WorldWideScience

Sample records for monophosphate cyclic gmp

  1. cyclic monophosphate

    African Journals Online (AJOL)

    Administrator

    2006-10-02

    Oct 2, 2006 ... Second messengers are small transient molecules that transmit and/or modulate environmental or hormonal signals ... cyclases (pGCs), and soluble cytosolic guanylyl cyclases ... Figure 2. Model of cGMP generation and cGMP dependent cellular effects. ..... dynamics of colonic epithelial proliferation.

  2. A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch.

    Science.gov (United States)

    Xie, Qingyun; Zhao, Fulin; Liu, Hongrui; Shan, Yanke; Liu, Fei

    2015-07-02

    Cyclic diguanylate monophosphate (c-di-GMP) is an important second messenger that regulates a variety of complex physiological processes involved in motility, virulence, biofilm formation and cell cycle progression in several bacteria. Herein we report a simple label-free and self-assembled RNA riboswitch-based biosensor for sensitive and selective detection of c-di-GMP. The detectable concentration range of c-di-GMP is from 50 nM to 1 μM with a detection limit of 50 nM.

  3. Modification of Tau by 8-Nitroguanosine 3',5'-Cyclic Monophosphate (8-Nitro-cGMP): EFFECTS OF NITRIC OXIDE-LINKED CHEMICAL MODIFICATION ON TAU AGGREGATION.

    Science.gov (United States)

    Yoshitake, Jun; Soeda, Yoshiyuki; Ida, Tomoaki; Sumioka, Akio; Yoshikawa, Misato; Matsushita, Kenji; Akaike, Takaaki; Takashima, Akihiko

    2016-10-21

    Neurofibrillar tangles caused by intracellular hyperphosphorylated tau inclusion and extracellular amyloid β peptide deposition are hallmarks of Alzheimer's disease. Tau contains one or two cysteine residues in three or four repeats of the microtubule binding region following alternative splicing of exon 10, and formation of intermolecular cysteine disulfide bonds accelerates tau aggregation. 8-Nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) acts as a novel second messenger of nitric oxide (NO) by covalently binding cGMP to cysteine residues by electrophilic properties, a process termed protein S-guanylation. Here we studied S-guanylation of tau and its effects on tau aggregation. 8-Nitro-cGMP exposure induced S-guanylation of tau both in vitro and in tau-overexpressed HEK293T cells. S-guanylated tau inhibited heparin-induced tau aggregation in a thioflavin T assay. Atomic force microscopy observations indicated that S-guanylated tau could not form tau granules and fibrils. Further biochemical analyses showed that S-guanylated tau was inhibited at the step of tau oligomer formation. In P301L tau-expressing Neuro2A cells, 8-nitro-cGMP treatment significantly reduced the amount of sarcosyl-insoluble tau. NO-linked chemical modification on cysteine residues of tau could block tau aggregation, and therefore, increasing 8-nitro-cGMP levels in the brain could become a potential therapeutic strategy for Alzheimer's disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Vascular relaxation and cyclic guanosine monophosphate in hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, Y.; DiPiero, A.; Lockette, W.

    1986-03-01

    Isolated aortae from hypertensive rats have a decreased relaxation response to acetylcholine (Ach), A23187, and nitroprusside (SNP). Since cyclic guanosine monophosphate (cGMP) has been shown to increase in response to these vasodilators, the authors measured cGMP in response to these agents in isolated aortae from normotensive rats and DOCA, 1K1C, and coarctation induced hypertension. cGMP was measured by radioimmunoassay in vessels after exposure to phenylephrine followed by either Ach, A23187, or SNP. The aortae from the hypertensive rats had decreased basal levels of cGMP and attenuated increases in cGMP in response to Ach and A23187. Rises in cGMP in response to SNP were also attenuated in aortae from the hypertensive rats, even at concentrations which induced similar relaxation in normotensive and hypertensive blood vessels. The data suggest that changes in cGMP do not necessarily reflect changes in endothelium independent vascular relaxation in hypertension.

  5. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling

    KAUST Repository

    Gehring, Christoph A.

    2017-10-04

    The cyclic nucleotide monophosphates (cNMPs), and notably 3′,5′-cyclic guanosine monophosphate (cGMP) and 3′,5′-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.

  6. Effects of plant extract neferine on cyclic adenosine monophosphate and cyclic guanosine monophosphate levels in rabbit corpus cavernosum in vitro

    Institute of Scientific and Technical Information of China (English)

    Jun Chen; Ji-Hong Liu; Tao Wang; Heng-Jun Xiao; Chun-Ping Yin; Jun Yang

    2008-01-01

    Aim: To further investigate the relaxation mechanism of neferine (Nef), a bis-benzylisoquinoline alkaloid extracted (isolated) from the green seed embryo of Nelumbo nucifera Gaertn in China, on rabbit corpus cavernosum tissue in vitro. Methods: The effects of Nef on the concentrations of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) in isolated and incubated rabbit corpus cavernosum tissue were re-corded using125Ⅰ radioimmunoassay. Results: The basal concentration of cAMP in corpus cavernosum tissue was 5.67±0.97 pmol/mg. Nef increased the cAMP concentration in a dose-dependent manner (P 0.05). The accumulation of cAMP induced by prostaglandin E1(PGE1, a stimulator of cAMP production) was also augmented by Nef in a dose-dependent manner (P 0.05). Also,sodium nitroprusside (SNP, a stimulator of cGMP production)-induced cGMP production was not enhanced by Nef (P > 0.05). Conclusion: Nef, with its relaxation mechanism, can enhance the concentration of cAMP in rabbit corpus cavernosum tissue, probably by inhibiting phosphodiesterase activity.

  7. Specificity of the Cyclic GMP-Binding Activity and of a Cyclic GMP-Dependent Cyclic GMP Phosphodiesterase in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Walsum, Hans van; Meer, Rob C. van der; Bulgakov, Roman; Konijn, Theo M.

    1982-01-01

    The nucleotide specificity of the cyclic GMP-binding activity in a homogenate of Dictyostelium discoideum was determined by competition of cyclic GMP derivatives with [8-3H] cyclic GMP for the binding sites. The results indicate that cyclic GMP is bound to the binding proteins by hydrogen bonds at N

  8. Plasma concentrations of the cyclic nucleotides, adenosine 3',5'-monophosphate and guanosine 3'.5'-monophosphate, in healthy adults treated with theophylline

    DEFF Research Database (Denmark)

    Fenger, M; Eriksen, P B; Andersen, O;

    1982-01-01

    Plasma concentrations of cyclic adenosine monophosphate and cyclic guanosine monophosphate were measured in 10 health adults before, during and after periods of theophylline administration. Cyclic adenosine monophosphate concentrations did not change significantly, but cyclic guanosine monophosph...

  9. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system.

    Science.gov (United States)

    Shu, Chang; Yi, Guanghui; Watts, Tylan; Kao, C Cheng; Li, Pingwei

    2012-06-24

    STING (stimulator of interferon genes) is an innate immune sensor of cyclic dinucleotides that regulates the induction of type I interferons. STING's C-terminal domain forms a V-shaped dimer and binds a cyclic diguanylate monophosphate (c-di-GMP) at the dimer interface by both direct and solvent-mediated hydrogen bonds. Guanines of c-di-GMP stack against the phenolic rings of a conserved tyrosine, and mutations at the c-di-GMP binding surface reduce nucleotide binding and affect signaling.

  10. Urinary cyclic guanosine 3',5'-monophosphate and cyclic adenosine 3',5'-monophosphate changes in spontaneous and induced onset active labor.

    Science.gov (United States)

    Chen, Da-Chung; Yuan, Shyng-Shiou F; Su, Her-Young; Lo, Shin-Chieh; Ren, Shin-Sia; Wu, Gwo-Jang

    2005-11-01

    The aim of this prospective, randomized study was to investigate the changes in urinary cyclic guanosine 3',5'-monophosphate (cGMP) and cyclic adenosine 3',5'-monophosphate (cAMP) between the latent and the active phases of spontaneous and prostaglandin E(1) (PGE(1))-induced labor. Seventy singleton pregnant women at 36-41(+) weeks' gestation without signs of fetal distress were enrolled. The first group consisted of 35 pregnant women in whom labor was induced by PGE(1) applied intravaginally. The second group consisted of 35 women who had spontaneous active labor. Clinical data of the two groups were assessed as labor progressed. After the onset of active labor, urinary cGMP/creatinine (U cGMP/Cr) decreased in both groups with the percentage decline of 35.2 and 9.7, respectively, but this difference was only significant in the PGE(1)-induced group (P=0.033). After the onset of active labor, urinary cAMP/creatinine (U cAMP/Cr) decreased in both groups with the percentage decline of 36.5 and 15.6, respectively, but this difference was only significant in the PGE(1)-induced group (P=0.001). The duration of the latent phase was significantly shortened in the PGE(1)-induced group compared with the spontaneous labor group (Plabor. Our results suggest that U cGMP/Cr and U cAMP/Cr can serve as easily obtained secondary messenger markers of myometrial contractility and cervical ripening at the onset of active labor. The NO-cGMP system and the G-protein alpha-cAMP system in the human uterus may concomitantly contribute to uterine quiescence during pregnancy and show downregulation in U cGMP/Cr and U cAMP/Cr at the initiation of active labor.

  11. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity

    Science.gov (United States)

    Osbourne, Devon O; Soo, Valerie WC; Konieczny, Igor; Wood, Thomas K

    2014-01-01

    Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease. PMID:24874800

  12. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity.

    Science.gov (United States)

    Osbourne, Devon O; Soo, Valerie W C; Konieczny, Igor; Wood, Thomas K

    2014-01-01

    Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease.

  13. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite.

    Directory of Open Access Journals (Sweden)

    Robert W Moon

    2009-09-01

    Full Text Available The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3', 5'-cyclic monophosphate (cGMP as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase delta (PDEdelta, unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase beta (GCbeta, showing that in ookinetes GCbeta is an important source for cGMP, and that PDEdelta is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito.

  14. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile.

    Science.gov (United States)

    Bordeleau, Eric; Purcell, Erin B; Lafontaine, Daniel A; Fortier, Louis-Charles; Tamayo, Rita; Burrus, Vincent

    2015-03-01

    Clostridium difficile is an anaerobic Gram-positive bacterium that causes intestinal infections with symptoms ranging from mild diarrhea to fulminant colitis. Cyclic diguanosine monophosphate (c-di-GMP) is a bacterial second messenger that typically regulates the switch from motile, free-living to sessile and multicellular behaviors in Gram-negative bacteria. Increased intracellular c-di-GMP concentration in C. difficile was recently shown to reduce flagellar motility and to increase cell aggregation. In this work, we investigated the role of the primary type IV pilus (T4P) locus in c-di-GMP-dependent cell aggregation. Inactivation of two T4P genes, pilA1 (CD3513) and pilB1 (CD3512), abolished pilus formation and significantly reduced cell aggregation under high c-di-GMP conditions. pilA1 is preceded by a putative c-di-GMP riboswitch, predicted to be transcriptionally active upon c-di-GMP binding. Consistent with our prediction, high intracellular c-di-GMP concentration increased transcript levels of T4P genes. In addition, single-round in vitro transcription assays confirmed that transcription downstream of the predicted transcription terminator was dose dependent and specific to c-di-GMP binding to the riboswitch aptamer. These results support a model in which T4P gene transcription is upregulated by c-di-GMP as a result of its binding to an upstream transcriptionally activating riboswitch, promoting cell aggregation in C. difficile.

  15. Association between plasma cyclic guanosine monophosphate levels and hemodynamic instability during liver transplantation.

    Science.gov (United States)

    Bezinover, Dmitri; Kadry, Zakiyah; Uemura, Tadahiro; Sharghi, Michael; Mastro, Andrea M; Sosnoski, Donna M; Dalal, Priti; Janicki, Piotr K

    2013-02-01

    The activation of cyclic guanosine monophosphate (cGMP) production in patients with end-stage liver disease (ESLD) has been associated with hemodynamic instability during orthotopic liver transplantation (OLT). The aim of this prospective, observational study was to investigate the involvement of cGMP in the mediation of profound hypotension during liver graft reperfusion. An additional objective was to determine whether preoperative cGMP levels are associated with intraoperative hemodynamic instability. Forty-four consecutive patients undergoing OLT were included in the study. Blood samples for cGMP analysis were obtained from (1) the radial artery before the surgical incision; (2) the radial artery, portal vein, and flush blood during the anhepatic phase; and (3) the radial artery 20 minutes after liver graft reperfusion. On the basis of a statistical analysis, the patients were divided into 2 groups: group 1 (preoperative cGMP level ≥ 0.05 μmol/L) and group 2 (preoperative cGMP level < 0.05 μmol/L). We demonstrated a significant correlation between the preoperative levels of cGMP and the amount of catecholamine required to maintain hemodynamic stability during reperfusion (r = 0.52, P < 0.001), the length of the hospital stay (r = 0.38, P = 0.01), and the length of the intensive care unit (ICU) stay (r = 0.44, P = 0.004). We also demonstrated a significantly higher intraoperative catecholamine requirement (P < 0.001) and a prolonged postoperative ICU stay (P = 0.02) in group 1 patients versus group 2 patients. In conclusion, this study demonstrates increased baseline cGMP production in patients with ESLD, which is significantly associated with severe hypotension during OLT. We suggest that preoperative levels of cGMP correlate with hemodynamic instability during liver graft reperfusion. Copyright © 2012 American Association for the Study of Liver Diseases.

