS vortices and monopoles in the generalized Abelian Maxwell-Higgs and Yang-Mills-Higgs theories, respectively. These models have recently been extensively studied and several exact solutions have already been obtained in [1,2]. In each theory, the dynamics is controlled by the additional two positive scalar-field-dependent functions, f (| ϕ |) and w (| ϕ |). For the case of vortices, we work in the ordinary symmetry-breaking Higgs potential, while for the case of monopoles we have the ordinary condition of the Prasad-Sommerfield limit. Our results generalize the exact solutions found previously. We also present solutions for BPS vortices with higher winding number. These solutions suffer from the condition that w (| ϕ |) has negative value at some finite range of r, but we argue that since it satisfies the weaker positive-value conditions then the corresponding energy density is still positive-definite and, thus, they are acceptable BPS solutions.
Magnetic Monopoles in the Einstein-Yang-Mills-Higgs System
Viet, N A; Viet, Nguyen Ai; Wali, Kameshwar C.
1995-01-01
We study the Yang-Mills-Higgs system within the framework of general relativity. In the static situation, using Bogomol'nyi type analysis, we derive a positive-definite energy functional which has a lower bound. Specializing to the gauge group $SU(2)$ and the t'Hooft-Polyakov ansatz for the gauge and Higgs fields, we seek static, spherically symmetric solutions to the coupled system of equations in both the isotropic and standard coordinate systems. In both cases, in the spontaneously broken symmetry situation, we find great simplications reducing the solutions of the coupled system to the solution of a single non-linear differential equation, different one in each case, but well-known in other contexts of physics. We find abelian and non-abelian monopole solutions with gravitational fields playing the role of Higgs fields in providing attraction that balances the repulsion due to the gauge fields. Numerical solutions indicate the possibility of blackhole horizons inside the monopoles enclosing the singularit...
Self-gravitating global monopole and nonsingular cosmology
Bronnikov, K A
2003-01-01
We review some recent results concerning the properties of a spherically symmetric global monopole in $(D=d+2)$-dimensional general relativity. Some common features of monopole solutions are found independently of the choice of the symmetry-breaking potential. Thus, the solutions show six types of qualitative behavior and can contain at most one simple horizon. For the standard Mexican hat potential, we analytically find the $D$-dependent range of $\\gamma$ (the gravitational field strength parameter) in which there exist globally regular solutions with a monotonically growing Higgs field, containing a horizon and a Kantowski-Sachs (KS) cosmology outside it, where the topology of spatial sections is $\\R\\times \\S^d$. Their cosmological properties favor the idea that the standard Big Bang might be replaced with a nonsingular static core and a horizon appearing as a result of some symmetry-breaking phase transition on the Planck energy scale. We have also found families of new solutions with an oscillating Higgs ...
Monopoles and Confinement in U(1) Lattice Gauge Theory
Copeland, Timothy John
Available from UMI in association with The British Library. Requires signed TDF. Confinement in U(1) gauge theory is investigated, with particular emphasis on the role of monopoles. Starting from the work of Polyakov, the theoretical aspects are considered first, in some detail. This leads to the conclusion that the conventional techniques for analysing Monte Carlo data may not be adequate, and motivates the development of an alternative interpretation based on the theoretical insight gained. This takes more account of the expected physical properties of the theory, and does not assume beforehand that one type of behaviour (perturbative, or monopole driven) dominates. It is found that better fits to the Monte Carlo data can be achieved this way than by using the conventional methods, although different string tensions are found. The small distance behaviour is found to be best explained in terms of Coulomb effects, rather than the Luscher vibrating string picture sometimes used before. Perturbative calculations are made of Wilson loops on lattices of different shapes, and some comparisons with Monte Carlo data are made. Comments are made on the significance of these results for four dimensions, and for SU(2) and SU(3).
Electric Monopole Transition Strengths in Stable Nickel Isotopes
Evitts, Lee; Garnsworthy, Adam; Kibedi, Tibor; Super-e Collaboration
2016-09-01
Electric monopole (E 0) transition strengths are a sensitive probe for investigating nuclear structure and shape coexistence. There is a need for E 0 transition strengths in closed shell nuclei in order to develop our understanding of the mechanisms responsible for the generation of electric monopole strength. Simultaneous detections of γ rays and internal conversion electrons must be measured in order to determine an E 0 transition strength. A series of measurements in the stable nickel isotopes were performed at the Australian National University. Excited states in 58 , 60 , 62Ni were populated via inelastic proton scattering. The CAESAR array of Compton-suppressed HPGe detectors was used to measure the (E 2 / M 1) mixing ratio of transitions from angular distributions of γ rays. The Super-e spectrometer was used to measure electron-gamma branching ratios in order to extract E 0 transition strengths for a number of Jπ ->Jπ transitions. An overview of the experiments will be presented, along with preliminary results for E 0 transition strengths between Jπ ≠ 0 states in the semi-magic nuclei, 58 , 60 , 62Ni. A comparison with the matrix elements obtained from a new microscopic model for E 0 transitions will be made. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC).
Limits on the monopole mass obtained from the monopolonium lifetime
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.
1985-08-15
The lifetime of monopolonium was used to put limits on the mass of the monopole. It was found that in order to be in accord with observations of the energy density of the Universe, the isotropy of the radiation backgrounds and the abundance of primordial light elements the mass of the monopolonium cannot be greater than 10/sup 16/ GeV, so making very difficult to accommodate superheavy monopoles in the observable Universe. Heavy monopolonium states will have a lifetime between 10/sup 3/ and 10/sup 12/s, while light monopolonia are not restricted at all. The possibility is also investigated of identifying monopolonium with the heavy particle recently proposed to solve the ..cap omega..-problem i.e. how to reconcile a Universe with an ..cap omega..=1 and a cold dark matter scenario capable of predicting the right large-scale structure of the Universe. It was found that by choosing the radius of monopolonium, it is possible to solve the ..cap omega..-problem. (author).
Exotic baryon resonances in the Skyrme model
Diakonov, Dmitri
2008-01-01
We outline how one can understand the Skyrme model from the modern perspective. We review the quantization of the SU(3) rotations of the Skyrmion, leading to the exotic baryons that cannot be made of three quarks. It is shown that in the limit of large number of colours the lowest-mass exotic baryons can be studied from the kaon-Skyrmion scattering amplitudes, an approach known after Callan and Klebanov. We follow this approach and find, both analytically and numerically, a strong Theta+ resonance in the scattering amplitude that is traced to the rotational mode. The Skyrme model does predict an exotic resonance Theta+ but grossly overestimates the width. To understand better the factors affecting the width, it is computed by several methods giving, however, identical results. In particular, we show that insofar as the width is small, it can be found from the transition axial constant. The physics leading to a narrow Theta+ resonance is briefly reviewed and affirmed.
Effective Degrees of Freedom in Baryon Spectroscopy
Santopinto, E.; Ferretti, J.
2016-10-01
Three quark and quark-diquark models are characterized by several missing resonances, even if in the latter case the state space is a reduced one. Moreover, even quark-diquark models show some differences in their predictions for missing states. After several years of discussion, we still do not know whether baryons can be completely described in terms of three quark models or if diquark correlations have to be taken into account; another possibility, suggested in Santopinto (Phys Rev C 72:022201, 2005), Ferretti et al. (Phys Rev C 83:065204, 2011) and Galatà and Santopinto (Phys Rev C 86:045202, 2012), is that the previous pictures (three-quark and quark-diquark) represent the dominant descriptions of baryons at different energy scales. New experiments may be planned at Jlab (JLab12), Bes, Belle and LHCb in order to answer this fundamental open question.
