WorldWideScience

Sample records for monophyletic tentacularioidea gymnorhynchoidea

  1. ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2008-07-01

    Full Text Available Abstract Background Within Chlorophyceae the ITS2 secondary structure shows an unbranched helix I, except for the 'Hydrodictyon' and the 'Scenedesmus' clade having a ramified first helix. The latter two are classified within the Sphaeropleales, characterised by directly opposed basal bodies in their flagellar apparatuses (DO-group. Previous studies could not resolve the taxonomic position of the 'Sphaeroplea' clade within the Chlorophyceae without ambiguity and two pivotal questions remain open: (1 Is the DO-group monophyletic and (2 is a branched helix I an apomorphic feature of the DO-group? In the present study we analysed the secondary structure of three newly obtained ITS2 sequences classified within the 'Sphaeroplea' clade and resolved sphaeroplealean relationships by applying different phylogenetic approaches based on a combined sequence-structure alignment. Results The newly obtained ITS2 sequences of Ankyra judayi, Atractomorpha porcata and Sphaeroplea annulina of the 'Sphaeroplea' clade do not show any branching in the secondary structure of their helix I. All applied phylogenetic methods highly support the 'Sphaeroplea' clade as a sister group to the 'core Sphaeropleales'. Thus, the DO-group is monophyletic. Furthermore, based on characteristics in the sequence-structure alignment one is able to distinguish distinct lineages within the green algae. Conclusion In green algae, a branched helix I in the secondary structure of the ITS2 evolves past the 'Sphaeroplea' clade. A branched helix I is an apomorph characteristic within the monophyletic DO-group. Our results corroborate the fundamental relevance of including the secondary structure in sequence analysis and phylogenetics.

  2. Tree ferns: monophyletic groups and their relationships as revealed by four protein-coding plastid loci.

    Science.gov (United States)

    Korall, Petra; Pryer, Kathleen M; Metzgar, Jordan S; Schneider, Harald; Conant, David S

    2006-06-01

    Tree ferns are a well-established clade within leptosporangiate ferns. Most of the 600 species (in seven families and 13 genera) are arborescent, but considerable morphological variability exists, spanning the giant scaly tree ferns (Cyatheaceae), the low, erect plants (Plagiogyriaceae), and the diminutive endemics of the Guayana Highlands (Hymenophyllopsidaceae). In this study, we investigate phylogenetic relationships within tree ferns based on analyses of four protein-coding, plastid loci (atpA, atpB, rbcL, and rps4). Our results reveal four well-supported clades, with genera of Dicksoniaceae (sensu ) interspersed among them: (A) (Loxomataceae, (Culcita, Plagiogyriaceae)), (B) (Calochlaena, (Dicksonia, Lophosoriaceae)), (C) Cibotium, and (D) Cyatheaceae, with Hymenophyllopsidaceae nested within. How these four groups are related to one other, to Thyrsopteris, or to Metaxyaceae is weakly supported. Our results show that Dicksoniaceae and Cyatheaceae, as currently recognised, are not monophyletic and new circumscriptions for these families are needed.

  3. Aspergillus is monophyletic: Evidence from multiple gene phylogenies and extrolites profiles

    Directory of Open Access Journals (Sweden)

    S. Kocsubé

    2016-09-01

    Full Text Available Aspergillus is one of the economically most important fungal genera. Recently, the ICN adopted the single name nomenclature which has forced mycologists to choose one name for fungi (e.g. Aspergillus, Fusarium, Penicillium, etc.. Previously two proposals for the single name nomenclature in Aspergillus were presented: one attributes the name “Aspergillus” to clades comprising seven different teleomorphic names, by supporting the monophyly of this genus; the other proposes that Aspergillus is a non-monophyletic genus, by preserving the Aspergillus name only to species belonging to subgenus Circumdati and maintaining the sexual names in the other clades. The aim of our study was to test the monophyly of Aspergilli by two independent phylogenetic analyses using a multilocus phylogenetic approach. One test was run on the publicly available coding regions of six genes (RPB1, RPB2, Tsr1, Cct8, BenA, CaM, using 96 species of Penicillium, Aspergillus and related taxa. Bayesian (MrBayes and Ultrafast Maximum Likelihood (IQ-Tree and Rapid Maximum Likelihood (RaxML analyses gave the same conclusion highly supporting the monophyly of Aspergillus. The other analyses were also performed by using publicly available data of the coding sequences of nine loci (18S rRNA, 5,8S rRNA, 28S rRNA (D1-D2, RPB1, RPB2, CaM, BenA, Tsr1, Cct8 of 204 different species. Both Bayesian (MrBayes and Maximum Likelihood (RAxML trees obtained by this second round of independent analyses strongly supported the monophyly of the genus Aspergillus. The stability test also confirmed the robustness of the results obtained. In conclusion, statistical analyses have rejected the hypothesis that the Aspergilli are non-monophyletic, and provided robust arguments that the genus is monophyletic and clearly separated from the monophyletic genus Penicillium. There is no phylogenetic evidence to split Aspergillus into several genera and the name Aspergillus can be used for all the species

  4. The monophyletic origin of a remarkable sexual system in akentrogonid rhizocephalan parasites

    DEFF Research Database (Denmark)

    Glenner, Henrik; Høeg, Jens Thorvald; Stenderup, Jesper

    2010-01-01

    parasites. The Rhizocephala Akentrogonida form a monophyletic group nested within a paraphyletic "Kentrogonida". C. paguri and S. hippolytes are sistergroups confirming the monophyly of the Clistosaccidae that was originally based on similarities in the cypris larvae. We find numerous LM and SEM level...... similarities between the two species, many of which appear to be correlated with their specialized sexual system, where male cyprids use an antennule to implant cells into the virgin female parasite. Some of these traits are also found in cyprids of the thompsoniid species. We conclude that the special cypris...... morphology and the implantation of males by antennular penetration was present in the stem species to the Thompsoniidae and the Clistosaccidae and emphasize the power of larval characters in rhizocephalan systematics. C. delagei is a sister group to Boschmaella balani and the two are nested deep within...

  5. Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems.

    Science.gov (United States)

    Erclik, Ted; Hartenstein, Volker; Lipshitz, Howard D; McInnes, Roderick R

    2008-09-09

    Components of the genetic network specifying eye development are conserved from flies to humans, but homologies between individual neuronal cell types have been difficult to identify. In the vertebrate retina, the homeodomain-containing transcription factor Chx10 is required for both progenitor cell proliferation and the development of the bipolar interneurons, which transmit visual signals from photoreceptors to ganglion cells. We show that dVsx1 and dVsx2, the two Drosophila homologs of Chx10, play a conserved role in visual-system development. DVSX1 is expressed in optic-lobe progenitor cells, and, in dVsx1 mutants, progenitor cell proliferation is defective, leading to hypocellularity. Subsequently, DVSX1 and DVSX2 are coexpressed in a subset of neurons in the medulla, including the transmedullary neurons that transmit visual information from photoreceptors to deeper layers of the visual system. In dVsx mutant adults, the optic lobe is reduced in size, and the medulla is small or absent. These results suggest that the progenitor cells and photoreceptor target neurons of the vertebrate retina and fly optic lobe are ancestrally related. Genetic and functional homology may extend to the neurons directly downstream of the bipolar and transmedullary neurons, the vertebrate ganglion cells and fly lobula projection neurons. Both cell types project to visual-processing centers in the brain, and both sequentially express the Math5/ATO and Brn3b/ACJ6 transcription factors during their development. Our findings support a monophyletic origin for the bilaterian visual system in which the last common ancestor of flies and vertebrates already contained a primordial visual system with photoreceptors, interneurons, and projection neurons.

  6. Phylogeny of the non-monophyletic Cayratia Juss. (Vitaceae) and implications for character evolution and biogeography.

    Science.gov (United States)

    Lu, Limin; Wang, Wei; Chen, Zhiduan; Wen, Jun

    2013-09-01

    Cayratia consists of ca. 60 species primarily distributed in the tropical and subtropical regions of Asia, Australia, and Africa. It is an excellent candidate for exploring the evolution of intercontinental disjunct distributions in the Old World. Previous phylogenetic work of Vitaceae with a few species of Cayratia sampled showed that Cayratia was not monophyletic and was closely related to Cyphostemma and Tetrastigma. We herein expanded taxon sampling of Cayratia (25/60 species) with its allied genera Cyphostemma (39/150 species), Tetrastigma (27/95 species), and other related genera from Vitaceae represented, employing five plastid markers (atpB-rbcL, rps16, trnC-petN, trnH-psbA, and trnL-F), to investigate the phylogeny, character evolution and biogeography of Cayratia. The phylogenetic analyses have confirmed the monophyly of the Cayratia-Cyphostemma-Tetrastigma (CCT) clade and resolved Cayratia into three lineages: the African Cayratia clade, subg. Cayratia, and subg. Discypharia. The African Cayratia was supported as the first diverging lineage within the CCT clade and Tetrastigma is resolved as sister to subg. Discypharia. Character optimizations suggest that the presence/absence of a membrane enclosing the ventral infolds in seeds is an important character for the taxonomy of Cayratia. The presence of bracts on the lower part of the inflorescence axis is inferred to have arisen only once in Cayratia, but this character evolved several times in Tetrastigma. Both the branching pattern of tendrils and the leaf architecture are suggested as important infrageneric characters, but should be used cautiously because some states evolved multiple times. Ancestral area reconstruction and molecular dating suggest that the CCT clade originated from continental Africa in the late Cretaceous, and it then reached Asia twice independently in the late Cretaceous and late Oligocene, respectively. Several dispersals are inferred from Asia to Australia since the Eocene

  7. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic - Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences.

    Science.gov (United States)

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered.

  8. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic – Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences

    Science.gov (United States)

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered. PMID:28122062

  9. Multilocus microsatellite typing (MLMT of strains from Turkey and Cyprus reveals a novel monophyletic L. donovani sensu lato group.

    Directory of Open Access Journals (Sweden)

    Evi Gouzelou

    Full Text Available BACKGROUND: New foci of human CL caused by strains of the Leishmania donovani (L. donovani complex have been recently described in Cyprus and the Çukurova region in Turkey (L. infantum situated 150 km north of Cyprus. Cypriot strains were typed by Multilocus Enzyme Electrophoresis (MLEE using the Montpellier (MON system as L. donovani zymodeme MON-37. However, multilocus microsatellite typing (MLMT has shown that this zymodeme is paraphyletic; composed of distantly related genetic subgroups of different geographical origin. Consequently the origin of the Cypriot strains remained enigmatic. METHODOLOGY/PRINCIPAL FINDINGS: The Cypriot strains were compared with a set of Turkish isolates obtained from a CL patient and sand fly vectors in south-east Turkey (Çukurova region; CUK strains and from a VL patient in the south-west (Kuşadasi; EP59 strain. These Turkish strains were initially analyzed using the K26-PCR assay that discriminates MON-1 strains by their amplicon size. In line with previous DNA-based data, the strains were inferred to the L. donovani complex and characterized as non MON-1. For these strains MLEE typing revealed two novel zymodemes; L. donovani MON-309 (CUK strains and MON-308 (EP59. A population genetic analysis of the Turkish isolates was performed using 14 hyper-variable microsatellite loci. The genotypic profiles of 68 previously analyzed L. donovani complex strains from major endemic regions were included for comparison. Population structures were inferred by combination of bayesian model-based and distance-based approaches. MLMT placed the Turkish and Cypriot strains in a subclade of a newly discovered, genetically distinct L. infantum monophyletic group, suggesting that the Cypriot strains may originate from Turkey. CONCLUSION: The discovery of a genetically distinct L. infantum monophyletic group in the south-eastern Mediterranean stresses the importance of species genetic characterization towards better understanding

  10. Galatheoidea are not monophyletic - molecular and morphological phylogeny of the squat lobsters (Decapoda: Anomura) with recognition of a new superfamily.

    Science.gov (United States)

    Schnabel, K E; Ahyong, S T; Maas, E W

    2011-02-01

    The monophyletic status of the squat lobster superfamily Galatheoidea has come under increasing doubt by studies using evidence as diverse as larval and adult somatic morphology, sperm ultrastructure, and molecular data. Here we synthesize phylogenetic data from these diverse strands, with the addition of new molecular and morphological data to examine the phylogeny of the squat lobsters and assess the status of the Galatheoidea. A total of 64 species from 16 of the 17 currently recognised anomuran families are included. Results support previous work pointing towards polyphyly in the superfamily Galatheoidea and Paguroidea, specifically, suggesting independent origins of the Galatheidae+Porcellanidae and the Chirostylidae+Kiwaidae. Morphological characters are selected that support clades resolved in the combined analysis and the taxonomic status of Galatheoidea sensu lato is revised. Results indicate that Chirostylidae are more closely related to an assemblage including Aegloidea, Lomisoidea and Paguroidea than to the remaining Galatheoidea and are referred to the superfamily Chirostyloidea to include the Chirostylidae and Kiwaidae. A considerable amount of research highlighting morphological differences supporting this split is discussed. The Galatheoidea sensu stricto is restricted to the families Galatheidae and Porcellanidae, and diagnoses for both Chirostyloidea and Galatheoidea are provided. Present results highlight the need for a detailed revision of a number of taxa, challenge some currently used morphological synapomorphies, and emphasise the need for integrated studies with wide taxon sampling and multiple data sources to resolve complex phylogenetic questions. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. DNA sequencing, anatomy, and calcification patterns support a monophyletic, subarctic, carbonate reef-forming Clathromorphum (Hapalidiaceae, Corallinales, Rhodophyta).

    Science.gov (United States)

    Adey, Walter H; Hernandez-Kantun, Jazmin J; Johnson, Gabriel; Gabrielson, Paul W

    2015-02-01

    For the first time, morpho-anatomical characters that were congruent with DNA sequence data were used to characterize several genera in Hapalidiaceae-the major eco-engineers of Subarctic carbonate ecosystems. DNA sequencing of three genes (SSU, rbcL, ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit gene and psbA, photosystem II D1 protein gene), along with patterns of cell division, cell elongation, and calcification supported a monophyletic Clathromorphum. Two characters were diagnostic for this genus: (i) cell division, elongation, and primary calcification occurred only in intercalary meristematic cells and in a narrow vertical band (1-2 μm wide) resulting in a "meristem split" and (ii) a secondary calcification of interfilament crystals was also produced. Neopolyporolithon was resurrected for N. reclinatum, the generitype, and Clathromorphum loculosum was transferred to this genus. Like Clathromorphum, cell division, elongation, and calcification occurred only in intercalary meristematic cells, but in a wider vertical band (over 10-20 μm), and a "meristem split" was absent. Callilithophytum gen. nov. was proposed to accommodate Clathromorphum parcum, the obligate epiphyte of the northeast Pacific endemic geniculate coralline, Calliarthron. Diagnostic for this genus were epithallial cells terminating all cell filaments (no dorsi-ventrality was present), and a distinct "foot" was embedded in the host. Leptophytum, based on its generitype, L. laeve, was shown to be a distinct genus more closely related to Clathromorphum than to Phymatolithon. All names of treated species were applied unequivocally by linking partial rbcL sequences from holotype, isotype, or epitype specimens with field-collected material. Variation in rbcL and psbA sequences suggested that multiple species may be passing under each currently recognized species of Clathromorphum and Neopolyporolithon. © 2014 Phycological Society of America.

  12. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity.

    Science.gov (United States)

    Alström, Per; Barnes, Keith N; Olsson, Urban; Barker, F Keith; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G

    2013-12-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although not all loci were available for all species). In addition, a larger sample, comprising several subspecies of some polytypic species was analysed for one of the mitochondrial loci. There was generally good agreement in trees inferred from different loci, although some strongly supported incongruences were noted. The tree based on the concatenated multilocus data was overall well resolved and well supported by the data. We stress the importance of performing single gene as well as combined data analyses, as the latter may obscure significant incongruence behind strong nodal support values. The multilocus tree revealed many unpredicted relationships, including some non-monophyletic genera (Calandrella, Mirafra, Melanocorypha, Spizocorys). The tree based on the extended mitochondrial data set revealed several unexpected deep divergences between taxa presently treated as conspecific (e.g. within Ammomanes cinctura, Ammomanes deserti, Calandrella brachydactyla, Eremophila alpestris), as well as some shallow splits between currently recognised species (e.g. Certhilauda brevirostris-C. semitorquata-C. curvirostris; Calendulauda barlowi-C. erythrochlamys; Mirafra cantillans-M. javanica). Based on our results, we propose a revised generic classification, and comment on some species limits. We also comment on the extraordinary morphological adaptability in larks, which has resulted in numerous examples of parallel evolution (e.g. in Melanocorypha mongolica and Alauda leucoptera [both

  13. Molecular phylogenetic and scanning electron microscopical analyses places the Choanephoraceae and the Gilbertellaceae in a monophyletic group within the Mucorales (Zygomycetes, Fungi).

    Science.gov (United States)

    Voigt, Kerstin; Olsson, L

    2008-09-01

    A multi-gene genealogy based on maximum parsimony and distance analyses of the exonic genes for actin (act) and translation elongation factor 1 alpha (tef), the nuclear genes for the small (18S) and large (28S) subunit ribosomal RNA (comprising 807, 1092, 1863, 389 characters, respectively) of all 50 genera of the Mucorales (Zygomycetes) suggests that the Choanephoraceae is a monophyletic group. The monotypic Gilbertellaceae appears in close phylogenetic relatedness to the Choanephoraceae. The monophyly of the Choanephoraceae has moderate to strong support (bootstrap proportions 67% and 96% in distance and maximum parsimony analyses, respectively), whereas the monophyly of the Choanephoraceae-Gilbertellaceae clade is supported by high bootstrap values (100% and 98%). This suggests that the two families can be joined into one family, which leads to the elimination of the Gilbertellaceae as a separate family. In order to test this hypothesis single-locus neighbor-joining analyses were performed on nuclear genes of the 18S, 5.8S, 28S and internal transcribed spacer (ITS) 1 ribosomal RNA and the translation elongation factor 1 alpha (tef) and beta tubulin (betatub) nucleotide sequences. The common monophyletic origin of the Choanephoraceae-Gilbertellaceae clade could be confirmed in all gene trees and by investigation of their ultrastructure. Sporangia with persistent, sutured walls splitting in half at maturity and ellipsoidal sporangiospores with striated ornamentations and polar ciliate appendages arising from spores in persistent sporangia and dehiscent sporangiola represent synapomorphic characters of this group. We discuss our data in the context of the historical development of their taxonomy and physiology and propose a reduction of the two families to one family, the Choanephoraceae sensu lato comprising species which are facultative plant pathogens and parasites, especially in subtropical to tropical regions.

  14. Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers

    Directory of Open Access Journals (Sweden)

    Mariën J

    2008-03-01

    Full Text Available Abstract Background In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences. Results In total 48 ribosomal proteins were obtained for the collembolan Folsomia candida. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length, of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda. Conclusion Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny.

  15. Revealing pancrustacean relationships: phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers.

    Science.gov (United States)

    Timmermans, M J T N; Roelofs, D; Mariën, J; van Straalen, N M

    2008-03-12

    In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an unusual positioning of Collembola, suggested that the hexapod body plan evolved at least twice. Here, we re-evaluate the position of Collembola using ribosomal protein gene sequences. In total 48 ribosomal proteins were obtained for the collembolan Folsomia candida. These 48 sequences were aligned with sequence data on 35 other ecdysozoans. Each ribosomal protein gene was available for 25% to 86% of the taxa. However, the total sequence information was unequally distributed over the taxa and ranged between 4% and 100%. A concatenated dataset was constructed (5034 inferred amino acids in length), of which ~66% of the positions were filled. Phylogenetic tree reconstructions, using Maximum Likelihood, Maximum Parsimony, and Bayesian methods, resulted in a topology that supports monophyly of Hexapoda. Although ribosomal proteins in general may not evolve independently, they once more appear highly valuable for phylogenetic reconstruction. Our analyses clearly suggest that Hexapoda is monophyletic. This underpins the inconsistency between nuclear and mitochondrial datasets when analyzing pancrustacean relationships. Caution is needed when applying mitochondrial markers in deep phylogeny.

  16. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant's gazelles

    DEFF Research Database (Denmark)

    Lorenzen, Eline Deidre; Arctander, Peter; Siegismund, Hans Redlef

    2008-01-01

    are discussed in reference to the four currently recognised subspecies. We suggest Grant's gazelles be raised to the superspecies Nanger (granti) comprising three taxonomic units corresponding to the three mtDNA lineages. There was no evidence of gene flow between the notata and granti lineages, despite...... their geographic proximity, suggesting reproductive isolation. These constitute evolutionary significant units within the adaptive evolutionary framework. Due to its restricted geographic distribution and genetic and morphological distinctiveness, we suggest the petersii lineage be raised to the species Nanger...

  17. When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates.

    Directory of Open Access Journals (Sweden)

    Russell J S Orr

    Full Text Available The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.

  18. When Naked Became Armored: An Eight-Gene Phylogeny Reveals Monophyletic Origin of Theca in Dinoflagellates

    Science.gov (United States)

    Orr, Russell J. S.; Murray, Shauna A.; Stüken, Anke; Rhodes, Lesley; Jakobsen, Kjetill S.

    2012-01-01

    The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium. PMID:23185516

  19. Monophyletic group of unclassified γ-Proteobacteria dominates in mixed culture biofilm of high-performing oxygen reducing biocathode

    NARCIS (Netherlands)

    Rothballer, Michael; Picot, Matthieu; Sieper, Tina; Arends, Jan B.A.; Schmid, Michael; Hartmann, Anton; Boon, Nico; Buisman, Cees J.N.; Barrière, Frédéric; Strik, David P.B.T.B.

    2015-01-01

    Several mixed microbial communities have been reported to show robust bioelectrocatalysis of oxygen reduction over time at applicable operation conditions. However, clarification of electron transfer mechanism(s) and identification of essential micro-organisms have not been realised. Therefore,

  20. Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity

    OpenAIRE

    Alström, Per; Barnes, Keith N.; Barker, F. Keith; Olsson, Urban; Bloomer, Paulette; Khan, Aleem Ahmed; Qureshi, Masood Ahmed; Guillaumet, Alban; Crochet, Pierre-André; Ryan, Peter G.

    2013-01-01

    The Alaudidae (larks) is a large family of songbirds in the superfamily Sylvioidea. Larks are cosmopolitan, although species-level diversity is by far largest in Africa, followed by Eurasia, whereas Australasia and the New World have only one species each. The present study is the first comprehensive phylogeny of the Alaudidae. It includes 83.5% of all species and representatives from all recognised genera, and was based on two mitochondrial and three nuclear loci (in total 6.4 kbp, although ...

  1. Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria.

    Directory of Open Access Journals (Sweden)

    Hironobu Fukami

    Full Text Available Modern hard corals (Class Hexacorallia; Order Scleractinia are widely studied because of their fundamental role in reef building and their superb fossil record extending back to the Triassic. Nevertheless, interpretations of their evolutionary relationships have been in flux for over a decade. Recent analyses undermine the legitimacy of traditional suborders, families and genera, and suggest that a non-skeletal sister clade (Order Corallimorpharia might be imbedded within the stony corals. However, these studies either sampled a relatively limited array of taxa or assembled trees from heterogeneous data sets. Here we provide a more comprehensive analysis of Scleractinia (127 species, 75 genera, 17 families and various outgroups, based on two mitochondrial genes (cytochrome oxidase I, cytochrome b, with analyses of nuclear genes (ss-tubulin, ribosomal DNA of a subset of taxa to test unexpected relationships. Eleven of 16 families were found to be polyphyletic. Strikingly, over one third of all families as conventionally defined contain representatives from the highly divergent "robust" and "complex" clades. However, the recent suggestion that corallimorpharians are true corals that have lost their skeletons was not upheld. Relationships were supported not only by mitochondrial and nuclear genes, but also often by morphological characters which had been ignored or never noted previously. The concordance of molecular characters and more carefully examined morphological characters suggests a future of greater taxonomic stability, as well as the potential to trace the evolutionary history of this ecologically important group using fossils.

  2. Revealing pancrustacean relationships: Phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers.

    NARCIS (Netherlands)

    Timmermans, M.J.T.N.; Roelofs, D.; Mariën, A.G.H.; van Straalen, N.M.

    2008-01-01

    Background. In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an

  3. Revealing pancrustacean relationships : phylogenetic analysis of ribosomal protein genes places Collembola (springtails) in a monophyletic Hexapoda and reinforces the discrepancy between mitochondrial and nuclear DNA markers

    NARCIS (Netherlands)

    Timmermans, M J T N; Roelofs, D; Mariën, J; van Straalen, N M

    2008-01-01

    BACKGROUND: In recent years, several new hypotheses on phylogenetic relations among arthropods have been proposed on the basis of DNA sequences. One of the challenged hypotheses is the monophyly of hexapods. This discussion originated from analyses based on mitochondrial DNA datasets that, due to an

  4. Phylogenetics and diversification of morning glories (tribe ipomoeeae, convolvulaceae) based on whole plastome sequences

    Science.gov (United States)

    Phylogenetic studies have demonstrated the largest morning glory genus, Ipomoea, is not monophyletic, and nine other segregate genera are derived from within Ipomoea. Therefore, systematic research is focused on the monophyletic tribe Ipomoeeae (c. 650-900 species). We used whole plastid genomes to ...

  5. The phyletic status of the genus Planaria (Platyhelminthes, Turbellaria, Tricladida)

    NARCIS (Netherlands)

    Ball, Ian R.; Gourbault, Nicole

    1978-01-01

    The amphiatlantic distribution of the genus Planaria is incompatible with our current hypothesis of the historical biogeography of freshwater planarians. New anatomical studies suggest the possibility that the genus is not strictly monophyletic; new karyological data are strongly corroborative of

  6. A re-evaluation of the phylogeny of Old World Treefrogs | Channing ...

    African Journals Online (AJOL)

    Seven subfamilies are recognized; six are monophyletic (Hyperoliidae: Hyperoliinae, Kassininae, Leptopelinae, Tachycneminae; Rhacophoridae: Buergeriinae, Mantellinae), while the Rhacophorinae are polyphyletic. The taxonomic changes from the standard Amphibian Species of the World (Frost 1985) proposed are: ...

  7. Mycosarcoma (Ustilaginaceae), a resurrected generic name for corn smut (Ustilago maydis) and its close relatives with hypertrophied, tubular sori

    NARCIS (Netherlands)

    McTaggart, Alistair R; Shivas, Roger G; Boekhout, Teun; Oberwinkler, Franz; Vánky, Kálmán; Pennycook, Shaun R; Begerow, Dominik

    2016-01-01

    Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis,

  8. About the scientific names of paraphyletic taxa

    OpenAIRE

    TIMM, Tarmo

    2012-01-01

    The 'naturality' of monophyletic taxa in comparison with that of paraphyletic ones is discussed, with examples from Clitellata. Regular scientific names for paraphyletic taxa are inevitable in a workable biological classification.

  9. Phylogenetic classification of yeasts and related taxa within Pucciniomycotina

    NARCIS (Netherlands)

    Wang, Q. -M.; Yurkov, A. M.; Goeker, M.; Lumbsch, H. T.; Leavitt, S. D.; Groenewald, M.; Theelen, B.; Liu, X. -Z.; Boekhout, T.; Bai, F. -Y.

    Most small genera containing yeast species in the Pucciniomycotina (Basidiomycota, Fungi) are monophyletic, whereas larger genera including Bensingtonia, Rhodosporidium, Rhodotorula, Sporidiobolus and Sporobolomyces are polyphyletic. With the implementation of the “One Fungus = One Name”

  10. Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-01-01

    to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor-joining method. To further refine phylogenetic analysis and to take advantage of the widespread

  11. The phylogenetic relationships of endemic Australasian trichostrongylin families (Nematoda: Strongylida) parasitic in marsupials and monotremes.

    Science.gov (United States)

    Chilton, Neil B; Huby-Chilton, Florence; Koehler, Anson V; Gasser, Robin B; Beveridge, Ian

    2015-10-01

    The phylogenetic relationships of the endemic (or largely endemic) Australasian trichostrongylin nematode families Herpetostrongylidae, Mackerrastrongylidae and Nicollinidae as well as endemic trichostrongylin nematodes currently placed in the families Trichostrongylidae and Molineidae were examined using the complete large subunit (28S) ribosomal RNA gene. The Herpetostrongylinae proved to be monophyletic. However, representatives of the Nicollinidae nested with the Herpetostrongylinae. The Mackerrastrongylidae was also a monophyletic group and included Peramelistrongylus, currently classified within the Trichostrongylidae. The Globocephaloidinae, currently considered to be a subfamily of the Herpetostrongylidae, was excluded from the family in the current analysis. Ollulanus and Libyostrongylus, included for the first time in a molecular phylogenetic analysis, were placed within the Trichostrongylidae. This study provided strong support for the Herpetostrongylidae (including within it the Nicollinidae, but excluding the Globocephaloidinae) and the Mackerrastrongylidae as monophyletic assemblages. Additional studies are required to resolve the relationships of the remaining endemic Australasian trichostrongylin genera.

  12. An empirical test of the treatment of indels during optimization alignment based on the phylogeny of the genus Secale (Poaceae)

    DEFF Research Database (Denmark)

    Petersen, Gitte; Seberg, Ole; Aagesen, Lone

    2004-01-01

    The ability of the program POY, implementing optimization alignment, to deal with major indels is explored and discussed in connection with a phylogenetic analysis of the genus Secale based on partial Adhl sequences. The Adhl sequences used span exon 2-4. Nearly all variation is found in intron 2...... recovers both genera as monophyletic when knowledge of the duplication is incorporated in the analysis. The phylogenetic relationships within Secale are not clearly resolved. Subspecific taxa of Secale strictum have identical sequences and they are confined to a monophyletic group. However, the two...

  13. Re-Evaluation of Morphological Characters Questions Current Views of Pinniped Origins

    Directory of Open Access Journals (Sweden)

    Koretsky I. A.

    2016-08-01

    Full Text Available The origin of pinnipeds has been a contentious issue, with opposite sides debating monophyly or diphyly. This review uses evidence from the fossil record, combined with comparative morphology, molecular and cytogenetic investigations to evaluate the evolutionary history and phylogenetic relationships of living and fossil otarioid and phocoid pinnipeds. Molecular investigations support a monophyletic origin of pinnipeds, but disregard vital morphological data. Likewise, morphological studies support diphyly, but overlook molecular analyses. This review will demonstrate that a monophyletic origin of pinnipeds should not be completely accepted, as is the current ideology, and a diphyletic origin remains viable due to morphological and paleobiological analyses. Critical examination of certain characters, used by supporters of pinniped monophyly, reveals different polarities, variability, or simply convergence. The paleontological record and our morphological analysis of important characters supports a diphyletic origin of pinnipeds, with otarioids likely arising in the North Pacific from large, bear-like animals and phocids arising in the North Atlantic from smaller, otter-like ancestors. Although members of both groups are known by Late Oligocene time, each developed and invaded the aquatic environment separately from their much earlier, common arctoid ancestor. Therefore, we treat the superfamily Otarioidea as being monophyletic, including the families Enaliarctidae, Otariidae (fur seals/sea lions, Desmatophocidae, and Odobenidae (walruses and extinct relatives, and the superfamily Phocoidea as monophyletic, including only the family Phocidae, with four subfamilies (Devinophocinae, Phocinae, Monachinae, and Cystophorinae.

  14. Identifying the Transition between Single and Multiple Mating of Queens in Fungus-Growing Ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Murakami, Takahiro; Schultz, Ted R.

    2002-01-01

    Obligate mating of females (queens) with multiple males has evolved only rarely in social Hymenoptera (ants, social bees, social wasps) and for reasons that are fundamentally different from those underlying multiple mating in other animals. The monophyletic tribe of ('attine') fungus-growing ants...

  15. Rodentibacter gen. nov including Rodentibacter pneumotropicus comb. nov., Rodentibacter heylii sp nov., Rodentibacter myodis sp nov., Rodentibacter ratti sp nov., Rodentibacter heidelbergensis sp nov., Rodentibacter trehalosifermentans sp nov., Rodentibacter rarus sp nov., Rodentibacter mrazii and two genomospecies

    DEFF Research Database (Denmark)

    Adhikary, Sadhana; Nicklas, Werner; Bisgaard, Magne

    2017-01-01

    -galactosidase and in acid formation from (+)-l-arabinose, (−)-d-ribose, (+)-d-xylose, myo-inositol, (−)-d-mannitol, lactose, melibiose and trehalose. Forty-six strains including taxon 48 of Bisgaard formed a monophyletic group by rpoB and 16S rRNA gene sequence analysis, but could not be separated phenotypically from R...

  16. Nouvelles données sur le genre Bragasellus (Crustacea: Isopoda: Asellidae)

    NARCIS (Netherlands)

    Afonso, Odette; Henry, Jean-Paul; Magniez, Guy

    1996-01-01

    From now on, the genus Bragasellus Henry & Magniez, 1968 includes 2 oculated and 17 stygobiotic species. As a natural and monophyletic taxonomic unit, we consider it a good genus. Its original area corresponds to the north-west quarter of the Iberian Peninsula. Secondarily, this area has extended

  17. Hepatitis E Virus Genotype 4 Outbreak, Italy, 2011

    Science.gov (United States)

    Garbuglia, Anna R.; Scognamiglio, Paola; Petrosillo, Nicola; Mastroianni, Claudio Maria; Sordillo, Pasquale; Gentile, Daniele; La Scala, Patrizia; Girardi, Enrico

    2013-01-01

    During 2011, 5 persons in the area of Lazio, Italy were infected with a monophyletic strain of hepatitis E virus that showed high sequence homology with isolates from swine in China. Detection of this genotype in Italy parallels findings in other countries in Europe, signaling the possible spread of strains new to Western countries. PMID:23260079

  18. A large phylogeny of turtles (Testudines) using molecular data

    NARCIS (Netherlands)

    Guillon, J.-M.; Guéry, L.; Hulin, V.; Girondot, M.

    2012-01-01

    Turtles (Testudines) form a monophyletic group with a highly distinctive body plan. The taxonomy and phylogeny of turtles are still under discussion, at least for some clades. Whereas in most previous studies, only a few species or genera were considered, we here use an extensive compilation of DNA

  19. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae)

    DEFF Research Database (Denmark)

    Søchting, Ulrik; Lutzoni, François

    2003-01-01

    A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic ...

  20. Hybridization between ecotypes in a phenotypically and ecologically heterogeneous population of Iris savannarum (Iridaceae) in Florida.

    Science.gov (United States)

    Iris series Hexagonae is a small, monophyletic complex of 5 species and associated hybrid populations, popularly known as the “Louisiana irises.” The Hexagonae alliance of Iris have been recognized as a textbook case of introgressive hybridization based on numerous studies in Louisiana. We previou...

  1. Cosmopsaltria halmaherae n. sp. endemic to Halmahera, Maluku, Indonesia (Homoptera, Cicadidae). The relationship of cicadas of Maluku Utara and Maluku Selatan

    NARCIS (Netherlands)

    Duffels, J.P.

    1988-01-01

    Cosmopsaltria halmaherae n. sp. is described from Halmahera, Maluku and placed in the C. doryca group. The characters of this group are reconsidered and the relationships of its members are discussed. The C. doryca group and two other monophyletic groups of cicadas demonstrate a vicariant

  2. Identification of the forensically important flies (Diptera: Muscidae ...

    African Journals Online (AJOL)

    The monophyletic branches of the phylogenetic tree revealed that this marker is suitable for discrimination between these five species of four genera of Muscidae. The genetic variations found on COI can be applied not only to identify the forensically important species, but also to understand the taxonomic positions of the ...

  3. An efficient multiplex genotyping approach for detecting the major worldwide human Y-chromosome haplogroups

    NARCIS (Netherlands)

    M. van Oven (Mannis); M.H. Kayser (Manfred); A. Ralf (Arwin)

    2011-01-01

    textabstractAbstract The Y chromosome is paternally inherited and therefore serves as an evolutionary marker of patrilineal descent. Worldwide DNA variation within the non-recombining portion of the Y chromosome can be represented as a monophyletic phylogenetic tree in which the branches

  4. Species limits and relationships within Otidea inferred from multiple gene phylogenies

    NARCIS (Netherlands)

    Hansen, K.; Olariaga, I.

    2015-01-01

    The genus Otidea is one of the more conspicuous members of the Pyronemataceae, with high species diversity in hemiboreal and boreal forests. The genus is morphologically coherent and in previous higher-level multi-gene analyses it formed a highly supported monophyletic group. Species delimitation

  5. Squamata: Scincidae

    Indian Academy of Sciences (India)

    2009; Skinner et al. 2011). These studies suggest that the genus Lygosoma may not be monophyletic, and related genera such as Mochlus and Lepidothyris appear to be nested within a larger Lygosoma clade (Wagner et al. 2009). However these studies were based on limited sampling of Lygosoma spp. from Asia.

  6. Resurrection of the genus Aphyllon for New World broomrapes (Orobanche s.l., Orobanchaceae

    Directory of Open Access Journals (Sweden)

    Adam C. Schneider

    2016-12-01

    Full Text Available Recent phylogenetic studies support a monophyletic clade of New World broomrapes (Orobanche sects. Gymnocaulis and Nothaphyllon sister to the Old World genus Phelipanche. I place the New World taxa in the genus Aphyllon, propose 21 new combinations, and provide a list of currently accepted taxa.

  7. Resurrection of the genus Aphyllon for New World broomrapes (Orobanche s.l., Orobanchaceae).

    Science.gov (United States)

    Schneider, Adam C

    2016-01-01

    Recent phylogenetic studies support a monophyletic clade of New World broomrapes (Orobanche sects. Gymnocaulis and Nothaphyllon) sister to the Old World genus Phelipanche. I place the New World taxa in the genus Aphyllon, propose 21 new combinations, and provide a list of currently accepted taxa.

  8. (Ceramiales, Rhodophyta) from the Canary Islands, eastern Atlantic

    African Journals Online (AJOL)

    The genus Osmundea is a strongly supported monophyletic group within the Laurencia complex and shows a disjunct distribution occurring in the North-East and South-West Pacific, the Indian and Atlantic oceans and the Mediterranean Sea. Its phenotypic plasticity on the Canary Islands may be the result of the high ...

  9. Polyphasic taxonomy of the genus Talaromyces

    DEFF Research Database (Denmark)

    Yilmaz, N.; Visagie, C.M.; Houbraken, J.

    2014-01-01

    The genus Talaromyces was described by Benjamin in 1955 as a sexual state of Penicillium that produces soft walled ascomata covered with interwoven hyphae. Phylogenetic information revealed that Penicillium subgenus Biverticillium and Talaromyces form a monophyletic clade distinct from the other...

  10. Alternaria redefined

    NARCIS (Netherlands)

    Woudenberg, J.H.C.; Groenewald, J.Z.; Binder, M.; Crous, P.W.

    2013-01-01

    Alternaria is a ubiquitous fungal genus that includes saprobic, endophytic and pathogenic species associated with a wide variety of substrates. In recent years, DNA-based studies revealed multiple non-monophyletic genera within the Alternaria complex, and Alternaria species clades that do not always

  11. Phylogeny of minute carabid beetles and their relatives based upon DNA sequence data (Coleoptera, Carabidae, Trechitae

    Directory of Open Access Journals (Sweden)

    David Maddison

    2011-11-01

    Full Text Available The phylogeny of ground beetles of supertribe Trechitae is inferred using DNA sequences of genes that code for 28S ribosomal RNA, 18S ribosomal RNA, and wingless. Within the outgroups, austral psydrines are inferred to be monophyletic, and separate from the three genera of true Psydrina (Psydrus, Nomius, Laccocenus; the austral psydrines are formally removed from Psydrini and are treated herein as their own tribe, Moriomorphini Sloane. All three genes place Gehringia with Psydrina. Trechitae is inferred to be monophyletic, and sister to Patrobini.Within trechites, evidence is presented that Tasmanitachoides is not a tachyine, but is instead a member of Trechini. Perileptus is a member of subtribe Trechodina. Against Erwin’s hypothesis of anillines as a polyphyletic lineage derived from the tachyine genus Paratachys, the anillines sampled are monophyletic, and not related to Paratachys. Zolini, Pogonini, Tachyina, and Xystosomina are all monophyletic, with the latter two being sister groups. The relationships of the subtribe Bembidiina were studied in greater detail. Phrypeus is only distantly related to Bembidion, and there is no evidence from sequence data that it belongs within Bembidiina. Three groups that have been recently considered to be outside of the large genus Bembidion are shown to be derived members of Bembidion, related to subgroups: Cillenus is related to the Ocydromus complex of Bembidion, Zecillenus is related to the New Zealand subgenus Zeplataphus, and Hydrium is close to subgenus Metallina. The relationships among major lineages of Trechitae are not, however, resolved with these data.

  12. Phylogeny and host-plant relationships of the Australian Myrtaceae leafmining moth genus Pectinivalva (Lepidoptera, Nepticulidae), with new subgenera and species

    NARCIS (Netherlands)

    Hoare, R.J.B.; Nieukerken, van E.J.

    2013-01-01

    The phylogeny of the mainly Australian nepticulid genus Pectinivalva Scoble, 1983 is investigated on the basis of morphology, and a division into three monophyletic subgenera is proposed on the basis of these results. These subgenera (Pectinivalva, Casanovula Hoare, subgen. n. and Menurella Hoare,

  13. Introduction and synthesis: plant phylogeny and the origin of major biomes

    NARCIS (Netherlands)

    Pennington, R.T.; Cronk, Q.C.B.; Richardson, J.E.

    2004-01-01

    Phylogenetic trees based upon DNA sequence data, when calibrated with a dimension of time, allow inference of: (i) the pattern of accumulation of lineages through time; (ii) the time of origin of monophyletic groups; (iii) when lineages arrived in different geographical areas; (iv) the time of

  14. EVOLUTION OF NUCLEAR RDNA ITS SEQUENCES IN THE CLADOPHORA ALBIDA/SERICEA CLADE (CHLOROPHYTA)

    NARCIS (Netherlands)

    BAKKER, FT; OLSEN, JL; STAM, WT

    Ribosomal DNA ITS sequences were compared among 13 different species and biogeographic isolates from the monophyletic ''abbida/sericea clade'' in the green algal genus Cladophora. Six distinct ITS sequence types were found, characterized by multiple insertions and deletions and high levels of

  15. Identifying the transition between single and multiple mating of queens in fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Murakami, Takahiro; Schultz, Ted R

    2002-01-01

    Obligate mating of females (queens) with multiple males has evolved only rarely in social Hymenoptera (ants, social bees, social wasps) and for reasons that are fundamentally different from those underlying multiple mating in other animals. The monophyletic tribe of ('attine') fungus-growing ants...

  16. Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes.

    Science.gov (United States)

    I. Alvarez; R. Cronn; J.F. Wendel

    2005-01-01

    American diploid cottons (Gossypium L., subgenus Houzingenia Fryxell) form a monophyletic group of 13 species distributed mainly in western Mexico, extending into Arizona, Baja California, and with one disjunct species each in the Galapagos Islands and Peru. Prior phylogenetic analyses based on an alcohol dehydrogenase gene (...

  17. Taxonomy and phylogeny of the Caloplaca cerina group in Europe

    DEFF Research Database (Denmark)

    Soun, J.; Vondrak, J.; Sochting, U.

    2011-01-01

    Using ITS nrDNA sequence data, the Caloplaca cerina group (Teloschistaceae) is defined here as a monophyletic, but internally richly branched lineage. The group is also characterized by a combination of morphological and anatomical characters. Its internal lineages are supported by phenotypic cha...

  18. The relationship of Brookesia, Rhampholeon and Chamaeleo (Chamaeleonidae, Reptilia)

    NARCIS (Netherlands)

    Hillenius, D.

    1986-01-01

    Comparing the species of Brookesia and Rhampholeon with Chamaeleo it is concluded that Brookesia + Rhampholeon form a monophyletic group, arising from a branch of Chamaeleo, probably most related to the group around Chamaeleo nasutus. The separation between Rhampholeon and Brookesia is confirmed.

  19. Molecular phylogenetics of emydine turtles: taxonomic revision and the evolution of shell kinesis.

    Science.gov (United States)

    Feldman, Chris R; Parham, James Ford

    2002-03-01

    The 10 extant species of emydine turtles represent an array of morphological and ecological forms recognizable and popular among scientists and hobbyists. Nevertheless, the phylogenetic affinities of most emydines remain contentious. Here, we examine the evolutionary relationships of emydine turtles using 2092 bp of DNA encoding the mitochondrial genes cyt b, ND4, and adjacent tRNAs. These data contain 339 parsimony informative characters that we use to erect hypotheses of relationships for the Emydinae. Both maximum parsimony and maximum likelihood methods yield a monophyletic Emydinae in which all but three nodes are well resolved. Emys orbicularis, Emydoidea blandingii, and Clemmys marmorata form a monophyletic clade, as do the species of Terrapene. Clemmys muhlenbergii and Clemmys insculpta form a third monophyletic group that may be sister to all other emydines. Clemmys guttata is problematic and probably related to Terrapene. Based on this phylogeny, and previous molecular work on the group, we suggest the following taxonomic revisions: (1) Clemmys should be restricted to a single species, C. guttata. (2) Calemys should be resurrected for C. muhlenbergii and C. insculpta. (3) Emys should be expanded to include three species: E. orbicularis, E. blandingii, and E. marmorata. Furthermore, our analyses show that neither kinetic-shelled nor akinetic-shelled emydines form monophyletic groups. Therefore, shell kinesis was either independently gained in Emys and Terrapene or secondarily lost in E. marmorata and C. guttata. Parsimony, paleontological evidence, and the multiple origins of shell kinesis in related turtle lineages (especially geoemydines) support the independent origin of plastral kinesis.

  20. Morphometric variation of the Herichthys bartoni (Bean, 1892 species group (Teleostei: Cichlidae: How many species comprise H. labridens (Pellegrin, 1903?

    Directory of Open Access Journals (Sweden)

    Omar Mejía

    Full Text Available Cichlids of the tribe Heroini have long been a source of taxonomical conflict. In particular, the species included in the Herichthys bartoni group have failed to be recovered as monophyletic in different molecular studies. In this paper we use traditional and geometric morphometrics to evaluate morphological variation in the species included in the H. bartoni complex in order to evaluate the number of species it contains. An update of a previously published DNA barcoding study suggests the existence of three genetic clusters that included the six recognized species analyzed in this study, none of them recovered as monophyletic. On the other hand, geometric morphometrics arise as a useful tool to discriminate species due that traditional morphometrics showed a high overlap in the characters analyzed that prevents the proposal of diagnostic characters.

  1. Veronica: Chemical characters for the support of phylogenetic relationships based on nuclear ribosomal and plastid DNA sequence data

    DEFF Research Database (Denmark)

    Albach, Dirk C.; Jensen, Søren Rosendal; Özgökce, Fevzi

    2005-01-01

    Molecular phylogenetic analyses have revealed many relationships in Veronica (Plantaginaceae) never anticipated before. However, phytochemical characters show good congruence with DNA-based analyses. We have analysed a combined data set of 49 species and subspecies derived from the nuclear...... are monophyletic sister groups with the annual species consecutive sisters to them. All species of Veronica that contain cornoside are found in this subgenus, although some species seem to have secondarily lost the ability to produce this compound. Subgenera Pocilla and Pentasepalae are well supported sister...... species in the genus analysed to date to contain melittoside and globularifolin. Subgenus Pentasepalae appears to be a clade of diverse lineages from southwestern Asia and a single European clade. Species shown to have 6-hydroxyflavones do not form a monophyletic group. Subgenus Pseudolysimachium seems...

  2. Morphometric and molecular identification of individual barnacle cyprids from wild plankton

    DEFF Research Database (Denmark)

    Chen, Hsi-Nien; Høeg, Jens Thorvald; Chan, Benny K.K.

    2013-01-01

    species. Sequences from a total of 540 individual cypris larvae from Taiwanese waters formed 36 monophyletic clades (species) in a phylogenetic tree. Of these clades, 26 were identified to species, but 10 unknown monophyletic clades represented non-native species. Cyprids of the invasive barnacle......The present study used DNA barcodes to identify individual cyprids to species. This enables accurate quantification of larvae of potential fouling species in the plankton. In addition, it explains the settlement patterns of barnacles and serves as an early warning system of unwanted immigrant......, Megabalanus cocopoma, were identified. Multivariate analysis of antennular morphometric characters revealed three significant clusters in a nMDS plot, viz. a bell-shaped attachment organ (most species), a shoe-shaped attachment organ (some species), and a spear-shaped attachment organ (coral barnacles only...

  3. Phylodynamic and Phylogeographic Patterns of the HIV Type 1 Subtype F1 Parenteral Epidemic in Romania

    Science.gov (United States)

    Hué, Stéphane; Buckton, Andrew J.; Myers, Richard E.; Duiculescu, Dan; Ene, Luminita; Oprea, Cristiana; Tardei, Gratiela; Rugina, Sorin; Mardarescu, Mariana; Floch, Corinne; Notheis, Gundula; Zöhrer, Bettina; Cane, Patricia A.; Pillay, Deenan

    2012-01-01

    Abstract In the late 1980s an HIV-1 epidemic emerged in Romania that was dominated by subtype F1. The main route of infection is believed to be parenteral transmission in children. We sequenced partial pol coding regions of 70 subtype F1 samples from children and adolescents from the PENTA-EPPICC network of which 67 were from Romania. Phylogenetic reconstruction using the sequences and other publically available global subtype F sequences showed that 79% of Romanian F1 sequences formed a statistically robust monophyletic cluster. The monophyletic cluster was epidemiologically linked to parenteral transmission in children. Coalescent-based analysis dated the origins of the parenteral epidemic to 1983 [1981–1987; 95% HPD]. The analysis also shows that the epidemic's effective population size has remained fairly constant since the early 1990s suggesting limited onward spread of the virus within the population. Furthermore, phylogeographic analysis suggests that the root location of the parenteral epidemic was Bucharest. PMID:22251065

  4. Diplocephalus komposchi n. sp., a new species of erigonine spider (Araneae, Linyphiidae) from Austria.

    Science.gov (United States)

    Milasowszky, Norbert; Bauder, Julia; Hepner, Martin

    2017-05-16

    The erigonine cladistic analyses of Hormiga (2000) and Miller & Hormiga (2004) demonstrated unambiguous support for a sister-taxon relationship between the genera Diplocephalus and Savignia. These genera, in addition to others, are commonly placed in the Savignia-group. Although the Savignia-group is not monophyletic as it was originally circumscribed by Millidge (1977), it contains a monophyletic core of genera that has been supported in various cladistic analyses, starting with Hormiga (2000). According to the most recent phylogenetic study (Frick et al. 2010), a clade within the Savignia-group included Diplocephalus along with Araeoncus, Dicymbium, Erigonella, Glyphesis and Savignia. Frick et al. (2010) included three Diplocephalus species - cristatus, latifrons and picinus - in their cladistic analyses. While D. latifrons and D. picinus were found to be the most basal species of the Savignia-group, D. cristatus was the most distal one.

  5. Morphometric and molecular identification of individual barnacle cyprids from wild plankton: an approach to detecting fouling and invasive barnacle species.

    Science.gov (United States)

    Chen, Hsi-Nien; Høeg, Jens T; Chan, Benny K K

    2013-01-01

    The present study used DNA barcodes to identify individual cyprids to species. This enables accurate quantification of larvae of potential fouling species in the plankton. In addition, it explains the settlement patterns of barnacles and serves as an early warning system of unwanted immigrant species. Sequences from a total of 540 individual cypris larvae from Taiwanese waters formed 36 monophyletic clades (species) in a phylogenetic tree. Of these clades, 26 were identified to species, but 10 unknown monophyletic clades represented non-native species. Cyprids of the invasive barnacle, Megabalanus cocopoma, were identified. Multivariate analysis of antennular morphometric characters revealed three significant clusters in a nMDS plot, viz. a bell-shaped attachment organ (most species), a shoe-shaped attachment organ (some species), and a spear-shaped attachment organ (coral barnacles only). These differences in attachment organ structure indicate that antennular structures interact directly with the diverse substrata involved in cirripede settlement.

  6. Multigene analysis of lophophorate and chaetognath phylogenetic relationships.

    Science.gov (United States)

    Helmkampf, Martin; Bruchhaus, Iris; Hausdorf, Bernhard

    2008-01-01

    Maximum likelihood and Bayesian inference analyses of seven concatenated fragments of nuclear-encoded housekeeping genes indicate that Lophotrochozoa is monophyletic, i.e., the lophophorate groups Bryozoa, Brachiopoda and Phoronida are more closely related to molluscs and annelids than to Deuterostomia or Ecdysozoa. Lophophorates themselves, however, form a polyphyletic assemblage. The hypotheses that they are monophyletic and more closely allied to Deuterostomia than to Protostomia can be ruled out with both the approximately unbiased test and the expected likelihood weights test. The existence of Phoronozoa, a putative clade including Brachiopoda and Phoronida, has also been rejected. According to our analyses, phoronids instead share a more recent common ancestor with bryozoans than with brachiopods. Platyhelminthes is the sister group of Lophotrochozoa. Together these two constitute Spiralia. Although Chaetognatha appears as the sister group of Priapulida within Ecdysozoa in our analyses, alternative hypothesis concerning chaetognath relationships could not be rejected.

  7. Reconstruction of mitogenomes by NGS and phylogenetic implications for leaf beetles.

    Science.gov (United States)

    Song, Nan; Yin, Xinming; Zhao, Xincheng; Chen, Junhua; Yin, Jian

    2017-11-30

    Mitochondrial genome (mitogenome) sequences are frequently used to infer phylogenetic relationships of insects at different taxonomic levels. Next-generation sequencing (NGS) techniques are revolutionizing many fields of biology, and allow for acquisition of insect mitogenomes for large number of species simultaneously. In this study, 20 full or partial mitogenomes were sequenced from pooled genomic DNA samples by NGS for leaf beetles (Chrysomelidae). Combined with published mitogenome sequences, a higher level phylogeny of Chrysomelidae was reconstructed under maximum likelihood and Bayesian inference with different models and various data treatments. The results revealed support for a basal position of Bruchinae within Chrysomelidae. In addition, two major subfamily groupings were recovered: one including seven subfamilies, namely Donaciinae, Criocerinae, Spilopyrinae, Cassidinae, Cryptocephalinae, Chlamisinae and Eumolpinae, another containing a non-monophyletic Chrysomelinae and a monophyletic Galerucinae.

  8. Molecular phylogeny of Gavilea (Chloraeinae: Orchidaceae) using plastid and nuclear markers.

    Science.gov (United States)

    Chemisquy, M Amelia; Morrone, Osvaldo

    2012-03-01

    A phylogenetic analysis is provided for 70% of the representatives of genus Gavilea, as well as for several species of the remaining genera of subtribe Chloraeinae: Bipinnula, Chloraea and Geoblasta. Sequences from the plastid markers rpoC1, matK-trnK and atpB-rbcL and the nuclear marker ITS, were analyzed using Maximum Parsimony and Bayesian Inference. Monophyly of subtribe Chloraeinae was confirmed, as well as its position inside tribe Cranichideae. Neither Chloraea nor Bipinnula were recovered as monophyletic. Gavilea turned out polyphyletic, with Chloraeachica embedded in the genus while Gavilea supralabellata was related to Chloraea and might be a hybrid between both genera. None of the two sections of Gavilea were monophyletic, and the topologies obtained do not suggest a new division of the genus. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Complete nucleotide sequence of Sida golden mosaic Florida virus and phylogenetic relationships with other begomoviruses infecting malvaceous weeds in the Caribbean.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Martínez-Zubiaur, Yamila; Moriones, Enrique; Navas-Castillo, Jesús

    2010-09-01

    The complete genome sequence of two isolates of the bipartite begomovirus (genus Begomovirus, family Geminiviridae) Sida golden mosaic Florida virus (SiGMFV) is presented. We propose that both isolates, found infecting Malvastrum coromandelianum (family Malvaceae) in Cuba, belong to a new strain of SiGMFV. Phylogenetic analysis showed that SiGMFV DNA-A is located in a monophyletic cluster that includes begomoviruses infecting malvaceous weeds from the Caribbean.

  10. EST based phylogenomics of Syndermata questions monophyly of Eurotatoria

    Directory of Open Access Journals (Sweden)

    Bucher Gregor

    2008-12-01

    Full Text Available Abstract Background The metazoan taxon Syndermata comprising Rotifera (in the classical sense of Monogononta+Bdelloidea+Seisonidea and Acanthocephala has raised several hypotheses connected to the phylogeny of these animal groups and the included subtaxa. While the monophyletic origin of Syndermata and Acanthocephala is well established based on morphological and molecular data, the phylogenetic position of Syndermata within Spiralia, the monophyletic origin of Monogononta, Bdelloidea, and Seisonidea and the acanthocephalan sister group are still a matter of debate. The comparison of the alternative hypotheses suggests that testing the phylogenetic validity of Eurotatoria (Monogononta+Bdelloidea is the key to unravel the phylogenetic relations within Syndermata. The syndermatan phylogeny in turn is a prerequisite for reconstructing the evolution of the acanthocephalan endoparasitism. Results Here we present our results from a phylogenomic approach studying i the phylogenetic position of Syndermata within Spiralia, ii the monophyletic origin of monogononts and bdelloids and iii the phylogenetic relations of the latter two taxa to acanthocephalans. For this analysis we have generated EST libraries of Pomphorhynchus laevis, Echinorhynchus truttae (Acanthocephala and Brachionus plicatilis (Monogononta. By extending these data with database entries of B. plicatilis, Philodina roseola (Bdelloidea and 25 additional metazoan species, we conducted phylogenetic reconstructions based on 79 ribosomal proteins using maximum likelihood and bayesian approaches. Our findings suggest that the phylogenetic position of Syndermata within Spiralia is close to Platyhelminthes, that Eurotatoria are not monophyletic and that bdelloids are more closely related to acanthocephalans than monogononts. Conclusion Mapping morphological character evolution onto molecular phylogeny suggests the (partial or complete reduction of the corona and the emergence of a retractable

  11. Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species

    OpenAIRE

    Fujito, Satoshi; Takahata, Satoshi; Suzuki, Reimi; Hoshino, Yoichiro; Ohmido, Nobuko; Onodera, Yasuyuki

    2015-01-01

    The dioecious genus Spinacia is thought to include two wild relatives (S. turkestanica Ilj. and S. tetrandra Stev.) of cultivated spinach (S. oleracea L.). In this study, nuclear and chloroplast sequences from 21 accessions of Spinacia germplasm and six spinach cultivars or lines were subjected to phylogenetic analysis to define the relationships among the three species. Maximum-likelihood sequence analysis suggested that the Spinacia plant samples could be classified into two monophyletic gr...

  12. A molecular phylogeny of the orange subfamily(Rutaceae: Aurantioideae) using nine cpDNA sequences.

    Science.gov (United States)

    Bayer, Randall J; Mabberley, David J; Morton, Cynthia; Miller, Cathy H; Sharma, Ish K; Pfeil, Bernard E; Rich, Sarah; Hitchcock, Roberta; Sykes, Steve

    2009-03-01

    The breeding of new, high-quality citrus cultivars depends on dependable information about the relationships of taxa within the tribe Citreae; therefore, it is important to have a well-supported phylogeny of the relationships between species not only to advance breeding strategies, but also to advance conservation strategies for the wild taxa. The recent history of the systematics of Citrus (Rutaceae: Aurantioideae) and its allies, in the context of Rutaceae taxonomy as a whole, is reviewed. The most recent classification is tested using nine cpDNA sequence regions in representatives of all genera of the subfam. Aurantioideae (save Limnocitrus) and numerous species and hybrids referred to Citrus s.l. Aurantioideae are confirmed as monophyletic. Within Aurantioideae, tribe Clauseneae are not monophyletic unless Murraya s.s. and Merrillia are removed to Aurantieae. Within tribe Aurantieae, the three traditionally recognized subtribes are not monophyletic. Triphasiinae is not monophyletic unless Oxanthera is returned to Citrus (Citrinae). Balsamocitrinae is polyphyletic. Feroniella, traditionally considered allied closely to Limonia (=Feronia), is shown to be nested in Citrus. The proposed congenericity of Severinia and Atalantia is confirmed. The most recent circumscription of Citrus is strongly supported by this analysis, with hybrids appearing with their putative maternal parents. The genus was resolved into two clades, one comprising wild species from New Guinea, Australia, and New Caledonia (formerly Clymenia, Eremocitrus, Microcitrus, Oxanthera), but surprisingly also Citrus medica, traditionally believed to be native in India. The second clade is largely from the Asian mainland (including species formerly referred to Fortunella and Poncirus).

  13. Molecular epidemiology of Rabbit Haemorrhagic Disease Virus (RHDV) in Australia: when one became many

    OpenAIRE

    Kovaliski, John; Sinclair, Ron; Mutze, Greg; Peacock, David; Strive, Tanja; Abrantes, Joana; Esteves, Pedro J.; Holmes, Edward C.

    2013-01-01

    Rabbit Haemorrhagic Disease Virus (RHDV) was introduced into Australia in 1995 as a biological control agent against the wild European rabbit (Oryctolagus cuniculus). We evaluated its evolution over a 16 year period (1995–2011) by examining 50 isolates collected throughout Australia, as well as the original inoculum strains. Phylogenetic analysis of capsid protein VP60 sequences of the Australian isolates, compared to those sampled globally, revealed that they form a monophyletic group with t...

  14. Molecular Diversity of Rabies Viruses Associated with Bats in Mexico and Other Countries of the Americas

    OpenAIRE

    Velasco-Villa, Andrés; Orciari, Lillian A.; Juárez-Islas, Víctor; Gómez-Sierra, Mauricio; Padilla-Medina, Irma; Flisser, Ana; Souza, Valeria; Castillo, Amanda; Franka, Richard; Escalante-Mañe, Maribel; Sauri-González, Isaias; Rupprecht, Charles E.

    2006-01-01

    Bat rabies and its transmission to humans and other species in Mexico were investigated. Eighty-nine samples obtained from rabid livestock, cats, dogs, and humans in Mexico were studied by antigenic typing and partial sequence analysis. Samples were further compared with enzootic rabies associated with different species of bats in the Americas. Patterns of nucleotide variation allowed the definition of at least 20 monophyletic clusters associated with 9 or more different bat species. Several ...

  15. Position of the family Scrophulariaceae from Ukrainian flora in APG system

    Directory of Open Access Journals (Sweden)

    Myroslava R. Hrytsyna

    2013-04-01

    Full Text Available In molecular phylogenetic system polyphyletic family Scrophulariaceae R.B.R is disintegrated into seven monophyletic groups: Scrophulariaceae, Veronicaceae, Orobanchaceae, Calceolariaceae, Stilbaceae, Phrymaceae and Linderniaceae within order Lamiales. They are composed mainly by the members of this family and also by small families of this order. Нoloparasitic and hemiparasitic genera re identified as a separate group. The genera of Ukrainian flora belonging to such tribes as Scrophulariaceae, Veronicaceae, Orobanchaceae.

  16. Position of the family Scrophulariaceae from Ukrainian flora in APG system

    OpenAIRE

    Hrytsyna M.

    2013-01-01

    In molecular phylogenetic system polyphyletic family Scrophulariaceae R.B.R is disintegrated into seven monophyletic groups: Scrophulariaceae, Veronicaceae, Orobanchaceae, Calceolariaceae, Stilbaceae, Phrymaceae and Linderniaceae within order Lamiales. They are composed mainly by the members of this family and also by small families of this order. Нoloparasitic and hemiparasitic genera re identified as a separate group. The genera of Ukrainian flora belonging to such tribes as Scrophulari...

  17. Transmission of Nephridial Bacteria of the Earthworm Eisenia fetida

    OpenAIRE

    Davidson, Seana K.; Stahl, David A.

    2006-01-01

    The lumbricid earthworms (annelid family Lumbricidae) harbor gram-negative bacteria in their excretory organs, the nephridia. Comparative 16S rRNA gene sequencing of bacteria associated with the nephridia of several earthworm species has shown that each species of worm harbors a distinct bacterial species and that the bacteria from different species form a monophyletic cluster within the genus Acidovorax, suggesting that there is a specific association resulting from radiation from a common b...

  18. Molecular systematics of the critically-endangered North American spinymussels (Unionidae: Elliptio and Pleurobema) and description of Parvaspina gen. nov.

    Science.gov (United States)

    Perkins, Michael A.; Johnson, Nathan A.; Gangloff, Michael M.

    2017-01-01

    Despite being common in numerous marine bivalve lineages, lateral spines are extremely rare among freshwater bivalves (Bivalvia: Unionidae), with only three known species characterized by the presence of spines: Elliptio spinosa, Elliptio steinstansana, and Pleurobema collina. All three taxa are endemic to the Atlantic Slope of southeastern North America, critically endangered, and protected by the US Endangered Species Act. Currently, these species are recognized in two genera and remain a source of considerable taxonomic confusion. Because spines are rare in freshwater mussels and restricted to a small region of North America, we hypothesized that spinymussels represent a monophyletic group. We sequenced two mtDNA gene fragments (COI and ND1) and a fragment of the nuclear ITS-1 locus from >70 specimens. Bayesian and maximum-likelihood phylogenetic reconstructions suggest that the spinymussels do not comprise a monophyletic group. Elliptio steinstansana is sister to P. collina, forming a monophyletic clade that was estimated to have diverged from its most recent ancestor in the late Miocene and is distinct from both Elliptio and Pleurobema; we describe a new genus (Parvaspina gen. nov.) to reflect this relationship. Additionally, E. spinosa forms a monophyletic clade that diverged from members of the core Elliptio lineage in the mid-Pliocene. Furthermore, E. spinosa is genetically divergent from the other spinymussel species, suggesting that spines, while extremely rare in freshwater mussels worldwide, may have evolved independently in two bivalve lineages. Recognizing the genetic distinctiveness and inter-generic relationships of the spinymussels is an important first step towards effectively managing these imperiled species and lays the groundwork for future conservation genetics studies.

  19. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota.