  16. Isolation and Partial Characterization of a Cyclic GMP-Dependent Cyclic GMP-Specific Phosphodiesterase from Dictyostelium discoideum

    NARCIS (Netherlands)

    Bulgakov, Roman; Haastert, Peter J.M. van

    1983-01-01

    The cellular slime mold, Dictyostelium discoideum, contains at least two classes of phosphodiesterase activity. One class of enzymes hydrolyses cyclic AMP (cAMP) and cyclic GMP (cGMP) with approximately equal rates. Another enzyme, which is less than 5% of the total activity, specifically hydrolyses

  17. Changes of nitric oxide synthase and cyclic guanosine monophosphate in form deprivation myopia in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    WU Jie; LIU Qiong; YANG Xiao; YANG Hui; WANG Xin-mei; ZENG Jun-wen

    2007-01-01

    Background The form deprivation(FD)reduces spatial contrasts and induces myopia. Nitric oxide and cyclic guanosine monophosphate(cGMP)are involved in visual signal transmission.This study investigated changes in nitric oxide synthase(NOS)activity and cGMP concentration in ocular tissues in acute and chronic form deprivation myopia.Methods Guinea pigs had one eye covered by translucent glass for 7,14 or 21 days.Untreated litter mates were used as controls.NOS activity and cGMP concentrations in the retinal,choroidal and scleral tissues of FD eyes and controleyes were analyzed by radioimmunoassay after various durations of FD.The expression of NOS subtypes was identified by immunohistochemistry.Results Myopia was successfully induced in FD eyes after 14 days.Compared with control groups,the retinal NOS activity and cGMP concentrations in the FD eyes significantly increased after 14 and 21 days while the retinal NOS activity in the FD eyes was transiently suppressed by 7 days of FD.The NOS activity and cGMP concentrations of choroid and sclera in the FD eyes were higher than in the control groups at 21 days.The three isoenzymes of nitric oxide synthase were detected in the ocular tissues of guinea pigs.Conclusions The NOS activity and cGMP concentrations were upregulated after chronic FD and the retinal NOS activity was transiently suppressed at acute FD.The function of elevated NOS activity may be mediated by cGMP.

  18. Cyclic GMP protects human macrophages against peroxynitrite-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Rossi Adriano G

    2009-05-01

    Full Text Available Abstract Background Nitric oxide (NO can be both pro- and anti-apoptotic in various cell types, including macrophages. This apparent paradox may result from the actions of NO-related species generated in the microenvironment of the cell, for example the formation of peroxynitrite (ONOO-. In this study we have examined the ability of NO and ONOO- to evoke apoptosis in human monocyte-derived macrophages (MDMϕ, and investigated whether preconditioning by cyclic guanosine monophosphate (cGMP is able to limit apoptosis in this cell type. Methods Characterisation of the NO-related species generated by (Z-1- [2-(2-aminoethyl-N-(2-ammonioethylamino]diazen-1-ium-1,2-diolate (DETA/NO and 1,2,3,4-oxatriazolium, 5-amino-3-(3,4-dichlorophenyl-, chloride (GEA-3162 was performed by electrochemistry using an isolated NO electrode and electron paramagnetic resonance (EPR spectrometry. Mononuclear cells were isolated from peripheral blood of healthy volunteers and cultured to allow differentiation into MDMϕ. Resultant MDMϕ were treated for 24 h with DETA/NO (100 – 1000 μM or GEA-3162 (10 – 300 μM in the presence or absence of BAY 41–2272 (1 μM, isobutylmethylxanthine (IBMX; 1 μM, 1H- [1,2,4]oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 20 μM or 8-bromo-cGMP (1 mM. Apoptosis in MDMϕ was assessed by flow cytometric analysis of annexin V binding in combination with propidium iodide staining. Results Electrochemistry and EPR revealed that DETA/NO liberated free NO radical, whilst GEA-3162 concomitantly released NO and O2-, and is therefore a ONOO- generator. NO (DETA/NO had no effect on cell viability, but ONOO- (GEA-3162 caused a concentration-dependent induction of apoptosis in MDMϕ. Preconditioning of MDMϕ with NO in combination with the phosphodiesterase inhibitor, 3-Isobutyl-1-methylxanthine (IBMX, or the NO-independent stimulator of soluble guanylate cyclase, BAY 41–2272, significantly attenuated ONOO--induced apoptosis in a cGMP-dependent manner

  19. Cyclic-di-GMP signaling in the Gram-positive pathogen Clostridium difficile.

    Science.gov (United States)

    Bordeleau, Eric; Burrus, Vincent

    2015-11-01

    The anaerobic Gram-positive bacterium Clostridium difficile causes intestinal infections responsible for symptoms ranging from mild diarrhea to fulminant colitis. Like other bacteria, C. difficile needs to sense and integrate environmental signals in order to adapt to changes and thrive in its environment. The second messenger cyclic diguanosine monophosphate (c-di-GMP) was recently recognized as a quasi-ubiquitous phenotype coordinator in bacteria. Mostly known to be involved in the transition from motile to sessile and multicellular behaviors in Gammaproteobacteria, c-di-GMP is now known to regulate many other phenotypes from cell morphogenesis to virulence, in many Gram-negative and a few Gram-positive bacteria. Herein, we review recent advances in our understanding of c-di-GMP signaling in the lifecycle of C. difficile.

  20. [Biosynthesis of cyclic GMP in plant cells - new insight into guanylate cyclases].

    Science.gov (United States)

    Świeżawska, Brygida; Marciniak, Katarzyna; Szmidt-Jaworska, Adriana

    2015-01-01

    Cyclic 3',5'-guanosine monophosphate (cGMP) is involved in many physiological processes in plants. Concentration of this second messenger in plant cell is determined by guanylyl cyclases (GCs) responsible for cGMP synthesis and phosphodiesterases (PDEs) involved in cGMP inactivation. First discovered plant GCs were localized in cytosol, but few years ago a new family of plasma membrane proteins with guanylyl cyclase activity was identified in Arabidopsis thaliana. These proteins belong to the family of a leucine-rich repeat receptor-like kinases (LRR-RLK) with extracellular leucine-rich repeat domain, a transmembrane-spanning domain, and an intracellular kinase domain. A novel class of guanylyl cyclases contain the GC catalytic center encapsulated within the intracellular kinase domain. These molecules are different to animal GCs in that the GC catalytic center is nested within the kinase domain. In presented paper we summarized the most recent data concerning plant guanylyl cyclases.

  1. NO, nitrotyrosine, and cyclic GMP in signal transduction

    Science.gov (United States)

    Hanafy, K. A.; Krumenacker, J. S.; Murad, F.

    2001-01-01

    Over the past 25 years, the role of nitric oxide (NO) in biology has evolved from being recognized as an environmental pollutant to an endogenously produced substance involved in cell communication and signal transduction. NO is produced by a family of enzymes called nitric oxide synthases (NOSs), which can be stimulated by a variety of factors that mediate responses to various stimuli. NO can initiate its biological effects through activation of the heterodimeric enzyme, soluble guanylyl cyclase (sGC), or through several other chemical reactions. Activation of sGC results in the production of 3',5'-cyclic guanosine monophosphate (cGMP), an intracellular second messenger signaling molecule, which can subsequently mediate such diverse physiological events such as vasodilatation and immunomodulation. Chemically reactive NO can affect physiological changes through modifications to cellular proteins, one of which is tyrosine nitration. The demonstration that NO is involved in so many biological pathways indicates the importance of this endogenously produced substance, and suggests that there is much more to be discovered about its role in biology in years to come.

  2. Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.

    Science.gov (United States)

    Chou, Shan-Ho; Galperin, Michael Y

    2016-01-01

    Cyclic di-GMP (c-di-GMP) synthetases and hydrolases (GGDEF, EAL, and HD-GYP domains) can be readily identified in bacterial genome sequences by using standard bioinformatic tools. In contrast, identification of c-di-GMP receptors remains a difficult task, and the current list of experimentally characterized c-di-GMP-binding proteins is likely incomplete. Several classes of c-di-GMP-binding proteins have been structurally characterized; for some others, the binding sites have been identified; and for several potential c-di-GMP receptors, the binding sites remain to be determined. We present here a comparative structural analysis of c-di-GMP-protein complexes that aims to discern the common themes in the binding mechanisms that allow c-di-GMP receptors to bind it with (sub)micromolar affinities despite the 1,000-fold excess of GTP. The available structures show that most receptors use their Arg and Asp/Glu residues to bind c-di-GMP monomers, dimers, or tetramers with stacked guanine bases. The only exception is the EAL domains that bind c-di-GMP monomers in an extended conformation. We show that in c-di-GMP-binding signature motifs, Arg residues bind to the O-6 and N-7 atoms at the Hoogsteen edge of the guanine base, while Asp/Glu residues bind the N-1 and N-2 atoms at its Watson-Crick edge. In addition, Arg residues participate in stacking interactions with the guanine bases of c-di-GMP and the aromatic rings of Tyr and Phe residues. This may account for the presence of Arg residues in the active sites of every receptor protein that binds stacked c-di-GMP. We also discuss the implications of these structural data for the improved understanding of the c-di-GMP signaling mechanisms.

  3. Brain-natriuretic peptide and cyclic guanosine monophosphate as biomarkers of myxomatous mitral valve disease in dogs

    DEFF Research Database (Denmark)

    Moesgaard, Sophia Gry; Falk, Bo Torkel; Teerlink, Tom

    2011-01-01

    Elevations in the plasma concentrations of natriuretic peptides correlate with increased severity of myxomatous mitral valve disease (MMVD) in dogs. This study correlates the severity of MMVD with the plasma concentrations of the biomarkers N-terminal fragment of the pro-brain-natriuretic peptide...... (NT-proBNP) and its second messenger, cyclic guanosine monophosphate (cGMP). Furthermore, the l-arginine:asymmetric dimethylarginine (ADMA) ratio was measured as an index of nitric oxide availability. The study included 75 dogs sub-divided into five groups based on severity of MMVD as assessed...... by clinical examination and echocardiography. Plasma NT-proBNP and cGMP concentrations increased with increasing valve dysfunction and were significantly elevated in dogs with heart failure. The cGMP:NT-proBNP ratio decreased significantly in dogs with heart failure, suggesting the development of natriuretic...

  4. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling.

    Science.gov (United States)

    Sato, Masayuki J; Kuwayama, Hidekazu; van Egmond, Wouter N; Takayama, Airi L K; Takagi, Hiroaki; van Haastert, Peter J M; Yanagida, Toshio; Ueda, Masahiro

    2009-04-21

    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of migration during electrotaxis in Dictyostelium cells can be reversed by genetically modulating both guanylyl cyclases (GCases) and the cyclic guanosine monophosphate (cGMP)-binding protein C (GbpC) in combination with the inhibition of phosphatidylinositol-3-OH kinases (PI3Ks). The PI3K-dependent pathway is involved in cathode-directed migration under a direct-current electric field. The catalytic domains of soluble GCase (sGC) and GbpC also mediate cathode-directed signaling via cGMP, whereas the N-terminal domain of sGC mediates anode-directed signaling in conjunction with both the inhibition of PI3Ks and cGMP production. These observations provide an identification of the genes required for directional switching in electrotaxis and suggest that a parallel processing of electric signals, in which multiple-signaling pathways act to bias cell movement toward the cathode or anode, is used to determine the direction of migration.

  5. Post-translational Analysis of Arabidopsis thaliana Proteins in Response to Cyclic Guanosine Monophosphate Treatment

    KAUST Repository

    Parrott, Brian

    2011-12-12

    The introduction of mass spectrometry techniques to the field of biology has made possible the exploration of the proteome as a whole system as opposed to prior techniques, such as anti-body based assays or yeast two-hybrid studies, which were strictly limited to the study of a few proteins at a time. This practice has allowed for a systems biology approach of exploring the proteome, with the possibility of viewing entire pathways over increments of time. In this study, the effect of treating Arabidopsis thaliana suspension culture cells with 3’,5’-cyclic guanosine monophosphate (cGMP), which is a native second messenger, was examined. Samples were collected at four time points and proteins were extracted and enriched for both oxidation and phosphorylation before analysis via mass spectrometry. Preliminary results suggest a tendency towards an increased number of phosphorylated proteins as a result of cGMP treatment. The data also showed a sharp increase in methionine oxidation in response to the treatment, occurring within the first ten minutes. This finding suggests that cGMP may utilize methionine oxidation as a mechanism of signal transduction. As such, this study corroborates a growing body of evidence supporting the inclusion of methionine oxidation in intracellular signaling pathways.

  6. Cyclic di-GMP sensing via the innate immune signaling protein STING.

    Science.gov (United States)

    Yin, Qian; Tian, Yuan; Kabaleeswaran, Venkataraman; Jiang, Xiaomo; Tu, Daqi; Eck, Michael J; Chen, Zhijian J; Wu, Hao

    2012-06-29

    Detection of foreign materials is the first step of successful immune responses. Stimulator of interferon genes (STING) was shown to directly bind cyclic diguanylate monophosphate (c-di-GMP), a bacterial second messenger, and to elicit strong interferon responses. Here we elucidate the structural features of the cytosolic c-di-GMP binding domain (CBD) of STING and its complex with c-di-GMP. The CBD exhibits an α + β fold and is a dimer in the crystal and in solution. Surprisingly, one c-di-GMP molecule binds to the central crevice of a STING dimer, using a series of stacking and hydrogen bonding interactions. We show that STING is autoinhibited by an intramolecular interaction between the CBD and the C-terminal tail (CTT) and that c-di-GMP releases STING from this autoinhibition by displacing the CTT. The structures provide a remarkable example of pathogen-host interactions in which a unique microbial molecule directly engages the innate immune system.

  7. Effects of 5-hydroxytryptamine, dopamine, and acetylcholine on accumulation of cyclic AMP and cyclic GMP in the anterior byssus retractor muscle of Mytilus edulis L. (Mollusca).

    Science.gov (United States)

    Köhler, G; Lindl, T

    1980-02-01

    We investigated in vitro accumulation of adenosine 3',5'-monophosphate (induced by 5-hydroxytryptamine and dopamine) and of guanosine 3',5'-monophosphate (induced by acetylcholine) in the anterior byssus retractor muscle of Mytilus. The response to 5-hydroxytryptamine exceeded that induced by equimolar concentrations of dopamine. 1-methyl lysergic acid, a 5-hydroxytryptamine-blocking agent, diminished the 5-hydroxytryptamine-induced increase of cyclic AMP level. This parallels the effect of this amine on the contracted muscle. Acetylcholine, which causes a tonic contraction of the muscle, increased intracellular levels of cyclic GMP in a dose-dependent (max. 45-fold at 10(-4) M ACh) manner. The time course of the rise in cyclic GMP level was rapid and transient (peak concentration of cyclic GMP at 2 min). Mytolon was the most effective of all cholinergic blockers tested. It was concluded that cyclic nucleotides may play a role in the modulatory process of the transmitters. A direct relation to the relaxation-contraction process could not be established.