Two Baryons with Twisted Boundary Conditions
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davoudi, Zohreh [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States); Luu, Thomas [Lawrence Livermore National Laboratory, Livermore, CA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States) and Institute for Nuclear Theory, Seattle, WA (United States)
2014-04-01
The quantization condition for two particle systems with arbitrary number of two-body open coupled-channels, spin and masses in a finite cubic volume is presented. The condition presented is in agreement with all previous studies of two-body systems in a finite volume. The result is fully relativistic and holds for all momenta below inelastic thresholds and is exact up to exponential volume corrections that are governed by m{sub {pi}} L, where m{sub {pi}} is the pion mass and L is the spatial extent of my box. Its implication for the studies of coupled-channel baryon-baryon systems is discussed, and the necessary tools for implementing the formalism are review.
Heavy baryons in the large Nc limit
Directory of Open Access Journals (Sweden)
C. Albertus
2015-11-01
Full Text Available It is shown that in the large Nc limit heavy baryon masses can be estimated quantitatively in a 1/Nc expansion using the Hartree approximation. The results are compared with available lattice calculations for different values of the ratio between the square root of the string tension and the heavy quark mass σ/mQ. These estimates implement important 1/Nc corrections and assume a string tension independent of Nc. Using a potential adjusted to agree with the one obtained in lattice QCD, a variational analysis of the ground state spin averaged baryon mass is performed using Gaussian Hartree wave functions. Relativistic corrections through the quark kinetic energy are included. The results provide good estimates for the first sub-leading in 1/Nc corrections.
A Schwarzschild-like model for baryons
Singleton, D.; Yoshida, A.
2002-06-01
We present a toy model of baryons using singular solutions of the SU(2) Yang-Mill-Higgs (YMH) field equations, which bears some similarity to the Schwarzschild solution of general relativity. The SU (2) solutions are used as a background field into which a scalar, SU (2) test particle is placed. This can be compared to placing an electrically charged particle in a Coulomb background field, except the SU (2) YMH solutions are singular on a spherical membrane thus trapping (confining) the test particle inside the sphere in a manner similar to certain bag models of baryons. An interesting consequence of this model is that the composite system is a fermion even though the original Lagrangian contains only bosonic fields.
The Baryonic Tully-Fisher Relation.
McGaugh; Schombert; Bothun; de Blok WJ
2000-04-20
We explore the Tully-Fisher relation over five decades in stellar mass in galaxies with circular velocities ranging over 30 less, similarVc less, similar300 km s-1. We find a clear break in the optical Tully-Fisher relation: field galaxies with Vc less, similar90 km s-1 fall below the relation defined by brighter galaxies. These faint galaxies, however, are very rich in gas; adding in the gas mass and plotting the baryonic disk mass Md=M*+Mgas in place of luminosity restores the single linear relation. The Tully-Fisher relation thus appears fundamentally to be a relation between rotation velocity and total baryonic mass of the form Md~V4c.
Baryon Spectrum Analysis using Covariant Constraint Dynamics
Whitney, Joshua; Crater, Horace
2012-03-01
The energy spectrum of the baryons is determined by treating each of them as a three-body system with the interacting forces coming from a set of two-body potentials that depend on both the distance between the quarks and the spin and orbital angular momentum coupling terms. The Two Body Dirac equations of constraint dynamics derived by Crater and Van Alstine, matched with the quasipotential formalism of Todorov as the underlying two-body formalism are used, as well as the three-body constraint formalism of Sazdjian to integrate the three two-body equations into a single relativistically covariant three body equation for the bound state energies. The results are analyzed and compared to experiment using a best fit method and several different algorithms, including a gradient approach, and Monte Carlo method. Results for all well-known baryons are presented and compared to experiment, with good accuracy.
Baryon and time asymmetries of the universe
Barnaveli, A T; Barnaveli, Andro; Gogberashvili, Merab
1995-01-01
This paper is devoted to the investigation of connection between two apparent asymmetries of the nature --- time-asymmetry and Baryon Asymmetry of the Universe (BAU). The brief review of this subjects is given. We consider the particle behavior in curved space-time and the possibility of T- and CPT-violation by the universe expansion. If these symmetries are violated we can dispense with the nonequilibrium condition which is usualy considered as the one of necessary ingredients for BAU-generation. Such mechanism of GUT-scale baryogenesis can provide the observed value of baryon asymmetry. We show this on the example of minimal SU(5) model which usually fails to explain the observed BAU without taking into account gravitational effects. Predominance of matter over antimatter and the cosmological arrow of time (the time-direction in which the Universe expands) seem to be connected facts and, possibly, BAU is the one of observable facts of CPT-violation in nature.
Energy Technology Data Exchange (ETDEWEB)
Ignatiev, A. Y.; Joshi, G.C
1997-12-31
We address the problem of string arbitrariness in the quantum field theory of Dirac magnetic monopoles. Different prescriptions are shown to yield different physical results. The constraints due tot he discrete symmetries (C and P) are derived for the process of electron-positron annihilation into the monopole antimonopole pair. In the case of the annihilation through one-photon channel, the production of spin 0 monopoles is absolutely forbidden; spin 1/2 monopole and antimonopole should have the same helicities or, equivalently, the monopole-antimonopole state should be p-wave {sup 1}P{sub 1}. (authors).
An algebraic model of baryon spectroscopy
Bijker, R
1999-01-01
We discuss recent calculations of the mass spectrum, electromagnetic and strong couplings of baryon resonances. The calculations are done in a collective constituent model for the nucleon, in which the resonances are interpreted as rotations and vibrations of a symmetric top with a prescribed distribution of the charge and magnetization. We analyze recent data on eta-photo- and eta-electroproduction, and the tensor analyzing power in deuteron scattering.
Understanding the baryon and meson spectra
Energy Technology Data Exchange (ETDEWEB)
Pennington, Michael R. [JLAB
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Baryon currents in QCD with compact dimensions
Lucini, B; Pica, C; Lucini, Biagio; Patella, Agostino; Pica, Claudio
2007-01-01
On a compact space with non-trivial cycles, for sufficiently small values of the radii of the compact dimensions, SU(N) gauge theories coupled with fermions in the fundamental representation spontaneously break charge conjugation, time reversal and parity. We show at one loop in perturbation theory that physical signature for this phenomenon is a non-zero baryonic current wrapping around the compact directions. The persistence of this current beyond the perturbative regime is checked by lattice simulations.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
A Heavy Quark Symmetry Approach to Baryons
Energy Technology Data Exchange (ETDEWEB)
Albertus, C. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Amaro, J.E. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Hernandez, E. [Grupo de Fisica Nuclear. Facultad de Ciencias, Universidad de Salamanca, E-37008 Salamanca (Spain); Nieves, J. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain)
2005-06-13
We evaluate different properties of baryons with a heavy c or b quark. The use of Heavy Quark Symmetry (HQS) provides with an important simplification of the non relativistic three body problem which can be solved by means of a simple variational approach. This scheme is able to reproduce previous results obtained with more involved Faddeev calculations. The resulting wave functions are parametrized in a simple manner, and can be used to calculate further observables.
Baryon spectroscopy with polarization observables from CLAS
Energy Technology Data Exchange (ETDEWEB)
Strauch, Steffen [Univ. of South Carolina, Columbia, SC (United States)
2016-08-01
Meson photoproduction is an important tool in the study of baryon resonances. The spectrum of broad and overlapping nucleon excitations can be greatly clarified by use of polarization observables. The N* program at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) includes experimental studies with linearly and circularly polarized tagged photon beams, longitudinally and transversely polarized nucleon targets, and recoil polarizations. An overview of these experimental studies and recent results will be given.
Screened potential and the baryon spectrum
Vijande, J; Garcilazo, H; Valcarce, A
2003-01-01
We show that in a quark model scheme the use of a screened potential, suggested by lattice QCD, instead of an infinitely rising one with the interquark distance, provides a more adequate description of the high-energy baryon spectrum. In particular an almost perfect parallelism between the predicted and observed number of states comes out throwing new light about the so-called missing resonance problem.
Tidal Dwarf Galaxies and Missing Baryons
Directory of Open Access Journals (Sweden)
Frederic Bournaud
2010-01-01
Full Text Available Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”.