    Directory of Open Access Journals (Sweden)

    Hiroshi Makino

    Full Text Available OBJECTIVES: Bifidobacterium species are one of the major components of the infant's intestine microbiota. Colonization with bifidobacteria in early infancy is suggested to be important for health in later life. However, information remains limited regarding the source of these microbes. Here, we investigated whether specific strains of bifidobacteria in the maternal intestinal flora are transmitted to their infant's intestine. MATERIALS AND METHODS: Fecal samples were collected from healthy 17 mother and infant pairs (Vaginal delivery: 12; Cesarean section delivery: 5. Mother's feces were collected twice before delivery. Infant's feces were collected at 0 (meconium, 3, 7, 30, 90 days after birth. Bifidobacteria isolated from feces were genotyped by multilocus sequencing typing, and the transitions of bifidobacteria counts in infant's feces were analyzed by quantitative real-time PCR. RESULTS: Stains belonging to Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium catenulatum, Bifidobacterium longum subsp. longum, and Bifidobacterium pseudocatenulatum, were identified to be monophyletic between mother's and infant's intestine. Eleven out of 12 vaginal delivered infants carried at least one monophyletic strain. The bifidobacterial counts of the species to which the monophyletic strains belong, increased predominantly in the infant's intestine within 3 days after birth. Among infants delivered by C-section, monophyletic strains were not observed. Moreover, the bifidobacterial counts were significantly lower than the vaginal delivered infants until 7 days of age. CONCLUSIONS: Among infants born vaginally, several Bifidobacterium strains transmit from the mother and colonize the infant's intestine shortly after birth. Our data suggest that the mother's intestine is an important source for the vaginal delivered infant's intestinal microbiota.

  20. Current status of the plasmodiophorids.

    Science.gov (United States)

    Braselton, J P

    1995-01-01

    Plasmodiophorids are a monophyletic group with uncertain systematic affinities. Features of the group include cruciform nuclear division; obligate, intracellular parasitism; biflagellated, heterocont zoospores; and environmentally resistant resting spores. Economically significant members of the group include Plasmodiophora brassicae, the causative agent of clubroot of cabbage; Spongospora subterranea, the causative agent of powdery scab of potato; and two members of the genus Polymyxa, vectors for several plant pathogenic viruses.

  1. Genomic organization and molecular phylogenies of the beta (β keratin multigene family in the chicken (Gallus gallus and zebra finch (Taeniopygia guttata: implications for feather evolution

    Directory of Open Access Journals (Sweden)

    Sawyer Roger H

    2010-05-01

    Full Text Available Abstract Background The epidermal appendages of reptiles and birds are constructed of beta (β keratins. The molecular phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, but to study their molecular evolution in archosaurians. Results The subfamilies (claw, feather, feather-like, and scale of β-keratin genes are clustered in the same 5' to 3' order on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the chicken demonstrates that all feather β-keratin clades are expressed. Conclusions Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, novel β-keratin genes were selected for novel functions within appendages such as feathers.

  2. Gain and loss of polyadenylation signals during evolution of green algae

    OpenAIRE

    Wodniok, Sabina; Simon, Andreas; Glöckner, Gernot; Becker, Burkhard

    2007-01-01

    Abstract Background The Viridiplantae (green algae and land plants) consist of two monophyletic lineages: the Chlorophyta and the Streptophyta. Most green algae belong to the Chlorophyta, while the Streptophyta include all land plants and a small group of freshwater algae known as Charophyceae. Eukaryotes attach a poly-A tail to the 3' ends of most nuclear-encoded mRNAs. In embryophytes, animals and fungi, the signal for polyadenylation contains an A-rich sequence (often AAUAAA or related seq...

  3. Morphology, Taxonomy and Interrelationships of Tristichopterid Fishes (Sarcopterygii, Tetrapodomorpha)

    OpenAIRE

    Snitting, Daniel

    2008-01-01

    Tristichopterids (Sarcopterygii, Tetrapodomorpha) form a monophyletic group of exclusively Devonian fishes. This thesis consists of descriptions of new material of tristichopterids and closely related taxa, as well as new interpretations and descriptions of previously figured material. Redescribed specimens were originally figured as far back as 1861, and publications as old as this are almost always of limited use as anatomical and systematical references, in addition to being difficult to a...

  4. Phylogenetic relationships of the Cochliopinae (Rissooidea: Hydrobiidae): an enigmatic group of aquatic gastropods.

    Science.gov (United States)

    Liu, H P; Hershler, R; Thompson, F G

    2001-10-01

    Phylogenetic analysis based on a partial sequence of the mitochondrial cytochrome c oxidase subunit I gene was performed for 26 representatives of the aquatic gastropod subfamily Cochliopinae, 6 additional members of the family Hydrobiidae, and outgroup species of the families Rissoidae and Pomatiopsidae. Maximum-parsimony analysis yielded a single shortest tree which resolved two monophyletic groups: (1) a clade containing all cochliopine taxa with the exception of Antroselates and (2) a clade composed of Antroselates and the hydrobiid genus Amnicola. The clade containing both of these monophyletic groups was depicted as more closely related to members of the family Pomatiopsidae than to other hydrobiid snails which were basally positioned in our topology. New anatomical evidence supports recognition of the cochliopine and Antroselates-Amnicola clades, and structure within the monophyletic group of cochliopines is largely congruent with genitalic characters. However, the close relationship between the Pomatiopsidae and these clades is in conflict with commonly accepted classifications and suggests that a widely accepted scenario for genitalic evolution in these snails is in need of further study. Copyright 2001 Academic Press.

  5. A cladistic analysis of Aristotle's animal groups in the Historia animalium.

    Science.gov (United States)

    von Lieven, Alexander Fürst; Humar, Marcel

    2008-01-01

    The Historia animalium (HA) of Aristotle contains an extraordinarily rich compilation of descriptions of animal anatomy, development, and behaviour. It is believed that Aristotle's aim in HA was to describe the correlations of characters rather than to classify or define animal groups. In order to assess if Aristotle, while organising his character correlations, referred to a pre-existing classification that underlies the descriptions in HA, we carried out a cladistic analysis according to the following procedure: by disentangeling 147 species and 40 higher taxa-designations from 157 predicates in the texts, we transcribed Aristotle's descriptions on anatomy and development of animals in books I-V of HA into a character matrix for a cladistic analysis. By analysing the distribution of characters as described in his books, we obtained a non-phylogenetic dendrogram displaying 58 monophyletic groups, 29 of which have equivalents among Aristotle's group designations. Eleven Aristotelian groupings turned out to be non-monophyletic, and six of them are inconsistent with the monophyletic groups. Twelve of 29 taxa without equivalents in Aristotle's works have equivalents in modern classifications. With this analysis we demonstate there exists a fairly consistent underlying classification in the zoological works of Aristotle. The peculiarities of Aristotle's character basis are discussed and the dendrogram is compared with a current phylogenetic tree.

  6. [Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences].

    Science.gov (United States)

    Li, Chun-Xiang; Yang, Qun

    2003-03-01

    DNA sequences from 28S rDNA were used to assess relationships between and within traditional Taxodiaceae and Cupressaceae s.s. The MP tree and NJ tree generally are similar to one another. The results show that Taxodiaceae and Cupressaceae s.s. form a monophyletic conifer lineage excluding Sciadopitys. In the Taxodiaceae-Cupressaceae s.s. monophyletic group, the Taxodiaceae is paraphyletic. Taxodium, Glyptostrobus and Cryptomeria forming a clade(Taxodioideae), in which Glyptostrobus and Taxodium are closely related and sister to Cryptomeria; Sequoia, Sequoiadendron and Metasequoia are closely related to each other, forming another clade (Sequoioideae), in which Sequoia and Sequoiadendron are closely related and sister to Metasequoia; the seven genera of Cupressaceae s.s. are found to be closely related to form a monophyletic lineage (Cupressoideae). These results are basically similar to analyses from chloroplast gene data. But the relationships among Taiwania, Sequoioideae, Taxodioideae, and Cupressoideae remain unclear because of the slow evolution rate of 28S rDNA, which might best be answered by sequencing more rapidly evolving nuclear genes.

  7. Preliminary phylogenetic analysis of the Andean clade and the placement of new Colombian blueberries (Ericaceae, Vaccinieae

    Directory of Open Access Journals (Sweden)

    Paola Pedraza-Penalosa

    2015-04-01

    Full Text Available The blueberry tribe Vaccinieae (Ericaceae is particularly diverse in South America and underwent extensive radiation in Colombia where many endemics occur. Recent fieldwork in Colombia has resulted in valuable additions to the phylogeny and as well in the discovery of morphologically noteworthy new species that need to be phylogenetically placed before being named. This is particularly important, as the monophyly of many of the studied genera have not been confirmed. In order to advance our understanding of the relationships within neotropical Vaccinieae and advice the taxonomy of the new blueberry relatives, here we present the most comprehensive phylogenetic analysis for the Andean clade. Anthopterus, Demosthenesia, and Pellegrinia are among the putative Andean genera recovered as monophyletic, while other eight Andean genera were not. The analyses also showed that genera that have been traditionally widely defined are non-monophyletic and could be further split into more discrete groups. Four newly discovered Colombian Vaccinieae are placed in the monophyletic Satyria s.s. and the Psammisia I clade. Although these new species are endemic to the Colombian Western Cordillera and Chocó biogeographic region and three are not known outside of Las Orquídeas National Park, they do not form sister pairs.

  8. When molecules support morphology: Phylogenetic reconstruction of the family Onuphidae (Eunicida, Annelida) based on 16S rDNA and 18S rDNA.

    Science.gov (United States)

    Budaeva, Nataliya; Schepetov, Dmitry; Zanol, Joana; Neretina, Tatiana; Willassen, Endre

    2016-01-01

    Onuphid polychaetes are tubicolous marine worms commonly reported worldwide from intertidal areas to hadal depths. They often dominate in benthic communities and have economic importance in aquaculture and recreational fishing. Here we report the phylogeny of the family Onuphidae based on the combined analyses of nuclear (18S rDNA) and mitochondrial (16S rDNA) genes. Results of Bayesian and Maximum Likelihood analyses supported the monophyly of Onuphidae and its traditional subdivision into two monophyletic subfamilies: Onuphinae and Hyalinoeciinae. Ten of 22 recognized genera were monophyletic with strong node support; four more genera included in this study were either monotypic or represented by a single species. None of the genera appeared para- or polyphyletic and this indicates a strong congruence between the traditional morphology-based systematics of the family and the newly obtained molecular-based phylogenetic reconstructions. Intergeneric relationships within Hyalinoeciinae were not resolved. Two strongly supported monophyletic groups of genera were recovered within Onuphinae: ((Onuphis, Aponuphis), Diopatra, Paradiopatra) and (Hirsutonuphis, (Paxtonia, (Kinbergonuphis, Mooreonuphis))). A previously accepted hypothesis on the subdivision of Onuphinae into the Onuphis group of genera and the Diopatra group of genera was largely rejected. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data.

    Science.gov (United States)

    Kores, P J; Molvray, M; Weston, P H; Hopper, S D; Brown, A P; Cameron, K M; Chase, M W

    2001-10-01

    DNA sequence data from plastid matK and trnL-F regions were used in phylogenetic analyses of Diurideae, which indicate that Diurideae are not monophyletic as currently delimited. However, if Chloraeinae and Pterostylidinae are excluded from Diurideae, the remaining subtribes form a well-supported, monophyletic group that is sister to a "spiranthid" clade. Chloraea, Gavilea, and Megastylis pro parte (Chloraeinae) are all placed among the spiranthid orchids and form a grade with Pterostylis leading to a monophyletic Cranichideae. Codonorchis, previously included among Chloraeinae, is sister to Orchideae. Within the more narrowly delimited Diurideae two major lineages are apparent. One includes Diuridinae, Cryptostylidinae, Thelymitrinae, and an expanded Drakaeinae; the other includes Caladeniinae s.s., Prasophyllinae, and Acianthinae. The achlorophyllous subtribe Rhizanthellinae is a member of Diurideae, but its placement is otherwise uncertain. The sequence-based trees indicate that some morphological characters used in previous classifications, such as subterranean storage organs, anther position, growth habit, fungal symbionts, and pollination syndromes have more complex evolutionary histories than previously hypothesized. Treatments based upon these characters have produced conflicting classifications, and molecular data offer a tool for reevaluating these phylogenetic hypotheses.

  10. Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers.

    Science.gov (United States)

    Soejima, Akiko; Wen, Jun

    2006-02-01

    Seventy-nine species representing 12 genera of Vitaceae were sequenced for the trnL-F spacer, 37 of which were subsequently sequenced for the atpB-rbcL spacer and the rps16 intron. Phylogenetic analysis of the combined data provided a fairly robust phylogeny for Vitaceae. Cayratia, Tetrastigma, and Cyphostemma form a clade. Cyphostemma and Tetrastigma are each monophyletic, and Cayratia may be paraphyletic. Ampelopsis is paraphyletic with the African Rhoicissus and the South American Cissus striata nested within it. The pinnately leaved Ampelopsis form a subclade, and the simple and palmately leaved Ameplopsis constitutes another with both subclades containing Asian and American species. Species of Cissus from Asia and Central America are monophyletic, but the South American C. striata does not group with other Cissus species. The Asian endemic Nothocissus and Pterisanthes form a clade with Asian Ampelocissus, and A. javalensis from Central America is sister to this clade. Vitis is monophyletic and forms a larger clade with Ampelocissus, Pterisanthes, and Nothocissus. The eastern Asian and North American disjunct Parthenocissus forms a clade with Yua austro-orientalis, a species of a small newly recognized genus from China to eastern Himalaya. Vitaceae show complex multiple intercontinental relationships within the northern hemisphere and between northern and southern hemispheres.

  11. Phylogeny of palaeotropic Derris-like taxa (Fabaceae) based on chloroplast and nuclear DNA sequences shows reorganization of (infra)generic classifications is needed.

    Science.gov (United States)

    Sirichamorn, Yotsawate; Adema, Frits A C B; Gravendeel, Barbara; van Welzen, Peter C

    2012-11-01

    Palaeotropic Derris-like taxa (family Fabaceae, tribe Millettieae) comprise 6-9 genera. They are well known as important sources of rotenone toxin, which are used as organic insecticide and fish poison. However, their phylogenetic relationships and classification are still problematic due to insufficient sampling and high morphological variability. Fifty species of palaeotropic Derris-like taxa were sampled, which is more than in former studies. Three chloroplast genes (trnK-matK, trnL-F IGS, and psbA-trnH IGS) and nuclear ribosomal ITS /5.8S were analyzed using parsimony and Bayesian methods. Parsimony and Bayesian analyses of individual and combined markers show more or less similar tree topologies (only varying in terminal branches). The old-world monophyletic genera Aganope, Brachypterum, and Leptoderris are distinct from Derris s.s., and their generic status is here confirmed. Aganope may be classified into two or three subgeneric taxa. Paraderris has to be included in Derris s.s. to form a monophyletic group. The genera Philenoptera, Deguelia, and Lonchocarpus are monophyletic and distinct from each other and clearly separate from Derris s.s. Morphologically highly similar species of Derris s.s. are shown to be unrelated. Our study shows that previous infrageneric classifications of Derris are incorrect. Paraderris elliptica may contain several cryptic lineages that need further investigation. The concept of the genus Derris s.s. should be reorganized with a new generic circumscription by including Paraderris but excluding Brachypterum. Synapomorphic morphological features will be examined in future studies, and the status of the newly defined Derris and its closely related taxa will be formalized.

  12. Phylogenetic Relationships of Cucullanidae (Nematoda), with Observations on Seuratoidea and the Monophyly of Cucullanus, Dichelyne and Truttaedacnitis.

    Science.gov (United States)

    Choudhury, Anindo; Nadler, Steven A

    2016-02-01

    The phylogenetic relationships of Cucullanidae were explored using near-complete sequences of the 18S rDNA (rRNA gene). Sequences (1,750-1,760 bp) were obtained from 7 species of Cucullanidae belonging to 3 genera, Cucullanus (2 spp.), Dichelyne (2 spp.), Truttaedacnitis (3 spp.), and 1 species of Quimperiidae ( Paraseuratum sp.). These sequences were aligned with those of 128 other nematode species available in GenBank, including 3 other cucullanids (Dichelyne mexicanus, Cucullanus robustus, and Cucullanus baylisi) and 2 non-cucullanid seuratoids (Paraquimperia africana, and Linstowinema sp.). Bayesian (BPP) and maximum likelihood (ML) analyses of 2 different datasets strongly supported a monophyletic Cucullanidae. Bayesian analysis placed this family as the sister group to a clade containing species of Diplogasterida, Strongylida, Rhabditida, and Tylenchida with very strong support. Neither BPP nor ML analyses recovered a close relationship of Cucullanidae to Ascaridida. None of the 3 non-cucullanid seuratoid species were sister to Cucullanidae, nor did they form a monophyletic group of their own, which questions the monophyly of Seuratoidea and the relationships among species within this superfamily. The 3 genera of cucullanids were also not monophyletic, although morphologically similar species such as the 2 species of Cucullanus from Neotropical catfishes and 2 species of Dichelyne from Nearctic ictalurid catfishes were sister taxa with strong support. The results were ambiguous with respect to the relationship of 2 Truttaedacnitis spp. in Nearctic freshwater fishes but do not support Truttaedacnitis heterodonti, a parasite of heterodontid sharks, as belonging to this genus. The study shows that all aspects of the conventional classification of Seuratoidea and its taxa should be scrutinized by even more extensive sampling across hosts and habitats.

  13. Phylogenetic analysis of cercospora and mycosphaerella based on the internal transcribed spacer region of ribosomal DNA.

    Science.gov (United States)

    Goodwin, S B; Dunkle, L D; Zismann, V L

    2001-07-01

    ABSTRACT Most of the 3,000 named species in the genus Cercospora have no known sexual stage, although a Mycosphaerella teleomorph has been identified for a few. Mycosphaerella is an extremely large and important genus of plant pathogens, with more than 1,800 named species and at least 43 associated anamorph genera. The goal of this research was to perform a large-scale phylogenetic analysis to test hypotheses about the past evolutionary history of Cercospora and Mycosphaerella. Based on the phylogenetic analysis of internal transcribed spacer (ITS) sequence data (ITS1, 5.8S rRNA gene, ITS2), the genus Mycosphaerella is monophyletic. In contrast, many anamorph genera within Mycosphaerella were polyphyletic and were not useful for grouping species. One exception was Cercospora, which formed a highly supported monophyletic group. Most Cercospora species from cereal crops formed a subgroup within the main Cercospora cluster. Only species within the Cercospora cluster produced the toxin cercosporin, suggesting that the ability to produce this compound had a single evolutionary origin. Intraspecific variation for 25 taxa in the Mycosphaerella clade averaged 1.7 nucleotides (nts) in the ITS region. Thus, isolates with ITS sequences that differ by two or more nucleotides may be distinct species. ITS sequences of groups I and II of the gray leaf spot pathogen Cercospora zeae-maydis differed by 7 nts and clearly represent different species. There were 6.5 nt differences on average between the ITS sequences of the sorghum pathogen Cercospora sorghi and the maize pathogen Cercospora sorghi var. maydis, indicating that the latter is a separate species and not simply a variety of Cercospora sorghi. The large monophyletic Mycosphaerella cluster contained a number of anamorph genera with no known teleomorph associations. Therefore, the number of anamorph genera related to Mycosphaerella may be much larger than suspected previously.

  14. Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among New World genera

    Science.gov (United States)

    2012-01-01

    Background Over the last ten years we have seen great efforts focused on revising amphibian systematics. Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family. Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with uncertain phylogenetic affinities (i.e., incertae sedis). Results One mitochondrial and three nuclear genes (about 2.8 kb) were sequenced to assess phylogenetic relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily Gastrophryninae relationships between genera were well resolved. Conclusion Otophryninae is distantly related to all other New World microhylids that were recovered as a monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic; we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and updated classification for New World microhylids may serve as a guide to better understand the evolutionary history of this group that is apparently subject to convergent morphological evolution and chromosome reduction. Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene to mid Miocene. PMID:23228209

  15. Molecular phylogeny of microhylid frogs (Anura: Microhylidae with emphasis on relationships among New World genera

    Directory of Open Access Journals (Sweden)

    de Sá Rafael O

    2012-12-01

    Full Text Available Abstract Background Over the last ten years we have seen great efforts focused on revising amphibian systematics. Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family. Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with uncertain phylogenetic affinities (i.e., incertae sedis. Results One mitochondrial and three nuclear genes (about 2.8 kb were sequenced to assess phylogenetic relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily Gastrophryninae relationships between genera were well resolved. Conclusion Otophryninae is distantly related to all other New World microhylids that were recovered as a monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic; we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and updated classification for New World microhylids may serve as a guide to better understand the evolutionary history of this group that is apparently subject to convergent morphological evolution and chromosome reduction. Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene to

  16. Molecular phylogeny of microhylid frogs (Anura: Microhylidae) with emphasis on relationships among New World genera.

    Science.gov (United States)

    de Sá, Rafael O; Streicher, Jeffrey W; Sekonyela, Relebohile; Forlani, Mauricio C; Loader, Simon P; Greenbaum, Eli; Richards, Stephen; Haddad, Célio F B

    2012-12-10

    Over the last ten years we have seen great efforts focused on revising amphibian systematics. Phylogenetic reconstructions derived from DNA sequence data have played a central role in these revisionary studies but have typically under-sampled the diverse frog family Microhylidae. Here, we present a detailed phylogenetic study focused on expanding previous hypotheses of relationships within this cosmopolitan family. Specifically, we placed an emphasis on assessing relationships among New World genera and those taxa with uncertain phylogenetic affinities (i.e., incertae sedis). One mitochondrial and three nuclear genes (about 2.8 kb) were sequenced to assess phylogenetic relationships. We utilized an unprecedented sampling of 200 microhylid taxa representing 91% of currently recognized subfamilies and 95% of New World genera. Our analyses do not fully resolve relationships among subfamilies supporting previous studies that have suggested a rapid early diversification of this clade. We observed a close relationship between Synapturanus and Otophryne of the subfamily Otophryninae. Within the subfamily Gastrophryninae relationships between genera were well resolved. Otophryninae is distantly related to all other New World microhylids that were recovered as a monophyletic group, Gastrophryninae. Within Gastrophryninae, five genera were recovered as non-monophyletic; we propose taxonomic re-arrangements to render all genera monophyletic. This hypothesis of relationships and updated classification for New World microhylids may serve as a guide to better understand the evolutionary history of this group that is apparently subject to convergent morphological evolution and chromosome reduction. Based on a divergence analysis calibrated with hypotheses from previous studies and fossil data, it appears that microhylid genera inhabiting the New World originated during a period of gradual cooling from the late Oligocene to mid Miocene.

  17. Hepatitis C virus diversification in Argentina: comparative analysis between the large city of Buenos Aires and the small rural town of O'Brien.

    Science.gov (United States)

    Golemba, Marcelo D; Culasso, Andrés C A; Villamil, Federico G; Bare, Patricia; Gadano, Adrián; Ridruejo, Ezequiel; Martinez, Alfredo; Di Lello, Federico A; Campos, Rodolfo H

    2013-01-01

    The estimated prevalence of HCV infection in Argentina is around 2%. However, higher rates of infection have been described in population studies of small urban and rural communities. The aim of this work was to compare the origin and diversification of HCV-1b in samples from two different epidemiological scenarios: Buenos Aires, a large cosmopolitan city, and O'Brien, a small rural town with a high prevalence of HCV infection. The E1/E2 and NS5B regions of the viral genome from 83 patients infected with HCV-1b were sequenced. Phylogenetic analysis and Bayesian Coalescent methods were used to study the origin and diversification of HCV-1b in both patient populations. Samples from Buenos Aires showed a polyphyletic behavior with a tMRCA around 1887-1900 and a time of spread of infection approximately 60 years ago. In contrast, samples from ÓBrien showed a monophyletic behavior with a tMRCA around 1950-1960 and a time of spread of infection more recent than in Buenos Aires, around 20-30 years ago. Phylogenetic and coalescence analysis revealed a different behavior in the epidemiological histories of Buenos Aires and ÓBrien. HCV infection in Buenos Aires shows a polyphyletic behavior and an exponential growth in two phases, whereas that in O'Brien shows a monophyletic cluster and an exponential growth in one single step with a more recent tMRCA. The polyphyletic origin and the probability of encountering susceptible individuals in a large cosmopolitan city like Buenos Aires are in agreement with a longer period of expansion. In contrast, in less populated areas such as O'Brien, the chances of HCV transmission are strongly restricted. Furthermore, the monophyletic character and the most recent time of emergence suggest that different HCV-1b ancestors (variants) that were in expansion in Buenos Aires had the opportunity to colonize and expand in O'Brien.

  18. Phylogenetic relationships of the South American Doradoidea (Ostariophysi: Siluriformes

    Directory of Open Access Journals (Sweden)

    José L. O. Birindelli

    Full Text Available A phylogenetic analysis based on 311 morphological characters is presented for most species of the Doradidae, all genera of the Auchenipteridae, and representatives of 16 other catfish families. The hypothesis that was derived from the six most parsimonious trees support the monophyly of the South American Doradoidea (Doradidae plus Auchenipteridae, as well as the monophyly of the clade Doradoidea plus the African Mochokidae. In addition, the clade with Sisoroidea plus Aspredinidae was considered sister to Doradoidea plus Mochokidae. Within the Auchenipteridae, the results support the monophyly of the Centromochlinae and Auchenipterinae. The latter is composed of Tocantinsia, and four monophyletic units, two small with Asterophysusand Liosomadoras, and Pseudotatiaand Pseudauchenipterus, respectively, and two large ones with the remaining genera. Within the Doradidae, parsimony analysis recovered Wertheimeriaas sister to Kalyptodoras, composing a clade sister to all remaining doradids, which include Franciscodorasand two monophyletic groups: Astrodoradinae (plus Acanthodorasand Agamyxis and Doradinae (new arrangement. Wertheimerinae, new subfamily, is described for Kalyptodoras and Wertheimeria. Doradinae is corroborated as monophyletic and composed of four groups, one including Centrochirand Platydoras, the other with the large-size species of doradids (except Oxydoras, another with Orinocodoras, Rhinodoras, and Rhynchodoras, and another with Oxydorasplus all the fimbriate-barbel doradids. Based on the results, the species of Opsodoras are included in Hemidoras; and Tenellus, new genus, is described to include Nemadoras trimaculatus, N. leporhinusand Nemadoras ternetzi. Due to conflicting hypotheses of the phylogenetic position of Acanthodoras, Agamyxis, and Franciscodoras, these are considered as incertae sedisin Doradidae. All suprageneric taxa of the Doradoidea are diagnosed based on synapomorphic morphological characteristics.

  19. Hemiptera Mitochondrial Control Region: New Sights into the Structural Organization, Phylogenetic Utility, and Roles of Tandem Repetitions of the Noncoding Segment

    Directory of Open Access Journals (Sweden)

    Kui Li

    2018-04-01

    Full Text Available As a major noncoding fragment, the control region (CR of mtDNA is responsible for the initiation of mitogenome transcription and replication. Several structural features of CR sequences have been reported in many insects. However, comprehensive analyses on the structural organization and phylogenetic utility, as well as the role of tandem replications (TRs on length variation, high A+T content, and shift of base skew of CR sequences are poorly investigated in hemipteran insects. In this study, we conducted a series of comparative analyses, using 116 samples covering all 11 infraorders of the five currently recognized monophyletic groups in the Hemiptera. Several structural elements (mononucleotide stretches containing conserved sequence blocks (CSBs, TRs, and GA-rich region were identified in the mitochondrial control region in hemipteran insects, without showing a consistent location. The presence and absence of certain specific structural elements in CR sequences show the various structural organizations of that segment among the five monophyletic groups, which indicates the diversification of the control region’s structural organization in Hemiptera. Among the many groups within Hemiptera, eight monophyletic groups and three consistent phylogenetic trees were recovered, using CSBs datasets by maximum likelihood and Bayesian methods, which suggests the possible utility of CR sequences for phylogenetic reconstruction in certain groups of Hemiptera. Statistical analyses showed that TRs may contribute to the length variation, high AT content, and the shift of base skewing of CR sequences toward high AT content in the Hemiptera. Our findings enrich the knowledge of structural organization, phylogenetic utility, and roles of tandem replication of hemipteran CR, and provide a possible framework for mitochondrial control region analyses in hemimetabolous insects.

  20. Phylogeny and character evolution in the bee-assassins (Insecta: Heteroptera: Reduviidae).

    Science.gov (United States)

    Forero, D; Berniker, L; Weirauch, C

    2013-01-01

    Apiomerus, the charismatic bee-assassins (>108 spp.), belong to the New World resin bugs in the harpactorine tribe Apiomerini (12 extant genera) that is characterized by a novel predation strategy, resin trap predation. Apiomerini also exhibit striking genitalic diversity that has shaped subgeneric classifications within the genus Apiomerus and females of some species of Apiomerus are known to engage in unique maternal care behaviors. The lack of a phylogenetic framework currently hinders evolutionary interpretations of genitalic morphology and maternal care. We here present a molecular phylogeny based on 4, 477 bp of six ribosomal and protein coding genes and 95 terminal taxa using parsimony and maximum likelihood approaches as a way of addressing these shortcomings. Apiomerini are monophyletic, with Heniartes being the sistergroup to all remaining taxa that form the monophyletic Manicocoris (Calliclopius, Manicocoris, Micrauchenus, and Ponerobia) and Apiomerus (Agriocoris, Apiomerus, and Sphodrolestes) clades. Previously proposed subgeneric groups are polyphyletic, but several proposed species groups are recovered as monophyletic. Ancestral state reconstruction of the metatibial comb indicates that this structure evolved in the ancestor of all Apiomerini where it was present in males and in females; it became strongly sexually dimorphic (better developed in females than in males) in the Apiomerus clade (Apiomerus + Agriocoris + Sphodrolestes). Genitalic features reveal a pattern of homoplasy, but frequently are nonetheless useful to diagnose supraspecific groups within Apiomerus. The complex genitalia found within Apiomerus are derived for that clade. We conclude that, using the metatibial comb as a proxy, maternal care is relatively common in the tribe Apiomerini and propose that it likely evolved at the base of the Apiomerus clade if not at the base of Apiomerini. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Mitogenomics of 'Old World Acraea' butterflies reveals a highly divergent 'Bematistes'.

    Science.gov (United States)

    Timmermans, M J T N; Lees, D C; Thompson, M J; Sáfián, Sz; Brattström, O

    2016-04-01

    Afrotropical Acraeini butterflies provide a fascinating potential model system to contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia to include the Asiatic Pareba with a complicated paraphylum, traditional (sub)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub)genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies known as Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny.

    Directory of Open Access Journals (Sweden)

    Joseph L Sevigny

    Full Text Available The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra, two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa. In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda

  3. The evolution and biogeography of the austral horse fly tribe Scionini (Diptera: Tabanidae: Pangoniinae) inferred from multiple mitochondrial and nuclear genes.

    Science.gov (United States)

    Lessard, B D; Cameron, S L; Bayless, K M; Wiegmann, B M; Yeates, D K

    2013-09-01

    Phylogenetic relationships within the Tabanidae are largely unknown, despite their considerable medical and ecological importance. The first robust phylogenetic hypothesis for the horse fly tribe Scionini is provided, completing the systematic placement of all tribes in the subfamily Pangoniinae. The Scionini consists of seven mostly southern hemisphere genera distributed in Australia, New Guinea, New Zealand and South America. A 5757 bp alignment of 6 genes, including mitochondrial (COI and COII), ribosomal (28S) and nuclear (AATS and CAD regions 1, 3 and 4) genes, was analysed for 176 taxa using both Bayesian and maximum likelihood approaches. Results indicate the Scionini are strongly monophyletic, with the exclusion of the only northern hemisphere genus Goniops. The South American genera Fidena, Pityocera and Scione were strongly monophyletic, corresponding to current morphology-based classification schemes. The most widespread genus Scaptia was paraphyletic and formed nine strongly supported monophyletic clades, each corresponding to either the current subgenera or several previously synonymised genera that should be formally resurrected. Molecular results also reveal a newly recognised genus endemic to New Zealand, formerly placed within Scaptia. Divergence time estimation was employed to assess the global biogeographical patterns in the Pangoniinae. These analyses demonstrated that the Scionini are a typical Gondwanan group whose diversification was influenced by the fragmentation of that ancient land mass. Furthermore, results indicate that the Scionini most likely originated in Australia and subsequently radiated to New Zealand and South American by both long distance dispersal and vicariance. The phylogenetic framework of the Scionini provided herein will be valuable for taxonomic revisions of the Tabanidae. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae).

    Science.gov (United States)

    Dabert, Miroslawa; Proctor, Heather; Dabert, Jacek

    2016-08-01

    With nearly 6000 named species, water mites (Hydrachnidiae) represent the largest group of arachnids to have invaded and extensively diversified in freshwater habitats. Water mites together with three other lineages (the terrestrial Erythraiae and Trombidiae, and aquatic Stygothrombiae), make up the hyporder Parasitengonina, which is characterized by having parasitic larvae and predatory nymphs and adults. Relationships between the Hydrachnidiae and other members of the Parasitengonina are unclear, as are relationships among the major lineages of water mites. Monophyly of water mites has been asserted, with the possible exception of the morphologically distinctive Hydrovolzioidea. Here we infer the phylogeny of water mites using multiple molecular markers and including representatives of all superfamilies of Hydrachnidiae and of almost all other Parasitengonina. Our results support a monophyletic Parasitengonina including Trombidiae, Stygothrombiae, and Hydrachnidiae. A monophyletic Hydrachnidiae, including Hydrovolzioidea, is strongly supported. Terrestrial Parasitengonina do not form a monophyletic sister group to water mites. Stygothrombiae is close to water mites but is not nested within this clade. Water mites appear to be derived from ancestors close to Stygothrombiae or the erythraoid group Calyptostomatoidea; however, this relationship is not clear because of extremely short branches in this part of the parasitengonine tree. We recovered with strong support all commonly accepted water mite superfamilies except for Hydryphantoidea, which is clearly paraphyletic. Our data support the previously proposed clades Protohydrachnidia (Hydrovolzioidea and Eylaoidea), Euhydrachnidia (all remaining superfamilies), and the euhydrachnid subclade Neohydrachnidia (Lebertioidea, Hydrachnoidea, Hygrobatoidea, and Arrenuroidea). We found that larval leg structure and locomotory behavior are strongly congruent with the molecular phylogeny. Other morphological and behavioral

  5. Molecular phylogenetics and historical biogeography of Rhinolophus bats.

    Science.gov (United States)

    Stoffberg, Samantha; Jacobs, David S; Mackie, Iain J; Matthee, Conrad A

    2010-01-01

    The phylogenetic relationships within the horseshoe bats (genus Rhinolophus) are poorly resolved, particularly at deeper levels within the tree. We present a better-resolved phylogenetic hypothesis for 30 rhinolophid species based on parsimony and Bayesian analyses of the mitochondrial cytochrome b gene and three nuclear introns (TG, THY and PRKC1). Strong support was found for the existence of two geographic clades within the monophyletic Rhinolophidae: an African group and an Oriental assemblage. The relaxed Bayesian clock method indicated that the two rhinolophid clades diverged approximately 35 million years ago and results from Dispersal Vicariance (DIVA) analysis suggest that the horseshoe bats arose in Asia and subsequently dispersed into Europe and Africa.

  6. The Evolution of Dinitrogen Fixation

    International Nuclear Information System (INIS)

    Broda, E.

    1984-01-01

    It is argued that nitrogenase originated monophyletically in obligate anaerobes similar to Clostridia. The enzyme system was later inherited, without much change, by photosynthetic bacteria, by prokaryotic plants (blue-greens) and by aerobic bacteria. The hydrogenase function of the enzyme complex preceded the nitrogenase function, and was useful in hydrogen fermentations. The consumption of ATP served to assure disposal of electrons in the form of hydrogen gas. The present need of the enzyme system, whether acting as hydrogenase or as nitrogenase, for ATP may be a relic from the period when the biosphere was still reducing. (author)

  7. Molecular characterization of Hepatozoon species in reptiles from the Seychelles.

    Science.gov (United States)

    Harris, D James; Maia, João P M C; Perera, Ana

    2011-02-01

    Hepatozoon parasites were examined for the first time in reptiles from the Seychelles Islands. Although both prevalence and intensity were low, Hepatozoon species were detected in individuals from 2 endemic species, the lizard Mabuya wrightii and the snake Lycognathophis seychellensis. This was confirmed using visual identification and through sequencing part of the 18s rRNA gene. Phylogenetic analysis indicates that the Hepatozoon on the Seychelles form a monophyletic lineage, although more data are clearly needed to stabilize estimates of relationships based on this marker.

  8. Further studies on Boreonectes Angus, 2010, with a molecular phylogeny of the Palaearctic species of the genus.

    Science.gov (United States)

    Angus, Robert B; Ribera, Ignacio; Jia, Fenglong

    2017-01-01

    Karyotypes are given for Boreonectes emmerichi (Falkenström, 1936) from its type locality at Kangding, China, and for B. alpestris (Dutton & Angus, 2007) from the St Gotthard and San Bernardino passes in the Swiss Alps. A phylogeny based on sequence data from a combination of mitochondrial and nuclear genes recovered western Palaearctic species of Boreonectes as monophyletic with strong support. Boreonectes emmerichi was placed as sister to the north American forms of B. griseostriatus (De Geer, 1774), although with low support. The diversity of Palaearctic species of the B. griseostriatus species group is discussed.

  9. Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants

    DEFF Research Database (Denmark)

    Munkacsi, A.B.; Pan, J.J.; Villesen, P.

    2004-01-01

    family Pterulaceae using phylogenetic reconstructions based on broad taxon sampling, including the first mushroom collected from the garden of an ant species in the A. pilosum group. The domestication of the pterulaceous cultivar is independent from the domestication of the gilled mushrooms cultivated...... of parallel coevolution, where the symbionts of each functional group are members of monophyletic groups. However, there is one outstanding exception in the fungus-growing ant system, the unidentified cultivar grown only by ants in the Apterostigma pilosum group. We classify this cultivar in the coral-mushroom...

  10. The relationships between the maned wolf and people

    OpenAIRE

    Consorte-McCrea, A.

    2013-01-01

    The maned wolf is a large carnivore, the largest one in South America. Although it was described as a wolf by early agents of the Portuguese crown, it is monophyletic and therefore difficult to mistake with any other species. The fact that the maned wolf is unique and distinctive is important if its image is to represent the Cerrado biome and all of its dwindling biodiversity. Do people’s relationships with the maned wolf make it charismatic and likable enough to earn the badge of flagship sp...

  11. The advertisement call of Bokermannohyla flavopicta Leite, Pezzuti & Garcia, 2012 (Anura: Hylidae) from the mountains of Chapada Diamantina, Bahia, Brazil.

    Science.gov (United States)

    Rocha, Pedro Carvalho; Thompson, Julia Resende; Leite, Felipe Sá Fortes; Garcia, Paulo Christiano De Anchietta

    2016-01-07

    Bokermannohyla Faivovich, Haddad, Garcia, Frost, Campbell & Wheeler (2005) is a Brazilian treefrog genus currently composed of 32 species (Brandão et al. 2012; Leite et al. 2012; Frost 2015). The genus comprehends four, putatively monophyletic, species groups: B. circumdata, B. claresignata, B. martinsi, and B. pseudopseudis (sensu Faivovich et al. 2005). The B. pseudopseudis group includes nine species: B. alvarengai (Bokermann 1956), B. flavopicta Leite et al. 2012, B. ibitiguara (Cardoso 1983), B. itapoty Lugli & Haddad 2006a, B. oxente Lugli & Haddad 2006b, B. pseudopseudis (Miranda-Ribeiro 1937), B. sagarana Leite et al. 2011, B. sapiranga Brandão et al. 2012, and B. saxicola (Bokermann 1964).

  12. Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family.

    Science.gov (United States)

    He, Shunping; Mayden, Richard L; Wang, Xuzheng; Wang, Wei; Tang, Kevin L; Chen, Wei-Jen; Chen, Yiyu

    2008-03-01

    The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichowensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis

  13. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera.

    Science.gov (United States)

    Mutanen, Marko; Kivelä, Sami M; Vos, Rutger A; Doorenweerd, Camiel; Ratnasingham, Sujeevan; Hausmann, Axel; Huemer, Peter; Dincă, Vlad; van Nieukerken, Erik J; Lopez-Vaamonde, Carlos; Vila, Roger; Aarvik, Leif; Decaëns, Thibaud; Efetov, Konstantin A; Hebert, Paul D N; Johnsen, Arild; Karsholt, Ole; Pentinsaari, Mikko; Rougerie, Rodolphe; Segerer, Andreas; Tarmann, Gerhard; Zahiri, Reza; Godfray, H Charles J

    2016-11-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the

  14. Staphylococcus aureus spa type t437

    DEFF Research Database (Denmark)

    Glasner, C; Pluister, G; Westh, H

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) belonging to the multilocus sequence type clonal complex 59 (MLST CC59) is the predominant community-associated MRSA clone in Asia. This clone, which is primarily linked with the spa type t437, has so far only been reported in low numbers among...... included. Most isolates were shown to be monophyletic with 98% of the isolates belonging to the single MLVA complex 621, to which nearly all included isolates from China also belonged. More importantly, all MLST-typed isolates belonged to CC59. Our study implies that the European S. aureus t437 population...

  15. From the phylogeny of the Satyrinae butterflies to the systematics of Euptychiina (Lepidoptera: Nymphalidae): history, progress and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Marin, M.A.; Uribe, S.I., E-mail: mamarin0@bt.unal.edu.c [Universidad Nacional de Colombia, Medellin (Colombia). Grupo de Investigacion en Sistematica Molecular; Pena, C. [Universidad Nacional Mayor de San Marcos, Lima (Peru). Museo de Historia Natural; Freitas, A.V.L. [Universidade Estadual de Campinas (IB/UNICAMP), SP (Brazil). Inst. de Biologia. Dept. de Biologia Animal e Museu de Zoologia; Wahlberg, N. [University of Turku (Finland). Dept. of Biology. Lab. of Genetics

    2011-01-15

    We review the various proposals of evolutionary and classification schemes for Satyrinae and particularly Euptychiina butterflies, assessing progress and prospects of research for the group. Among the highlights is the proposal to include Morphini, Brassolini and Amathusiini as part of Satyrinae. Although it is clear that this hypothesis requires further investigation, phylogenetic studies recently conducted recover this clade as part of Satyrinae with high support. The phylogenetic analyses for Euptychiina carried out to date recover the monophyly of the group and have identified a variety of genera as non-monophyletic. Further work is necessary to resolve the position of the subtribe and the evolutionary relationships of several genera. (author)

  16. Molecular phylogeny of Chrysomya albiceps and C. rufifacies (Diptera: Calliphoridae).

    Science.gov (United States)

    Wells, J D; Sperling, F A

    1999-05-01

    Mitochondrial DNA was used to infer the phylogeny and genetic divergences of Chrysomya albiceps (Wiedemann) and C. rufifacies (Maquart) specimens from widely separated localities in the Old and New World. Analyses based on a 2.3-kb region including the genes for cytochrome oxidase subunits I and II indicated that the 2 species were separate monophyletic lineages that have been separated for > 1 million years. Analysis of DNA, in the form of either sequence or restriction fragment-length polymorphism (RFLP) data, will permit the identification of problematic specimens.

  17. Taxonomy of the poorly known Quedius mutilatus group of wingless montane species from Middle Asia (Coleoptera: Staphylinidae: Staphylinini

    Directory of Open Access Journals (Sweden)

    Maria Salnitska

    2018-02-01

    Full Text Available The Quedius mutilatus group, a very poorly known presumably monophyletic complex of wingless, possibly hypogean species confined to the Tien-Shan Mountains, is characterized as such for the first time. Newly available material clarified the identity of Q. mutilatus Eppelsheim, 1888 and Q. kalabi Smetana, 1995, each hitherto known from a handful of non-conspecific and vaguely georeferenced specimens only. Additional material is reported for Q. equus Smetana, 2014 and one species, Quedius kungeicus sp. nov., is described. All available data on the taxonomy, distribution and bionomics for all these four species of the group are summarized.

  18. A new species of seahorse (Teleostei: Syngnathidae) from the South China Sea.

    Science.gov (United States)

    Zhang, Yan-Hong; Qin, Geng; Wang, Xin; Lin, Qiang

    2016-09-23

    A new species of seahorse, Hippocampus casscsio sp. nov. was collected over shallow seagrass beds in Beibu Bay, China. This species is diagnosed from all other seahorse species by morphological characters, including the lower number of tail rings (35); 15 pectoral-fin rays; 16 dorsal-fin rays; a rounded nuchal plate without a raised coronet; a snout length 30% head length; two cheek spines and a dark brown coloration. In addition, molecular analysis showed all individuals of the new species clustering together suggesting a monophyletic lineage. This combined analysis supports the distinctness of H. casscsio sp. nov. as a new species, which is described herein.

  19. Identification of a novel gammaherpesvirus associated with (muco)cutaneous lesions in harbour porpoises (Phocoena phocoena).

    Science.gov (United States)

    van Beurden, Steven J; IJsseldijk, Lonneke L; Ordonez, Soledad R; Förster, Christine; de Vrieze, Geert; Gröne, Andrea; Verheije, M Hélène; Kik, Marja

    2015-12-01

    Herpesviruses infect a wide range of vertebrates, including toothed whales of the order Cetacea. One of the smallest toothed whales is the harbour porpoise (Phocoena phocoena), which is widespread in the coastal waters of the northern hemisphere, including the North Sea. Here, we describe the detection and phylogenetic analysis of a novel gammaherpesvirus associated with mucocutaneous and skin lesions in stranded harbour porpoises along the Dutch coast, tentatively designated phocoenid herpesvirus 1 (PhoHV1). Phylogenetically, PhoHV1 forms a monophyletic clade with all other gammaherpesviruses described in toothed whales (Odontoceti) to date, suggesting a common evolutionary origin.

  20. Evolution of the placenta and associated reproductive characters in bats

    DEFF Research Database (Denmark)

    Carter, Anthony M; Mess, Andrea

    2008-01-01

    Recent advances in molecular phylogenetics indicate that the order Chiroptera is monophyletic and that one of four lineages of microbats (Rhinolophoidea) shares a common origin with megabats. Against this background we undertook a comprehensive analysis of placental evolution in bats. We defined...... that characterize higher-level clades within Chiroptera, i.e. the megabats and the four lineages of microbats. The character condition occurring in the last common ancestor of Chiroptera was unequivocal for 21 of the 25 characters included in the analysis. The data did not offer support for a megabat...

  1. First evidence of infectious hematopoietic necrosis virus (IHNV) in the Netherlands

    DEFF Research Database (Denmark)

    Haenen, O L M; Schuetze, H; Cieslak, M

    2016-01-01

    In spring 2008, infectious hematopoietic necrosis virus (IHNV) was detected for the first time in the Netherlands. The virus was isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), from a put-and-take fishery with angling ponds. IHNV is the causative agent of a serious fish disease...... that these 12 isolates clustered into two different monophyletic groups within the European IHNV genogroup E. One of these two groups indicates a virus-introduction event by a German trout import, whereas the second group indicates that IHNV was already (several years) in the Netherlands before its discovery...

  2. Multiple, Distinct Intercontinental Lineages but Isolation of Australian Populations in a Cosmopolitan Lichen-Forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota

    Directory of Open Access Journals (Sweden)

    Steven D. Leavitt

    2018-02-01

    Full Text Available Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs. However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing

  3. Analysis of the biological and molecular variability of the Polish isolates of Tomato black ring virus (TBRV).

    Science.gov (United States)

    Rymelska, N; Borodynko, N; Pospieszny, H; Hasiów-Jaroszewska, B

    2013-10-01

    Tomato black ring virus (TBRV) is an important pathogen infecting many plant species worldwide. The biological and molecular variability of the Polish isolates of TBRV was analyzed. The analysis was performed based on the symptoms induced by various isolates on test plant species as well as on phylogenetic relationships between isolates. Isolates differed in their host range and symptomatology. In addition, genetic variation among isolates was characterized by restriction fragment length polymorphism analysis and confirmed by sequencing. The phylogenetic analysis revealed that the Polish isolates differ from each other and do not form a monophyletic cluster. Finally, we identified and analyzed sequences of defective RNA forms arising from the TBRV genome.

  4. The aberrant millipede genus Pteridoiulus and its position in a revised molecular phylogeny of the family Julidae (Diplopoda : Julida)

    DEFF Research Database (Denmark)

    Enghoff, Henrik; Petersen, Gitte; Seberg, Ole

    2013-01-01

    A phylogenetic analysis of 62 species (32 genera) of the Palaearctic millipede family Julidae, including the aberrant alpine genus Pteridoiulus Verhoeff, 1913, was made based on partial sequences of the mitochondrial 16S rRNA (16S) gene and the nuclear 28SrRNA(28S) gene, respectively. The two......MAFTTand run inTNT both with gaps treated as a fifth state, and as missing, and finally the alignments were used as input in a maximum likelihood (ML) analysis. The order Julida and the family Julidae were recovered as monophyletic under all weight sets in POY, as well as in the TNT andMLanalyses. Likewise...

  5. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes

    Directory of Open Access Journals (Sweden)

    Hodson Matthew C

    2006-09-01

    Full Text Available Abstract Background At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Results Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1 Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2 Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3 Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4 Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5 Basidiomycota and Ascomycota are monophyletic sister groups. Conclusion In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota. Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is

  6. Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes.

    Science.gov (United States)

    Liu, Yajuan J; Hodson, Matthew C; Hall, Benjamin D

    2006-09-29

    At present, there is not a widely accepted consensus view regarding the phylogenetic structure of kingdom Fungi although two major phyla, Ascomycota and Basidiomycota, are clearly delineated. Regarding the lower fungi, Zygomycota and Chytridiomycota, a variety of proposals have been advanced. Microsporidia may or may not be fungi; the Glomales (vesicular-arbuscular mycorrhizal fungi) may or may not constitute a fifth fungal phylum, and the loss of the flagellum may have occurred either once or multiple times during fungal evolution. All of these issues are capable of being resolved by a molecular phylogenetic analysis which achieves strong statistical support for major branches. To date, no fungal phylogeny based upon molecular characters has satisfied this criterion. Using the translated amino acid sequences of the RPB1 and RPB2 genes, we have inferred a fungal phylogeny that consists largely of well-supported monophyletic phyla. Our major results, each with significant statistical support, are: (1) Microsporidia are sister to kingdom Fungi and are not members of Zygomycota; that is, Microsporidia and fungi originated from a common ancestor. (2) Chytridiomycota, the only fungal phylum having a developmental stage with a flagellum, is paraphyletic and is the basal lineage. (3) Zygomycota is monophyletic based upon sampling of Trichomycetes, Zygomycetes, and Glomales. (4) Zygomycota, Basidiomycota, and Ascomycota form a monophyletic group separate from Chytridiomycota. (5) Basidiomycota and Ascomycota are monophyletic sister groups. In general, this paper highlights the evolutionary position and significance of the lower fungi (Zygomycota and Chytridiomycota). Our results suggest that loss of the flagellum happened only once during early stages of fungal evolution; consequently, the majority of fungi, unlike plants and animals, are nonflagellated. The phylogeny we infer from gene sequences is the first one that is congruent with the widely accepted morphology

  7. Triatominae as a model of morphological plasticity under ecological pressure

    Directory of Open Access Journals (Sweden)

    Dujardin JP

    1999-01-01

    Full Text Available The use of biochemical and genetic characters to explore species or population relationships has been applied to taxonomic questions since the 60s. In responding to the central question of the evolutionary history of Triatominae, i.e. their monophyletic or polyphyletic origin, two important questions arise (i to what extent is the morphologically-based classification valid for assessing phylogenetic relationships? and (ii what are the main mechanisms underlying speciation in Triatominae? Phenetic and genetic studies so far developed suggest that speciation in Triatominae may be a rapid process mainly driven by ecological factors.

  8. Biogeography and Phylogeny of Wood-feeding Cockroaches in the Genus Cryptocercus

    Directory of Open Access Journals (Sweden)

    Kiyoto Maekawa

    2011-07-01

    Full Text Available Subsocial, xylophagous cockroaches of the genus Cryptocercus exhibit a disjunct distribution, with representatives in mature montane forests of North America, China, Korea and the Russian Far East. All described species are wingless and dependent on rotting wood for food and shelter at all stages of their life cycle; consequently, their distribution is tied to that of forests and strongly influenced by palaeogeographical events. Asian and American lineages form distinct monophyletic groups, comprised of populations with complex geographic substructuring. We review the phylogeny and distribution of Cryptocercus, and discuss splitting events inferred from molecular data.

  9. From the phylogeny of the Satyrinae butterflies to the systematics of Euptychiina (Lepidoptera: Nymphalidae): history, progress and prospects

    International Nuclear Information System (INIS)

    Marin, M.A.; Uribe, S.I.; Pena, C.; Freitas, A.V.L.; Wahlberg, N.

    2011-01-01

    We review the various proposals of evolutionary and classification schemes for Satyrinae and particularly Euptychiina butterflies, assessing progress and prospects of research for the group. Among the highlights is the proposal to include Morphini, Brassolini and Amathusiini as part of Satyrinae. Although it is clear that this hypothesis requires further investigation, phylogenetic studies recently conducted recover this clade as part of Satyrinae with high support. The phylogenetic analyses for Euptychiina carried out to date recover the monophyly of the group and have identified a variety of genera as non-monophyletic. Further work is necessary to resolve the position of the subtribe and the evolutionary relationships of several genera. (author)

  10. A newly recognised Australian endemic species of Austrolecanium Gullan & Hodgson 1998 (Hemiptera: Coccidae) from Queensland.

    Science.gov (United States)

    Lin, Yen-Po; Ding, Zheng Yee; Gullan, Penny J; Cook, Lyn G

    2017-05-26

    Austrolecanium cryptocaryae Lin & Cook sp. n. is described based on adult female morphology and DNA sequences from mitochondrial and nuclear loci. This Australian endemic species was found on the underside of leaves of Cryptocarya microneura (Lauraceae) in Queensland. All phylogenetic analyses of four independent DNA loci and a concatenated dataset show that A. cryptocaryae is monophyletic and closely related to A. sassafras Gullan & Hodgson, the type species of Austrolecanium Gullan & Hodgson. The adult female of A. cryptocaryae is described and illustrated and a table is provided of the characters that differ among adult females of the three species of Austrolecanium currently recognised (A. cappari (Froggatt), A. cryptocaryae sp. n. and A. sassafras).

  11. Light in the darkness: New perspective on lanternfish relationships and classification using genomic and morphological data.

    Science.gov (United States)

    Martin, Rene P; Olson, Emily E; Girard, Matthew G; Smith, Wm Leo; Davis, Matthew P

    2018-04-01

    Massive parallel sequencing allows scientists to gather DNA sequences composed of millions of base pairs that can be combined into large datasets and analyzed to infer organismal relationships at a genome-wide scale in non-model organisms. Although the use of these large datasets is becoming more widespread, little to no work has been done in estimating phylogenetic relationships using UCEs in deep-sea fishes. Among deep-sea animals, the 257 species of lanternfishes (Myctophiformes) are among the most important open-ocean lineages, representing half of all mesopelagic vertebrate biomass. With this relative abundance, they are key members of the midwater food web where they feed on smaller invertebrates and fishes in addition to being a primary prey item for other open-ocean animals. Understanding the evolution and relationships of midwater organisms generally, and this dominant group of fishes in particular, is necessary for understanding and preserving the underexplored deep-sea ecosystem. Despite substantial congruence in the evolutionary relationships among deep-sea lanternfishes at higher classification levels in previous studies, the relationships among tribes, genera, and species within Myctophidae often conflict across phylogenetic studies or lack resolution and support. Herein we provide the first genome-scale phylogenetic analysis of lanternfishes, and we integrate these data from across the nuclear genome with additional protein-coding gene sequences and morphological data to further test evolutionary relationships among lanternfishes. Our phylogenetic hypotheses of relationships among lanternfishes are entirely congruent across a diversity of analyses that vary in methods, taxonomic sampling, and data analyzed. Within the Myctophiformes, the Neoscopelidae is inferred to be monophyletic and sister to a monophyletic Myctophidae. The current classification of lanternfishes is incongruent with our phylogenetic tree, so we recommend revisions that retain much

  12. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-01-01

    Abstract Background Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. Results With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Conclusions Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. PMID:29186447

  13. Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns.

    Science.gov (United States)

    Shen, Hui; Jin, Dongmei; Shu, Jiang-Ping; Zhou, Xi-Le; Lei, Ming; Wei, Ran; Shang, Hui; Wei, Hong-Jin; Zhang, Rui; Liu, Li; Gu, Yu-Feng; Zhang, Xian-Chun; Yan, Yue-Hong

    2018-02-01

    Ferns, originated about 360 million years ago, are the sister group of seed plants. Despite the remarkable progress in our understanding of fern phylogeny, with conflicting molecular evidence and different morphological interpretations, relationships among major fern lineages remain controversial. With the aim to obtain a robust fern phylogeny, we carried out a large-scale phylogenomic analysis using high-quality transcriptome sequencing data, which covered 69 fern species from 38 families and 11 orders. Both coalescent-based and concatenation-based methods were applied to both nucleotide and amino acid sequences in species tree estimation. The resulting topologies are largely congruent with each other, except for the placement of Angiopteris fokiensis, Cheiropleuria bicuspis, Diplaziopsis brunoniana, Matteuccia struthiopteris, Elaphoglossum mcclurei, and Tectaria subpedata. Our result confirmed that Equisetales is sister to the rest of ferns, and Dennstaedtiaceae is sister to eupolypods. Moreover, our result strongly supported some relationships different from the current view of fern phylogeny, including that Marattiaceae may be sister to the monophyletic clade of Psilotaceae and Ophioglossaceae; that Gleicheniaceae and Hymenophyllaceae form a monophyletic clade sister to Dipteridaceae; and that Aspleniaceae is sister to the rest of the groups in eupolypods II. These results were interpreted with morphological traits, especially sporangia characters, and a new evolutionary route of sporangial annulus in ferns was suggested. This backbone phylogeny in ferns sets a foundation for further studies in biology and evolution in ferns, and therefore in plants. © The Authors 2017. Published by Oxford University Press.

  14. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts

    International Nuclear Information System (INIS)

    Honig, Jessica E.; Osborne, Jane C.; Nichol, Stuart T.

    2004-01-01

    The genus Nairovirus (family Bunyaviridae) contains seven serogroups consisting of 34 predominantly tick-borne viruses, including several associated with severe human and livestock diseases [e.g., Crimean Congo hemorrhagic fever (CCHF) and Nairobi sheep disease (NSD), respectively]. Before this report, no comparative genetic studies or molecular detection assays had been developed for this virus genus. To characterize at least one representative from each of the seven serogroups, reverse transcriptase-polymerase chain reaction (RT-PCR) primers targeting the L polymerase-encoding region of the RNA genome of these viruses were successfully designed based on conserved amino acid motifs present in the predicted catalytic core region. Sequence analysis showed the nairoviruses to be a highly diverse group, exhibiting up to 39.4% and 46.0% nucleotide and amino acid identity differences, respectively. Virus genetic relationships correlated well with serologic groupings and with tick host associations. Hosts of these viruses include both the hard (family Ixodidae) and soft (family Argasidae) ticks. Virus phylogenetic analysis reveals two major monophyletic groups: hard tick and soft tick-vectored viruses. In addition, viruses vectored by Ornithodoros, Carios, and Argas genera ticks also form three separate monophyletic lineages. The striking similarities between tick and nairovirus phylogenies are consistent with possible coevolution of the viruses and their tick hosts. Fossil and phylogenetic data placing the hard tick-soft tick divergence between 120 and 92 million years ago suggest an ancient origin for viruses of the genus Nairovirus

  15. A divergent Cardinium found in daddy long-legs (Arachnida: Opiliones).

    Science.gov (United States)

    Chang, Jin; Masters, Amber; Avery, Amanda; Werren, John H

    2010-11-01

    Recent studies indicate that a newly described bacterial endosymbiont, Cardinium, is widespread in arthropods and induces different reproductive manipulations in hosts. In this study, we used a portion of the 16S rRNA gene of the Cardinium to screen 16 Opilionid species from the suborder Palptores. We found the incidence of Cardinium in these Opiliones was significantly higher than in other pooled arthropods (31.2% versus 7.2%, P=0.007). Phylogenetic analyses using maximum parsimony (MP) and Bayesian analysis revealed two distinct clades in Opiliones. One is a divergent monophyletic clade with strong support that has so far not been found in other arthropods, and a second one contains Cardinium both from Opiliones and other arthropods. There is not complete concordance of the Cardinium strains with host phylogeny, suggesting some horizontal movement of the bacteria among Opiliones. Although the divergence in the sequenced 16S rRNA region between the Cardinium infecting Opiliones and Cardinium from other arthropods is greater than among Cardinium found in other arthropods, all are monophyletic with respect to the outgroup bacteria (endosymbionts of Acanthamoeba). Based on high pairwise genetic distances, deep branch, and a distinct phylogenetic grouping, we conclude that some Opiliones harbor a newly discovered Cardinium clade. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers.

    Science.gov (United States)

    Tsigenopoulos, C S; Ráb, P; Naran, D; Berrebi, P

    2002-06-01

    The cyprinid genus Barbus, with more than 800 nominal species, is an apparently polyphyletic assemblage to which a number of unrelated species, groups and/or assemblages have been assigned. It includes species that exhibit three different ploidy levels: diploid, tetraploid and hexaploid. Several lineages of the family Cyprinidae constitute a major component of the African freshwater ichthyofauna, having about 500 species, and fishes assigned to the genus 'Barbus' have the most species on the continent. We used complete sequences of the mitochondrial cytochrome b gene in order to infer phylogenetic relationships between diploid, tetraploid and hexaploid species of 'Barbus' occurring in southern Africa, the only region where representatives of all of the three ploidy levels occur. The results indicate that most of the lineages are incorrectly classified in the genus 'Barbus'. The southern African tetraploids probably originated from southern African diploids. They constitute a monophyletic group distinct from tetraploids occurring in the Euro-Mediterranean region (Barbus sensu stricto). The 'small' African diploid species seem to be paraphyletic, while the 'large' African hexaploid barbs species are of a single, recent origin and form a monophyletic group. The evidence of multiple, independent origins of polyploidy occurring in the African cyprinine cyprinids thus provides a significant contribution to the knowledge on the systematic diversity of these fishes, and warrants a thorough taxonomic reorganization of the genus.

  17. The evolutionary history of Lygodactylus lizards in the South American open diagonal.

    Science.gov (United States)

    Lanna, Flávia M; Werneck, Fernanda P; Gehara, Marcelo; Fonseca, Emanuel M; Colli, Guarino R; Sites, Jack W; Rodrigues, Miguel T; Garda, Adrian A

    2018-06-12

    The Pleistocenic Arc Hypothesis (PAH) posits that South American Seasonally Dry Tropical Forests (SDTF) were interconnected during Pleistocene glacial periods, enabling the expansion of species ranges that were subsequently fragmented in interglacial periods, promoting speciation. The lizard genus Lygodactylus occurs in Africa, Madagascar, and South America. Compared to the high diversity of African Lygodactylus, only two species are known to occur in South America, L. klugei and L. wetzeli, distributed in SDTFs and the Chaco, respectively. We use a phylogenetic approach based on mitochondrial (ND2) and nuclear (RAG-1) markers covering the known range of South American Lygodactylus to investigate (i) if they are monophyletic relative to their African congeners, (ii) if their divergence is congruent with the fragmentation of the PAH, and (iii) if cryptic diversity exists within currently recognized species. Maximum likelihood and Bayesian phylogenetic analyses recovered a well-supported monophyletic South American Lygodactylus, presumably resulting from a single trans-Atlantic dispersal event 29 Mya. Species delimitation analyses supported the existence of five putative species, three of them undescribed. Divergence times among L. klugei and the three putative undescribed species, all endemic to the SDTFs, are not congruent with the fragmentation of the PAH. However, fragmentation of the once broader and continuous SDTFs likely influenced the divergence of L. wetzeli in the Chaco and Lygodactylus sp. 3 (in a SDTF enclave in the Cerrado). Copyright © 2018. Published by Elsevier Inc.

  18. Monophyly of the species of Hepatozoon (Adeleorina: Hepatozoidae) parasitizing (African) anurans, with the description of three new species from hyperoliid frogs in South Africa.

    Science.gov (United States)

    Netherlands, Edward C; Cook, Courtney A; Du Preez, Louis H; Vanhove, Maarten P M; Brendonck, Luc; Smit, Nico J

    2017-12-04

    Haemogregarines (Apicomplexa: Adeleiorina) are a diverse group of haemoparasites reported from almost all vertebrate classes. The most commonly recorded haemogregarines to parasitize anurans are species of Hepatozoon Miller, 1908. To date 16 Hepatozoon species have been described from anurans in Africa, with only a single species, Hepatozoon hyperolli (Hoare, 1932), infecting a member of the Hyperoliidae. Furthermore, only two Hepatozoon species are known from South African anurans, namely Hepatozoon theileri (Laveran, 1905) and Hepatozoon ixoxo Netherlands, Cook and Smit, 2014, from Amietia delalandii (syn. Amietia quecketti) and three Sclerophrys species, respectively. Blood samples were collected from a total of 225 individuals representing nine hyperoliid species from several localities throughout northern KwaZulu-Natal, South Africa. Twenty frogs from three species were found positive for haemogregarines, namely Afrixalus fornasinii (6/14), Hyperolius argus (2/39), and Hyperolius marmoratus (12/74). Based on morphological characteristics, morphometrics and molecular findings three new haemogregarine species, Hepatozoon involucrum Netherlands, Cook and Smit n. sp., Hepatozoon tenuis Netherlands, Cook and Smit n. sp. and Hepatozoon thori Netherlands, Cook and Smit n. sp., are described from hyperoliid hosts. Furthermore, molecular analyses show anuran Hepatozoon species to be a separate monophyletic group, with species isolated from African hosts forming a monophyletic clade within this cluster.

  19. Genetic Differentiation in Insular Lowland Rainforests: Insights from Historical Demographic Patterns in Philippine Birds.

    Science.gov (United States)

    Sánchez-González, Luis Antonio; Hosner, Peter A; Moyle, Robert G

    2015-01-01

    Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent.

  20. Delineating species with DNA barcodes: a case of taxon dependent method performance in moths.

    Directory of Open Access Journals (Sweden)

    Mari Kekkonen

    Full Text Available The accelerating loss of biodiversity has created a need for more effective ways to discover species. Novel algorithmic approaches for analyzing sequence data combined with rapidly expanding DNA barcode libraries provide a potential solution. While several analytical methods are available for the delineation of operational taxonomic units (OTUs, few studies have compared their performance. This study compares the performance of one morphology-based and four DNA-based (BIN, parsimony networks, ABGD, GMYC methods on two groups of gelechioid moths. It examines 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae which were delineated by traditional taxonomy. The results reveal a striking difference in performance between the two taxa with all four DNA-based methods. OTU counts in the Elachistinae showed a wider range and a relatively low (ca. 65% OTU match with reference species while OTU counts were more congruent and performance was higher (ca. 90% in the Gelechiinae. Performance rose when only monophyletic species were compared, but the taxon-dependence remained. None of the DNA-based methods produced a correct match with non-monophyletic species, but singletons were handled well. A simulated test of morphospecies-grouping performed very poorly in revealing taxon diversity in these small, dull-colored moths. Despite the strong performance of analyses based on DNA barcodes, species delineated using single-locus mtDNA data are best viewed as OTUs that require validation by subsequent integrative taxonomic work.