  8. Modification of a bi-functional diguanylate cyclase-phosphodiesterase to efficiently produce cyclic diguanylate monophosphate

    Directory of Open Access Journals (Sweden)

    Natasha M. Nesbitt

    2015-09-01

    Full Text Available Cyclic-diGMP is a bacterial messenger that regulates many physiological processes, including many attributed to pathogenicity. Bacteria synthesize cyclic-diGMP from GTP using diguanylate cyclases; its hydrolysis is catalyzed by phosphodiesterases. Here we report the over-expression and purification of a bi-functional diguanylate cyclase-phosphodiesterase from Agrobacterium vitis S4. Using homology modeling and primary structure alignment, we identify several amino acids predicted to participate in the phosphodiesterase reaction. Upon altering selected residues, we obtain variants of the enzyme that efficiently and quantitatively catalyze the synthesis of cyclic-diGMP from GTP without hydrolysis to pGpG. Additionally, we identify a variant that produces cyclic-diGMP while immobilized to NiNTA beads and can catalyze the conversion of [α-32P]-GTP to [32P]-cyclic-diGMP. In short, we characterize a novel cyclic-diGMP processing enzyme and demonstrate its utility for efficient and cost-effective production of cyclic-diGMP, as well as modified cyclic-diGMP molecules, for use as probes in studying the many important biological processes mediated by cyclic-diGMP.

  9. cyclic GMP Mediated Inhibition of Spontaneous Germinal Vesicle Breakdown Both with and without Cumulus in Mouse Oocyte.

    Science.gov (United States)

    Hwang, Heekyung; Cheon, Yong-Pil

    2016-12-01

    Intact germinal vesicle (GV) arrest and release are essential for maintaining the fertility of mammals inducing human. Intact germinal vesicle release, maturation of oocytes is maintained by very complex procedures along with folliculogenesis and is a critical step for embryonic development. Cyclic guanosine monophosphate (cGMP) has been suggested a key factor for meiotic arrest but so far its mechanisms are controversy. In this study we examine the effects of cGMP on germinal vesicle breakdown in cumulus-enclosed oocytes and denuded oocytes. Spontaneous maturation was inhibited by a cGMP agonist, 8-Br-cGMP with concentration dependent manners both in cumulus-enclosed oocytes and denuded oocytes. The inhibitory effect was more severe in denuded oocytes than cumulus-enclosed oocytes. The Rp-8-Br-cGMP and Rp-pCPT-8-Br-cGMP did not severely block GVB compared to 8-Br-cGMP. The spontaneous GVB inhibitory effects were different by the existence of cumulus. Based on them it is suggested that the cumulus modulates the role of cGMP in GV arrest.

  10. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour.

  11. Cyclic AMP and cyclic GMP levels in glandular stomach of restrained rats.

    Science.gov (United States)

    Zarrindast, M R; Sharghi, G; Gerayesh-Nejad, S; Djahanguiri, B

    1977-10-01

    Cyclic AMP and cyclic GMP were measured in glandular stomach of rats subjected to saline administration, cold (4 degrees C), restraint and restraint+cold after 15, 30, 60, 90 and 120 minutes. All animals subjected to restraint+cold had gastric ulceration after 2 hours. A significant but transient decrease in cAMP was observed 15 minutes after restraint+cold. A marked, sustained and significant decrease of cGMP was observed in the same group of animals. It is concluded that it seems unlikely to be a correlation between cAMP and cGMP changes of the stomach and the restraint-induced gastric ulceration.

  12. Regulation of cyclic GMP, cyclic amp and lactate dehydrogenase by putative neutrotransmitters in the C6 rat glioma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bottenstein, J.E.; de Vellis, J.

    1977-01-01

    In C6 cells norepinephrine and dopamine caused transient increases in cyclic GMP and cyclic AMP, as well as an induction of lactate dehydrogenase. All of these responses were blocked by 1-propranolol, suggesting mediation by a ..beta..-receptor. Phentolamine potentiated the NE-increased cAMP levels by 5-fold when NE was used at suboptimal doses, suggesting the presence of ..cap alpha..-adrenergic receptors in C6 cells. Carbamylcholine decreased the levels of both cyclic nucleotides, with hexamethonium partially reversing the effect on cyclic GMP. Dibutyryl-cyclic GMP or carbamylcholine reduced catecholamine-induced cyclic AMP levels. Serotonin increased cyclic GMP levels 60% and decreased cyclic AMP levels 36%. Calcium- and magnesium-free media inhibited the norepinephrine-induced levels of cyclic GMP and cyclic AMP respectively.

  13. Regulation of cyclic GMP, cyclic AMP and lactate dehydrogenase by putative neurotransmitters in the C6 rat glioma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Bottenstein, J.E.; de Vellis, J.

    1978-01-01

    In C6 cells norepinephrine and dopamine caused transient increases in cyclic GMP and cyclic AMP, as well as an induction of lactate dehydrogenase. All of these responses were blocked by l-propranolol, suggesting mediation by a ..beta..-receptor. Phentolamine potentiated the NE-increased cAMP levels by 5-fold when NE was used at suboptimal doses, suggesting the presence of ..cap alpha..-adrenergic receptors in C6 cells. Carbamylcholine decreased the levels of both cyclic nucleotides, with hexamethonium partially reversing the effect on cyclic GMP. Dibutyryl-cyclic GMP or carbamylcholine reduced catecholamine-induced cyclic AMP levels. Serotonin increased cyclic GMP levels 60% and decreased cyclic AMP levels 36%. Calcium- and magnesium-free media inhibited the norepinephrine-induced levels of cyclic GMP and cyclic AMP respectively.

  14. Elevated nitric oxide and 3',5' cyclic guanosine monophosphate levels in patients with alcoholic cirrhosis

    Institute of Scientific and Technical Information of China (English)

    C(i)ntia Siqueira; Miguel Carneiro de Moura; Ana J(u)lia Pedro; Paula Rocha

    2008-01-01

    AIM: To evaluate whether serum levels of nitric oxide (NO') and plasma levels of cyclic guanosine monophosphate (Cgmp) and total glutathione (GSH) are altered in patients with alcoholic cirrhosis and to examine their correlation with the severity of liver disease.METHODS: Twenty-six patients with alcoholic liver cirrhosis were studied. Serum levels of NO· and plasma levels of cGMP and GSH were measured in 7 patients with compensated alcoholic cirrhosis (Child-Pugh A) and 19 patients with advanced cirrhosis (Child-Pugh B and C).The model for end-stage liver disease (MELD) score was evaluated. Sixteen healthy volunteers served as controls.Liver enzymes and creatinine levels were also tested.RESULTS: NO· and cGMP levels were higher in patients with Child-Pugh B and C cirrhosis than in Child-Pugh A cirrhosis or controls (NO·: 21.70 ± 8.07 vs 11.70 ± 2.74; 21.70 ± 8.07 vs 7.26 ± 2.47 μmol/L, respectively;P < 0.001) and (cGMP: 20.12 ± 6.62 vs 10.14 ± 2.78;20.12 ± 6.62 vs 4.95 ± 1.21 pmol/L, respectively; P <0.001). Total glutathione levels were lower in patients with Child-Pugh B and C cirrhosis than in patients with Child-Pugh A cirrhosis or controls (16.04 ± 6.06 vs 23.01 ± 4.38 or 16.04 ± 6.06 vs 66.57 ± 26.23 μmol/L,respectively; P < 0.001). There was a significant correlation between NO· and cGMP levels in all patients with alcoholic cirrhosis. A significant negative correlation between reduced glutathione/glutathione disulfide and the MELD score was found in all cirrhotic patients. CONCLUSION: Our results suggest a role for oxidative stress in alcoholic liver cirrhosis, which is more significant in decompensated patients with higher levels of NO· and cGMP and lower GSH levels than in compensated and control patients. Altered mediator levels in decompensated patients may influence the hemodynamic changes in and progression of liver disease.

  15. Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP

    Energy Technology Data Exchange (ETDEWEB)

    Krasteva, P.; Fong, J; Shikuma, N; Beyhan, S; Navarro, M; Yildiz, F; Sondermann, H

    2010-01-01

    Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.

  16. Structural Basis of Differential Ligand Recognition by Two Classes of bis-(3-5)-cyclic Dimeric Guanosine Monophosphate-binding Riboswitches

    Energy Technology Data Exchange (ETDEWEB)

    K Smith; C Shanahan; E Moore; A Simon; S Strobel

    2011-12-31

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling pathway regulates biofilm formation, virulence, and other processes in many bacterial species and is critical for their survival. Two classes of c-di-GMP-binding riboswitches have been discovered that bind this second messenger with high affinity and regulate diverse downstream genes, underscoring the importance of RNA receptors in this pathway. We have solved the structure of a c-di-GMP-II riboswitch, which reveals that the ligand is bound as part of a triplex formed with a pseudoknot. The structure also shows that the guanine bases of c-di-GMP are recognized through noncanonical pairings and that the phosphodiester backbone is not contacted by the RNA. Recognition is quite different from that observed in the c-di-GMP-I riboswitch, demonstrating that at least two independent solutions for RNA second messenger binding have evolved. We exploited these differences to design a c-di-GMP analog that selectively binds the c-di-GMP-II aptamer over the c-di-GMP-I RNA. There are several bacterial species that contain both types of riboswitches, and this approach holds promise as an important tool for targeting one riboswitch, and thus one gene, over another in a selective fashion.

  17. Role of nitric oxide and cyclic GMP signaling in melanocyte response to hypergravity

    Science.gov (United States)

    Ivanova, Krassimira; Lambers, Britta; Tsiockas, Wasiliki; Block, Ingrid; Gerzer, Rupert

    Nitric oxide (NO) has a prominent role in many (patho)physiological processes in the skin including erythema, inflammation, and cancerogenesis. The soluble guanylyl cyclase (sGC), a key transducer in NO signaling, catalyzes the formation of the second messenger guanosine 3´,5´-cyclic monophosphate (cyclic cGMP or cGMP). For human melanocytes, which are responsible for skin pigmentation by synthesizing the pigment melanin, it has been reported that the NO/sGC/cGMP pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals that may arise during metabolic stress. It may also act as a photosensitizer that generates active oxygen species upon UV irradiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. In addition, melanoma, a deadly skin cancer, which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we have shown that NO can induce perturbation of melanocyte-extracellular matrix component interactions, which may contribute to loss of melanocytes or melanoma metastasis. Such NO effects appear to be modulated partly via cGMP. Moreover, we found that different guanylyl cyclase isoforms are responsible for cGMP synthesis in melanocytic cells. Normal human melanocytes and nonmetastatic melanoma cells predominantly express sGC, which appears to be associated with melanogenesis, whereas absence of NO-sensitive GC, but up-regulated activities of the natriuretic peptide-sensitive membrane guanylyl cyclase isoforms were found in highly metastatic phenotypes. Due to the growing interest in the regulation of signaling activities in normal and transformed cells under altered gravity conditions, we have further investigated whether the NO/cGMP signaling is involved in melanocyte response to gravitational stress. We found that normal human melanocytes and non-metastatic melanoma cell lines, but not highly metastatic cells

  18. Plasmin is a potent and specific chemoattractant for human peripheral monocytes acting via a cyclic guanosine monophosphate-dependent pathway.

    Science.gov (United States)

    Syrovets, T; Tippler, B; Rieks, M; Simmet, T

    1997-06-15

    We have previously reported that the serine protease plasmin generated during contact activation of human plasma triggers biosynthesis of leukotrienes (LTs) in human peripheral monocytes (PMs), but not in polymorphonuclear neutrophils (PMNs). We now show that purified plasmin acts as a potent chemoattractant on human monocytes, but not on PMNs. Human plasmin or plasminogen activated with urokinase, but not active site-blocked plasmin or plasminogen, elicited monocyte migration across polycarbonate membranes. Similarly, stimulation of monocytes with plasmin, but not with active site-blocked plasmin or plasminogen, induced actin polymerization. As assessed by checkerboard analysis, the plasmin-mediated monocyte locomotion was a true chemotaxis. The plasmin-induced chemotactic response was inhibited by the lysine analog trans-4-(aminomethyl)cyclohexane-1-carboxylic acid (t-AMCA), which prevents binding of plasmin/ogen to the appropriate membrane binding sites. In addition, active site-blocked plasmin inhibited monocyte migration triggered by active plasmin. Further, plasmin-induced monocyte chemotaxis was inhibited by pertussis toxin (PTX) and 1-O-hexadecyl-2-O-methyl-rac-glycerol (HMG) and chelerythrine, two structurally unrelated inhibitors of protein kinase C (PKC). Plasmin, but not active site-blocked plasmin or plasminogen, triggered formation of cyclic guanosine monophosphate (cGMP) in monocytes. LY83583, an inhibitor of soluble guanylyl cyclase, inhibited both plasmin-induced cGMP formation and the chemotactic response. The latter effect could be antagonized by 8-bromo-cGMP. In addition, KT5823 and (Rp)-8-(p-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate [(Rp)-8-pCPT-cGMPs], two structurally unrelated inhibitors of cGMP-dependent protein kinase, inhibited plasmin-mediated monocyte chemotaxis. Thus, beyond being a stimulus for lipid mediator release, plasmin is a potent and specific chemoattractant for human monocytes acting via a cGMP

  19. Cyclic adenosine monophosphate signal pathway in targeted therapy of lymphoma

    Institute of Scientific and Technical Information of China (English)

    DOU Ai-xia; WANG Xin

    2010-01-01

    Objective To review the role of cyclic adenosine monophosphate (cAMP) signal pathway in the pathogenesis oflymphoma and explore a potential lymphoma therapy targeted on this signaling pathway.Data sources The data cited in this review were mainly obtained from the articles listed in Medline and PubMed,published from January 1995 to June 2009. The search terms were "cAMP" and "lymphoma".Study selection Articles regarding the role of the cAMP pathway in apoptosis of lymphoma and associated cells and itspotential role in targeted therapy of lymphoma.Results In the transformation of lymphocytic malignancies, several signal pathways are involved. Among of them, thecAMP pathway has attracted increasing attention because of its apoptosis-inducing role in several lymphoma cells. cAMPpathway impairment is found to influence the prognosis of lymphoma. Targeted therapy to the cAMP pathway seems tobe a new direction for lymphoma treatment, aiming at restoring the cAMP function.Conclusions cAMP signal pathway has different effects on various lymphoma cells. cAMP analogues andphosphodiesterase 4B (PDE4B) inhibitors have potential clinical significance. However, many challenges remain inunderstanding the various roles of such agents.

  20. Fluorescence-Based Reporter for Gauging Cyclic Di-GMP Levels in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Rybtke, Morten T.; Borlee, Bradley R.; Murakami, Keiji

    2012-01-01

    The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm formation is believed to be a key aspect...... of antipathogenic compounds. Here we describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP in P. aeruginosa. We have created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsive cdrA promoter to genes encoding green fluorescent protein....... We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-GMP in P. aeruginosa strains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect increased turnover of cyclic di-GMP mediated by treatment of P...