Intergalactic Baryons in the Local Universe
Danforth, Charles W
2008-01-01
Simulations predict that shocks from large-scale structure formation and galactic winds have reduced the fraction of baryons in the warm, photoionized phase (the Lya forest) from nearly 100% in the early universe to less than 50% today. Some of the remaining baryons are predicted to lie in the warm-hot ionized medium (WHIM) phase at T=10^5-10^7 K, but the quantity remains a highly tunable parameter of the models. Modern UV spectrographs have provided unprecedented access to both the Lya forest and potential WHIM tracers at z~0, and several independent groups have constructed large catalogs of far-UV IGM absorbers along ~30 AGN sight lines. There is general agreement between the surveys that the warm, photoionized phase makes up ~30% of the baryon budget at z~0. Another ~10% can be accounted for in collapsed structures (stars, galaxies, etc.). However, interpretation of the ~100 high-ion (OVI, etc) absorbers at z<0.5 is more controversial. These species are readily created in the shocks expected to exist in...
Baryons, Neutrinos, Feedback and Weak Gravitational Lensing
Harnois-Déraps, Joachim; Viola, Massimo; Heymans, Catherine
2014-01-01
(Abridged) The effect of baryonic feedback on the dark matter mass distribution is generally considered to be a nuisance to weak gravitational lensing. Measurements of cosmological parameters are affected as feedback alters the cosmic shear signal on angular scales smaller than a few arcminutes. Recent progress on the numerical modelling of baryon physics has shown that this effect could be so large that, rather than being a nuisance, the effect can be constrained with current weak lensing surveys, hence providing an alternative astrophysical insight on one of the most challenging questions of galaxy formation. In order to perform our analysis, we construct an analytic fitting formula that describes the effect of the baryons on the mass power spectrum. This fitting formula is based on three scenarios of the OWL hydrodynamical simulations. It is specifically calibrated for $z<1.5$, where it models the simulations to an accuracy that is better than $2\\%$ for scales $k<10 h\\mbox{Mpc}^{-1}$ and better than ...
Charmed bottom baryon spectroscopy from lattice QCD
Brown, Zachary S; Meinel, Stefan; Orginos, Kostas
2014-01-01
We calculate the masses of baryons containing one, two, or three heavy quarks using lattice QCD. We consider all possible combinations of charm and bottom quarks, and compute a total of 36 different states with $J^P = \\frac12^+$ and $J^P = \\frac32^+$. We use domain-wall fermions for the up, down, and strange quarks, a relativistic heavy-quark action for the charm quarks, and nonrelativistic QCD for the bottom quarks. Our analysis includes results from two different lattice spacings and seven different pion masses. We perform extrapolations of the baryon masses to the continuum limit and to the physical pion mass using $SU(4|2)$ heavy-hadron chiral perturbation theory including $1/m_Q$ and finite-volume effects. For the 14 singly heavy baryons that have already been observed, our results agree with the experimental values within the uncertainties. We compare our predictions for the hitherto unobserved states with other lattice calculations and quark-model studies.
Monopoles in non-Abelian Born-Infeld-Higgs theory and Born-Infeld collapse
Dyadichev, V. V.; Gal'Tsov, D. V.
2002-06-01
Regular magnetic monopoles in the non-Abelian Born-Infeld-Higgs theory are known to exist in the region of the field strength parameter β>βcr, bounded from below. Beyond this region, only pointlike (embedded Abelian) monopoles exist, and we show that the transition from the regular to singular structure is reminiscent of gravitational collapse. Near the threshold behavior is characterized by the rapidly increasing negative pressure, which typically arises in the high density non-Abelian Born-Infeld (NBI) matter. Another feature, shared by both the NBI and gravitating monopoles, is the existence of excited states, which can be thought of as bound states of monopoles and sphalerons. These are labeled by the number N of nodes of the Yang-Mills function. Their masses are greater than the mass of the ground state monopole, and they are expected to be unstable. The sequence of masses MN rapidly converges to the mass of the embedded Abelian solution with a constant Higgs boson. The ratio of the sphaleron size to that of the monopole grows with decreasing β, and, at the same time, both fall down until the solutions cease to exist, again exhibiting a collapse to the point-like monopole. The results are presented and compared both for the ordinary and the symmetrized trace NBI actions.
Gil-Marín, Héctor; Percival, Will J.; Verde, Licia; Brownstein, Joel R.; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Rodríguez-Torres, Sergio A.; Olmstead, Matthew D.
2017-02-01
We measure and analyse the bispectrum of the final data release 12 (DR12), galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361 762 galaxies with an effective redshift of zLOWZ = 0.32, and the CMASS sample contains 777 202 galaxies with an effective redshift of zCMASS = 0.57. Combining the power spectrum, measured relative to the line of sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, f, and the amplitude of dark matter density fluctuations, σ8, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, H(z)rs(zd), and the angular distance parameter divided by the sound horizon, DA(z)/rs(zd). After combining pre-reconstruction RSD analyses of the power spectrum monopole, quadrupole and bispectrum monopole with post-reconstruction analysis of the BAO power spectrum monopole and quadrupole, we find f(zLOWZ)σ8(zLOWZ) = 0.427 ± 0.056, DA(zLOWZ)/rs(zd) = 6.60 ± 0.13, H(zLOWZ)rs(zd) = (11.55 ± 0.38)103 km s-1 for the LOWZ sample, and f(zCMASS)σ8(zCMASS) = 0.426 ± 0.029, DA(zCMASS)/rs(zd) = 9.39 ± 0.10, H(zCMASS)rs(zd) = (14.02 ± 0.22)103 km s-1 for the CMASS sample. We find general agreement with previous Baryon Oscillation Spectroscopic Survey DR11 and DR12 measurements. Combining our data set with Planck15 we perform a null test of General Relativity through the γ-parametrization finding γ =0.733^{+0.068}_{-0.069}, which is ∼2.7σ away from the General Relativity predictions.
Cosmic microwave background constraints for global strings and global monopoles
Lopez-Eiguren, Asier; Lizarraga, Joanes; Hindmarsh, Mark; Urrestilla, Jon
2017-07-01
We present the first cosmic microwave background (CMB) power spectra from numerical simulations of the global O(N) linear σ-model, with N=2,3, which have global strings and monopoles as topological defects. In order to compute the CMB power spectra we compute the unequal time correlators (UETCs) of the energy-momentum tensor, showing that they fall off at high wave number faster than naive estimates based on the geometry of the defects, indicating non-trivial (anti-)correlations between the defects and the surrounding Goldstone boson field. We obtain source functions for Einstein-Boltzmann solvers from the UETCs, using a recently developed method that improves the modelling at the radiation-matter transition. We show that the interpolation function that mimics the transition is similar to other defect models, but not identical, confirming the non-universality of the interpolation function. The CMB power spectra for global strings and global monopoles have the same overall shape as those obtained using the non-linear σ-model approximation, which is well captured by a large-N calculation. However, the amplitudes are larger than the large-N calculation would naively predict, and in the case of global strings much larger: a factor of 20 at the peak. Finally we compare the CMB power spectra with the latest CMB data in other to put limits on the allowed contribution to the temperature power spectrum at multipole l = 10 of 1.7% for global strings and 2.4% for global monopoles. These limits correspond to symmetry-breaking scales of 2.9× 1015 GeV (6.3× 1014 GeV with the expected logarithmic scaling of the effective string tension between the simulation time and decoupling) and 6.4× 1015 GeV respectively. The bound on global strings is a significant one for the ultra-light axion scenario with axion masses ma lesssim 10-28 eV . These upper limits indicate that gravitational waves from global topological defects will not be observable at the gravitational wave observatory
Can the baryon asymmetry arise from initial conditions?
Krnjaic, Gordan
2017-08-01
In this paper, we quantify the challenge of explaining the baryon asymmetry using initial conditions in a universe that undergoes inflation. Contrary to lore, we find that such an explanation is possible if net B -L number is stored in a light bosonic field with hyper-Planckian initial displacement and a delicately chosen field velocity prior to inflation. However, such a construction may require extremely tuned coupling constants to ensure that this asymmetry is viably communicated to the Standard Model after reheating; the large field displacement required to overcome inflationary dilution must not induce masses for Standard Model particles or generate dangerous washout processes. While these features are inelegant, this counterexample nonetheless shows that there is no theorem against such an explanation. We also comment on potential observables in the double β -decay spectrum and on model variations that may allow for more natural realizations.