  1. Phylogenetic relationships, character evolution, and taxonomic implications within the slipper lobsters (Crustacea: Decapoda: Scyllaridae).

    Science.gov (United States)

    Yang, Chien-Hui; Bracken-Grissom, Heather; Kim, Dohyup; Crandall, Keith A; Chan, Tin-Yam

    2012-01-01

    The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Towards a Supertree of Arthropoda: A Species-Level Supertree of the Spiny, Slipper and Coral Lobsters (Decapoda: Achelata).

    Science.gov (United States)

    Davis, Katie E; Hesketh, Thomas W; Delmer, Cyrille; Wills, Matthew A

    2015-01-01

    While supertrees have been built for many vertebrate groups (notably birds, mammals and dinosaurs), invertebrates have attracted relatively little attention. The paucity of supertrees of arthropods is particularly surprising given their economic and ecological importance, as well as their overwhelming contribution to biodiversity. The absence of comprehensive archives of machine-readable source trees, coupled with the need for software implementing repeatable protocols for managing them, has undoubtedly impeded progress. Here we present a supertree of Achelata (spiny, slipper and coral lobsters) as a proof of concept, constructed using new supertree specific software (the Supertree Toolkit; STK) and following a published protocol. We also introduce a new resource for archiving and managing published source trees. Our supertree of Achelata is synthesised from morphological and molecular source trees, and represents the most complete species-level tree of the group to date. Our findings are consistent with recent taxonomic treatments, confirming the validity of just two families: Palinuridae and Scyllaridae; Synaxidae were resolved within Palinuridae. Monophyletic Silentes and Stridentes lineages are recovered within Palinuridae, and all sub-families within Scyllaridae are found to be monophyletic with the exception of Ibacinae. We demonstrate the feasibility of building larger supertrees of arthropods, with the ultimate objective of building a complete species-level phylogeny for the entire phylum using a divide and conquer strategy.

  3. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    Science.gov (United States)

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mitochondrial genome diversity and population structure of two western honey bee subspecies in the Republic of South Africa.

    Science.gov (United States)

    Eimanifar, Amin; Kimball, Rebecca T; Braun, Edward L; Ellis, James D

    2018-01-22

    Apis mellifera capensis Eschscholtz and A.m. scutellata Lepeletier are subspecies of western honey bees that are indigenous to the Republic of South Africa (RSA). Both subspecies have invasive potential and are organisms of concern for areas outside their native range, though they are important bees to beekeepers, agriculture, and the environment where they are native. The aim of the present study was to examine genetic differentiation among these subspecies and estimate their phylogenetic relationships using complete mitochondrial genomes sequences. We used 25 individuals that were either assigned to one of the subspecies or designated hybrids using morphometric analyses. Phylogenetic analyses of mitogenome sequences by maximum likelihood (ML) and Bayesian inference identified a monophyletic RSA clade, subdivided into two clades. A haplotype network was consistent with the phylogenetic trees. However, members of both subspecies occurred in both clades, indicating that A.m. capensis and A.m. scutellata are neither reciprocally monophyletic nor do they exhibit paraphyly with one subspecies nested within the other subspecies. Furthermore, no mitogenomic features were diagnostic to either subspecies. All bees analyzed from the RSA expressed a substantial level of haplotype diversity (most samples had unique haplotypes) but limited nucleotide diversity. The number of variable codons across protein-coding genes (PCGs) differed among loci, with CO3 exhibiting the most variation and ATP6 the least.

  5. Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology.

    Science.gov (United States)

    Tosso, Félicien; Hardy, Olivier J; Doucet, Jean-Louis; Daïnou, Kasso; Kaymak, Esra; Migliore, Jérémy

    2018-03-01

    Tropical rain forests support a remarkable diversity of tree species, questioning how and when this diversity arose. The genus Guibourtia (Fabaceae, Detarioideae), characterized by two South American and 13 African tree species growing in various tropical biomes, is an interesting model to address the role of biogeographic processes and adaptation to contrasted environments on species diversification. Combining whole plastid genome sequencing and morphological characters analysis, we studied the timing of speciation and diversification processes in Guibourtia through molecular dating and ancestral habitats reconstruction. All species except G. demeusei and G. copallifera appear monophyletic. Dispersal from Africa to America across the Atlantic Ocean is the most plausible hypothesis to explain the occurrence of Neotropical Guibourtia species, which diverged ca. 11.8 Ma from their closest African relatives. The diversification of the three main clades of African Guibourtia is concomitant to Miocene global climate changes, highlighting pre-Quaternary speciation events. These clades differ by their reproductive characters, which validates the three subgenera previously described: Pseudocopaiva, Guibourtia and Gorskia. Within most monophyletic species, plastid lineages start diverging from each other during the Pliocene or early Pleistocene, suggesting that these species already arose during this period. The multiple transitions between rain forests and dry forests/savannahs inferred here through the plastid phylogeny in each Guibourtia subgenus address thus new questions about the role of phylogenetic relationships in shaping ecological niche and morphological similarity among taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies.

    Science.gov (United States)

    Wang, Ying; Cao, Jin-Jun; Li, Wei-Hai

    2018-02-28

    Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera and phylogenetic relations within Plecoptera have long been controversial, and more molecular data is required to reconstruct precise phylogeny. Herein, we present the complete mitogenome of a stonefly, Suwallia teleckojensis , which is 16146 bp in length and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a control region (CR). Most PCGs initiate with the standard start codon ATN. However, ND5 and ND1 started with GTG and TTG. Typical termination codons TAA and TAG were found in eleven PCGs, and the remaining two PCGs ( COII and ND5 ) have incomplete termination codons. All transfer RNA genes (tRNAs) have the classic cloverleaf secondary structures, with the exception of tRNA Ser(AGN) , which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. A large tandem repeat region, two potential stem-loop (SL) structures, Poly N structure (2 poly-A, 1 poly-T and 1 poly-C), and four conserved sequence blocks (CSBs) were detected in the control region. Finally, both maximum likelihood (ML) and Bayesian inference (BI) analyses suggested that the Capniidae was monophyletic, and the other five stonefly families form a monophyletic group. In this study, S. teleckojensis was closely related to Sweltsa longistyla , and Chloroperlidae and Perlidae were herein supported to be a sister group.

  7. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae).

    Science.gov (United States)

    Kim, Seong Ryeol; Kim, Man Il; Hong, Mee Yeon; Kim, Kee Young; Kang, Pil Don; Hwang, Jae Sam; Han, Yeon Soo; Jin, Byung Rae; Kim, Iksoo

    2009-09-01

    The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA(Ile). No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNA(Ser)(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNA(Ser)(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.

  8. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects.

    Science.gov (United States)

    Hong, Mee Yeon; Lee, Eun Mee; Jo, Yong Hun; Park, Hae Chul; Kim, Seong Ryul; Hwang, Jae Sam; Jin, Byung Rae; Kang, Pil Don; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2008-04-30

    The 15,360-bp long complete mitogenome of Caligula boisduvalii possesses a gene arrangement and content identical to other completely sequenced lepidopteran mitogenomes, but different from the common arrangement found in most insect order, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA Ile. The 330-bp A+T-rich region is apparently capable of forming a stem-and-loop structure, which harbors the conserved flanking sequences at both ends. Dissimilar to what has been seen in other sequenced lepidopteran insects, the initiation codon for C. boisduvalii COI appears to be TTG, which is a rare, but apparently possible initiation codon. The ATP8, ATP6, ND4L, and ND6 genes, which neighbor another PCG at their 3' end, all harbored potential sequences for the formation of a hairpin structure. This is suggestive of the importance of such structures for the precise cleavage of the mRNA of mature PCGs. Phylogenetic analyses of available sequenced species of Bombycoidea, Pyraloidea, and Tortricidea supported the morphology-based current hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (Antheraea pernyi and C. boisduvalii) formed a reciprocal monophyletic group.

  9. Phylogenetic Relationships of Five Asian Schilbid Genera Including Clupisoma (Siluriformes: Schilbeidae.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available The phylogenetic relationships of Asian schilbid catfishes of the genera Clupisoma, Ailia, Horabagrus, Laides and Pseudeutropius are poorly understood, especially those of Clupisoma. Herein, we reconstruct the phylogeny of 38 species of catfishes belonging to 28 genera and 14 families using the concatenated mitochondrial genes COI, cytb, and 16S rRNA, as well as the nuclear genes RAG1 and RAG2. The resulting phylogenetic trees consistently place Clupisoma as the sister taxon of Laides, and the five representative Asian schilbid genera form two monophyletic groups with the relationships (Ailia (Laides, Clupisoma and (Horabagrus, Pseudeutropius. The so-called "Big Asia" lineage relates distantly to African schilbids. Independent analyses of the mitochondrial and nuclear DNA data yield differing trees for the two Asian schilbid groups. Analyses of the mitochondrial gene data support a sister-group relationship for (Ailia (Laides, Clupisoma and the Sisoroidea and a sister-taxon association of (Horabagrus, Pseudeutropius and the Bagridae. In contrast, analyses of the combined nuclear data indicate (Ailia (Laides, Clupisoma to be the sister group to (Horabagrus, Pseudeutropius. Our results indicate that the Horabagridae, recognized by some authors as consisting of Horabagrus, Pseudeutropius and Clupisoma does not include the latter genus. We formally erect a new family, Ailiidae fam. nov. for a monophyletic Asian group comprised of the genera Ailia, Laides and Clupisoma.

  10. Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups".

    Science.gov (United States)

    Hampl, Vladimir; Hug, Laura; Leigh, Jessica W; Dacks, Joel B; Lang, B Franz; Simpson, Alastair G B; Roger, Andrew J

    2009-03-10

    Nearly all of eukaryotic diversity has been classified into 6 suprakingdom-level groups (supergroups) based on molecular and morphological/cell-biological evidence; these are Opisthokonta, Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Excavata. However, molecular phylogeny has not provided clear evidence that either Chromalveolata or Excavata is monophyletic, nor has it resolved the relationships among the supergroups. To establish the affinities of Excavata, which contains parasites of global importance and organisms regarded previously as primitive eukaryotes, we conducted a phylogenomic analysis of a dataset of 143 proteins and 48 taxa, including 19 excavates. Previous phylogenomic studies have not included all major subgroups of Excavata, and thus have not definitively addressed their interrelationships. The enigmatic flagellate Andalucia is sister to typical jakobids. Jakobids (including Andalucia), Euglenozoa and Heterolobosea form a major clade that we name Discoba. Analyses of the complete dataset group Discoba with the mitochondrion-lacking excavates or "metamonads" (diplomonads, parabasalids, and Preaxostyla), but not with the final excavate group, Malawimonas. This separation likely results from a long-branch attraction artifact. Gradual removal of rapidly-evolving taxa from the dataset leads to moderate bootstrap support (69%) for the monophyly of all Excavata, and 90% support once all metamonads are removed. Most importantly, Excavata robustly emerges between unikonts (Amoebozoa + Opisthokonta) and "megagrouping" of Archaeplastida, Rhizaria, and chromalveolates. Our analyses indicate that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.

  11. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda.

    Science.gov (United States)

    Campbell, Lahcen I; Rota-Stabelli, Omar; Edgecombe, Gregory D; Marchioro, Trevor; Longhorn, Stuart J; Telford, Maximilian J; Philippe, Hervé; Rebecchi, Lorena; Peterson, Kevin J; Pisani, Davide

    2011-09-20

    Morphological data traditionally group Tardigrada (water bears), Onychophora (velvet worms), and Arthropoda (e.g., spiders, insects, and their allies) into a monophyletic group of invertebrates with walking appendages known as the Panarthropoda. However, molecular data generally do not support the inclusion of tardigrades within the Panarthropoda, but instead place them closer to Nematoda (roundworms). Here we present results from the analyses of two independent genomic datasets, expressed sequence tags (ESTs) and microRNAs (miRNAs), which congruently resolve the phylogenetic relationships of Tardigrada. Our EST analyses, based on 49,023 amino acid sites from 255 proteins, significantly support a monophyletic Panarthropoda including Tardigrada and suggest a sister group relationship between Arthropoda and Onychophora. Using careful experimental manipulations--comparisons of model fit, signal dissection, and taxonomic pruning--we show that support for a Tardigrada + Nematoda group derives from the phylogenetic artifact of long-branch attraction. Our small RNA libraries fully support our EST results; no miRNAs were found to link Tardigrada and Nematoda, whereas all panarthropods were found to share one unique miRNA (miR-276). In addition, Onychophora and Arthropoda were found to share a second miRNA (miR-305). Our study confirms the monophyly of the legged ecdysozoans, shows that past support for a Tardigrada + Nematoda group was due to long-branch attraction, and suggests that the velvet worms are the sister group to the arthropods.

  12. Genome-scale data suggest reclassifications in the Leisingera-Phaeobacter cluster including proposals for Sedimentitalea gen. nov. and Pseudophaeobacter gen. nov.

    Directory of Open Access Journals (Sweden)

    Sven eBreider

    2014-08-01

    Full Text Available Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF mass-spectrometry analysis and a re-assessment of the phenotypic data from the literature to settle this matter, aiming at a reclassification of the two genera. Neither Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. Rather, smaller monophyletic assemblages emerged, which were phenotypically more homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter arcticus gen. nov., comb. nov. and Pseudophaeobacter leonis comb. nov., and the reclassification of Phaeobacter aquaemixtae, Phaeobacter caeruleus and Phaeobacter daeponensis as Leisingera aquaemixtae comb. nov., Leisingera caerulea comb. nov. and Leisingera daeponensis comb. nov. The genera Phaeobacter and Leisingera are accordingly emended.

  13. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  14. Molecular and morphological analyses reveal phylogenetic relationships of stingrays focusing on the family Dasyatidae (Myliobatiformes.

    Directory of Open Access Journals (Sweden)

    Kean Chong Lim

    Full Text Available Elucidating the phylogenetic relationships of the current but problematic Dasyatidae (Order Myliobatiformes was the first priority of the current study. Here, we studied three molecular gene markers of 43 species (COI gene, 33 species (ND2 gene and 34 species (RAG1 gene of stingrays to draft out the phylogenetic tree of the order. Nine character states were identified and used to confirm the molecularly constructed phylogenetic trees. Eight or more clades (at different hierarchical level were identified for COI, ND2 and RAG1 genes in the Myliobatiformes including four clades containing members of the present Dasyatidae, thus rendering the latter non-monophyletic. The uncorrected p-distance between these four 'Dasytidae' clades when compared to the distance between formally known families confirmed that these four clades should be elevated to four separate families. We suggest a revision of the present classification, retaining the Dasyatidae (Dasyatis and Taeniurops species but adding three new families namely, Neotrygonidae (Neotrygon and Taeniura species, Himanturidae (Himantura species and Pastinachidae (Pastinachus species. Our result indicated the need to further review the classification of Dasyatis microps. By resolving the non-monophyletic problem, the suite of nine character states enables the natural classification of the Myliobatiformes into at least thirteen families based on morphology.

  15. A phylogenetic analysis of rissooidean and cingulopsoidean families (Gastropoda: Caenogastropoda).

    Science.gov (United States)

    Criscione, Francesco; Ponder, Winston Frank

    2013-03-01

    The Rissooidea is one of the largest and most diverse molluscan superfamilies, with 23 recognized Recent families including marine, freshwater and terrestrial members. The Cingulopsoidea are a group of three marine families previously included within the Rissooidea. A previous molecular analysis including two rissooideans and one cingulopsoidean, indicated the possibility that the Rissooidea is at least diphyletic. We use new molecular data to investigate the polyphyly of Rissooidea and test the monophyly of Cingulopsoidea with a greatly increased taxon set. This study includes the greatest sampling to date with 43 species of 14 families of Rissooidea and all families of Cingulopsoidea. Bayesian and maximum likelihood analyses of 16S and 28S show that there are two major clades encompassing taxa previously included in Rissooidea. These are the Rissooidea s.s. containing Rissoidae and Barleeiidae and the Truncatelloidea containing Anabathridae, Assimineidae, Falsicingulidae, Truncatellidae, Pomatiopsidae, Hydrobiidae s.l., Hydrococcidae, Stenothyridae, Calopiidae, Clenchiellidae, Caecidae, Tornidae, and Iravadiidae. Rissoidae is not monophyletic, with Lironoba grouping with Emblanda (Emblandidae) and Rissoina forming a separate clade with Barleeiidae. Iravadiidae is not monophyletic, with Nozeba being sister to the Tornidae. Tatea, usually included within Hydrobiidae, is distinct from that family and Nodulus, previously included in Anabathridae, groups with the hydrobiids. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. From ground pools to treeholes: convergent evolution of habitat and phenotype in Aedes mosquitoes.

    Science.gov (United States)

    Soghigian, John; Andreadis, Theodore G; Livdahl, Todd P

    2017-12-19

    Invasive mosquito species are responsible for millions of vector-borne disease cases annually. The global invasive success of Aedes mosquitoes such as Aedes aegypti and Aedes albopictus has relied on the human transport of immature stages in container habitats. However, despite the importance of these mosquitoes and this ecological specialization to their widespread dispersal, evolution of habitat specialization in this group has remained largely unstudied. We use comparative methods to evaluate the evolution of habitat specialization and its potential influence on larval morphology, and evaluate whether container dwelling and invasiveness are monophyletic in Aedes. We show that habitat specialization has evolved repeatedly from ancestral ground pool usage to specialization in container habitats. Furthermore, we find that larval morphological scores are significantly associated with larval habitat when accounting for evolutionary relationships. We find that Ornstein-Uhleinbeck models with unique optima for each larval habitat type are preferred over several other models based predominantly on neutral processes, and that OU models can reliably simulate real morphological data. Our results demonstrate that multiple lineages of Aedes have convergently evolved a key trait associated with invasive success: the use of container habitats for immature stages. Moreover, our results demonstrate convergence in morphological characteristics as well, and suggest a role of adaptation to habitat specialization in driving phenotypic diversity in this mosquito lineage. Finally, our results highlight that the genus Aedes is not monophyletic.

  17. Molecular systematics and biodiversity of the Cryptotis mexicanus group (Eulipotyphla: Soricidae): two new species from Honduras supported

    Science.gov (United States)

    Baird, Amy B.; McCarthy, Timothy J.; Trujillo, Robert G.; Kang, Yuan Yuan; Esmaeiliyan, Mehdi; Valdez, Joselyn; Woodman, Neal; Bickham, John W.

    2018-01-01

    Small-eared shrews of the genus Cryptotis (Mammalia: Eulipotyphla: Soricidae) are widespread in the northern Neotropics. Systematic studies of these shrews over the past two decades have revealed previously undocumented morphological and species diversity, resulting in a quadrupling of the number of recognized species. Unfortunately, a small proportion of the species in the genus have been included in molecular phylogenetic studies, and evolutionary relationships within the genus are incompletely known. Traditionally, species have been assigned to four or five morphologically defined ‘species groups’, but tests of the monophyly of some of these groups show weak support and relationships amongst species groups remain somewhat speculative. The largest species group is the C. mexicanus group inhabiting Mexico and northern Central America. We studied sequences from mitochondrial cytochrome-b and 16S genes, as well as nuclear ApoB and BRCA1 genes from 22 species of Cryptotis, including 15 species in the C. mexicanus group. Our combined analysis shows that the C. goldmani subgroup is very weakly supported as monophyletic; however, the C. mexicanus group as a whole is not monophyletic. Our molecular phylogenetic analyses confirm the distinctiveness of two newly described species (C. celaque and C. mccarthyi) from isolated highlands of western Honduras and illustrate their relationship with other species formerly considered part of a widespread C. goodwini.

  18. A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae).

    Science.gov (United States)

    Gonzalez, Juan-Carlos T; Sheldon, Ben C; Collar, Nigel J; Tobias, Joseph A

    2013-05-01

    The hornbills comprise a group of morphologically and behaviorally distinct Palaeotropical bird species that feature prominently in studies of ecology and conservation biology. Although the monophyly of hornbills is well established, previous phylogenetic hypotheses were based solely on mtDNA and limited sampling of species diversity. We used parsimony, maximum likelihood and Bayesian methods to reconstruct relationships among all 61 extant hornbill species, based on nuclear and mtDNA gene sequences extracted largely from historical samples. The resulting phylogenetic trees closely match vocal variation across the family but conflict with current taxonomic treatments. In particular, they highlight a new arrangement for the six major clades of hornbills and reveal that three groups traditionally treated as genera (Tockus, Aceros, Penelopides) are non-monophyletic. In addition, two other genera (Anthracoceros, Ocyceros) were non-monophyletic in the mtDNA gene tree. Our findings resolve some longstanding problems in hornbill systematics, including the placement of 'Penelopides exharatus' (embedded in Aceros) and 'Tockus hartlaubi' (sister to Tropicranus albocristatus). We also confirm that an Asiatic lineage (Berenicornis) is sister to a trio of Afrotropical genera (Tropicranus [including 'Tockus hartlaubi'], Ceratogymna, Bycanistes). We present a summary phylogeny as a robust basis for further studies of hornbill ecology, evolution and historical biogeography. Copyright © 2013. Published by Elsevier Inc.

  19. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    Science.gov (United States)

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Pinworm diversity in free-ranging howler monkeys (Alouatta spp.) in Mexico: Morphological and molecular evidence for two new Trypanoxyuris species (Nematoda: Oxyuridae).

    Science.gov (United States)

    Solórzano-García, Brenda; Nadler, Steven A; Pérez-Ponce de León, Gerardo

    2016-10-01

    Two new species of Trypanoxyuris are described from the intestine of free-ranging howler monkeys in Mexico, Trypanoxyuris multilabiatus n. sp. from the mantled howler Alouatta palliata, and Trypanoxyuris pigrae n. sp. from the black howler Alouatta pigra. An integrative taxonomic approach is followed, where conspicuous morphological traits and phylogenetic trees based on DNA sequences are used to test the validity of the two new species. The mitochondrial cytochrome oxidase subunit 1 gene, and the nuclear ribosomal 18S and 28S rRNA genes were used for evolutionary analyses, with the concatenated dataset of all three genes used for maximum likelihood and Bayesian phylogenetic analyses. The two new species of pinworms from howler monkeys were morphologically distinct and formed reciprocally monophyletic lineages in molecular phylogenetic trees. The three species from howler monkeys, T. multilabiatus n. sp., T. pigrae n. sp., and Trypanoxyuris minutus, formed a monophyletic group with high bootstrap and posterior probability support values. Phylogenetic patterns inferred from sequence data support the hypothesis of a close evolutionary association between these primate hosts and their pinworm parasites. The results suggest that the diversity of pinworm parasites from Neotropical primates might be underestimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Mitochondrial phylogenomics of modern and ancient equids.

    Science.gov (United States)

    Vilstrup, Julia T; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C A; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K; Ovodov, Nikolai D; Clary, Joel; Helgen, Kristofer M; Fleischer, Robert C; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).

  2. Discordance between morphological and molecular species boundaries among Caribbean species of the reef sponge Callyspongia.

    Science.gov (United States)

    DeBiasse, Melissa B; Hellberg, Michael E

    2015-02-01

    Sponges are among the most species-rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model-based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single-copy nuclear protein-coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax,C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera,C. longissima,C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model-based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges.

  3. Molecular Phylogeny and Revision of Copepod Orders (Crustacea: Copepoda).

    Science.gov (United States)

    Khodami, Sahar; McArthur, J Vaun; Blanco-Bercial, Leocadio; Martinez Arbizu, Pedro

    2017-08-22

    For the first time, the phylogenetic relationships between representatives of all 10 copepod orders have been investigated using 28S and 18S rRNA, Histone H3 protein and COI mtDNA. The monophyly of Copepoda (including Platycopioida Fosshagen, 1985) is demonstrated for the first time using molecular data. Maxillopoda is rejected, as it is a polyphyletic group. The monophyly of the major subgroups of Copepoda, including Progymnoplea Lang, 1948 (=Platycopioida); Neocopepoda Huys and Boxshall, 1991; Gymnoplea Giesbrecht, 1892 (=Calanoida Sars, 1903); and Podoplea Giesbrecht, 1892, are supported in this study. Seven copepod orders are monophyletic, including Platycopioida, Calanoida, Misophrioida Gurney, 1933; Monstrilloida Sars, 1901; Siphonostomatoida Burmeister, 1834; Gelyelloida Huys, 1988; and Mormonilloida Boxshall, 1979. Misophrioida (=Propodoplea Lang, 1948) is the most basal Podoplean order. The order Cyclopoida Burmeister, 1835, is paraphyletic and now encompasses Poecilostomatoida Thorell, 1859, as a sister to the family Schminkepinellidae Martinez Arbizu, 2006. Within Harpacticoida Sars, 1903, both sections, Polyarthra Lang, 1948, and Oligoarthra Lang, 1948, are monophyletic, but not sister groups. The order Canuelloida is proposed while maintaining the order Harpacticoida s. str. (Oligoarthra). Cyclopoida, Harpacticoida and Cyclopinidae are redefined, while Canuelloida ordo. nov., Smirnovipinidae fam. nov. and Cyclopicinidae fam. nov are proposed as new taxa.

  4. Phylogeny of five species of Nusuttodinium gen. nov. (Dinophyceae), a genus of unarmoured kleptoplastidic dinoflagellates.

    Science.gov (United States)

    Takano, Yoshihito; Yamaguchi, Haruyo; Inouye, Isao; Moestrup, Øjvind; Horiguchi, Takeo

    2014-12-01

    Cells of five unarmoured kleptoplastidic dinoflagellates, Amphidinium latum, Amphidinium poecilochroum, Gymnodinium amphidinioides, Gymnodinium acidotum and Gymnodinium aeruginosum were observed under light and/or scanning electron microscopy and subjected to single-cell PCR. The SSU rDNA and the partial LSU rDNA of all the examined species were sequenced, and the SSU rDNA of G. myriopyrenoides was sequenced. Phylogenetic analyses revealed that the unarmoured kleptoplastidic species formed a monophyletic clade within the Gymnodinium-clade sensu Daugbjerg et al. (2000). The sister taxa for this clade were Gymnodinium palustre and Spiniferodinium galeiforme, both of which possess brown-coloured chloroplasts. The results indicated that acquisition of kleptoplastidy in these unarmoured dinoflagellates was a single event and that these unarmoured kleptoplastidic dinoflagellates may have evolved from a form with permanent chloroplasts. Molecular trees suggested that the acquisition of kleptoplastidy took place in a marine habitat and later some species colonized the freshwater habitat. Because these unarmoured kleptoplastidic dinoflagellates are monophyletic and characterized by distinct morphological and cytological features (including the presence of the same type of apical groove, absence of nuclear chambers in the nuclear envelope, absence of genuine chloroplasts, and the possession of kleptochloroplasts), we propose the establishment of a new genus, Nusuttodinium, to accommodate all these dinoflagellates. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Analysis of host preference and geographical distribution of Anastrepha suspensa (Diptera: Tephritidae) using phylogenetic analyses of mitochondrial cytochrome oxidase I DNA sequence data.

    Science.gov (United States)

    Boykin, L M; Shatters, R G; Hall, D G; Burns, R E; Franqui, R A

    2006-10-01

    Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.

  6. Evolution and Phylogenetic Diversity of Yam Species (Dioscorea spp.: Implication for Conservation and Agricultural Practices.

    Directory of Open Access Journals (Sweden)

    Marie Florence Sandrine Ngo Ngwe

    Full Text Available Yams (Dioscorea spp. consist of approximately 600 species. Presently, these species are threatened by genetic erosion due to many factors such as pest attacks and farming practices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to properly address the genetic diversity of yam and manage its germplasm. As a first step toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic diversity (PD approach that has the advantage to investigate phylogenetic relationships and test hypotheses of species monophyly while alleviating to the problem of ploidy variation within and among species. The Bayesian phylogenetic analysis of 62 accessions from 7 species from three regions of Cameroon showed that most Dioscorea sections were monophyletic, but species within sections were generally non-monophyletic. The wild species D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At the opposite, D. esculenta has a low PD and future studies should focus on this species to properly address its conservation status. We also show that wild species show a stronger genetic structure than cultivated species, which potentially reflects the management of the yam germplasm by farmers. These findings show that phylogenetic diversity is a promising approach for an initial investigation of genetic diversity in a crop consisting of closely related species.

  7. Phytophthora parsiana sp. nov., a new high-temperature tolerant species.

    Science.gov (United States)

    Mostowfizadeh-Ghalamfarsa, R; Cooke, D E L; Banihashemi, Z

    2008-07-01

    As part of a study to examine the phylogenetic history of the taxonomically challenging species Phytophthora cryptogea and P. drechsleri, a distinct monophyletic group of isolates, previously described as P. drechsleri or P. cryptogea, were characterised. Analysis of their rDNA ITS sequences indicated that these isolates were distinct from P. drechsleri, P. cryptogea, and all members of Phytophthora ITS clades 1-8, clustering instead alongside basal groups previously described as clades 9 and 10. This group comprised six isolates all of which were isolated from woody plants, such as pistachio (Pistacia vera, Iran and USA), fig (Ficus carica, Iran), and almond (Prunus dulcis, Greece). Analysis of sequence data from nuclear (beta-tubulin and translation elongation factor 1alpha) and mitochondrial (cytochrome c oxidase subunit I) genes confirmed the ITS-based analysis as these isolates formed a distinct monophyletic group in all NJ trees. The isolates were fast growing with a relatively high optimum growth temperature of 30 degrees C and, in most cases, rapid colony growth even at 37 degrees C. The isolates produced complex colony patterns on almost all media, especially corn meal agar (CMA). Phylogenetic analysis and examination of all the other morphological and physiological data lead us to infer that this taxon has not been described previously. As this taxon was first isolated and described from Iran we propose that this taxon be formally designated as Phytophthora parsiana.

  8. An appraisal of the phylogenetic relationships of Hypoptopomatini cascudinhos with description of two new genera and three new species (Siluriformes: Loricariidae

    Directory of Open Access Journals (Sweden)

    Maria Laura S. Delapieve

    2017-12-01

    Full Text Available ABSTRACT The discovery of three new taxa of Hypoptotopomatini with ambiguous generic assignment prompted a reanalysis of the phylogenetic relationships of the tribe. The analysis focused on a data matrix of 56 terminals and 107 morphological characters comprising the three new taxa, most species of Hypoptopoma and Otocinclus, and all other species of the tribe. The 162 maximally parsimonious trees of 382 steps, consistency index of 0.41, and retention index of 0.83 were then summarized in a strict consensus tree. The results confirm the monophyly of the Hypoptopomatini, recover four genera as monophyletic (Acestridium, Hypoptopoma, Niobichthys, and Otocinclus, revealed Hypoptopoma and Oxyropsis to be non-monophyletic; and revealed two new genera within Hypoptopomatini. Additionally, Otocinclus was found to be sister to a group with all remaining genera of the tribe; Acestridium and Niobichthys were found to be sister to each other and that clade sister to a group formed by ((Leptotocinclus + Hypoptopoma [part] + (Nannoxyropsis (Oxyropsis + Hypoptopoma [part]. Based on this framework, changes to the classification and the taxonomy of the Hypoptopomatini are suggested and the new taxa are described.

  9. Mitochondrial Phylogenomics of Modern and Ancient Equids

    Science.gov (United States)

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  10. Mitochondrial phylogenomics of modern and ancient equids.

    Directory of Open Access Journals (Sweden)

    Julia T Vilstrup

    Full Text Available The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga. Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya.

  11. Aphis (Hemiptera: Aphididae) species groups found in the Midwestern United States and their contribution to the phylogenetic knowledge of the genus.

    Science.gov (United States)

    Lagos, Doris M; Voegtlin, David J; Coeur d'acier, Armelle; Giordano, Rosanna

    2014-06-01

    A phylogeny of the genus Aphis Linnaeus, 1 758 was built primarily from specimens collected in the Midwest of the United States. A data matrix was constructed with 68 species and 41 morphological characters with respective character states of alate and apterous viviparous females. Dendrogram topologies of analyses performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean), Maximum Parsimony and Bayesian analysis of Cytochrome Oxidase I, Elongation Factor 1-α and primary endosymbiont Buchnera aphidicola 16S sequences were not congruent. Bayesian analysis strongly supported most terminal nodes of the phylogenetic trees. The phylogeny was strongly supported by EF1-α, and analysis of COI and EF1-α molecular data combined with morphological characters. It was not supported by single analysis of COI or Buchnera aphidicola 16S. Results from the Bayesian phylogeny show 4 main species groups: asclepiadis, fabae, gossypii, and middletonii. Results place Aphis and species of the genera Protaphis Börner, 1952, Toxoptera Koch, and Xerobion Nevsky, 1928 in a monophyletic clade. Morphological characters support this monophyly as well. The phylogeny shows that the monophyletic clade of the North American middletonii species group belong to the genus Protaphis: P. debilicornis (Gillette & Palmer, 1929), comb. nov., P. echinaceae (Lagos and Voegtlin, 2009), comb. nov., and P. middletonii (Thomas, 1879). The genus Toxoptera should be considered a subgenus of Aphis (stat. nov.). The analysis also indicates that the current genus Iowana Frison, 1954 should be considered a subgenus of Aphis (stat. nov.). © 2013 Institute of Zoology, Chinese Academy of Sciences.

  12. A survey of the Cape Floristic Region of South Africa for the presence of cyst nematodes (Nematoda: Heteroderidae).

    Science.gov (United States)

    Knoetze, Rinus; Swart, Antoinette

    2014-12-09

    A survey was performed to detect the presence of cyst nematodes in the Cape Floristic Region of South Africa. Soil was collected in the rhizosphere of the dominant plant species within blocks of indigenous vegetation and cysts were extracted from them. A total of 81 blocks of indigenous vegetation were sampled as described. Cysts were detected in 7 of these samples, representing 6 different vegetation types. One set of primers was used to amplify the ITS regions from these cysts, including the 5.8S ribosomal gene, as well as short parts of the 18S and 28S ribosomal genes. ITS-rDNA sequences from the indigenous isolates were aligned with selected sequences of other species from the Heteroderidae. Phylogenetic analyses to resolve the relationships between indigenous isolates and selected representatives of the Heteroderidae were conducted using the Maximum Parsimony method. The consensus tree resulting from alignment of the circumfenestrate cysts revealed that isolates SK18, WK1 and WK26 are included in a clade of Globodera species that parasitise non-solanaceous plants, forming a monophyletic group with G. millefolii, G. artemisiae, and an unidentified Globodera sp. from Portugal. In a tree resulting from the alignment of the Heterodera spp., isolates OK14 and WK2 are included in the Afenestrata group, forming a monophyletic group with H. orientalis.This survey unearthed at least four potentially new species of cyst nematodes, which may prove invaluable for the study of the evolution and biogeography of the group.

  13. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    Science.gov (United States)

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-01-01

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae. PMID:8041781

  14. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes.

    Science.gov (United States)

    Bittner, Lucie; Payri, Claude E; Maneveldt, Gavin W; Couloux, Arnaud; Cruaud, Corinne; de Reviers, Bruno; Le Gall, Line

    2011-12-01

    Systematics of the red algal order Corallinales has a long and convoluted history. In the present study, molecular approaches were used to assess the phylogenetic relationships based on the analyses of two datasets: a large dataset of SSU sequences including mainly sequences from GenBank; and a combined dataset including four molecular markers (two nuclear: SSU, LSU; one plastidial: psbA; and one mitochondrial: COI). Phylogenetic analyses of both datasets re-affirmed the monophyly of the Corallinales as well as the two families (Corallinaceae and Hapalidiaceae) currently recognized within the order. Three of the four subfamilies of the Corallinaceae (Corallinoideae, Lithophylloideae, Metagoniolithoideae) were also resolved as a monophyletic lineage whereas members of the Mastophoroideae were resolved as four distinct lineages. We therefore propose to restrict the Mastophoroideae to the genera Mastophora, Metamastophora, and possibly Lithoporella in the aim of rendering this subfamily monophyletic. In addition, our phylogenies resolved the genus Hydrolithon in two unrelated lineages, one containing the generitype Hydrolithon reinboldii and the second containing Hydrolithon onkodes, which used to be the generitype of the now defunct genus Porolithon. We therefore propose to resurrect the genus Porolithon for the second lineage encompassing those species with primarily monomerous thalli, and trichocyte arrangements in large pustulate horizontal rows. Moreover, our phylogenetic analyses revealed the presence of cryptic diversity in several taxa, shedding light on the need for further studies to better circumscribe species frontiers within the diverse order Corallinales, especially in the genera Mesophyllum and Neogoniolithon. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences.

    Science.gov (United States)

    Lyra, Goia de M; Costa, Emmanuelle da S; de Jesus, Priscila B; de Matos, João Carlos G; Caires, Taiara A; Oliveira, Mariana C; Oliveira, Eurico C; Xi, Zhenxiang; Nunes, José Marcos de C; Davis, Charles C

    2015-04-01

    Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well-supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae. © 2015 Phycological Society of America.

  16. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-10-01

    Full Text Available A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements.

  17. Phylogeny of the gymnosperm genus Cycas L. (Cycadaceae) as inferred from plastid and nuclear loci based on a large-scale sampling: Evolutionary relationships and taxonomical implications.

    Science.gov (United States)

    Liu, Jian; Zhang, Shouzhou; Nagalingum, Nathalie S; Chiang, Yu-Chung; Lindstrom, Anders J; Gong, Xun

    2018-05-18

    The gymnosperm genus Cycas is the sole member of Cycadaceae, and is the largest genus of extant cycads. There are about 115 accepted Cycas species mainly distributed in the paleotropics. Based on morphology, the genus has been divided into six sections and eight subsections, but this taxonomy has not yet been tested in a molecular phylogenetic framework. Although the monophyly of Cycas is broadly accepted, the intrageneric relationships inferred from previous molecular phylogenetic analyses are unclear due to insufficient sampling or uninformative DNA sequence data. In this study, we reconstructed a phylogeny of Cycas using four chloroplast intergenic spacers and seven low-copy nuclear genes and sampling 90% of extant Cycas species. The maximum likelihood and Bayesian inference phylogenies suggest: (1) matrices of either concatenated cpDNA markers or of concatenated nDNA lack sufficient informative sites to resolve the phylogeny alone, however, the phylogeny from the combined cpDNA-nDNA dataset suggests the genus can be roughly divided into 13 clades and six sections that are in agreement with the current classification of the genus; (2) although with partial support, a clade combining sections Panzhihuaenses + Asiorientales is resolved as the earliest diverging branch; (3) section Stangerioides is not monophyletic because the species resolve as a grade; (4) section Indosinenses is not monophyletic as it includes Cycas macrocarpa and C. pranburiensis from section Cycas; (5) section Cycas is the most derived group and its subgroups correspond with geography. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species.

    Science.gov (United States)

    Chang, Chia-Hao; Li, Fan; Shao, Kwang-Tsao; Lin, Yeong-Shin; Morosawa, Takahiro; Kim, Sungmin; Koo, Hyeyoung; Kim, Won; Lee, Jae-Seong; He, Shunping; Smith, Carl; Reichard, Martin; Miya, Masaki; Sado, Tetsuya; Uehara, Kazuhiko; Lavoué, Sébastien; Chen, Wei-Jen; Mayden, Richard L

    2014-12-01

    Bitterlings are relatively small cypriniform species and extremely interesting evolutionarily due to their unusual reproductive behaviors and their coevolutionary relationships with freshwater mussels. As a group, they have attracted a great deal of attention in biological studies. Understanding the origin and evolution of their mating system demands a well-corroborated hypothesis of their evolutionary relationships. In this study, we provide the most comprehensive phylogenetic reconstruction of species relationships of the group based on partitioned maximum likelihood and Bayesian methods using DNA sequence variation of nuclear and mitochondrial genes on 41 species, several subspecies and three undescribed species. Our findings support the monophyly of the Acheilognathidae. Two of the three currently recognized genera are not monophyletic and the family can be subdivided into six clades. These clades are further regarded as genera based on both their phylogenetic relationships and a reappraisal of morphological characters. We present a revised classification for the Acheilognathidae with five genera/lineages: Rhodeus, Acheilognathus (new constitution), Tanakia (new constitution), Paratanakia gen. nov., and Pseudorhodeus gen. nov. and an unnamed clade containing five species currently referred to as "Acheilognathus". Gene trees of several bitterling species indicate that the taxa are not monophyletic. This result highlights a potentially dramatic underestimation of species diversity in this family. Using our new phylogenetic framework, we discuss the evolution of the Acheilognathidae relative to classification, taxonomy and biogeography. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Four new species, DNA barcode library and pre-Pliocene speciation of the euedaphic Afromontane Clivinini genera Trilophidius and Antireicheia (Coleoptera: Carabidae, Scaritinae

    Directory of Open Access Journals (Sweden)

    Vasily V. Grebennikov

    2017-06-01

    Full Text Available We describe and extensively illustrate four new species of euedaphic (= dwelling in the soil Clivinini ground beetles: Trilophidius acastus sp. nov. and T. argus sp. nov. (both from Bioko, Equatorial Guinea, as well as Antireicheia calais sp. nov. and A. zetes sp. nov. (both from the South Pare Mountains, Tanzania. We generate and report all currently available DNA barcode (= cytochrome oxidase subunit I data for euedaphic Afromontane Clivinini of the genera Trilophidius (2 species, four records and Antireicheia (13 species, 43 records. We infer a phylogeny for these beetles using a Maximum Likelihood approach based upon a matrix of 53 sequenced specimens (dx.doi.org/10.5883/DS-ANTIREI with 658 aligned positions. All nominative species represented by two or more sequences are recovered as monophyletic. Both new species of Trilophidius form a weakly supported clade, while all seven species of South African Antireicheia form a moderately supported clade. The genus Antireicheia and the geographical assemblage of its six Tanzanian species are not monophyletic. We perform divergence time estimation in Afrotropical Antireicheia, and our analysis indicates that these lineages diverged predominantly in the middle or late Miocene. We highlight the notable lack of phylogenetic hypothesis linked with the vaguely and variably defined taxon “subfamily Scaritinae” and its subordinated taxa.

  20. Evolutionary analysis of pollinaria morphology of subtribe Aeridinae (Orchidaceae

    Directory of Open Access Journals (Sweden)

    Topik Hidayat

    2006-12-01

    Full Text Available HIDAYAT,  TOPIK; YUKAWA,  TOMOHISA; ITO, MOTOMI.  2006. Evolutionary analysis of  pollinaria morphology of subtribe Aeridinae (Orchidaceae. Reinwardtia 12(3: 223–235. –– Pollinarium is one of the distinct synapomorphies of Orchidaceae. With using characters  derived from the  pollinarium,  phylogenetic relationships among  genera of subtribe  Aeridinae was examined. Cladistic analysis showed that (1 Subtribe  Aeridinae is monophyletic group. (2 Five of six groups constructed in the analysis are consistent with the groups recognized in previous molecular  phylogenetic analyses.  (3 The  genera Cleisostoma and  Phalaenopsis are  non-monophyletic group. (4 Pollinarium morphology endorses monophyly  Trichoglottis  and Phalaenopsis alliances.  (5 Although transformation of the stipe and viscidium shapes in the subtribe is subjected to parallelism, the results showed that these characters are much useful in determining relationships in the subtribe than those of pollinium.

  1. Phylogenetic reconstruction and shell evolution of the Diplommatinidae (Gastropoda: Caenogastropoda).

    Science.gov (United States)

    Webster, Nicole B; Van Dooren, Tom J M; Schilthuizen, Menno

    2012-06-01

    The fascinating and often unlikely shell shapes in the terrestrial micromollusc family Diplommatinidae (Gastropoda: Caenogastropoda) provide a particularly attractive set of multiple morphological traits to investigate evolutionary patterns of shape variation. Here, a molecular phylogenetic reconstruction, based on five genes and 2700 bp, was undertaken for this family, integrated with ancestral state reconstruction and phylogenetic PCA of discrete and quantitative traits, respectively. We found strong support for the Diplommatininae as a monophyletic group, separating the Cochlostomatidae into a separate family. Five main clades appear within the Diplommatininae, corresponding with both coiling direction and biogeographic patterns. A Belau clade (A) with highly diverse (but always sinistral) morphology comprised Hungerfordia, Palaina, and some Diplommatina. Arinia (dextral) and Opisthostoma (sinistroid) are sister groups in clade B. Clade C and D solely contain sinistral Diplommatina that are robust and little ornamented (clade C) or slender and sculptured (clade D). Clade E is dextral but biogeographically diverse with species from all sampled regions save the Caroline Islands. Adelopoma, Diplommatina, Palaina, and Hungerfordia require revision to allow taxonomy to reflect phylogeny, whereas Opisthostoma is clearly monophyletic. Ancestral state reconstruction suggests a sinistral origin for the Diplommatinidae, with three reversals to dextrality. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Molecular phylogeny and biogeographic history of the Neotropical tribe Glandulocaudini (Characiformes: Characidae: Stevardiinae

    Directory of Open Access Journals (Sweden)

    Priscila Camelier

    2018-03-01

    Full Text Available ABSTRACT Although former studies on systematics and biogeography represent a progress on the knowledge of the tribe Glandulocaudini, none was grounded on molecular evidence. Thus, the first hypothesis of relationships for the tribe based on a multilocus analysis is presented, including all genera and most of the valid species. DNA sequences of Glandulocauda caerulea and Mimagoniates sylvicola were analyzed for the first time. A molecular clock analysis was used to estimate the origin of the Glandulocaudini and the approximate timing of cladogenetic events within the group. Glandulocaudini was recovered as monophyletic. No hypothesis recovered Glandulocauda as monophyletic, since G. melanopleura is sister to Lophiobrycon weitzmani while G. caerulea is closely related to Mimagoniates. The relationships within the latter genus were resolved. The molecular clock results indicate the origin of the Glandulocaudini during the Miocene with diversification in the group occurring from Neogene to Pleistocene. These results corroborated the hypothesis that its origin took place on the Brazilian crystalline shield with the subsequent occupation of the Atlantic Coastal drainages. Apparently, Pleistocene sea-level fluctuations might have shaped the distribution pattern of some species in Glandulocaudini.

  3. Phylogeny of the Celastraceae inferred from phytochrome B gene sequence and morphology.

    Science.gov (United States)

    Simmons, M P; Clevinger, C C; Savolainen, V; Archer, R H; Mathews, S; Doyle, J J

    2001-02-01

    Phylogenetic relationships within Celastraceae were inferred using a simultaneous analysis of 61 morphological characters and 1123 base pairs of phytochrome B exon 1 from the nuclear genome. No gaps were inferred, and the gene tree topology suggests that the primers were specific to a single locus that did not duplicate among the lineages sampled. This region of phytochrome B was most useful for examining relationships among closely related genera. Fifty-one species from 38 genera of Celastraceae were sampled. The Celastraceae sensu lato (including Hippocrateaceae) were resolved as a monophyletic group. Loesener's subfamilies and tribes of Celastraceae were not supported. The Hippocrateaceae were resolved as a monophyletic group nested within a paraphyletic Celastraceae sensu stricto. Goupia was resolved as more closely related to Euphorbiaceae, Corynocarpaceae, and Linaceae than to Celastraceae. Plagiopteron (Flacourtiaceae) was resolved as the sister group of Hippocrateoideae. Brexia (Brexiaceae) was resolved as closely related to Elaeodendron and Pleurostylia. Canotia was resolved as the sister group of Acanthothamnus within Celastraceae. Perrottetia and Mortonia were resolved as the sister group of the rest of the Celastraceae. Siphonodon was resolved as a derived member of Celastraceae. Maytenus was resolved as three disparate groups, suggesting that this large genus needs to be recircumscribed.

  4. Diversification of the silverspot butterflies (Nymphalidae) in the Neotropics inferred from multi-locus DNA sequences.

    Science.gov (United States)

    Massardo, Darli; Fornel, Rodrigo; Kronforst, Marcus; Gonçalves, Gislene Lopes; Moreira, Gilson Rudinei Pires

    2015-01-01

    The tribe Heliconiini (Lepidoptera: Nymphalidae) is a diverse group of butterflies distributed throughout the Neotropics, which has been studied extensively, in particular the genus Heliconius. However, most of the other lineages, such as Dione, which are less diverse and considered basal within the group, have received little attention. Basic information, such as species limits and geographical distributions remain uncertain for this genus. Here we used multilocus DNA sequence data and the geographical distribution analysis across the entire range of Dione in the Neotropical region in order to make inferences on the evolutionary history of this poorly explored lineage. Bayesian time-tree reconstruction allows inferring two major diversification events in this tribe around 25mya. Lineages thought to be ancient, such as Dione and Agraulis, are as recent as Heliconius. Dione formed a monophyletic clade, sister to the genus Agraulis. Dione juno, D. glycera and D. moneta were reciprocally monophyletic and formed genetic clusters, with the first two more close related than each other in relation to the third. Divergence time estimates support the hypothesis that speciation in Dione coincided with both the rise of Passifloraceae (the host plants) and the uplift of the Andes. Since the sister species D. glycera and D. moneta are specialized feeders on passion-vine lineages that are endemic to areas located either within or adjacent to the Andes, we inferred that they co-speciated with their host plants during this vicariant event. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy.

    Science.gov (United States)

    Zuo, Guanghong; Hao, Bailin

    2015-10-01

    A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  6. A comprehensive molecular phylogeny of dalytyphloplanida (platyhelminthes: rhabdocoela reveals multiple escapes from the marine environment and origins of symbiotic relationships.

    Directory of Open Access Journals (Sweden)

    Niels Van Steenkiste

    Full Text Available In this study we elaborate the phylogeny of Dalytyphloplanida based on complete 18S rDNA (156 sequences and partial 28S rDNA (125 sequences, using a Maximum Likelihood and a Bayesian Inference approach, in order to investigate the origin of a limnic or limnoterrestrial and of a symbiotic lifestyle in this large group of rhabditophoran flatworms. The results of our phylogenetic analyses and ancestral state reconstructions indicate that dalytyphloplanids have their origin in the marine environment and that there was one highly successful invasion of the freshwater environment, leading to a large radiation of limnic and limnoterrestrial dalytyphloplanids. This monophyletic freshwater clade, Limnotyphloplanida, comprises the taxa Dalyelliidae, Temnocephalida, and most Typhloplanidae. Temnocephalida can be considered ectosymbiotic Dalyelliidae as they are embedded within this group. Secondary returns to brackish water and marine environments occurred relatively frequently in several dalyeliid and typhloplanid taxa. Our phylogenies also show that, apart from the Limnotyphloplanida, there have been only few independent invasions of the limnic environment, and apparently these were not followed by spectacular speciation events. The distinct phylogenetic positions of the symbiotic taxa also suggest multiple origins of commensal and parasitic life strategies within Dalytyphloplanida. The previously established higher-level dalytyphloplanid clades are confirmed in our topologies, but many of the traditional families are not monophyletic. Alternative hypothesis testing constraining the monophyly of these families in the topologies and using the approximately unbiased test, also statistically rejects their monophyly.

  7. Earthworms and their Nephridial Symbionts: Co-diversification and Maintenance of the Symbiosis

    DEFF Research Database (Denmark)

    Lund, Marie Braad; Holmstrup, Martin; Davidson, Seana K.

    Earthworms harbor in their nephridia (excretory organs) symbiotic bacteria which densely colonize a specific part of the nephridia, called the ampulla [1]. The symbiosis is species-specific and the symbionts form their own monophyletic genus Verminephrobacter (β-proteobacteria) [2] and are vertic......,J. 1926. Z Morph Ökol Tiere, 6(3):588-624. [2] Schramm,A. et al. 2003. Environ Microbiol 5(9):804-809. [3] Davidson,S.K. & Stahl,D.A. 2006. Appl Environ Microbiol 72(1):769-775. [4] Pandazis,G. 1931. Zentralbl Bakteriol 120:440-453.......Earthworms harbor in their nephridia (excretory organs) symbiotic bacteria which densely colonize a specific part of the nephridia, called the ampulla [1]. The symbiosis is species-specific and the symbionts form their own monophyletic genus Verminephrobacter (β-proteobacteria) [2...... showed no significant differences in growth rate and fecundity between symbiotic and aposymbiotic worms. Thus the symbionts do not appear to have an effect on worm fitness, under growth conditions tested. The underlying functional and maintaining mechanisms of this symbiosis remain a conundrum. [1] Knop...

  8. Higher phylogeny of frugivorous flies (Diptera, Tephritidae, Dacini): localised partition conflicts and a novel generic classification.

    Science.gov (United States)

    Virgilio, Massimiliano; Jordaens, Kurt; Verwimp, Christophe; White, Ian M; De Meyer, Marc

    2015-04-01

    The phylogenetic relationships within and among subtribes of the fruit fly tribe Dacini (Ceratitidina, Dacina, Gastrozonina) were investigated by sequencing four mitochondrial and one nuclear gene fragment. Bayesian, maximum likelihood and maximum parsimony analyses were implemented on two datasets. The first, aiming at obtaining the strongest phylogenetic signal (yet, having lower taxon coverage), consisted of 98 vouchers and 2338 concatenated base pairs (bp). The second, aiming at obtaining the largest taxonomic coverage (yet, providing lower resolution), included 159 vouchers and 1200 concatenated bp. Phylogenetic relationships inferred by different tree reconstruction methods were largely congruent and showed a general agreement between concatenated tree topologies. Yet, local conflicts in phylogenetic signals evidenced a number of critical sectors in the phylogeny of Dacini fruit flies. All three Dacini subtribes were recovered as monophyletic. Yet, within the subtribe Ceratitidina only Perilampsis and Capparimyia formed well-resolved monophyletic groups while Ceratitis and Trirhithrum did not. Carpophthoromyia was paraphyletic because it included Trirhithrum demeyeri and Ceratitis connexa. Complex phylogenetic relationships and localised conflict in phylogenetic signals were observed within subtribe Dacina with (a) Dacus, (b) Bactrocera (Zeugodacus) and (c) all other Bactrocera species forming separate clades. The subgenus Bactrocera (Zeugodacus) is therefore raised to generic rank (Zeugodacus Hendel stat. nov.). Additionally, Bactrocera subgenera grouped under the Zeugodacus group should be considered under new generic combinations. Although there are indications that Zeugodacus and Dacus are sister groups, the exact relationship between Zeugodacus stat. nov., Dacus and Bactrocera still needs to be properly resolved. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Phylogenetic reconstruction of the family Acrypteridae (Orthoptera: Acridoidea) based on mitochondrial cytochrome B gene.

    Science.gov (United States)

    Huo, Guangming; Jiang, Guofang; Sun, Zhengli; Liu, Dianfeng; Zhang, Yalin; Lu, Lin

    2007-04-01

    Sequences from the mitochondrial cytochrome b gene (Cyt b) were determined for 25 species from the superfamily Acridoidae and the homologous sequences of 19 species of grasshoppers were downloaded from the GenBank data library. The purpose was to develop a molecular phylogeny of the Acrypteridae, and to interpret the phylogenetic position of the family within the superfamily Acridoidea. Phylogeny was reconstructed by Maximum-parsimony (MP) and Bayesian criteria using Yunnanites coriacea and Tagasta marginella as outgroups. The alignment length of the fragments was 384 bp after excluding ambiguous sites, including 167 parsimony informative sites. In the fragments, the percentages of A + T and G + C were 70.7% and 29.3%, respectively. The monophyly of Arcypteridae is not supported by phylogenetic trees. Within the Arcypteridae, neither Arcypterinae nor Ceracrinae is supported as a monophyletic group. The current genus Chorthippus is not a monophyletic group, and should be a polyphyletic group. The present results are significantly different from the classification scheme of Arcypteridae, which is based on morphology.

  10. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences.

    Science.gov (United States)

    Kim, Man Il; Wan, Xinlong; Kim, Min Jee; Jeong, Heon Cheon; Ahn, Neung-Ho; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2010-11-01

    The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).

  11. Towards a Supertree of Arthropoda: A Species-Level Supertree of the Spiny, Slipper and Coral Lobsters (Decapoda: Achelata.

    Directory of Open Access Journals (Sweden)

    Katie E Davis

    Full Text Available While supertrees have been built for many vertebrate groups (notably birds, mammals and dinosaurs, invertebrates have attracted relatively little attention. The paucity of supertrees of arthropods is particularly surprising given their economic and ecological importance, as well as their overwhelming contribution to biodiversity. The absence of comprehensive archives of machine-readable source trees, coupled with the need for software implementing repeatable protocols for managing them, has undoubtedly impeded progress. Here we present a supertree of Achelata (spiny, slipper and coral lobsters as a proof of concept, constructed using new supertree specific software (the Supertree Toolkit; STK and following a published protocol. We also introduce a new resource for archiving and managing published source trees. Our supertree of Achelata is synthesised from morphological and molecular source trees, and represents the most complete species-level tree of the group to date. Our findings are consistent with recent taxonomic treatments, confirming the validity of just two families: Palinuridae and Scyllaridae; Synaxidae were resolved within Palinuridae. Monophyletic Silentes and Stridentes lineages are recovered within Palinuridae, and all sub-families within Scyllaridae are found to be monophyletic with the exception of Ibacinae. We demonstrate the feasibility of building larger supertrees of arthropods, with the ultimate objective of building a complete species-level phylogeny for the entire phylum using a divide and conquer strategy.

  12. A molecular phylogeny of Amazona: implications for Neotropical parrot biogeography, taxonomy, and conservation.

    Science.gov (United States)

    Russello, Michael A; Amato, George

    2004-02-01

    Amazon parrots (Genus Amazona) are among the most recognizable and imperiled of all birds. Several hypotheses regarding the evolutionary history of Amazona are investigated using a combined phylogenetic analysis of DNA sequence data from six partitions including mitochondrial (COI, 12S, and 16S) and nuclear (beta-fibint7, RP40, and TROP) regions. The results demonstrate that Amazona is not monophyletic with respect to the placement of the Yellow-faced parrot (Amazona xanthops), as first implied by. In addition, the analysis corroborates previous studies suggesting a Neotropical short-tailed parrot genus as sister to Amazona. At a finer level, the phylogeny resolves the Greater Antillean endemic species as constituting a monophyletic group, including the Central American Amazona albifrons, while further revealing a paraphyletic history for the extant Amazon species of the Lesser Antilles. The reconstructed phylogeny provides further insights into the mainland sources of the Antillean Amazona, reveals areas of taxonomic uncertainty within the genus, and presents historical information that may be included in conservation priority-setting for Amazon parrots.

  13. Phylogeny of Elatinaceae and the Tropical Gondwanan Origin of the Centroplacaceae(Malpighiaceae, Elatinaceae Clade.

    Directory of Open Access Journals (Sweden)

    Liming Cai

    Full Text Available The flowering plant family Elatinaceae is a widespread aquatic lineage inhabiting temperate and tropical latitudes, including ∼35(-50 species. Its phylogeny remains largely unknown, compromising our understanding of its systematics. Moreover, this group is particularly in need of attention because the biogeography of most aquatic plant clades has yet to be investigated, resulting in uncertainty about whether aquatic plants show histories that deviate from terrestrial plants. We inferred the phylogeny of Elatinaceae from four DNA regions spanning 59 accessions across the family. An expanded sampling was used for molecular divergence time estimation and ancestral area reconstruction to infer the biogeography of Elatinaceae and their closest terrestrial relatives, Malpighiaceae and Centroplacaceae. The two genera of Elatinaceae, Bergia and Elatine, are monophyletic, but several traditionally recognized groups within the family are non-monophyletic. Our results suggest two ancient biogeographic events in the Centroplacaceae(Malpighiaceae, Elatinaceae clade involving western Gondwana, while Elatinaceae shows a more complicated biogeographic history with a high degree of continental endemicity. Our results indicate the need for further taxonomic investigation of Elatinaceae. Further, our study is one of few to implicate ancient Gondwanan biogeography in extant angiosperms, especially significant given the Centroplacaceae(Malpighiaceae, Elatinaceae clade's largely tropical distribution. Finally, Elatinaceae demonstrates long-term continental in situ diversification, which argues against recent dispersal as a universal explanation commonly invoked for aquatic plant distributions.

  14. Molecular phylogeny of the neritidae (Gastropoda: Neritimorpha) based on the mitochondrial genes cytochrome oxidase I (COI) and 16S rRNA

    International Nuclear Information System (INIS)

    Quintero Galvis, Julian Fernando; Castro, Lyda Raquel

    2013-01-01

    The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina, Septaria, Theodoxus, Puperita, and Clithon, while in the Bayesian analyses Theodoxus is separated from the other genera. The phylogenetic status of the species from the genus Nerita from the Colombian Caribbean generated in this study was consistent with that reported for the genus in previous studies. In the resulting consensus tree obtained using maximum parsimony, we included information on habitat type for each species, to map the evolution by habitat. Species of the family Neritidae possibly have their origin in marine environments, which is consistent with conclusions from previous reports based on anatomical studies.

  15. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida).

    Science.gov (United States)

    Cornils, Astrid; Blanco-Bercial, Leocadio

    2013-12-01

    The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae).

    Science.gov (United States)

    Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M

    2017-02-01

    Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Origin and higher-level diversification of acariform mites - evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment.

    Science.gov (United States)

    Pepato, A R; Klimov, P B

    2015-09-02

    Acariformes is the most species-rich and morphologically diverse radiation of chelicerate arthropods, known from the oldest terrestrial ecosystems. It is also a key lineage in understanding the evolution of this group, with the most vexing question whether mites, or Acari (Parasitiformes and Acariformes) is monophyletic. Previous molecular studies recovered Acari either as monophyletic or non-monophyletic, albeit with a limited taxon sampling. Similarly, relationships between basal acariform groups (include little-known, deep-soil 'endeostigmatan' mites) and major lineages of Acariformes (Sarcoptiformes, Prostigmata) are virtually unknown. We infer phylogeny of chelicerate arthropods, using a large and representative dataset, comprising all main in- and outgroups (228 taxa). Basal diversity of Acariformes is particularly well sampled. With this dataset, we conduct a series of phylogenetically explicit tests of chelicerate and acariform relationships and present a phylogenetic framework for internal relationships of acariform mites. Our molecular data strongly support a diphyletic Acari, with Acariformes as the sister group to Solifugae (PP =1.0; BP = 100), the so called Poecilophysidea. Among Acariformes, some representatives of the basal group Endeostigmata (mainly deep-soil mites) were recovered as sister-groups to the remaining Acariformes (i. e., Trombidiformes + and most of Sarcoptiformes). Desmonomatan oribatid mites (soil and litter mites) were recovered as the monophyletic sister group of Astigmata (e. g., stored product mites, house dust mites, mange mites, feather and fur mites). Trombidiformes (Sphaerolichida + Prostigmata) is strongly supported (PP =1.0; BP = 98-100). Labidostommatina was inferred as the basal lineage of Prostigmata. Eleutherengona (e. g., spider mites) and Parasitengona (e. g., chiggers, fresh water mites) were recovered as monophyletic. By contrast, Eupodina (e. g., snout mites and relatives) was not. Marine mites (Halacaridae) were

  18. Hepatitis C virus diversification in Argentina: comparative analysis between the large city of Buenos Aires and the small rural town of O'Brien.

    Directory of Open Access Journals (Sweden)

    Marcelo D Golemba

    Full Text Available BACKGROUND: The estimated prevalence of HCV infection in Argentina is around 2%. However, higher rates of infection have been described in population studies of small urban and rural communities. The aim of this work was to compare the origin and diversification of HCV-1b in samples from two different epidemiological scenarios: Buenos Aires, a large cosmopolitan city, and O'Brien, a small rural town with a high prevalence of HCV infection. PATIENTS AND METHODS: The E1/E2 and NS5B regions of the viral genome from 83 patients infected with HCV-1b were sequenced. Phylogenetic analysis and Bayesian Coalescent methods were used to study the origin and diversification of HCV-1b in both patient populations. RESULTS: Samples from Buenos Aires showed a polyphyletic behavior with a tMRCA around 1887-1900 and a time of spread of infection approximately 60 years ago. In contrast, samples from ÓBrien showed a monophyletic behavior with a tMRCA around 1950-1960 and a time of spread of infection more recent than in Buenos Aires, around 20-30 years ago. CONCLUSION: Phylogenetic and coalescence analysis revealed a different behavior in the epidemiological histories of Buenos Aires and ÓBrien. HCV infection in Buenos Aires shows a polyphyletic behavior and an exponential growth in two phases, whereas that in O'Brien shows a monophyletic cluster and an exponential growth in one single step with a more recent tMRCA. The polyphyletic origin and the probability of encountering susceptible individuals in a large cosmopolitan city like Buenos Aires are in agreement with a longer period of expansion. In contrast, in less populated areas such as O'Brien, the chances of HCV transmission are strongly restricted. Furthermore, the monophyletic character and the most recent time of emergence suggest that different HCV-1b ancestors (variants that were in expansion in Buenos Aires had the opportunity to colonize and expand in O'Brien.

  19. Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes).

    Science.gov (United States)

    Vélez-Zuazo, Ximena; Agnarsson, Ingi

    2011-02-01

    Sharks are a diverse and ecologically important group, including some of the ocean's largest predatory animals. Sharks are also commercially important, with many species suffering overexploitation and facing extinction. However, despite a long evolutionary history, commercial, and conservation importance, phylogenetic relationships within the sharks are poorly understood. To date, most studies have either focused on smaller clades within sharks, or sampled taxa sparsely across the group. A more detailed species-level phylogeny will offer further insights into shark taxonomy, provide a tool for comparative analyses, as well as facilitating phylogenetic estimates of conservation priorities. We used four mitochondrial and one nuclear gene to investigate the phylogenetic relationships of 229 species (all eight Orders and 31 families) of sharks, more than quadrupling the number of taxon sampled in any prior study. The resulting Bayesian phylogenetic hypothesis agrees with prior studies on the major relationships of the sharks phylogeny; however, on those relationships that have proven more controversial, it differs in several aspects from the most recent molecular studies. The phylogeny supports the division of sharks into two major groups, the Galeomorphii and Squalimorphii, rejecting the hypnosqualean hypothesis that places batoids within sharks. Within the squalimorphs the orders Hexanchiformes, Squatiniformes, Squaliformes, and Pristiophoriformes are broadly monophyletic, with minor exceptions apparently due to missing data. Similarly, within Galeomorphs, the orders Heterodontiformes, Lamniformes, Carcharhiniformes, and Orectolobiformes are broadly monophyletic, with a couple of species 'misplaced'. In contrast, many of the currently recognized shark families are not monophyletic according to our results. Our phylogeny offers some of the first clarification of the relationships among families of the order Squaliformes, a group that has thus far received relatively

  20. Phylogenetic reconstruction in the order Nymphaeales: ITS2 secondary structure analysis and in silico testing of maturase k (matK) as a potential marker for DNA bar coding.