  1. Nitric oxide donor NOR 3 inhibits ketogenesis from oleate in isolated rat hepatocytes by a cyclic GMP-independent mechanism.

    Science.gov (United States)

    Nomura, T; Ohtsuki, M; Matsui, S; Sumi-Ichinose, C; Nomura, H; Hagino, Y

    1998-01-01

    Studies were conducted to clarify the effects of nitric oxide donors NOR 3 ((+/-)-(E)-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexeneamide, FK409), SIN-1 (3-morpholinosydnonimine) and SNAP (S-nitroso-N-acetylpenicillamine) on the accumulation of cGMP and cAMP and Ca2+ mobilization as well as ketogenesis from oleate in isolated rat hepatocytes. NOR 3 caused inhibition of ketogenesis from oleate along with stimulation of cGMP accumulation in rat hepatocytes, whereas SIN-1 and SNAP exerted no effect on ketogenesis despite their marked stimulation of cGMP accumulation. Although the nitric oxide trapping agent, carboxy-PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), antagonized the stimulation by NOR 3 of cGMP accumulation, it failed to modulate the anti-ketogenic action of NOR 3. Furthermore, neither 8-bromoguanosine-3',5'-cyclic monophosphate nor N2,2'-O-dibutyrylguanosine-3',5'-cyclic monophosphate mimicked the anti-ketogenic action of NOR 3. It is concluded in the present study that NOR 3-induced inhibition of ketogenesis in rat hepatocytes is not mediated by cGMP. The present study revealed that the remaining structure of NOR 3 from which nitric oxide had been spontaneously released had no anti-ketogenic action. We first and clearly demonstrated that nitrite production was dramatically enhanced when NOR 3 was incubated in the presence of rat hepatocytes. The mechanism whereby NOR 3 inhibits ketogenesis in rat hepatocytes will be discussed.

  2. Cyclic GMP-AMP displays mucosal adjuvant activity in mice.

    Directory of Open Access Journals (Sweden)

    Ivana Škrnjug

    Full Text Available The recently discovered mammalian enzyme cyclic GMP-AMP synthase produces cyclic GMP-AMP (cGAMP after being activated by pathogen-derived cytosolic double stranded DNA. The product can stimulate STING-dependent interferon type I signaling. Here, we explore the efficacy of cGAMP as a mucosal adjuvant in mice. We show that cGAMP can enhance the adaptive immune response to the model antigen ovalbumin. It promotes antigen specific IgG and a balanced Th1/Th2 lymphocyte response in immunized mice. A characteristic of the cGAMP-induced immune response is the slightly reduced induction of interleukin-17 as a hallmark of Th17 activity--a distinct feature that is not observed with other cyclic di-nucleotide adjuvants. We further characterize the innate immune stimulation activity in vitro on murine bone marrow-derived dendritic cells and human dendritic cells. The observed results suggest the consideration of cGAMP as a candidate mucosal adjuvant for human vaccines.

  3. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    Science.gov (United States)

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.

  4. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    Science.gov (United States)

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  5. Enhanced Molecular Recognition between Nucleobases and Guanine-5'-monophosphate-disodium (GMP) by Surfactant Aggregates in Aqueous Solution.

    Science.gov (United States)

    Liu, Zhang; Wang, Dong; Cao, Meiwen; Han, Yuchun; Xu, Hai; Wang, Yilin

    2015-07-15

    Only specific base pairs on DNA can bind with each other through hydrogen bonds, which is called the Watson-Crick (W/C) pairing rule. However, without the constraint of DNA chains, the nucleobases in bulk aqueous solution usually do not follow the W/C pairing rule anymore because of the strong competitive effect of water and the multi-interaction edges of nucleobases. The present work applied surfactant aggregates noncovalently functionalized by nucleotide to enhance the recognition between nucleobases without DNA chains in aqueous solution, and it revealed the effects of their self-assembling ability and morphologies on the recognition. The cationic ammonium monomeric, dimeric, and trimeric surfactants DTAB, 12-3-12, and 12-3-12-3-12 were chosen. The surfactants with guanine-5'-monophosphate-disodium (GMP) form micelles, vesicles, and fingerprint-like and plate-like aggregates bearing the hydrogen-bonding sites of GMP, respectively. The binding parameters of these aggregates with adenine (A), uracil (U), guanine (G), and cytosine(C) indicate that the surfactants can promote W/C recognitions in aqueous solution when they form vesicles (GMP/DTAB) or plate-like aggregates (GMP/12-3-12) with proper molecular packing compactness, which not only provide hydrophobic environments but also shield non-W/C recognition edges. However, the GMP/12-3-12 micelles with loose molecular packing, the GMP/12-3-12 fingerprint-like aggregates where the hydrogen bond sites of GMP are occupied by itself, and the GMP/12-3-12-3-12 vesicles with too strong self-assembling ability cannot promote W/C recognition. This work provides insight into how to design self-assemblies with the performance of enhanced molecule recognition.

  6. Expression and distribution of key enzymes of the cyclic GMP signaling in the human clitoris: relation to phosphodiesterase type 5 (PDE5).

    Science.gov (United States)

    Ückert, S; Oelke, M; Albrecht, K; Breitmeier, D; Kuczyk, M A; Hedlund, P

    2011-01-01

    The clitoris contributes to the normal female sexual response cycle. A significance of cyclic guanosine monophosphate (GMP) has been assumed in the control of clitoral vascular smooth muscle. As only a few investigations on the physiology of the vascular and non-vascular clitoral tissue have been carried out, knowledge on the mechanisms controlling this particular female genital organ is still vague. It has been suggested that human clitoral corpus cavernosum smooth muscle is regulated by nitric oxide (NO)/cyclic GMP and related key enzymes, such as NO synthases (NOSs) and the phosphodiesterase type 5 (PDE5). The present study evaluated in the human clitoris, by means of immunohistochemistry, the expression and distribution of key enzymes of the cyclic GMP pathway, such as the endothelial NOS, PDE2, PDE11 and cyclic GMP-dependent protein kinase type I (cGKI) in relation to the PDE5. Immunohistochemistry revealed the presence of PDE2, PDE5 and cGKI in the smooth muscle wall of blood vessels transversing the supepithelial and stromal space. Immunosignals specific for PDE2 were also identified in interstitial-like cells located in the basal epithelial layer. Staining for PDE11A was observed in single nerve trunks located in the clitoral stroma. The results are in favor of a role of the cyclic GMP signaling in the control of clitoral blood flow. It seems likely that PDE2 and PDE11 are also involved in the mechanism of local (neuro)transmission in the clitoris.

  7. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.

    Science.gov (United States)

    Miner, Kyle D; Kurtz, Donald M

    2016-02-16

    HD-GYPs make up a subclass of the metal-dependent HD phosphohydrolase superfamily and catalyze conversion of cyclic di(3',5')-guanosine monophosphate (c-di-GMP) to 5'-phosphoguanylyl-(3'→5')-guanosine (pGpG) and GMP. Until now, the only reported crystal structure of an HD-GYP that also exhibits c-di-GMP phosphodiesterase activity contains a His/carboxylate ligated triiron active site. However, other structural and phylogenetic correlations indicate that some HD-GYPs contain dimetal active sites. Here we provide evidence that an HD-GYP c-di-GMP phosphodiesterase, TM0186, from Thermotoga maritima can accommodate both di- and trimetal active sites. We show that an as-isolated iron-containing TM0186 has an oxo/carboxylato-bridged diferric site, and that the reduced (diferrous) form is necessary and sufficient to catalyze conversion of c-di-GMP to pGpG, but that conversion of pGpG to GMP requires more than two metals per active site. Similar c-di-GMP phosphodiesterase activities were obtained with divalent iron or manganese. On the basis of activity correlations with several putative metal ligand residue variants and molecular dynamics simulations, we propose that TM0186 can accommodate both di- and trimetal active sites. Our results also suggest that a Glu residue conserved in a subset of HD-GYPs is required for formation of the trimetal site and can also serve as a labile ligand to the dimetal site. Given the anaerobic growth requirement of T. maritima, we suggest that this HD-GYP can function in vivo with either divalent iron or manganese occupying di- and trimetal sites.

  8. Cyclic-di-GMP and cyclic-di-AMP activate the NLRP3 inflammasome.

    Science.gov (United States)

    Abdul-Sater, Ali A; Tattoli, Ivan; Jin, Lei; Grajkowski, Andrzej; Levi, Assaf; Koller, Beverly H; Allen, Irving C; Beaucage, Serge L; Fitzgerald, Katherine A; Ting, Jenny P-Y; Cambier, John C; Girardin, Stephen E; Schindler, Christian

    2013-10-01

    The cyclic dinucleotides 3'-5'diadenylate (c-diAMP) and 3'-5' diguanylate (c-diGMP) are important bacterial second messengers that have recently been shown to stimulate the secretion of type I Interferons (IFN-Is) through the c-diGMP-binding protein MPYS/STING. Here, we show that physiologically relevant levels of cyclic dinucleotides also stimulate a robust secretion of IL-1β through the NLRP3 inflammasome. Intriguingly, this response is independent of MPYS/STING. Consistent with most NLRP3 inflammasome activators, the response to c-diGMP is dependent on the mobilization of potassium and calcium ions. However, in contrast to other NLRP3 inflammasome activators, this response is not associated with significant changes in mitochondrial potential or the generation of mitochondrial reactive oxygen species. Thus, cyclic dinucleotides activate the NLRP3 inflammasome through a unique pathway that could have evolved to detect pervasive bacterial pathogen-associated molecular patterns associated with intracellular infections.

  9. Physiological and Molecular Effects of the Cyclic Nucleotides cAMP and cGMP on Arabidopsis thaliana

    KAUST Repository

    Herrera, Natalia M.

    2012-12-01

    The cyclic nucleotide monophosphates (CNs), cAMP and cGMP, are second messengers that participate in the regulation of development, metabolism and adaptive responses. In plants, CNs are associated with the control of pathogen responses, pollen tube orientation, abiotic stress response, membrane transport regulation, stomatal movement and light perception. In this study, we hypothesize that cAMP and cGMP promote changes in the transcription level of genes related to photosynthesis, high light and membrane transport in Arabidopsis thaliana leaves and, that these changes at the molecular level can have functional biological consequences. For this reason we tested if CNs modulate the photosynthetic rate, responses to high light and root ion transport. Real time quantitative PCR was used to assess transcription levels of selected genes and infrared gas analyzers coupled to fluorescence sensors were used to measure the photosynthetic parameters. We present evidence that both cAMP and cGMP modulate foliar mRNA levels early after stimulation. The two CNs trigger different responses indicating that the signals have specificity. A comparison of proteomic and transcriptional changes suggest that both transcriptional and post-transcriptional mechanisms are modulated by CNs. cGMP up-regulates the mRNA levels of components of the photosynthesis and carbon metabolism. However, neither cAMP nor cGMP trigger differences in the rate of carbon assimilation, maximum efficiency of the photosystem II (PSII), or PSII operating efficiency. It was also demonstrated that CN regulate the expression of its own targets, the cyclic nucleotide gated channels - CNGC. Further studies are needed to identify the components of the signaling transduction pathway that mediate cellular changes and their respective regulatory and/or signaling roles.

  10. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Science.gov (United States)

    An, Shi-qi; Caly, Delphine L; McCarthy, Yvonne; Murdoch, Sarah L; Ward, Joseph; Febrer, Melanie; Dow, J Maxwell; Ryan, Robert P

    2014-10-01

    Bis-(3',5') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d)∼2 µM). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  11. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence.

    Directory of Open Access Journals (Sweden)

    Shi-qi An

    2014-10-01

    Full Text Available Bis-(3',5' cyclic di-guanylate (cyclic di-GMP is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc. This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K(d∼2 µM. Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence.

  12. Genomic analysis of cyclic-di-GMP-related genes in rhizobial type strains and functional analysis in Rhizobium etli.

    Science.gov (United States)

    Gao, Shanjun; Romdhane, Samir Ben; Beullens, Serge; Kaever, Volkhard; Lambrichts, Ivo; Fauvart, Maarten; Michiels, Jan

    2014-05-01

    Rhizobia are soil bacteria that can fix nitrogen in symbiosis with leguminous plants or exist free living in the rhizosphere. Crucial to their complex lifestyle is the ability to sense and respond to diverse environmental stimuli, requiring elaborate signaling pathways. In the majority of bacteria, the nucleotide-based second messenger cyclic diguanosine monophosphate (c-di-GMP) is involved in signal transduction. Surprisingly, little is known about the importance of c-di-GMP signaling in rhizobia. We have analyzed the genome sequences of six well-studied type species (Bradyrhizobium japonicum, Mesorhizobium loti, Rhizobium etli, Rhizobium leguminosarum, Sinorhizobium fredii, and Sinorhizobium meliloti) for proteins possibly involved in c-di-GMP signaling based on the presence of four domains: GGDEF (diguanylate cyclase), EAL and HD-GYP (phosphodiesterase), and PilZ (c-di-GMP sensor). We find that rhizobia possess a high number of these proteins. Conservation analysis suggests that c-di-GMP signaling proteins modulate species-specific pathways rather than ancient rhizobia-specific processes. Two hybrid GGDEF-EAL proteins were selected for functional analysis, R. etli RHE_PD00105 (CdgA) and RHE_PD00137 (CdgB). Expression of cdgA and cdgB is repressed by the alarmone (p)ppGpp. cdgB is significantly expressed on plant roots and free living. Mutation of cdgA, cdgB, or both does not affect plant root colonization, nitrogen fixation capacity, biofilm formation, motility, and exopolysaccharide production. However, heterologous expression of the individual GGDEF and EAL domains of each protein in Escherichia coli strongly suggests that CdgA and CdgB are bifunctional proteins, possessing both diguanylate cyclase and phosphodiesterase activities. Taken together, our results provide a platform for future studies of c-di-GMP signaling in rhizobia.