Can the Baryon Asymmetry Arise From Initial Conditions?
Energy Technology Data Exchange (ETDEWEB)
Krnjaic, Gordan [Fermilab
2016-06-16
In this letter, we quantify the challenge of explaining the baryon asymmetry using initial conditions in a universe that undergoes inflation. Contrary to lore, we find that such an explanation is possible if net $B-L$ number is stored in a light bosonic field with hyper-Planckian initial displacement and a delicately chosen field velocity prior to inflation. However, such a construction may require extremely tuned coupling constants to ensure that this asymmetry is viably communicated to the Standard Model after reheating; the large field displacement required to overcome inflationary dilution must not induce masses for Standard Model particles or generate dangerous washout processes. While these features are inelegant, this counterexample nonetheless shows that there is no theorem against such an explanation. We also comment on potential observables in the double $\\beta$-decay spectrum and on model variations that may allow for more natural realizations.
Can the Baryon Asymmetry Arise From Initial Conditions?
Krnjaic, Gordan
2016-01-01
In this letter, we quantify the challenge of explaining the baryon asymmetry using initial conditions in a universe that undergoes inflation. Contrary to lore, we find that such an explanation is possible if net $B-L$ number is stored in a light bosonic field with hyper-Planckian initial displacement and a delicately chosen field velocity prior to inflation. However, such a construction may require extremely tuned coupling constants to ensure that this asymmetry is viably communicated to the Standard Model after reheating; the large field displacement required to overcome inflationary dilution must not induce masses for Standard Model particles or generate dangerous washout processes. While these features are inelegant, this counterexample nonetheless shows that there is no theorem against such an explanation. We also comment on potential observables in the double $\\beta$-decay spectrum and on model variations that may allow for more natural realizations.
Hidden local symmetry and infinite tower of vector mesons for baryons
Ma, Yong-Liang; Oh, Yongseok; Yang, Ghil-Seok; Harada, Masayasu; Lee, Hyun Kyu; Park, Byung-Yoon; Rho, Mannque
2012-10-01
In an effort to access dense baryonic matter relevant for compact stars in a unified framework that handles both single baryon and multibaryon systems on the same footing, we first address a holographic dual action for a single baryon focusing on the role of the infinite tower of vector mesons deconstructed from five dimensions. To leading order in ’t Hooft coupling λ=NcgYM2, one has the Bogomol’nyi-Prasad-Sommerfield (BPS) Skyrmion that results when the warping of the bulk background and the Chern-Simons term in the Sakai-Sugimoto (SS) D4/D8-D8¯ model are ignored. The infinite tower was found by Sutcliffe to induce flow to a conformal theory, i.e., the BPS. We compare this structure to that of the SS model consisting of a 5D Yang-Mills action in warped space and the Chern-Simons term in which higher vector mesons are integrated out while preserving hidden local symmetry and valid to O(λ0) and O(p4) in the chiral counting. We point out the surprisingly important role of the ω meson that figures in the Chern-Simons term that encodes chiral anomaly in the baryon structure and that may be closely tied to short-range repulsion in nuclear interactions.
Fragmentation Functions for Heavy Baryons in the Recombination Model
Institute of Scientific and Technical Information of China (English)
彭茹
2011-01-01
Using the shower parton distributions determined by the recombination model, we predict the fragmentation functions for heavy baryons. Then we obtain the completed fragmentation functions of heavy quarks (c and b) splitting into their hadrons (mesons and baryons containing one heavy valence quark). The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.%Using the shower parton distributions determined by the recombination model,we predict the fragmentation functions for heavy baryons.Then we obtain the completed fragmentation functions of heavy quarks(c and b)splitting into their hadrons(mesons and baryons containing one heavy valence quark).The calculated process shows that the fragmentation functions for mesons and baryons are not independent if the hadronization of the shower partons is taken into account.
High statistics analysis using anisotropic clover lattices: (III) Baryon-baryon interactions
Energy Technology Data Exchange (ETDEWEB)
Beane, S; Detmold, W; Lin, H; Luu, T; Orginos, K; Savage, M; Torok, A; Walker-Loud, A
2010-01-19
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m{sub {pi}} {approx} 390 MeV, a spatial volume of L{sup 3} {approx} (2.5 fm){sup 3}, and a spatial lattice spacing of b {approx} 0.123 fm. Luescher's method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The isospin-3/2 N{Sigma} interactions are found to be highly spin-dependent, and the interaction in the {sup 3}S{sub 1} channel is found to be strong. In contrast, the N{Lambda} interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is {Lambda}{Lambda}, indicating that the {Lambda}{Lambda} interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting is explored. In particular, focus is placed on the window of time slices for which the signal-to-noise ratio does not degrade exponentially, as this provides the opportunity to extract quantitative information about multi-baryon systems.
Berry’s connection, Kähler geometry and the Nahm construction of monopoles
Energy Technology Data Exchange (ETDEWEB)
Wong, Kenny [Department of Applied Mathematics and Theoretical Physics,Centre for Mathematical Sciences, University of Cambridge, Cambridge, CB3 0WA (United Kingdom)
2015-12-22
We study supersymmetric deformations of N=4 quantum mechanics with a Kähler target space admitting a holomorphic isometry. We show that the twisted mass deformation generalises to a deformation constructed from matrix-valued functions of the moment map, which obey the Nahm equations. We also explain how N=4 supersymmetry implies that the Berry connection on the vacuum bundle for this theory satisfies the BPS monopole equations. In the case where the target space is a Riemann sphere, our analysis reduces to the standard Nahm construction of monopoles. This generalises an earlier result by Sonner and Tong to the case of monopoles of magnetic charge greater than one.
Monopole Mechanism of SU(N) Gauge Theory without Gauge-fixing
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
It has been long argued that the confinement could be explained by monopole condensation,through the dual Meissner effect(Numbu,Mendelstain,tHooft,Polyakov)~9[1,2]).The dual-superconductor picture of confinement,relys on the condensation of monopole-monopole pairs.Due to the dual Meissner effect,the field between two colored sources would be squeezed into a fluxtube(string)with energy proportional to its length.To study the problem,we have to find some new clue.
Aspects of monopole operators in N=6 Chern-Simons theory
Kim, Seok
2009-01-01
We study local operators of U(N)xU(N) N=6 Chern-Simons-matter theory including a class of magnetic monopole operators. To take into account the interaction of monopoles and basic fields for large Chern-Simons level k, we consider the appropriate perturbation theory in 1/k which reliably describes small excitations around protected chiral operators. We also compute the superconformal index for the simplest monopole operators and show that it agrees with the recent result obtained from localization. For this agreement, it is crucial that excitations of gauge fields and some matter scalars mix, which is described classically by odd dimensional self-duality equations.
Quadratic algebra for superintegrable monopole system in a Taub-NUT space
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2016-09-01
We introduce a Hartmann system in the generalized Taub-NUT space with Abelian monopole interaction. This quantum system includes well known Kaluza-Klein monopole and MIC-Zwanziger monopole as special cases. It is shown that the corresponding Schrödinger equation of the Hamiltonian is separable in both spherical and parabolic coordinates. We obtain the integrals of motion of this superintegrable model and construct the quadratic algebra and Casimir operator. This algebra can be realized in terms of a deformed oscillator algebra and has finite dimensional unitary representations (unirreps) which provide energy spectra of the system. This result coincides with the physical spectra obtained from the separation of variables.
Baryons as Fock states of 3,5,... Quarks
Energy Technology Data Exchange (ETDEWEB)
Dmitri Diakonov; Victor Petrov
2004-09-01
We present a generating functional producing quark wave functions of all Fock states in the octet, decuplet and antidecuplet baryons in the mean field approximation, both in the rest and infinite momentum frames. In particular, for the usual octet and decuplet baryons we get the SU(6)-symmetric wave functions for their 3-quark component but with specific corrections from relativism and from additional quark-antiquark pairs. For the exotic antidecuplet baryons we obtain the 5-quark wave function.