    Science.gov (United States)

    Biswal, Devendra Kumar; Debnath, Manish; Kumar, Shakti; Tandon, Pramod

    2012-01-01

    The Nymphaeales (waterlilly and relatives) lineage has diverged as the second branch of basal angiosperms and comprises of two families: Cabombaceae and Nymphaceae. The classification of Nymphaeales and phylogeny within the flowering plants are quite intriguing as several systems (Thorne system, Dahlgren system, Cronquist system, Takhtajan system and APG III system (Angiosperm Phylogeny Group III system) have attempted to redefine the Nymphaeales taxonomy. There have been also fossil records consisting especially of seeds, pollen, stems, leaves and flowers as early as the lower Cretaceous. Here we present an in silico study of the order Nymphaeales taking maturaseK (matK) and internal transcribed spacer (ITS2) as biomarkers for phylogeny reconstruction (using character-based methods and Bayesian approach) and identification of motifs for DNA barcoding. The Maximum Likelihood (ML) and Bayesian approach yielded congruent fully resolved and well-supported trees using a concatenated (ITS2+ matK) supermatrix aligned dataset. The taxon sampling corroborates the monophyly of Cabombaceae. Nuphar emerges as a monophyletic clade in the family Nymphaeaceae while there are slight discrepancies in the monophyletic nature of the genera Nymphaea owing to Victoria-Euryale and Ondinea grouping in the same node of Nymphaeaceae. ITS2 secondary structures alignment corroborate the primary sequence analysis. Hydatellaceae emerged as a sister clade to Nymphaeaceae and had a basal lineage amongst the water lilly clades. Species from Cycas and Ginkgo were taken as outgroups and were rooted in the overall tree topology from various methods. MatK genes are fast evolving highly variant regions of plant chloroplast DNA that can serve as potential biomarkers for DNA barcoding and also in generating primers for angiosperms with identification of unique motif regions. We have reported unique genus specific motif regions in the Order Nymphaeles from matK dataset which can be further validated for

  1. Complete mitochondrial genomes elucidate phylogenetic relationships of the deep-sea octocoral families Coralliidae and Paragorgiidae

    Science.gov (United States)

    Figueroa, Diego F.; Baco, Amy R.

    2014-01-01

    In the past decade, molecular phylogenetic analyses of octocorals have shown that the current morphological taxonomic classification of these organisms needs to be revised. The latest phylogenetic analyses show that most octocorals can be divided into three main clades. One of these clades contains the families Coralliidae and Paragorgiidae. These families share several taxonomically important characters and it has been suggested that they may not be monophyletic; with the possibility of the Coralliidae being a derived branch of the Paragorgiidae. Uncertainty exists not only in the relationship of these two families, but also in the classification of the two genera that make up the Coralliidae, Corallium and Paracorallium. Molecular analyses suggest that the genus Corallium is paraphyletic, and it can be divided into two main clades, with the Paracorallium as members of one of these clades. In this study we sequenced the whole mitochondrial genome of five species of Paragorgia and of five species of Corallium to use in a phylogenetic analysis to achieve two main objectives; the first to elucidate the phylogenetic relationship between the Paragorgiidae and Coralliidae and the second to determine whether the genera Corallium and Paracorallium are monophyletic. Our results show that other members of the Coralliidae share the two novel mitochondrial gene arrangements found in a previous study in Corallium konojoi and Paracorallium japonicum; and that the Corallium konojoi arrangement is also found in the Paragorgiidae. Our phylogenetic reconstruction based on all the protein coding genes and ribosomal RNAs of the mitochondrial genome suggest that the Coralliidae are not a derived branch of the Paragorgiidae, but rather a monophyletic sister branch to the Paragorgiidae. While our manuscript was in review a study was published using morphological data and several fragments from mitochondrial genes to redefine the taxonomy of the Coralliidae. Paracorallium was subsumed

  2. Stenostomum cf. leucops (Platyhelminthes in Thailand: a surface observation using scanning electron microscopy and phylogenetic analysis based on 18S ribosomal DNA sequences

    Directory of Open Access Journals (Sweden)

    Arin Ngamniyom

    2016-02-01

    Full Text Available The genus Stenostomum contains small turbellaria that are widely distributed in freshwater environments worldwide. However, there are only rare reports or studies of this genus from Thailand. Therefore, the objective of this study was to report S. cf. leucops in Thailand collected from Pathum Thani Province. The worm morphology and surface topography using scanning electron microscopy were determined. Moreover, the phylogenetic tree of S. cf. leucops was analysed with 17 flatworms based on the 18S ribosomal DNA sequences. The phylogenetic relationship shared a common ancestry of Catenulida species, and S. cf. leucops displayed a monophyletic pattern within Stenostomum spp. The results of the morphological and molecular data are discussed. These results may increase the knowledge of freshwater microturbellarians in Thailand.

  3. Molecular epidemiology of Plum pox virus in Japan.

    Science.gov (United States)

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  4. Phylogenetic inferences of Atelinae (Platyrrhini) based on multi-directional chromosome painting in Brachyteles arachnoides, Ateles paniscus paniscus and Ateles b. marginatus.

    Science.gov (United States)

    de Oliveira, E H C; Neusser, M; Pieczarka, J C; Nagamachi, C; Sbalqueiro, I J; Müller, S

    2005-01-01

    We performed multi-directional chromosome painting in a comparative cytogenetic study of the three Atelinae species Brachyteles arachnoides, Ateles paniscus paniscus and Ateles belzebuth marginatus, in order to reconstruct phylogenetic relationships within this Platyrrhini subfamily. Comparative chromosome maps between these species were established by multi-color fluorescence in situ hybridization (FISH) employing human, Saguinus oedipus and Lagothrix lagothricha chromosome-specific probes. The three species included in this study and four previously analyzed species from all four Atelinae genera were subjected to a phylogenetic analysis on the basis of a data matrix comprised of 82 discrete chromosome characters. The results confirmed that Atelinae represent a monophyletic clade with a putative ancestral karyotype of 2n = 62 chromosomes. Phylogenetic analysis revealed an evolutionary branching sequence [Alouatta [Brachyteles [Lagothrix and Ateles

  5. Molecular phylogeny of the Thyropygus allevatus group of giant millipedes and some closely related groups

    DEFF Research Database (Denmark)

    Pimvichai, Piyatida; Enghoff, Henrik; Panha, Somsak

    2014-01-01

    from six genera in the subfamilies Harpagophorinae and Rhynchoproctinae, as well as nine new morphotypes (regarded as new species), were performed with the DNA sequences from two mitochondrial gene fragments (16S rRNA and COI). The genus Thyropygus (Harpagophorinae) was recovered as monophyletic under......Giant cylindrical millipedes of the family Harpagophoridae, especially species of the genus Thyropygus, are broadly distributed in Thailand and nearby countries. They show a great deal of variation in body size, color patterns and gonopodal characters. Phylogenetic analyses of 26 nominate species...... the usefulness of, gonopodal characters for the classification and identification of harpagophorid millipedes, and additionally supported previous studies on the delimitation of species and subgroups. This is the first molecular study inside the family Harpagophoridae and provides the basis for further studies...

  6. Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears

    DEFF Research Database (Denmark)

    Hansen, Mie Johanne; Strøm Braaten, Mira; Bojesen, Anders Miki

    2015-01-01

    A total of 32 suspected Pasteurellaceae strains isolated from polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA and rpoB gene sequences showed that the isolates investigated formed two closely related monophyletic groups. Based...... on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related validly published species, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with an rpo......B similarity at 89.8% with the polar bear group and 90% similarity with the brown bear group. Members of the bear genera could be separated from existing genera of the Pasteurellaceae by three to ten phenotypic characters and the two novel species could be separated from each other by two phenotypic characters...

  7. Detection of Diverse Novel Bat Astrovirus Sequences in the Czech Republic.

    Science.gov (United States)

    Dufkova, Lucie; Straková, Petra; Širmarová, Jana; Salát, Jiří; Moutelíková, Romana; Chrudimský, Tomáš; Bartonička, Tomáš; Nowotny, Norbert; Růžek, Daniel

    2015-08-01

    Astroviruses are a major cause of gastroenteritis in humans and animals. Recently, novel groups of astroviruses were identified in apparently healthy insectivorous bats. We report the detection of diverse novel astrovirus sequences in nine different European bat species: Eptesicus serotinus, Hypsugo savii, Myotis emarginatus, M. mystacinus, Nyctalus noctula, Pipistrellus nathusii or P. pygmaeus, P. pipistrellus, Vespertilio murinus, and Rhinolophus hipposideros. In six bat species, astrovirus sequences were detected for the first time. One astrovirus strain detected in R. hipposideros clustered phylogenetically with Chinese astrovirus strains originating from bats of the families Rhinolophidae and Hipposideridae. All other Czech astrovirus sequences from vesper bats formed, together with one Hungarian sequence, a separate monophyletic lineage within the bat astrovirus group. These findings provide new insights into the molecular epidemiology, ecology, and prevalence of astroviruses in European bat populations.

  8. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs

    Science.gov (United States)

    Sues, Hans-Dieter; Averianov, Alexander

    2009-01-01

    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle–Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian–Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively. PMID:19386651

  9. DNA barcoding and the identification of tree frogs (Amphibia: Anura: Rhacophoridae).

    Science.gov (United States)

    Dang, Ning-Xin; Sun, Feng-Hui; Lv, Yun-Yun; Zhao, Bo-Han; Wang, Ji-Chao; Murphy, Robert W; Wang, Wen-Zhi; Li, Jia-Tang

    2016-07-01

    The DNA barcoding gene COI (cytochrome c oxidase subunit I) effectively identifies many species. Herein, we barcoded 172 individuals from 37 species belonging to nine genera in Rhacophoridae to test if the gene serves equally well to identify species of tree frogs. Phenetic neighbor joining and phylogenetic Bayesian inference were used to construct phylogenetic trees, which resolved all nine genera as monophyletic taxa except for Rhacophorus, two new matrilines for Liuixalus, and Polypedates leucomystax species complex. Intraspecific genetic distances ranged from 0.000 to 0.119 and interspecific genetic distances ranged from 0.015 to 0.334. Within Rhacophorus and Kurixalus, the intra- and interspecific genetic distances did not reveal an obvious barcode gap. Notwithstanding, we found that COI sequences unambiguously identified rhacophorid species and helped to discover likely new cryptic species via the synthesis of genealogical relationships and divergence patterns. Our results supported that COI is an effective DNA barcoding marker for Rhacophoridae.

  10. Species-level para- and polyphyly in DNA barcode gene trees

    DEFF Research Database (Denmark)

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.

    2016-01-01

    was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than...... between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer......" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention...

  11. Cryptic diversity in Australian stick insects (Insecta; Phasmida) uncovered by the DNA barcoding approach.

    Science.gov (United States)

    Velonà, A; Brock, P D; Hasenpusch, J; Mantovani, B

    2015-05-18

    The barcoding approach was applied to analyze 16 Australian morphospecies of the order Phasmida, with the aim to test if it could be suitable as a tool for phasmid species identification and if its discrimination power would allow uncovering of cryptic diversity. Both goals were reached. Eighty-two specimens representing twelve morphospecies (Sipyloidea sp. A, Candovia annulata, Candovia sp. A, Candovia sp. B, Candovia sp. C, Denhama austrocarinata, Xeroderus kirbii, Parapodacanthus hasenpuschorum, Tropidoderus childrenii, Cigarrophasma tessellatum, Acrophylla wuelfingi, Eurycantha calcarata) were correctly recovered as clades through the molecular approach, their sequences forming monophyletic and well-supported clusters. In four instances, Neighbor-Joining tree and barcoding gap analyses supported either a specific (Austrocarausius mercurius, Anchiale briareus) or a subspecific (Anchiale austrotessulata, Extatosoma tiaratum) level of divergence within the analyzed morphospecies. The lack of an appropriate database of homologous coxI sequences prevented more detailed identification of undescribed taxa.

  12. Molecular phylogeny of Enchytraeidae (Oligochaeta) indicates separate invasions of the terrestrial environment

    DEFF Research Database (Denmark)

    Christensen, Bent; Glenner, Henrik

    2010-01-01

    segregations of the two genera Enchytraeus and Lumbricillus leaving the remaining genera included in this study as a later segregated major monophyletic branch. Extant members of the two former genera dominate in decaying seaweed in the littoral zone along the sea although members of in particular the genus....... Inland soils probably had to await the emergence of land plants in order to provide a similar food resource and here the major branch of enchytraeid genera diversified into a high number of species in the numerous decomposer networks of this varied environment. A subdivision into the genera Enchytraeus...... and Lumbricillus on the one hand and a branch of mainly inland genera on the other is supported by differences in two somewhat neglected morphological features. Firstly, in Enchytraeus and Lumbricillus the testes are enclosed in a testis sac within which the male cells mature, by one possible exception a unique...

  13. Molecular systematics and biogeography of the circumglobally distributed genus Seriola (Pisces: Carangidae).

    Science.gov (United States)

    Swart, Belinda L; von der Heyden, Sophie; Bester-van der Merwe, Aletta; Roodt-Wilding, Rouvay

    2015-12-01

    The genus Seriola includes several important commercially exploited species and has a disjunct distribution globally; yet phylogenetic relationships within this genus have not been thoroughly investigated. This study reports the first comprehensive molecular phylogeny for this genus based on mitochondrial (Cytb) and nuclear gene (RAG1 and Rhod) DNA sequence data for all extant Seriola species (nine species, n=27). All species were found to be monophyletic based on Maximum parsimony, Maximum likelihood and Bayesian inference. The closure of the Tethys Sea (12-20 MYA) coincides with the divergence of a clade containing ((S. fasciata and S. peruana), S. carpenteri) from the rest of the Seriola species, while the formation of the Isthmus of Panama (±3 MYA) played an important role in the divergence of S. fasciata and S. peruana. Furthermore, factors such as climate and water temperature fluctuations during the Pliocene played important roles during the divergence of the remaining Seriola species. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. [Discussion on ideological concept implied in traditional reinforcing and reducing method of acupuncture].

    Science.gov (United States)

    Li, Suyun; Zhao, Jingsheng

    2017-11-12

    The forming and development of traditional reinforcing and reducing method of acupuncture was rooted in traditional culture of China, and was based on the ancients' special understanding of nature, life and diseases, therefore its principle and methods were inevitably influenced by philosophy culture and medicine concept at that time. With deep study on Inner Canon of Huangdi and representative reinforcing and reducing method of acupuncture, the implied ideological concept, including contradiction view and profit-loss view in ancient dialectic, yin-yang balance theory, concept of life flow, monophyletic theory of qi , theory of existence of disease-evil, yin - yang astrology theory, theory of inter-promotion of five elements, were summarized and analyzed. The clarified and systematic understanding on guiding ideology of reinforcing and reducing method of acupuncture could significantly promote the understanding on principle, method, content and manipulation.

  15. Future trypanosomatid phylogenies: refined homologies, supertrees and networks

    Directory of Open Access Journals (Sweden)

    Stothard JR

    2000-01-01

    Full Text Available There has been good progress in inferring the evolutionary relationships within trypanosomes from DNA data as until relatively recently, many relationships have remained rather speculative. Ongoing molecular studies have provided data that have adequately shown Trypanosoma to be monophyletic and, rather surprisingly, that there are sharply contrasting levels of genetic variation within and between the major trypanosomatid groups. There are still, however, areas of research that could benefit from further development and resolution that broadly fall upon three questions. Are the current statements of evolutionary homology within ribosomal small sub-unit genes in need of refinement? Can the published phylograms be expanded upon to form `supertrees' depicting further relationships? Does a bifurcating tree structure impose an untenable dogma upon trypanosomatid phylogeny where hybridisation or reticulate evolutionary steps have played a part? This article briefly addresses these three questions and, in so doing, hopes to stimulate further interest in the molecular evolution of the group.

  16. New species of Auritella (Inocybaceae) from Cameroon, with a worldwide key to the known species.

    Science.gov (United States)

    Matheny, P Brandon; Henkel, Terry W; Séné, Olivier; Korotkin, Hailee B; Dentinger, Bryn T M; Aime, M Catherine

    2017-12-01

    Two new species in the genus Auritella ( Inocybaceae ) are described as new from tropical rainforest in Cameroon. Descriptions, photographs, line drawings, and a worldwide taxonomic key to the described species of Auritella are presented. Phylogenetic analysis of 28S rDNA and rpb2 nucleotide sequence data suggests at least five phylogenetic species that can be ascribed to Auritella occur in the region comprising Cameroon and Gabon and constitute a strongly supported monophyletic subgroup within the genus. Phylogenetic analysis of ITS data supports the conspecificity of numerous collections attributed to the two new species as well as the monophyly of Australian species of Auritella . This work raises the known number of described species of Auritella to thirteen worldwide, four of which occur in tropical Africa, one in tropical India, and eight in temperate and tropical regions of Australia. This is the first study to confirm an ectomycorrhizal status of Auritella using molecular data.

  17. Cladistic analysis of Bantu languages: a new tree based on combined lexical and grammatical data

    Science.gov (United States)

    Rexová, Kateřina; Bastin, Yvonne; Frynta, Daniel

    2006-04-01

    The phylogeny of the Bantu languages is reconstructed by application of the cladistic methodology to the combined lexical and grammatical data (87 languages, 144 characters). A maximum parsimony tree and Bayesian analysis supported some previously recognized clades, e.g., that of eastern and southern Bantu languages. Moreover, the results revealed that Bantu languages south and east of the equatorial forest are probably monophyletic. It suggests an unorthodox scenario of Bantu expansion including (after initial radiation in their homelands and neighboring territories) just a single passage through rainforest areas followed by a subsequent divergence into major clades. The likely localization of this divergence is in the area west of the Great Lakes. It conforms to the view that demographic expansion and dispersal throughout the dry-forests and savanna regions of subequatorial Africa was associated with the acquisition of new technologies (iron metallurgy and grain cultivation).

  18. Multi-gene analysis provides a well-supported phylogeny of Rosales.

    Science.gov (United States)

    Zhang, Shu-dong; Soltis, Douglas E; Yang, Yang; Li, De-zhu; Yi, Ting-shuang

    2011-07-01

    Despite many attempts to resolve evolutionary relationships among the major clades of Rosales, some nodes have been extremely problematic and have remained unresolved. In this study, we use two nuclear and 10 plastid loci to infer phylogenetic relationships among all nine families of Rosales. Rosales were strongly supported as monophyletic; within Rosales all family relationships are well-supported with Rosaceae sister to all other members of the order. Remaining Rosales can be divided into two subclades: (1) Ulmaceae are sister to Cannabaceae plus (Urticaceae+Moraceae); (2) Rhamnaceae are sister to Elaeagnaceae plus (Barbeyaceae+Dirachmaceae). One noteworthy result is that we recover the first strong support for a sister relationship between the enigmatic Dirachmaceae and Barbeyaceae. These two small families have distinct morphologies and potential synapomorphies remain unclear. Future studies should try to identify nonDNA synapomorphies uniting Barbeyaceae with Dirachmaceae. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Identifying the transition between single and multiple mating of queens in fungus-growing ants

    DEFF Research Database (Denmark)

    Villesen, Palle; Murakami, Takahiro; Schultz, Ted R

    2002-01-01

    Obligate mating of females (queens) with multiple males has evolved only rarely in social Hymenoptera (ants, social bees, social wasps) and for reasons that are fundamentally different from those underlying multiple mating in other animals. The monophyletic tribe of ('attine') fungus-growing ants...... is known to include evolutionarily derived genera with obligate multiple mating (the Acromyrmex and Atta leafcutter ants) as well as phylogenetically basal genera with exclusively single mating (e.g. Apterostigma, Cyphomyrmex, Myrmicocrypta). All attine genera share the unique characteristic of obligate...... dependence on symbiotic fungus gardens for food, but the sophistication of this symbiosis differs considerably across genera. The lower attine genera generally have small, short-lived colonies and relatively non-specialized fungal symbionts (capable of living independently of their ant hosts), whereas...

  20. A Review of Methods for Detection of Hepatozoon Infection in Carnivores and Arthropod Vectors.

    Science.gov (United States)

    Modrý, David; Beck, Relja; Hrazdilová, Kristýna; Baneth, Gad

    2017-01-01

    Vector-borne protists of the genus Hepatozoon belong to the apicomplexan suborder Adeleorina. The taxonomy of Hepatozoon is unsettled and different phylogenetic clades probably represent evolutionary units deserving the status of separate genera. Throughout our review, we focus on the monophyletic assemblage of Hepatozoon spp. from carnivores, classified as Hepatozoon sensu stricto that includes important pathogens of domestic and free-ranging canine and feline hosts. We provide an overview of diagnostic methods and approaches from classical detection in biological materials, through serological tests to nucleic acid amplification tests (NAATs). Critical review of used primers for the 18S rDNA is provided, together with information on individual primer pairs. Extension of used NAATs target to cover also mitochondrial genes is suggested as a key step in understanding the diversity and molecular epidemiology of Hepatozoon infections in mammals.

  1. First report of Hepatozoon (Apicomplexa: Adeleorina) from king ratsnakes (Elaphe carinata) in Shanghai, with description of a new species.

    Science.gov (United States)

    Han, Hongyu; Wu, Youling; Dong, Hui; Zhu, Shunhai; Li, Liujia; Zhao, Qiping; Wu, Di; Pei, Enle; Wang, Yange; Huang, Bing

    2015-06-01

    Hepatozoon species are the most common hemoparasites of snakes. In this study, Hepatozoon parasites were examined for the first time in king rat snakes (Elaphe carinata) from Shanghai, China. All 10 snakes were found to be infected with Hepatozoon gamonts. The gamonts were folded back in a hook-wise fashion for about 3 μm at one end. Parasitemia levels ranged from 4-43 infected erythrocytes per 1,000 examined. The gamonts changed the morphology of the parasitized erythrocytes. Although the gamonts showed some distinct variations in both the parasite and its nucleus, phylogenetic analysis indicated that all the E. carinata in this study formed a monophyletic group, and were distinct from all other published Hepatozoon species. A new species, Hepatozoon chinensis, was proposed based on the molecular and morphologic evidence.

  2. A New Species of Sexually Dimorphic Brittle Star of the Genus Ophiodaphne (Echinodermata: Ophiuroidea).

    Science.gov (United States)

    Tominaga, Hideyuki; Hirose, Mamiko; Igarashi, Hikaru; Kiyomoto, Masato; Komatsu, Miéko

    2017-08-01

    We describe a new species of sexually dimorphic brittle star, Ophiodaphne spinosa, from Japan associated with the irregular sea urchin, Clypeaster japonicus based on its external morphology, and phylogenetic analyses of mitochondrial COI (cytochrome c oxidase subunit I). Females of this new species of Ophiodaphne are characterized mainly by the presence of wavy grooves on the surface of the radial shields, needle-like thorns on the oral skeletal jaw structures, and a low length-to-width ratio of the jaw angle in comparison with those of type specimens of its Ophiodaphne congeners: O. scripta, O. materna, and O. formata. A tabular key to the species characteristics of Ophiodaphne is provided. Phylogenetic analyses indicate that the new species of Ophiodaphne, O. scripta, and O. formata are monophyletic. Our results indicate that the Japanese Ophiodaphne include both the new species and O. scripta, and that there are four Ophiodaphne species of sexually dimorphic brittle stars with androphorous habit.

  3. Evolution of Scale Worms

    DEFF Research Database (Denmark)

    Gonzalez, Brett Christopher

    ) caves, and the interstitium, recovering six monophyletic clades within Aphroditiformia: Acoetidae, Aphroditidae, Eulepethidae, Iphionidae, Polynoidae, and Sigalionidae (inclusive of the former ‘Pisionidae’ and ‘Pholoidae’), respectively. Tracing of morphological character evolution showed a high degree...... of adaptability and convergent evolution between relatively closely related scale worms. While some morphological and behavioral modifications in cave polynoids reflected troglomorphism, other modifications like eye loss were found to stem from a common ancestor inhabiting the deep sea, further corroborating...... the deep sea ancestry of scale worm cave fauna. In conclusion, while morphological characterization across Aphroditiformia appears deceptively easy due to the presence of elytra, convergent evolution during multiple early radiations across wide ranging habitats have confounded our ability to reconstruct...

  4. Brown algal morphogenesis: Atomic Force Microscopy as a tool to study the role of mechanical forces

    Directory of Open Access Journals (Sweden)

    Benoit eTesson

    2014-09-01

    Full Text Available Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves and tide, in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization, deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation.

  5. Phylogenetic relationships of Hemiptera inferred from mitochondrial and nuclear genes.

    Science.gov (United States)

    Song, Nan; Li, Hu; Cai, Wanzhi; Yan, Fengming; Wang, Jianyun; Song, Fan

    2016-11-01

    Here, we reconstructed the Hemiptera phylogeny based on the expanded mitochondrial protein-coding genes and the nuclear 18S rRNA gene, separately. The differential rates of change across lineages may associate with long-branch attraction (LBA) effect and result in conflicting estimates of phylogeny from different types of data. To reduce the potential effects of systematic biases on inferences of topology, various data coding schemes, site removal method, and different algorithms were utilized in phylogenetic reconstruction. We show that the outgroups Phthiraptera, Thysanoptera, and the ingroup Sternorrhyncha share similar base composition, and exhibit "long branches" relative to other hemipterans. Thus, the long-branch attraction between these groups is suspected to cause the failure of recovering Hemiptera under the homogeneous model. In contrast, a monophyletic Hemiptera is supported when heterogeneous model is utilized in the analysis. Although higher level phylogenetic relationships within Hemiptera remain to be answered, consensus between analyses is beginning to converge on a stable phylogeny.

  6. Erwinia mallotivora sp., a New Pathogen of Papaya (Carica papaya in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Noriha Mat Amin

    2010-12-01

    Full Text Available Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414. Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch’s postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.

  7. The evolution of the Ecdysozoa.

    Science.gov (United States)

    Telford, Maximilian J; Bourlat, Sarah J; Economou, Andrew; Papillon, Daniel; Rota-Stabelli, Omar

    2008-04-27

    Ecdysozoa is a clade composed of eight phyla: the arthropods, tardigrades and onychophorans that share segmentation and appendages and the nematodes, nematomorphs, priapulids, kinorhynchs and loriciferans, which are worms with an anterior proboscis or introvert. Ecdysozoa contains the vast majority of animal species and there is a great diversity of body plans among both living and fossil members. The monophyly of the clade has been called into question by some workers based on analyses of whole genome datasets. We review the evidence that now conclusively supports the unique origin of these phyla. Relationships within Ecdysozoa are also controversial and we discuss the molecular and morphological evidence for a number of monophyletic groups within this superphylum.

  8. A study on the geophylogeny of clinical and environmental Vibrio cholerae in Kenya.

    Directory of Open Access Journals (Sweden)

    John Kiiru

    Full Text Available Cholera remains a significant public health challenge in many sub-Saharan countries including Kenya. We have performed a combination of phylogenetic and phenotypic analysis based on whole genome DNA sequences derived from 40 environmental and 57 clinical V. cholerae from different regions of Kenya isolated between 2005 and 2010. Some environmental and all clinical isolates mapped back onto wave three of the monophyletic seventh pandemic V. cholerae El Tor phylogeny but other environmental isolates were phylogenetically very distinct. Thus, the genomes of the Kenyan V. cholerae O1 El Tor isolates are clonally related to other El Tor V. cholerae isolated elsewhere in the world and similarly harbour antibiotic resistance-associated STX elements. Further, the Kenyan O1 El Tor isolates fall into two distinct clades that may have entered Kenya independently.

  9. Ledantevirus: a proposed new genus in the Rhabdoviridae has a strong ecological association with bats.

    Science.gov (United States)

    Blasdell, Kim R; Guzman, Hilda; Widen, Steven G; Firth, Cadhla; Wood, Thomas G; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos; Walker, Peter J

    2015-02-01

    The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus. © The American Society of Tropical Medicine and Hygiene.

  10. The biological features and genetic diversity of novel fish rhabdovirus isolates in China.

    Science.gov (United States)

    Fu, Xiaozhe; Lin, Qiang; Liang, Hongru; Liu, Lihui; Huang, Zhibin; Li, Ningqiu; Su, Jianguo

    2017-09-01

    The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses which infects mammals, birds, reptiles, fish, insects and plants. Herein, we reported the isolation and characterization of 6 novel viruses from diseased fish collected from China including SCRV-QY, SCRV-SS, SCRV-GM, CmRV-FS, MsRV-SS, OmbRV-JM. The typical clinical symptom of diseased fish was hemorrhaging. Efficient propagation of these isolates in a Chinese perch brain cell line was determined by means of observation of cytopathic effect, RT-PCR and electron microscopy. Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.

  11. Ledantevirus: A Proposed New Genus in the Rhabdoviridae Has A Strong Ecological Association with Bats

    Science.gov (United States)

    Blasdell, Kim R.; Guzman, Hilda; Widen, Steven G.; Firth, Cadhla; Wood, Thomas G.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos; Walker, Peter J.

    2015-01-01

    The Le Dantec serogroup of rhabdoviruses comprises Le Dantec virus from a human with encephalitis and Keuriliba virus from rodents, each isolated in Senegal. The Kern Canyon serogroup comprises a loosely connected set of rhabdoviruses many of which have been isolated from bats, including Kern Canyon virus from California, Nkolbisson virus from Cameroon, Central African Republic, and Cote d'Ivoire, Kolente virus from Guinea, Mount Elgon bat and Fikirini viruses from Kenya, and Oita virus from Japan. Fukuoka virus isolated from mosquitoes, midges, and cattle in Japan, Barur virus from a rodent in India and Nishimuro virus from pigs in Japan have also been linked genetically or serologically to this group. Here, we analyze the genome sequences and phylogenetic relationships of this set of viruses. We show that they form three subgroups within a monophyletic group, which we propose should constitute the new genus Ledantevirus. PMID:25487727

  12. A taxonomic revision of the kalshoveni species-group of the genus Nemophora Hoffmannsegg (Lepidoptera, Adelidae), with descriptions of six new species from Indonesia and Papua New Guinea.

    Science.gov (United States)

    Kozlov, Mikhail V

    2016-11-10

    A monophyletic group of seven externally similar, grey to light brown species of the genus Nemophora Hoffmannsegg from the islands of Indonesia and Papua New Guinea, recognised as the new kalshoveni species-group, is revised. All species of this group possess an oblique light stripe, which arises from the costal margin of the forewing at 0.7-0.8 of its length towards the middle of an external wing margin. The proboscis of these species is unusually thick due to a dense cover of raised dark brown and black scales. A key to the species based on external characters and on male genitalia is provided; new species are described from the Sangir (N. humerella sp. nov.) and New Guinea (N. agassizi sp. nov., N. bistrigata sp. nov., N. dohertyi sp. nov., N. toxopeusi sp. nov. and N. stenopterella sp. nov.).

  13. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basis of variation in internal transcribed spacers of ribosomal DNA.

    Science.gov (United States)

    Kusaba, M; Tsuge, T

    1995-10-01

    The internal transcribed spacer regions (ITS1 and ITS2) of ribosomal DNA from Alternaria species, including seven fungi known to produce host-specific toxins, were analyzed by polymerase chain reaction-amplification and direct sequencing. Phylogenetic analysis of the sequence data by the Neighbor-joining method showed that the seven toxin-producing fungi belong to a monophyletic group together with A. alternata. In contract, A. dianthi, A. panax, A. dauci, A. bataticola, A. porri, A. sesami and A. solani, species that can be morphologically distinguished from A. alternata, could be clearly separated from A. alternata by phylogenetic of the ITS variation. These results suggest that Alternaria pathogens which produce host-specific toxins are pathogenic variants within a single variable species, A. alternata.

  14. First cytogenetic analysis of Ichthyoelephas humeralis (Günther, 1860 by conventional and molecular methods with comments on the karyotypic evolution in Prochilodontidae

    Directory of Open Access Journals (Sweden)

    Mauro Nirchio Tursellino

    2016-11-01

    Full Text Available We used conventional cytogenetic techniques (Giemsa, C-banding, Ag-NOR, and fluorescent in situ hybridization (FISH with 5S and 18S rDNA probes to investigate the karyotype and cytogenetic characteristics of Ichthyoelephas humeralis (Günther, 1860 from Ecuador. The specimens studied have a karyotype with 2n=54 biarmed chromosomes (32 M + 22 SM and C-positive heterochromatin located on the centromeric, pericentromeric, interstitial, and terminal regions of some chromosomes. The nucleolus organizer regions occurred terminally on the long arm of chromosome pair 2. FISH confirmed the presence of only one 18S rDNA cluster with nonsyntenic localization with the 5S rDNA. Cytogenetic data allow us to refute the earlier morphological hypothesis of a sister relationship between Semaprochilodus Fowler, 1941 and Ichthyoelephas Posada Arango, 1909 and support the molecular proposal that Ichthyoelephas is a sister group to the monophyletic clade containing Prochilodus Agassiz, 1829 and Semaprochilodus.

  15. African origin of the malaria parasite Plasmodium vivax.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.

  16. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales)

    DEFF Research Database (Denmark)

    Bensch, K.; Groenewald, J.Z.; Dijksterhuis, J.

    2010-01-01

    of this species. Cladosporium tenuissimum and C. oxysporum, two saprobes abundant in the tropics, are epitypified and shown to be allied to, but distinct from C. cladosporioides. Twenty-two species are newly described on the basis of phylogenetic characters and cryptic morphological differences. The most...... important phenotypic characters for distinguishing species within the C. cladosporioides complex, which represents a monophyletic subclade within the genus, are shape, width, length, septation and surface ornamentation of conidia and conidiophores; length and branching patterns of conidial chains and hyphal...... shape, width and arrangement. Many of the treated species, e.g., C. acalyphae, C. angustisporum, C. australiense, C. basiinflatum, C. chalastosporoides, C. colocasiae, C. cucumerinum, C. exasperatum, C. exile, C. flabelliforme, C. gamsianum, and C. globisporum are currently known only from specific...

  17. African origin of the malaria parasite Plasmodium vivax

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  18. Molecular Phylogeny and Biogeography of Adenocaulon Highlight the Biogeographic Links between New World and Old World

    Directory of Open Access Journals (Sweden)

    Tao Deng

    2018-01-01

    Full Text Available Adenocaulon (Asteraceae is a small genus with only five species but has a broad amphi-Pacific distribution pattern with three species distributed disjunctly in South America, Central America, and North America and two endemic species spanning from eastern Asia to the Himalayas. To trace the biogeographic pattern of the genus, we reconstructed its phylogenetic relationships and diversification history based on one nuclear and eight plastid gene regions. Our results showed that Adenocaulon is monophyletic and may have originated in Central America during the Miocene, dispersed into North America and finally reached the Himalayas via the Bering Land Bridge. The hypothesized trajectory implies that long-distance dispersal may have played an important role in the formation of the distribution of this group of species. This hypothesis seems to have gained support from the special morphological structure of fruits of the genus.

  19. Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): A new reef coral species from the red sea and its phylogenetic relationships

    KAUST Repository

    Terraneo, Tullia I.; Berumen, Michael L.; Arrigoni, Roberto; Waheed, Zarinah; Bouwmeester, Jessica; Caragnano, Annalisa; Stefani, Fabrizio; Benzoni, Francesca

    2014-01-01

    A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined. © Tullia I. Terraneo et al.

  20. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate1[OPEN

    Science.gov (United States)

    Free, Heather C.A.; Smith, Bronwen G.

    2018-01-01

    Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases. PMID:29724771

  1. Taxonomy and phylogeny of a new Central American beetle genus: (Coleoptera: Scarabaeidae

    Directory of Open Access Journals (Sweden)

    María Milagro Coca-Abia

    2006-06-01

    Full Text Available A new genus and two species of Melolonthinae from Honduras and Nicaragua are described. A phylogenetic analysis, carried out using morphological characters, suggests that Catrachia is a strongly supported monophyletic group. Catrachia is therefore established as a new genus, constituted by two new species, Catrachia mariana and Catrachia nica. Rev. Biol. Trop. 54(1: 000-000. Epub 2006 Mar 31.En este trabajo se describe el género Catrachia y dos especies nuevas, Catrachia mariana y Catrachia nica de Honduras y Nicaragua respectivamente. En análisis filogenético basado en caracteres morfológicos demostró que Catrachia es un grupo monofilético fuertemente soportado lo cual permite su consideración como género nuevo.

  2. Taxonomy, phylogeny and host plants of some Abia sawflies (Hymenoptera, Cimbicidae).

    Science.gov (United States)

    Liston, Andrew D; Savina, Henri; Nagy, Zoltán Tamás; Sonet, Gontran; Boevé, Jean-Luc

    2014-06-19

    We briefly review the taxonomy of Abia, and attempt to clarify their systematics by phylogenetic tree reconstructions inferred from three (nuclear and mitochondrial) genes of some West Palaearctic and Nearctic species. The main question which we asked is whether the distinction, made by several authors, of two genera within this group is justified. Based on the species here sampled, our results strongly support a clade recognised widely in earlier literature as Abia or Abia (Abia), but do not always support another clade, Zaraea or Abia (Zaraea), as monophyletic. In the interests of nomenclatural stability and for other practical reasons, the two nominal genera should be treated as synonyms. Host plant associations may be useful in the systematics of Abia species, but this topic requires further investigation and inclusion of more species in phylogenetic analyses.

  3. Mayaweckelia troglomorpha, a new subterranean amphipod species from Yucatán state, México (Amphipoda, Hadziidae).

    Science.gov (United States)

    Angyal, Dorottya; Solís, Efraín Chávez; Magaña, Benjamín; Balázs, Gergely; Simoes, Nuno

    2018-01-01

    A detailed description of a new stygobiont species of the amphipod family Hadziidae, Mayaweckelia troglomorpha Angyal, sp. n. is given, based on material collected in four cenotes of Yucatán federal state, México. Morphology was studied under light microscopy and with scanning electron microscopy. Morphological description is complemented with mitochondrial cytochrome c oxidase subunit I (COI) sequences as barcodes, with affinities to the related taxa and with notes on the species' ecology. Using COI Bayesian inference and genetic distance analyses, we show that the closest relative of the new species is M. cenoticola , forming a monophyletic group referring to the genus Mayaweckelia . Based on the available sequences, we also revealed that Mayaweckelia and Tuluweckelia are sister genera, standing close to the third Yucatán subterranean genus, Bahadzia . The data gathered on the habitat, distribution, abundance, and ecology will contribute to the conservation planning for M. troglomorpha Angyal, sp. n.

  4. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    Science.gov (United States)

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  5. PhySortR: a fast, flexible tool for sorting phylogenetic trees in R.

    Science.gov (United States)

    Stephens, Timothy G; Bhattacharya, Debashish; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    A frequent bottleneck in interpreting phylogenomic output is the need to screen often thousands of trees for features of interest, particularly robust clades of specific taxa, as evidence of monophyletic relationship and/or reticulated evolution. Here we present PhySortR, a fast, flexible R package for classifying phylogenetic trees. Unlike existing utilities, PhySortR allows for identification of both exclusive and non-exclusive clades uniting the target taxa based on tip labels (i.e., leaves) on a tree, with customisable options to assess clades within the context of the whole tree. Using simulated and empirical datasets, we demonstrate the potential and scalability of PhySortR in analysis of thousands of phylogenetic trees without a priori assumption of tree-rooting, and in yielding readily interpretable trees that unambiguously satisfy the query. PhySortR is a command-line tool that is freely available and easily automatable.

  6. Phylogenetic affinity of tree shrews to Glires is attributed to fast evolution rate.

    Science.gov (United States)

    Lin, Jiannan; Chen, Guangfeng; Gu, Liang; Shen, Yuefeng; Zheng, Meizhu; Zheng, Weisheng; Hu, Xinjie; Zhang, Xiaobai; Qiu, Yu; Liu, Xiaoqing; Jiang, Cizhong

    2014-02-01

    Previous phylogenetic analyses have led to incongruent evolutionary relationships between tree shrews and other suborders of Euarchontoglires. What caused the incongruence remains elusive. In this study, we identified 6845 orthologous genes between seventeen placental mammals. Tree shrews and Primates were monophyletic in the phylogenetic trees derived from the first or/and second codon positions whereas tree shrews and Glires formed a monophyly in the trees derived from the third or all codon positions. The same topology was obtained in the phylogeny inference using the slowly and fast evolving genes, respectively. This incongruence was likely attributed to the fast substitution rate in tree shrews and Glires. Notably, sequence GC content only was not informative to resolve the controversial phylogenetic relationships between tree shrews, Glires, and Primates. Finally, estimation in the confidence of the tree selection strongly supported the phylogenetic affiliation of tree shrews to Primates as a monophyly. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Morphology and systematic position of Cingula tumidula G.O. Sars, 1878 Gastropoda: Rissoidae).

    Science.gov (United States)

    Nekhaev, Ivan O

    2016-11-03

    Rissoidae is a family of small to minute marine gastropods distributed worldwide. The generic composition of the family was revised by Ponder (1984) based on characters of external morphology and internal anatomy. However, species level taxonomy within the family is still based mainly on conchological characters, which are less informative and usually not sufficient for resolving the systematic relationships of species. Northern Atlantic representatives of the family were revised by Warén (1974; 1996) and Bouchet & Warén (1993) based on shape and sculpture of both proto- and teleoconch, and were suggested to be members of several genera, widely distributed in boreal or even tropical Atlantic environments. These include Alvania Risso, 1826; Onoba H. & A. Adams, 1852; Obtusella Cossmann, 1921 and a few more. However, it was recently demonstrated that some these genera are not monophyletic (Criscione et al. 2016).

  8. Phylogeny, identification and nomenclature of the genus Aspergillus

    DEFF Research Database (Denmark)

    Samson, R.A.; Visagie, C.M.; Houbraken, J.

    2014-01-01

    , meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera. The International Commission of Penicillium and Aspergillus decided to keep Aspergillus instead of using smaller genera. In this paper, we present the arguments for this decision...... data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species....... We introduce new combinations for accepted species presently lacking an Aspergillus name and provide an updated accepted species list for the genus, now containing 339 species. To add to the scientific value of the list, we include information about living ex-type culture collection numbers and Gen...

  9. 2. The Amsterdam Declaration on fungal nomenclature

    DEFF Research Database (Denmark)

    Hawksworth, David L.; Crous, Pedro W.; Redhead, Scott A.

    2011-01-01

    The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19-20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current...... to advise on the problem. The Declaration recognizes the need for an orderly transition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except...... where there is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated...

  10. Dental morphology and the phylogenetic "place" of Australopithecus sediba.

    Science.gov (United States)

    Irish, Joel D; Guatelli-Steinberg, Debbie; Legge, Scott S; de Ruiter, Darryl J; Berger, Lee R

    2013-04-12

    To characterize further the Australopithecus sediba hypodigm, we describe 22 dental traits in specimens MH1 and MH2. Like other skeletal elements, the teeth present a mosaic of primitive and derived features. The new nonmetric data are then qualitatively and phenetically compared with those in eight other African hominin samples, before cladistic analyses using a gorilla outgroup. There is some distinction, largely driven by contrasting molar traits, from East African australopiths. However, Au. sediba links with Au. africanus to form a South African australopith clade. These species present five apomorphies, including shared expressions of Carabelli's upper first molar (UM1) and protostylid lower first molar (LM1). Five synapomorphies are also evident between them and monophyletic Homo habilis/rudolfensis + H. erectus. Finally, a South African australopith + Homo clade is supported by four shared derived states, including identical LM1 cusp 7 expression.

  11. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans.

    Science.gov (United States)

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C G; Benavente, Ricardo

    2012-10-09

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans.

  12. A systematic analysis of Heliotropium, Tournefortia, and allied taxa of the Heliotropiaceae (Boraginales) based on ITS1 sequences and morphological data.

    Science.gov (United States)

    Diane, Nadja; Förther, Harald; Hilger, Hartmut H

    2002-02-01

    The relationships of Heliotropium, Tournefortia, Schleidenia, Ixorhea, and Ceballosia of the Heliotropiaceae (Boraginaceae in the traditional sense, Boraginales) are investigated using molecular data (ITS1). These genera form a monophyletic group. Five clades can be distinguished on the basis of molecular data, morphological traits, and distribution. In their current circumscription, Tournefortia is polyphyletic and Heliotropium is paraphyletic. Tournefortia section Cyphocyema is the sister group to all other ingroup taxa. Heliotropium section Orthostachys including Schleidenia sensu lato is the well supported sister group of a clade comprising the other species of Heliotropium sensu stricto (s.s.), Tournefortia section Tournefortia, and Ceballosia. Heliotropium s.s. forms two clades: one clade includes all species of the Old World and represents the only monophylum of Heliotropium s.s. The other clade consists of all Heliotropium s.s. species of the New World but also includes Tournefortia section Tournefortia and Ceballosia. The results suggest that taxonomic changes are inevitable.

  13. [Identification of common medicinal snakes in medicated liquor of Guangdong by COI barcode sequence].

    Science.gov (United States)

    Liao, Jing; Chao, Zhi; Zhang, Liang

    2013-11-01

    To identify the common snakes in medicated liquor of Guangdong using COI barcode sequence,and to test the feasibility. The COI barcode sequences of collected medicinal snakes were amplified and sequenced. The sequences combined with the data from GenBank were analyzed for divergence and building a neighbor-joining(NJ) tree with MEGA 5.0. The genetic distance and NJ tree demonstrated that there were 241 variable sites in these species, and the average (A + T) content of 56.2% was higher than the average (G + C) content of 43.7%. The maximum interspecific genetic distance was 0.2568, and the minimum was 0. 1519. In the NJ tree,each species formed a monophyletic clade with bootstrap supports of 100%. DNA barcoding identification method based on the COI sequence is accurate and can be applied to identify the common medicinal snakes.

  14. Pangenomic Definition of Prokaryotic Species and the Phylogenetic Structure of Prochlorococcus spp.

    Directory of Open Access Journals (Sweden)

    Mikhail A. Moldovan

    2018-03-01

    Full Text Available The pangenome is the collection of all groups of orthologous genes (OGGs from a set of genomes. We apply the pangenome analysis to propose a definition of prokaryotic species based on identification of lineage-specific gene sets. While being similar to the classical biological definition based on allele flow, it does not rely on DNA similarity levels and does not require analysis of homologous recombination. Hence this definition is relatively objective and independent of arbitrary thresholds. A systematic analysis of 110 accepted species with the largest numbers of sequenced strains yields results largely consistent with the existing nomenclature. However, it has revealed that abundant marine cyanobacteria Prochlorococcus marinus should be divided into two species. As a control we have confirmed the paraphyletic origin of Yersinia pseudotuberculosis (with embedded, monophyletic Y. pestis and Burkholderia pseudomallei (with B. mallei. We also demonstrate that by our definition and in accordance with recent studies Escherichia coli and Shigella spp. are one species.

  15. A phylogenetic revision of the Glaucopsyche section (Lepidoptera: Lycaenidae), with special focus on the Phengaris-Maculinea clade

    DEFF Research Database (Denmark)

    Ugelvig, L. V.; Vila, R.; Pierce, N. E.

    2011-01-01

    Despite much research on the socially parasitic large blue butterflies (genus Maculinea) in the past 40years, their relationship to their closest relatives, Phengaris, is controversial and the relationships among the remaining genera in the Glaucopsyche section are largely unresolved. The evoluti......Despite much research on the socially parasitic large blue butterflies (genus Maculinea) in the past 40years, their relationship to their closest relatives, Phengaris, is controversial and the relationships among the remaining genera in the Glaucopsyche section are largely unresolved...... utilising more than one plant family. Maculinea is, for the first time, recovered with strong support as a monophyletic group nested within Phengaris, with the closest relative being the rare genus Caerulea. The genus Glaucopsyche is polyphyletic, including the genera Sinia and Iolana. Interestingly, we...

  16. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in plants.

    Science.gov (United States)

    Renault, Hugues

    2013-06-01

    The non-protein amino acid γ-aminobutyric acid (GABA) accumulates in plants in response to a wide variety of environmental cues. Recent data point toward an involvement of GABA in tricarboxylic acid (TCA) cycle activity and respiration, especially in stressed roots. To gain further insights into potential GABA functions in plants, phylogenetic and bioinformatic approaches were undertaken. Phylogenetic reconstruction of the GABA transaminase (GABA-T) protein family revealed the monophyletic nature of plant GABA-Ts. However, this analysis also pointed to the common origin of several plant aminotransferases families, which were found more similar to plant GABA-Ts than yeast and human GABA-Ts. A computational analysis of AtGABA-T co-expressed genes was performed in roots and in stress conditions. This second approach uncovered a strong connection between GABA metabolism and glyoxylate cycle during stress. Both in silico analyses open new perspectives and hypotheses for GABA metabolic functions in plants.

  17. Fiat lux!

    Science.gov (United States)

    Renault, Hugues

    2013-01-01

    The non-protein amino acid γ-aminobutyric acid (GABA) accumulates in plants in response to a wide variety of environmental cues. Recent data point toward an involvement of GABA in tricarboxylic acid (TCA) cycle activity and respiration, especially in stressed roots. To gain further insights into potential GABA functions in plants, phylogenetic and bioinformatic approaches were undertaken. Phylogenetic reconstruction of the GABA transaminase (GABA-T) protein family revealed the monophyletic nature of plant GABA-Ts. However, this analysis also pointed to the common origin of several plant aminotransferases families, which were found more similar to plant GABA-Ts than yeast and human GABA-Ts. A computational analysis of AtGABA-T co-expressed genes was performed in roots and in stress conditions. This second approach uncovered a strong connection between GABA metabolism and glyoxylate cycle during stress. Both in silico analyses open new perspectives and hypotheses for GABA metabolic functions in plants. PMID:23518583

  18. Ontogenetic changes in mouth morphology triggers conflicting hypotheses of relationships in characid fishes (Ostariophysi: Characiformes

    Directory of Open Access Journals (Sweden)

    Alice Hirschmann

    2017-03-01

    Full Text Available ABSTRACT Bryconamericus lethostigmus is the type-species of the monotypic genus Odontostoechus, diagnosed in part based on the presence of a unique tooth series in the premaxilla. Recently a new proposal of classification of the Stevardiinae placed Odontostoechus as a junior synonym of a monophyletic genus Bryconamericus sensu stricto, a genus characterized by the presence of two tooth series. Bryconamericus lethostigmus is redescribed herein and the single tooth series in the premaxilla is demonstrated to originate from merging of the external tooth row with the inner row during ontogeny refuting primary hypothesis of homology between the mouth morphology of B. lethostigmus and the genera Bryconacidnus, Ceratobranchia, Monotocheirodon, Othonocheirodus, Rhinopetitia and Rhinobrycon. A phylogeographic analysis indicated that the pattern described for the sympatric species Diapoma itaimbe is not mirrored by B. lethostigmus. The results also do not support the hypothesis of a new species in the rio Araranguá drainage.

  19. Hydrophylax bahuvistara, a new species of fungoid frog (Amphibia: Ranidae from peninsular India

    Directory of Open Access Journals (Sweden)

    Anand D. Padhye

    2015-09-01

    Full Text Available Hydrophylax bahuvistara, a new species of fungoid frog, is described from peninsular India. It can be separated from its congeners based on a combination of characters including wider head, outline of snout in dorsal view truncated, finger and toe tips without lateroventral groove, foot moderately webbed, metatarsals of 4th and 5th toes closely set, outer metatarsal tubercle small, foot length less than or equal to half of snout vent length, dorsal parts of shank without glandular folds and sparse horny spinules, and heels touch each other when the legs are folded at right angles to the body.  Genetically, H. bahuvistara forms a monophyletic group with H. malabaricus as a sister clade separated by a raw distance of 4.0 to 4.5% in the 16s rRNA gene.  Morphometrically, H. bahuvistara forms a significantly different cluster from H. malabaricus and H. gracilis in Discriminant Analysis.  

  20. Six new species of the genus Exocelina Broun, 1886 from Wano Land, New Guinea (Coleoptera, Dytiscidae, Copelatinae

    Directory of Open Access Journals (Sweden)

    Helena Shaverdo

    2017-04-01

    Full Text Available Six new species of New Guinea Exocelina Broun, 1886 are described in this paper: E. iratoi sp. n., E. likui sp. n., E. pui sp. n., E. pulukensis sp. n., E. tomhansi sp. n., and E. wigodukensis sp. n. Although different morphologically, together with Exocelina ascendens (Balke, 1998, E. bagus (Balke & Hendrich, 2001, and E. ransikiensis Shaverdo, Panjaitan & Balke, 2016, they are found to form a monophyletic clade and be closely related to representatives of the E. ekari-group, based on preliminary analysis of sequence data. An identification key to the species is provided, and important diagnostic characters are illustrated. The present data on the species’ distribution show that most of them are local endemics.

  1. Evolutionary relationships among self-incompatibility RNases

    Science.gov (United States)

    Igic, Boris; Kohn, Joshua R.

    2001-01-01

    T2-type RNases are responsible for self-pollen recognition and rejection in three distantly related families of flowering plants—the Solanaceae, Scrophulariaceae, and Rosaceae. We used phylogenetic analyses of 67 T2-type RNases together with information on intron number and position to determine whether the use of RNases for self-incompatibility in these families is homologous or convergent. All methods of phylogenetic reconstruction as well as patterns of variation in intron structure find that all self-incompatibility RNases along with non-S genes from only two taxa form a monophyletic clade. Several lines of evidence suggest that the best interpretation of this pattern is homology of self-incompatibility RNases from the Scrophulariaceae, Solanaceae, and Rosaceae. Because the most recent common ancestor of these three families is the ancestor of ≈75% of dicot families, our results indicate that RNase-based self-incompatibility was the ancestral state in the majority of dicots. PMID:11698683

  2. A new molecular phylogeny of the Laurencia complex (Rhodophyta, Rhodomelaceae) and a review of key morphological characters result in a new genus, Coronaphycus, and a description of C. novus.

    Science.gov (United States)

    Metti, Yola; Millar, Alan J K; Steinberg, Peter

    2015-10-01

    Within the Laurencia complex (Rhodophyta, Rhodomelaceae), six genera have been recognized based on both molecular analyses and morphology: Laurencia, Osmundea, Chondrophycus, Palisada, Yuzurua, and Laurenciella. Recently, new material from Australia has been collected and included in the current molecular phylogeny, resulting in a new clade. This study examined the generic delineations using a combination of morphological comparisons and phylogenetic analysis of chloroplast (rbcL) nucleotide sequence. The molecular phylogeny recovered eight (rather than six) clades; Yuzurua, Laurenciella, Palisada, and Chondrophycus showed as monophyletic clades each with strong support. However, the genera Osmundea and Laurencia were polyphyletic. Consequently, the new genus Coronaphycus is proposed, resulting in the new combination Coronaphycus elatus and a description of the new species C. novus. © 2015 Phycological Society of America.

  3. Spiny lobster Panulirus versicolor filogenetic and genetic in Lombok waters, West Nusa Tenggara, Indonesia

    Directory of Open Access Journals (Sweden)

    Pranata B.

    2018-02-01

    Full Text Available This study aims to identify the phylogenetic spiny lobster Panulirus versicolor in Lombok waters, Indonesia and its association with P. versicolor spiny lobster from several regions of the Indian Ocean based on the cytochrome oxidase I (COI gene. The researchers collected tissue samples from 13 P. versicolor spiny lobster in Lombok waters. 9 haplotypes were identified with haplotype diversity values (Hd and nucleotides (Pi respectively Hd = 0.859 and Pi = 0.00509. Research results exhibit P. versicolor spiny lobster population from the waters of Lombok is closely related to the spiny lobster population in some regions of the Indian Ocean. In general, P. versicolor spiny lobster population formed a monophyletic clone with spiny lobsters from several regions of the Indian Ocean with genetic distance values (P-distance from 0.001 to 0.004. The reconstruction of the haplotype network exhibited no genetic structure, which means that each population is not genetically isolated from others.

  4. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA

    Directory of Open Access Journals (Sweden)

    HANIF KHADEMI

    2016-04-01

    Full Text Available Abstract. Khademi H, Mehregan I, Assadi M, Nejadsatari T, Zarre S. 2015. Molecular phylogeny of Acer monspessulanum L. subspecies from Iran inferred using the ITS region of nuclear ribosomal DNA. Biodiversitas 17: 16-23. This study was carried out on the Acer monspessulanum complex growing wild in Iran. Internal transcribed spacer (ITS sequences for 75 samples representing five different subspecies of Acer monspessulanum were analyzed. Beside this, 86 previously published ITS sequences from GenBank were used to test the monophyly of the complex worldwide. Phylogenetic analyses were conducted using Bayesian inference and maximum parsimony. The results indicate that most samples of A. monspessulanum species from Iran were part of a monophyletic clade with 8 samples of A. ibericum from Georgia, A. hyrcanum from Iran and one of A. sempervirens from Greece (PP= 1; BS= 79%. Our results indicate that use of morphological characteristics coupled with molecular data will be most effective.

  5. Reticulate evolution and incomplete lineage sorting among the ponderosa pines.

    Science.gov (United States)

    Willyard, Ann; Cronn, Richard; Liston, Aaron

    2009-08-01

    Interspecific gene flow via hybridization may play a major role in evolution by creating reticulate rather than hierarchical lineages in plant species. Occasional diploid pine hybrids indicate the potential for introgression, but reticulation is hard to detect because ancestral polymorphism is still shared across many groups of pine species. Nucleotide sequences for 53 accessions from 17 species in subsection Ponderosae (Pinus) provide evidence for reticulate evolution. Two discordant patterns among independent low-copy nuclear gene trees and a chloroplast haplotype are better explained by introgression than incomplete lineage sorting or other causes of incongruence. Conflicting resolution of three monophyletic Pinus coulteri accessions is best explained by ancient introgression followed by a genetic bottleneck. More recent hybridization transferred a chloroplast from P. jeffreyi to a sympatric P. washoensis individual. We conclude that incomplete lineage sorting could account for other examples of non-monophyly, and caution against any analysis based on single-accession or single-locus sampling in Pinus.

  6. Larsenianthus, a new Asian genus of Gingers (Zingiberaceae with four species

    Directory of Open Access Journals (Sweden)

    W. John Kress

    2010-11-01

    Full Text Available Larsenianthus W.J.Kress & Mood, gen. nov. is described with one new combination and three new species. Larsenianthus careyanus (Benth. W.J.Kress & Mood, comb. nov., is widespread in India and present-day Bangladesh; L. wardianus W.J.Kress, Thet Htun & Bordelon, sp. nov., is from upper Myanmar in Kachin State; L. assamensis S.Dey, Mood, & S.Choudhury, sp. nov., is restricted to Assam, India; and L. arunachalensis M.Sabu, Sanoj & T.Rajesh Kumar, sp. nov., has only been found in Arunachal Pradesh, India. A phylogenetic analysis using the plastid trnK intron and nuclear ITS DNA sequence data indicates that the four species of Larsenianthus form a monophyletic lineage that is sister to Hedychium, a geographically widespread genus of about 50 species in tribe Zingibereae of subfamily Zingiberoideae. A dichotomous key and three-locus DNA barcodes are provided as aids for the identification of the four species of Larsenianthus.

  7. Delimitation of Umbelopsis (Mucorales, Umbelopsidaceae fam. nov.) based on ITS sequence and RFLP data.

    Science.gov (United States)

    Meyer, Wieland; Gams, Walter

    2003-03-01

    In a continuation of studies started by de Ruiter et al. (1993), all known species of the Mortierella isabellina-group (Micromucor/Umbelopsis clade of O'Donnell et al. 2001) and a few other Mucorales and species of Mortierella were investigated by RFLP (including ITS1, 5.8S, ITS2 and the 5' end of the large subunit rDNA gene) and ITS1 sequence analyses. This monophyletic group is unrelated to Mortierella and is only distantly related to the core group of the Mucoraceae. M. longicollis falls outside the Umbelopsis clade. Molecular data resolved two subclades within the M. isabellina-group; however, they are not correlated with any differences in sporangial wall and shape, spore pigmentation and shape, or sporangiophore branching. Therefore we subsume all taxa in one genus, Umbelopsis. The new family Umbelopsidaceae and the new combinations U. isabellina, U. ramanniana, and U. autotrophica are proposed.

  8. New species of Moenkhausia Eigenmann, 1903 (Characiformes: Characidae with comments on the Moenkhausia oligolepis species complex

    Directory of Open Access Journals (Sweden)

    Ricardo C. Benine

    Full Text Available A new species of Moenkhausia is described from tributaries of the rio Paraguay, Brazil. The new species is diagnosed from congeners by characters related to body coloration, the number of lateral line scales, the degree of poring of the lateral line, and number of scales rows above and below the lateral line. Molecular analyses using partial sequences of the mitochondrial gene Cytochrome Oxidase I from specimens of the new species and specimens belonging to morphologically similar species demonstrated that the new species is easily differentiated by their high genetic distance and by their position in the phylogenetic hypothesis obtained through the Maximum Parsimony methodology. The analyses of three samples of M. oligolepis also revealed that they have high genetic distances and belong to different monophyletic groups suggesting that this species corresponds to a species complex rather than a single species.

  9. Pachyseris inattesa sp. n. (Cnidaria, Anthozoa, Scleractinia): A new reef coral species from the red sea and its phylogenetic relationships

    KAUST Repository

    Terraneo, Tullia I.

    2014-08-13

    A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined. © Tullia I. Terraneo et al.

  10. Phylogenetics of the Phlebotomine Sand Fly Group Verrucarum (Diptera: Psychodidae: Lutzomyia)

    Science.gov (United States)

    Cohnstaedt, Lee W.; Beati, Lorenza; Caceres, Abraham G.; Ferro, Cristina; Munstermann, Leonard E.

    2011-01-01

    Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity—the Lutzomyia longiflocosa–Lutzomyia sauroida pair and the Lutzomyia quasitownsendi–Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution. PMID:21633028

  11. Opsins in onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods.

    Science.gov (United States)

    Hering, Lars; Henze, Miriam J; Kohler, Martin; Kelber, Almut; Bleidorn, Christoph; Leschke, Maren; Nickel, Birgit; Meyer, Matthias; Kircher, Martin; Sunnucks, Paul; Mayer, Georg

    2012-11-01

    Multiple visual pigments, prerequisites for color vision, are found in arthropods, but the evolutionary origin of their diversity remains obscure. In this study, we explore the opsin genes in five distantly related species of Onychophora, using deep transcriptome sequencing and screening approaches. Surprisingly, our data reveal the presence of only one opsin gene (onychopsin) in each onychophoran species, and our behavioral experiments indicate a maximum sensitivity of onychopsin to blue-green light. In our phylogenetic analyses, the onychopsins represent the sister group to the monophyletic clade of visual r-opsins of arthropods. These results concur with phylogenomic support for the sister-group status of the Onychophora and Arthropoda and provide evidence for monochromatic vision in velvet worms and in the last common ancestor of Onychophora and Arthropoda. We conclude that the diversification of visual pigments and color vision evolved in arthropods, along with the evolution of compound eyes-one of the most sophisticated visual systems known.

  12. alpha-Crystallin A sequences of Alligator mississippiensis and the lizard Tupinambis teguixin: molecular evolution and reptilian phylogeny.

    Science.gov (United States)

    de Jong, W W; Zweers, A; Versteeg, M; Dessauer, H C; Goodman, M

    1985-11-01

    The amino acid sequences of the eye lens protein alpha-crystallin A from many mammalian and avian species, two frog species, and a dogfish have provided detailed information about the molecular evolution of this protein and allowed some useful inferences about phylogenetic relationships among these species. We now have isolated and sequenced the alpha-crystallins of the American alligator and the common tegu lizard. The reptilian alpha A chains appear to have evolved as slowly as those of other vertebrates, i.e., at two to three amino acid replacements per 100 residues in 100 Myr. The lack of charged replacements and the general types and distribution of replacements also are similar to those in other vertebrate alpha A chains. Maximum-parsimony analyses of the total data set of 67 vertebrate alpha A sequences support the monophyletic origin of alligator, tegu, and birds and favor the grouping of crocodilians and birds as surviving sister groups in the subclass Archosauria.

  13. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  14. The tempo and mode of barnacle evolution

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Harp, Margaret; Høeg, Jens T

    2008-01-01

    (outgroup) species representing almost all the Thoracica families to assess the tempo and mode of barnacle evolution. Using phylogenetic methods of maximum parsimony, maximum likelihood, and Bayesian inference and 14 fossil calibrations, we found that: (1) Iblomorpha form a monophyletic group; (2......) pedunculated barnacles without shell plates (Heteralepadomorpha) are not ancestral, but have evolved, at least twice, from plated forms; (3) the ontogenetic pattern with 5-->6-->8-->12+ plates does not reflect Thoracica shell evolution; (4) the traditional asymmetric barnacles (Verrucidae) and the Balanomorpha......) the Thoracica suborders evolved since the Early Carboniferous (340mya) with the final radiation of the Sessilia in the Upper Jurassic (147mya). These results, therefore, reject many of the underlying hypotheses about character evolution in the Cirripedia Thoracica, stimulate a variety of new thoughts...

  15. Phylogenetic Analysis of a 'Jewel Orchid' Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions.

    Science.gov (United States)

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection.

  16. Phylogenetic Analysis of a 'Jewel Orchid' Genus Goodyera (Orchidaceae Based on DNA Sequence Data from Nuclear and Plastid Regions.

    Directory of Open Access Journals (Sweden)

    Chao Hu

    Full Text Available A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae based on the nuclear ribosomal internal transcribed spacer (ITS region and two chloroplast loci (matK and trnL-F was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1 Goodyera is not monophyletic; 2 Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3 sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection.

  17. Phylogenetic Analysis of a ‘Jewel Orchid’ Genus Goodyera (Orchidaceae) Based on DNA Sequence Data from Nuclear and Plastid Regions

    Science.gov (United States)

    Hu, Chao; Tian, Huaizhen; Li, Hongqing; Hu, Aiqun; Xing, Fuwu; Bhattacharjee, Avishek; Hsu, Tianchuan; Kumar, Pankaj; Chung, Shihwen

    2016-01-01

    A molecular phylogeny of Asiatic species of Goodyera (Orchidaceae, Cranichideae, Goodyerinae) based on the nuclear ribosomal internal transcribed spacer (ITS) region and two chloroplast loci (matK and trnL-F) was presented. Thirty-five species represented by 132 samples of Goodyera were analyzed, along with other 27 genera/48 species, using Pterostylis longifolia and Chloraea gaudichaudii as outgroups. Bayesian inference, maximum parsimony and maximum likelihood methods were used to reveal the intrageneric relationships of Goodyera and its intergeneric relationships to related genera. The results indicate that: 1) Goodyera is not monophyletic; 2) Goodyera could be divided into four sections, viz., Goodyera, Otosepalum, Reticulum and a new section; 3) sect. Reticulum can be further divided into two subsections, viz., Reticulum and Foliosum, whereas sect. Goodyera can in turn be divided into subsections Goodyera and a new subsection. PMID:26927946

  18. FELINE IMMUNODEFICIENCY VIRUS (FIV) IN WILD PALLAS’ CATS

    Science.gov (United States)

    Brown, Meredith A.; Munkhtsog, Bariushaa; Troyer, Jennifer L.; Ross, Steve; Sellers, Rani; Fine, Amanda E.; Swanson, William F.; Roelke, Melody E.; O’Brien1, Stephen J.