  13. Subtle alterations in NMDA-stimulated cyclic GMP levels following lateral fluid percussion brain injury.

    Science.gov (United States)

    Temple, M D; Delahunty, T M; Hamm, R J; Phillips, L L; Lyeth, B G; Povlishock, J T

    2001-01-01

    This study examined whether NMDA-stimulated cyclic GMP levels were altered at two different time points following lateral fluid percussion injury. At 60 min and 15 days postinjury, the left and right hippocampi were dissected and chopped into mini-prisms. Each hippocampus was divided into five equal parts and incubated with either the phosphodiesterase inhibitor IBMX (3-isobutyl-1-methylxanthine, 500 microM) alone, IBMX and N-methyl-D-aspartic acid (NMDA) OR IBMX, NMDA, and glycine (10 MM). Two concentrations of NMDA were used: 500 or 1,000 microM. Tissues were then assayed for levels of cyclic GMP. Results indicated that there were no changes in basal levels of cyclic GMP at either postinjury time point. At 60 min postinjury, there were no significant main effects for injury or drug concentration. There was a significant injury x side interaction effect with increased levels of NMDA-stimulated cyclic GMP in the hippocampus ipsilateral to the injury impact and decreased cyclic GMP levels in the contralateral hippocampus. There were no significant alterations in NMDA-stimulated cyclic GMP levels at 15 days postinjury. The data from this study indicated that NMDA-stimulated cyclic GMP accumulation is differentially altered in the hippocampus ipsilateral and contralateral to the site of the injury at 1 h after injury, but is normalized by 15 days postinjury. These findings implicate NMDA-mediated intracellular signaling processes in the acute excitotoxic response to injury.

  14. Characterization of a dual-active enzyme, DcpA, involved in cyclic diguanosine monophosphate turnover in Mycobacterium smegmatis.

    Science.gov (United States)

    Sharma, Indra Mani; Prakash, Sunita; Dhanaraman, Thillaivillalan; Chatterji, Dipankar

    2014-10-01

    We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.

  15. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria.

    Science.gov (United States)

    Valentini, Martina; Filloux, Alain

    2016-06-10

    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission.

  16. Systems Pharmacology and Rational Polypharmacy: Nitric Oxide−Cyclic GMP Signaling Pathway as an Illustrative Example and Derivation of the General Case

    Science.gov (United States)

    Garmaroudi, Farshid S.; Handy, Diane E.; Liu, Yang-Yu; Loscalzo, Joseph

    2016-01-01

    Impaired nitric oxide (NO˙)-cyclic guanosine 3', 5'-monophosphate (cGMP) signaling has been observed in many cardiovascular disorders, including heart failure and pulmonary arterial hypertension. There are several enzymatic determinants of cGMP levels in this pathway, including soluble guanylyl cyclase (sGC) itself, the NO˙-activated form of sGC, and phosphodiesterase(s) (PDE). Therapies for some of these disorders with PDE inhibitors have been successful at increasing cGMP levels in both cardiac and vascular tissues. However, at the systems level, it is not clear whether perturbation of PDE alone, under oxidative stress, is the best approach for increasing cGMP levels as compared with perturbation of other potential pathway targets, either alone or in combination. Here, we develop a model-based approach to perturbing this pathway, focusing on single reactions, pairs of reactions, or trios of reactions as targets, then monitoring the theoretical effects of these interventions on cGMP levels. Single perturbations of all reaction steps within this pathway demonstrated that three reaction steps, including the oxidation of sGC, NO˙ dissociation from sGC, and cGMP degradation by PDE, exerted a dominant influence on cGMP accumulation relative to other reaction steps. Furthermore, among all possible single, paired, and triple perturbations of this pathway, the combined perturbations of these three reaction steps had the greatest impact on cGMP accumulation. These computational findings were confirmed in cell-based experiments. We conclude that a combined perturbation of the oxidatively-impaired NO˙-cGMP signaling pathway is a better approach to the restoration of cGMP levels as compared with corresponding individual perturbations. This approach may also yield improved therapeutic responses in other complex pharmacologically amenable pathways. PMID:26985825

  17. Comprehensive overexpression analysis of cyclic-di-GMP signalling proteins in the phytopathogen Pectobacterium atrosepticum reveals diverse effects on motility and virulence phenotypes.

    Science.gov (United States)

    Tan, H; West, J A; Ramsay, J P; Monson, R E; Griffin, J L; Toth, I K; Salmond, G P C

    2014-07-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous bacterial signalling molecule produced by diguanylate cyclases of the GGDEF-domain family. Elevated c-di-GMP levels or increased GGDEF protein expression is frequently associated with the onset of sessility and biofilm formation in numerous bacterial species. Conversely, phosphodiesterase-dependent diminution of c-di-GMP levels by EAL- and HD-GYP-domain proteins is often accompanied by increased motility and virulence. In this study, we individually overexpressed 23 predicted GGDEF, EAL or HD-GYP-domain proteins encoded by the phytopathogen Pectobacterium atrosepticum strain SCRI1043. MS-based detection of c-di-GMP and 5'-phosphoguanylyl-(3'-5')-guanosine in these strains revealed that overexpression of most genes promoted modest 1-10-fold changes in cellular levels of c-di-GMP, with the exception of the GGDEF-domain proteins ECA0659 and ECA3374, which induced 1290- and 7660-fold increases, respectively. Overexpression of most EAL domain proteins increased motility, while overexpression of most GGDEF domain proteins reduced motility and increased poly-β-1,6-N-acetyl-glucosamine-dependent flocculation. In contrast to domain-based predictions, overexpression of the EAL protein ECA3549 or the HD-GYP protein ECA3548 increased c-di-GMP concentrations and reduced motility. Most overexpression constructs altered the levels of secreted cellulases, pectinases and proteases, confirming c-di-GMP regulation of virulence in Pe. atrosepticum. However, there was no apparent correlation between virulence-factor induction and the domain class expressed or cellular c-di-GMP levels, suggesting that regulation was in response to specific effectors within the network, rather than total c-di-GMP concentration. Finally, we demonstrated that the cellular localization patterns vary considerably for GGDEF/EAL/HD-GYP proteins, indicating it is a likely factor restricting specific interactions within the c-di-GMP

  18. Evidence for a Messenger Function of Cyclic GMP During Phosphodiesterase Induction in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Pasveer, Frank J.; Meer, Rob C. van der; Heijden, Paul R. van der; Walsum, Hans van; Konijn, Theo M.

    1982-01-01

    Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum cells induced a transient elevation of cyclic GMP levels. The addition of chemoattractants to postvegetative cells by pulsing induced phosphodiesterase activity. The following lines of evidence suggest a messenger function

  19. Targeting cyclic di-GMP signalling: a strategy to control biofilm formation?

    Science.gov (United States)

    Caly, Delphine L; Bellini, Domenico; Walsh, Martin A; Dow, J Maxwell; Ryan, Robert P

    2015-01-01

    Cyclic di-GMP is a second messenger found in almost all eubacteria that acts to regulate a wide range of functions including developmental transitions, adhesion and biofilm formation. Cyclic di-GMP is synthesised from two GTP molecules by diguanylate cyclases that have a GGDEF domain and is degraded by phosphodiesterases with either an EAL or an HD-GYP domain. Proteins with these domains often contain additional signal input domains, suggesting that their enzymatic activity may be modulated as a response to different environmental or cellular cues. Cyclic di-GMP exerts a regulatory action through binding to diverse receptors that include a small protein domain called PilZ, enzymatically inactive GGDEF, EAL or HD-GYP domains, transcription factors and riboswitches. In many bacteria, high cellular levels of cyclic di-GMP are associated with a sessile, biofilm lifestyle, whereas low levels of the nucleotide promote motility and virulence factor synthesis in pathogens. Elucidation of the roles of cyclic di-GMP signalling in biofilm formation has suggested strategies whereby modulation of the levels of the nucleotide or interference with signalling pathways may lead to inhibition of biofilm formation or promotion of biofilm dispersal. In this review we consider these approaches for the control of biofilm formation, beginning with an overview of cyclic di-GMP signalling and the different ways that it can act in regulation of biofilm dynamics.

  20. Occurrence of Cyclic di-GMP-Modulating Output Domains in Cyanobacteria: an Illuminating Perspective

    Science.gov (United States)

    Agostoni, Marco; Koestler, Benjamin J.; Waters, Christopher M.; Williams, Barry L.; Montgomery, Beronda L.

    2013-01-01

    ABSTRACT Microorganisms use a variety of metabolites to respond to external stimuli, including second messengers that amplify primary signals and elicit biochemical changes in a cell. Levels of the second messenger cyclic dimeric GMP (c-di-GMP) are regulated by a variety of environmental stimuli and play a critical role in regulating cellular processes such as biofilm formation and cellular motility. Cyclic di-GMP signaling systems have been largely characterized in pathogenic bacteria; however, proteins that can impact the synthesis or degradation of c-di-GMP are prominent in cyanobacterial species and yet remain largely underexplored. In cyanobacteria, many putative c-di-GMP synthesis or degradation domains are found in genes that also harbor light-responsive signal input domains, suggesting that light is an important signal for altering c-di-GMP homeostasis. Indeed, c-di-GMP-associated domains are often the second most common output domain in photoreceptors—outnumbered only by a histidine kinase output domain. Cyanobacteria differ from other bacteria regarding the number and types of photoreceptor domains associated with c-di-GMP domains. Due to the widespread distribution of c-di-GMP domains in cyanobacteria, we investigated the evolutionary origin of a subset of genes. Phylogenetic analyses showed that c-di-GMP signaling systems were present early in cyanobacteria and c-di-GMP genes were both vertically and horizontally inherited during their evolution. Finally, we compared intracellular levels of c-di-GMP in two cyanobacterial species under different light qualities, confirming that light is an important factor for regulating this second messenger in vivo. PMID:23943760

  1. The Structural Basis for the Sensing and Binding of Cyclic di-GMP by STING

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Under a research project funded by NSFC, Prof. Su Xiaodong and his team of the National Laboratory of Protein Engineering and Plant Genetic Engineering, BIOPIC, the School of Life Sciences of Peking Uni- versity, obtained remarkable achievement and published recently a paper entitled "The Structural Basis for the Sensing and Binding of Cyclic di-GMP by STING" on online Natural Structural and Molecular Biolo- gY. STING (stimulator of interferon genes) is an essential signaling adaptor that mediates cytokine pro- duction in response to microbial invasion by directly sensing bacterial secondary messengers such as the cy- clic dinucleotide bis-(3'-5')-cyclic dimeric GMP (e-di-GMP). STING's structure and its binding mecha- nism to cyclic dinucleotides were unknown. We report here the crystal structures of the STING cytoplas- mic domain and its complex with c-di-GMP, thus providing the structural basis for understanding STING function.

  2. In Vivo Synthesis of Cyclic-di-GMP Using a Recombinant Adenovirus Preferentially Improves Adaptive Immune Responses against Extracellular Antigens.

    Science.gov (United States)

    Alyaqoub, Fadel S; Aldhamen, Yasser A; Koestler, Benjamin J; Bruger, Eric L; Seregin, Sergey S; Pereira-Hicks, Cristiane; Godbehere, Sarah; Waters, Christopher M; Amalfitano, Andrea

    2016-02-15

    There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-β and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.

  3. Stimulation of innate immunity by in vivo cyclic di-GMP synthesis using adenovirus.

    Science.gov (United States)

    Koestler, Benjamin J; Seregin, Sergey S; Rastall, David P W; Aldhamen, Yasser A; Godbehere, Sarah; Amalfitano, Andrea; Waters, Christopher M

    2014-11-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) stimulates inflammation by initiating innate immune cell recruitment and triggering the release of proinflammatory cytokines and chemokines. These properties make c-di-GMP a promising candidate for use as a vaccine adjuvant, and numerous studies have demonstrated that administration of purified c-di-GMP with different antigens increases protection against infection in animal models. Here, we have developed a novel approach to produce c-di-GMP inside host cells as an adjuvant to exploit a host-pathogen interaction and initiate an innate immune response. We have demonstrated that c-di-GMP can be synthesized in vivo by transducing a diguanylate cyclase (DGC) gene into mammalian cells using an adenovirus serotype 5 (Ad5) vector. Expression of DGC led to the production of c-di-GMP in vitro and in vivo, and this was able to alter proinflammatory gene expression in murine tissues and increase the secretion of numerous cytokines and chemokines when administered to animals. Furthermore, coexpression of DGC modestly increased T-cell responses to a Clostridium difficile antigen expressed from an adenovirus vaccine, although no significant differences in antibody titers were observed. This adenovirus c-di-GMP delivery system offers a novel method to administer c-di-GMP as an adjuvant to stimulate innate immunity during vaccination.

  4. Plasma guanosine 3 ',5 '-cyclic monophosphate and severity of peri/intraventricular haemorrhage in the preterm newborn

    NARCIS (Netherlands)

    van Bel, F; Valk, L; Uiterwaal, CSPM; Egberts, J; Krediet, TG

    2002-01-01

    A poorly controlled cerebral circulation. caused by excessive production of nitric oxide. has been suggested as predisposing to peri/intraventricular haemorrhage (PIVH) in the immature neonate. It is hypothesized that a relation exists between plasma cyclic GMP (cGMP) as an effector of endogenous va

  5. Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum.

    Science.gov (United States)

    Chen, Zhi-hui; Schaap, Pauline

    2016-01-01

    Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo.

  6. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles.

    Science.gov (United States)

    Shuhaibar, Leia C; Egbert, Jeremy R; Norris, Rachael P; Lampe, Paul D; Nikolaev, Viacheslav O; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A

    2015-04-28

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2-4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes.

  7. Intercellular signaling via cyclic GMP diffusion through gap junctions restarts meiosis in mouse ovarian follicles

    Science.gov (United States)

    Shuhaibar, Leia C.; Egbert, Jeremy R.; Norris, Rachael P.; Lampe, Paul D.; Nikolaev, Viacheslav O.; Thunemann, Martin; Wen, Lai; Feil, Robert; Jaffe, Laurinda A.

    2015-01-01

    Meiosis in mammalian oocytes is paused until luteinizing hormone (LH) activates receptors in the mural granulosa cells of the ovarian follicle. Prior work has established the central role of cyclic GMP (cGMP) from the granulosa cells in maintaining meiotic arrest, but it is not clear how binding of LH to receptors that are located up to 10 cell layers away from the oocyte lowers oocyte cGMP and restarts meiosis. Here, by visualizing intercellular trafficking of cGMP in real-time in live follicles from mice expressing a FRET sensor, we show that diffusion of cGMP through gap junctions is responsible not only for maintaining meiotic arrest, but also for rapid transmission of the signal that reinitiates meiosis from the follicle surface to the oocyte. Before LH exposure, the cGMP concentration throughout the follicle is at a uniformly high level of ∼2–4 μM. Then, within 1 min of LH application, cGMP begins to decrease in the peripheral granulosa cells. As a consequence, cGMP from the oocyte diffuses into the sink provided by the large granulosa cell volume, such that by 20 min the cGMP concentration in the follicle is uniformly low, ∼100 nM. The decrease in cGMP in the oocyte relieves the inhibition of the meiotic cell cycle. This direct demonstration that a physiological signal initiated by a stimulus in one region of an intact tissue can travel across many layers of cells via cyclic nucleotide diffusion through gap junctions could provide a general mechanism for diverse cellular processes. PMID:25775542

  8. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Novak

    2014-05-01

    Full Text Available In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease.