Calculating Masses of Pentaquarks Composed of Baryons and Mesons
Directory of Open Access Journals (Sweden)
M. Monemzadeh
2016-01-01
Full Text Available We consider an exotic baryon (pentaquark as a bound state of two-body systems composed of a baryon (nucleon and a meson. We used a baryon-meson picture to reduce a complicated five-body problem to simple two-body problems. The homogeneous Lippmann-Schwinger integral equation is solved in configuration space by using one-pion exchange potential. We calculate the masses of pentaquarks θc(uuddc¯ and θb(uuddb¯.
Particlelike solutions of modified gravity: the Higgs monopoles
Schlogel, Sandrine
2015-01-01
The lore paradigm for solving so-called horizon and flatness problems in cosmology is the primordial inflation. Plethora of inflationary models have been built in last decades and first experimental probes seem to appear in favor of the inflationary paradigm. We will focus here on one of them, the Higgs inflation, and show the combined constraint required for such a model at cosmological as well as gravitational scales, i.e. for compact objects. We will show that Higgs inflation model gives rise to particlelike solutions around compact objects, dubbed Higgs monopoles, characterized by the nonminimal coupling parameter as well as the mass and the compactness of the object. For large values of the nonminimal coupling constant and specific compactness, the amplitude of the Higgs field inside the matter distribution can be arbitrarily large.
Electric monopole transitions from low energy excitations in nuclei
Wood, J L; De Coster, C; Heyde, Kris L G
1999-01-01
Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.
Direct-coupling lensing by antisymmetric tensor monopoles
Lau, Kamuela N.; Seifert, Michael D.
2017-01-01
We discuss the effects of a direct coupling between a Lorentz-violating rank-two antisymmetric tensor field and the Maxwell field. Two possible couplings are considered, which can be distinguished by whether or not they lead to vacuum birefringence. In both cases, the magnitude of the field components and the coupling coefficient can be bounded by observational constraints. For light propagating in the presence of a topological defect solution, both couplings lead to the deflection of light rays; however, these angular deflections can be expected to be extremely small: 10-9 arcseconds for the nonbirefringent coupling, and no more than 10-26 arcseconds for the birefringent coupling. We discuss the plausibility of this phenomenon as a method for detection of these monopoles.
Structure and direct decay of Giant Monopole Resonances
Avez, Benoît
2013-01-01
We study structure and direct decay of the Giant Monopole Resonance (GMR) using the Time-Dependent Energy-Density-Functional method in the linear response regime in a few doubly-magic nuclei. In these calculations, a proper treatment of the continuum, through the use of large coordinate space, allows for a separation between the nucleus and its emitted nucleons. The microscopic structure of the GMR is investigated with the decomposition of the strength function into individual single-particles quantum numbers. A similar microscopic decomposition of the spectra of emitted nucleons by direct decay of the GMR is performed. Shifting every contribution by the initial sinle-particle energy allows to reconstruct the GMR strength function. The RPA residual interaction couples bound 1-particle 1-hole states to unbound ones, allowing for the total decay of the GMR.
Design of Monopole Antenna Based on Fractal Geometry
Directory of Open Access Journals (Sweden)
Zhao Yuanqing
2014-01-01
Full Text Available This paper presents a circular disc monopole antenna based on fractal geometry. The antenna is designed to be applied in UWB systems. So it is essential to ensure that the bandwidth of the antenna ranges from 3.1 GHz to 10.6 GHz, that is, IEEE 802.15.3a. However, the proposed antenna has achieved working in the required bandwidth. Compared to the antennas illustrated in most similar literatures, the proposed antenna has a much smaller size, which makes the antenna possible to be integrated with portable devices. Firstly, the antenna was designed through CST Microwave Studio. Then, the antenna was fabricated according to the simulated results. At last, the comparison between the simulated results and measured results was carried out which demonstrated good consistency.
Multi-band Monopole Antennas Loaded with Metamaterial TL
Song, Zhi-jie; Liang, Jian-gang
2015-05-01
A novel metamaterial transmission line (TL) by loading complementary single Archimedean spiral resonator pair (CSASRP) is investigated and used to design a set of multi-frequency monopole antennas. The particularity is that the CSASRP which features dual-shunt branches in the equivalent circuit model is directly etched in the signal strip. By smartly controlling the element parameters, three antennas are designed and one of them covering UMTS and Bluetooth bands is fabricated and measured. The antenna exhibits impedance matching better than -10 dB and normal monopolar radiation patterns at working bands of 1.9-2.22 and 2.38-2.5 GHz. Moreover, the loaded element also contributes to the radiation, which is the major advantage of this prescription over previous lumped-element loadings. The proposed antenna is also more compact over previous designs.
Critical phenomena of emergent magnetic monopoles in a chiral magnet.
Kanazawa, N; Nii, Y; Zhang, X-X; Mishchenko, A S; De Filippis, G; Kagawa, F; Iwasa, Y; Nagaosa, N; Tokura, Y
2016-05-16
Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems.
Scattering of instantons, monopoles and vortices in higher dimensions
Ivanova, Tatiana A
2016-01-01
We consider Yang-Mills theory on manifolds ${\\mathbb R}\\times X$ with a $d$-dimensional Riemannian manifold $X$ of special holonomy admitting gauge instanton equations. Instantons are considered as particle-like solutions in $d+1$ dimensions whose static configurations are concentrated on $X$. We study how they evolve in time when considered as solutions of the Yang-Millsequations on ${\\mathbb R}\\times X$ with moduli depending on time $t\\in{\\mathbb R}$. It is shown that in the adiabatic limit, when the metric in the $X$ direction is scaled down, the classical dynamics of slowly moving instantons corresponds to a geodesic motion in the moduli space $\\cal M$ of gauge instantons on $X$. Similar results about geodesic motion in the moduli space of monopoles and vortices in higher dimensions are briefly discussed.
Flexible sixteen monopole antenna array for microwave breast cancer detection.
Bahrami, H; Porter, E; Santorelli, A; Gosselin, B; Popovic, M; Rusch, L A
2014-01-01
Radar based microwave imaging (MI) has been widely studied for breast cancer detection in recent times. Sensing dielectric property differences of tissues over a wide frequency band has been made possible by ultra-wideband (UWB) techniques. In this paper, a flexible, compact monopole antenna on a 100 μm Kapton polyimide is designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues over the 2-5GHz frequency range. The antenna parameters are optimized to obtain a good impedance match over the required frequency range. The designed antenna size is 18mm × 18mm. Further, a flexible conformal 4×4 ultra-wideband antenna array, in a format similar to that of a bra, was developed for a radar-based breast cancer detection system.
One-loop corrections to the baryon axial vector current
Indian Academy of Sciences (India)
M A Hernández-Ruíz
2012-10-01
The symmetry breaking corrections to the pion–baryon couplings vanish to first order in $1/N_{c}$, where $N_{c}$ is the number of colours. Loop graphs with octet and decuplet intermediate states cancel to various orders in $N_{c}$ as a consequence of the large-$N_{c}$ spin-flavour symmetry of QCD baryons. The baryon axial vector current is computed at one-loop order in heavy baryon chiral perturbation theory in the large Nc limit. $1/N_{c}$ corrections in the case of $g_{A}$ in QCD are presented here.
Search for CP violation in baryon decays at LHCb
CERN. Geneva
2016-01-01
The phenomenon of CP violation has been observed in the K- and B-meson systems, but not yet with any baryonic particle. We report on searches for CP violation in baryon decays at LHCb using Run I data. We find evidence for CP violation in Lambda0b -> p pi- pi+ pi- decays with a statistical significance corresponding to 3.3 standard deviations, including systematic uncertainties. This represents the first evidence of CP violation in the baryon sector. An overview of other recent results of baryon decays will be presented, along with some highlights of the charmless B-decay programme.