    2009-01-01

    Feline immunodeficiency virus (FIV), a feline lentivirus related to HIV, causes immune dysfunction in domestic and wild cats. The Pallas’ cat is the only species from Asia known to harbor a species-specific strain of FIV designated FIVOma in natural populations. Here, a 25% seroprevalence of FIV is reported from 28 wild Mongolian Pallas’ cats sampled from 2000-2008. Phylogenetic analysis of proviral RT-Pol from eight FIVOma isolates from Mongolia, Russia, China and Kazakhstan reveals a unique monophyletic lineage of the virus within the Pallas’ cat population, most closely related to the African cheetah and leopard FIV strains. Histopathological examination of lymph node and spleen from infected and uninfected Pallas’ cats suggests that FIVOma causes immune depletion in its’ native host. PMID:19926144

  19. Phylogenetic analysis of the sharpshooter genus Subrasaca Young, 1977 (Hemiptera, Cicadellidae, Cicadellini)

    Science.gov (United States)

    da Silva, Roberta dos Santos; Mejdalani, Gabriel; Cavichioli, Rodney R.

    2015-01-01

    Abstract The South American sharpshooter genus Subrasaca comprises 14 species. Some species of this genus are quite common in the Brazilian Atlantic Rainforest. In this paper, a phylogenetic analysis of Subrasaca, based on a matrix of 20 terminal taxa and 72 morphological characters of the head, thorax, and male and female genitalia, is presented. The analysis yielded six equally most parsimonious trees (197 steps, CI = 0.6091, RI = 0.5722, and RC = 0.3486). The results suggest that Subrasaca is a monophyletic taxon, although the genus branch is not robust. The clade showing the highest bootstrap and Bremer scores is formed by species with longitudinal dark brown to black stripes on the forewings (Subrasaca bimaculata, Subrasaca constricta, Subrasaca curvovittata, and Subrasaca flavolineata), followed by Subrasaca atronasa + Subrasaca austera. PMID:25829841

  20. Two new species of Romulea (Iridaceae: Crocoideae from the west­ ern Karoo, Northern Cape and notes on infrageneric classification and range extensions

    Directory of Open Access Journals (Sweden)

    J. C. Manning

    2004-09-01

    Full Text Available Two new species of Romulea are described from Northern Cape, raising the number of species in southern Africa to 76. R. collina J.C.Manning & Goldblatl is endemic to the Hantamsberg near Calvinia. It is distinguished in subgenus Spatalanthus by its clumped habit, yellow flowers with dark markings in the throat, and short papery bracts. A re-examination of rela­tionships within the subgenus suggests that section Cruciatae is not monophyletic and it is accordingly no longer recog­nized as separate from section  Spatalanthus. R. eburnea J.C.Manning & Goldblatt is a distinctive species of subgenus Spatalanthus from the Komsberg near Sutherland. It is distinguished by its golden yellow flowers with the apical third of the tepals coloured pale creamy apricot, bracts with broad, translucent margins and tips, and an unusually long perianth tube, 10-13 mm long.

  1. Species delimitation of the Hyphydrus ovatus complex in western Palaearctic with an update of species distributions (Coleoptera, Dytiscidae

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    2017-06-01

    Full Text Available The species status of Hyphydrus anatolicus Guignot, 1957 and H. sanctus Sharp, 1882, previously often confused with the widespread H. ovatus (Linnaeus, 1760, are tested with molecular and morphological characters. Cytochrome c oxidase subunit 1 (CO1 was sequenced for 32 specimens of all three species. Gene-trees were inferred with parsimony, time-free bayesian and strict clock bayesian analyses. The GMYC model was used to estimate species limits. All three species were reciprocally monophyletic with CO1 and highly supported. The GMYC species delimitation analysis unequivocally delimited the three species with no other than the three species solution included in the confidence interval. A likelihood ratio test rejected the one-species null model. Important morphological characters distinguishing the species are provided and illustrated. New distributional data are given for the following species: Hyphydrus anatolicus from Slovakia and Ukraine, and H. aubei Ganglbauer, 1891, and H. sanctus from Turkey.

  2. Forensic data and microvariant sequence characterization of 27 Y-STR loci analyzed in four Eastern African countries.

    Science.gov (United States)

    Iacovacci, Giuseppe; D'Atanasio, Eugenia; Marini, Ornella; Coppa, Alfredo; Sellitto, Daniele; Trombetta, Beniamino; Berti, Andrea; Cruciani, Fulvio

    2017-03-01

    By using the recently introduced 6-dye Yfiler ® Plus multiplex, we analyzed 462 males belonging to 20 ethnic groups from four eastern African countries (Eritrea, Ethiopia, Djibouti and Kenya). Through a Y-STR sequence analysis, combined with 62 SNP-based haplogroup information, we were able to classify observed microvariant alleles at four Y-STR loci as either monophyletic (DYF387S1 and DYS458) or recurrent (DYS449 and DYS627). We found evidence of non-allelic gene conversion among paralogous STRs of the two-copy locus DYF387S1. Twenty-two diallelic and triallelic patterns observed at 13 different loci were found to be significantly over-represented (peastern African ethnic groups, and suggests caution in the use of country-based haplotype frequency distributions for forensic inferences in this region. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Evolutionary position of Peruvian land snails (Orthalicidae among Stylommatophora (Mollusca: Gastropoda

    Directory of Open Access Journals (Sweden)

    Jorge Ramirez

    2011-07-01

    Full Text Available The genera Bostryx and Scutalus (Orthalicidae: Bulimulinae are endemics from South America. They are mainly distributed on the western slopes of the Peruvian Andes. The goal of the present work was to assess their evolutionary position among the stylommatophoran gastropods based on the 16S rRNA mitochondrial marker. Four sequences were obtained, and along with 28 sequences of other Stylommatophora retrieved from the GenBank, were aligned with ClustalX. The phylogenetic reconstruction was carried out using the methods of Neighbor-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian inference. The multiple sequence alignment had 371 sites, with indels. The two genera of the family Orthalicidae for the first time included in a molecular phylogeny (Bostryx and Scutalus, formed a monophyletic group along with another member of the superfamily Orthalicoidea (Placostylus, result that is comparable with that obtained with nuclear markers. Their evolutionary relationship with other land snails is also discussed.

  4. Phylogenetic relationships of Malayan gaur with other species of the genus Bos based on cytochrome b gene DNA sequences.

    Science.gov (United States)

    Rosli, M K A; Zakaria, S S; Syed-Shabthar, S M F; Zainal, Z Z; Shukor, M N; Mahani, M C; Abas-Mazni, O; Md-Zain, B M

    2011-03-22

    The Malayan gaur (Bos gaurus hubbacki) is one of the three subspecies of gaurs that can be found in Malaysia. We examined the phylogenetic relationships of this subspecies with other species of the genus Bos (B. javanicus, B. indicus, B. taurus, and B. grunniens). The sequence of a key gene, cytochrome b, was compared among 20 Bos species and the bongo antelope, used as an outgroup. Phylogenetic reconstruction was employed using neighbor joining and maximum parsimony in PAUP and Bayesian inference in MrBayes 3.1. All tree topologies indicated that the Malayan gaur is in its own monophyletic clade, distinct from other species of the genus Bos. We also found significant branching differences in the tree topologies between wild and domestic cattle.

  5. Mitochondrial COI and morphological specificity of the mealy aphids (Hyalopterus ssp. collected from different hosts in Europe (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Rimantas Rakauskas

    2013-07-01

    Full Text Available Forty three European population samples of mealy aphids from various winter and summer host plants were attributed to respective species of Hyalopterus by means of their partial sequences of mitochondrial COI gene. Used Hyalopterus samples emerged as monophyletic relative to outgroup and formed three major clades representing three host specific mealy aphid species in the Neighbor joining, Maximum parsimony, Maximum likelihood and Bayesian inference trees. H. pruni and H. persikonus emerged as a sister species, whilst H. amygdali was located basally. Samples representing different clades in the molecular trees were used for canonical discrimination analysis based on twenty two morphological characters. Length of the median dorsal head hair enabled a 97.3 % separation of H. amygdali from the remaining two species. No single character enabled satisfactory discrimination between apterous viviparous females of H. pruni and H. persikonus. A modified key for the morphological identification of Hyalopterus species is suggested and their taxonomic status discussed.

  6. Complete mitochondrial genome and the phylogenetic position of the Blotchy swell shark Cephaloscyllium umbratile.

    Science.gov (United States)

    Chen, Hao; Lin, Lingling; Chen, Xiao; Ai, Weiming; Chen, Shaobo

    2016-07-01

    In this study, the complete mitochondrial genome of the Blotchy swell shark Cephaloscyllium umbratile was determined. It was a circle molecular (16 698 bp), contained 37 genes with typical order to that of most other vertebrates. The nucleotide composition was 31.0% A, 24.0% C, 14.0% G, and 31.3% T. There were 26 bp short intergenic spaces located in 11 gene junctions and 28 bp overlaps located in 7 gene junctions in the whole mitogenome. Two start codons (GTG and ATG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The phylogenetic result showed that C. umbratile was clustered with Scyliorhinus canicula and formed the Scyliorhinidae clade, which was the most basal clade within Carcharhiniformes, and Carcharhinidae is not monophyletic.

  7. Phylogenetic relationships of German heavy draught horse breeds inferred from mitochondrial DNA D-loop variation.

    Science.gov (United States)

    Aberle, K S; Hamann, H; Drögemüller, C; Distl, O

    2007-04-01

    We analysed a 610-bp mitochondrial (mt)DNA D-loop fragment in a sample of German draught horse breeds and compared the polymorphic sites with sequences from Arabian, Hanoverian, Exmoor, Icelandic, Sorraia and Przewalski's Horses as well as with Suffolk, Shire and Belgian horses. In a total of 65 horses, 70 polymorphic sites representing 47 haplotypes were observed. The average percentage of polymorphic sites was 11.5% for the mtDNA fragment analysed. In the nine different draught horse breeds including South German, Mecklenburg, Saxon Thuringa coldblood, Rhenisch German, Schleswig Draught Horse, Black Forest Horse, Shire, Suffolk and Belgian, 61 polymorphic sites and 24 haplotypes were found. The phylogenetic analysis failed to show monophyletic groups for the draught horses. The analysis indicated that the draught horse populations investigated consist of diverse genetic groups with respect to their maternal lineage.

  8. Vicariance biogeography of the open-ocean Pacific

    Science.gov (United States)

    White, Brian N.

    The first cladogram to treat oceanic water masses as distinct geographic units presents a ‘hydrotectonic’ history of Pacific surface water masses. It is used to test the idea that the oceanographic subdivision of the surface waters of the Pacific Basin into separate water masses shaped pelagic biogeographic patterns in much the same way that the tectonic fragmentation of Pangea influenced biogeographic patterns on land. The historical water-mass relationships depicted by the surface water-mass cladogram resemble modern pelagic biogeographic regions. The prediction that the cladistic phylogenies of monophyletic groups having allopatric taxa in three or more surface water masses will be consistent with the topology of the surface water-mass cladogram is met by the pelagic fish genera Stomias and Evermanella.

  9. Exocelina baliem sp. n., the only known pond species of New Guinea Exocelina Broun, 1886 (Coleoptera, Dytiscidae, Copelatinae

    Directory of Open Access Journals (Sweden)

    Helena Shaverdo

    2013-05-01

    Full Text Available Exocelina baliem sp. n. is described from the Baliem Valley in the Central Mountain Range of New Guinea (Papua Province, Indonesia.striolate elytra, different structure and setation of the male and female genitalia and tarsomeres, and inhabiting swampy ponds, the new species differs from all known New Guinea species, which have smooth elytra and are stream associated. It forms a monophyletic group with the Australian E. ferruginea (Sharp, 1882 and New Caledonian E. inexspectata Wewalka, Balke & Hendrich, 2010, based on shape of the paramere and structure of the male tarsi. Habitus, protarsomeres, and male and female genitalia are illustrated, comparing some structures with E. ferruginea and two New Guinea stream species. We briefly discuss the biogeographic relevance of this discovery.

  10. A new genus of speleophriid copepod (Copepoda: Misophrioida) from a cenote in the Yucatan, Mexico with a phylogenetic analysis at the species level.

    Science.gov (United States)

    Boxshall, Geoff A; Zylinski, Sarah; Jaume, Damià; Iliffe, Thomas M; Suárez-Morales, Eduardo

    2014-06-23

    A new genus and species of speleophriid copepod, Mexicophria cenoticola gen. et sp. nov., is described based on material collected from a cenote in the Yucatan Peninsula of Mexico. It is characterised by relatively reduced fifth legs that are located adjacent to the ventral midline in both sexes, by the possession of a bulbous swelling on the first antennulary segment in both sexes, and by the reduced setation of the swimming legs. The presence of just one inner margin seta on the second endopodal segment of legs 2 to 4 is a unique feature for the family. A phylogenetic analysis places the new genus on a basal lineage of the family together with its sister taxon, Boxshallia Huys, 1988, from Lanzarote in the Canary Islands, and recovers the existing genera as monophyletic units. The zoogeography is discussed at local, regional, ocean basin  and global scales.

  11. Phylogeny and new species of the Neotropical bee genus Paroxystoglossa Moure (Hymenoptera, Apoidea

    Directory of Open Access Journals (Sweden)

    Rodrigo Barbosa Gonçalves

    Full Text Available ABSTRACT Paroxystoglossa is a solitary, ground-nesting bee genus. It was revised in 1960 and currently includes nine species from Argentina, Brazil and Paraguay. The objectives of this contribution are to provide a morphological phylogeny for the group and to describe two new species: P. levigata n.sp. and P. mourella n.sp. Paroxystoglossa is monophyletic and three species groups are recognized, jocasta species group: (P. mourella n.sp., (P. brachycera, (P. jocasta, P. barbata, transversa species group: (P. transversa, P. levigata n.sp., and crossotos species group: (P. mimetica, (P. crossotos, P. seabrai, (P. andromache, P. spiloptera. The crossotos and transversa species groups were considered as sister groups. Interestingly Paroxystoglossa species have very similar male genital capsules an uncommon pattern among Augochlorini genera. The species groups have a widely redundant distribution indicating replication events in southeastern South America. An updated, illustrated key for species identification is also presented.

  12. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    Science.gov (United States)

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  13. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  14. DNA barcoding and phylogeny of Calidris and Tringa (Aves: Scolopacidae).

    Science.gov (United States)

    Huang, Zuhao; Tu, Feiyun

    2017-07-01

    The avian genera Calidris and Tringa are the largest of the widespread family of Scolopacidae. The phylogeny of members of the two genera is still a matter of controversial. Mitochondrial cytochrome c oxidase subunit I (COI) can serve as a fast and accurate marker for the identification and phylogeny of animal species. In this study, we analyzed the COI barcodes of thirty-one species of the two genera. All the species had distinct COI sequences. Two hundred and twenty-one variable sites were identified. Kimura two-parameter distances were calculated between barcodes. Neighbor-joining and maximum likelihood methods were used to construct phylogenetic trees. All the species could be discriminated by their distinct clades in the phylogenetic trees. The phylogenetic trees grouped all the species of Calidris and Tringa into different monophyletic clade, respectively. COI data showed a well-supported phylogeny for Calidris and Tringa species.

  15. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    Science.gov (United States)

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  16. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs.

    Science.gov (United States)

    Sues, Hans-Dieter; Averianov, Alexander

    2009-07-22

    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle-Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian-Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively.

  17. EVOLUTIONARY TRANSITIONS IN ENZYME ACTIVITY OF ANT FUNGUS GARDENS

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Schiøtt, Morten; Mueller, Ulrich G

    2010-01-01

    an association with a monophyletic clade of specialized symbionts. In conjunction with the transition to specialized symbionts, the ants advanced in colony size and social complexity. Here we provide a comparative study of the functional specialization in extracellular enzyme activities in fungus gardens across...... the attine phylogeny. We show that, relative to sister clades, gardens of higher-attine ants have enhanced activity of protein-digesting enzymes, whereas gardens of leaf-cutting ants also have increased activity of starch-digesting enzymes. However, the enzyme activities of lower-attine fungus gardens...... are targeted primarily towards partial degradation of plant cell walls, reflecting a plesiomorphic state of non-domesticated fungi. The enzyme profiles of the higher-attine and leaf-cutting gardens appear particularly suited to digest fresh plant materials and to access nutrients from live cells without major...

  18. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  19. THE MYRMICINE ANT GENUS ALLOMERUS MAYR (HYMENOPTERA: FORMICIDAE

    Directory of Open Access Journals (Sweden)

    FERNÁNDEZ FERNANDO

    2007-06-01

    Full Text Available The Neotropical myrmicine ant genus Allomerus Mayr is revised. The genus isapparently monophyletic based on the antennal club confi guration. I recognize 8 species(4 described as new: Allomerus brevipilosus n. sp. (Brazil, A. decemarticulatusMayr (Brazil, French Guiana, A. dentatus n. sp. (Venezuela, A. maietae n. sp.(Brazil, A. octoarticulatus Mayr (=A. tuberculatus Forel n. syn. = A. octoarticulatusvar. demerarae W. M. Wheeler n. syn. = A. novemarticulatus Wheeler & Mann n.syn. [Brazil, Bolivia, Colombia, French Guiana, Peru], A. septemarticulatus Mayrstatus rev. (Brazil, A. undecemarticulatus n. sp. (Venezuela and A. vogeli Kempf(Venezuela, Brazil. Better knowledge of the taxonomy of Allomerus is needed tounderstand the apparently sporadic differences in antennal fl agellomere number andspeciation processes that are probably linked to plant cavity colonization.

  20. Two new species of Euptychia Hübner, 1818 from the upper Amazon basin (Lepidoptera, Nymphalidae, Satyrinae).

    Science.gov (United States)

    Neild, Andrew F E; Nakahara, Shinichi; Zacca, Thamara; Fratello, Steven; Lamas, Gerardo; Le Crom, Jean-François; Dolibaina, Diego R; Dias, Fernando M S; Casagrande, Mirna M; Mielke, Olaf H H; Espeland, Marianne

    2015-01-01

    Two new species of Euptychia Hübner, 1818 are described from the upper Amazon basin: Euptychia attenboroughi Neild, Nakahara, Fratello & Le Crom, sp. n. (type locality: Amazonas, Venezuela), and Euptychia sophiae Zacca, Nakahara, Dolibaina & Dias, sp. n. (type locality: Acre, Brazil). Their unusual facies prompted molecular and phylogenetic analyses of one of the species resulting in support for their classification in monophyletic Euptychia. Diagnostic characters for the two species are presented based on wing morphology, wing pattern, presence of androconial patches on the hindwing, and genitalia. Our results indicate that the projection of the tegumen above the uncus, previously considered a synapomorphy for Euptychia, is not shared by all species in the genus. The adults and their genitalia are documented, and distribution data and a map are provided.

  1. Phylogenetic relationships among species of Lutzomyia, subgenus Lutzomyia (Diptera: Psychodidae).

    Science.gov (United States)

    Pinto, Israel S; Filho, José D Andrade; Santos, Claudiney B; Falqueto, Aloísio; Leite, Yuri L R

    2010-01-01

    Lutzomyia França is the largest and most diverse sand fly genus in the New World and contains all the species involved in the transmission of American visceral leishmaniasis (AVL). Morphological characters were used to test the monophyly and to infer phylogenetic relationships among members of the Lutzomyia subgenus. Fifty-two morphological characters from male and female adult specimens belonging to 18 species of Lu. (Lutzomyia) were scored and analyzed. The resulting phylogeny confirms the monophyly of this subgenus and reveals four main internal clades. These four clades, however, do not support the classification of the subgenus in two series, longipalpis and cavernicola, because neither is necessarily monophyletic. Knowledge on phylogenetic relationships among these relevant vectors of AVL should be used as a tool for monitoring target taxa and a first step for establishing an early warning system for disease control.

  2. Phylogenetics of the phlebotomine sand fly group Verrucarum (Diptera: Psychodidae: Lutzomyia).

    Science.gov (United States)

    Cohnstaedt, Lee W; Beati, Lorenza; Caceres, Abraham G; Ferro, Cristina; Munstermann, Leonard E

    2011-06-01

    Within the sand fly genus Lutzomyia, the Verrucarum species group contains several of the principal vectors of American cutaneous leishmaniasis and human bartonellosis in the Andean region of South America. The group encompasses 40 species for which the taxonomic status, phylogenetic relationships, and role of each species in disease transmission remain unresolved. Mitochondrial cytochrome c oxidase I (COI) phylogenetic analysis of a 667-bp fragment supported the morphological classification of the Verrucarum group into series. Genetic sequences from seven species were grouped in well-supported monophyletic lineages. Four species, however, clustered in two paraphyletic lineages that indicate conspecificity--the Lutzomyia longiflocosa-Lutzomyia sauroida pair and the Lutzomyia quasitownsendi-Lutzomyia torvida pair. COI sequences were also evaluated as a taxonomic tool based on interspecific genetic variability within the Verrucarum group and the intraspecific variability of one of its members, Lutzomyia verrucarum, across its known distribution.

  3. Why Africa matters: evolution of Old World Salvia (Lamiaceae) in Africa.

    Science.gov (United States)

    Will, Maria; Claßen-Bockhoff, Regine

    2014-07-01

    Salvia is the largest genus in Lamiaceae and it has recently been found to be non-monophyletic. Molecular data on Old World Salvia are largely lacking. In this study, we present data concerning Salvia in Africa. The focus is on the colonization of the continent, character evolution and the switch of pollination systems in the genus. Maximum likelihood and Bayesian inference were used for phylogenetic reconstruction. Analyses were based on two nuclear markers [internal transcribed spacer (ITS) and external transcribed spacer (ETS)] and one plastid marker (rpl32-trnL). Sequence data were generated for 41 of the 62 African taxa (66 %). Mesquite was used to reconstruct ancestral character states for distribution, life form, calyx shape, stamen type and pollination syndrome. Salvia in Africa is non-monophyletic. Each of the five major regions in Africa, except Madagascar, was colonized at least twice, and floristic links between North African, south-west Asian and European species are strongly supported. The large radiation in Sub-Saharan Africa (23 species) can be traced back to dispersal from North Africa via East Africa to the Cape Region. Adaptation to bird pollination in southern Africa and Madagascar reflects parallel evolution. The phenotypic diversity in African Salvia is associated with repeated introductions to the continent. Many important evolutionary processes, such as colonization, adaptation, parallelism and character transformation, are reflected in this comparatively small group. The data presented in this study can help to understand the evolution of Salvia sensu lato and other large genera. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Phylogeography of the dark fruit-eating bat Artibeus obscurus in the Brazilian Amazon.

    Science.gov (United States)

    Ferreira, Wallax Augusto Silva; Borges, Bárbara do Nascimento; Rodrigues-Antunes, Symara; de Andrade, Fernanda Atanaena Gonçalves; Aguiar, Gilberto Ferreira de Souza; de Sousa e Silva-Junior, José; Marques-Aguiar, Suely Aparecida; Harada, Maria Lúcia

    2014-01-01

    Artibeus obscurus (Mammalia: Chiroptera) is endemic to South America, being found in at least 18 Brazilian states. Recent studies revealed that different populations of this genus present distinct phylogeographic patterns; however, very little is known on the population genetics structure of A. obscurus in the Amazon rainforest. Here, using a fragment (1010bp) of the mitochondrial gene cytochrome b from 87 samples, we investigated patterns of genetic divergence among populations of A. obscurus from different locations in the Brazilian Amazon rainforest and compared them with other Brazilian and South American regions. Analysis of molecular variance (AMOVA), fixation index (Fst) analysis, and phylogeographic patterns showed divergence between two major monophyletic groups, each one corresponding to a geographic region associated with the Atlantic and Amazon forest biomes. The Atlantic forest clusters formed a monophyletic group with a high bootstrap support and a fragmented distribution that follows the pattern predicted by the Refuge Theory. On the other hand, a different scenario was observed for the Amazon forest, where no fragmentation was identified. The AMOVA results revealed a significant geographic heterogeneity in the distribution of genetic variation, with 70% found within populations across the studied populations (Fst values ranging from 0.05864 to 0.09673; φST = 0.55). The intrapopulational analysis revealed that one population (Bragança) showed significant evidence of population expansion, with the formation of 2 distinct phylogroups, suggesting the occurrence of a subspecies or at least a different population in this region. These results also suggest considerable heterogeneity for A. obscurus in the Amazon region.

  5. An investigation of the co-evolutionary relationships between onchobothriid tapeworms and their elasmobranch hosts.

    Science.gov (United States)

    Caira, J N; Jensen, K

    2001-07-01

    There is general consensus that the living elasmobranchs comprise a monophyletic taxon. There is evidence that, among tetraphyllidean tapeworms, the approximately 201 hooked species (Onchobothriidae) may also comprise a monophyletic group. Determinations of host specificity are contingent upon correct specific identifications. Since 1960, over 200 new elasmobranch species and over 100 new onchobothriid species have been described. Some confidence can be placed in host and parasite identifications of recent studies, but specific identifications provided in older literature in many cases are suspect. There is some consensus among published works on the phylogenetic relationships among elasmobranchs. Phylogenetic relationships among onchobothriids remain largely unresolved. Elasmobranchs have been poorly sampled for onchobothriids; records exist for approximately 20% of the 911 species and approximately 44% of the 170 elasmobranch genera. Onchobothriids are remarkably host specific, exhibiting essentially oioxenous specificity for their definitive hosts. Multiple onchobothriid species commonly parasitise the same host species; in some cases these are congeners, in other cases these are members of two different onchobothriid genera. There is substantial incongruence between available host and parasite phylogenies. For example, Acanthobothrium is by far the most ubiquitous onchobothriid genus, parasitising almost all orders of elasmobranchs known to host onchobothriids, yet, there is no evidence of major clades of Acanthobothrium corresponding to postulated major subgroupings of elasmobranchs (e.g. Galea and Squalea or sharks and rays). Potamotrygonocestus appears to be among the most basal onchobothriid groups, yet it parasitises one of the most derived elasmobranch groups (the freshwater stingray genus Potamotrygon). It appears that congeners parasitising the same host species are not necessarily each other's closest relatives. At this point the preliminary and

  6. Reconstructing the colonisation and diversification history of the endemic freshwater crab (Seychellum alluaudi) in the granitic and volcanic Seychelles Archipelago.

    Science.gov (United States)

    Daniels, Savel R

    2011-11-01

    The endemic, monotypic freshwater crab species Seychellum alluaudi was used as a template to examine the initial colonisation and evolutionary history among the major islands in the Seychelles Archipelago. Five of the "inner" islands in the Seychelles Archipelago including Mahé, Praslin, Silhouette, La Digue and Frégate were sampled. Two partial mtDNA fragments, 16S rRNA and cytochrome oxidase subunit I (COI) was sequenced for 83 specimens of S. alluaudi. Evolutionary relationships between populations were inferred from the combined mtDNA dataset using maximum parsimony, maximum likelihood and Bayesian inferences. Analyses of molecular variance (AMOVA) were used to examine genetic variation among and within clades. A haplotype network was constructed using TCS while BEAST was employed to date the colonisation and divergence of lineages on the islands. Phylogenetic analyses of the combined mtDNA data set of 1103 base pairs retrieved a monophyletic S. alluaudi group comprised three statistically well-supported monophyletic clades. Clade one was exclusive to Silhouette; clade two included samples from Praslin sister to La Digue, while clade three comprised samples from Mahé sister to Frégate. The haplotype network corresponded to the three clades. Within Mahé, substantial phylogeographic substructure was evident. AMOVA results revealed limited genetic variation within localities with most variation occurring among localities. Divergence time estimations predated the Holocene sea level regressions and indicated a Pliocene/Pleistocene divergence between the three clades evident within S. alluaudi. The monophyly of each clade suggests that transoceanic dispersal is rare. The absence of shared haplotypes between the three clades, coupled with marked sequence divergence values suggests the presence of three allospecies within S. alluaudi. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic.

    Directory of Open Access Journals (Sweden)

    Tomoko Matsuda

    Full Text Available The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825-1,901 bp and 28S (the 5' end of 646-743 bp rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp. As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

  8. Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis.

    Science.gov (United States)

    Imoto, Junichi M; Saitoh, Kenji; Sasaki, Takeshi; Yonezawa, Takahiro; Adachi, Jun; Kartavtsev, Yuri P; Miya, Masaki; Nishida, Mutsumi; Hanzawa, Naoto

    2013-02-10

    The distribution of freshwater taxa is a good biogeographic model to study pattern and process of vicariance and dispersal. The subfamily Leuciscinae (Cyprinidae, Teleostei) consists of many species distributed widely in Eurasia and North America. Leuciscinae have been divided into two phyletic groups, leuciscin and phoxinin. The phylogenetic relationships between major clades within the subfamily are poorly understood, largely because of the overwhelming diversity of the group. The origin of the Far Eastern phoxinin is an interesting question regarding the evolutionary history of Leuciscinae. Here we present phylogenetic analysis of 31 species of Leuciscinae and outgroups based on complete mitochondrial genome sequences to clarify the phylogenetic relationships and to infer the evolutionary history of the subfamily. Phylogenetic analysis suggests that the Far Eastern phoxinin species comprised the monophyletic clades Tribolodon, Pseudaspius, Oreoleuciscus and Far Eastern Phoxinus. The Far Eastern phoxinin clade was independent of other Leuciscinae lineages and was closer to North American phoxinins than European leuciscins. All of our analysis also suggested that leuciscins and phoxinins each constituted monophyletic groups. Divergence time estimation suggested that Leuciscinae species diverged from outgroups such as Tincinae to be 83.3 million years ago (Mya) in the Late Cretaceous and leuciscin and phoxinin shared a common ancestor 70.7 Mya. Radiation of Leuciscinae lineages occurred during the Late Cretaceous to Paleocene. This period also witnessed the radiation of tetrapods. Reconstruction of ancestral areas indicates Leuciscinae species originated within Europe. Leuciscin species evolved in Europe and the ancestor of phoxinin was distributed in North America. The Far Eastern phoxinins would have dispersed from North America to Far East across the Beringia land bridge. The present study suggests important roles for the continental rearrangements during the

  9. Evolution and loss of long-fringed petals: a case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae

    Directory of Open Access Journals (Sweden)

    de Boer Hugo J

    2012-07-01

    Full Text Available Abstract Background The Cucurbitaceae genus Trichosanthes comprises 90–100 species that occur from India to Japan and southeast to Australia and Fiji. Most species have large white or pale yellow petals with conspicuously fringed margins, the fringes sometimes several cm long. Pollination is usually by hawkmoths. Previous molecular data for a small number of species suggested that a monophyletic Trichosanthes might include the Asian genera Gymnopetalum (four species, lacking long petal fringes and Hodgsonia (two species with petals fringed. Here we test these groups’ relationships using a species sampling of c. 60% and 4759 nucleotides of nuclear and plastid DNA. To infer the time and direction of the geographic expansion of the Trichosanthes clade we employ molecular clock dating and statistical biogeographic reconstruction, and we also address the gain or loss of petal fringes. Results Trichosanthes is monophyletic as long as it includes Gymnopetalum, which itself is polyphyletic. The closest relative of Trichosanthes appears to be the sponge gourds, Luffa, while Hodgsonia is more distantly related. Of six morphology-based sections in Trichosanthes with more than one species, three are supported by the molecular results; two new sections appear warranted. Molecular dating and biogeographic analyses suggest an Oligocene origin of Trichosanthes in Eurasia or East Asia, followed by diversification and spread throughout the Malesian biogeographic region and into the Australian continent. Conclusions Long-fringed corollas evolved independently in Hodgsonia and Trichosanthes, followed by two losses in the latter coincident with shifts to other pollinators but not with long-distance dispersal events. Together with the Caribbean Linnaeosicyos, the Madagascan Ampelosicyos and the tropical African Telfairia, these cucurbit lineages represent an ideal system for more detailed studies of the evolution and function of petal fringes in plant

  10. Global taxonomic diversity of living reptiles.

    Science.gov (United States)

    Pincheira-Donoso, Daniel; Bauer, Aaron M; Meiri, Shai; Uetz, Peter

    2013-01-01

    Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable ecosystems on earth. Here, based on a complete dataset of all the world's diversity of living reptiles, we analyse lineage taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian) reptiles are the second most species-rich group of amniotes after birds, most of their diversity (96.3%) is concentrated in squamates (59% lizards, 35% snakes, and 2% amphisbaenians). In strong contrast, turtles (3.4%), crocodilians (0.3%), and tuataras (0.01%) are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular, have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed, with most clades (monophyletic families and genera) containing few lineages (monophyletic genera and species, respectively), while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera Anolis and Liolaemus). Therefore, such consistency in the frequency distribution of richness among clades and among phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant). We then compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial differences in the taxonomies (relative to 2012), the patterns of

  11. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus.

    Science.gov (United States)

    Larson, Eric R; Castelin, Magalie; Williams, Bronwyn W; Olden, Julian D; Abbott, Cathryn L

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  12. Phylogenetic Pattern, Evolutionary Processes and Species Delimitation in the Genus Echinococcus.

    Science.gov (United States)

    Lymbery, A J

    2017-01-01

    An accurate and stable alpha taxonomy requires a clear conception of what constitutes a species and agreed criteria for delimiting different species. An evolutionary or general lineage concept defines a species as a single lineage of organisms with a common evolutionary trajectory, distinguishable from other such lineages. Delimiting evolutionary species is a two-step process. In the first step, phylogenetic reconstruction identifies putative species as groups of organisms that are monophyletic (share a common ancestor) and exclusive (more closely related to each other than to organisms outside the group). The second step is to assess whether members of the group possess genetic exchangeability (where cohesion is maintained by gene flow among populations) or ecological exchangeability (where cohesion is maintained because populations occupy the same ecological niche). Recent taxonomic reviews have recognized nine species within the genus Echinococcus. Phylogenetic reconstructions of the relationships between these putative species using mtDNA and nuclear gene sequences show that for the most part these nine species are monophyletic, although there are important incongruences that need to be resolved. Applying the criteria of genetic and ecological exchangeability suggests that seven of the currently recognized species represent evolutionarily distinct lineages. The species status of Echinococcus canadensis and Echinococcus ortleppi could not be confirmed. Coalescent-based analyses represent a promising approach to species delimitation in these closely related taxa. It seems likely, from a comparison of sister species groups, that speciation in the genus has been driven by geographic isolation, but biogeographic scenarios are largely speculative and require further testing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some neotropical polythore damselflies.

    Directory of Open Access Journals (Sweden)

    Melissa Sánchez Herrera

    Full Text Available The study of color polymorphisms (CP has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI. Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these "wingforms" do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this

  14. Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some neotropical polythore damselflies.

    Science.gov (United States)

    Sánchez Herrera, Melissa; Kuhn, William R; Lorenzo-Carballa, Maria Olalla; Harding, Kathleen M; Ankrom, Nikole; Sherratt, Thomas N; Hoffmann, Joachim; Van Gossum, Hans; Ware, Jessica L; Cordero-Rivera, Adolfo; Beatty, Christopher D

    2015-01-01

    The study of color polymorphisms (CP) has provided profound insights into the maintenance of genetic variation in natural populations. We here offer the first evidence for an elaborate wing polymorphism in the Neotropical damselfly genus Polythore, which consists of 21 described species, distributed along the eastern slopes of the Andes in South America. These damselflies display highly complex wing colors and patterning, incorporating black, white, yellow, and orange in multiple wing bands. Wing colors, along with some components of the male genitalia, have been the primary characters used in species description; few other morphological traits vary within the group, and so there are few useful diagnostic characters. Previous research has indicated the possibility of a cryptic species existing in P. procera in Colombia, despite there being no significant differences in wing color and pattern between the populations of the two putative species. Here we analyze the complexity and diversity of wing color patterns of individuals from five described Polythore species in the Central Amazon Basin of Peru using a novel suite of morphological analyses to quantify wing color and pattern: geometric morphometrics, chromaticity analysis, and Gabor wavelet transformation. We then test whether these color patterns are good predictors of species by recovering the phylogenetic relationships among the 5 species using the barcode gene (COI). Our results suggest that, while highly distinct and discrete wing patterns exist in Polythore, these "wingforms" do not represent monophyletic clades in the recovered topology. The wingforms identified as P. victoria and P. ornata are both involved in a polymorphism with P. neopicta; also, cryptic speciation may have taking place among individuals with the P. victoria wingform. Only P. aurora and P. spateri represent monophyletic species with a single wingform in our molecular phylogeny. We discuss the implications of this polymorphism, and the

  15. The complete mitochondrial genome of the Tibetan fox (Vulpes ferrilata) and implications for the phylogeny of Canidae.

    Science.gov (United States)

    Zhao, Chao; Zhang, Honghai; Liu, Guangshuai; Yang, Xiufeng; Zhang, Jin

    2016-02-01

    Canidae is a family of carnivores comprises about 36 extant species that have been defined as three distinct monophyletic groups based on multi-gene data sets. The Tibetan fox (Vulpes ferrilata) is a member of the family Canidae that is endemic to the Tibetan Plateau and has seldom been in the focus of phylogenetic analyses. To clarify the phylogenic relationship of V. ferrilata between other canids, we sequenced the mitochondrial genome and firstly attempted to clarify the relative phylogenetic position of V. ferrilata in canids using the complete mitochondrial genome data. The mitochondrial genome of the Tibetan fox was 16,667 bp, including 37 genes (13 protein-coding genes, 2 rRNA, and 22 tRNA) and a control region. A comparison analysis among the sequenced data of canids indicated that they shared a similar arrangement, codon usage, and other aspects. A phylogenetic analysis on the basis of the nearly complete mtDNA genomes of canids agreed with three monophyletic clades, and the Tibetan fox was highly supported as a sister group of the corsac fox within Vulpes. The estimation of the divergence time suggested a recent split between the Tibetan fox and the corsac fox and rapid evolution in canids. There was no genetic evidence for positive selection related to high-altitude adaption for the Tibetan fox in mtDNA and following studies should pay more attention to the detection of positive signals in nuclear genes involved in energy and oxygen metabolisms. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. Behavioral vs. molecular sources of conflict between nuclear and mitochondrial DNA: The role of male-biased dispersal in a Holarctic sea duck

    Science.gov (United States)

    Peters, Jeffrey L.; Bolender, Kimberly A.; Pearce, John M.

    2012-01-01

    Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male-biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4-fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between- and within-continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male-mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.

  17. Divergent Sapovirus Strains and Infection Prevalence in Wild Carnivores in the Serengeti Ecosystem: A Long-Term Study.

    Directory of Open Access Journals (Sweden)

    Ximena A Olarte-Castillo

    Full Text Available The genus Sapovirus, in the family Caliciviridae, includes enteric viruses of humans and domestic animals. Information on sapovirus infection of wildlife is limited and is currently lacking for any free-ranging wildlife species in Africa. By screening a large number of predominantly fecal samples (n = 631 obtained from five carnivore species in the Serengeti ecosystem, East Africa, sapovirus RNA was detected in the spotted hyena (Crocuta crocuta, family Hyaenidae, African lion (Panthera leo, family Felidae, and bat-eared fox (Otocyon megalotis, family Canidae, but not in golden or silver-backed jackals (Canis aureus and C. mesomelas, respectively, family Canidae. A phylogenetic analysis based on partial RNA-dependent RNA polymerase (RdRp gene sequences placed the sapovirus strains from African carnivores in a monophyletic group. Within this monophyletic group, sapovirus strains from spotted hyenas formed one independent sub-group, and those from bat-eared fox and African lion a second sub-group. The percentage nucleotide similarity between sapoviruses from African carnivores and those from other species was low (< 70.4%. Long-term monitoring of sapovirus in a population of individually known spotted hyenas from 2001 to 2012 revealed: i a relatively high overall infection prevalence (34.8%; ii the circulation of several genetically diverse variants; iii large fluctuations in infection prevalence across years, indicative of outbreaks; iv no significant difference in the likelihood of infection between animals in different age categories. The likelihood of sapovirus infection decreased with increasing hyena group size, suggesting an encounter reduction effect, but was independent of socially mediated ano-genital contact, or the extent of the area over which an individual roamed.

  18. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy.

    Science.gov (United States)

    du Toit, Nina; van Vuuren, Bettine Jansen; Matthee, Sonja; Matthee, Conrad A

    2012-10-01

    Within southern Africa, a link between past climatic changes and faunal diversification has been hypothesized for a diversity of taxa. To test the hypothesis that evolutionary divergences may be correlated to vegetation changes (induced by changes in climate), we selected the widely distributed four-striped mouse, Rhabdomys, as a model. Two species are currently recognized, the mesic-adapted R. dilectus and arid-adapted R. pumilio. However, the morphology-based taxonomy and the distribution boundaries of previously described subspecies remain poorly defined. The current study, which spans seven biomes, focuses on the spatial genetic structure of the arid-adapted R. pumilio (521 specimens from 31 localities), but also includes limited sampling of the mesic-adapted R. dilectus (33 specimens from 10 localities) to act as a reference for interspecific variation within the genus. The mitochondrial COI gene and four nuclear introns (Eef1a1, MGF, SPTBN1, Bfib7) were used for the construction of gene trees. Mitochondrial DNA analyses indicate that Rhabdomys consists of four reciprocally monophyletic, geographically structured clades, with three distinct lineages present within the arid-adapted R. pumilio. These monophyletic lineages differ by at least 7.9% (±0.3) and these results are partly confirmed by a multilocus network of the combined nuclear intron dataset. Ecological niche modeling in MaxEnt supports a strong correlation between regional biomes and the distribution of distinct evolutionary lineages of Rhabdomys. A Bayesian relaxed molecular clock suggests that the geographic clades diverged between 3.09 and 4.30Ma, supporting the hypothesis that the radiation within the genus coincides with paleoclimatic changes (and the establishment of the biomes) characterizing the Miocene-Pliocene boundary. Marked genetic divergence at the mitochondrial DNA level, coupled with strong nuclear and mtDNA signals of non-monophyly of R. pumilio, support the notion that a taxonomic

  19. DNA barcode detects high genetic structure within neotropical bird species.

    Directory of Open Access Journals (Sweden)

    Erika Sendra Tavares

    Full Text Available BACKGROUND: Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. METHODS AND FINDINGS: Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520 of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21 or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20. Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. CONCLUSIONS: The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent

  20. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    Science.gov (United States)

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. © 2015 John Wiley & Sons Ltd.

  1. The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (decapoda: achelata, astacidea, glypheidea, polychelida).

    Science.gov (United States)

    Bracken-Grissom, Heather D; Ahyong, Shane T; Wilkinson, Richard D; Feldmann, Rodney M; Schweitzer, Carrie E; Breinholt, Jesse W; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L; Robles, Rafael; Chu, Ka-Hou; Tsang, Ling-Ming; Kim, Dohyup; Martin, Joel W; Crandall, Keith A

    2014-07-01

    Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.]. © The

  2. Evolution of a Pathogen: A Comparative Genomics Analysis Identifies a Genetic Pathway to Pathogenesis in Acinetobacter

    Science.gov (United States)

    Sahl, Jason W.; Gillece, John D.; Schupp, James M.; Waddell, Victor G.; Driebe, Elizabeth M.; Engelthaler, David M.; Keim, Paul

    2013-01-01

    Acinetobacter baumannii is an emergent and global nosocomial pathogen. In addition to A. baumannii, other Acinetobacter species, especially those in the Acinetobacter calcoaceticus-baumannii (Acb) complex, have also been associated with serious human infection. Although mechanisms of attachment, persistence on abiotic surfaces, and pathogenesis in A. baumannii have been identified, the genetic mechanisms that explain the emergence of A. baumannii as the most widespread and virulent Acinetobacter species are not fully understood. Recent whole genome sequencing has provided insight into the phylogenetic structure of the genus Acinetobacter. However, a global comparison of genomic features between Acinetobacter spp. has not been described in the literature. In this study, 136 Acinetobacter genomes, including 67 sequenced in this study, were compared to identify the acquisition and loss of genes in the expansion of the Acinetobacter genus. A whole genome phylogeny confirmed that A. baumannii is a monophyletic clade and that the larger Acb complex is also a well-supported monophyletic group. The whole genome phylogeny provided the framework for a global genomic comparison based on a blast score ratio (BSR) analysis. The BSR analysis demonstrated that specific genes have been both lost and acquired in the evolution of A. baumannii. In addition, several genes associated with A. baumannii pathogenesis were found to be more conserved in the Acb complex, and especially in A. baumannii, than in other Acinetobacter genomes; until recently, a global analysis of the distribution and conservation of virulence factors across the genus was not possible. The results demonstrate that the acquisition of specific virulence factors has likely contributed to the widespread persistence and virulence of A. baumannii. The identification of novel features associated with transcriptional regulation and acquired by clades in the Acb complex presents targets for better understanding the

  3. A revision and phylogenetic analysis of the millipede genus Oxidus Cook, 1911 (Polydesmida, Paradoxosomatidae

    Directory of Open Access Journals (Sweden)

    Anh D. Nguyen

    2017-03-01

    Full Text Available The genus Oxidus Cook, 1911 is revised to contain five species, O. avia (Verhoeff, 1937, O. gigas (Attems, 1953, O. gracilis (C.L. Koch, 1847, O. riukiaria (Verhoeff, 1940, and “species inquirenda” O. obtusus (Takakuwa, 1942. A cosmopolitan species, O. gracilis, is widely found in temperate and sub-tropical regions over the world, but other species have limited distribution in restricted regions, e.g., O. gigas in northern Vietnam, O. riukiaria and O. avia in the Ryukyu Islands (Japan. Four species, O. gracilis, O. riukiaria, O. avia and O. gigas, are confirmed as different from each other in gonopod characters, coloration and body size. The status of the last species, O. obtusus, is still doubtful and requires examination of further fresh material. The phylogenetic relationships among species of Oxidus is analyzed using two fragments of the mitochondrial genes COI (Cytochrome c Oxidase subunit I and 16S rRNA. Three species of Oxidus are clearly separated from each other; O. gigas and O. gracilis form a monophyletic sister group with O. riukiaria. The genus Oxidus is also monophyletic and more closely related to the genus Tylopus Jeekel, 1968 than to the genera Sellanucheza Enghoff, Golovatch & Nguyen, 2004 or Kronopolites Attems, 1914. In addition, an identification key to species of Oxidus is provided.

  4. Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales, a pantropical insecticide-producing endophyte.

    Directory of Open Access Journals (Sweden)

    Gerald F Bills

    Full Text Available BACKGROUND: Nodulisporic acids (NAs are indole diterpene fungal metabolites exhibiting potent systemic efficacy against blood-feeding arthropods, e.g., bedbugs, fleas and ticks, via binding to arthropod specific glutamate-gated chloride channels. Intensive medicinal chemistry efforts employing a nodulisporic acid A template have led to the development of N-tert-butyl nodulisporamide as a product candidate for a once monthly treatment of fleas and ticks on companion animals. The source of the NAs is a monophyletic lineage of asexual endophytic fungal strains that is widely distributed in the tropics, tentatively identified as a Nodulisporium species and hypothesized to be the asexual state of a Hypoxylon species. METHODS AND RESULTS: Inferences from GenBank sequences indicated that multiple researchers have encountered similar Nodulisporium endophytes in tropical plants and in air samples. Ascomata-derived cultures from a wood-inhabiting fungus, from Martinique and closely resembling Hypoxylon investiens, belonged to the same monophyletic clade as the NAs-producing endophytes. The hypothesis that the Martinique Hypoxylon collections were the sexual state of the NAs-producing endophytes was tested by mass spectrometric analysis of NAs, multi-gene phylogenetic analysis, and phenotypic comparisons of the conidial states. We established that the Martinique Hypoxylon strains produced an ample spectrum of NAs and were conspecific with the pantropical Nodulisporium endophytes, yet were distinct from H. investiens. A new species, H. pulicicidum, is proposed to accommodate this widespread organism. CONCLUSIONS AND SIGNIFICANCE: Knowledge of the life cycle of H. pulicicidum will facilitate an understanding of the role of insecticidal compounds produced by the fungus, the significance of its infections in living plants and how it colonizes dead wood. The case of H. pulicicidum exemplifies how life cycle studies can consolidate disparate observations of a

  5. Zahedan rhabdovirus, a novel virus detected in ticks from Iran.

    Science.gov (United States)

    Dilcher, Meik; Faye, Oumar; Faye, Ousmane; Weber, Franziska; Koch, Andrea; Sadegh, Chinikar; Weidmann, Manfred; Sall, Amadou Alpha

    2015-11-05

    Rhabdoviridae infect a wide range of vertebrates, invertebrates and plants. Their transmission can occur via various arthropod vectors. In recent years, a number of novel rhabdoviruses have been identified from various animal species, but so far only few tick-transmitted rhabdoviruses have been described. We isolated a novel rhabdovirus, provisionally named Zahedan rhabdovirus (ZARV), from Hyalomma anatolicum anatolicum ticks collected in Iran. The full-length genome was determined using 454 next-generation sequencing and the phylogenetic relationship to other rhabdoviruses was analyzed. Inoculation experiments in mammalian Vero cells and mice were conducted and a specific PCR assay was developed. The complete genome of ZARV has a size of 11,230 nucleotides (nt) with the typical genomic organization of Rhabdoviridae. Phylogenetic analysis confirms that ZARV is closely related to Moussa virus (MOUV) from West Africa and Long Island tick rhabdovirus (LITRV) from the U.S., all forming a new monophyletic clade, provisionally designated Zamolirhabdovirus, within the Dimarhabdovirus supergroup. The glycoprotein (G) contains 12 conserved cysteins which are specific for animal rhabdoviruses infecting fish and mammals. In addition, ZARV is able to infect mammalian Vero cells and is lethal for mice when inoculated intracerebrally or subcutaneously. The developed PCR assay can be used to specifically detect ZARV. The novel tick-transmitted rhabdovirus ZARV is closely related to MOUV and LITRV. All three viruses seem to form a new monophyletic clade. ZARV might be pathogenic for mammals, since it can infect Vero cells, is lethal for mice and its glycoprotein contains 12 conserved cysteins only found in animal rhabdoviruses. The mammalian host of ZARV remains to be identified.

  6. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  7. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea

    Directory of Open Access Journals (Sweden)

    Tëmkin Ilya

    2010-11-01

    Full Text Available Abstract Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters. Results The present study is the first comprehensive species-level analysis of the Pterioidea to produce a well-resolved, robust phylogenetic hypothesis for nearly all extant taxa. The data were analyzed for potential biases due to taxon and character sampling, and idiosyncracies of different molecular evolutionary processes. The congruence and contribution of different partitions were quantified, and the sensitivity of clade stability to alignment parameters was explored. Conclusions Four primary conclusions were reached: (1 the results strongly supported the monophyly of the Pterioidea; (2 none of the previously defined families (except for the monotypic Pulvinitidae were monophyletic; (3 the arrangement of the genera was novel and unanticipated, however strongly supported and robust to changes in alignment parameters; and (4 optimizing key morphological characters onto topologies derived from the analysis of molecular data revealed many instances of homoplasy and uncovered synapomorphies for major nodes. Additionally, a complete species-level sampling of the genus Pinctada provided further insights into the on-going controversy regarding the taxonomic identity of major pearl culture species.

  8. Molecular phylogeny of pearl oysters and their relatives (Mollusca, Bivalvia, Pterioidea)

    Science.gov (United States)

    2010-01-01

    Background The superfamily Pterioidea is a morphologically and ecologically diverse lineage of epifaunal marine bivalves distributed throughout the tropical and subtropical continental shelf regions. This group includes commercially important pearl culture species and model organisms used for medical studies of biomineralization. Recent morphological treatment of selected pterioideans and molecular phylogenetic analyses of higher-level relationships in Bivalvia have challenged the traditional view that pterioidean families are monophyletic. This issue is examined here in light of molecular data sets composed of DNA sequences for nuclear and mitochondrial loci, and a published character data set of anatomical and shell morphological characters. Results The present study is the first comprehensive species-level analysis of the Pterioidea to produce a well-resolved, robust phylogenetic hypothesis for nearly all extant taxa. The data were analyzed for potential biases due to taxon and character sampling, and idiosyncracies of different molecular evolutionary processes. The congruence and contribution of different partitions were quantified, and the sensitivity of clade stability to alignment parameters was explored. Conclusions Four primary conclusions were reached: (1) the results strongly supported the monophyly of the Pterioidea; (2) none of the previously defined families (except for the monotypic Pulvinitidae) were monophyletic; (3) the arrangement of the genera was novel and unanticipated, however strongly supported and robust to changes in alignment parameters; and (4) optimizing key morphological characters onto topologies derived from the analysis of molecular data revealed many instances of homoplasy and uncovered synapomorphies for major nodes. Additionally, a complete species-level sampling of the genus Pinctada provided further insights into the on-going controversy regarding the taxonomic identity of major pearl culture species. PMID:21059254

  9. The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids.

    Directory of Open Access Journals (Sweden)

    Silke R Klee

    Full Text Available Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as "B. cereus variety (var. anthracis".

  10. Monophyly of Heterandriini (Teleostei: Poeciliidae revisited: a critical review of the data

    Directory of Open Access Journals (Sweden)

    Alfy Morales-Cazan

    Full Text Available The systematics and taxonomy of poeciliid fishes (guppies and allies remain poorly understood despite the relative importance of these species as model systems in the biological sciences. This study focuses on testing the monophyly of the nominal poeciliine tribe Heterandriini and the genus Heterandria, through examination of the morphological characters on which the current classification is based. These characters include aspects of body shape (morphometrics, scale and fin-ray counts (meristics, pigmentation, the cephalic laterosensory system, and osteological features of the neurocranium, oral jaws and suspensorium, branchial basket, pectoral girdle, and the gonopodium and its supports. A Maximum Parsimony analysis was conducted of 150 characters coded for 56 poeciliid and outgroup species, including 22 of 45 heterandriin species (from the accounted in Parenti & Rauchenberger, 1989, or seven of nine heterandriin species (from the accounted in Lucinda & Reis, 2005. Multistate characters were analyzed as both unordered and ordered, and iterative a posteriori weighting was used to improve tree resolution. Tree topologies obtained from these analyses support the monophyly of the Middle American species of "Heterandria," which based on available phylogenetic information, are herein reassigned to the genus Pseudoxiphophorus. None of the characters used in previous studies to characterize the nominal taxon Heterandriini are found to be unambiguously diagnostic. Some of these characters are shared with species in other poeciliid tribes, and others are reversed within the Heterandriini. These results support the hypothesis that Pseudoxiphophorus is monophyletic, and that this clade is not the closest relative of H. formosa (the type species from southeastern North America. Available morphological data are not sufficient to assess the phylogenetic relationships of H. formosa with respect to other members of the Heterandriini. The results further

  11. Cerebral and non-cerebral coenurosis: on the genotypic and phenotypic diversity of Taenia multiceps.

    Science.gov (United States)

    Christodoulopoulos, Georgios; Dinkel, Anke; Romig, Thomas; Ebi, Dennis; Mackenstedt, Ute; Loos-Frank, Brigitte

    2016-12-01

    We characterised the causative agents of cerebral and non-cerebral coenurosis in livestock by determining the mitochondrial genotypes and morphological phenotypes of 52 Taenia multiceps isolates from a wide geographical range in Europe, Africa, and western Asia. Three studies were conducted: (1) a morphological comparison of the rostellar hooks of cerebral and non-cerebral cysts of sheep and goats, (2) a morphological comparison of adult worms experimentally produced in dogs, and (3) a molecular analysis of three partial mitochondrial genes (nad1, cox1, and 12S rRNA) of the same isolates. No significant morphological or genetic differences were associated with the species of the intermediate host. Adult parasites originating from cerebral and non-cerebral cysts differed morphologically, e.g. the shape of the small hooks and the distribution of the testes in the mature proglottids. The phylogenetic analysis of the mitochondrial haplotypes produced three distinct clusters: one cluster including both cerebral isolates from Greece and non-cerebral isolates from tropical and subtropical countries, and two clusters including cerebral isolates from Greece. The majority of the non-cerebral specimens clustered together but did not form a monophyletic group. No monophyletic groups were observed based on geography, although specimens from the same region tended to cluster. The clustering indicates high intraspecific diversity. The phylogenetic analysis suggests that all variants of T. multiceps can cause cerebral coenurosis in sheep (which may be the ancestral phenotype), and some variants, predominantly from one genetic cluster, acquired the additional capacity to produce non-cerebral forms in goats and more rarely in sheep.

  12. The largest subunit of RNA polymerase II from the Glaucocystophyta: functional constraint and short-branch exclusion in deep eukaryotic phylogeny

    Directory of Open Access Journals (Sweden)

    Stiller John W

    2005-12-01

    Full Text Available Abstract Background Evolutionary analyses of the largest subunit of RNA polymerase II (RPB1 have yielded important and at times provocative results. One particularly troublesome outcome is the consistent inference of independent origins of red algae and green plants, at odds with the more widely accepted view of a monophyletic Plantae comprising all eukaryotes with primary plastids. If the hypothesis of a broader kingdom Plantae is correct, then RPB1 trees likely reflect a persistent phylogenetic artifact. To gain a better understanding of RNAP II evolution, and the presumed artifact relating to green plants and red algae, we isolated and analyzed RPB1 from representatives of Glaucocystophyta, the third eukaryotic group with primary plastids. Results Phylogenetic analyses incorporating glaucocystophytes do not recover a monophyletic Plantae; rather they result in additional conflicts with the most widely held views on eukaryotic relationships. In particular, glaucocystophytes are recovered as sister to several amoebozoans with strong support. A detailed investigation shows that this clade can be explained by what we call "short-branch exclusion," a phylogenetic artifact integrally associated with "long-branch attraction." Other systematic discrepancies observed in RPB1 trees can be explained as phylogenetic artifacts; however, these apparent artifacts also appear in regions of the tree that support widely held views of eukaryotic evolution. In fact, most of the RPB1 tree is consistent with artifacts of rate variation among sequences and co-variation due to functional constraints related to C-terminal domain based RNAP II transcription. Conclusion Our results reveal how subtle and easily overlooked biases can dominate the overall results of molecular phylogenetic analyses of ancient eukaryotic relationships. Sources of potential phylogenetic artifact should be investigated routinely, not just when obvious "long-branch attraction" is encountered.

  13. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers.

    Science.gov (United States)

    Lee, Timothy R C; Cameron, Stephen L; Evans, Theodore A; Ho, Simon Y W; Lo, Nathan

    2015-01-01

    The termite genus Coptotermes (Rhinotermitidae) is found in Asia, Africa, Central/South America and Australia, with greatest diversity in Asia. Some Coptotermes species are amongst the world's most damaging invasive termites, but the genus is also significant for containing the most sophisticated mound-building termites outside the family Termitidae. These mound-building Coptotermes occur only in Australia. Despite its economic and evolutionary significance, the biogeographic history of the genus has not been well investigated, nor has the evolution of the Australian mound-building species. We present here the first phylogeny of the Australian Coptotermes to include representatives from all described species. We combined our new data with previously generated data to estimate the first phylogeny to include representatives from all continents where the genus is found. We also present the first estimation of divergence dates during the evolution of the genus. We found the Australian Coptotermes to be monophyletic and most closely related to the Asian Coptotermes, with considerable genetic diversity in some Australian taxa possibly representing undescribed species. The Australian mound-building species did not form a monophyletic clade. Our ancestral state reconstruction analysis indicated that the ancestral Australian Coptotermes was likely to have been a tree nester, and that mound-building behaviour has arisen multiple times. The Australian Coptotermes were found to have diversified ∼13million years ago, which plausibly matches with the narrowing of the Arafura Sea allowing Asian taxa to cross into Australia. The first diverging Coptotermes group was found to be African, casting doubt on the previously raised hypothesis that the genus has an Asian origin. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Molecular phylogenetics of porcini mushrooms (Boletus section Boletus).

    Science.gov (United States)

    Dentinger, Bryn T M; Ammirati, Joseph F; Both, Ernst E; Desjardin, Dennis E; Halling, Roy E; Henkel, Terry W; Moreau, Pierre-Arthur; Nagasawa, Eiji; Soytong, Kasem; Taylor, Andy F; Watling, Roy; Moncalvo, Jean-Marc; McLaughlin, David J

    2010-12-01

    Porcini (Boletus section Boletus: Boletaceae: Boletineae: Boletales) are a conspicuous group of wild, edible mushrooms characterized by fleshy fruiting bodies with a poroid hymenophore that is "stuffed" with white hyphae when young. Their reported distribution is with ectomycorrhizal plants throughout the Northern Hemisphere. Little progress has been made on the systematics of this group using modern molecular phylogenetic tools because sampling has been limited primarily to European species and the genes employed were insufficient to resolve the phylogeny. We examined the evolutionary history of porcini by using a global geographic sampling of most known species, new discoveries from little explored areas, and multiple genes. We used 78 sequences from the fast-evolving nuclear internal transcribed spacers and are able to recognize 18 reciprocally monophyletic species. To address whether or not porcini form a monophyletic group, we compiled a broadly sampled dataset of 41 taxa, including other members of the Boletineae, and used separate and combined phylogenetic analysis of sequences from the nuclear large subunit ribosomal DNA, the largest subunit of RNA polymerase II, and the mitochondrial ATPase subunit six gene. Contrary to previous studies, our separate and combined phylogenetic analyses support the monophyly of porcini. We also report the discovery of two taxa that expand the known distribution of porcini to Australia and Thailand and have ancient phylogenetic connections to the rest of the group. A relaxed molecular clock analysis with these new taxa dates the origin of porcini to between 42 and 54 million years ago, coinciding with the initial diversification of angiosperms, during the Eocene epoch when the climate was warm and humid. These results reveal an unexpected diversity, distribution, and ancient origin of a group of commercially valuable mushrooms that may provide an economic incentive for conservation and support the hypothesis of a tropical

  15. Molecular typing and phylogenetic analysis of some species belonging to phlebotomus (larroussius) and phlebotomus (adlerius) subgenera (Diptera: psychodidae) from two locations in iran.

    Science.gov (United States)

    Parvizi, P; Naddaf, S R; Alaeenovin, E

    2010-01-01

    Haematophagous females of some phlebotomine sandflies are the only natural vectors of Leishmania species, the causative agents of leishmaniasis in many parts of the tropics and subtropics, including Iran. We report the presence of Phlebotomus (Larroussius) major and Phlebotomus (Adlerius) halepensis in Tonekabon (Mazanderan Province) and Phlebotomus (Larroussius) tobbi in Pakdasht (Tehran Province). It is the first report of these species, known as potential vectors of zoonotic visceral leishmaniasis in Iran, are identified in these areas. In 2006-2007 individual wild-caught sandflies were characterized by both morphological features and sequence analysis of their mitochondrial genes (Cytochrome b). The analyses were based on a fragment of 494 bp at the 3' end of the Cyt b gene (Cyt b 3' fragment) and a fragment of 382 bp CB3 at the 5' end of the Cyt b gene (Cyt b 5' fragment). We also analysed the Cyt b Long fragment, which is located on the last 717 bp of the Cyt b gene, followed by 20 bp of intergenic spacer and the transfer RNA ser(TCN) gene. Twenty-seven P. halepensis and four P. major from Dohezar, Tonekabon, Mazanderan province and 8 P. tobbi from Packdasht, Tehran Province were identified by morphological and molecular characters. Cyt b 5' and Cyt b 3' fragment sequences were obtained from 15 and 9 flies, respectively. Cyt b long fragment sequences were obtained from 8 out of 27 P. halepensis. Parsimony analyses (using heuristic searches) of the DNA sequences of Cyt b always showed monophyletic clades of subgenera and each species did form a monophyletic group.

  16. Patterns and processes of diversification in a widespread and ecologically diverse avian group, the buteonine hawks (Aves, Accipitridae).

    Science.gov (United States)

    do Amaral, Fábio Raposo; Sheldon, Frederick H; Gamauf, Anita; Haring, Elisabeth; Riesing, Martin; Silveira, Luís F; Wajntal, Anita

    2009-12-01

    Buteonine hawks represent one of the most diverse groups in the Accipitridae, with 58 species distributed in a variety of habitats on almost all continents. Variations in migratory behavior, remarkable dispersal capability, and unusual diversity in Central and South America make buteonine hawks an excellent model for studies in avian evolution. To evaluate the history of their global radiation, we used an integrative approach that coupled estimation of the phylogeny using a large sequence database (based on 6411 bp of mitochondrial markers and one nuclear intron from 54 species), divergence time estimates, and ancestral state reconstructions. Our findings suggest that Neotropical buteonines resulted from a long evolutionary process that began in the Miocene and extended to the Pleistocene. Colonization of the Nearctic, and eventually the Old World, occurred from South America, promoted by the evolution of seasonal movements and development of land bridges. Migratory behavior evolved several times and may have contributed not only to colonization of the Holarctic, but also derivation of insular species. In the Neotropics, diversification of the buteonines included four disjunction events across the Andes. Adaptation of monophyletic taxa to wet environments occurred more than once, and some relationships indicate an evolutionary connection among mangroves, coastal and várzea environments. On the other hand, groups occupying the same biome, forest, or open vegetation habitats are not monophyletic. Refuges or sea-level changes or a combination of both was responsible for recent speciation in Amazonian taxa. In view of the lack of concordance between phylogeny and classification, we propose numerous taxonomic changes.