  9. Clearance of Pseudomonas aeruginosa Foreign-Body Biofilm Infections through Reduction of the Cyclic Di-GMP Level in the Bacteria

    DEFF Research Database (Denmark)

    Christensen, Louise D.; van Gennip, Maria; Rybtke, Morten Theil

    2013-01-01

    Opportunistic pathogenic bacteria can engage in biofilm-based infections that evade immune responses and develop into chronic conditions. Because conventional antimicrobials cannot efficiently eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections....... It has recently been established that the secondary messenger cyclic diguanosine monophosphate (c-di-GMP) functions as a positive regulator of biofilm formation in several different bacteria. In the present study we investigated whether manipulation of the c-di-GMP level in bacteria potentially can...... of the majority of the bacteria in in vitro-grown P. aeruginosa biofilms. Subsequently, we demonstrated that P. aeruginosa biofilms growing on silicone implants, located in the peritoneal cavity of mice, dispersed after induction of the YhjH protein. Bacteria accumulated temporarily in the spleen after induction...

  10. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine

    OpenAIRE

    Koestler, Benjamin J.; Waters, Christopher M.

    2015-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase ...

  11. Cyclic Di-GMP modulates the disease progression of Erwinia amylovora.

    Science.gov (United States)

    Edmunds, Adam C; Castiblanco, Luisa F; Sundin, George W; Waters, Christopher M

    2013-05-01

    The second messenger cyclic di-GMP (c-di-GMP) is a nearly ubiquitous intracellular signal molecule known to regulate various cellular processes, including biofilm formation, motility, and virulence. The intracellular concentration of c-di-GMP is inversely governed by diguanylate cyclase (DGC) enzymes and phosphodiesterase (PDE) enzymes, which synthesize and degrade c-di-GMP, respectively. The role of c-di-GMP in the plant pathogen and causal agent of fire blight disease Erwinia amylovora has not been studied previously. Here we demonstrate that three of the five predicted DGC genes in E. amylovora (edc genes, for Erwinia diguanylate cyclase), edcA, edcC, and edcE, are active diguanylate cyclases. We show that c-di-GMP positively regulates the secretion of the main exopolysaccharide in E. amylovora, amylovoran, leading to increased biofilm formation, and negatively regulates flagellar swimming motility. Although amylovoran secretion and biofilm formation are important for the colonization of plant xylem tissues and the development of systemic infections, deletion of the two biofilm-promoting DGCs increased tissue necrosis in an immature-pear infection assay and an apple shoot infection model, suggesting that c-di-GMP negatively regulates virulence. In addition, c-di-GMP inhibited the expression of hrpA, a gene encoding the major structural component of the type III secretion pilus. Our results are the first to describe a role for c-di-GMP in E. amylovora and suggest that downregulation of motility and type III secretion by c-di-GMP during infection plays a key role in the coordination of pathogenesis.

  12. Control of Ca2+ in rod outer segment disks by light and cyclic GMP.

    Science.gov (United States)

    George, J S; Hagins, W A

    1983-05-26

    Photons absorbed in vertebrate rods and cones probably cause electrochemical changes at the photoreceptor plasma membrane by changing the cytoplasmic concentration of a diffusible transmitter substance, reducing the Na+ current flowing into the outer segment of the cell in the dark, to produce the observed membrane hyperpolarization that is the initial excitatory response. Cyclic GMP has been proposed as the transmitter because a light-activated cyclic GMP phosphodiesterase (PDE) has been found in rod disk membranes and because intracellularly injected cyclic GMP reduces rod membrane potentials. Free Ca2+ has also been proposed because increasing external [Ca2+] quickly and reversibly reduces the dark current and divalent cationophores increase the Ca2+ sensitivity. Ca2+ efflux from rod outer segments (ROS) of intact retinas occurs simultaneously with light responses. Vesicles prepared from ROS disk membranes become more permeable on illumination, releasing trapped ions or molecules, but intact outer segment disks have not previously been found to store sufficient Ca2+ in darkness and to release enough in light to meet the theoretical requirements for control of the dark current by varying cytoplasmic Ca2+ (refs 14-18). We now report experiments that show the required Ca2+ storage and release from rod disk membranes suspended in media containing high-energy phosphate esters and electrolytes approximating the cytoplasmic composition of live rod cells. Cyclic GMP stimulates Ca2+ uptake by ROS disks in such media.

  13. Atrial natriuretic peptide receptor heterogeneity and effects on cyclic GMP accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Leitman, D.C.

    1988-01-01

    The effects of atrial natriuretic peptide (ANP), oxytocin (OT) and vasopressin (AVP) on guanylate cyclase activity and cyclic GMP accumulation were examined, since these hormones appear to be intimately associated with blood pressure and intravascular volume homeostasis. ANP was found to increase cyclic GMP accumulation in ten cell culture systems, which were derived from blood vessels, adrenal cortex, kidney, lung, testes and mammary gland. ANP receptors were characterized in intact cultured cells using {sup 125}I-ANP{sub 8-33}. Specific {sup 125}I-ANP binding was saturable and of high affinity. Scratchard analysis of the binding data for all cell types exhibited a straight line, indicating that these cells possessed a single class of binding sites. Despite the presence of linear Scatchard plots, these studies demonstrated that cultured cells possess two functionally and physically distinct ANP-binding sites. Most of the ANP-binding sites in cultured cells have a molecular size of 66,000 daltons under reducing conditions. The identification of cultured cell types in which hormones (ANP and oxytocin) regulate guanylate cyclase activity and increase cyclic GMP synthesis will provide valuable systems to determine the mechanisms of hormone-receptor coupling to guanylate cyclase and the cellular processes regulated by cyclic GMP.

  14. Modulation by cyclic GMP of the odour sensitivity of vertebrate olfactory receptor cells

    Science.gov (United States)

    Leinders-Zufall, T.; Shepherd, G. M.; Zufall, F.

    1996-01-01

    Recent evidence has indicated a significant role for the cGMP second messenger system in vertebrate olfactory transduction but no clear functions have been identified for cGMP so far. Here, we have examined the effects of 8-Br-cGMP and carbon monoxide (CO) on odour responses of salamander olfactory receptor neurons using perforated patch recordings. We report that 8-Br-cGMP strongly down-regulates the odour sensitivity of the cells, with a K1/2 of 460 nM. This adaptation-like effect can be mimicked by CO, an activator of soluble guanylyl cyclase, with a K1/2 of 1 microM. Sensitivity modulation is achieved through a regulatory chain of events in which cGMP stimulates a persistent background current due to the activation of cyclic nucleotide-gated channels. This in turn leads to sustained Ca2+ entry providing a negative feedback signal. One consequence of the Ca2+ entry is a shift to the right of the stimulus-response curve and a reduction in saturating odour currents. Together, these two effects can reduce the sensory generator current by up to twenty-fold. Thus, cGMP functions to control the gain of the G-protein coupled cAMP pathway. Another consequence of the action of cGMP is a marked prolongation of the odour response kinetics. The effects of CO/cGMP are long-lasting and can continue for minutes. Hence, we propose that cGMP helps to prevent saturation of the cell's response by adjusting the operational range of the cAMP cascade and contributes to olfactory adaptation by decreasing the sensitivity of olfactory receptor cells to repeated odour stimuli.

  15. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    Science.gov (United States)

    von Mandach, U.; Gubler, H. P.; Engel, G.; Huch, R.; Huch, A.

    1993-01-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists. PMID:8383562

  16. Lymphocyte beta 2-adrenoceptors and adenosine 3':5'-cyclic monophosphate during and after normal pregnancy.

    Science.gov (United States)

    von Mandach, U; Gubler, H P; Engel, G; Huch, R; Huch, A

    1993-02-01

    1. The beta 2-sympathomimetics, used to inhibit preterm labour, bind predominantly to beta 2-adrenoceptors, activating adenylate cyclase to form adenosine 3':5'-cyclic monophosphate (cyclic AMP), a messenger substance which inhibits the enzyme cascade triggering smooth muscle contraction. beta 2-Adrenoceptor density and cyclic AMP formation can be used as markers of beta 2-adrenergic effect. 2. The present study addresses the influence of pregnancy on the beta-adrenoceptor system. beta 2-Adrenoceptor density and cyclic AMP concentrations (basal and evoked by isoprenaline) in circulating lymphocytes were determined at three points in gestation (16, 29 and 37 weeks) and 9 weeks post partum in 22 normal pregnancies. (-)-[125Iodo]-cyanopindolol was used as the ligand to identify a homogeneous population of beta 2-adrenoceptors on lymphocytes. B- and T-cell fractions were estimated from the same samples. 3. beta 2-Adrenoceptor density decreased significantly during gestation until week 37 (P < 0.01), then increased post partum (P < 0.005). Cyclic AMP concentrations (basal and evoked by isoprenaline) were significantly lower after 16 weeks of gestation than post partum (P < 0.05). 4. The results, which cannot be explained in terms of a shift in the lymphocyte (B- and T-cell) ratio, indicate that beta-adrenoceptor density and function are reduced in normal pregnancy and only return to normal post partum. These findings may be of significance in devising future tocolytic therapy with beta 2-adrenoceptor agonists.

  17. Both cyclic-AMP and cyclic-GMP can act as regulators of the phenylpropanoid pathway in Arabidopsis thaliana seedlings.

    Science.gov (United States)

    Pietrowska-Borek, Małgorzata; Nuc, Katarzyna

    2013-09-01

    Cyclic nucleotides (cAMP and cGMP) are important signaling molecules that control a range of cellular functions and modulate different reactions. It is known that under abiotic or biotic stress plant cells synthesize these nucleotides and that they also enhance the activity of the phenylpropanoid pathway. Wondering what is the relation between these two facts, we investigated how the exogenously applied membrane-permeable derivatives, 8-Br-cAMP or 8-Br-cGMP, which are believed to act as the original cyclic nucleotides, affect the expression of the genes for and the specific activity of three enzymes of the phenylpropanoid pathway in Arabidopsis thaliana seedlings. We found that the expression of the genes of phenylalanine ammonia-lyase (PAL2), 4-coumarate:coenzyme A ligase (4CL1) and chalcone synthase (CHS), and the specific activities of PAL (EC 4.3.1.5), 4CL (EC 6.2.1.12) and CHS (EC 2.3.1.74) were induced in the same way by either of these cyclic nucleotides used at 5 μM concentration. None of the possible cAMP and cGMP degradation products (AMP, GMP, adenosine or guanosine) evoked such effects. Expression of PAL1, 4CL2 and 4CL3 were practically not affected. Although the investigated nucleotides induced rapid expression of the aforementioned enzymes, they did not affect the level of anthocyanins within the same period. We discuss the effects exerted by the exogenously administered cyclic nucleotides, their relation with stress and the role which the phenylpropanoid pathways the cyclic nucleotides may play in plants.

  18. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication.

    Science.gov (United States)

    Lori, C; Ozaki, S; Steiner, S; Böhm, R; Abel, S; Dubey, B N; Schirmer, T; Hiller, S; Jenal, U

    2015-07-01

    Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.

  19. Bacterial Signal Transduction by Cyclic Di-GMP and Other Nucleotide Second Messengers.

    Science.gov (United States)

    Hengge, Regine; Gründling, Angelika; Jenal, Urs; Ryan, Robert; Yildiz, Fitnat

    2016-01-01

    The first International Symposium on c-Di-GMP Signaling in Bacteria (22 to 25 March 2015, Harnack-Haus, Berlin, Germany)brought together 131 molecular microbiologists from 17 countries to discuss recent progress in our knowledge of bacterial nucleotide second messenger signaling. While the focus was on signal input, synthesis, degradation, and the striking diversity of the modes of action of the current second messenger paradigm, i.e., cyclic di-GMP (c-di-GMP), “classics” like cAMP and (p)ppGpp were also presented, in novel facets, and more recent “newcomers,” such as c-di-AMP and c-AMP-GMP, made an impressive appearance. A number of clear trends emerged during the 30 talks, on the 71 posters, and in the lively discussions, including (i)c-di-GMP control of the activities of various ATPases and phosphorylation cascades, (ii) extensive cross talk between c-di-GMP and other nucleotide second messenger signaling pathways, and (iii) a stunning number of novel effectors for nucleotide second messengers that surprisingly include some long-known master regulators of developmental pathways. Overall, the conference made it amply clear that second messenger signaling is currently one of the most dynamic fields within molecular microbiology,with major impacts in research fields ranging from human health to microbial ecology.

  20. Icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels in the hippocampus of the senescence- accelerated mouse

    Institute of Scientific and Technical Information of China (English)

    Zhanwei Zhang; Ting Zhang; Keli Dong

    2012-01-01

    At 8 weeks after intragastric administration of icariin to senescence-accelerated mice (P8 strain), Morris water maze results showed that escape latency was shortened, and the number of platform crossings was increased. Immunohistochemical staining and western blot assay detected signifi-cantly increased levels of cyclic adenosine monophosphate response element binding protein. These results suggest that icariin upregulates phosphorylated cyclic adenosine monophosphate response element binding protein levels and improves learning and memory functions in hippo-campus of the senescence-accelerated mouse.

  1. Control of lipolysis by natriuretic peptides and cyclic GMP.

    Science.gov (United States)

    Lafontan, Max; Moro, Cédric; Berlan, Michel; Crampes, François; Sengenes, Coralie; Galitzky, Jean

    2008-01-01

    Human fat cell lipolysis was, until recently, thought to be mediated exclusively by a cAMP-dependent protein kinase (PKA)-regulated pathway under the control of catecholamines and insulin. We have shown that atrial- and B-type natriuretic peptides (ANP and BNP respectively) stimulate lipolysis in human fat cells through a cGMP-dependent protein kinase (PKG) signaling pathway independent of cAMP production and PKA activity. Pharmacological or physiological (exercise) increases in plasma ANP levels stimulate lipid mobilization in humans. This pathway becomes important during chronic treatment with beta-adrenoceptor antagonists, which inhibit catecholamine-induced lipolysis but enhance cardiac ANP release. These findings have metabolic implications and point to potential problems when natriuretic peptide secretion is altered or during therapeutic use of recombinant BNP.