Magnetic Moments of Baryons with a Heavy Quark
Weigel, H
2003-01-01
We compute magnetic moments of baryons with a heavy quark in the bound state approach for heavy baryons. In this approach the heavy baryon is considered as a heavy meson bound to a light baryon. The latter is represented as a soliton excitation of light meson fields. We obtain the magnetic moments by sandwiching pertinent components of the electromagnetic current operator between the bound state wave--functions. We extract this current operator from the coupling to the photon field after extending the action to be gauge invariant.
Dark Matter in Lepto-Baryonic Left-Right Theories
Patra, Sudhanwa
2015-01-01
A Lepto-Baryonic Left-Right symmetric theory is considered where leptons and baryons are local gauge symmetries. These theories are generally anomalous and the possible gauge anomaly free solutions for these theories are presented here. This paper also shows different ways in which Lepto-Baryonic Left-Right theories are broken down to Standard Model gauge group which further breaks down to low energy by SM Higgs boson. It is found that the neutral component of fermion triplets can be a viable dark matter candidate originally introduced for gauge anomaly cancellation. The other dark matter possibilities within this Lepto-Baryonic Left-Right symmetric theories are also presented.
Notes on exotic anti-decuplet of baryons
Polyakov, M V
2004-01-01
We emphasize the importance of identifying non-exotic SU(3) partners of the Theta^+ pentaquark, and indicate possible ways how to do it. We also use the soliton picture of baryons to relate Reggeon couplings of various baryons. These relations are used to estimate the Theta^+ production cross section in high energy processes. We show that the corresponding cross sections are significantly suppressed relative to the production cross sections of usual baryons. Finally, we present spin non-flip form factors of the anti-decuplet baryons in the framework of the chiral quark soliton model.
Spectroscopy of singly, doubly, and triply bottom baryons
Wei, Ke-Wei; Liu, Na; Wang, Qian-Qian; Guo, Xin-Heng
2016-01-01
Recently, many singly bottom baryons have been established experimentally, but no doubly or triply bottom baryon has been observed. Under the Regge phenomenology, the mass of a ground state unobserved doubly or triply bottom baryon is expressed as a function of masses of the well established light baryons and singly bottom baryons. (For example, we write the mass of $\\Omega_{bbb}$ as a function of the masses of well established light baryons ($\\Sigma^{*}$, $\\Xi^{*}$, $\\Omega$) and singly bottom baryons ($\\Sigma_b^{*}$, $\\Xi_b^{*}$), and give its value to be 14788$\\pm$80 MeV.) After that, we calculate the values of Regge slopes and Regge intercepts for singly, doubly, and triply bottom baryons. (Regge intercepts and slopes, which are usually regarded as fundamental constants of hadron dynamics, are useful for many spectral and nonspectral purposes.) Then, masses of the orbitally excited singly, doubly, and triply bottom baryons are estimated. The isospin splitting is also determined, $M_{\\Xi_{bb}^{-}}-M_{\\Xi_{...
Hypermagnetic Fields and Baryon Asymmetry from Pseudoscalar Inflation
Anber, Mohamed M
2015-01-01
We show that maximally helical hypermagnetic fields produced during pseudoscalar inflation can generate the observed baryon asymmetry of the universe via the B+L anomaly in the Standard Model. We find that most of the parameter space of pseudoscalar inflation that explains the cosmological data leads to baryon overproduction, hence the models of natural inflation are severely constrained. We also point out a connection between the baryon number and topology of the relic magnetic fields. Both the magnitude and sign of magnetic helicity can be detected in future diffuse gamma ray data. This will be a smoking gun evidence for a link between inflation and the baryon asymmetry of the Universe.
On Dirac-like Monopoles in a Lorentz- and CPT-violating Electrodynamics
Barraz, N M; Moura-Melo, W A; Helay"el-Neto, J A
2007-01-01
We study magnetic monopoles in a Lorentz- and CPT-odd electrodynamical framework in (3+1) dimensions. This is the standard Maxwell model extended by means of a Chern-Simons-like term, $b_\\mu\\tilde{F}^{\\mu\
Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are
Search for doubly charmed baryons and study of charmed strange baryons at Belle
Kato, Y; Adachi, I; Aihara, H; Asner, D M; Aushev, T; Bakich, A M; Bala, A; Ban, Y; Bhardwaj, V; Bhuyan, B; Bobrov, A; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Chobanova, V; Choi, Y; Cinabro, D; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Dutta, D; Dutta, K; Eidelman, S; Farhat, H; Fast, J E; Ferber, T; Gaur, V; Gabyshev, N; Ganguly, S; Garmash, A; Gillard, R; Goh, Y M; Golob, B; Haba, J; Hayasaka, K; Hayashii, H; He, X H; Horii, Y; Hoshi, Y; Hou, W -S; Hsiung, Y B; Inami, K; Ishikawa, A; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kato, E; Kawasaki, T; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, J H; Kim, M J; Kim, Y J; Klucar, J; Ko, B R; Kodyš, P; Korpar, S; Krokovny, P; Kuhr, T; Kuzmin, A; Kwon, Y -J; Lee, S -H; Li, J; Li, Y; Gioi, L Li; Libby, J; Liu, Y; Liventsev, D; Matvienko, D; Miyabayashi, K; Miyata, H; Mizuk, R; Moll, A; Muramatsu, N; Mussa, R; Nagasaka, Y; Nakano, E; Nakao, M; Nayak, M; Nedelkovska, E; Ng, C; Niiyama, M; Nisar, N K; Nishida, S; Nitoh, O; Ogawa, S; Okuno, S; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Park, H K; Pedlar, T K; Peng, T; Pestotnik, R; Petrič, M; Piilonen, L E; Ritter, M; Röhrken, M; Rostomyan, A; Sahoo, H; Saito, T; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Savinov, V; Schneider, O; Schnell, G; Schwanda, C; Semmler, D; Senyo, K; Seon, O; Shapkin, M; Shen, C P; Shibata, T -A; Shiu, J -G; Shwartz, B; Sibidanov, A; Sohn, Y -S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Steder, M; Sumihama, M; Sumiyoshi, T; Tamponi, U; Tanida, K; Tatishvili, G; Teramoto, Y; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Van Hulse, C; Vanhoefer, P; Varner, G; Vinokurova, A; Vorobyev, V; Wagner, M N; Wang, C H; Wang, M -Z; Wang, P; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yamashita, Y; Yashchenko, S; Zhang, Z P; Zhilich, V; Zhulanov, V; Zupanc, A
2013-01-01
We report results of a study of doubly charmed baryons and charmed strange baryons. The analysis is performed using a 980 fb^-1 data sample collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We search for doubly charmed baryons Xi_cc^+(+) with the Lambda_c^+K^-pi^+(pi^+) and Xi_c^0pi^+(pi^+) final states. No significant signal is observed. We also search for two excited charmed strange baryons, Xi_c(3055)^+ and Xi_c(3123)^+ with the Sigma_c^++(2455)K^- and Sigma_c^++(2520)K^- final states. The Xi_c(3055)^+ signal is observed with a significance of 6.6 standard deviations including systematic uncertainty, while no signature of the Xi_c(3123)^+ is seen. We also study properties of the Xi_c(2645)^+ and measure a width of 2.6 +- 0.2 (stat) +- 0.4 (syst) MeV/c^2, which is the first significant determination.
Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.
2012-01-01
We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are calcula
a Relativistic Calculation of Baryon Masses
Giammarco, Joseph Michael
1990-01-01
We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.
Baryon instability search in large detectors
Energy Technology Data Exchange (ETDEWEB)
Moscoso, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee
1996-08-01
Nucleon decay appears as a consequence of models trying to explain the baryon-antibaryon asymmetry. This has motivated 15 years ago many underground experiments devoted to the search of proton and neutron decay. A very large number of decay channels have been investigated and no evidence has been found yielding lower limits on lifetime which rule out the minimal SU(5) Grand Unified Theory predictions and put severe constraints on more complicated models. Next generation experiments like Super-Kamiokande, which is starting to take data now, ICARUS, whose a 600 ton prototype is under construction, will be sensitive to more complicated models predicting larger lifetimes. (author). 16 refs.