  17. Systematics of putative euparkeriids (Diapsida: Archosauriformes from the Triassic of China

    Directory of Open Access Journals (Sweden)

    Roland B. Sookias

    2014-11-01

    Full Text Available The South African species Euparkeria capensis is of great importance for understanding the early radiation of archosauromorphs (including archosaurs following the Permo–Triassic mass extinction, as most phylogenetic analyses place it as the sister taxon to crown group Archosauria within the clade Archosauriformes. Although a number of species from Lower–Middle Triassic deposits worldwide have been referred to the putative clade Euparkeriidae, the monophyly of Euparkeriidae is controversial and has yet to be demonstrated by quantitative phylogenetic analysis. Three Chinese taxa have been recently suggested to be euparkeriids: Halazhaisuchus qiaoensis, ‘Turfanosuchus shageduensis’, and Wangisuchus tzeyii, all three of which were collected from the Middle Triassic Ermaying Formation of northern China. Here, we reassess the taxonomy and systematics of these taxa. We regard Wangisuchus tzeyii as a nomen dubium, because the holotype is undiagnostic and there is no convincing evidence that the previously referred additional specimens represent the same taxon as the holotype. We also regard ‘Turfanosuchus shageduensis’ as a nomen dubium as we are unable to identify any diagnostic features. We refer the holotype to Archosauriformes, and more tentatively to Euparkeriidae. Halazhaisuchus qiaoensis and the holotype of ‘Turfanosuchus shageduensis’ are resolved as sister taxa in a phylogenetic analysis, and are in turn the sister taxon to Euparkeria capensis, forming a monophyletic Euparkeriidae that is the sister to Archosauria+Phytosauria. This is the first quantitative phylogenetic analysis to recover a non-monospecific, monophyletic Euparkeriidae, but euparkeriid monophyly is only weakly supported and will require additional examination. Given their similar sizes, stratigraphic positions and phylogenetic placement, the holotype of ‘Turfanosuchus shageduensis’ may represent a second individual of Halazhaisuchus qiaoensis, but no

  18. A new Liopropoma sea bass (Serranidae, Epinephelinae, Liopropomini) from deep reefs off Curaçao, southern Caribbean, with comments on depth distributions of western Atlantic liopropomins

    Science.gov (United States)

    Baldwin, Carole C.; Robertson, D. Ross

    2014-01-01

    Collecting reef-fish specimens using a manned submersible diving to 300 m off Curaçao, southern Caribbean, is resulting in the discovery of numerous new fish species. The new Liopropoma sea bass described here differs from other western Atlantic members of the genus in having VIII, 13 dorsal-fin rays; a moderately indented dorsal-fin margin; a yellow-orange stripe along the entire upper lip; a series of approximately 13 white, chevron-shaped markings on the ventral portion of the trunk; and a reddish-black blotch on the tip of the lower caudal-fin lobe. The new species, with predominantly yellow body and fins, closely resembles the other two “golden basses” found together with it at Curaçao: L. aberransand L. olneyi. It also shares morphological features with the other western Atlantic liopropomin genus,Bathyanthias. Preliminary phylogenetic data suggest that western Atlantic liopropomins, includingBathyanthias, are monophyletic with respect to Indo-Pacific Liopropoma, and that Bathyanthias is nested within Liopropoma, indicating a need for further study of the generic limits of Liopropoma. The phylogenetic data also suggest that western Atlantic liopropomins comprise three monophyletic clades that have overlapping depth distributions but different depth maxima (3–135 m, 30–150 m, 133–411 m). The new species has the deepest depth range (182–241 m) of any known western Atlantic Liopropomaspecies. Both allopatric and depth-mediated ecological speciation may have contributed to the evolution of western Atlantic Liopropomini.

  19. Global Taxonomic Diversity of Living Reptiles

    Science.gov (United States)

    Pincheira-Donoso, Daniel; Bauer, Aaron M.; Meiri, Shai; Uetz, Peter

    2013-01-01

    Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable ecosystems on earth. Here, based on a complete dataset of all the world’s diversity of living reptiles, we analyse lineage taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian) reptiles are the second most species-rich group of amniotes after birds, most of their diversity (96.3%) is concentrated in squamates (59% lizards, 35% snakes, and 2% amphisbaenians). In strong contrast, turtles (3.4%), crocodilians (0.3%), and tuataras (0.01%) are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular, have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed, with most clades (monophyletic families and genera) containing few lineages (monophyletic genera and species, respectively), while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera Anolis and Liolaemus). Therefore, such consistency in the frequency distribution of richness among clades and among phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant). We then compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial differences in the taxonomies (relative to 2012), the patterns of

  20. Comprehensive molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera: Geometridae.

    Directory of Open Access Journals (Sweden)

    Pasi Sihvonen

    Full Text Available BACKGROUND: The moth family Geometridae (inchworms or loopers, with approximately 23,000 described species, is the second most diverse family of the Lepidoptera. Apart from a few recent attempts based on morphology and molecular studies, the phylogeny of these moths has remained largely uninvestigated. METHODOLOGY/PRINCIPAL FINDINGS: We performed a rigorous and extensive molecular analysis of eight genes to examine the geometrid affinities in a global context, including a search for its potential sister-taxa. Our maximum likelihood analyses included 164 taxa distributed worldwide, of which 150 belong to the Geometridae. The selected taxa represent all previously recognized subfamilies and nearly 90% of recognized tribes, and originate from all over world. We found the Geometridae to be monophyletic with the Sematuridae+Epicopeiidae clade potentially being its sister-taxon. We found all previously recognized subfamilies to be monophyletic, with a few taxa misplaced, except the Oenochrominae+Desmobathrinae complex that is a polyphyletic assemblage of taxa and the Orthostixinae, which was positioned within the Ennominae. The Sterrhinae and Larentiinae were found to be sister to the remaining taxa, followed by Archiearinae, the polyphyletic assemblage of Oenochrominae+Desmobathrinae moths, Geometrinae and Ennominae. CONCLUSIONS/SIGNIFICANCE: Our study provides the first comprehensive phylogeny of the Geometridae in a global context. Our results generally agree with the other, more restricted studies, suggesting that the general phylogenetic patterns of the Geometridae are now well-established. Generally the subfamilies, many tribes, and assemblages of tribes were well supported but their interrelationships were often weakly supported by our data. The Eumeleini were particularly difficult to place in the current system, and several tribes were found to be para- or polyphyletic.

  1. New specimens of the rare taeniodont Wortmania (Mammalia: Eutheria) from the San Juan Basin of New Mexico and comments on the phylogeny and functional morphology of "archaic" mammals.

    Science.gov (United States)

    Williamson, Thomas E; Brusatte, Stephen L

    2013-01-01

    monophyletic, and a monophyletic Conoryctidae (but not including Onychodectes) is only recovered when certain characters are ordered.

  2. New specimens of the rare taeniodont Wortmania (Mammalia: Eutheria from the San Juan Basin of New Mexico and comments on the phylogeny and functional morphology of "archaic" mammals.

    Directory of Open Access Journals (Sweden)

    Thomas E Williamson

    Schowalteria and Onychodectes are basal taeniodonts, Stylinodontidae (including Wortmania is monophyletic, and a monophyletic Conoryctidae (but not including Onychodectes is only recovered when certain characters are ordered.

  3. New Specimens of the Rare Taeniodont Wortmania (Mammalia: Eutheria) from the San Juan Basin of New Mexico and Comments on the Phylogeny and Functional Morphology of “Archaic” Mammals

    Science.gov (United States)

    Williamson, Thomas E.; Brusatte, Stephen L.

    2013-01-01

    Onychodectes are basal taeniodonts, Stylinodontidae (including Wortmania) is monophyletic, and a monophyletic Conoryctidae (but not including Onychodectes) is only recovered when certain characters are ordered. PMID:24098738

  4. Genetic diversity and distribution patterns of host insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau.

    Directory of Open Access Journals (Sweden)

    Qing-Mei Quan

    Full Text Available The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05 was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable

  5. Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges

    Science.gov (United States)

    Schuster, Astrid; Erpenbeck, Dirk; Pisera, Andrzej; Hooper, John; Bryce, Monika; Fromont, Jane; Wörheide, Gert

    2015-01-01

    Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera). ‘Lithistida’, a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas) that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically) comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of ‘lithistid’ demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous ‘order Lithistida’. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences), we show that 8 out of 13 ‘Lithistida’ families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae – we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different

  6. Hidden among Sea Anemones: The First Comprehensive Phylogenetic Reconstruction of the Order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) Reveals a Novel Group of Hexacorals

    Science.gov (United States)

    Rodríguez, Estefanía; Barbeitos, Marcos S.; Brugler, Mercer R.; Crowley, Louise M.; Grajales, Alejandro; Gusmão, Luciana; Häussermann, Verena; Reft, Abigail; Daly, Marymegan

    2014-01-01

    Sea anemones (order Actiniaria) are among the most diverse and successful members of the anthozoan subclass Hexacorallia, occupying benthic marine habitats across all depths and latitudes. Actiniaria comprises approximately 1,200 species of solitary and skeleton-less polyps and lacks any anatomical synapomorphy. Although monophyly is anticipated based on higher-level molecular phylogenies of Cnidaria, to date, monophyly has not been explicitly tested and at least some hypotheses on the diversification of Hexacorallia have suggested that actiniarians are para- or poly-phyletic. Published phylogenies have demonstrated the inadequacy of existing morphological-based classifications within Actiniaria. Superfamilial groups and most families and genera that have been rigorously studied are not monophyletic, indicating conflict with the current hierarchical classification. We test the monophyly of Actiniaria using two nuclear and three mitochondrial genes with multiple analytical methods. These analyses are the first to include representatives of all three currently-recognized suborders within Actiniaria. We do not recover Actiniaria as a monophyletic clade: the deep-sea anemone Boloceroides daphneae, previously included within the infraorder Boloceroidaria, is resolved outside of Actiniaria in several of the analyses. We erect a new genus and family for B. daphneae, and rank this taxon incerti ordinis. Based on our comprehensive phylogeny, we propose a new formal higher-level classification for Actiniaria composed of only two suborders, Anenthemonae and Enthemonae. Suborder Anenthemonae includes actiniarians with a unique arrangement of mesenteries (members of Edwardsiidae and former suborder Endocoelantheae). Suborder Enthemonae includes actiniarians with the typical arrangement of mesenteries for actiniarians (members of former suborders Protantheae, Ptychodacteae, and Nynantheae and subgroups therein). We also erect subgroups within these two newly-erected suborders

  7. The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data

    Science.gov (United States)

    Wieczorek, Karina; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz; Kanturski, Mariusz

    2017-01-01

    The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic hypothesis for the subfamily, based on molecular and morphological datasets. Molecular analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individually on each of genes and joined alignments using Bayesian inference (BI) and Maximum likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochondrial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus and Siphini. Within this genus two clades comprising European and Asiatic species, respectively, were indicated. Concerning relationships within the subfamily, EF-1α and joined COI and EF-1α genes analysis strongly supports the hypothesis that Chaitophorini do not form a monophyletic clade. Periphyllus is a sister group to a clade containing Chaitophorus and Siphini. The Asiatic unit of Periphyllus also includes Trichaitophorus koyaensis. The analysis of morphological dataset under equally weighted parsimony also supports the view that Chaitophorini is an artificial taxon, as Lambersaphis pruinosae and Pseudopterocomma hughi, both traditionally included in the Chaitophorini, formed independent lineages. COI analyses support consistent groups within the subfamily, but relationships between groups are poorly resolved. These analyses were extended to include the species of closely related and phylogenetically unstudied subfamily Drepanosiphinae, which produced congruent results. Genera Drepanosiphum and Depanaphis are monophyletic and sister. The position of Yamatocallis tokyoensis differs in the

  8. Phylogenetic utility of ribosomal genes for reconstructing the phylogeny of five Chinese satyrine tribes (Lepidoptera, Nymphalidae

    Directory of Open Access Journals (Sweden)

    Mingsheng Yang

    2015-03-01

    Full Text Available Satyrinae is one of twelve subfamilies of the butterfly family Nymphalidae, which currently includes nine tribes. However, phylogenetic relationships among them remain largely unresolved, though different researches have been conducted based on both morphological and molecular data. However, ribosomal genes have never been used in tribe level phylogenetic analyses of Satyrinae. In this study we investigate for the first time the phylogenetic relationships among the tribes Elymniini, Amathusiini, Zetherini and Melanitini which are indicated to be a monophyletic group, and the Satyrini, using two ribosomal genes (28s rDNA and 16s rDNA and four protein-coding genes (EF-1α, COI, COII and Cytb. We mainly aim to assess the phylogenetic informativeness of the ribosomal genes as well as clarify the relationships among different tribes. Our results show the two ribosomal genes generally have the same high phylogenetic informativeness compared with EF-1α; and we infer the 28s rDNA would show better informativeness if the 28s rDNA sequence data for each sampling taxon are obtained in this study. The placement of the monotypic genus Callarge Leech in Zetherini is confirmed for the first time based on molecular evidence. In addition, our maximum likelihood (ML and Bayesian inference (BI trees consistently show that the involved Satyrinae including the Amathusiini is monophyletic with high support values. Although the relationships among the five tribes are identical among ML and BI analyses and are mostly strongly-supported in BI analysis, those in ML analysis are lowly- or moderately- supported. Therefore, the relationships among the related five tribes recovered herein need further verification based on more sampling taxa.

  9. Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda.

    Science.gov (United States)

    Rota-Stabelli, Omar; Kayal, Ehsan; Gleeson, Dianne; Daub, Jennifer; Boore, Jeffrey L; Telford, Maximilian J; Pisani, Davide; Blaxter, Mark; Lavrov, Dennis V

    2010-07-12

    Ecdysozoa is the recently recognized clade of molting animals that comprises the vast majority of extant animal species and the most important invertebrate model organisms--the fruit fly and the nematode worm. Evolutionary relationships within the ecdysozoans remain, however, unresolved, impairing the correct interpretation of comparative genomic studies. In particular, the affinities of the three Panarthropoda phyla (Arthropoda, Onychophora, and Tardigrada) and the position of Myriapoda within Arthropoda (Mandibulata vs. Myriochelata hypothesis) are among the most contentious issues in animal phylogenetics. To elucidate these relationships, we have determined and analyzed complete or nearly complete mitochondrial genome sequences of two Tardigrada, Hypsibius dujardini and Thulinia sp. (the first genomes to date for this phylum); one Priapulida, Halicryptus spinulosus; and two Onychophora, Peripatoides sp. and Epiperipatus biolleyi; and a partial mitochondrial genome sequence of the Onychophora Euperipatoides kanagrensis. Tardigrada mitochondrial genomes resemble those of the arthropods in term of the gene order and strand asymmetry, whereas Onychophora genomes are characterized by numerous gene order rearrangements and strand asymmetry variations. In addition, Onychophora genomes are extremely enriched in A and T nucleotides, whereas Priapulida and Tardigrada are more balanced. Phylogenetic analyses based on concatenated amino acid coding sequences support a monophyletic origin of the Ecdysozoa and the position of Priapulida as the sister group of a monophyletic Panarthropoda (Tardigrada plus Onychophora plus Arthropoda). The position of Tardigrada is more problematic, most likely because of long branch attraction (LBA). However, experiments designed to reduce LBA suggest that the most likely placement of Tardigrada is as a sister group of Onychophora. The same analyses also recover monophyly of traditionally recognized arthropod lineages such as Arachnida and of

  10. Dispersals of Hyoscyameae and Mandragoreae (Solanaceae) from the New World to Eurasia in the early Miocene and their biogeographic diversification within Eurasia.

    Science.gov (United States)

    Tu, Tieyao; Volis, Sergei; Dillon, Michael O; Sun, Hang; Wen, Jun

    2010-12-01

    The cosmopolitan Solanaceae contains 21 tribes and has the greatest diversity in South America. Hyoscyameae and Mandragoreae are the only tribes of this family distributed exclusively in Eurasia with two centers of diversity: the Mediterranean-Turanian (MT) region and the Tibetan Plateau (TP). In this study, we examined the origins and biogeographical diversifications of the two tribes based on the phylogenetic framework and chronogram inferred from a combined data set of six plastid DNA regions (the atpB gene, the ndhF gene, the rps16-trnK intergenic spacer, the rbcL gene, the trnC-psbM region and the psbA-trnH intergenic spacer) with two fossil calibration points. Our data suggest that Hyoscyameae and Mandragoreae each forms a monophyletic group independently derived from different New World lineages in the early Miocene. Phylogenetic relationships within both tribes are generally well resolved. All genera of Hyoscyameae are found to be monophyletic and they diversified in middle to late Miocene. At nearly the same time, Mandragoreae split into two clades, corresponding to the MT region and the TP region, respectively. Both the phylogenetic relationships and the estimated ages of Hyoscyameae and Mandragoreae support two independent dispersal events of their ancestors from the New World into Eurasia. After their arrivals in Eurasia, the two tribes diversified primarily in the MT region and in the TP region via multiple biogeographic processes including vicariance, dispersal, recolonization or being preserved as relicts, from the mid Miocene to the late Quaternary. Published by Elsevier Inc.

  11. Global taxonomic diversity of living reptiles.

    Directory of Open Access Journals (Sweden)

    Daniel Pincheira-Donoso

    Full Text Available Reptiles are one of the most ecologically and evolutionarily remarkable groups of living organisms, having successfully colonized most of the planet, including the oceans and some of the harshest and more environmentally unstable ecosystems on earth. Here, based on a complete dataset of all the world's diversity of living reptiles, we analyse lineage taxonomic richness both within and among clades, at different levels of the phylogenetic hierarchy. We also analyse the historical tendencies in the descriptions of new reptile species from Linnaeus to March 2012. Although (non-avian reptiles are the second most species-rich group of amniotes after birds, most of their diversity (96.3% is concentrated in squamates (59% lizards, 35% snakes, and 2% amphisbaenians. In strong contrast, turtles (3.4%, crocodilians (0.3%, and tuataras (0.01% are far less diverse. In terms of species discoveries, most turtles and crocodilians were described early, while descriptions of lizards, snakes and amphisbaenians are multimodal with respect to time. Lizard descriptions, in particular, have reached unprecedented levels during the last decade. Finally, despite such remarkably asymmetric distributions of reptile taxonomic diversity among groups, we found that the distributions of lineage richness are consistently right-skewed, with most clades (monophyletic families and genera containing few lineages (monophyletic genera and species, respectively, while only a few have radiated greatly (notably the families Colubridae and Scincidae, and the lizard genera Anolis and Liolaemus. Therefore, such consistency in the frequency distribution of richness among clades and among phylogenetic levels suggests that the nature of reptile biodiversity is fundamentally fractal (i.e., it is scale invariant. We then compared current reptile diversity with the global reptile diversity and taxonomy known in 1980. Despite substantial differences in the taxonomies (relative to 2012, the

  12. General method to unravel ancient population structures through surnames, final validation on Italian data.

    Science.gov (United States)

    Boattini, Alessio; Lisa, Antonella; Fiorani, Ornella; Zei, Gianna; Pettener, Davide; Manni, Franz

    2012-06-01

    We analyze the geographic location of 77,451 different Italian surnames (17,579,891 individuals) obtained from the lists of telephone subscribers of the year 1993. By using a specific neural network analysis (Self-Organizing Maps, SOMs), we automatically identify the geographic origin of 49,117 different surnames. To validate the methodology, we compare the results to a study, previously conducted, on the same database, with accurate supervised methods. By comparing the results, we find an overlap of 97%, meaning that the SOMs methodology is highly reliable and well traces back the geographic origin of surnames at the time of their introduction (Late Middle Ages/Renaissance in Italy). SOMs results enables one to distinguish monophyletic surnames from polyphyletic ones, that is surnames having had a single geographic and historic origin from those that started to be in use, with an identical spelling, in different locations (respectively, 76.06% and 21.05% of the total). As we are interested in geographic origins, polyphyletic surnames are excluded from further analyses. By comparing the present location of each monophyletic surname to its inferred geographic origin in late Middle Ages/Renaissance, we measure the extent of the migrations having occurred in Italy since that time. We find that the percentage of individuals presently living in the very area where their surname started to be in use centuries ago is extremely variable (ranging from 22.77% to 77.86% according to the province), thus meaning that self-assessed regional identities seldom correspond to the "autochthony" they imply. For example the upper part of the Thyrennian coast (Northern Latium, Tuscany) has a strong identity but few "autochthonous" inhabitants (∼28%) having been a passageway from the North to the South of Italy.

  13. Human Fungal Pathogens of Mucorales and Entomophthorales.

    Science.gov (United States)

    Mendoza, Leonel; Vilela, Raquel; Voelz, Kerstin; Ibrahim, Ashraf S; Voigt, Kerstin; Lee, Soo Chan

    2014-11-06

    In recent years, we have seen an increase in the number of immunocompromised cohorts as a result of infections and/or medical conditions, which has resulted in an increased incidence of fungal infections. Although rare, the incidence of infections caused by fungi belonging to basal fungal lineages is also continuously increasing. Basal fungal lineages diverged at an early point during the evolution of the fungal lineage, in which, in a simplified four-phylum fungal kingdom, Zygomycota and Chytridiomycota belong to the basal fungi, distinguishing them from Ascomycota and Basidiomycota. Currently there are no known human infections caused by fungi in Chytridiomycota; only Zygomycotan fungi are known to infect humans. Hence, infections caused by zygomycetes have been called zygomycosis, and the term "zygomycosis" is often used as a synonym for "mucormycosis." In the four-phylum fungal kingdom system, Zygomycota is classified mainly based on morphology, including the ability to form coenocytic (aseptated) hyphae and zygospores (sexual spores). In the Zygomycota, there are 10 known orders, two of which, the Mucorales and Entomophthorales, contain species that can infect humans, and the infection has historically been known as zygomycosis. However, recent multilocus sequence typing analyses (the fungal tree of life [AFTOL] project) revealed that the Zygomycota forms not a monophyletic clade but instead a polyphyletic clade, whereas Ascomycota and Basidiomycota are monophyletic. Thus, the term "zygomycosis" needed to be further specified, resulting in the terms "mucormycosis" and "entomophthoramycosis." This review covers these two different types of fungal infections. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Identification of species and materia medica within Angelica L. (Umbelliferae) based on phylogeny inferred from DNA barcodes.

    Science.gov (United States)

    Yuan, Qing-Jun; Zhang, Bin; Jiang, Dan; Zhang, Wen-Jing; Lin, Tsai-Yun; Wang, Nian-He; Chiou, Shu-Jiau; Huang, Lu-Qi

    2015-03-01

    DNA barcodes have been increasingly used in authentication of medicinal plants, while their wide application in materia medica is limited in their accuracy due to incomplete sampling of species and absence of identification for materia medica. In this study, 95 leaf accessions of 23 species (including one variety) and materia medica of three Pharmacopoeia-recorded species of Angelica in China were collected to evaluate the effectiveness of four DNA barcodes (rbcL, matK, trnH-psbA and ITS). Our results showed that ITS provided the best discriminatory power by resolving 17 species as monophyletic lineages without shared alleles and exhibited the largest barcoding gap among the four single barcodes. The phylogenetic analysis of ITS showed that Levisticum officinale and Angelica sinensis were sister taxa, which indicates that L. officinale should be considered as a species of Angelica. The combination of ITS + rbcL + matK + trnH-psbA performed slight better discriminatory power than ITS, recovering 23 species without shared alleles and 19 species as monophyletic clades in ML tree. Authentication of materia medica using ITS revealed that the decoction pieces of A. sinensis and A. biserrata were partially adulterated with those of L. officinale, and the temperature around 80 °C processing A. dahurica decoction pieces obviously reduced the efficiency of PCR and sequencing. The examination of two cultivated varieties of A. dahurica from different localities indicated that the four DNA barcodes are inefficient for discriminating geographical authenticity of conspecific materia medica. This study provides an empirical paradigm in identification of medicinal plants and their materia medica using DNA barcodes. © 2014 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  15. Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes.

    Science.gov (United States)

    Nikolaidis, Nikolas; Nei, Masatoshi

    2004-03-01

    We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.

  16. Phylogenetic position of the bee genera Ancyla and Tarsalia (Hymenoptera: Apidae): a remarkable base compositional bias and an early Paleogene geodispersal from North America to the Old World.

    Science.gov (United States)

    Praz, Christophe J; Packer, Laurence

    2014-12-01

    We address the phylogenetic position of the bee genera Tarsalia and Ancyla (currently forming the tribe Ancylaini) on the basis of morphological, molecular and combined data. We assembled a matrix of 309 morphological characters and 5246 aligned nucleotide positions from six nuclear genes (28S, EF-1a, wingless, POL2, LW-Rhodopsin, NAK). In addition to both constituent genera of Ancylaini, we include all three subtribes of the Eucerini as well as a large number of other tribes from the "eucerine line". The morphological data suggest Ancyla to be sister to Tarsalia+Eucerini and analyses of the entire molecular dataset suggest Tarsalia to be sister to Ancyla+Eucerini. However, analyses of the combined dataset suggests the Ancylaini to be monophyletic. We address possible bias within the molecular data and show that the base composition of two markers (EF-1a and NAK) is significantly heterogeneous among taxa and that this heterogeneity is strong enough to overcome the phylogenetic signal from the other markers. Analyses of a molecular matrix where the heterogeneous partitions have been RY-recoded yield trees that are better resolved and have higher nodal support values than those recovered in analyses of the non-recoded matrix, and strongly suggest the Ancylaini to be a monophyletic sister group to the Eucerini. A dated phylogeny and ancestral range reconstructions suggest that the common ancestor of the Ancylaini reached the Old World from the New World most probably via the Thulean Land Bridge in a time window between 69 and 47 mya, a period that includes the Early Eocene Climatic Optimum. No further exchanges between the New World and the Old World are implied by our data until the period between 22 mya and 13.9 mya. These more recent faunal exchanges probably involved geodispersal over the Bering Land Bridge by less thermophilic lineages. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Phylogeny, evolutionary trends and classification of the Spathelia-Ptaeroxylon clade: morphological and molecular insights.

    Science.gov (United States)

    Appelhans, M S; Smets, E; Razafimandimbison, S G; Haevermans, T; van Marle, E J; Couloux, A; Rabarison, H; Randrianarivelojosia, M; Kessler, P J A

    2011-06-01

    The Spathelia-Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia-Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. A species-level phylogenetic analysis of the Spathelia-Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL-trnF, rps16 and psbA-trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. With the exception of Spathelia, all genera of the Spathelila-Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. The Spathelia-Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities and oil cells, haplostemonous flowers with appendaged staminal

  18. Phylogeny, evolutionary trends and classification of the Spathelia–Ptaeroxylon clade: morphological and molecular insights

    Science.gov (United States)

    Appelhans, M. S.; Smets, E.; Razafimandimbison, S. G.; Haevermans, T.; van Marle, E. J.; Couloux, A.; Rabarison, H.; Randrianarivelojosia, M.; Keßler, P. J. A.

    2011-01-01

    Background and Aims The Spathelia–Ptaeroxylon clade is a group of morphologically diverse plants that have been classified together as a result of molecular phylogenetic studies. The clade is currently included in Rutaceae and recognized at a subfamilial level (Spathelioideae) despite the fact that most of its genera have traditionally been associated with other families and that there are no obvious morphological synapomorphies for the clade. The aim of the present study is to construct phylogenetic trees for the Spathelia–Ptaeroxylon clade and to investigate anatomical characters in order to decide whether it should be kept in Rutaceae or recognized at the familial level. Anatomical characters were plotted on a cladogram to help explain character evolution within the group. Moreover, phylogenetic relationships and generic limits within the clade are also addressed. Methods A species-level phylogenetic analysis of the Spathelia–Ptaeroxylon clade based on five plastid DNA regions (rbcL, atpB, trnL–trnF, rps16 and psbA–trnH) was conducted using Bayesian, maximum parsimony and maximum likelihood methods. Leaf and seed anatomical characters of all genera were (re)investigated by light and scanning electron microscopy. Key Results With the exception of Spathelia, all genera of the Spathelila–Ptaeroxylon clade are monophyletic. The typical leaf and seed anatomical characters of Rutaceae were found. Further, the presence of oil cells in the leaves provides a possible synapomorphy for the clade. Conclusions The Spathelia–Ptaeroxylon clade is well placed in Rutaceae and it is reasonable to unite the genera into one subfamily (Spathelioideae). We propose a new tribal classification of Spathelioideae. A narrow circumscription of Spathelia is established to make the genus monophyletic, and Sohnreyia is resurrected to accommodate the South American species of Spathelia. The most recent common ancestor of Spathelioideae probably had leaves with secretory cavities

  19. The origins of the giant pill-millipedes from Madagascar (Diplopoda: Sphaerotheriida: Arthrosphaeridae).

    Science.gov (United States)

    Wesener, Thomas; Raupach, Michael J; Sierwald, Petra

    2010-12-01

    Giant pill-millipedes (order Sphaerotheriida) are large-bodied millipedes without poison glands which can roll-up into a complete ball. Their disconnected area of distribution spanning South Africa, Madagascar, India, SE Asia, Australia and New Zealand makes them interesting model organisms for biogeographic studies. The here presented phylogeny is based on a molecular dataset covering all areas of distribution with a special focus on Madagascar, where some species of giant pill-millipedes show island gigantism, reaching the size of a baseball. For our study, two mitochondrial genes (partial 16S rRNA and COI) as well as the complete nuclear 18S rDNA were sequenced. While many recent vertebrate studies hint that the ancestors of the recent Malagasy fauna crossed the >350 km wide Mozambique Channel several times, no such crossing was discovered in the Sphaerotheriida. For the first time in a molecular phylogenetic study of soil arthropods, a Madagascar-India group, the family Arthrosphaeridae, is recovered, hinting to a Gondwanan origin of the Sphaerotheriida. The Malagasy-Indian family Arthrosphaeridae forms a monophyletic, statistically well-supported group in all obtained trees. The giant pill-millipedes from Madagascar are paraphyletic because the Malagasy genus Sphaeromimus is the sister-taxon of the Indian Arthrosphaera. In Sphaeromimus, an ecotone shift occurred only once: the spiny forest species Sphaeromimus musicus forms the sister-clade to the species collected in rainforests and littoral rainforests. The two species of the Malagasy genus Zoosphaerium which express island gigantism form a monophyletic group in some trees, but these trees lack good statistical support. Deeper nodes inside the Sphaerotheriida, like the position of the Australian genera Procyliosoma and Epicyliosoma, the Southeast Asian family Zephroniidae and the South African genus Sphaerotherium could not be resolved. This study is the first genetic study inside the order Sphaerotheriida

  20. Current Status of the Systematics of Astragalus L. (Fabaceae with Special Reference to the Himalayan Species in India

    Directory of Open Access Journals (Sweden)

    Lal Babu Chaudhary

    2008-12-01

    Full Text Available Astragalus is considered one of the most diverse genera in the family Leguminosae (nom. alt. Fabaceae. Although a large number of works have been carried out on the genus, no monograph is available except some regional accounts and revisions chiefly at sectional level. It may be due to the sheer size of the genus (ca. 3000 spp. and diverse nature, the genus is quite variable in habit and habitats, size of the plants, nature of indumentums, stipules, leaf rachis, types of inflorescence, relative length of petals, pods etc. Usually, genus is divided into eight to ten subgenera and more than 245 sections. In recently conducted molecular phylogenetic studies it has been shown that none of the subgenera and large sections are monophyletic. However, it has been clearly demonstrated that Astragalus is monophyletic except some outlier species. The chromosome numbers are also quite interesting and significant in Astragalus for its phylogenetic studies. There is a strong correlation between its geographic distribution and chromosome numbers. Currently about 80 species have been recorded from India chiefly from the Himalayas. Except some of our recent publications, not much studies have been carried out on the genus in India after 'The Flora of British India'. Astragalus is not of much economic importance, however, some of its species are well known for commercial gum tragacanth production especially in Iran and China. In India, A. candolleanus is a well known drug as ‘Rudanti’ or ‘Rudravanti’used for tuberculosis, skin diseases, coughs and blood purifier. The aim of this article is to review the entire work carried out on Astragalus and to bring out scattered information at one place for better understanding of the subject and to find out the future prospective of the research in India on the genus.

  1. Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei).

    Science.gov (United States)

    Lavoué, Sébastien; Sullivan, John P

    2004-10-01

    Fishes of the Superorder Osteoglossomorpha (the "bonytongues") constitute a morphologically heterogeneous group of basal teleosts, including highly derived subgroups such as African electric fishes, the African butterfly fish, and Old World knifefishes. Lack of consensus among hypotheses of osteoglossomorph relationships advanced during the past 30 years may be due in part to the difficulty of identifying shared derived characters among the morphologically differentiated extant families of this group. In this study, we present a novel phylogenetic hypothesis for this group, based on the analysis of more than 4000 characters from five molecular markers (the mitochondrial cytochrome b, 12S and 16S rRNA genes, and the nuclear genes RAG2 and MLL). Our taxonomic sampling includes one representative of each extant non-mormyrid osteoglossomorph genus, one representative for the monophyletic family Mormyridae, and four outgroup taxa within the basal Teleostei. Maximum parsimony analysis of combined and equally weighted characters from the five molecular markers and Bayesian analysis provide a single, well-supported, hypothesis of osteoglossomorph interrelationships and show the group to be monophyletic. The tree topology is the following: (Hiodon alosoides, (Pantodon buchholzi, (((Osteoglossum bicirrhosum, Scleropages sp.), (Arapaima gigas, Heterotis niloticus)), ((Gymnarchus niloticus, Ivindomyrus opdenboschi), ((Notopterus notopterus, Chitala ornata), (Xenomystus nigri, Papyrocranus afer)))))). We compare our results with previously published phylogenetic hypotheses based on morpho-anatomical data. Additionally, we explore the consequences of the long terminal branch length for the taxon Pantodon buchholzi in our phylogenetic reconstruction and we use the obtained phylogenetic tree to reconstruct the evolutionary history of electroreception in the Notopteroidei.

  2. A morphological intermediate between eosimiiform and simiiform primates from the late middle Eocene of Tunisia: Macroevolutionary and paleobiogeographic implications of early anthropoids.

    Science.gov (United States)

    Marivaux, Laurent; Essid, El Mabrouk; Marzougui, Wissem; Khayati Ammar, Hayet; Adnet, Sylvain; Marandat, Bernard; Merzeraud, Gilles; Ramdarshan, Anusha; Tabuce, Rodolphe; Vianey-Liaud, Monique; Yans, Johan

    2014-07-01

    Although advanced anthropoid primates (i.e., Simiiformes) are recorded at the end of the Eocene in North Africa (Proteopithecidae, Parapithecidae, and Oligopithecidae), the origin and emergence of this group has so far remained undocumented. The question as to whether these primates are the result of a monophyletic radiation of endemic anthropoids in Africa, or several Asian clades colonizing Africa, is a current focus of paleoprimatology. In this article, we report the discovery of a new anthropoid from Djebel el Kébar in central Tunisia, dating from the late middle Eocene (Bartonian). This taxon, Amamria tunisiensis, new genus and species, currently known by only one isolated upper molar, is among the most ancient anthropoids to be recorded in Africa thus far. Amamria displays a suite of dental features that are primarily observed in Eosimiiformes (stem Anthropoidea). However, it is not allocated to any known family of that group (i.e., Asian Eosimiidae and Afro-Asian Afrotarsiidae) inasmuch as it develops some dental traits that are unknown among eosimiiforms, but can be found in African simiiform anthropoids such as proteopithecids and oligopithecids. With such a mosaic of dental traits, Amamria appears to be a structural intermediate, and as such it could occupy a key position, close to the root of the African simiiforms. Given its antiquity and its apparent pivotal position, the possibility exists that Amamria could have evolved in Africa from Asian eosimiiform or Asian "proto"-simiiform ancestors, which would have entered Africa sometime during the middle Eocene. Amamria could then represent one of the earliest offshoots of the African simiiform radiation. This view would then be rather in favor of the hypothesis of a monophyletic radiation of endemic simiiform anthropoids in Africa. Finally, these new data suggest that there must have been at least two Asian anthropoid colonizers of Africa: the afrotarsiids and the ancestor of Amamria. © 2014 Wiley

  3. Remarkable phylogenetic resolution of the most complex clade of Cyprinidae (Teleostei: Cypriniformes): a proof of concept of homology assessment and partitioning sequence data integrated with mixed model Bayesian analyses.

    Science.gov (United States)

    Tao, Wenjing; Mayden, Richard L; He, Shunping

    2013-03-01

    Despite many efforts to resolve evolutionary relationships among major clades of Cyprinidae, some nodes have been especially problematic and remain unresolved. In this study, we employ four nuclear gene fragments (3.3kb) to infer interrelationships of the Cyprinidae. A reconstruction of the phylogenetic relationships within the family using maximum parsimony, maximum likelihood, and Bayesian analyses is presented. Among the taxa within the monophyletic Cyprinidae, Rasborinae is the basal-most lineage; Cyprinine is sister to Leuciscine. The monophyly for the subfamilies Gobioninae, Leuciscinae and Acheilognathinae were resolved with high nodal support. Although our results do not completely resolve relationships within Cyprinidae, this study presents novel and significant findings having major implications for a highly diverse and enigmatic clade of East-Asian cyprinids. Within this monophyletic group five closely-related subgroups are identified. Tinca tinca, one of the most phylogenetically enigmatic genera in the family, is strongly supported as having evolutionary affinities with this East-Asian clade; an established yet remarkable association because of the natural variation in phenotypes and generalized ecological niches occupied by these taxa. Our results clearly argue that the choice of partitioning strategies has significant impacts on the phylogenetic reconstructions, especially when multiple genes are being considered. The most highly partitioned model (partitioned by codon positions within genes) extracts the strongest phylogenetic signals and performs better than any other partitioning schemes supported by the strongest 2Δln Bayes factor. Future studies should include higher levels of taxon sampling and partitioned, model-based analyses. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.

    Science.gov (United States)

    Crawford, Andrew J; Smith, Eric N

    2005-06-01

    We report the first phylogenetic analysis of DNA sequence data for the Central American component of the genus Eleutherodactylus (Anura: Leptodactylidae: Eleutherodactylinae), one of the most ubiquitous, diverse, and abundant components of the Neotropical amphibian fauna. We obtained DNA sequence data from 55 specimens representing 45 species. Sampling was focused on Central America, but also included Bolivia, Brazil, Jamaica, and the USA. We sequenced 1460 contiguous base pairs (bp) of the mitochondrial genome containing ND2 and five neighboring tRNA genes, plus 1300 bp of the c-myc nuclear gene. The resulting phylogenetic inferences were broadly concordant between data sets and among analytical methods. The subgenus Craugastor is monophyletic and its initial radiation was potentially rapid and adaptive. Within Craugastor, the earliest splits separate three northern Central American species groups, milesi, augusti, and alfredi, from a clade comprising the rest of Craugastor. Within the latter clade, the rhodopis group as formerly recognized comprises three deeply divergent clades that do not form a monophyletic group; we therefore restrict the content of the rhodopis group to one of two northern clades, and use new names for the other northern (mexicanus group) and one southern clade (bransfordii group). The new rhodopis and bransfordii groups together form the sister taxon to a clade comprising the biporcatus, fitzingeri, mexicanus, and rugulosus groups. We used a Bayesian MCMC approach together with geological and biogeographic assumptions to estimate divergence times from the combined DNA sequence data. Our results corroborated three independent dispersal events for the origins of Central American Eleutherodactylus: (1) an ancestor of Craugastor entered northern Central America from South American in the early Paleocene, (2) an ancestor of the subgenus Syrrhophus entered northern Central America from the Caribbean at the end of the Eocene, and (3) a wave of

  5. Deceptive desmas: molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistid demosponges.

    Directory of Open Access Journals (Sweden)

    Astrid Schuster

    Full Text Available Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera. 'Lithistida', a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of 'lithistid' demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous 'order Lithistida'. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences, we show that 8 out of 13 'Lithistida' families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae--we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different 'lithistid' taxa, and

  6. Mandibular and hyoid muscles of Galeomorph sharks (Chondrichthyes: Elasmobranchii), with remarks on their phylogenetic intrarelationships.

    Science.gov (United States)

    Soares, Mateus C; de Carvalho, Marcelo R

    2013-10-01

    The superorder Galeomorph comprises the orders Heterodontiformes, Orectolobiformes, Lamniformes, and Carcharhiniformes. Recent morphological and molecular support that it is a monophyletic taxon. The phyletic relationship within the Galeomorphi are also well resolved. However, only few morphological characters of the mandibular and hyoid muscles have been employed, and a detailed description of these muscles and their variations may contribute new interpretations of homology and to the discussion of different hypothesis of intrarelationships. This paper provides a detailed description of mandibular and hyoid arch muscles in galeomorph sharks, within a comparative elasmobranch framework, with the objective to discuss putative homologies that may elucidate our understanding of galeomorph evolution. Twenty-eight galeomorph species were dissected, described, illustrated and compared with other elasmobranchs and with data from the literature. The Galeomorphi are supported as monophyletic by presenting the m. levator labii superioris attached directly to the neurocranium, different from the attachment through a tendon in basal squalomorphs. Heterodontiformes and Orectolobiformes share particular variations in the position and insertion of the m. levator labii superioris and the presence of a well-defined m. levator hyomandibulae. Lamniformes and Carcharhiniformes show similar patterns in the position and attachment of the m. levator labii superioris, subdivision of the m. adductor mandibulae, and the presence of an almost indivisible m. levator hyomandibulae and m. constrictor hyoideus dorsalis, similar to the condition, albeit independently, in basal squalomorphs. No specific mandibular or hyoid arch muscle character was found to support the clade composed of Orectolobiformes, Lamniformes, and Carcharhiniformes, as advocated by recent phylogenetic analyses. Copyright © 2013 Wiley Periodicals, Inc.

  7. A multilocus molecular phylogeny of combtooth blennies (Percomorpha: Blennioidei: Blenniidae): Multiple invasions of intertidal habitats

    KAUST Repository

    Hundt, Peter J.

    2014-01-01

    The combtooth blennies (f. Blenniidae) is a diverse family of primarily marine fishes with approximately 387 species that inhabit subtidal, intertidal, supralittoral habitats in tropical and warm temperate regions throughout the world. The Blenniidae has typically been divided into six groups based on morphological characters: Blenniini, Nemophini, Omobranchini, Phenablenniini, Parablenniini, and Salariini. There is, however, considerable debate over the validity of these groups and their relationships. Since little is known about the relationships in this group, other aspects of their evolutionary history, such as habitat evolution and remain unexplored. Herein, we use Bayesian and maximum likelihood analyses of four nuclear loci (ENC1, myh6, ptr, and tbr1) from 102 species, representing 41 genera, to resolve the phylogeny of the Blenniidae, determine the validity of the previously recognized groupings, and explore the evolution of habitat association using ancestral state reconstruction. Bayesian and maximum likelihood analyses of the resulting 3100. bp of DNA sequence produced nearly identical topologies, and identified many well-supported clades. Of these clades, Nemophini was the only traditionally recognized group strongly supported as monophyletic. This highly resolved and thoroughly sampled blenniid phylogeny provides strong evidence that the traditional rank-based classification does not adequately delimit monophyletic groups with the Blenniidae. This phylogeny redefines the taxonomy of the group and supports the use of 13 unranked clades for the classification of blenniids. Ancestral state reconstructions identified four independent invasions of intertidal habitats within the Blenniidae, and subsequent invasions into supralittoral and freshwater habitats from these groups. The independent invasions of intertidal habitats are likely to have played an important role in the evolutionary history of blennies. © 2013 Elsevier Inc.

  8. Hidden among sea anemones: the first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia reveals a novel group of hexacorals.

    Directory of Open Access Journals (Sweden)

    Estefanía Rodríguez

    Full Text Available Sea anemones (order Actiniaria are among the most diverse and successful members of the anthozoan subclass Hexacorallia, occupying benthic marine habitats across all depths and latitudes. Actiniaria comprises approximately 1,200 species of solitary and skeleton-less polyps and lacks any anatomical synapomorphy. Although monophyly is anticipated based on higher-level molecular phylogenies of Cnidaria, to date, monophyly has not been explicitly tested and at least some hypotheses on the diversification of Hexacorallia have suggested that actiniarians are para- or poly-phyletic. Published phylogenies have demonstrated the inadequacy of existing morphological-based classifications within Actiniaria. Superfamilial groups and most families and genera that have been rigorously studied are not monophyletic, indicating conflict with the current hierarchical classification. We test the monophyly of Actiniaria using two nuclear and three mitochondrial genes with multiple analytical methods. These analyses are the first to include representatives of all three currently-recognized suborders within Actiniaria. We do not recover Actiniaria as a monophyletic clade: the deep-sea anemone Boloceroides daphneae, previously included within the infraorder Boloceroidaria, is resolved outside of Actiniaria in several of the analyses. We erect a new genus and family for B. daphneae, and rank this taxon incerti ordinis. Based on our comprehensive phylogeny, we propose a new formal higher-level classification for Actiniaria composed of only two suborders, Anenthemonae and Enthemonae. Suborder Anenthemonae includes actiniarians with a unique arrangement of mesenteries (members of Edwardsiidae and former suborder Endocoelantheae. Suborder Enthemonae includes actiniarians with the typical arrangement of mesenteries for actiniarians (members of former suborders Protantheae, Ptychodacteae, and Nynantheae and subgroups therein. We also erect subgroups within these two newly

  9. Speciation of two gobioid species, Pterogobius elapoides and Pterogobius zonoleucus revealed by multi-locus nuclear and mitochondrial DNA analyses

    KAUST Repository

    Akihito

    2015-10-28

    To understand how geographical differentiation of gobioid fish species led to speciation, two populations of the Pacific Ocean and the Sea of Japan for each of the two gobioid species, Pterogobius elapoides and Pterogobius zonoleucus, were studied in both morphological and molecular features. Analyzing mitochondrial genes, Akihito et al. (2008) suggested that P. zonoleucus does not form a monophyletic clade relative to P. elapoides, indicating that “Sea of Japan P. zonoleucus” and P. elapoides form a clade excluding “Pacific P. zonoleucus” as an outgroup. Because morphological classification clearly distinguish these two species and a gene tree may differ from a population tree, we examined three nuclear genes, S7RP, RAG1, and TBR1, in this work, in order to determine whether nuclear and mitochondrial trees are concordant, thus shedding light on the evolutionary history of this group of fishes. Importantly, nuclear trees were based on exactly the same individuals that were used for the previously published mtDNA trees. The tree based on RAG1 exon sequences suggested a closer relationship of P. elapoides with “Sea of Japan P. zonoleucus”, which was in agreement with the mitochondrial tree. In contrast, S7RP and TBR1 introns recovered a monophyletic P. zonoleucus. If the mitochondrial tree represents the population tree in which P. elapoides evolved from “Sea of Japan P. zonoleucus”, the population size of P. elapoides is expected to be smaller than that of “Sea of Japan P. zonoleucus”. This is because a smaller population of the new species is usually differentiated from a larger population of the ancestral species when the speciation occurred. However, we found no evidence of such a small population size during the evolution of P. elapoides. Therefore, we conclude that the monophyletic P. zonoleucus as suggested by S7RP and TBR1 most likely represents the population tree, which is consistent with the morphological classification. In this case

  10. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    Full Text Available Abstract Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO and acetylpolyamine oxidase (APAO, specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO, it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported

  11. Molecular systematics of terraranas (Anura: Brachycephaloidea) with an assessment of the effects of alignment and optimality criteria.

    Science.gov (United States)

    Padial, José M; Grant, Taran; Frost, Darrel R

    2014-06-26

    Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates

  12. Evolution and origin of merlin, the product of the Neurofibromatosis type 2 (NF2 tumor-suppressor gene

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2005-12-01

    Full Text Available Abstract Background Merlin, the product of the Neurofibromatosis type 2 (NF2 tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa. Results By combining bioinformatic and phylogenetic approaches, we demonstrate that merlin homologs are present across a wide range of metazoan lineages. While the phylogenetic tree shows a monophyletic origin of the ERM family, the origin of the merlin proteins is robustly separated from that of the ERM proteins. The derivation of merlin is thought to be in early metazoa. We have also observed the expansion of the ERM-like proteins within the vertebrate clade, which occurred after its separation from Urochordata (Ciona intestinalis. Amino acid sequence alignment reveals the absence of an actin-binding site in the C-terminal region of all merlin proteins from various species but the presence of a conserved internal binding site in the N-terminal domain of the merlin and ERM proteins. In addition, a more conserved pattern of amino acid residues is found in the region containing the so-called "Blue Box," although some amino acid substitutions in this region exist in the merlin sequences of worms, fish, and Ciona. Examination of sequence variability at functionally significant sites, including the serine-518 residue, the phosphorylation of which modulates merlin's intra-molecular association and function as a tumor suppressor, identifies several potentially important sites that are conserved among all merlin proteins but divergent in the ERM proteins. Secondary structure prediction reveals the presence of a conserved α-helical domain in the central to C-terminal region of the merlin proteins of various species. The

  13. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera using nuclear encoded housekeeping genes.

    Directory of Open Access Journals (Sweden)

    Malcolm S Hill

    Full Text Available Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges.We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha, but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosa(p, Myxospongiae(p, Spongillida(p, Haploscleromorpha(p (the marine haplosclerids and Democlavia(p. We found conflicting results concerning the relationships of Keratosa(p and Myxospongiae(p to the remaining demosponges, but our results strongly supported a clade of Haploscleromorpha(p+Spongillida(p+Democlavia(p. In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillida(p are sister to Haploscleromorpha(p rather than part of Democlavia(p. Within Keratosa(p, we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiae(p, Chondrosida and Verongida were monophyletic. A well-supported clade within Democlavia(p, Tetractinellida(p, composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis, was consistently revealed as the sister group to all other members of Democlavia(p. Within Tetractinellida(p, we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae, and polyphyly of Hadromerida and Halichondrida.These results, using an independent nuclear gene set, confirmed

  14. Analysis of kinetoplast cytochrome b gene of 16 Leishmania isolates from different foci of China: different species of Leishmania in China and their phylogenetic inference

    Science.gov (United States)

    2013-01-01

    Background Leishmania species belong to the family Trypanosomatidae and cause leishmaniasis, a geographically widespread disease that infects humans and other vertebrates. This disease remains endemic in China. Due to the large geographic area and complex ecological environment, the taxonomic position and phylogenetic relationship of Chinese Leishmania isolates remain uncertain. A recent internal transcribed spacer 1 and cytochrome oxidase II phylogeny of Chinese Leishmania isolates has challenged some aspects of their traditional taxonomy as well as cladistics hypotheses of their phylogeny. The current study was designed to provide further disease background and sequence analysis. Methods We systematically analyzed 50 cytochrome b (cyt b) gene sequences of 19 isolates (16 from China, 3 from other countries) sequenced after polymerase chain reaction (PCR) using a special primer for cyt b as well as 31 sequences downloaded from GenBank. After alignment, the data were analyzed using the maximum parsimony, Bayesian and netwok methods. Results Sequences of six haplotypes representing 10 Chinese isolates formed a monophyletic group and clustered with Leishmania tarentolae. The isolates GS1, GS7, XJ771 of this study from China clustered with other isolates of Leishmania donovani complex. The isolate JS1 was a sister to Leishmania tropica, which represented an L. tropica complex instead of clustering with L. donovani complex or with the other 10 Chinese isolates. The isolates KXG-2 and GS-GER20 formed a monophyletic group with Leishmania turanica from central Asia. In the different phylogenetic trees, all of the Chinese isolates occurred in at least four groups regardless of geographic distribution. Conclusions The undescribed Leishmania species of China, which are clearly causative agents of canine leishmaniasis and human visceral leishmaniasis and are related to Sauroleishmania, may have evolved from a common ancestral parasite that came from the Americas and may have

  15. Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea

    Directory of Open Access Journals (Sweden)

    Farache Fernando HA

    2011-06-01

    Full Text Available Abstract Background Non-pollinating Sycophaginae (Hymenoptera, Chalcidoidea form small communities within Urostigma and Sycomorus fig trees. The species show differences in galling habits and exhibit apterous, winged or dimorphic males. The large gall inducers oviposit early in syconium development and lay few eggs; the small gall inducers lay more eggs soon after pollination; the ostiolar gall-inducers enter the syconium to oviposit and the cleptoparasites oviposit in galls induced by other fig wasps. The systematics of the group remains unclear and only one phylogeny based on limited sampling has been published to date. Here we present an expanded phylogeny for sycophagine fig wasps including about 1.5 times the number of described species. We sequenced mitochondrial and nuclear markers (4.2 kb on 73 species and 145 individuals and conducted maximum likelihood and Bayesian phylogenetic analyses. We then used this phylogeny to reconstruct the evolution of Sycophaginae life-history strategies and test if the presence of winged males and small brood size may be correlated. Results The resulting trees are well resolved and strongly supported. With the exception of Apocrytophagus, which is paraphyletic with respect to Sycophaga, all genera are monophyletic. The Sycophaginae are divided into three clades: (i Eukoebelea; (ii Pseudidarnes, Anidarnes and Conidarnes and (iii Apocryptophagus, Sycophaga and Idarnes. The ancestral states for galling habits and male morphology remain ambiguous and our reconstructions show that the two traits are evolutionary labile. Conclusions The three main clades could be considered as tribes and we list some morphological characters that define them. The same biologies re-evolved several times independently, which make Sycophaginae an interesting model to test predictions on what factors will canalize the evolution of a particular biology. The ostiolar gall-inducers are the only monophyletic group. In 15 Myr, they

  16. Molecular phylogeny of Pompilinae (Hymenoptera: Pompilidae): Evidence for rapid diversification and host shifts in spider wasps.

    Science.gov (United States)

    Rodriguez, Juanita; Pitts, James P; Florez, Jaime A; Bond, Jason E; von Dohlen, Carol D

    2016-01-01

    Pompilinae is one of the largest subfamilies of spider wasps (Pompilidae). Most pompilines are generalist spider predators at the family level, but some taxa exhibit ecological specificity (i.e., to spider-host guild). Here we present the first molecular phylogenetic analysis of Pompilinae, toward the aim of evaluating the monophyly of tribes and genera. We further test whether changes in the rate of diversification are associated with host-guild shifts. Molecular data were collected from five nuclear loci (28S, EF1-F2, LWRh, Wg, Pol2) for 76 taxa in 39 genera. Data were analyzed using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic results were compared with previous hypotheses of subfamilial and tribal classification, as well as generic relationships in the subfamily. The classification of Pompilus and Agenioideus is also discussed. A Bayesian relaxed molecular clock analysis was used to examine divergence times. Diversification rate-shift tests accounted for taxon-sampling bias using ML and BI approaches. Ancestral host family and host guild were reconstructed using MP and ML methods. Ancestral host guild for all Pompilinae, for the ancestor at the node where a diversification rate-shift was detected, and two more nodes back in time was inferred using BI. In the resulting phylogenies, Aporini was the only previously proposed monophyletic tribe. Several genera (e.g., Pompilus, Microphadnus and Schistonyx) are also not monophyletic. Dating analyses produced a well-supported chronogram consistent with topologies from BI and ML results. The BI ancestral host-use reconstruction inferred the use of spiders belonging to the guild "other hunters" (frequenting the ground and vegetation) as the ancestral state for Pompilinae. This guild had the highest probability for the ML reconstruction and was equivocal for the MP reconstruction; various switching events to other guilds occurred throughout the evolution of the group. The diversification of

  17. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages

    Directory of Open Access Journals (Sweden)

    Schaefer Hanno

    2012-12-01

    Full Text Available Abstract Background Tribe Fabeae comprises about 380 legume species, including some of the most ancient and important crops like lentil, pea, and broad bean. Breeding efforts in legume crops rely on a detailed knowledge of closest wild relatives and geographic origin. Relationships within the tribe, however, are incompletely known and previous molecular results conflicted with the traditional morphology-based classification. Here we analyse the systematics, biogeography, and character evolution in the tribe based on plastid and nuclear DNA sequences. Results Phylogenetic analyses including c. 70% of the species in the tribe show that the genera Vicia and Lathyrus in their current circumscription are not monophyletic: Pisum and Vavilovia are nested in Lathyrus, the genus Lens is nested in Vicia. A small, well-supported clade including Vicia hirsuta, V. sylvatica, and some Mediterranean endemics, is the sister group to all remaining species in the tribe. Fabeae originated in the East Mediterranean region in the Miocene (23–16 million years ago (Ma and spread at least 39 times into Eurasia, seven times to the Americas, twice to tropical Africa and four times to Macaronesia. Broad bean (V. faba and its sister V. paucijuga originated in Asia and might be sister to V. oroboides. Lentil (Lens culinaris ssp. culinaris is of Mediterranean origin and together with eight very close relatives forms a clade that is nested in the core Vicia, where it evolved c. 14 Ma. The Pisum clade is nested in Lathyrus in a grade with the Mediterranean L. gloeosperma, L. neurolobus, and L. nissolia. The extinct Azorean endemic V. dennesiana belongs in section Cracca and is nested among Mediterranean species. According to our ancestral character state reconstruction results, ancestors of Fabeae had a basic chromosome number of 2n=14, an annual life form, and evenly hairy, dorsiventrally compressed styles. Conclusions Fabeae evolved in the Eastern Mediterranean in the

  18. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages.

    Science.gov (United States)

    Schaefer, Hanno; Hechenleitner, Paulina; Santos-Guerra, Arnoldo; Menezes de Sequeira, Miguel; Pennington, R Toby; Kenicer, Gregory; Carine, Mark A

    2012-12-25

    Tribe Fabeae comprises about 380 legume species, including some of the most ancient and important crops like lentil, pea, and broad bean. Breeding efforts in legume crops rely on a detailed knowledge of closest wild relatives and geographic origin. Relationships within the tribe, however, are incompletely known and previous molecular results conflicted with the traditional morphology-based classification. Here we analyse the systematics, biogeography, and character evolution in the tribe based on plastid and nuclear DNA sequences. Phylogenetic analyses including c. 70% of the species in the tribe show that the genera Vicia and Lathyrus in their current circumscription are not monophyletic: Pisum and Vavilovia are nested in Lathyrus, the genus Lens is nested in Vicia. A small, well-supported clade including Vicia hirsuta, V. sylvatica, and some Mediterranean endemics, is the sister group to all remaining species in the tribe. Fabeae originated in the East Mediterranean region in the Miocene (23-16 million years ago (Ma)) and spread at least 39 times into Eurasia, seven times to the Americas, twice to tropical Africa and four times to Macaronesia. Broad bean (V. faba) and its sister V. paucijuga originated in Asia and might be sister to V. oroboides. Lentil (Lens culinaris ssp. culinaris) is of Mediterranean origin and together with eight very close relatives forms a clade that is nested in the core Vicia, where it evolved c. 14 Ma. The Pisum clade is nested in Lathyrus in a grade with the Mediterranean L. gloeosperma, L. neurolobus, and L. nissolia. The extinct Azorean endemic V. dennesiana belongs in section Cracca and is nested among Mediterranean species. According to our ancestral character state reconstruction results, ancestors of Fabeae had a basic chromosome number of 2n=14, an annual life form, and evenly hairy, dorsiventrally compressed styles. Fabeae evolved in the Eastern Mediterranean in the middle Miocene and spread from there across Eurasia, into

  19. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera.

    Science.gov (United States)

    Gupta, Radhey S; Lo, Brian; Son, Jeen

    2018-01-01

    The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium , 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the " Tuberculosis-Simiae ," " Terrae," " Triviale ," " Fortuitum-Vaccae ," and " Abscessus-Chelonae " clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the " Abscessus-Chelonae" clade forms the deepest branching lineage and does not form a monophyletic grouping with the " Fortuitum-Vaccae " clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we

  20. Phylodynamics of HIV-1 subtype F1 in Angola, Brazil and Romania.

    Science.gov (United States)

    Bello, Gonzalo; Afonso, Joana Morais; Morgado, Mariza G

    2012-07-01

    The HIV-1 subtype F1 is exceptionally prevalent in Angola, Brazil and Romania. The epidemiological context in which the spread of HIV occurred was highly variable from one country to another, mainly due to the existence of a long-term civil war in Angola and the contamination of a large number of children in Romania. Here we apply phylogenetic and Bayesian coalescent-based methods to reconstruct the phylodynamic patterns of HIV-1 subtype F1 in such different epidemiological settings. The phylogenetic analyses of HIV-1 subtype F1 pol sequences sampled worldwide confirmed that most sequences from Angola, Brazil and Romania segregated in country-specific monophyletic groups, while most subtype F1 sequences from Romanian children branched as a monophyletic sub-cluster (Romania-CH) nested within sequences from adults. The inferred time of the most recent common ancestor of the different subtype F1 clades were as follow: Angola=1983 (1978-1989), Brazil=1977 (1972-1981), Romania adults=1980 (1973-1987), and Romania-CH=1985 (1978-1989). All subtype F1 clades showed a demographic history best explained by a model of logistic population growth. Although the expansion phase of subtype F1 epidemic in Angola (mid 1980s to early 2000s) overlaps with the civil war period (1975-2002), the mean estimated growth rate of the Angolan F1 clade (0.49 year(-1)) was not exceptionally high, but quite similar to that estimated for the Brazilian (0.69 year(-1)) and Romanian adult (0.36 year(-1)) subtype F1 clades. The Romania-CH subtype F1 lineage, by contrast, displayed a short and explosive dissemination phase, with a median growth rate (2.47 year(-1)) much higher than that estimated for adult populations. This result supports the idea that the AIDS epidemic that affected the Romanian children was mainly caused by the spread of the HIV through highly efficient parenteral transmission networks, unlike adult populations where HIV is predominantly transmitted through sexual route. Copyright

  1. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both?

    Science.gov (United States)

    Wörheide, Gert; Epp, Laura S; Macis, Luciana

    2008-01-26

    An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood. We unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2) and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII). This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives), another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities. We argue that both founder and vicariance events during the late Pliocene and

  2. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae: Founder effects, vicariance, or both?

    Directory of Open Access Journals (Sweden)

    Epp Laura S

    2008-01-01

    Full Text Available Abstract Background An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood. Results We unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2 and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII. This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives, another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities. Conclusion We argue that both

  3. Phylogeny of the Acanthocephala based on morphological characters.

    Science.gov (United States)

    Monks, S

    2001-02-01

    Only four previous studies of relationships among acanthocephalans have included cladistic analyses, and knowledge of the phylogeny of the group has not kept pace with that of other taxa. The purpose of this study is to provide a more comprehensive analysis of the phylogenetic relationships among members of the phylum Acanthocephala using morphological characters. The most appropriate outgroups are those that share a common early cell-cleavage pattern (polar placement of centrioles), such as the Rotifera, rather than the Priapulida (meridional placement of centrioles) to provide character polarity based on common ancestry rather than a general similarity likely due to convergence of body shapes. The phylogeny of 22 species of the Acanthocephala was evaluated based on 138 binary and multistate characters derived from comparative morphological and ontogenetic studies. Three assumptions of cement gland structure were tested: (i) the plesiomorphic type of cement glands in the Rotifera, as the sister group, is undetermined; (ii) non-syncytial cement glands are plesiomorphic; and (iii) syncytial cement glands are plesiomorphic. The results were used to test an early move of Tegorhynchus pectinarius to Koronacantha and to evaluate the relationship between Tegorhynchus and Illiosentis. Analysis of the data-set for each of these assumptions of cement gland structure produced the same single most parsimonious tree topology. Using Assumptions i and ii for the cement glands, the trees were the same length (length = 404 steps, CI = 0.545, CIX = 0.517, HI = 0.455, HIX = 0.483, RI = 0.670, RC = 0.365). Using Assumption iii, the tree was three steps longer (length = 408 steps, CI = 0.539, CIX = 0.512, HI = 0.461, HIX = 0.488, RI = 0.665, RC = 0.359). The tree indicates that the Palaeacanthocephala and Eoacanthocephala both are monophyletic and are sister taxa. The members of the Archiacanthocephala are basal to the other two clades, but do not themselves form a clade. The results

  4. Phylogeography of the common vampire bat (Desmodus rotundus: Marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers

    Directory of Open Access Journals (Sweden)

    Morgante João S

    2009-12-01

    Full Text Available Abstract Background The common vampire bat Desmodus rotundus is an excellent model organism for studying ecological vicariance in the Neotropics due to its broad geographic range and its preference for forested areas as roosting sites. With the objective of testing for Pleistocene ecological vicariance, we sequenced a mitocondrial DNA (mtDNA marker and two nuclear markers (RAG2 and DRB to try to understand how Pleistocene glaciations affected the distribution of intraspecific lineages in this bat. Results Five reciprocally monophyletic clades were evident in the mitochondrial gene tree, and in most cases with high bootstrap support: Central America (CA, Amazon and Cerrado (AMC, Pantanal (PAN, Northern Atlantic Forest (NAF and Southern Atlantic Forest (SAF. The Atlantic forest clades formed a monophyletic clade with high bootstrap support, creating an east/west division for this species in South America. On the one hand, all coalescent and non-coalescent estimates point to a Pleistocene time of divergence between the clades. On the other hand, the nuclear markers showed extensive sharing of haplotypes between distant localities, a result compatible with male-biased gene flow. In order to test if the disparity between the mitochondrial and nuclear markers was due to the difference in mutation rate and effective size, we performed a coalescent simulation to examine the feasibility that, given the time of separation between the observed lineages, even with a gene flow rate close to zero, there would not be reciprocal monophyly for a neutral nuclear marker. We used the observed values of theta and an estimated mutation rate for the nuclear marker gene to perform 1000 iterations of the simulation. The results of this simulation were inconclusive: the number of iterations with and without reciprocal monophyly of one or more clades are similar. Conclusions We therefore conclude that the pattern exhibited by the common vampire bat, with marked

  5. Up high and down low: Molecular systematics and insight into the diversification of the ground beetle genus Rhadine LeConte.