  2. Studies on Relationship between Serum Nitric Oxide and Plasma Cyclic Guanosine Monophosphate and Prolonged Bleeding after Medical Abortion as well as Prophylaxis and Treatment of Bleeding with Traditional Chinese Medicine

    Institute of Scientific and Technical Information of China (English)

    廖玎玲; 谭布珍; 辛华; 贺晓菊

    1999-01-01

    Objectives To study the relationship between serum nitric oxide(NO and plasma cyclic guanosine monophosphate(cGMP)and prolonged bleeding after medical abortion.Methods A total of 120women having received medical abortions at random were recruited and divided into two groups:the one(Group A,n=60) taking “Gong-Fu Mixture(Uterus-Recovering Mixture)”and the other(Group B,n=60)not taking it after abortion.On d 10,20 and 30 after medical abortion,serum NO and plasma cGMP were tested before and after mifepristone administration and 10 d later by Gresis reac-tion method and radioimmunoassay respectively.Results NO concentration in serum and cGMP concentration in plasma decreased signifi-cantly after taking mifeprlstone given(P<0. 05).Ten days later,the number of thos ewith bleeding discontinuation in the group A was significantly greater than that in the group B(P<0.05).Serum NO level and plasma cGMP level in the group A de-creased more significantly than those in the group B(P<0. 05).Conclusion The slow decrease of serum NO and plasma cGMP is closely related to prolonged bleeding after medical abortion.“Gong-Fu Mixture(uterus-recovering mixture)”is effective in prevention and treatment of prolonged bleeding.

  3. Characterization of c-di-GMP signaling in Salmonella typhimurium

    OpenAIRE

    Simm, Roger

    2007-01-01

    Signal transduction via cyclic nucleotides is a general mechanism utilized by cells from all kingdoms of life. Identification of cyclic diguanosine monophosphate (c-di-GMP) as an allosteric activator of the cellulose synthase in Gluconacetobacter xylinus 20 years ago, paved the way for the discovery of a novel general signalling system which is unique to bacteria. In this thesis, the c-di-GMP signalling network leading to the formation of a biofilm behavior in Salmonella...

  4. Direct myocardial anti-ischaemic effect of GTN in both nitrate-tolerant and nontolerant rats: a cyclic GMP-independent activation of KATP.

    Science.gov (United States)

    Csont, T; Szilvássy, Z; Fülöp, F; Nedeianu, S; Páli, T; Tosaki, A; Dux, L; Ferdinandy, P

    1999-12-01

    1. We have recently demonstrated that glyceryl trinitrate (GTN) exerts a direct myocardial anti-ischaemic effect in both GTN-tolerant and nontolerant rats. Here we examined if this effect is mediated by GTN-derived nitric oxide (NO) and involves guanosine 3'5' cyclic monophosphate (cyclic GMP) and ATP-sensitive K+ channels (KATP). 2. Rats were treated with 100 mg kg-1 GTN or vehicle s.c. three times a day for 3 days to induce vascular GTN-tolerance or nontolerance. Isolated working hearts obtained from either GTN-tolerant or nontolerant rats were subjected to 10 min coronary occlusion in the presence of 10-7 M GTN or its solvent. 3. GTN improved myocardial function and reduced lactate dehydrogenase (LDH) release during coronary occlusion in both GTN-tolerant and nontolerant hearts. 4. Cardiac NO content significantly increased after GTN administration in both GTN-tolerant and nontolerant hearts as assessed by electron spin resonance. However, cardiac cyclic GMP content measured by radioimmunoassay was not changed by GTN administration. 5. When hearts from both GTN-tolerant and nontolerant rats were subjected to coronary occlusion in the presence of the KATP-blocker glibenclamide (10-7 M), the drug itself did not affect myocardial function and LDH release, however, it abolished the anti-ischaemic effect of GTN. 6. We conclude that GTN opens KATP via a cyclic GMP-independent mechanism, thereby leading to an anti-ischaemic effect in the heart in both GTN-tolerant and nontolerant rats.

  5. Influences of dibutyryl cyclic adenosine monophosphate and forskolin on human sperm motility in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-HongLIU; YangLI; Zheng-GuoCAO; Zhang-QunYE

    2003-01-01

    Aim: To study the influences of dibutyryl cyclic adenosine monophosphate (dbcAMP) and forskolin on human sperm motility in vitro. Methods: Semen samples, aseptically obtained by masturbation and prepared by swim-up technique from 20 fertile men, were incubated with different concenlrations of dbcAMP and forskolin at 37℃. Measurements were carried out after l0 min, 20 min, 30 min and 60 min incubation. Motility parameters were estimated by using an automatic analyzing system. Results: Treatment with dbcAMP or forskolin resulted in a significant increase in sperm motility and progressive motility. The larger the concenlrations of dbcAMP or forskolin,the greater the effect appeared. The straight linear velocity and curvilinear velocity were not affected by both agents.Conclusion: dbcAMP and forskolin increase the motility and progressive motility of human sperm in vitro. ( Asian J Androl 2003 Jun; 5: 113-115)

  6. Normoxic cyclic GMP-independent oxidative signaling by nitrite enhances airway epithelial cell proliferation and wound healing.

    Science.gov (United States)

    Wang, Ling; Frizzell, Sheila A; Zhao, Xuejun; Gladwin, Mark T

    2012-05-15

    The airway epithelium provides important barrier and host defense functions. Recent studies reveal that nitrite is an endocrine reservoir of nitric oxide (NO) bioactivity that is converted to NO by enzymatic reductases along the physiological oxygen gradient. Nitrite signaling has been described as NO dependent activation mediated by reactions with deoxygenated redox active hemoproteins, such as hemoglobin, myoglobin, neuroglobin, xanthine oxidoreductase (XO) and NO synthase at low pH and oxygen tension. However, nitrite can also be readily oxidized to nitrogen dioxide (NO(2)·) via heme peroxidase reactions, suggesting the existence of alternative oxidative signaling pathways for nitrite under normoxic conditions. In the present study, we examined normoxic signaling effects of sodium nitrite on airway epithelial cell wound healing. In an in vitro scratch injury model under normoxia, we exposed cultured monolayers of human airway epithelial cells to various concentrations of sodium nitrite and compared responses to NO donor. We found sodium nitrite potently enhanced airway epithelium wound healing at physiological concentrations (from 1 μM). The effect of nitrite was blocked by the NO and NO(2)· scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). Interestingly, nitrite treatment did not increase cyclic guanosine monophosphate (cGMP) levels under these normoxic conditions, even in the presence of a phosphodiesterase 5 inhibitor, suggesting cGMP independent signaling. Consistent with an oxidative signaling pathway requiring hydrogen peroxide (H(2)O(2))/heme-peroxidase/NO(2)· signaling, the effects of nitrite were potentiated by superoxide dismutase (SOD) and low concentration H(2)O(2), whereas inhibited completely by catalase, followed by downstream extracellular-signal-regulated kinase (ERK) 1/2 activation. Our data represent the first description of normoxic nitrite signaling on lung epithelial cell proliferation and wound

  7. The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP

    DEFF Research Database (Denmark)

    Almblad, Henrik; Harrison, Joe J; Rybtke, Morten;

    2015-01-01

    as a direct result of elevated c-di-GMP content. Overproduction of c-di-GMP causes a decrease in the transcription of virulence factor genes that are regulated by the global virulence regulator Vfr. The low level of Vfr-dependent transcription is caused by a low level of its coactivator, cyclic AMP (c...

  8. Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids

    NARCIS (Netherlands)

    Sinha, B; Semmler, J; Eisenhut, T; Eigler, A; Endres, S

    1995-01-01

    We investigated cooperative effects of phosphodiesterase (PDE) inhibitors and prostanoids on cyclic adenosine monophosphate (cAMP) accumulation and tumor necrosis factor (TNF)-alpha synthesis in human peripheral blood mononuclear cells (PBMC). PDE inhibitors alone induced only a small increase in cA

  9. Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium

    Directory of Open Access Journals (Sweden)

    Lara eRajeev

    2014-07-01

    Full Text Available We surveyed the eight putative cyclic-di-GMP-modulating response regulators (RRs in Desulfovibrio vulgaris Hildenborough that are predicted to function via two-component signaling. Using purified proteins, we examined cyclic-di-GMP production or turnover in vitro of all eight proteins. The two RRs containing only GGDEF domains (DVU2067, DVU0636 demonstrated cyclic-di-GMP production activity in vitro. Of the remaining proteins, three RRs with HD-GYP domains (DVU0722, DVUA0086 and DVU2933 were confirmed to be Mn2+ dependent phosphodiesterases in vitro and converted cyclic-di-GMP to its linear form, pGpG. DVU0408, containing both cyclic-di-GMP production (GGDEF and degradation domains (EAL, showed cyclic-di-GMP turnover activity in vitro also with production of pGpG. No cyclic-di-GMP related activity could be assigned to the RR DVU0330, containing a metal-dependent phosphohydrolase HD-OD domain, or to the HD-GYP domain RR, DVU1181. Studies included examining the impact of overexpressed cyclic-di-GMP-modulating RRs in the heterologous host E. coli and led to the identification of one RR, DVU0636, with increased cellulose production. Evaluation of a transposon mutant in DVU0636 indicated that the strain was impaired in biofilm formation and demonstrated an altered carbohydrate:protein ratio relative to the D. vulgaris wild type biofilms. However, grown in liquid lactate/sulfate medium, the DVU0636 transposon mutant showed no growth impairment relative to the wild-type strain. Among the eight candidates, only the transposon disruption mutant in the DVU2067 RR presented a growth defect in liquid culture. Our results indicate that, of the two diguanylate cyclases that function as part of two-component signaling, DVU0636 plays an important role in biofilm formation while the function of DVU2067 has pertinence in planktonic growth.

  10. Effect of atrial natriuretic factor and 8-bromo cyclic guanosine 3':5'-monophosphate on ( sup 3 H)acetylcholine outflow from myenteric-plexus longitudinal muscle of the guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Matusak, O.; Kuchel, O.; Hamet, P. (Clinical Research Institute of Montreal, Quebec, (Canada))

    1991-04-01

    We report that atrial natriuretic factor (ANF) inhibits electrically induced cholinergic twitches of longitudinal muscle in whole intestinal segments and myenteric-plexus longitudinal muscle (MPLM) strips from the guinea pig ileum. To elucidate the possible presynaptic mechanism of ANF's action, we studied spontaneous and stimulation-evoked radiolabeled acetylcholine (ACh) outflow from MPLM after incubation with ({sup 3}H)choline. We developed a method of mounting and treating MPLM preparations, which allowed us, at the same time, to record isometric contractions and to determine ({sup 3}H)ACh outflow upon electrical stimulation by a train of three pulses. ANF (5 x 10{sup {minus} 8}M), norepinephrine (2 x 10{sup {minus} 7}) M and 8-bromoguanosine 3':5'-cyclic monophosphate (10{sup {minus} 3} M) in nearly equieffective concentrations caused a similar inhibition of cholinergic twitches. However, ANF had no effect on ({sup 3}H)ACh outflow, whereas norepinephrine was found to suppress ({sup 3}H)ACh outflow and 8-bromoguanosine 3':5'-cGMP to enhanced ({sup 3}H)ACh outflow. ANF (5 x 10{sup {minus} 8} M) caused a 7.0-fold increase of cGMP over control values, predominantly in muscle layers, whereas Escherichia coli heat-stable toxin (12.5 U/ml) elicited a 35-fold increment of cGMP in the extramuscular layer. Thus, ANF is able to elevate cGMP in intestinal smooth muscle and to inhibit cholinergic contractions of MPLM. This inhibition is mimicked by exogenous cGMP and by endogenously generated cyclic nucleotides. We suggest that the depressive action of ANF on cholinergic contractions of MPLM is mediated via its postsynaptic impact implicating elevation of cGMP in smooth muscle.

  11. A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer.

    Science.gov (United States)

    Kellenberger, Colleen A; Sales-Lee, Jade; Pan, Yuchen; Gassaway, Madalee M; Herr, Amy E; Hammond, Ming C

    2015-01-01

    Cyclic di-GMP (c-di-GMP) is a second messenger that is important in regulating bacterial physiology and behavior, including motility and virulence. Many questions remain about the role and regulation of this signaling molecule, but current methods of detection are limited by either modest sensitivity or requirements for extensive sample purification. We have taken advantage of a natural, high affinity receptor of c-di-GMP, the Vc2 riboswitch aptamer, to develop a sensitive and rapid electrophoretic mobility shift assay (EMSA) for c-di-GMP quantitation that required minimal engineering of the RNA.

  12. cGMP-binding prepares PKG for substrate binding by disclosing the C-terminal domain

    NARCIS (Netherlands)

    Alverdi, V.; Mazon, H.F.M.; Versluis, C.; Hemrika, W.; Esposito, G.; van den Heuvel, R.H.H.; Scholten, A.; Heck, A.J.R.