Flavour Oscillations in Dense Baryonic Matter
Filip, Peter
2017-01-01
We suggest that fast neutral meson oscillations may occur in a dense baryonic matter, which can influence the balance of s/¯s quarks in the nucleus-nucleus and proton-nucleus interactions, if primordial multiplicities of neutral K 0, mesons are sufficiently asymmetrical. The phenomenon can occur even if CP symmetry is fully conserved, and it may be responsible for the enhanced sub-threshold production of multi-strange hyperons observed in the low-energy A+A and p+A interactions.
SU(3) flavour breaking and baryon structure
Energy Technology Data Exchange (ETDEWEB)
Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Shanahan, P.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: QCDSF/UKQCD Collaboration
2013-11-15
We present results from the QCDSF/UKQCD collaboration for hyperon electromagnetic form factors and axial charges obtained from simulations using N{sub f}=2+1 flavours of O(a)-improved Wilson fermions. We also consider matrix elements relevant for hyperon semileptonic decays. We find flavour-breaking effects in hyperon magnetic moments which are consistent with experiment, while our results for the connected quark spin content indicates that quarks contribute more to the spin of the {Xi} baryon than they do to the proton.
Non-baryonic dark matter in cosmology
Del Popolo, A.
2013-07-01
This paper is based on lectures given at the IX Mexican School on Gravitation and Mathematical Physics. The lectures (as the paper) were a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the ΛCDM model, with particular emphasis on the small scale problems of the paradigm.
Non-Baryonic Dark Matter in Cosmology
Del Popolo, A
2014-01-01
This paper is a broad-band review of the current status of non-baryonic dark matter research. I start with a historical overview of the evidences of dark matter existence, then I discuss how dark matter is distributed from small scale to large scale, and I then verge the attention to dark matter nature: dark matter candidates and their detection. I finally discuss some of the limits of the $\\Lambda$CDM model, with particular emphasis on the small scale problems of the paradigm.
Baryons in Massive Gross-Neveu Models
Thies, M; Thies, Michael; Urlichs, Konrad
2005-01-01
Baryons in the large N limit of (1+1)-dimensional Gross-Neveu models with either discrete or continuous chiral symmetry have long been known. We generalize their construction to the case where the symmetry is explicitly broken by a bare mass term in the Lagrangian. In the discrete symmetry case, the exact solution is found for arbitrary bare fermion mass, using the Hartree-Fock approach. In the continuous symmetry case, a derivative expansion allows us to rederive a formerly proposed Skyrme-type model and to compute systematically corrections to the leading order description based on an effective sine-Gordon theory.
Magnetic Polarizability of Diquarks in Baryons
Filip, Peter
2014-01-01
We study the response of diquark wave function in \\Lambda-type baryons to strong magnetic fields. It is found that quantum state of J=0 diquark (ud) in the magnetic field changes due to magnetic polarizability, and constituent quarks in (ud) diquark become polarized. The phenomenon influences polarized quark distribution functions \\Delta u(x) and \\Delta d(x), which therefore may be sensitive to the internal electromagnetic fields in hypernuclei. We also speculate, that strange quark polarization in nucleon may originate from the interaction of virtual (ss') quark pairs with the intrinsic magnetic field of nucleon B $\\approx$ 10^13 T.
Limits on the fluctuating part of $y$-type distortion monopole from Planck and SPT results
Khatri, Rishi
2015-01-01
We use the published Planck and SPT cluster catalogs and recently published $y$-distortion maps to put strong observational limits on the contribution of the fluctuating part of the $y$-type distortions to the $y$-distortion monopole. Our bounds are $5.4\\times 10^{-8} 27$-$\\sigma$. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be $<10^{-6}$.
Can the $ 750\\, GeV$ enhancement be a signal of light magnetic monopoles?
Epele, L N; A, C; Canal, García; Mitsou, V A; Vento, V
2016-01-01
The announced ~ 3 {\\sigma} enhancement in the inclusive {\\gamma} {\\gamma} -spectrum at ~ 750 GeV made by the ATLAS and CMS collaborations at LHC might indicate the existence of a monopole-antimonopole bound state: monopolium. In here we revisit our calculation of 2012 from a more general perspective and see that this resonance, if confirmed, might be a first signal of the existence of magnetic monopoles.
Hawking radiation from the Schwarzschild black hole with a global monopole via gravitational anomaly
Institute of Scientific and Technical Information of China (English)
Peng Jun-Jin; Wu Shuang-Qing
2008-01-01
This paper derives the Hawking flux from the Schwarzschild black hole with a global monopole by using Robinson and Wilczek's method.Adopting a dimensional reduction technique, it can describe the effective quantum field in the (3+1)-dimensional global monopole background by an infinite collection of the (1+1)-dimensional maesless fields if neglecting the ingoing modes near the horizon, where the gravitational anomaly can be cancelled by the (1+1)-dimensional black body radiation at the Hawking temperature.
High Statistics Analysis using Anisotropic Clover Lattices: (III) Baryon-Baryon Interactions
Energy Technology Data Exchange (ETDEWEB)
Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Detmold, William [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Univ. of Washington, Seattle, WA (United States); Luu, Thomas C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin [Univ. of Washington, Seattle, WA (United States); Torok, Aaron M. [Indiana Univ., Bloomington, IN (United States). Dept. of Physics; Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)
2010-03-01
Low-energy baryon-baryon interactions are calculated in a high-statistics lattice QCD study on a single ensemble of anisotropic clover gauge-field configurations at a pion mass of m_pi ~ 390 MeV, a spatial volume of L^3 ~ (2.5 fm)^3, and a spatial lattice spacing of b ~ 0.123 fm. Luscher’s method is used to extract nucleon-nucleon, hyperon-nucleon and hyperon-hyperon scattering phase shifts at one momentum from the one- and two-baryon ground-state energies in the lattice volume. The N-Sigma interactions are found to be highly spin-dependent, and the interaction in the ^3 S _1 channel is found to be strong. In contrast, the N-Lambda interactions are found to be spin-independent, within the uncertainties of the calculation, consistent with the absence of one-pion-exchange. The only channel for which a negative energy-shift is found is Lambda-Lambda, indicating that the Lambda-Lambda interaction is attractive, as anticipated from model-dependent discussions regarding the H-dibaryon. The NN scattering lengths are found to be small, clearly indicating the absence of any fine-tuning in the NN-sector at this pion mass. This is consistent with our previous Lattice QCD calculation of the NN interactions. The behavior of the signal-to-noise ratio in the baryon-baryon correlation functions, and in the ratio of correlation functions that yields the ground-state energy splitting
The extra gauge symmetry of string deformations in electromagnetism with charges and dirac monopoles
Energy Technology Data Exchange (ETDEWEB)
Kleinert, H. (Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 33 (DE))
1992-07-30
In this paper, the authors point out that electromagnetism with Dirac magnetic monopoles harbors an extra local gauge invariance called monopole gauge invariance. The gauge transformations act on a gauge field of monopoles F{sup Rho}{sub {mu}{nu}} and are independent of the ordinary electromagnetic gauge invariance. The extra invariance expresses the physical irrelevance of the shape of the Dirac strings attached to the monopoles. The independent nature of the new gauge symmetry is illustrated by comparison with two other systems, superfluids and solids, which are not gauge-invariant from the outset but which nevertheless possess a precise analog of the monopole gauge invariance in the their vortex and defect structure, respectively. The extra monopole gauge invariance is shown to be responsible for the Dirac charge quantization conditions 2eg/{Dirac h}c = integer, which can now be proved for any fixed particle orbits, i.e. without invoking fluctuating orbits which would correspond to the standard derivation using Schrodinger wave functions. The only place where quantum physics enters in our theory is by admitting the action to jump by 2{pi}{Dirac h} {times} integer without physical consequences when moving the string at fixed particle orbits.
Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik
2015-09-01
Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.
(Hybrid) Baryons in the Flux-Tube Model
Page, P R
1999-01-01
We construct baryons and hybrid baryons in the non-relativistic flux-tube model of Isgur and Paton. The motion of the flux-tube with the three quark positions fixed, except for centre of mass corrections, is discussed. It is shown that the problem can to an excellent approximation be reduced to the independent motion of a junction and strings.
Baryon octet distribution amplitudes in Wandzura-Wilczek approximation
Energy Technology Data Exchange (ETDEWEB)
Anikin, I.V. [Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Manashov, A.N. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2015-12-15
We study higher twist distribution amplitudes for the SU{sub F}(3) baryon octet. We identify independent functions for all baryons in the isospin symmetry limit and calculate the Wandzura-Wilczek contributions to the twist-4 and 5 distributions amplitudes.
Search for strange baryon electric dipole moment at LHCb
Lewis, Daniel James
2017-01-01
A search for the EDM of $\\Lambda$ baryons using the LHCb detector is proposed. In order to perform this search, the reconstruction of $\\Lambda$ baryons using T tracks must be possible. This note presents the reconstruction techniques and resolution studies that demonstrate that this is indeed feasible.
Baryon magnetic moments in the effective quark Lagrangian approach
Simonov, YA; Tjon, JA; Weda, J; Simonov, Yu A.
2002-01-01
An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result one obtains magnetic moments of octet and decuplet baryons without the introduc
Evidence for chiral logarithms in the baryon spectrum
Walker-Loud, Andre
2011-01-01
Using precise lattice QCD computations of the baryon spectrum, we present the first direct evidence for the presence of contributions to the baryon masses which are non-analytic in the light quark masses; contributions which are often denoted "chiral logarithms". We isolate the poor convergence of SU(3) baryon chiral perturbation theory to the flavor-singlet mass combination. The flavor-octet baryon mass splittings, which are corrected by chiral logarithms at next to leading order in SU(3) chiral perturbation theory, yield baryon-pion axial coupling constants D, F, C and H consistent with QCD values; the first evidence of chiral logarithms in the baryon spectrum. The Gell-Mann--Okubo relation, a flavor-27 baryon mass splitting, which is dominated by chiral corrections from light quark masses, provides further evidence for the presence of non-analytic light quark mass dependence in the baryon spectrum; we simultaneously find the GMO relation to be inconsistent with the first few terms in a taylor expansion in ...
Finite Volume Effect of Baryons in Strange Hadronic Matter
Institute of Scientific and Technical Information of China (English)
SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang
2001-01-01
The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.
Bezshyyko, O.A.; Fomin, A.S.; Fomin, S.P.; Kirillin, I.V.; Korchin, A. Yu.; Massacrier, L.; Natochii, A.; Robbe, P.; Scandale, W.; Shul'ga, N.F.; Stocchi, A.
2017-08-28
In this paper we revisit the idea of measuring the magnetic dipole moments of the charm baryons and, in particular, of charmed Lambda by studying the spin precession induced by the strong effective magnetic field inside the channels of a bent crystal. We present a detailed sensitivity study showing the feasibility of such an experiment at the LHC in the coming years.
Electrically Small Microstrip Quarter-Wave Monopole Antennas
Young, W. Robert
2004-01-01
Microstrip-patch-style antennas that generate monopole radiation patterns similar to those of quarter-wave whip antennas can be designed to have dimensions smaller than those needed heretofore for this purpose, by taking advantage of a feed configuration different from the conventional one. The large sizes necessitated by the conventional feed configuration have, until now, made such antennas impractical for frequencies below about 800 MHz: for example, at 200 MHz, the conventional feed configuration necessitates a patch diameter of about 8 ft (.2.4 m) . too large, for example, for mounting on the roof of an automobile or on a small or medium-size aircraft. By making it possible to reduce diameters to between a tenth and a third of that necessitated by the conventional feed configuration, the modified configuration makes it possible to install such antennas in places where they could not previously be installed and thereby helps to realize the potential advantages (concealment and/or reduction of aerodynamic drag) of microstrip versus whip antennas. In both the conventional approach and the innovative approach, a microstrip-patch (or microstrip-patch-style) antenna for generating a monopole radiation pattern includes an electrically conductive patch or plate separated from an electrically conductive ground plane by a layer of electrically insulating material. In the conventional approach, the electrically insulating layer is typically a printed-circuit board about 1/16 in. (.1.6 mm) thick. Ordinarily, a coaxial cable from a transmitter, receiver, or transceiver is attached at the center on the ground-plane side, the shield of the cable being electrically connected to the ground plane. In the conventional approach, the coaxial cable is mated with a connector mounted on the ground plane. The center pin of this connector connects to the center of the coaxial cable and passes through a hole in the ground plane and a small hole in the insulating layer and then connects
Chuang, Chia-Hsun; Prada, Francisco; Pellejero-Ibanez, Marcos; Beutler, Florian; Cuesta, Antonio J.; Eisenstein, Daniel J.; Escoffier, Stephanie; Ho, Shirley; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Manera, Marc; Nuza, Sebastián E.; Rodríguez-Torres, Sergio; Ross, Ashley; Rubiño-Martín, J. A.; Samushia, Lado; Schlegel, David J.; Schneider, Donald P.; Wang, Yuting; Weaver, Benjamin A.; Zhao, Gongbo; Brownstein, Joel R.; Dawson, Kyle S.; Maraston, Claudia; Olmstead, Matthew D.; Thomas, Daniel
2016-10-01
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h-1 Mpc). We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z = 0.59, to obtain constraints on the Hubble expansion rate H(z), the angular- diameter distance DA(z), the normalized growth rate f(z)σ8(z), and the physical matter density Ωm h2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g. ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs, H(0.59)rs/rs,fid, f(0.59)σ8(0.59), Ωm h2} = {1427 ± 26 Mpc, 97.3 ± 3.3 km s-1 Mpc-1, 0.488 ± 0.060, 0.135 ± 0.016}, where rs is the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g. cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e. CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, w, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk, is 0.3 per cent. We do not find deviation from flat ΛCDM.
Electroproduction of Baryon Resonances and Strangeness Suppression
Santopinto, E; Tecocoatzi, H Garcia
2016-01-01
We describe the electroproduction ratios of baryon-meson states from nucleon using an extension of the quark model that takes into account the sea. As a result we provide, with no adjustable parameters, the predictions of ratios of exclusive meson-baryon final states: Lambda K , Sigma K, p pion, and n pion. These predictions are in agreement with the new Jlab experimental data showing that sea quarks play an important role in the electroproduction. We also predicted further ratios of exclusive reactions that can be measured and tested in future experiments. In particular, we suggested new experiments on deuterium and tritium. Such measurements can provide crucial test of different predictions concerning the structure of nucleon and its sea quarks helping to solve an outstanding problem. Finally, we computed the so called strangeness suppression factor, lambda s, that is the suppression of strange quark-antiquarks compared to nonstrange pairs, and we found that our finding with this simple extension of the qua...
Baryon masses with dynamical twisted mass fermions
Alexandrou, C; Koutsou, G; Baron, R; Guichon, P; Brinet, M; Carbonell, J; Drach, V; Liu, Z; Pène, O; Urbach, C
2007-01-01
We present results on the mass of the nucleon and the $\\Delta$ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of 690-300 MeV on lattices of size 2.1 fm and 2.7 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm with lattice spacings $a(\\beta=3.9)=0.0855(6)$ fm and $a(\\beta=4.05)=0.0666(6)$ fm, determined from the pion sector and find them to be within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. The nucleon mass at the physical point provides a determination of the lattice spacing. Using heavy baryon chiral perturbation theory at ${\\cal O}(p^3)$ we find $a(\\beta=3.9)=0.0879(12)$ fm, with a systematic error due to the chiral extrapolation estimated to be about the same as the statistical error. This value of the lattice spacing is in good agreement with the value determined from the pion se...