    Science.gov (United States)

    Gómez, R Antonio; Reddell, James; Will, Kipling; Moore, Wendy

    2016-05-01

    Rhadine LeConte is a Nearctic genus of flightless ground beetles that is poorly studied despite its relevance to evolutionary studies of subterranean fauna. Adults are notable for their slender and leggy habitus and the wide variety of habitat preferences among species, with several known only from mountaintops while others are restricted to caves or more general subterranean habitats. In central Texas, USA there are several cave endemics relevant to conservation. Here we present the first phylogenetic hypothesis for the overall structure of the genus with an emphasis on the troglobites in central Texas. We infer the phylogeny of Rhadine from ∼2.4-kb of aligned nucleotide sites from the nuclear genes, 28S rDNA and CAD, and the mitochondrial gene COI. These data were obtained for 30 species of Rhadine as well as from members of their putative sister group, Tanystoma Motschulsky. Results reveal that Rhadine is polyphyletic, and morphological characters that have been traditionally used to classify the genus into species groups are shown to be convergent in many cases. Rhadine aside from two species of uncertain placement is composed of two major clades, Clades I and II that both include epigean and subterranean species in very unequal proportions. Clade I is primarily composed of subterranean species, and Clade II includes many epigean species and high altitude montane endemics. A clade of troglobitic, cave-restricted species in Texas includes several species of large-eyed cave Rhadine. The slender habitus typical of some species [e.g., R. exilis (Barr and Lawrence), R. subterranea (Van Dyke), R. austinica Barr] evolved independently at least three times. Major biogeographic and evolutionary patterns based on these results include: troglobitic species north of the Colorado River in Texas (that also lack lateral pronotal setae) are found to comprise a monophyletic group, beetles in caves south of the Colorado River likely form another monophyletic group, and the

  6. The Hemiparasitic Plant Phtheirospermum (Orobanchaceae Is Polyphyletic and Contains Cryptic Species in the Hengduan Mountains of Southwest China

    Directory of Open Access Journals (Sweden)

    Wen-Bin Yu

    2018-02-01

    Full Text Available Phtheirospermum (Orobanchaceae, a hemiparasitic genus of Eastern Asia, is characterized by having long and viscous glandular hairs on stems and leaves. Despite this unifying character, previous phylogenetic analyses indicate that Phtheirospermum is polyphyletic, with Phtheirospermum japonicum allied with tribe Pedicularideae and members of the Ph. tenuisectum complex allied with members of tribe Rhinantheae. However, no analyses to date have included broad phylogenetic sampling necessary to test the monophyly of Phtheirospermum species, and to place these species into the existing subfamiliar taxonomic organization of Orobanchaceae. Two other genera of uncertain phylogenetic placement are Brandisia and Pterygiella, also both of Eastern Asia. In this study, broadly sampled phylogenetic analyses of nrITS and plastid DNA revealed hard incongruence between these datasets in the placement of Brandisia. However, both nrITS and the plastid datasets supported the placement of Ph. japonicum within tribe Pedicularideae, and a separate clade consisting of the Ph. tenuisectum complex and a monophyletic Pterygiella. Analyses were largely in agreement that Pterygiella, the Ptheirospermum complex, and Xizangia form a clade not nested within any of the monophyletic tribes of Orobanchaceae recognized to date. Ph. japonicum, a model species for parasitic plant research, is widely distributed in Eastern Asia. Despite this broad distribution, both nrITS and plastid DNA regions from a wide sampling of this species showed high genetic identity, suggesting that the wide species range is likely due to a recent population expansion. The Ph. tenuisectum complex is mainly distributed in the Hengduan Mountains region. Two cryptic species were identified by both phylogenetic analyses and morphological characters. Relationships among species of the Ph. tenuisectum complex and Pterygiella remain uncertain. Estimated divergence ages of the Ph. tenuisectum complex corresponding

  7. The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation.

    Science.gov (United States)

    Iles, William J D; Sass, Chodon; Lagomarsino, Laura; Benson-Martin, Gracie; Driscoll, Heather; Specht, Chelsea D

    2017-12-01

    Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences

  8. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes.

    Science.gov (United States)

    Hill, Malcolm S; Hill, April L; Lopez, Jose; Peterson, Kevin J; Pomponi, Shirley; Diaz, Maria C; Thacker, Robert W; Adamska, Maja; Boury-Esnault, Nicole; Cárdenas, Paco; Chaves-Fonnegra, Andia; Danka, Elizabeth; De Laine, Bre-Onna; Formica, Dawn; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Klontz, Sarah; Morrow, Christine C; Patel, Jignasa; Picton, Bernard; Pisani, Davide; Pohlmann, Deborah; Redmond, Niamh E; Reed, John; Richey, Stacy; Riesgo, Ana; Rubin, Ewelina; Russell, Zach; Rützler, Klaus; Sperling, Erik A; di Stefano, Michael; Tarver, James E; Collins, Allen G

    2013-01-01

    Demosponges are challenging for phylogenetic systematics because of their plastic and relatively simple morphologies and many deep divergences between major clades. To improve understanding of the phylogenetic relationships within Demospongiae, we sequenced and analyzed seven nuclear housekeeping genes involved in a variety of cellular functions from a diverse group of sponges. We generated data from each of the four sponge classes (i.e., Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha), but focused on family-level relationships within demosponges. With data for 21 newly sampled families, our Maximum Likelihood and Bayesian-based approaches recovered previously phylogenetically defined taxa: Keratosa(p), Myxospongiae(p), Spongillida(p), Haploscleromorpha(p) (the marine haplosclerids) and Democlavia(p). We found conflicting results concerning the relationships of Keratosa(p) and Myxospongiae(p) to the remaining demosponges, but our results strongly supported a clade of Haploscleromorpha(p)+Spongillida(p)+Democlavia(p). In contrast to hypotheses based on mitochondrial genome and ribosomal data, nuclear housekeeping gene data suggested that freshwater sponges (Spongillida(p)) are sister to Haploscleromorpha(p) rather than part of Democlavia(p). Within Keratosa(p), we found equivocal results as to the monophyly of Dictyoceratida. Within Myxospongiae(p), Chondrosida and Verongida were monophyletic. A well-supported clade within Democlavia(p), Tetractinellida(p), composed of all sampled members of Astrophorina and Spirophorina (including the only lithistid in our analysis), was consistently revealed as the sister group to all other members of Democlavia(p). Within Tetractinellida(p), we did not recover monophyletic Astrophorina or Spirophorina. Our results also reaffirmed the monophyly of order Poecilosclerida (excluding Desmacellidae and Raspailiidae), and polyphyly of Hadromerida and Halichondrida. These results, using an independent nuclear gene set

  9. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera

    Science.gov (United States)

    Gupta, Radhey S.; Lo, Brian; Son, Jeen

    2018-01-01

    The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the “Tuberculosis-Simiae,” “Terrae,” “Triviale,” “Fortuitum-Vaccae,” and “Abscessus-Chelonae” clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the “Abscessus-Chelonae” clade forms the deepest branching lineage and does not form a monophyletic grouping with the “Fortuitum-Vaccae” clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five

  10. Phylogeny and biogeography of Maclura (Moraceae) and the origin of an anachronistic fruit.

    Science.gov (United States)

    Gardner, Elliot M; Sarraf, Paya; Williams, Evelyn W; Zerega, Nyree J C

    2017-12-01

    Maclura (ca. 12spp., Moraceae) is a widespread genus of trees and woody climbers found on five continents. Maclura pomifera, the Osage orange, is considered a classic example of an anachronistic fruit. Native to the central USA, the grapefruit-sized Osage oranges are unpalatable and have no known extant native dispersers, leading to speculation that the fruits were adapted to extinct megafauna. Our aim was to reconstruct the phylogeny, estimate divergence dates, and infer ancestral ranges of Maclura in order to test the monophyly of subgeneric classifications and to understand evolution and dispersal patterns in this globally distributed group. Employing Bayesian and maximum-likelihood methods, we reconstructed the Maclura phylogeny using two nuclear and five chloroplast loci from all Maclura species and outgroups representing all Moraceae tribes. We reconstructed ancestral ranges and syncarp sizes using a family level dated tree, and used Ornstein-Uhlenbeck models to test for significant changes in syncarp size in the Osage orange lineage. Our analyses support a monophyletic Maclura with a Paleocene crown. Subgeneric sections were monophyletic except for the geographically-disjunct Cardiogyne. There was strong support for current species delineations except in the widespread M. cochinchinensis. South America was reconstructed as the ancestral range for Maclura with subsequent colonization of Africa and the northern hemisphere. The clade containing M. pomifera likely diverged in the Oligocene, closely coinciding with crown divergence dates of the mammoth/mastodon and sloth clades that contain possible extinct dispersers. The best fitting model for syncarp size evolution indicated an increase in both syncarp size and the rate of syncarp size evolution in the Osage orange lineage. We conclude that our findings are consistent with the hypothesis that M. pomifera was adapted to dispersal by extinct megafauna. In addition, we consider dispersal rather than vicariance to

  11. Out of Borneo: biogeography, phylogeny and divergence date estimates of Artocarpus (Moraceae).

    Science.gov (United States)

    Williams, Evelyn W; Gardner, Elliot M; Harris, Robert; Chaveerach, Arunrat; Pereira, Joan T; Zerega, Nyree J C

    2017-03-01

    The breadfruit genus ( Artocarpus , Moraceae) includes valuable underutilized fruit tree crops with a centre of diversity in Southeast Asia. It belongs to the monophyletic tribe Artocarpeae, whose only other members include two small neotropical genera. This study aimed to reconstruct the phylogeny, estimate divergence dates and infer ancestral ranges of Artocarpeae, especially Artocarpus , to better understand spatial and temporal evolutionary relationships and dispersal patterns in a geologically complex region. To investigate the phylogeny and biogeography of Artocarpeae, this study used Bayesian and maximum likelihood approaches to analyze DNA sequences from six plastid and two nuclear regions from 75% of Artocarpus species, both neotropical Artocarpeae genera, and members of all other Moraceae tribes. Six fossil-based calibrations within the Moraceae family were used to infer divergence times. Ancestral areas and estimated dispersal events were also inferred. Artocarpeae, Artocarpus and four monophyletic Artocarpus subgenera were well supported. A late Cretaceous origin of the Artocarpeae tribe in the Americas is inferred, followed by Eocene radiation of Artocarpus in Asia, with the greatest diversification occurring during the Miocene. Borneo is reconstructed as the ancestral range of Artocarpus , with dozens of independent in situ diversification events inferred there, as well as dispersal events to other regions of Southeast Asia. Dispersal pathways of Artocarpus and its ancestors are proposed. Borneo was central in the diversification of the genus Artocarpus and probably served as the centre from which species dispersed and diversified in several directions. The greatest amount of diversification is inferred to have occurred during the Miocene, when sea levels fluctuated and land connections frequently existed between Borneo, mainland Asia, Sumatra and Java. Many species found in these areas have extant overlapping ranges, suggesting that sympatric

  12. Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera

    Directory of Open Access Journals (Sweden)

    Radhey S. Gupta

    2018-02-01

    Full Text Available The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the “Tuberculosis-Simiae,” “Terrae,” “Triviale,” “Fortuitum-Vaccae,” and “Abscessus-Chelonae” clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the “Abscessus-Chelonae” clade forms the deepest branching lineage and does not form a monophyletic grouping with the “Fortuitum-Vaccae” clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species

  13. Molecular taxonomy of the two Leishmania vectors Lutzomyia umbratilis and Lutzomyia anduzei (Diptera: Psychodidae) from the Brazilian Amazon.

    Science.gov (United States)

    Scarpassa, Vera Margarete; Alencar, Ronildo Baiatone

    2013-09-11

    Lutzomyia umbratilis (a probable species complex) is the main vector of Leishmania guyanensis in the northern region of Brazil. Lutzomyia anduzei has been implicated as a secondary vector of this parasite. These species are closely related and exhibit high morphological similarity in the adult stage; therefore, they have been wrongly identified, both in the past and in the present. This shows the need for employing integrated taxonomy. With the aim of gathering information on the molecular taxonomy and evolutionary relationships of these two vectors, 118 sequences of 663 base pairs (barcode region of the mitochondrial DNA cytochrome oxidase I - COI) were generated from 72 L. umbratilis and 46 L. anduzei individuals captured, respectively, in six and five localities of the Brazilian Amazon. The efficiency of the barcode region to differentiate the L. umbratilis lineages I and II was also evaluated. The data were analyzed using the pairwise genetic distances matrix and the Neighbor-Joining (NJ) tree, both based on the Kimura Two Parameter (K2P) evolutionary model. The analyses resulted in 67 haplotypes: 32 for L. umbratilis and 35 for L. anduzei. The mean intra-specific genetic distance was 0.008 (0.002 to 0.010 for L. umbratilis; 0.008 to 0.014 for L. anduzei), whereas the mean interspecific genetic distance was 0.044 (0.041 to 0.046), supporting the barcoding gap. Between the L. umbratilis lineages I and II, it was 0.009 to 0.010. The NJ tree analysis strongly supported monophyletic clades for both L. umbratilis and L. anduzei, whereas the L. umbratilis lineages I and II formed two poorly supported monophyletic subclades. The barcode region clearly separated the two species and may therefore constitute a valuable tool in the identification of the sand fly vectors of Leishmania in endemic leishmaniasis areas. However, the barcode region had not enough power to separate the two lineages of L. umbratilis, likely reflecting incipient species that have not yet reached

  14. Testing the new animal phylogeny: a phylum level molecular analysis of the animal kingdom.

    Science.gov (United States)

    Bourlat, Sarah J; Nielsen, Claus; Economou, Andrew D; Telford, Maximilian J

    2008-10-01

    The new animal phylogeny inferred from ribosomal genes some years ago has prompted a number of radical rearrangements of the traditional, morphology based metazoan tree. The two main bilaterian clades, Deuterostomia and Protostomia, find strong support, but the protostomes consist of two sister groups, Ecdysozoa and Lophotrochozoa, not seen in morphology based trees. Although widely accepted, not all recent molecular phylogenetic analyses have supported the tripartite structure of the new animal phylogeny. Furthermore, even if the small ribosomal subunit (SSU) based phylogeny is correct, there is a frustrating lack of resolution of relationships between the phyla that make up the three clades of this tree. To address this issue, we have assembled a dataset including a large number of aligned sequence positions as well as a broad sampling of metazoan phyla. Our dataset consists of sequence data from ribosomal and mitochondrial genes combined with new data from protein coding genes (5139 amino acid and 3524 nucleotide positions in total) from 37 representative taxa sampled across the Metazoa. Our data show strong support for the basic structure of the new animal phylogeny as well as for the Mandibulata including Myriapoda. We also provide some resolution within the Lophotrochozoa, where we confirm support for a monophyletic clade of Echiura, Sipuncula and Annelida and surprising evidence of a close relationship between Brachiopoda and Nemertea.

  15. [Molecular phylogeny of Turbellaria, based on data from comparing the nucleotide sequences of 18S ribosomal RNA genes].

    Science.gov (United States)

    Kuznedelov, K D; Timoshkin, O A

    1995-01-01

    Polymerase chain reaction and direct sequencing of the 5'-end region of the 18S ribosomal RNA gene were used to infer phylogenetic relationship among turbellarian flatworms from Lake Baikal. Representatives of 5 orders (Tricladida--10 spp., Lecithoepitheliata--5 spp., Prolecithophora--3 spp., Proseriata and Kalyptorhynchia one for each) were studied; nucleotide sequence of more than 340 nucleotides was determined for each species. Consensus sequence for each order having more than one representative species was determined. Distance matrix and maximum parsimony approaches were applied to infer phylogenies. Bootstrap procedure was used to estimate confidence limits, at the 100% level by bootstrapping, the group of three orders: Kalyptorhynchia, Proseriata and Lecithoepitheliata was found to be monophyletic. However, subsets inside the group had no significant support to be preferred or rejected. Our data do not support traditional systematics which joins two suborders Tricladida and Proseriata into the single order Seriata, and also do not support comparative anatomical data which show close relationship of Lecithoepitheliata and lower Prolecithophora.

  16. A robust molecular phylogeny of the Tricladida (Platyhelminthes: Seriata) with a discussion on morphological synapomorphies.

    Science.gov (United States)

    Carranza, S; Littlewood, D T; Clough, K A; Ruiz-Trillo, I; Baguñà, J; Riutort, M

    1998-01-01

    The suborder Tricladida (Platyhelminthes: Turbellaria, Seriata) comprises most well-known species of free-living flatworms. Four infraorders are recognized: (i) the Maricola (marine planarians); (ii) the Cavernicola (a group of primarily cavernicolan planarians); (iii) the Paludicola (freshwater planarians); and (iv) the Terricola (land planarians). The phylogenetic relationships among these infraorders have been analysed using morphological characters, but they remain uncertain. Here we analyse the phylogeny and classification of the Tricladida, with additional, independent, molecular data from complete sequences of 18S rDNA and 18S rRNA. We use maximum parsimony and neighbour-joining methods and the characterization of a unique gene duplication event involving the Terricola and the dugesiids to reconstruct the phylogeny. The results show that the Maricola is monophyletic and is the primitive sister group to the rest of the Tricladida (the Paludicola plus the Terricola). The Paludicola are paraphyletic since the Terricola and one paludicolan family, the Dugesiidae, share a more recent common ancestor than the dugesiids with other paludicolans (dendrocoelids and planariids). A reassessment of morphological evidence may confirm the apparent redundancy of the existing infraorders Paludicola and Terricola. In the meantime, we suggest replacing the Paludicola and Terricola with a new clade, the Continenticola, which comprises the families Dugesiidae, Planariidae, Dendrocoelidae and the Terricola. PMID:9881470

  17. Detection and phylogenetic characterization of arbovirus dual-infections among persons during a chikungunya fever outbreak, Haiti 2014.

    Directory of Open Access Journals (Sweden)

    Sarah K White

    2018-05-01

    Full Text Available In the context of recent arbovirus epidemics, questions about the frequency of simultaneous infection of patients with different arbovirus species have been raised. In 2014, a major Chikungunya virus (CHIKV epidemic impacted the Caribbean and South America. As part of ongoing screening of schoolchildren presenting with acute undifferentiated febrile illness in rural Haiti, we used RT-PCR to identify CHIKV infections in 82 of 100 children with this diagnosis during May-August 2014. Among these, eight were infected with a second arbovirus: six with Zika virus (ZIKV, one with Dengue virus serotype 2, and one with Mayaro virus (MAYV. These dual infections were only detected following culture of the specimen, suggesting low viral loads of the co-infecting species. Phylogenetic analyses indicated that the ZIKV and MAYV strains differ from those detected later in 2014 and 2015, respectively. Moreover, CHIKV and ZIKV strains from co-infected patients clustered monophyletically in their respective phylogeny, and clock calibration traced back the common ancestor of each clade to an overlapping timeframe of introduction of these arboviruses onto the island.

  18. Research and development project in fiscal 1988 for fundamental technologies for next generation industries. Achievement report on research and development on high crystallinity polymeric materials; 1988 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective to realize structural materials characterized by light weight, high corrosion resistance and easy-to-process performance, research and development has been performed on high crystallinity polymeric materials. This paper summarizes the achievement in fiscal 1988. With regard to monophyletic materials, using thermotropic liquid crystal polyallylate as the object, researches were performed on optimization, polymerization, and elongation fluid orientation processing of the polymer chemical structures. In the polyphyletic materials, discussions were given on aromatic heterocyclic polymers as to the synthesizing process for PIBO expected of higher elasticity rate than with PIBT. Discussions were given on the phase transfer transient film making process for molecular composites for an attempt of enhancing performance of tapes and laminates. With regard to cross-linking materials, forming and improvements were discussed on heat hardening molecular composites of ionic/inorganic hybrid cross-linking polymer, modified ion cross-linking polymer, poly-ion complex, and diacetylene polymer. In addition, researches were performed on the high-density three-dimensional cross-linking process and inter-molecular reinforcement of mono-axially and highly oriented substances to obtain high elasticity forms. (NEDO)

  19. Inferring Pongo conservation units: a perspective based on microsatellite and mitochondrial DNA analyses.

    Science.gov (United States)

    Kanthaswamy, Sreetharan; Kurushima, Jennifer D; Smith, David Glenn

    2006-10-01

    In order to define evolutionarily significant and management units (ESUs and MUs) among subpopulations of Sumatran (Pongo pygmaeus abelii) and Bornean (P. p. pygmaeus) orangutans we determined their genetic relationships. We analyzed partial sequences of four mitochondrial genes and nine autosomal microsatellite loci of 70 orangutans to test two hypotheses regarding the population structure within Borneo and the genetic distinction between Bornean and Sumatran orangutans. Our data show Bornean orangutans consist of two genetic clusters-the western and eastern clades. Each taxon exhibits relatively distinct mtDNA and nuclear genetic distributions that are likely attributable to genetic drift. These groups, however, do not warrant designations as separate conservation MUs because they demonstrate no demographic independence and only moderate genetic differentiation. Our findings also indicate relatively high levels of overall genetic diversity within Borneo, suggesting that observed habitat fragmentation and erosion during the last three decades had limited influence on genetic variability. Because the mtDNA of Bornean and Sumatran orangutans are not strictly reciprocally monophyletic, we recommend treating these populations as separate MUs and discontinuing inter-island translocation of animals unless absolutely necessary.

  20. Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes.

    Science.gov (United States)

    Wolf, P

    1997-10-01

    Inferring basal relationships among vascular plants poses a major challenge to plant systematists. The divergence events that describe these relationships occurred long ago and considerable homoplasy has since accrued for both molecular and morphological characters. A potential solution is to examine phylogenetic analyses from multiple data sets. Here I present a new source of phylogenetic data for ferns and other pteridophytes. I sequenced the chloroplast gene atpB from 23 pteridophyte taxa and used maximum parsimony to infer relationships. A 588-bp region of the gene appeared to contain a statistically significant amount of phylogenetic signal and the resulting trees were largely congruent with similar analyses of nucleotide sequences from rbcL. However, a combined analysis of atpB plus rbcL produced a better resolved tree than did either data set alone. In the shortest trees, leptosporangiate ferns formed a monophyletic group. Also, I detected a well-supported clade of Psilotaceae (Psilotum and Tmesipteris) plus Ophioglossaceae (Ophioglossum and Botrychium). The demonstrated utility of atpB suggests that sequences from this gene should play a role in phylogenetic analyses that incorporate data from chloroplast genes, nuclear genes, morphology, and fossil data.

  1. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns.

    Science.gov (United States)

    Hasebe, M; Omori, T; Nakazawa, M; Sano, T; Kato, M; Iwatsuki, K

    1994-06-07

    Pteriodophytes have a longer evolutionary history than any other vascular land plant and, therefore, have endured greater loss of phylogenetically informative information. This factor has resulted in substantial disagreements in evaluating characters and, thus, controversy in establishing a stable classification. To compare competing classifications, we obtained DNA sequences of a chloroplast gene. The sequence of 1206 nt of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL) was determined from 58 species, representing almost all families of leptosporangiate ferns. Phlogenetic trees were inferred by the neighbor-joining and the parsimony methods. The two methods produced almost identical phylogenetic trees that provided insights concerning major general evolutionary trends in the leptosporangiate ferns. Interesting findings were as follows: (i) two morphologically distinct heterosporous water ferns, Marsilea and Salvinia, are sister genera; (ii) the tree ferns (Cyatheaceae, Dicksoniaceae, and Metaxyaceae) are monophyletic; and (iii) polypodioids are distantly related to the gleichenioids in spite of the similarity of their exindusiate soral morphology and are close to the higher indusiate ferns. In addition, the affinities of several "problematic genera" were assessed.

  2. Stoichiometry of ferns in Hawaii: implications for nutrient cycling.

    Science.gov (United States)

    Amatangelo, Kathryn L; Vitousek, Peter M

    2008-10-01

    We asked if element concentrations in ferns differ systematically from those in woody dicots in ways that could influence ecosystem properties and processes. Phylogenetically, ferns are deeply separated from angiosperms; for our analyses we additionally separated leptosporangiate ferns into polypod ferns, a monophyletic clade of ferns which radiated after the rise of angiosperms, and all other leptosporangiate (non-polypod) ferns. We sampled both non-polypod and polypod ferns on a natural fertility gradient and within fertilized and unfertilized plots in Hawaii, and compared our data with shrub and tree samples collected previously in the same plots. Non-polypod ferns in particular had low Ca concentrations under all conditions and less plasticity in their N and P stoichiometry than did polypod ferns or dicots. Polypod ferns were particularly rich in N and P, with low N:P ratios, and their stoichiometry varied substantially in response to differences in nutrient availability. Distinguishing between these two groups has the potential to be useful both in and out of Hawaii, as they have distinct properties which can affect ecosystem function. These differences could contribute to the widespread abundance of polypod ferns in an angiosperm-dominated world, and to patterns of nutrient cycling and limitation in sites where ferns are abundant.

  3. Unraveling the origin of the Appalachian gametophyte, Vittaria appalachiana.

    Science.gov (United States)

    Pinson, Jerald B; Schuettpelz, Eric

    2016-04-01

    Ferns and lycophytes are distinct among plants in producing two free-living life stages: a long-lived sporophyte phase and a (usually) short-lived gametophyte phase. Notably, however, some species have perennial, vegetatively reproducing gametophytes. Vittaria appalachiana is one of just three species in which mature sporophytes are unknown. It has a wide range throughout the Appalachian Mountains and Plateau, where it reproduces asexually via gemmae. The origin of V. appalachiana, however, has long been a mystery, with most previous studies suggesting it may have resulted from hybridization of two closely related Vittaria species (V. graminifolia and V. lineata). A four-gene plastid data set including 32 samples of six Vittaria species, plus samples of five outgroup species, was analyzed to uncover phylogenetic relationships. Additional analyses of nuclear DET1 gene sequences allowed for the examination of hypotheses involving a hybrid origin for V. appalachiana. In the plastid phylogeny, V. appalachiana is well supported as monophyletic, but is embedded within V. graminifolia. With the exception of a single aberrant allele, this result is mirrored in the nuclear tree. Through analyses of plastid and nuclear data sets, this study demonstrates that a hybrid origin for V. appalachiana is unlikely. Instead, it appears that this species emerged from within the V. graminifolia lineage. Further work is needed to fully elucidate the genetic structure within this group. © 2016 Botanical Society of America.

  4. Neoendemism in Madagascan scaly tree ferns results from recent, coincident diversification bursts.

    Science.gov (United States)

    Janssen, Thomas; Bystriakova, Nadia; Rakotondrainibe, France; Coomes, David; Labat, Jean-Noël; Schneider, Harald

    2008-08-01

    More than 80% of Madagascar's 12,000 plant species are endemic with the degree of endemism reaching as much as 95% in the scaly tree ferns, an important species rich component of Madagascar's evergreen rainforests. Predominantly African or Asian ancestry and divergence times usually postdating the separation of Madagascar from the Gondwanan landmasses have been demonstrated for several Madagascan animal and angiosperm groups. However, evolutionary studies of rainforest-specific lineages are scarce and the ecological context of radiation events has rarely been investigated. Here, we examine the evolution of Madagascan tree ferns as a rainforest-specific model family, integrate results from bioclimatic niche analysis with a dated phylogenetic framework, and propose an evolutionary scenario casting new light on our knowledge of the evolution of large island endemic clades. We show that Madagascar's extant tree fern diversity springs from three distinct ancestors independently colonizing Madagascar in the Miocene and that these three monophyletic clades diversified in three coincident radiation bursts during the Pliocene, reaching exceptionally high diversification rates and most likely responding to a common climatic trigger. Recent diversification bursts may thus have played a major role in the evolution of the extant Madagascan rainforest biome, which hence contains a significant number of young, neoendemic taxa.

  5. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers

    Science.gov (United States)

    Chaw, Shu-Miaw; Parkinson, Christopher L.; Cheng, Yuchang; Vincent, Thomas M.; Palmer, Jeffrey D.

    2000-01-01

    Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called “anthophyte” hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently. PMID:10760277

  6. The prion protein and New World primate phylogeny

    Directory of Open Access Journals (Sweden)

    Igor Schneider

    2004-01-01

    Full Text Available The PrP C prion protein contains 250 amino acids with some variation among species and is expressed in several cell types. PrP C is converted to PrP Sc by a post-translational process in which it acquires amino acid sequences of three-dimensional conformation of beta-sheets. Variations in the prion protein gene were observed among 16 genera of New World primates (Platyrrhini, and resulted in amino acid substitutions when compared with the human sequence. Seven substitutions not yet described in the literature were found: W -> R at position 31 in Cebuella, T -> A at position 95 in Cacajao and Chiropotes, N-> S at position 100 in Brachyteles, L -> Q at position 130 in Leontopithecus (in the sequence responsible for generating the beta-sheet 1, D -> E at position 144 in Lagothrix (in the sequence responsible for the alpha-helix 1, D-> G at position 147 in Saguinus (also located in the alpha-helix 1 region, and M -> I at position 232 in Alouatta. The phylogenetic trees generated by parsimony, neighbor-joining and Bayesian analyses strongly support the monophyletic status of the platyrrhines, but did not resolve relationships among families. However, the results do corroborate previous findings, which indicate that the three platyrrhine families radiated rapidly from an ancient split.

  7. Multiple invasions into freshwater by pufferfishes (teleostei: tetraodontidae: a mitogenomic perspective.

    Directory of Open Access Journals (Sweden)

    Yusuke Yamanoue

    Full Text Available Pufferfishes of the Family Tetraodontidae are the most speciose group in the Order Tetraodontiformes and mainly inhabit coastal waters along continents. Although no members of other tetraodontiform families have fully discarded their marine lives, approximately 30 tetraodontid species spend their entire lives in freshwaters in disjunct tropical regions of South America, Central Africa, and Southeast Asia. To investigate the interrelationships of tetraodontid pufferfishes and thereby elucidate the evolutionary origins of their freshwater habitats, we performed phylogenetic analysis based on whole mitochondrial genome sequences from 50 tetraodontid species and closely related species (including 31 newly determined sequences. The resulting phylogenies reveal that the family is composed of four major lineages and that freshwater species from the different continents are independently nested in two of the four lineages. A monophyletic origin of the use of freshwater habitats was statistically rejected, and ancestral habitat reconstruction on the resulting tree demonstrates that tetraodontids independently entered freshwater habitats in different continents at least three times. Relaxed molecular-clock Bayesian divergence time estimation suggests that the timing of these invasions differs between continents, occurring at 0-10 million years ago (MA in South America, 17-38 MA in Central Africa, and 48-78 MA in Southeast Asia. These timings are congruent with geological events that could facilitate adaptation to freshwater habitats in each continent.

  8. Molecular systematics and phylogeography of the genus Lagothrix (Atelidae, Primates) by means of the mitochondrial COII gene.

    Science.gov (United States)

    Ruiz-Garcia, Manuel; Pinedo-Castro, Myreya Omayra

    2010-01-01

    We propose the first molecular systematic hypothesis on the origin and evolution of Lagothrix taxa based on an analysis of 720 base pairs of the cytochrome c oxidase subunit II mitochondrial gene in 97 Lagothrix specimens. All the current Lagothrix forms probably descended from the ancestor L. poeppigii or perhaps (less probably) that of L. lugens. We detected at least 2 lineages in L. poeppigii. L. cana and L. lagotricha were determined to be monophyletic and had lower gene diversity levels compared to L. poeppigii and L. lugens. The most basal ancestors of the current L. poeppigii lineages diverged from the other Lagothrix taxa around 2.5 million years ago, at the end of the Pliocene or at the beginning of the Pleistocene. Clearly, L. cana and L. lagotricha were the 2 most recently derived Lagothrix taxa. The diversification within L. lugens and L. poeppigii may coincide with the first and second Pleistocene glacial periods, respectively, while the diversification within L. cana and L. lagotricha could have occurred in the last 400,000 years, coinciding with the climatological changes provoked by the Illinois-Riss (third) and Wisconsin-Würm (fourth) glaciations. Copyright © 2010 S. Karger AG, Basel.

  9. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene.

    Science.gov (United States)

    Watanabe, Tomohiro; Kojima, Hisaya; Takano, Yoshinori; Fukui, Manabu

    2013-09-01

    The diversity of sulfate-reducing prokaryotes (SRPs) and sulfur-oxidizing prokaryotes (SOPs) in freshwater lake ecosystems was investigated by cloning and sequencing of the aprA gene, which encodes for a key enzyme in dissimilatory sulfate reduction and sulfur oxidation. To understand their diversity better, the spatial distribution of aprA genes was investigated in sediments collected from six geographically distant lakes in Antarctica and Japan, including a hypersaline lake for comparison. The microbial community compositions of freshwater sediments and a hypersaline sediment showed notable differences. The clones affiliated with Desulfobacteraceae and Desulfobulbaceae were frequently detected in all freshwater lake sediments. The SOP community was mainly composed of four major phylogenetic groups. One of them formed a monophyletic cluster with a sulfur-oxidizing betaproteobacterium, Sulfuricella denitrificans, but the others were not assigned to specific genera. In addition, the AprA sequences, which were not clearly affiliated to either SRP or SOP lineages, dominated the libraries from four freshwater lake sediments. The results showed the wide distribution of some sulfur-cycle prokaryotes across geographical distances and supported the idea that metabolic flexibility is an important feature for SRP survival in low-sulfate environments. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Biogeography of Old World emballonurine bats (Chiroptera: Emballonuridae) inferred with mitochondrial and nuclear DNA.

    Science.gov (United States)

    Ruedi, Manuel; Friedli-Weyeneth, Nicole; Teeling, Emma C; Puechmaille, Sébastien J; Goodman, Steven M

    2012-07-01

    Extant bats of the genus Emballonura have a trans-Indian Ocean distribution, with two endemic species restricted to Madagascar, and eight species occurring in mainland southeast Asia and islands in the western Pacific Ocean. Ancestral Emballonura may have been more widespread on continental areas, but no fossil identified to this genus is known from the Old World. Emballonura belongs to the subfamily Emballonurinae, which occurs in the New and Old World. Relationships of all Old World genera of this subfamily, including Emballonura and members of the genera Coleura from Africa and western Indian Ocean islands and Mosia nigrescens from the western Pacific region, are previously unresolved. Using 1833 bp of nuclear and mitochondrial genes, we reconstructed the phylogenetic history of Old World emballonurine bats. We estimated that these lineages diverged around 30 million years ago into two monophyletic sister groups, one represented by the two taxa of Malagasy Emballonura, Coleura and possibly Mosia, and the other by a radiation of Indo-Pacific Emballonura, hence, rendering the genus Emballonura paraphyletic. The fossil record combined with these phylogenetic relationships suggest at least one long-distance dispersal event across the Indian Ocean, presumably of African origin, giving rise to all Indo-Pacific Emballonura species (and possibly Mosia). Cladogenesis of the extant Malagasy taxa took place during the Quaternary giving rise to two vicariant species, E. atrata in the humid east and E. tiavato in the dry west. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Evolution in Australasian mangrove forests: multilocus phylogenetic analysis of the Gerygone warblers (Aves: Acanthizidae.

    Directory of Open Access Journals (Sweden)

    Árpád S Nyári

    Full Text Available The mangrove forests of Australasia have many endemic bird species but their evolution and radiation in those habitats has been little studied. One genus with several mangrove specialist species is Gerygone (Passeriformes: Acanthizidae. The phylogeny of the Acanthizidae is reasonably well understood but limited taxon sampling for Gerygone has constrained understanding of its evolution and historical biogeography in mangroves. Here we report on a phylogenetic analysis of Gerygone based on comprehensive taxon sampling and a multilocus dataset of thirteen loci spread across the avian genome (eleven nuclear and two mitochondrial loci. Since Gerygone includes three species restricted to Australia's coastal mangrove forests, we particularly sought to understand the biogeography of their evolution in that ecosystem. Analyses of individual loci, as well as of a concatenated dataset drawn from previous molecular studies indicates that the genus as currently defined is not monophyletic, and that the Grey Gerygone (G. cinerea from New Guinea should be transferred to the genus Acanthiza. The multilocus approach has permitted the nuanced view of the group's evolution into mangrove ecosystems having occurred on multiple occasions, in three non-overlapping time frames, most likely first by the G. magnirostris lineage, and subsequently followed by those of G. tenebrosa and G. levigaster.

  12. Introduction of Zika virus in Bangladesh: An impending public health threat

    Institute of Scientific and Technical Information of China (English)

    A.K.M. Muraduzzaman; Sharmin Sultana; Tahmina Shirin; Selina Khatun; MdTarikul Islam; Mahmudur Rahman

    2017-01-01

    Objective: To explore the presence of Zika virus (ZIKV) in Bangladesh and to under-stand the associated risk factors. Methods: A retrospective sero-surveillance was performed on stored serum samples of dengue surveillance conducted from 2013 to 2016. Real time RT-PCR was performed on randomly selected acute serum samples to detect the Zika virus nucleic acid. Results: Of 200 samples screened, one was found positive for ZIKV by real time RT-PCR and further confirmed by genome sequencing. The case was a 65 years old male from a metropolitan city of Bangladesh who had no history of travel outside Bangladesh. Phylogenetic analysis of partial E gene sequences from Bangladeshi isolates demon-strated a close relationship with ZIKV from Brazil and current South American strains clustering within a monophyletic clade distinct from African lineage. Conclusions: Presence of ZIKV raises serious public health concerns in Bangladesh owing to its association with congenital anomalies/neurological-manifestations. We, therefore, recommend every suspected viral fever patient, particularly pregnant women be screened for ZIKV infection to rule out yet another emerging infection in Bangladesh.

  13. Phylogeography and genetic structure of endemic Acmispon argophyllus and A. dendroideus (Fabaceae) across the California Channel Islands.

    Science.gov (United States)

    Wallace, Lisa E; Wheeler, Gregory L; McGlaughlin, Mitchell E; Bresowar, Gerald; Helenurm, Kaius

    2017-05-01

    Taxa inhabiting the California Channel Islands exhibit variation in their degree of isolation, but few studies have considered patterns across the entire archipelago. We studied phylogeography of insular Acmispon argophyllus and A. dendroideus to determine whether infraspecific taxa are genetically divergent and to elucidate patterns of diversification across these islands. DNA sequences were collected from nuclear (ADH) and plastid genomes ( rpL16 , ndhA , psbD-trnT ) from >450 samples on the Channel Islands and California. We estimated population genetic diversity and structure, phylogenetic patterns among populations, and migration rates, and tested for population growth. Populations of northern island A. argophyllus var. niveus are genetically distinct from conspecific populations on southern islands. On the southern islands, A. argophyllus var. argenteus populations on Santa Catalina are phylogenetically distinct from populations of var. argenteus and var. adsurgens on the other southern islands. For A. dendroideus , we found the varieties to be monophyletic. Populations of A. dendroideus var. traskiae on San Clemente are genetically differentiated from other conspecific populations, whereas populations on the northern islands and Santa Catalina show varying degrees of gene flow. Evidence of population growth was found in both species. Oceanic barriers between islands have had a strong influence on population genetic structure in both Acmispon species, although the species have differing phylogeographic patterns. This study provides a contrasting pattern of dispersal on a near island system that does not follow a strict stepping-stone model, commonly found on isolated island systems. © 2017 Botanical Society of America.

  14. Spatiotemporal evolution of Calophaca (fabaceae) reveals multiple dispersals in central Asian mountains.

    Science.gov (United States)

    Zhang, Ming-Li; Wen, Zhi-Bin; Fritsch, Peter W; Sanderson, Stewart C

    2015-01-01

    The Central Asian flora plays a significant role in Eurasia and the Northern Hemisphere. Calophaca, a member of this flora, includes eight currently recognized species, and is centered in Central Asia, with some taxa extending into adjacent areas. A phylogenetic analysis of the genus utilizing nuclear ribosomal ITS and plastid trnS-trnG and rbcL sequences was carried out in order to confirm its taxonomic status and reconstruct its evolutionary history. We employed BEAST Bayesian inference for dating, and S-DIVA and BBM for ancestral area reconstruction, to study its spatiotemporal evolution. Our results show that Calophacais monophyletic and nested within Caragana. The divergence time of Calophaca is estimated at ca. 8.0 Ma, most likely driven by global cooling and aridification, influenced by rapid uplift of the Qinghai Tibet Plateau margins. According to ancestral area reconstructions, the genus most likely originated in the Pamir Mountains, a global biodiversity hotspot and hypothesized Tertiary refugium of many Central Asian plant lineages. Dispersals from this location are inferred to the western Tianshan Mountains, then northward to the Tarbagatai Range, eastward to East Asia, and westward to the Caucasus, Russia, and Europe. The spatiotemporal evolution of Calophaca provides a case contributing to an understanding of the flora and biodiversity of the Central Asian mountains and adjacent regions.

  15. Sex and the Catasetinae (Darwin's favourite orchids).

    Science.gov (United States)

    Pérez-Escobar, Oscar Alejandro; Gottschling, Marc; Whitten, W Mark; Salazar, Gerardo; Gerlach, Günter

    2016-04-01

    Two sexual systems are predominant in Catasetinae (Orchidaceae), namely protandry (which has evolved in other orchid lineages as well) and environmental sex determination (ESD) being a unique trait among Orchidaceae. Yet, the lack of a robust phylogenetic framework for Catasetinae has hampered deeper insights in origin and evolution of sexual systems. To investigate the origins of protandry and ESD in Catasetinae, we sequenced nuclear and chloroplast loci from 77 species, providing the most extensive data matrix of Catasetinae available so far with all major lineages represented. We used Maximum Parsimony, Maximum Likelihood and Bayesian methods to infer phylogenetic relationships and evolution of sexual systems. Irrespectively of the methods used, Catasetinae were monophyletic in molecular phylogenies, with all established generic lineages and their relationships resolved and highly supported. According to comparative reconstruction approaches, the last common ancestor of Catasetinae was inferred as having bisexual flowers (i.e., lacking protandry and ESD as well), and protandry originated once in core Catasetinae (comprising Catasetum, Clowesia, Cycnoches, Dressleria and Mormodes). In addition, three independent gains of ESD are reliably inferred, linked to corresponding loss of protandry within core Catasetinae. Thus, prior gain of protandry appears as the necessary prerequisite for gain of ESD in orchids. Our results contribute to a comprehensive evolutionary scenario for sexual systems in Catasetinae and more generally in orchids as well. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Proposal for creation of a new genus Neomicrococcus gen. nov. to accommodate Zhihengliuella aestuarii Baik et al. 2011 and Micrococcus lactis Chittpurna et al. 2011 as Neomicrococcus aestuarii comb. nov. and Neomicrococcus lactis comb. nov.

    Science.gov (United States)

    Prakash, Om; Sharma, Avinash; Nimonkar, Yogesh; Shouche, Yogesh S

    2015-11-01

    Micrococcus lactis and Zhihengliuella aestuarii were described independently in 2011. Their type strains showed high levels of 16S rRNA gene sequence similarity (99.3%). Phylogenetic analysis revealed that M. lactis MCC 2278T and Z. aestuarii JCM 16166T formed a monophyletic group and showed distant relationships to other members of closely related genera such as Micrococcus, Zhihengliuella, Arthrobacter and Citricoccus. The presence of large proportions of iso-C14:0 and iso-C16:0 with small amounts of iso-C15:0 distinguished M. lactis MCC 2278T and Z. aestuarii JCM 16166T from other members of the genera Micrococcus and Zhihengliuella. Unlike other members of the genera Zhihengliuella and Micrococcus, M. lactis MCC 2278T and Z. aestuarii JCM 16166T showed growth at low concentrations of NaCl. Thus, based on distinctive phylogenetic, chemotaxonomic and physiological features of these two organisms in comparison with other members of the genera Micrococcus and Zhihengliuella, it is clear that they do not fit within the existing classification and deserve separate status. DNA-DNA hybridization between the two type strains was 63%, indicating that they represent separate species. In this study, we propose the creation of a novel genus, Neomicrococcus gen. nov., to accommodate the two species with Neomicrococcus aestuarii gen. nov., comb. nov. (type strain JCM 16166T = KCTC 19557T) as the type species. Neomicrococcus lactis comb. nov. (type strain MCC 2278T = DSM 23694T) is also proposed.

  17. Megalictis, the Bone-Crushing Giant Mustelid (Carnivora, Mustelidae, Oligobuninae) from the Early Miocene of North America

    Science.gov (United States)

    Valenciano, Alberto; Baskin, Jon A.; Abella, Juan; Pérez-Ramos, Alejandro; Álvarez-Sierra, M. Ángeles; Morales, Jorge; Hartstone-Rose, Adam

    2016-01-01

    We describe cranial and mandibular remains of three undescribed individuals of the giant mustelid Megalictis ferox Matthew, 1907 from the latest Arikareean (Ar4), Early Miocene mammal fauna of Nebraska, and Wyoming (USA) housed at the American Museum of Natural History (New York, USA). Our phylogenetic hypothesis indicates that Ar4 specimens assigned to M. ferox constitute a monophyletic group. We assign three additional species previously referred to Paroligobunis to Megalictis: M. simplicidens, M. frazieri, and “M.” petersoni. The node containing these four species of Megalictis and Oligobunis forms the Oligobuninae. We test the hypothesis that Oligobuninae (Megalictis and Oligobunis) is a stem mustelid taxon. Our results indicate that the Oligobuninae form the sister clade to the crown extant mustelids. Based on the cranium, M. ferox is a jaguar-size mustelid and the largest terrestrial mustelid known to have existed. This new material also sheds light on a new ecomorphological interpretation of M. ferox as a bone-crushing durophage (similar to hyenas), rather than a cat-like hypercarnivore, as had been previously described. The relative large size of M. ferox, together with a stout rostrum and mandible made it one of the more powerful predators of the Early Miocene of the Great Plains of North America. PMID:27054570

  18. Whole-loop mitochondrial DNA D-loop sequence variability in Egyptian Arabian equine matrilines

    Science.gov (United States)

    Hudson, William

    2017-01-01

    Background Egyptian Arabian horses have been maintained in a state of genetic isolation for over a hundred years. There is only limited genetic proof that the studbook records of female lines of Egyptian Arabian pedigrees are reliable. This study characterized the mitochondrial DNA (mtDNA) signatures of 126 horses representing 14 matrilines in the Egyptian Agricultural Organization (EAO) horse-breeding program. Findings Analysis of the whole D-loop sequence yielded additional information compared to hypervariable region-1 (HVR1) analysis alone, with 42 polymorphic sites representing ten haplotypes compared to 16 polymorphic sites representing nine haplotypes, respectively. Most EAO haplotypes belonged to ancient haplogroups, suggesting origin from a wide geographical area over many thousands of years, although one haplotype was novel. Conclusions Historical families share haplotypes and some individuals from different strains belonged to the same haplogroup: the classical EAO strain designation is not equivalent to modern monophyletic matrilineal groups. Phylogenetic inference showed that the foundation mares of the historical haplotypes were highly likely to have the same haplotypes as the animals studied (p > 0.998 in all cases), confirming the reliability of EAO studbook records and providing the opportunity for breeders to confirm the ancestry of their horses. PMID:28859174

  19. Cultural phylogeography of the Bantu Languages of sub-Saharan Africa.

    Science.gov (United States)

    Currie, Thomas E; Meade, Andrew; Guillon, Myrtille; Mace, Ruth

    2013-07-07

    There is disagreement about the routes taken by populations speaking Bantu languages as they expanded to cover much of sub-Saharan Africa. Here, we build phylogenetic trees of Bantu languages and map them onto geographical space in order to assess the likely pathway of expansion and test between dispersal scenarios. The results clearly support a scenario in which groups first moved south through the rainforest from a homeland somewhere near the Nigeria-Cameroon border. Emerging on the south side of the rainforest, one branch moved south and west. Another branch moved towards the Great Lakes, eventually giving rise to the monophyletic clade of East Bantu languages that inhabit East and Southeastern Africa. These phylogenies also reveal information about more general processes involved in the diversification of human populations into distinct ethnolinguistic groups. Our study reveals that Bantu languages show a latitudinal gradient in covering greater areas with increasing distance from the equator. Analyses suggest that this pattern reflects a true ecological relationship rather than merely being an artefact of shared history. The study shows how a phylogeographic approach can address questions relating to the specific histories of certain groups, as well as general cultural evolutionary processes.

  20. Metabolic traits of an uncultured archaeal lineage -MSBL1- from brine pools of the Red Sea

    KAUST Repository

    Mwirichia, Romano

    2016-01-13

    The candidate Division MSBL1 (Mediterranean Sea Brine Lakes 1) comprises a monophyletic group of uncultured archaea found in different hypersaline environments. Previous studies propose methanogenesis as the main metabolism. Here, we describe a metabolic reconstruction of MSBL1 based on 32 single-cell amplified genomes from Brine Pools of the Red Sea (Atlantis II, Discovery, Nereus, Erba and Kebrit). Phylogeny based on rRNA genes as well as conserved single copy genes delineates the group as a putative novel lineage of archaea. Our analysis shows that MSBL1 may ferment glucose via the Embden–Meyerhof–Parnas pathway. However, in the absence of organic carbon, carbon dioxide may be fixed via the ribulose bisphosphate carboxylase, Wood-Ljungdahl pathway or reductive TCA cycle. Therefore, based on the occurrence of genes for glycolysis, absence of the core genes found in genomes of all sequenced methanogens and the phylogenetic position, we hypothesize that the MSBL1 are not methanogens, but probably sugar-fermenting organisms capable of autotrophic growth. Such a mixotrophic lifestyle would confer survival advantage (or possibly provide a unique narrow niche) when glucose and other fermentable sugars are not available.

  1. Molecular identification of hard ticks (Ixodes sp.) infesting rodents in Selangor, Malaysia

    Science.gov (United States)

    Ishak, Siti Nabilah; Shiang, Lim Fang; Taib, Farah Shafawati Mohd; Jing, Khoo Jing; Nor, Shukor Md; Yusof, Muhammad Afif; Sah, Shahrul Anuar Mohd; Sitam, Frankie Thomas; Japning, Jeffrine Rovie Ryan

    2018-04-01

    This study aims to identify hard ticks (Ixodes sp.) infesting rodents in three different sites in Selangor, Malaysia using a molecular approach. A total of 11 individual ticks infesting four different host species (Rattus tiomanicus, Rattus ratus, Maxomys surifer and Sundamys muelleri) were examined based on its morphological features, followed by molecular identification using mitochondrial 16S rDNA gene. Confirmation of the species identity was accomplished by using BLAST program. Clustering analysis based on 16S rDNA sequences was carried out by constructing Neighbour-joining (NJ) and Maximum parsimony (MP) tree using MEGA 7 to clarify the genetic identity of Ixodes sp. Based on morphological features, all individual ticks were only able to be identified up to genus level as most of the samples were fully engorged, damaged and lacked morphological characters. However, molecular analysis of samples revealed 99% similarity with Ixodes granulatus from the GenBank database. Thus, the result of this study showed that all these ticks (Ixodes granulatus) were genetically affiliated to a monophyletic group with highly homogenous sequences.

  2. Phylogenetic evidence of a new canine distemper virus lineage among domestic dogs in Colombia, South America.

    Science.gov (United States)

    Espinal, Maria A; Díaz, Francisco J; Ruiz-Saenz, Julian

    2014-08-06

    Canine distemper virus (CDV) is a highly contagious viral disease of carnivores affecting both wild and domestic populations. The hemagglutinin gene, encoding for the attachment protein that determines viral tropism, shows high heterogeneity among strains, allowing for the distinction of ten different lineages distributed worldwide according to a geographic pattern. We obtained the sequences of the full-length H gene of 15 wild-type CDV strains circulating in domestic dog populations from the Aburrá Valley, Colombia. A phylogenetic analysis of H gene nucleotide sequences from Colombian CDV viruses along with field isolates from different geographic regions and vaccine strains was performed. Colombian wild-type viruses formed a distinct monophyletic cluster clearly separated from the previously identified wild-type and vaccine lineages, suggesting that a novel genetic variant, quite different from vaccines and other lineages, is circulating among dog populations in the Aburrá Valley. We propose naming this new lineage as "South America 3". This information indicates that there are at least three different CDV lineages circulating in domestic and wild carnivore populations in South America. The first one, renamed Europe/South America 1, circulates in Brazil and Uruguay; the second, South America 2, appears to be restricted to Argentina; and the third, South America 3, which comprises all the strains characterized in this study, may also be circulating in other northern countries of South America. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. DNA-based and geometric morphometric analysis to validate species designation: a case study of the subterranean rodent Ctenomys bicolor.

    Science.gov (United States)

    Stolz, J F B; Gonçalves, G L; Leipnitz, L; Freitas, T R O

    2013-10-25

    The genus Ctenomys (Rodentia: Ctenomyidae) shows several taxonomic inconsistencies. In this study, we used an integrative approach including DNA sequences, karyotypes, and geometric morphometrics to evaluate the taxonomic validity of a nominal species, Ctenomys bicolor, which was described based on only one specimen in 1912 by Miranda Ribeiro, and since then neglected. We sampled near the type locality assigned to this species and collected 10 specimens. A total of 820 base pairs of the cytochrome b gene were sequenced and analyzed together with nine other species and four morphotypes obtained from GenBank. Bayesian analyses showed that C. bicolor is monophyletic and related to the Bolivian-Matogrossense group, a clade that originated about 3 mya. We compared the cranial shape through morphometric geometrics of C. bicolor, including the specimen originally sampled in 1912, with other species representative of the same phylogenetic group (C. boliviensis and C. steinbachi). C. bicolor shows unique skull traits that distinguish it from all other currently known taxa. Our findings confirm that the specimen collected by Miranda Ribeiro is a valid species, and improve the knowledge about Ctenomys in the Amazon region.

  4. Spinosaur taxonomy and evolution of craniodental features: Evidence from Brazil.

    Directory of Open Access Journals (Sweden)

    Marcos A F Sales

    Full Text Available Fossil sites from Brazil have yielded specimens of spinosaurid theropods, among which the most informative include the cranial remains of Irritator, Angaturama, and Oxalaia. In this work some of their craniodental features are reinterpreted, providing new data for taxonomic and evolutionary issues concerning this particular clade of dinosaurs. The mesial-most tooth of the left maxilla of the holotype of Irritator is regarded as representing the third tooth position, which is also preserved in the holotype of Angaturama. Thus, both specimens cannot belong to the same individual, contrary to previous assumptions, although they could have been the same taxon. In addition, the position of the external nares of Irritator is more comparable to those of Baryonyx and Suchomimus instead of other spinosaurine spinosaurids. In fact, with regards to some craniodental features, Brazilian taxa represent intermediate conditions between Baryonychinae and Spinosaurinae. Such a scenario is corroborated by our cladistic results, which also leave open the possibility of the former subfamily being non-monophyletic. Furthermore, the differences between spinosaurids regarding the position and size of the external nares might be related to distinct feeding habits and degrees of reliance on olfaction. Other issues concerning the evolution and taxonomy of Spinosauridae require descriptions of additional material for their clarification.

  5. Accurate analysis of prevalence of coccidiosis in individually identified wild cranes in inhabiting and migrating populations in Japan.

    Science.gov (United States)

    Honma, Hajime; Suyama, Yoshihisa; Watanabe, Yuki; Matsumoto, Fumio; Nakai, Yutaka

    2011-11-01

    Eimeria gruis and E. reichenowi cause coccidiosis, a major parasitic disease of cranes. By non-invasive molecular approaches, we investigated the prevalence and genetic characterization of pathogens in two Japanese crane habitats; one is Hokkaido inhabited by the endangered red-crowned crane, and the other is Izumi in Kyushu where populations that consist mainly of vulnerable hooded and white-naped cranes migrate in winter. The non-invasively collected faecal samples from each wintering population were first subjected to host genomic DNA-targeted analyses to determine the sample origin and avoid sample redundancy. Extremely high prevalence was observed in the Izumi populations (> 90%) compared with the Hokkaido population (18-30%) by examining 470 specimens by microscopy and PCR-based capillary electrophoresis (PCR-CE), using genetic markers in the second internal transcribed spacer (ITS2). Correspondence analysis of PCR-CE data revealed differences in community composition of coccidia between hooded and white-naped cranes. 18S rRNA and ITS2 sequences were determined from single oocysts excreted by red-crowned and hooded cranes. Phylogenetic analysis of 18S rRNA suggested that E. reichenowi was polyphyletic while E. gruis was monophyletic. Together with PCR-CE data, these results indicate different host specificity among the E. reichenowi type. Our data suggest that E. reichenowi comprises multiple species. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area.

    Science.gov (United States)

    Cesaro, Patrizia; van Tuinen, Diederik; Copetta, Andrea; Chatagnier, Odile; Berta, Graziella; Gianinazzi, Silvio; Lingua, Guido

    2008-09-01

    The symbiosis between plant roots and arbuscular mycorrhizal (AM) fungi has been shown to affect both the diversity and productivity of agricultural communities. In this study, we characterized the AM fungal communities of Solanum tuberosum L. (potato) roots and of the bulk soil in two nearby areas of northern Italy, in order to verify if land use practices had selected any particular AM fungus with specificity to potato plants. The AM fungal large-subunit (LSU) rRNA genes were subjected to nested PCR, cloning, sequencing, and phylogenetic analyses. One hundred eighty-three LSU rRNA sequences were analyzed, and eight monophyletic ribotypes, belonging to Glomus groups A and B, were identified. AM fungal communities differed between bulk soil and potato roots, as one AM fungal ribotype, corresponding to Glomus intraradices, was much more frequent in potato roots than in soils (accounting for more than 90% of sequences from potato samples and less than 10% of sequences from soil samples). A semiquantitative heminested PCR with specific primers was used to confirm and quantify the AM fungal abundance observed by cloning. Overall results concerning the biodiversity of AM fungal communities in roots and in bulk soils from the two studied areas suggested that potato roots were preferentially colonized by one AM fungal species, G. intraradices.

  7. Assessment of genetic diversity within the Merodon ruficornis species group (Diptera: Syrphidae by RAPD analysis

    Directory of Open Access Journals (Sweden)

    Andrić Andrijana

    2017-01-01

    Full Text Available As one of the most distinct groups in the hoverfly genus Merodon, the monophyletic ruficornis species group has been the focus of several studies using different approaches. Molecular methods have shown incongruences between morphological and molecular data. In the present study, we investigated four species of the Merodon ruficornis group (i.e. M. loewi, M. armipes, M. papillus and M. hoplitis with the aim of detecting intra- and interspecific genetic diversity, and we examined the usefulness of random amplified polymorphic DNA (RAPD in an integrative taxonomic approach to species delimitation. Analysis of Nei’s genetic variation over all loci showed that genetic diversity for the analyzed Merodon species was h=0.24. Based on UPGMA, PCoA and Bayesian clustering analyses, our results clearly differentiated four groups that correspond to the four morphologically-defined Merodon species. Among the analyzed species, M. armipes and M. hoplitis showed the lowest level of genetic divergence; M. loewi was clearly separated from both M. armipes and M. papillus. Based on our data, we propose the use of RAPD-PCR as an additional tool for resolving taxonomic problems within Merodon. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no.173002

  8. Morphological convergence in ‘river dolphin’ skulls

    Directory of Open Access Journals (Sweden)

    Charlotte E. Page

    2017-11-01

    Full Text Available Convergent evolution can provide insights into the predictability of, and constraints on, the evolution of biodiversity. One striking example of convergence is seen in the ‘river dolphins’. The four dolphin genera that make up the ‘river dolphins’ (Inia geoffrensis, Pontoporia blainvillei, Platanista gangetica and Lipotes vexillifer do not represent a single monophyletic group, despite being very similar in morphology. This has led many to using the ‘river dolphins’ as an example of convergent evolution. We investigate whether the skulls of the four ‘river dolphin’ genera are convergent when compared to other toothed dolphin taxa in addition to identifying convergent cranial and mandibular features. We use geometric morphometrics to uncover shape variation in the skulls of the ‘river dolphins’ and then apply a number of phylogenetic techniques to test for convergence. We find significant convergence in the skull morphology of the ‘river dolphins’. The four genera seem to have evolved similar skull shapes, leading to a convergent morphotype characterised by elongation of skull features. The cause of this morphological convergence remains unclear. However, the features we uncover as convergent, in particular elongation of the rostrum, support hypotheses of shared feeding mode or diet and thus provide the foundation for future work into convergence within the Odontoceti.

  9. Integrative revision of the giant pill-millipede genus Sphaeromimus from Madagascar, with the description of seven new species (Diplopoda, Sphaerotheriida, Arthrosphaeridae)

    Science.gov (United States)

    Wesener, Thomas; Le, Daniel Minh-Tu; Loria, Stephanie F.

    2014-01-01

    Abstract The Malagasy giant pill-millipede genus Sphaeromimus de Saussure & Zehntner, 1902 is revised. Seven new species, S. titanus sp. n., S. vatovavy sp. n., S. lavasoa sp. n., S. andohahela sp. n., S. ivohibe sp. n., S. saintelucei sp. n., and S. andrahomana sp. n. were discovered, in one case with the help of sequence data, in the rainforests of southeastern Madagascar. The species are described using light- and scanning electron microscopy. A key to all 10 species of the genus is presented. All but one (S. andohahela) of the newly discovered species are microendemics each occurring in isolated forest fragments. The mitochondrial COI barcoding gene was amplified and sequenced for 18 Sphaeromimus specimens, and a dataset containing COI sequences of 28 specimens representing all Sphaeromimus species (except S. vatovavy) was analyzed. All species are genetically monophyletic. Interspecific uncorrected genetic distances were moderate (4–10%) to high (18–25%), whereas intraspecific variation is low (0–3.5%). Sequence data allowed the correct identification of three colour morphs of S. musicus, as well as the identity of a cave specimen, which although aberrant in its morphology and colouration, was genetically identical to the holotype of S. andrahoma. PMID:25009417

  10. Exploring the under-investigated "microbial dark matter" of drinking water treatment plants.

    Science.gov (United States)

    Bruno, Antonia; Sandionigi, Anna; Rizzi, Ermanno; Bernasconi, Marzia; Vicario, Saverio; Galimberti, Andrea; Cocuzza, Clementina; Labra, Massimo; Casiraghi, Maurizio

    2017-03-14

    Scientists recently reported the unexpected detection of unknown or poorly studied bacterial diversity in groundwater. The ability to uncover this neglected biodiversity mainly derives from technical improvements, and the term "microbial dark matter" was used to group taxa poorly investigated and not necessarily monophyletic. We focused on such under-investigated microbial dark matter of drinking water treatment plant from groundwater, across carbon filters, to post-chlorination. We tackled this topic using an integrated approach where the efficacy of stringent water filtration (10000 MWCO) in recovering even the smallest environmental microorganisms was coupled with high-throughput DNA sequencing to depict an informative spectrum of the neglected microbial diversity. Our results revealed that the composition of bacterial communities varies across the plant system: Parcubacteria (OD1) superphylum is found mainly in treated water, while groundwater has the highest heterogeneity, encompassing non-OD1 candidate phyla (Microgenomates, Saccharibacteria, Dependentiae, OP3, OP1, BRC1, WS3). Carbon filters probably act as substrate for microorganism growth and contribute to seeding water downstream, since chlorination does not modify the incoming bacterial community. New questions arise about the role of microbial dark matter in drinking water. Indeed, our results suggest that these bacteria might play a central role in the microbial dynamics of drinking water.

  11. Archaeal “Dark Matter” and the Origin of Eukaryotes

    Science.gov (United States)

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  12. Identification and nomenclature of the genus Penicillium.

    Science.gov (United States)

    Visagie, C M; Houbraken, J; Frisvad, J C; Hong, S-B; Klaassen, C H W; Perrone, G; Seifert, K A; Varga, J; Yaguchi, T; Samson, R A

    2014-06-01

    Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade. As a result of this, and the many new species described in recent years, it was necessary to update the list of accepted species in Penicillium. The genus currently contains 354 accepted species, including new combinations for Aspergillus crystallinus, A. malodoratus and A. paradoxus, which belong to Penicillium section Paradoxa. To add to the taxonomic value of the list, we also provide information on each accepted species MycoBank number, living ex-type strains and provide GenBank accession numbers to ITS, β-tubulin, calmodulin and RPB2 sequences, thereby supplying a verified set of sequences for each species of the genus. In addition to the nomenclatural list, we recommend a standard working method for species descriptions and identifications to be adopted by laboratories working on this genus.

  13. Genetic, ecological and morphological divergence between populations of the endangered Mexican Sheartail hummingbird (Doricha eliza.

    Directory of Open Access Journals (Sweden)

    Yuyini Licona-Vera

    Full Text Available The Mexican Sheartail (Doricha eliza, an endangered hummingbird, is endemic to Mexico where two populations have a disjunct distribution. One population is distributed along the northern tip of the Yucatan Peninsula whereas the other is mostly restricted to central Veracruz. Despite their disjunct distribution, previous work has failed to detect morphological or behavioral differences between these populations. Here we use variation in morphology, mtDNA and nuDNA sequences to determine the degree of morphological and molecular divergence between populations, their divergence time, and historical demography. We use species distribution modeling and niche divergence tests to infer the relative roles of vicariance and dispersal in driving divergence in the genus. Our Bayesian and maximum likelihood phylogenetic analyses revealed that Doricha eliza populations form a monophyletic clade and support their sister relationship with D. enicura. We found marked genetic differentiation, with reciprocal monophyly of haplotypes and highly restricted gene flow, supporting a history of isolation over the last 120,000 years. Genetic divergence between populations is consistent with the lack of overlap in environmental space and slight morphological differences between males. Our findings indicate that the divergence of the Veracruz and Yucatan populations is best explained by a combination of a short period of isolation exacerbated by subsequent divergence in climate conditions, and that rather than vicariance, the two isolated ranges of D. eliza are the product of recent colonization and divergence in isolation.

  14. Phylogeographic structure and northward range expansion in the barnacle Chthamalus fragilis

    Directory of Open Access Journals (Sweden)

    Annette F. Govindarajan

    2015-04-01

    Full Text Available The barnacle Chthamalus fragilis is found along the US Atlantic seaboard historically from the Chesapeake Bay southward, and in the Gulf of Mexico. It appeared in New England circa 1900 coincident with warming temperatures, and is now a conspicuous member of rocky intertidal communities extending through the northern shore of Cape Cod, Massachusetts. The origin of northern C. fragilis is debated. It may have spread to New England from the northern end of its historic range through larval transport by ocean currents, possibly mediated by the construction of piers, marinas, and other anthropogenic structures that provided new hard substrate habitat. Alternatively, it may have been introduced by fouling on ships originating farther south in its historic distribution. Here we examine mitochondrial cytochrome c oxidase I sequence diversity and the distribution of mitochondrial haplotypes of C. fragilis from 11 localities ranging from Cape Cod, to Tampa Bay, Florida. We found significant genetic structure between northern and southern populations. Phylogenetic analysis revealed three well-supported reciprocally monophyletic haplogroups, including one haplogroup that is restricted to New England and Virginia populations. While the distances between clades do not suggest cryptic speciation, selection and dispersal barriers may be driving the observed structure. Our data are consistent with an expansion of C. fragilis from the northern end of its mid-19th century range into Massachusetts.

  15. Mitochondrial DNA evolution in the genus Equus.

    Science.gov (United States)

    George, M; Ryder, O A

    1986-11-01

    Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.

  16. Lineage-specific expansions of retroviral insertions within the genomes of African great apes but not humans and orangutans.

    Directory of Open Access Journals (Sweden)

    Chris T Yohn

    2005-04-01

    Full Text Available Retroviral infections of the germline have the potential to episodically alter gene function and genome structure during the course of evolution. Horizontal transmissions between species have been proposed, but little evidence exists for such events in the human/great ape lineage of evolution. Based on analysis of finished BAC chimpanzee genome sequence, we characterize a retroviral element (Pan troglodytes endogenous retrovirus 1 [PTERV1] that has become integrated in the germline of African great ape and Old World monkey species but is absent from humans and Asian ape genomes. We unambiguously map 287 retroviral integration sites and determine that approximately 95.8% of the insertions occur at non-orthologous regions between closely related species. Phylogenetic analysis of the endogenous retrovirus reveals that the gorilla and chimpanzee elements share a monophyletic origin with a subset of the Old World monkey retroviral elements, but that the average sequence divergence exceeds neutral expectation for a strictly nuclear inherited DNA molecule. Within the chimpanzee, there is a significant integration bias against genes, with only 14 of these insertions mapping within intronic regions. Six out of ten of these genes, for which there are expression data, show significant differences in transcript expression between human and chimpanzee. Our data are consistent with a retroviral infection that bombarded the genomes of chimpanzees and gorillas independently and concurrently, 3-4 million years ago. We speculate on the potential impact of such recent events on the evolution of humans and great apes.

  17. Morphometrics parallel genetics in a newly discovered and endangered taxon of Galápagos tortoise.

    Directory of Open Access Journals (Sweden)

    Ylenia Chiari

    2009-07-01

    Full Text Available Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.

  18. Molecular phylogeny of north mediterranean freshwater barbs (genus Barbus: cyprinidae) inferred from cytochrome b sequences: biogeographic and systematic implications.

    Science.gov (United States)

    Tsigenopoulos, C S; Berrebi, P

    2000-02-01

    We investigated phylogenetic relationships among north Mediterranean species of the genus Barbus using sequences of the cytochrome b gene. Our results indicate that the species belong to two major clades that are consistent with those previously defined from morphological features. The first clade includes species ranging from France to the Black Sea. In this clade, there is a well-supported monophyletic group of large-sized fluvio-lacustrine barbs; however, the monophyly of the small-sized rheophilic species is not clear. The second clade comprises species found in Spain, Greece, and Asia Minor and probably represents the oldest group present in the north Mediterranean rivers. In general, there is good concordance between geography and phylogenetic relationships. These results are compared to those from previous morphological- and allozyme-based studies and demonstrate widespread discordance and polyphyly in the traditional taxonomy of the genus Barbus. This study is one of the first reporting the phylogenetic and biogeographic relationships of a genus that is widely distributed in European rivers and contains species that are a major component of the European ichthyofauna. Copyright 2000 Academic Press.

  19. Genetic and morphological support for possible sympatric origin of fish from subterranean habitats.

    Science.gov (United States)

    Hashemzadeh Segherloo, Iraj; Normandeau, Eric; Benestan, Laura; Rougeux, Clément; Coté, Guillaume; Moore, Jean-Sébastien; Ghaedrahmati, NabiAllah; Abdoli, Asghar; Bernatchez, Louis

    2018-02-13

    Two blind Iran cave barbs, Garra typhlops and Garra lorestanensis, exist in sympatry in a single subterranean habitat, raising the hypothesis that they may represent a case of sympatric speciation following a colonization event. Their different mental disc forms have prompted some authors to propose the alternative hypothesis of two separate colonization events. In this study, we analysed a genome-wide panel of 11,257 SNPs genotyped by means of genotyping-by-sequencing combined with mitochondrial cytochrome c oxidase sub-unit I sequence data, field observations and morphological traits to test these two hypotheses. Field data suggest some degree of ecological divergence despite some possible niche overlap such that hybridization is possible. According to both nuclear and mtDNA data, the cave barb species are monophyletic with close phylogenetic relationships with Garra gymnothorax from the Karun-Dez and Karkheh river basins. The historical demography analysis revealed that a model of Isolation-with-Migration (IM) best fitted the data, therefore better supporting a scenario of sympatric origin than that of allopatric isolation followed by secondary contact. Overall, our results offer stronger support to the hypothesis that speciation in the subterranean habitat could have occurred in sympatry following a colonization event from the Karun-Dez-Karkheh basins in the Zagros Mountains of Iran.

  20. Nearly Complete 28S rRNA Gene Sequences Confirm New Hypotheses of Sponge Evolution

    Science.gov (United States)

    Thacker, Robert W.; Hill, April L.; Hill, Malcolm S.; Redmond, Niamh E.; Collins, Allen G.; Morrow, Christine C.; Spicer, Lori; Carmack, Cheryl A.; Zappe, Megan E.; Pohlmann, Deborah; Hall, Chelsea; Diaz, Maria C.; Bangalore, Purushotham V.

    2013-01-01

    The highly collaborative research sponsored by the NSF-funded Assembling the Porifera Tree of Life (PorToL) project is providing insights into some of the most difficult questions in metazoan systematics. Our understanding of phylogenetic relationships within the phylum Porifera has changed considerably with increased taxon sampling and data from additional molecular markers. PorToL researchers have falsified earlier phylogenetic hypotheses, discovered novel phylogenetic alliances, found phylogenetic homes for enigmatic taxa, and provided a more precise understanding of the evolution of skeletal features, secondary metabolites, body organization, and symbioses. Some of these exciting new discoveries are shared in the papers that form this issue of Integrative and Comparative Biology. Our analyses of over 300 nearly complete 28S ribosomal subunit gene sequences provide specific case studies that illustrate how our dataset confirms new hypotheses of sponge evolution. We recovered monophyletic clades for all 4 classes of sponges, as well as the 4 major clades of Demospongiae (Keratosa, Myxospongiae, Haploscleromorpha, and Heteroscleromorpha), but our phylogeny differs in several aspects from traditional classifications. In most major clades of sponges, families within orders appear to be paraphyletic. Although additional sampling of genes and taxa are needed to establish whether this pattern results from a lack of phylogenetic resolution or from a paraphyletic classification system, many of our results are congruent with those obtained from 18S ribosomal subunit gene sequences and complete mitochondrial genomes. These data provide further support for a revision of the traditional classification of sponges. PMID:23748742

  1. Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes

    Science.gov (United States)

    Pia Miglietta, Maria; Hourdez, Stephane; Cowart, Dominique A.; Schaeffer, Stephen W.; Fisher, Charles

    2010-11-01

    At least six morphospecies of vestimentiferan tubeworms are associated with cold seeps in the Gulf of Mexico (GOM). The physiology and ecology of the two best-studied species from depths above 1000 m in the upper Louisiana slope (Lamellibrachia luymesi and Seepiophila jonesi) are relatively well understood. The biology of one rare species from the upper slope (escarpiid sp. nov.) and three morphospecies found at greater depths in the GOM (Lamellibrachia sp. 1, L. sp. 2, and Escarpia laminata) are not as well understood. Here we address species distributions and boundaries of cold-seep tubeworms using phylogenetic hypotheses based on two mitochondrial genes. Fragments of the mitochondrial large ribosomal subunit rDNA (16S) and cytochrome oxidase subunit I (COI) genes were sequenced for 167 vestimentiferans collected from the GOM and analyzed in the context of other seep vestimentiferans for which sequence data were available. The analysis supported five monophyletic clades of vestimentiferans in the GOM. Intra-clade variation in both genes was very low, and there was no apparent correlation between the within-clade diversity and collection depth or location. Two of the morphospecies of Lamellibrachia from different depths in the GOM could not be distinguished by either mitochondrial gene. Similarly, E. laminata could not be distinguished from other described species of Escarpia from either the west coast of Africa or the eastern Pacific using COI. We suggest that the mitochondrial COI and 16S genes have little utility as barcoding markers for seep vestimentiferan tubeworms.

  2. A taxonomic monograph of Nearctic Scolytus Geoffroy (Coleoptera, Curculionidae, Scolytinae).

    Science.gov (United States)

    Smith, Sarah M; Cognato, Anthony I

    2014-01-01

    The Nearctic bark beetle genus Scolytus Geoffroy was revised based in part on a molecular and morphological phylogeny. Monophyly of the native species was tested using mitochondrial (COI) and nuclear (28S, CAD, ArgK) genes and 43 morphological characters in parsimony and Bayesian phylogenetic analyses. Parsimony analyses of molecular and combined datasets provided mixed results while Bayesian analysis recovered most nodes with posterior probabilities >90%. Native hardwood- and conifer-feeding Scolytus species were recovered as paraphyletic. Native Nearctic species were recovered as paraphyletic with hardwood-feeding species sister to Palearctic hardwood-feeding species rather than to native conifer-feeding species. The Nearctic conifer-feeding species were monophyletic. Twenty-five species were recognized. Four new synonyms were discovered: Scolytuspraeceps LeConte, 1868 (= Scolytusabietis Blackman, 1934; = Scolytusopacus Blackman, 1934), Scolytusreflexus Blackman, 1934 (= Scolytusvirgatus Bright, 1972; = Scolytuswickhami Blackman, 1934). Two species were reinstated: Scolytusfiskei Blackman, 1934 and Scolytussilvaticus Bright, 1972. A diagnosis, description, distribution, host records and images were provided for each species and a key is presented to all species.

  3. Distribution of corazonin and pigment-dispersing factor in the cephalic ganglia of termites.

    Science.gov (United States)

    Závodská, Radka; Wen, Chih-Jen; Hrdý, Ivan; Sauman, Ivo; Lee, How-Jing; Sehnal, Frantisek

    2008-07-01

    Distribution of neurones detectable with antisera to the corazonin (Crz) and the pigment-dispersing factor (PDF) was mapped in the workers or pseudergates of 10 species representing six out of seven termite families. All species contained two triads of Crz-immunoreactive (Crz-ir) neurones in the protocerebrum. Their fibres were linked to the opposite hemisphere, formed a network in the fronto-lateral protocerebrum, and projected to the corpora cardiaca (CC); in most species the fibres also supplied the deuto- and tritocerebrum and the frontal ganglion. Some species possessed additional Crz-ir perikarya in the protocerebrum and the suboesophageal ganglion (SOG). The PDF-ir somata were primarily located in the optic lobe (OL) and SOG. OL harboured a group (3 groups in Coptotermes) of 2-6 PDF-ir cells with processes extending to the medulla, connecting to the contralateral OL, forming 1-2 networks in the protocerebrum, and in most species running also to CC. Such a PDF-ir system associated with the OL was missing in Reticulitermes. Except for Mastotermes, the termites contained 1-2 PDF-ir cell pairs in the SOG and two species had additional perikarya in the protocerebrum. The results are consistent with the view of a monophyletic termite origin and demonstrate how the Crz-ir and PDF-ir systems diversified in the course of termite phylogeny.

  4. Molecular phylogeny of Pasiphaeidae (Crustacea, Decapoda, Caridea) reveals systematic incongruence of the current classification.

    Science.gov (United States)

    Liao, Yunshi; De Grave, Sammy; Ho, Tsz Wai; Ip, Brian H Y; Tsang, Ling Ming; Chan, Tin-Yam; Chu, Ka Hou

    2017-10-01

    Caridean shrimps constitute one of the most diverse groups of decapod crustaceans, notwithstanding their poorly resolved infraordinal relationships. One of the systematically controversial families in Caridea is the predominantly pelagic Pasiphaeidae, comprises 101 species in seven genera. Pasiphaeidae species exhibit high morphological disparity, as well as ecological niche width, inhabiting shallow to very deep waters (>4000m). The present work presents the first molecular phylogeny of the family, based on a combined dataset of six mitochondrial and nuclear gene markers (12S rDNA, 16S rDNA, histone 3, sodium-potassium ATPase α-subunit, enolase and ATP synthase β-subunit) from 33 species belonged to six genera of Pasiphaeidae with 19 species from 12 other caridean families as outgroup taxa. Maximum likelihood and Bayesian inference analyses conducted on the concatenated dataset of 2265bp suggest the family Pasiphaeidae is not monophyletic, with Psathyrocaris more closely related to other carideans than to the other five pasiphaeid genera included in this analysis. Leptochela occupies a sister position to the remaining genera and is genetically quite distant from them. At the generic level, the analysis supports the monophyly of Pasiphaea, Leptochela and Psathyrocaris, while Eupasiphae is shown to be paraphyletic, closely related to Parapasiphae and Glyphus. The present molecular result strongly implies that certain morphological characters used in the present systematic delineation within Pasiphaeidae may not be synapomorphies and the classification within the family needs to be urgently revised. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ancient DNA analyses reveal contrasting phylogeographic patterns amongst kiwi (Apteryx spp. and a recently extinct lineage of spotted kiwi.

    Directory of Open Access Journals (Sweden)

    Lara D Shepherd

    Full Text Available The little spotted kiwi (Apteryx owenii is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis, with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species survived on the South Island mainland until more recently than previously thought.

  6. The Evolution of Energy-Transducing Systems. Studies with Archaebacteria

    Science.gov (United States)

    Stan-Lotter, Helga

    1996-01-01

    The dicyclohexyl carbodiimide (DCCD)- binding site of the membrane ATPase from Halobacterium saccharovorum was investigated during earlier periods of this Cooperative Agreement and was localized to a cyanogen bromide fragment of subunit 2 from amino acids 379 (Glu) to 442 (Met). Although the exact position of the reactive amino acid (probably a glutamic acid) has not yet been determined, the data, together with recently obtained immuno reactions and sequences of Cyanogen Bromide (CNBr) fragments from E.coli F-ATPase, suggested subunit interactions in the halobacterial ATPase which had not been recognized before. They also provided evidence for the presence of a gamma subunit in the halobacterial ATPase, and for a stretch of a amino acids similar to the 'catch' between beta and gamma in bovine F-ATPase. The evolutionary implications of these findings are twofold: first, halobacterial (or archaebacterial) ATPases appear as complex as those from higher organisms - no simpler versions of these membrane enzymes are known to date; second, a monophyletic origin of the energy-transducing ATPases is becoming more apparent, and - together with other data - the split into V- and F-ATPases may have occurred much later than had been previously thought (i.e., after the split into Archaea and Bacteria). Other work included the characterization of an extremely halophilic isolate (Halococcus salifodinae ) from Permian salt sediments. This organism appeared to be an autotrophic halobacterium; its incorporation of C02 was investigated.

  7. Spirocerca vulpis sp. nov. (Spiruridae: Spirocercidae): description of a new nematode species of the red fox, Vulpes vulpes (Carnivora: Canidae).

    Science.gov (United States)

    Rojas, Alicia; Sanchis-Monsonís, Gloria; Alić, Amer; Hodžić, Adnan; Otranto, Domenico; Yasur-Landau, Daniel; Martínez-Carrasco, Carlos; Baneth, Gad

    2018-05-21

    Previous studies have reported nematodes of the Spirocercidae family in the stomach nodules of red foxes (Vulpes vulpes) described as Spirocerca sp. or Spirocerca lupi (Rudolphi, 1819). We characterized spirurid worms collected from red foxes and compared them to S. lupi from domestic dogs by morphometric and phylogenetic analyses. Nematodes from red foxes differed from S. lupi by the presence of six triangular teeth-like buccal capsule structures, which are absent in the latter. Additionally, in female worms from red foxes, the distance of the vulva opening to the anterior end and the ratio of the glandular-to-muscular oesophagus lengths were larger than those of S. lupi (P red foxes spirurid represent monophyletic sister groups with pairwise nucleotide distances of 9.2 and 0.2% in the cytochrome oxidase 1 and 18S genes, respectively. Based on these comparisons, the nematodes from red foxes were considered to belong to a separate species, for which the name Spirocerca vulpis sp. nov. is proposed.

  8. Death and cannibalism in a seasonal environment facilitate bacterial coexistence.

    Science.gov (United States)

    Rozen, Daniel E; Philippe, Nadège; Arjan de Visser, J; Lenski, Richard E; Schneider, Dominique

    2009-01-01

    Bacterial populations can evolve and adapt to become diverse niche specialists, even in seemingly homogeneous environments. One source of this diversity arises from newly 'constructed' niches that result from the activities of the bacteria themselves. Ecotypes specialized to exploit these distinct niches can subsequently coexist via frequency-dependent interactions. Here, we describe a novel form of niche construction that is based upon differential death and cannibalism, and which evolved during 20 000 generations of experimental evolution in Escherichia coli in a seasonal environment with alternating growth and starvation. In one of 12 populations, two monophyletic ecotypes, S and L, evolved that stably coexist with one another. When grown and then starved in monoculture, the death rate of S exceeds that of L, whereas the reverse is observed in mixed cultures. As shown by experiments and numerical simulations, the competitive advantage of S cells is increased by extending the period of starvation, and this advantage results from their cannibalization of the debris of lysed L cells, which allows the S cells to increase both their growth rate and total cell density. At the molecular level, the polymorphism is associated with divergence in the activity of the alternative sigma factor RpoS, with S cells displaying no detectable activity, while L cells show increased activity relative to the ancestral genotype. Our results extend the repertoire of known cross-feeding mechanisms in microbes to include cannibalism during starvation, and confirm the central roles for niche construction and seasonality in the maintenance of microbial polymorphisms.

  9. Characterization of resistance gene analogues (RGAs in apple (Malus × domestica Borkh. and their evolutionary history of the Rosaceae family.

    Directory of Open Access Journals (Sweden)

    Michele Perazzolli

    Full Text Available The family of resistance gene analogues (RGAs with a nucleotide-binding site (NBS domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh. cultivar 'Golden Delicious'. This represents 1.51% of the total number of predicted genes for this cultivar. Several evolutionary features are pronounced in M. domestica, including a high fraction (80% of RGAs occurring in clusters. This suggests frequent tandem duplication and ectopic translocation events. Of the identified RGAs, 56% are located preferentially on six chromosomes (Chr 2, 7, 8, 10, 11, and 15, and 25% are located on Chr 2. TIR-NBS and non-TIR-NBS classes of RGAs are primarily exclusive of different chromosomes, and 99% of non-TIR-NBS RGAs are located on Chr 11. A phylogenetic reconstruction was conducted to study the evolution of RGAs in the Rosaceae family. More than 1400 RGAs were identified in six species based on their NBS domain, and a neighbor-joining analysis was used to reconstruct the phylogenetic relationships among the protein sequences. Specific phylogenetic clades were found for RGAs of Malus, Fragaria, and Rosa, indicating genus-specific evolution of resistance genes. However, strikingly similar RGAs were shared in Malus, Pyrus, and Prunus, indicating high conservation of specific RGAs and suggesting a monophyletic origin of these three genera.

  10. Hemolivia and hepatozoon: haemogregarines with tangled evolutionary relationships.

    Science.gov (United States)

    Kvičerová, Jana; Hypša, Václav; Dvořáková, Nela; Mikulíček, Peter; Jandzik, David; Gardner, Michael George; Javanbakht, Hossein; Tiar, Ghoulem; Siroký, Pavel

    2014-09-01

    The generic name Hemolivia has been used for haemogregarines characterized by morphological and biological features. The few molecular studies, focused on other haemogregarine genera but involving Hemolivia samples, indicated its close relationship to the genus Hepatozoon. Here we analyze molecular data for Hemolivia from a broad geographic area and host spectrum and provide detailed morphological documentation of the included samples. Based on molecular analyses in context of other haemogregarines, we demonstrate that several sequences deposited in GenBank from isolates described as Hepatozoon belong to the Hemolivia cluster. This illustrates the overall difficulty with recognizing Hemolivia and Hepatozoon without sufficient morphological and molecular information. The close proximity of both genera is also reflected in uncertainty about their precise phylogeny when using 18S rDNA. They cluster with almost identical likelihood either as two sister taxa or as monophyletic Hemolivia within paraphyletic Hepatozoon. However, regardless of these difficulties, the results presented here provide a reliable background for the unequivocal placement of new samples into the Hemolivia/ Hepatozoon complex. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean.

    Science.gov (United States)

    Maia, João P M C; Perera, Ana; Harris, D James

    2012-12-01

    The genus Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) is composed of intracellular haemogregarine parasites that are widely distributed among all tetrapod groups. The present study combines microscopic and molecular data on haemogregarine parasites from lizards in the western Mediterranean. We screened tissue samples and examined blood smears for the presence of species of Hepatozoon from four lizards, namely Algyroides marchi Valverde, endemic to Southeast Spain, Podarcis bocagei Seoane from Spain and Portugal, P hispanica Steindachner from Spain, and P lilfordi Günther from Cabrera, Balearic Islands (Spain). Our results show that prevalence and intensity of Hepatozoon parasites vary between and within lizard species from different regions. Algyroides marchi and P bocagei from Spain had the lowest values, whereas P hispanica had the highest. Phylogeny based on 18S rRNA gene sequences indicates that most of the new Hepatozoon sequences are part of a clade exclusive from North African and Iberian lizards, except for a single P bocagei isolate that is found related to another clade including isolates from other reptile host species and rodents. Interestingly, isolates from Algyroides form a distinct monophyletic subgroup, which could be a signal of strict host-specificity within this host genus.

  12. Geographical origin and sexual-system evolution of the androdioecious plant Gynochthodes boninensis (Rubiaceae), endemic to the Bonin Islands, Japan.

    Science.gov (United States)

    Oguri, Emiko; Sugawara, Takashi; Peng, Ching-I; Yang, T Y Aleck; Murakami, Noriaki

    2013-09-01

    Gynochthodes boninensis is a woody climber endemic to the Bonin Islands, Japan. It is characterized by an androdioecious sexual system, which is rare in angiosperms. We conducted a molecular phylogenetic analysis of 29 taxa including 61 samples from the tribe Morindeae to elucidate the geographical origin of G. boninensis by determining its progenitor species. We also investigated evolutionary transitions among different sexual systems within this plant group. The combined ETS, ITS, and trnT-F sequence data showed that G. boninensis formed a monophyletic group, but it did not form a clade with G. umbellata, which was treated as the same species, whereas it formed a clade with G. parvifolia, which is distributed in southeastern Asia. This suggests that G. boninensis evolved independently from G. umbellata, and probably originated from a progenitor native to southeastern Asia. In the clade composed of the three species of G. boninensis, G. parvifolia, and G. umbellata, only G. boninensis is androdioecious, whereas the others are dioecious. Thus, the androdioecious sexual system of G. boninensis may have evolved from dioecy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris).

    Science.gov (United States)

    Kashiwagi, Tom; Marshall, Andrea D; Bennett, Michael B; Ovenden, Jennifer R

    2012-07-01

    Manta rays have been taxonomically revised as two species, Manta alfredi and M. birostris, on the basis of morphological and meristic data, yet the two species occur in extensive mosaic sympatry. We analysed the genetic signatures of the species boundary using a portion of the nuclear RAG1 (681 base pairs), mitochondrial CO1 (574 bp) and ND5 genes (1188 bp). The assay with CO1 sequences, widely used in DNA barcoding, failed to distinguish the two species. The two species were clearly distinguishable, however, with no shared RAG1 or ND5 haplotypes. The species were reciprocally monophyletic for RAG1, but paraphyletic for ND5 sequences. Qualitative evidence and statistical inferences using the 'Isolation-with-Migration models' indicated that these results were better explained with post-divergence gene flow in the recent past rather than incomplete lineage sorting with zero gene flow since speciation. An estimate of divergence time was less than 0.5 Ma with an upper confidence limit of within 1 Ma. Recent speciation of highly mobile species in the marine environment is of great interest, as it suggests that speciation may have occurred in the absence of long-term physical barriers to gene flow. We propose that the ecologically driven forces such as habitat choice played a significant role in speciation in manta rays. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Análisis filogénetico del género Pseudopaludicola (Anura: Leptodactylidae

    Directory of Open Access Journals (Sweden)

    Lobo, Fernando

    1995-01-01

    Full Text Available Las relaciones filogenéticas entre las especies del género Pseudopaludicola son analizadas en base a caracteres externos y osteológicos. Se estudiaron once especies de Physalaemus las que fueron empleadas como grupo externo en análisis donde se trataron ambos géneros en conjunto. Se hicieron corridas enraizando alternativamente en las distintas especies de Physalaemus y sumando además a Leplodactylus en la matriz verificándose la monofilia del género Pseudopaludicola. Como resultado de este análisis se obtuvieron tres topologias de relaciones entre las especies del género, siendo el consenso estricto: (ternelsi mineira (sallica falcipes(myslacalis (pusilla (boliviana (ceralophyes /lanera. En este trabajo se apoya la monofilia del grupo pusilla proponiéndose una hipótesis distinta de relaciones entre sus integrantes a la propuesta por Lynch (1989. Phylogenetics relationships between ftogs of the leptodactylid genus Pseudopaludicola are analyzed using both osteological and external characters. Some species of Physalaemus (eleven are included in the analysis with Pseudopaludicola. Rooting with Leptodactylus or with any species of Physalaemus the monophyly ofthe genus is maintained. Three different trees for Pseudopaludicola were obtained, their strict consensus is: (temetzi mineira (saltica falcipes (mystacalis (pusilla (boliviana (ceratophyes /lanera. According to Lynch (1989 the pusilla group is monophyletic, but the internal arrangement among its species is different in this analysis.

  15. Genomic characterization of two novel SAR11 isolates from the Red Sea, including the first strain of the SAR11 Ib clade.

    Science.gov (United States)

    Jimenez-Infante, Francy; Ngugi, David Kamanda; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Bajic, Vladimir B; Stingl, Ulrich

    2017-07-01

    The SAR11 clade (Pelagibacterales) is a diverse group that forms a monophyletic clade within the Alphaproteobacteria, and constitutes up to one third of all prokaryotic cells in the photic zone of most oceans. Pelagibacterales are very abundant in the warm and highly saline surface waters of the Red Sea, raising the question of adaptive traits of SAR11 populations in this water body and warmer oceans through the world. In this study, two pure cultures were successfully obtained from surface waters on the Red Sea: one isolate of subgroup Ia and one of the previously uncultured SAR11 Ib lineage. The novel genomes were very similar to each other and to genomes of isolates of SAR11 subgroup Ia (Ia pan-genome), both in terms of gene content and synteny. Among the genes that were not present in the Ia pan-genome, 108 (RS39, Ia) and 151 genes (RS40, Ib) were strain specific. Detailed analyses showed that only 51 (RS39, Ia) and 55 (RS40, Ib) of these strain-specific genes had not reported before on genome fragments of Pelagibacterales. Further analyses revealed the potential production of phosphonates by some SAR11 members and possible adaptations for oligotrophic life, including pentose sugar utilization and adhesion to marine particulate matter. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Multiple losses of flight and recent speciation in steamer ducks

    Science.gov (United States)

    Fulton, Tara L.; Letts, Brandon; Shapiro, Beth

    2012-01-01

    Steamer ducks (Tachyeres) comprise four species, three of which are flightless. The flightless species are believed to have diverged from a flying common ancestor during the Late Pleistocene; however, their taxonomy remains contentious. Of particular interest is the previously unstudied population of flying steamer ducks in the Falkland Islands. We present the first genetic data from this insular population, and illustrate that the flying and flightless steamer ducks on the Falkland Islands are genetically indistinguishable, in contrast to their traditional classification as separate species. The three species that reside in continental South America form a genetically distinct lineage from the Falkland Island ducks. The Falkland steamer ducks diverged from their continental relatives 2.2–0.6 million years ago, coincident with a probable land bridge connecting the Falkland Islands to the mainland. The three continental species share a common ancestor approximately 15 000 years ago, possibly owing to isolation during a recent glacial advance. The continental steamer duck species are not reciprocally monophyletic, but show some amount of genetic differentiation between them. Each lineage of Tachyeres represents a different stage between flight and flightlessness. Their phylogenetic relationships suggest multiple losses of flight and/or long-term persistence of mixed-flight capability. As such, steamer ducks may provide a model system to study the evolution of flightlessness. PMID:22319122

  17. Testing the impact of miniaturization on phylogeny: Paleozoic dissorophoid amphibians.

    Science.gov (United States)

    Fröbisch, Nadia B; Schoch, Rainer R

    2009-06-01

    Among the diverse clade of Paleozoic dissorophoid amphibians, the small, terrestrial amphibamids and the neotenic branchiosaurids have frequently been suggested as possible antecedents of either all or some of the modern amphibian clades. Classically, amphibamids and branchiosaurids have been considered to represent distinct, but closely related clades within dissorophoids, but despite their importance for the controversial lissamphibian origins, a comprehensive phylogenetic analysis of small dissorophoids has thus far not been attempted. On the basis of an integrated data set, the relationships of amphibamids and branchiosaurids were analyzed using parsimony and Bayesian approaches. Both groups represent miniaturized forms and it was tested whether similar developmental pathways, associated with miniaturization, lead to an artificial close relationship of branchiosaurids and amphibamids. Moreover, the fit of the resulting tree topologies to the distribution of fossil taxa in the stratigraphic rock record was assessed as an additional source of information. The results show that characters associated with a miniaturized morphology are not responsible for the close clustering of branchiosaurids and amphibamids. Instead, all analyses invariably demonstrate a monophyletic clade of branchiosaurids highly nested within derived amphibamids, indicating that branchiosaurids represent a group of secondarily neotenic amphibamid dissorophoids. This understanding of the phylogenetic relationships of small dissorophoid amphibians provides a new framework for the discussion of their evolutionary history and the evolution of characters shared by branchiosaurids and/or amphibamids with modern amphibian taxa.

  18. The phylogeny of amphibian metamorphosis.

    Science.gov (United States)

    Reiss, John O

    2002-01-01

    Frogs have one of the most extreme metamorphoses among vertebrates. How did this metamorphosis evolve? By combining the methods previously proposed by Mabee and Humphries (1993) and Velhagen (1997), I develop a phylogenetic method suited for rigorous analysis of this question. In a preliminary analysis using 12 transformation sequence characters and 36 associated event sequence characters, all drawn from the osteology of the skull, the evolution of metamorphosis is traced on an assumed phylogeny. This phylogeny has lissamphibians (frogs, salamanders, and caecilians) monophyletic, with frogs the sister group of salamanders. Successive outgroups used are temnospondyls and discosauriscids, both of which are fossil groups for which ontogenetic data are available. In the reconstruction of character evolution, an unambiguous change (synapomorphy) along the branch leading to lissamphibians is a delay in the lengthening of the maxilla until metamorphosis, in accordance with my previous suggestion (Reiss, 1996). However, widening of the interpterygoid vacuity does not appear as a synapomophy of lissamphibians, due to variation in the character states in the outgroups. From a more theoretical perspective, the reconstructed evolution of amphibian metamorphosis involves examples of heterochrony, through the shift of ancestral premetamorphic events to the metamorphic period, caenogenesis, through the origin of new larval features, and terminal addition, through the origin of new adult features. Other changes don't readily fit these categories. This preliminary study provides evidence that metamorphic changes in frogs arose as further modifications of changes unique to lissamphibians, as well as a new method by which such questions can be examined.

  19. Growth hormone and prolactin in Andrias davidianus: cDNA cloning, tissue distribution and phylogenetic analysis.

    Science.gov (United States)

    Yang, Liping; Meng, Zining; Liu, Yun; Zhang, Yong; Liu, Xiaochun; Lu, Danqi; Huang, Junhai; Lin, Haoran

    2010-01-15

    The Chinese giant salamander (Andrias davidianus) is one of the largest and 'living fossil' species of amphibian. To obtain genetic information for this species, the cDNAs encoding growth hormone (adGH) and prolactin (adPRL) were cloned from a pituitary cDNA library. The isolated adGH cDNA consisted of 864 bp and encoded a propeptide of 215 amino acids, while the cDNA of adPRL was 1106 bp in length and encoded a putative peptide of 229 amino acids. Expression of the GH and PRL mRNA was only detected in the pituitary. Phylogenetic analyses were performed based on the isolated pituitary hormone sequences using maximum parsimony and neighbor-joining algorithms. The clustering results are similar to that based on the morphological characteristics or the rRNA genes, which indicate that the two orders (Anura and Caudata) of amphibian were monophyletic, and that A. davidianus was diverged early in the Caudate clade. These results indicated that both the GH and PRL sequence might be useful to study the phylogenies of relatively moderate evolved groups.

  20. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    Science.gov (United States)

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  1. Chloroplast DNA Structural Variation, Phylogeny, and Age of Divergence among Diploid Cotton Species

    Science.gov (United States)

    Li, Pengbo; Liu, Fang; Wang, Yumei; Xu, Qin; Shang, Mingzhao; Zhou, Zhongli; Cai, Xiaoyan; Wang, Xingxing; Wendel, Jonathan F.; Wang, Kunbo

    2016-01-01

    The cotton genus (Gossypium spp.) contains 8 monophyletic diploid genome groups (A, B, C, D, E, F, G, K) and a single allotetraploid clade (AD). To gain insight into the phylogeny of Gossypium and molecular evolution of the chloroplast genome in this group, we performed a comparative analysis of 19 Gossypium chloroplast genomes, six reported here for the first time. Nucleotide distance in non-coding regions was about three times that of coding regions. As expected, distances were smaller within than among genome groups. Phylogenetic topologies based on nucleotide and indel data support for the resolution of the 8 genome groups into 6 clades. Phylogenetic analysis of indel distribution among the 19 genomes demonstrates contrasting evolutionary dynamics in different clades, with a parallel genome downsizing in two genome groups and a biased accumulation of insertions in the clade containing the cultivated cottons leading to large (for Gossypium) chloroplast genomes. Divergence time estimates derived from the cpDNA sequence suggest that the major diploid clades had diverged approximately 10 to 11 million years ago. The complete nucleotide sequences of 6 cpDNA genomes are provided, offering a resource for cytonuclear studies in Gossypium. PMID:27309527

  2. Ecological specialization and morphological diversification in Greater Antillean boas.

    Science.gov (United States)

    Reynolds, R Graham; Collar, David C; Pasachnik, Stesha A; Niemiller, Matthew L; Puente-Rolón, Alberto R; Revell, Liam J

    2016-08-01

    Colonization of islands can dramatically influence the evolutionary trajectories of organisms, with both deterministic and stochastic processes driving adaptation and diversification. Some island colonists evolve extremely large or small body sizes, presumably in response to unique ecological circumstances present on islands. One example of this phenomenon, the Greater Antillean boas, includes both small (<90 cm) and large (4 m) species occurring on the Greater Antilles and Bahamas, with some islands supporting pairs or trios of body-size divergent species. These boas have been shown to comprise a monophyletic radiation arising from a Miocene dispersal event to the Greater Antilles, though it is not known whether co-occurrence of small and large species is a result of dispersal or in situ evolution. Here, we provide the first comprehensive species phylogeny for this clade combined with morphometric and ecological data to show that small body size evolved repeatedly on separate islands in association with specialization in substrate use. Our results further suggest that microhabitat specialization is linked to increased rates of head shape diversification among specialists. Our findings show that ecological specialization following island colonization promotes morphological diversity through deterministic body size evolution and cranial morphological diversification that is contingent on island- and species-specific factors. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. Phylogenetic placement of an unusual coral mushroom challenges the classic hypothesis of strict coevolution in the apterostigma pilosum group ant-fungus mutualism.

    Science.gov (United States)

    Dentinger, Bryn T M; Lodge, D Jean; Munkacsi, Andrew B; Desjardin, Dennis E; McLaughlin, David J

    2009-08-01

    The approximately 50 million-year-old fungus-farming ant mutualism is a classic example of coevolution, involving ants that subsist on asexual, fungal biomass, in turn propagating the fungus clonally through nest-to-nest transmission. Most mutualistic ants cultivate two closely related groups of gilled mushrooms, whereas one small group of ants in the genus Apterostigma cultivates a distantly related lineage comprised of the G2 and G4 groups. The G2 and G4 fungi were previously shown to form a monophyletic group sister to the thread-like coral mushroom family Pterulaceae. Here, we identify an enigmatic coral mushroom that produces both fertile and sterile fruiting structures as the closest free-living relative of the G4 fungi, challenging the monophyly of the Apterostigma-cultivated fungi for the first time. Both nonparametric bootstrap and Bayesian posterior probability support the node leading to the G4 cultivars and a free-living Pterula mushroom. These data suggest three scenarios that contradict the hypothesis of strict coevolution: (1) multiple domestications, (2) escape from domestication, (3) selection of single cultivar lineages from an ancestral mixed-fungus garden. These results illustrate how incomplete phylogenies for coevolved symbionts impede our understanding of the patterns and processes of coevolution.

  4. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability.

    Science.gov (United States)

    Pennington, R Toby; Lavin, Matt

    2016-04-01

    A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Dobrava virus carried by the yellow-necked field mouse Apodemus flavicollis, causing hemorrhagic fever with renal syndrome in Romania.

    Science.gov (United States)

    Panculescu-Gatej, Raluca Ioana; Sirbu, Anca; Dinu, Sorin; Waldstrom, Maria; Heyman, Paul; Murariu, Dimitru; Petrescu, Angela; Szmal, Camelia; Oprisan, Gabriela; Lundkvist, Ake; Ceianu, Cornelia S

    2014-05-01

    Hemorrhagic fever with renal syndrome (HFRS) has been confirmed by serological methods during recent years in Romania. In the present study, focus-reduction neutralization tests (FRNT) confirmed Dobrava hantavirus (DOBV) as the causative agent in some HFRS cases, but could not distinguish between DOBV and Saaremaa virus (SAAV) infections in other cases. DOBV was detected by a DOBV-specific TaqMan assay in sera of nine patients out of 22 tested. Partial sequences of the M genomic segment of DOBV were obtained from sera of three patients and revealed the circulation of two DOBV lineages in Romania. Investigation of rodents trapped in Romania found three DOBV-positive Apodemus flavicollis out of 83 rodents tested. Two different DOBV lineages were also detected in A. flavicollis as determined from partial sequences of the M and S genomic segments. Sequences of DOBV in A. flavicollis were either identical or closely related to the sequences obtained from the HFRS patients. The DOBV strains circulating in Romania clustered in two monophyletic groups, together with strains from Slovenia and the north of Greece. This is the first evidence for the circulation of DOBV in wild rodents and for a DOBV etiology of HFRS in Romania.

  6. Isolation of yellow fever virus (YFV from naturally infectied Haemagogus (Conopostegus leucocelaenus (diptera, cukicudae in São Paulo State, Brazil, 2009

    Directory of Open Access Journals (Sweden)

    Renato Pereira de Souza

    2011-06-01

    Full Text Available After detecting the death of Howlers monkeys (genus Alouatta and isolation of yellow fever virus (YFV in Buri county, São Paulo, Brazil, an entomological research study in the field was started. A YFV strain was isolated from newborn Swiss mice and cultured cells of Aedes albopictus - C6/36, from a pool of six Haemagogus (Conopostegus leucocelaenus (Hg. leucocelaenus mosquitoes (Dyar & Shannon collected at the study site. Virus RNA fragment was amplified by RT-PCR and sequenced. The MCC Tree generated showed that the isolated strain is related to the South American I genotype, in a monophyletic clade containing isolates from recent 2008-2010 epidemics and epizootics in Brazil. Statistical analysis commonly used were calculated to characterize the sample in relation to diversity and dominance and indicated a pattern of dominance of one or a few species. Hg. leucocelaenus was found infected in Rio Grande do Sul State as well. In São Paulo State, this is the first detection of YFV in Hg. leucocelaenus.

  7. Heterokont predator Develorapax marinus gen. et sp. nov. – a model of the ochrophyte ancestor

    Directory of Open Access Journals (Sweden)

    Vladimir V. Aleoshin

    2016-08-01

    Full Text Available Heterotrophic lineages of Heterokonta (or stramenopiles, in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heteretrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms, and has likely occured in the ochrophyte ancestor.

  8. The curious case of Neotroglocarcinus dawydoffi (Decapoda, Cryptochiridae): unforeseen biogeographic patterns resulting from isolation

    KAUST Repository

    Van Der Meij, Sancia E.T.; Reijnen, Bastian T.

    2014-01-01

    © 2014 The Trustees of the Natural History Museum, London. Coral gall crabs form a commonly overlooked component of the associated fauna of shallow-water reef corals and therefore little is known about their ecology and biogeography. This study investigated the biogeography and phylogenetic position of the informal Detocarcini species group within the Cryptochiridae. We used molecular data for two mitochondrial markers (COI and 16S) obtained from gall crabs covering (part of) a wide geographic range: the Red Sea, Malaysia, Indonesia and New Caledonia. Our phylogeny reconstructions portrayed the Detocarcini as paraphyletic within the monophyletic Cryptochiridae. A phylogeographic clustering was noticed in Neotroglocarcinus dawydoffi that was absent in its sister species, N. hongkongensis, and the closely related species Pseudocryptochirus viridis. A Neighbour Network was estimated for the N. dawydoffi dataset to visualize the similarity between sequences from different biogeographic areas, resulting in three groupings: (1) New Caledonia with Lembeh/Ternate (eastern Indonesia), (2) Semporna/Kudat (eastern Malaysia), and (3) Red Sea (Saudi Arabia). Cryptic speciation rather than isolation is discussed and rejected as an alternative explanation for the observed biogeographic pattern.

  9. Revealing the maternal demographic history of Panthera leo using ancient DNA and a spatially explicit genealogical analysis.

    Science.gov (United States)

    Barnett, Ross; Yamaguchi, Nobuyuki; Shapiro, Beth; Ho, Simon Y W; Barnes, Ian; Sabin, Richard; Werdelin, Lars; Cuisin, Jacques; Larson, Greger

    2014-04-02

    Understanding the demographic history of a population is critical to conservation and to our broader understanding of evolutionary processes. For many tropical large mammals, however, this aim is confounded by the absence of fossil material and by the misleading signal obtained from genetic data of recently fragmented and isolated populations. This is particularly true for the lion which as a consequence of millennia of human persecution, has large gaps in its natural distribution and several recently extinct populations. We sequenced mitochondrial DNA from museum-preserved individuals, including the extinct Barbary lion (Panthera leo leo) and Iranian lion (P. l. persica), as well as lions from West and Central Africa. We added these to a broader sample of lion sequences, resulting in a data set spanning the historical range of lions. Our Bayesian phylogeographical analyses provide evidence for highly supported, reciprocally monophyletic lion clades. Using a molecular clock, we estimated that recent lion lineages began to diverge in the Late Pleistocene. Expanding equatorial rainforest probably separated lions in South and East Africa from other populations. West African lions then expanded into Central Africa during periods of rainforest contraction. Lastly, we found evidence of two separate incursions into Asia from North Africa, first into India and later into the Middle East. We have identified deep, well-supported splits within the mitochondrial phylogeny of African lions, arguing for recognition of some regional populations as worthy of independent conservation. More morphological and nuclear DNA data are now needed to test these subdivisions.

  10. Corolla morphology influences diversification rates in bifid toadflaxes (Linaria sect. Versicolores)

    Science.gov (United States)

    Fernández-Mazuecos, Mario; Blanco-Pastor, José Luis; Gómez, José M.; Vargas, Pablo

    2013-01-01

    Background and Aims The role of flower specialization in plant speciation and evolution remains controversial. In this study the evolution of flower traits restricting access to pollinators was analysed in the bifid toadflaxes (Linaria sect. Versicolores), a monophyletic group of ∼30 species and subspecies with highly specialized corollas. Methods A time-calibrated phylogeny based on both nuclear and plastid DNA sequences was obtained using a coalescent-based method, and flower morphology was characterized by means of morphometric analyses. Directional trends in flower shape evolution and trait-dependent diversification rates were jointly analysed using recently developed methods, and morphological shifts were reconstructed along the phylogeny. Pollinator surveys were conducted for a representative sample of species. Key Results A restrictive character state (narrow corolla tube) was reconstructed in the most recent common ancestor of Linaria sect. Versicolores. After its early loss in the most species-rich clade, this character state has been convergently reacquired in multiple lineages of this clade in recent times, yet it seems to have exerted a negative influence on diversification rates. Comparative analyses and pollinator surveys suggest that the narrow- and broad-tubed flowers are evolutionary optima representing divergent strategies of pollen placement on nectar-feeding insects. Conclusions The results confirm that different forms of floral specialization can lead to dissimilar evolutionary success in terms of diversification. It is additionally suggested that opposing individual-level and species-level selection pressures may have driven the evolution of pollinator-restrictive traits in bifid toadflaxes. PMID:24142920

  11. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    Science.gov (United States)

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  12. DNA barcode analysis of butterfly species from Pakistan points towards regional endemism.

    Science.gov (United States)

    Ashfaq, Muhammad; Akhtar, Saleem; Khan, Arif M; Adamowicz, Sarah J; Hebert, Paul D N

    2013-09-01

    DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7-14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  13. Phylogenetic Analysis of Entomoparasitic Nematodes, Potential Control Agents of Flea Populations in Natural Foci of Plague

    Science.gov (United States)

    Koshel, E. I.; Aleshin, V. V.; Eroshenko, G. A.; Kutyrev, V. V.

    2014-01-01

    Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit Yersinia pestis, a causative agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (Citellus pygmaeus, Microtus socialis, and Allactaga major), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study of morphology, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (Rubzovinema, Psyllotylenchus, and Spilotylenchus), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITS1-5.8S-LSU rDNA phylogeny of the Tylenchida with a special emphasis on the suborder Hexatylina. PMID:24804197

  14. Nematode-Trapping Fungi.

    Science.gov (United States)

    Jiang, Xiangzhi; Xiang, Meichun; Liu, Xingzhong

    2017-01-01

    Nematode-trapping fungi are a unique and intriguing group of carnivorous microorganisms that can trap and digest nematodes by means of specialized trapping structures. They can develop diverse trapping devices, such as adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and nonconstricting rings. Nematode-trapping fungi have been found in all regions of the world, from the tropics to Antarctica, from terrestrial to aquatic ecosystems. They play an important ecological role in regulating nematode dynamics in soil. Molecular phylogenetic studies have shown that the majority of nematode-trapping fungi belong to a monophyletic group in the order Orbiliales (Ascomycota). Nematode-trapping fungi serve as an excellent model system for understanding fungal evolution and interaction between fungi and nematodes. With the development of molecular techniques and genome sequencing, their evolutionary origins and divergence, and the mechanisms underlying fungus-nematode interactions have been well studied. In recent decades, an increasing concern about the environmental hazards of using chemical nematicides has led to the application of these biological control agents as a rapidly developing component of crop protection.

  15. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny

    Science.gov (United States)

    Song, Nan; An, Shiheng; Yin, Xinming; Cai, Wanzhi; Li, Hu

    2016-01-01

    Hemiptera make up the largest nonholometabolan insect assemblage. Despite previous efforts to elucidate phylogeny within this group, relationships among the major sub-lineages remain uncertain. In particular, mitochondrial genome (mitogenome) data are still sparse for many important hemipteran insect groups. Recent mitogenomic analyses of Hemiptera have usually included no more than 50 species, with conflicting hypotheses presented. Here, we determined the nearly complete nucleotide sequence of the mitogenome for the aphid species of Rhopalosiphum padi using RNA-seq plus gap filling. The 15,205 bp mitogenome included all mitochondrial genes except for trnF. The mitogenome organization and size for R. padi are similar to previously reported aphid species. In addition, the phylogenetic relationships for Hemiptera were examined using a mitogenomic dataset which included sequences from 103 ingroup species and 19 outgroup species. Our results showed that the seven species representing the Aleyrodidae exhibit extremely long branches, and always cluster with long-branched outgroups. This lead to the failure of recovering a monophyletic Hemiptera in most analyses. The data treatment of Degen-coding for protein-coding genes and the site-heterogeneous CAT model show improved suppression of the long-branch effect. Under these conditions, the Sternorrhyncha was often recovered as the most basal clade in Hemiptera. PMID:27633117

  16. Distributional patterns of ?Mawsoniidae (Sarcopterygii: Actinistia

    Directory of Open Access Journals (Sweden)

    RAPHAEL MIGUEL

    2014-03-01

    Full Text Available Mawsoniidae are a fossil family of actinistian fish popularly known as coelacanths, which are found in continental and marine paleoenvironments. The taxon is considered monophyletic, including five valid genera (Axelrodichthys, Chinlea, Diplurus, Mawsonia and Parnaibaia and 11 genera with some taxonomical controversy (Alcoveria, Changxingia, Garnbergia, Heptanema, Indocoelacanthus, Libys, Lualabaea, Megalocoelacanthus, Moenkopia, Rhipis and Trachymetopon. The genera restricted to the Northern Hemisphere (Diplurus and Chinlea possess the oldest records (Late Triassic, whereas those found in the Southern Hemisphere (Mawsonia, Axelrodichthys, and Parnaibaia extend from Late Jurassic to Late Cretaceous, especially in Brazil and Africa. We identified distributional patterns of Mawsoniidae, applying the panbiogeographical method of track analysis, and obtained three generalized tracks (GTs: GT1 (Northeastern Newark in strata of the Newark Group (Upper Triassic; GT2 (Midwestern Gondwana in the Lualaba Formation (Upper Jurassic; and GT3 (Itapecuru-Alcântara-Santana in the Itapecuru-Alcântara-Santana formations (Lower Cretaceous. The origin of Mawsoniidae can be dated to at least Late Triassic of Pangaea. The tectonic events related to the breakup of Pangaea and Gondwana and the evolution of the oceans are suggested as the vicariant events modeling the distribution of this taxon throughout the Mesozoic.

  17. Distributional patterns of Mawsoniidae (Sarcopterygii: Actinistia).

    Science.gov (United States)

    Miguel, Raphael; Gallo, Valéria; Morrone, Juan J

    2014-03-01

    Mawsoniidae are a fossil family of actinistian fish popularly known as coelacanths, which are found in continental and marine paleoenvironments. The taxon is considered monophyletic, including five valid genera (Axelrodichthys, Chinlea, Diplurus, Mawsonia and Parnaibaia) and 11 genera with some taxonomical controversy (Alcoveria, Changxingia, Garnbergia, Heptanema, Indocoelacanthus, Libys, Lualabaea, Megalocoelacanthus, Moenkopia, Rhipis and Trachymetopon). The genera restricted to the Northern Hemisphere (Diplurus and Chinlea) possess the oldest records (Late Triassic), whereas those found in the Southern Hemisphere (Mawsonia, Axelrodichthys, and Parnaibaia) extend from Late Jurassic to Late Cretaceous, especially in Brazil and Africa. We identified distributional patterns of Mawsoniidae, applying the panbiogeographical method of track analysis, and obtained three generalized tracks (GTs): GT1 (Northeastern Newark) in strata of the Newark Group (Upper Triassic); GT2 (Midwestern Gondwana) in the Lualaba Formation (Upper Jurassic); and GT3 (Itapecuru-Alcântara-Santana) in the Itapecuru-Alcântara-Santana formations (Lower Cretaceous). The origin of Mawsoniidae can be dated to at least Late Triassic of Pangaea. The tectonic events related to the breakup of Pangaea and Gondwana and the evolution of the oceans are suggested as the vicariant events modeling the distribution of this taxon throughout the Mesozoic.

  18. Evolutionary history of true crabs (Crustacea: Decapoda: Brachyura) and the origin of freshwater crabs.

    Science.gov (United States)

    Tsang, Ling Ming; Schubart, Christoph D; Ahyong, Shane T; Lai, Joelle C Y; Au, Eugene Y C; Chan, Tin-Yam; Ng, Peter K L; Chu, Ka Hou

    2014-05-01

    Crabs of the infra-order Brachyura are one of the most diverse groups of crustaceans with approximately 7,000 described species in 98 families, occurring in marine, freshwater, and terrestrial habitats. The relationships among the brachyuran families are poorly understood due to the high morphological complexity of the group. Here, we reconstruct the most comprehensive phylogeny of Brachyura to date using sequence data of six nuclear protein-coding genes and two mitochondrial rRNA genes from more than 140 species belonging to 58 families. The gene tree confirms that the "Podotremata," are paraphyletic. Within the monophyletic Eubrachyura, the reciprocal monophyly of the two subsections, Heterotremata and Thoracotremata, is supported. Monophyly of many superfamilies, however, is not recovered, indicating the prevalence of morphological convergence and the need for further taxonomic studies. Freshwater crabs were derived early in the evolution of Eubrachyura and are shown to have at least two independent origins. Bayesian relaxed molecular methods estimate that freshwater crabs separated from their closest marine sister taxa ~135 Ma, that is, after the break up of Pangaea (∼200 Ma) and that a Gondwanan origin of these freshwater representatives is untenable. Most extant families and superfamilies arose during the late Cretaceous and early Tertiary.

  19. Mitogenomic perspectives on the origin and phylogeny of living amphibians.

    Science.gov (United States)

    Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu

    2005-06-01

    Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.

  20. Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas' disease.

    Science.gov (United States)

    Ibarra-Cerdeña, Carlos N; Zaldívar-Riverón, Alejandro; Peterson, A Townsend; Sánchez-Cordero, Víctor; Ramsey, Janine M

    2014-10-01

    The niche conservatism hypothesis states that related species diverge in niche characteristics at lower rates than expected, given their lineage divergence. Here we analyze whether niche conservatism is a common pattern among vector species (Hemiptera: Reduviidae: Triatominae) of Trypanosoma cruzi that inhabit North and Central America, a highly heterogeneous landmass in terms of environmental gradients. Mitochondrial and nuclear loci were used in a multi-locus phylogenetic framework to reconstruct phylogenetic relationships among species and estimate time of divergence of selected clades to draw biogeographic inferences. Then, we estimated similarity between the ecological niche of sister species and tested the niche conservatism hypothesis using our best estimate of phylogeny. Triatoma is not monophyletic. A primary clade with all North and Central American (NCA) triatomine species from the genera Triatoma, Dipetalogaster, and Panstrongylus, was consistently recovered. Nearctic species within the NCA clade (T. p. protracta, T. r. rubida) diverged during the Pliocene, whereas the Neotropical species (T. phyllosoma, T. longipennis, T. dimidiata complex) are estimated to have diverged more recently, during the Pleistocene. The hypothesis of niche conservatism could not be rejected for any of six sister species pairs. Niche similarity between sister species best fits a retention model. While this framework is used here to infer niche evolution, it has a direct impact on spatial vector dynamics driven by human population movements, expansion of transportation networks and climate change scenarios.

  1. The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations.

    Science.gov (United States)

    Adamowicz, Sarah J; Marinone, María Cristina; Menu-Marque, Silvina; Martin, Jeffrey W; Allen, Daniel C; Pyle, Michelle N; De Los Ríos, Patricio; Sobel, Crystal N; Ibañez, Carla; Pinto, Julio; Witt, Jonathan D S

    2018-08-01

    Ancient lakes are renowned for their exceptional diversity of endemic species. As model systems for the study of sympatric speciation, it is necessary to understand whether a given hypothesized species flock is of monophyletic or polyphyletic origin. Here, we present the first molecular characterization of the Hyalella (Crustacea: Amphipoda) species complex of Lake Titicaca, using COI and 28S DNA sequences, including samples from the connected Small and Large Lakes that comprise Lake Titicaca as well as from a broader survey of southern South American sites. At least five evolutionarily distant lineages are present within Lake Titicaca, which were estimated to have diverged from one another 12-20 MYA. These major lineages are dispersed throughout the broader South American Hyalella phylogeny, with each lineage representing at least one independent colonization of the lake. Moreover, complex genetic relationships are revealed between Lake Titicaca individuals and those from surrounding water bodies, which may be explained by repeated dispersal into and out of the lake, combined with parallel intralacustrine diversification within two separate clades. Although further work in deeper waters will be required to determine the number of species present and modes of diversification, our results strongly indicate that this amphipod species cloud is polyphyletic with a complex geographic history. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Hidden diversity revealed by genome-resolved metagenomics of iron-oxidizing microbial mats from Lō'ihi Seamount, Hawai'i.

    Science.gov (United States)

    Fullerton, Heather; Hager, Kevin W; McAllister, Sean M; Moyer, Craig L

    2017-08-01

    The Zetaproteobacteria are ubiquitous in marine environments, yet this class of Proteobacteria is only represented by a few closely-related cultured isolates. In high-iron environments, such as diffuse hydrothermal vents, the Zetaproteobacteria are important members of the community driving its structure. Biogeography of Zetaproteobacteria has shown two ubiquitous operational taxonomic units (OTUs), yet much is unknown about their genomic diversity. Genome-resolved metagenomics allows for the specific binning of microbial genomes based on genomic signatures present in composite metagenome assemblies. This resulted in the recovery of 93 genome bins, of which 34 were classified as Zetaproteobacteria. Form II ribulose 1,5-bisphosphate carboxylase genes were recovered from nearly all the Zetaproteobacteria genome bins. In addition, the Zetaproteobacteria genome bins contain genes for uptake and utilization of bioavailable nitrogen, detoxification of arsenic, and a terminal electron acceptor adapted for low oxygen concentration. Our results also support the hypothesis of a Cyc2-like protein as the site for iron oxidation, now detected across a majority of the Zetaproteobacteria genome bins. Whole genome comparisons showed a high genomic diversity across the Zetaproteobacteria OTUs and genome bins that were previously unidentified by SSU rRNA gene analysis. A single lineage of cosmopolitan Zetaproteobacteria (zOTU 2) was found to be monophyletic, based on cluster analysis of average nucleotide identity and average amino acid identity comparisons. From these data, we can begin to pinpoint genomic adaptations of the more ecologically ubiquitous Zetaproteobacteria, and further understand their environmental constraints and metabolic potential.

  3. Populations of Phytophthora rubi Show Little Differentiation and High Rates of Migration Among States in the Western United States.

    Science.gov (United States)

    Tabima, Javier F; Coffey, Michael D; Zazada, Inga A; Grünwald, Niklaus J

    2018-04-11

    Population genetics is a powerful tool to understand patterns and evolutionary processes that are involved in plant-pathogen emergence and adaptation to agricultural ecosystems. We are interested in studying the population dynamics of Phytophthora rubi, the causal agent of Phytophthora root rot in raspberry. P. rubi is found in the western United States, where most of the fresh and processed raspberries are produced. We used genotyping-by-sequencing to characterize genetic diversity in populations of P. rubi sampled in the United States and other countries. Our results confirm that P. rubi is a monophyletic species with complete lineage sorting from its sister taxon P. fragariae. Overall, populations of P. rubi show low genetic diversity across the western United States. Demographic analyses suggest that populations of P. rubi from the western United States are the source of pathogen migration to Europe. We found no evidence for population differentiation at a global or regional (western United States) level. Finally, our results provide evidence of migration from California and Oregon into Washington. This report provides new insights into the evolution and structure of global and western United States populations of the raspberry pathogen P. rubi, indicating that human activity might be involved in moving the pathogen among regions and fields.

  4. Emergence and diversification of dengue 2 cosmopolitan genotype in Pakistan, 2011.

    Science.gov (United States)

    Khan, Mohammad A; Ellis, Esther M; Tissera, Hasitha A; Alvi, Mohammad Y; Rahman, Fatima F; Masud, Faisal; Chow, Angelia; Howe, Shiqin; Dhanasekaran, Vijaykrishna; Ellis, Brett R; Gubler, Duane J

    2013-01-01

    Major dengue epidemics have been observed in the Indian subcontinent since the 1980s and have occurred with increased hospitalizations and mortality. In 2011, the first major epidemic of dengue occurred in Lahore, the second largest city in Pakistan, and resulted in 21,685 confirmed cases and 350 deaths. To investigate the possible viral causes for the increased epidemic activity, we determined the predominant serotype and characterized the viruses genetically. Of 50 patients carefully selected as probable dengue fever or dengue hemorrhagic fever, 34 were positive by virologic testing (i.e. PCR and/or virus isolation). DENV-2 was detected in 32 patients and DENV-1 in two. A total of 24 partial and three full DENV genomes were sequenced. Phylogenetic analyses of the capsid (C), pre-membrane (prM), and envelope genes comprising 2500 nucleotides in length indicated that all DENV-2 isolates in Pakistan since 2007 form a monophyletic lineage that is endemic in the country. These viruses were all of the cosmopolitan genotype (IV) and most closely related to viruses isolated in India and Sri Lanka in the past two decades. Phylogenetic analyses of data currently available in GenBank suggest that the Cosmopolitan genotype has diverged into two geographically distinct sub-lineages: sub-lineage IV-a has only been observed in Southeast Asia, China and Oceania, while IV-b is prevalent in the Indian subcontinent. These results highlight the increased diversity of dengue viruses as they spread geographically within the region.

  5. Divergent strains of human T-lymphotropic virus type 1 (HTLV-1) within the Cosmopolitan subtype in Argentina.

    Science.gov (United States)

    Eirin, Maria E; Dilernia, Dario A; Berini, Carolina A; Jones, Leandro R; Pando, Maria A; Biglione, Mirna M

    2008-10-01

    HTLV-1 Cosmopolitan subtype Transcontinental subgroup A has been described among aboriginal communities from the northwest endemic area of Argentina. Moreover, Transcontinental subgroup A and the Japanese subgroup B were reported among blood donors from the nonendemic central region of the country. We carried out the first HTLV-1 phylogenetic study in individuals residing in Buenos Aires capital city. Phylogenetic analysis performed on the LTR region showed that all 44 new strains clustered within the Cosmopolitan subtype, with 42 (95.4%) belonging to Transcontinental subgroup A. Of them, 20 (45.5%) strains grouped in the large Latin American cluster and 4 (9.1%) in the small Latin American cluster. The majority of them belonged to individuals of nonblack origin, grouped with Amerindian strains. Three (6.8%) were closely related to South African references and two monophyletic clusters including only HIV/HTLV-1 coinfected individuals were observed. Interestingly, two (4.5%) new sequences (divergent strains) branched off from all five known Cosmopolitan subgroups in a well-supported clade. In summary, these findings show that HTLV-1 Cosmopolitan subtype Transcontinental subgroup A is infecting residents of Buenos Aires, a nonendemic area of Argentina, and confirm the introduction of divergent strains in the country.

  6. Molecular insights into species phylogeny, biogeography, and morphological stasis in the ancient spider genus Hypochilus (Araneae: Hypochilidae).

    Science.gov (United States)

    Hedin, M C

    2001-02-01

    The spider genus Hypochilus is currently restricted to cool, moist microhabitats in three widely separated montane regions of North America, providing an opportunity to study both deep (i.e., continental level) and shallow (within montane region) biogeographic history. Members of the genus also retain many plesiomorphic morphological characteristics, inviting the study of comparative rates of morphological evolution. In this paper, Hypochilus phylogeny and associated evolutionary problems are addressed using both new molecular (28S nDNA and CO1 mtDNA) and previously published (K. M. Catley, 1994, Am. Mus. Nov. 3088, 1-27) morphological data. Although the molecular data provide limited resolution of root placement within Hypochilus, most analyses are at least consistent with morphology-supported montane relationships of (Rockies (California, Appalachian)). The monophyly of Hypochilus species distributed in the California mountains is ambiguous, with several analyses indicating that this fauna may be paraphyletic with respect to a monophyletic Appalachian lineage. The montane regions differ in consistent ways in depths of both mitochondrial and nuclear phylogenetic divergence. Molecular clock analyses, in combination with arthropod-based mtDNA rate calibrations, suggest that the regional faunas are of different ages and that speciation in all faunas likely occurred prior to the Pleistocene. Limited intraspecific sampling reveals extraordinarily high levels of mtDNA cytochrome oxidase sequence divergence. These extreme divergences are most consistent with morphological stasis at the species level, despite preliminary evidence that Hypochilus taxa are characterized by fragmented population structures. Copyright 2001 Academic Press.

  7. The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs: An Ancestral Family of Flavin Monooxygenases.

    Directory of Open Access Journals (Sweden)

    Maria Laura Mascotti

    Full Text Available The Baeyer-Villiger Monooxygenases (BVMOs are enzymes belonging to the "Class B" of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga and Haptophyta (Emiliania huxleyi for the first time. Furthermore, a search for other "Class B" monooxygenases (flavoprotein monooxygenases--FMOs--and N-hydroxylating monooxygenases--NMOs was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all "Class B" monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.

  8. The Origin and Evolution of Baeyer—Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases

    Science.gov (United States)

    Mascotti, Maria Laura; Lapadula, Walter Jesús; Juri Ayub, Maximiliano

    2015-01-01

    The Baeyer—Villiger Monooxygenases (BVMOs) are enzymes belonging to the “Class B” of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other “Class B” monooxygenases (flavoprotein monooxygenases –FMOs – and N-hydroxylating monooxygenases – NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all “Class B” monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes. PMID:26161776

  9. The curious case of Neotroglocarcinus dawydoffi (Decapoda, Cryptochiridae): unforeseen biogeographic patterns resulting from isolation

    KAUST Repository

    Van Der Meij, Sancia E.T.

    2014-09-09

    © 2014 The Trustees of the Natural History Museum, London. Coral gall crabs form a commonly overlooked component of the associated fauna of shallow-water reef corals and therefore little is known about their ecology and biogeography. This study investigated the biogeography and phylogenetic position of the informal Detocarcini species group within the Cryptochiridae. We used molecular data for two mitochondrial markers (COI and 16S) obtained from gall crabs covering (part of) a wide geographic range: the Red Sea, Malaysia, Indonesia and New Caledonia. Our phylogeny reconstructions portrayed the Detocarcini as paraphyletic within the monophyletic Cryptochiridae. A phylogeographic clustering was noticed in Neotroglocarcinus dawydoffi that was absent in its sister species, N. hongkongensis, and the closely related species Pseudocryptochirus viridis. A Neighbour Network was estimated for the N. dawydoffi dataset to visualize the similarity between sequences from different biogeographic areas, resulting in three groupings: (1) New Caledonia with Lembeh/Ternate (eastern Indonesia), (2) Semporna/Kudat (eastern Malaysia), and (3) Red Sea (Saudi Arabia). Cryptic speciation rather than isolation is discussed and rejected as an alternative explanation for the observed biogeographic pattern.

  10. Genetic diversity and host specificity varies across three genera of blood parasites in ducks of the Pacific Americas Flyway

    Science.gov (United States)

    Reeves, Andrew B.; Smith, Matthew M.; Meixell, Brandt W.; Fleskes, Joseph P.; Ramey, Andrew M.

    2015-01-01

    Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus andLeucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodiumparasites infecting North American waterfowl as compared to those of the generaHaemoproteus and Leucocytozoon.

  11. Evolutionary patterns in the sequence and structure of transfer RNA: early origins of archaea and viruses.

    Directory of Open Access Journals (Sweden)

    Feng-Jie Sun

    2008-03-01

    Full Text Available Transfer RNAs (tRNAs are ancient molecules that are central to translation. Since they probably carry evolutionary signatures that were left behind when the living world diversified, we reconstructed phylogenies directly from the sequence and structure of tRNA using well-established phylogenetic methods. The trees placed tRNAs with long variable arms charging Sec, Tyr, Ser, and Leu consistently at the base of the rooted phylogenies, but failed to reveal groupings that would indicate clear evolutionary links to organismal origin or molecular functions. In order to uncover evolutionary patterns in the trees, we forced tRNAs into monophyletic groups using constraint analyses to generate timelines of organismal diversification and test competing evolutionary hypotheses. Remarkably, organismal timelines showed Archaea was the most ancestral superkingdom, followed by viruses, then superkingdoms Eukarya and Bacteria, in that order, supporting conclusions from recent phylogenomic studies of protein architecture. Strikingly, constraint analyses showed that the origin of viruses was not only ancient, but was linked to Archaea. Our findings have important implications. They support the notion that the archaeal lineage was very ancient, resulted in the first organismal divide, and predated diversification of tRNA function and specificity. Results are also consistent with the concept that viruses contributed to the development of the DNA replication machinery during the early diversification of the living world.

  12. Phylogenetic relationships of Vepris (Rutaceae inferred from chloroplast, nuclear, and morphological data.

    Directory of Open Access J