    2008-01-01

    Type I cyclic guanosine 3′,5′-monophosphate (cGMP)-dependent protein kinase (PKG) is involved in the nitric oxide/cGMP signaling pathway. PKG has been identified in many different species, ranging from unicelõlular organisms to mammals. The enzyme serves as one of the major receptor proteins for int

  13. CRP-Cyclic AMP Regulates the Expression of Type 3 Fimbriae via Cyclic di-GMP in Klebsiella pneumoniae.

    Science.gov (United States)

    Lin, Ching-Ting; Lin, Tien-Huang; Wu, Chien-Chen; Wan, Lei; Huang, Chun-Fa; Peng, Hwei-Ling

    2016-01-01

    Klebsiella pneumoniae is the predominant pathogen isolated from liver abscesses of diabetic patients in Asian countries. However, the effects of elevated blood glucose levels on the virulence of this pathogen remain largely unknown. Type 3 fimbriae, encoded by the mrkABCDF genes, are important virulence factors in K. pneumoniae pathogenesis. In this study, the effects of exogenous glucose and the intracellular cyclic AMP (cAMP) signaling pathway on type 3 fimbriae expression regulation were investigated. The production of MrkA, the major subunit of type 3 fimbriae, was increased in glucose-rich medium, whereas cAMP supplementation reversed the effect. MrkA production was markedly increased by cyaA or crp deletion, but slightly decreased by cpdA deletion. In addition, the mRNA levels of mrkABCDF genes and the activity of PmrkA were increased in Δcrp strain, as well as the mRNA levels of mrkHIJ genes that encode cyclic di-GMP (c-di-GMP)-related regulatory proteins that influence type 3 fimbriae expression. Moreover, the activities of PmrkHI and PmrkJ were decreased in ΔlacZΔcrp strain. These results indicate that CRP-cAMP down-regulates mrkABCDF and mrkHIJ at the transcriptional level. Further deletion of mrkH or mrkI in Δcrp strain diminished the production of MrkA, indicating that MrkH and MrkI are required for the CRP regulation of type 3 fimbriae expression. Furthermore, the high activity of PmrkHI in the ΔlacZΔcrp strain was diminished in ΔlacZΔcrpΔmrkHI, but increased in the ΔlacZΔcrpΔmrkJ strain. Deletion of crp increased the intracellular c-di-GMP concentration and reduced the phosphodiesterase activity. Moreover, we found that the mRNA levels of multiple genes related to c-di-GMP metabolism were altered in Δcrp strain. These indicate that CRP regulates type 3 fimbriae expression indirectly via the c-di-GMP signaling pathway. In conclusion, we found evidence of a coordinated regulation of type 3 fimbriae expression by the CRP-cAMP and c-di-GMP

  14. Opposing actions of dibutyryl cyclic AMP and GMP on temperature in conscious guinea-pigs

    Science.gov (United States)

    Kandasamy, S. B.; Williaes, B. A.

    1983-01-01

    It is shown that the intracerebroventricular administration of dibutyryl cyclic AMP (Db-cAMP) induced hyperthermia in guinea pigs which was not mediated through prostaglandins or norepinephrine since a prostaglandin synthesis inhibitor and an alpha-adrenergic receptor blocking agent did not antagonize the hyperthermia. However, the hyperthermic response to Db-cAMP was attenuated by the central administration of a beta-adrenergic receptor antagonist, which indicates that cAMP may be involved, through beta-adrenergic receptors, in the central regulation of heat production and conservation. The central administration of Db-cGMP produced hypothermia which was not mediated via histamine H1 or H2 receptors and serotonin. The antagonism of hypothermia induced by Db-cGMP and acetylcholine + physostigmine by central administration of a cholinergic muscarine receptor antagonist and not by a cholinergic nicotinic receptor antagonist suggests that cholinoceptive neurons and endogenous cGMP may regulate heat loss through cholinergic muscarine receptors. It is concluded that these results indicate a regulatory role in thermoregulation provided by a balance between opposing actions of cAMP and cGMP in guinea pigs.

  15. Hybrid promiscuous (Hypr) GGDEF enzymes produce cyclic AMP-GMP (3', 3'-cGAMP).

    Science.gov (United States)

    Hallberg, Zachary F; Wang, Xin C; Wright, Todd A; Nan, Beiyan; Ad, Omer; Yeo, Jongchan; Hammond, Ming C

    2016-02-16

    Over 30 years ago, GGDEF domain-containing enzymes were shown to be diguanylate cyclases that produce cyclic di-GMP (cdiG), a second messenger that modulates the key bacterial lifestyle transition from a motile to sessile biofilm-forming state. Since then, the ubiquity of genes encoding GGDEF proteins in bacterial genomes has established the dominance of cdiG signaling in bacteria. However, the observation that proteobacteria encode a large number of GGDEF proteins, nearing 1% of coding sequences in some cases, raises the question of why bacteria need so many GGDEF enzymes. In this study, we reveal that a subfamily of GGDEF enzymes synthesizes the asymmetric signaling molecule cyclic AMP-GMP (cAG or 3', 3'-cGAMP). This discovery is unexpected because GGDEF enzymes function as symmetric homodimers, with each monomer binding to one substrate NTP. Detailed analysis of the enzyme from Geobacter sulfurreducens showed it is a dinucleotide cyclase capable of switching the major cyclic dinucleotide (CDN) produced based on ATP-to-GTP ratios. We then establish through bioinformatics and activity assays that hybrid CDN-producing and promiscuous substrate-binding (Hypr) GGDEF enzymes are found in other deltaproteobacteria. Finally, we validated the predictive power of our analysis by showing that cAG is present in surface-grown Myxococcus xanthus. This study reveals that GGDEF enzymes make alternative cyclic dinucleotides to cdiG and expands the role of this widely distributed enzyme family to include regulation of cAG signaling.

  16. Regulation of biofilm formation and cellular buoyancy through modulating intracellular cyclic di-GMP levels in engineered cyanobacteria.

    Science.gov (United States)

    Agostoni, Marco; Waters, Christopher M; Montgomery, Beronda L

    2016-02-01

    The second messenger cyclic dimeric (3'→5') GMP (cyclic di-GMP or c-di-GMP) has been implicated in the transition between motile and sessile lifestyles in bacteria. In this study, we demonstrate that biofilm formation, cellular aggregation or flocculation, and cellular buoyancy are under the control of c-di-GMP in Synechocystis sp. PCC 6803 (Synechocystis) and Fremyella diplosiphon. Synechocystis is a unicellular cyanobacterium and displays lower levels of c-di-GMP; F. diplosiphon is filamentous and displays higher intracellular c-di-GMP levels. We transformed Synechocystis and F. diplosiphon with a plasmid for constitutive expression of genes encoding diguanylate cylase (DGC) and phosphodiesterase (PDE) proteins from Vibrio cholerae or Escherichia coli, respectively. These engineered strains allowed us to modulate intracellular c-di-GMP levels. Biofilm formation and cellular deposition were induced in the DGC-expressing Synechocystis strain which exhibited high intracellular levels of c-di-GMP; whereas strains expressing PDE in Synechocystis and F. diplosiphon to drive low intracellular levels of c-di-GMP exhibited enhanced cellular buoyancy. In addition, the PDE-expressing F. diplosiphon strain showed elevated chlorophyll levels. These results imply roles for coordinating c-di-GMP homeostasis in regulating native cyanobacterial phenotypes. Engineering exogenous DGC or PDE proteins to regulate intracellular c-di-GMP levels represents an effective tool for uncovering cryptic phenotypes or modulating phenotypes in cyanobacteria for practical applications in biotechnology applicable in photobioreactors and in green biotechnologies, such as energy-efficient harvesting of cellular biomass or the treatment of metal-containing wastewaters.

  17. Mangiferin Prevents Guinea Pig Tracheal Contraction via Activation of the Nitric Oxide-Cyclic GMP Pathway

    Science.gov (United States)

    Vieira, Aline B.; Coelho, Luciana P.; Insuela, Daniella B. R.; Carvalho, Vinicius F.; dos Santos, Marcelo H.; Silva, Patricia MR.; Martins, Marco A.

    2013-01-01

    Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L

  18. Mangiferin prevents guinea pig tracheal contraction via activation of the nitric oxide-cyclic GMP pathway.

    Directory of Open Access Journals (Sweden)

    Aline B Vieira

    Full Text Available Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS 3 and cyclic GMP (cGMP levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1-10 µM inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME (100 µM, and the soluble guanylate cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ (10 µM, but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyladenine (SQ22536 (100 µM. The antispasmodic effect of mangiferin was also sensitive to K⁺ channel blockers, such as tetraethylammonium (TEA, glibenclamide and apamin. Furthermore, mangiferin inhibited Ca²⁺-induced contractions in K⁺ (60 mM-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ

  19. Liposomes loaded with a STING pathway ligand, cyclic di-GMP, enhance cancer immunotherapy against metastatic melanoma.

    Science.gov (United States)

    Nakamura, Takashi; Miyabe, Hiroko; Hyodo, Mamoru; Sato, Yusuke; Hayakawa, Yoshihiro; Harashima, Hideyoshi

    2015-10-28

    Malignant melanomas escape immunosurveillance via the loss/down-regulation of MHC-I expression. Natural killer (NK) cells have the potential to function as essential effector cells for eliminating melanomas. Cyclic di-GMP (c-di-GMP), a ligand of the stimulator of interferon genes (STING) signal pathway, can be thought of as a new class of adjuvant against cancer. However, it is yet to be tested, because technologies for delivering c-di-GMP to the cytosol are required. Herein, we report that c-di-GMP efficiently activates NK cells and induces antitumor effects against malignant melanomas when loaded in YSK05 lipid containing liposomes, by assisting in the efficient delivery of c-di-GMP to the cytosol. The intravenous administration of c-di-GMP encapsulated within YSK05-liposomes (c-di-GMP/YSK05-Lip) into mice efficiently induced the production of type I interferon (IFN) as well as the activation of NK cells, resulting in a significant antitumor effect in a lung metastasis mouse model using B16-F10. This antitumor effect was dominated by NK cells. The infiltration of NK cells was observed in the lungs with B16-F10 melanomas. These findings indicate that the c-di-GMP/YSK05-Lip induces MHC-I non-restricted antitumor immunity mediated by NK cells. Consequently, c-di-GMP/YSK05-Lip represents a potentially new adjuvant system for use in immunotherapy against malignant melanomas.

  20. The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

    Science.gov (United States)

    Khan, Mike; Harms, Jerome S; Marim, Fernanda M; Armon, Leah; Hall, Cherisse L; Liu, Yi-Ping; Banai, Menachem; Oliveira, Sergio C; Splitter, Gary A; Smith, Judith A

    2016-12-01

    Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. [Involvement of cyclic adenosine monophosphate in the control of motile behavior of Physarum polycephalum plasmodium].

    Science.gov (United States)

    Matveeva, N B; Teplov, V A; Nezvetskiĭ, A R; Orlova, T G; Beĭlina, S I

    2012-01-01

    Possible involvement of autocrine factors into the control of motile behavior via a receptor-mediated mechanism was investigated in Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the auto-oscillatory mode of motility. Cyclic adenosine monophosphate (cAMP) and extracellular cAMP-specific phosphodiesterase, its involvement into the control of plasmodium motile behavior was proved by action of its strong inhibitor, were regarded as putative autocrine factors. It was shown that the plasmodium secreted cAMP. When it was introduced into agar support, 0,1-1 mM cAMP induced a delay of the plasmodium spreading and its transition to migration. When locally applied, cAMP at the same concentrations induced typical for attractant action the increase in oscillation frequency and the decrease of ectoplasm elasticity. The ability to exhibit positive chemotaxis in cAMP gradient and the dependence of its realization were shown to depend on the plasmodium state. Chemotaxis test specimens obtained from the migrating plasmodium, unlike those obtained from growing culture, generate alternative fronts which compete effectively with fronts oriented towards the attractant increment. The results obtained support our supposition stated earlier that advance of the Physarum polycephalum plasmodium leading edge is determined by local extracellular cAMP gradients arising from a time delay between secretion and hydrolysis of the nucleotide.

  2. Cyclic adenosine 3',5'-monophosphate and germination of sporangiospores from the fungus Mucor.

    Science.gov (United States)

    Orlowski, M

    1980-06-01

    Cyclic adenosine 3',5'-monophosphate (cAMP) metabolism was examined in germinating sporangiospores of Mucor genevensis and Mucor mucedo. Exogenous cAMP prevented normal hyphal development from sporangiospores. Internal pools of cAMP fluctuated profoundly during development. Spherical growth of the spores was characterized by large pools of cAMP whereas germ tube emergence and hyphal elongation were characterized by small pools of cAMP. These observations suggest a possible role for cAMP in sporangiospore germination. Adenylate cyclase activities fluctuated significantly during germination with maximum values attained during spherical growth. In contrast, cAMP phosphodiesterase activities remained constant throughout germination. Internal cAMP levels may therefore be regulated by adjustment of adenylate cyclase activities. The binding of cAMP by soluble cell proteins was measured. cAMP-binding activity changed greatly during germination. Dormant and spherically growing spores possessed the highest activities. Developing hyphae contained the lowest activities. Use of the photoaffinity label, 8-azido-[32P]cAMP, in conjunction with sodium dodecyl sulfate-polyacrylamide-gel electrophoresis allowed the identification of a small population of morphogenetic-stage-specific proteins which bind cAMP and may be of regulatory significance to development.

  3. The clinical correlation of regulatory T cells and cyclic adenosine monophosphate in enterovirus 71 infection.

    Directory of Open Access Journals (Sweden)

    Shih-Min Wang

    Full Text Available Brainstem encephalitis (BE and pulmonary edema (PE are notable complications of enterovirus 71 (EV71 infection.This study investigated the immunoregulatory characterizations of EV71 neurological complications by disease severity and milrinone treatment.Patients <18 years with virologically confirmed EV71 infections were enrolled and divided into 2 groups: the hand, foot, and mouth disease (HFMD or BE group, and the autonomic nervous system (ANS dysregulation or PE group. Cytokine and cyclic adenosine monophosphate (cAMP levels, and the regulatory T cell (Tregs profiles of the patients were determined.Patients with ANS dysregulation or PE exhibited significantly low frequency of CD4(+CD25(+Foxp3+ and CD4(+Foxp3(+ T cells compared with patients with HFMD or BE. The expression frequency of CD4-CD8- was also significantly decreased in patients with ANS dysregulation or PE. Among patients with ANS dysregulation or PE, the expression frequency of CD4+Foxp3+ increased markedly after milrinone treatment, and was associated with reduction of plasma levels IL-6, IL-8 and IL-10. Plasma concentrations of cAMP were significantly decreased in patients with ANS dysregulation or PE compared with patients with HFMD or BE; however, cAMP levels increased after milrinone treatment.These findings suggested decreased different regulatory T populations and cAMP expression correlate with increased EV71 disease severity. Improved outcome after milrinone treatment may associate with increased regulatory T populations, cAMP expression and modulation of cytokines levels.

  4. Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks.

    Directory of Open Access Journals (Sweden)

    Ming He

    2011-06-01

    Full Text Available Cyclic dimeric GMP (c-di-GMP is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1, which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol. To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.

  5. Ribozyme Activity of RNA Nonenzymatically Polymerized from 3′,5′-Cyclic GMP

    Directory of Open Access Journals (Sweden)

    Samanta Pino

    2013-12-01

    Full Text Available 3′,5′-Cyclic GMP spontaneously nonenzymatically polymerizes in a base-catalyzed reaction affording G oligonucleotides. When reacted with fully or partially sequence-complementary RNA (oligo C, the abiotically generated oligo G RNA displays a typical ribozyme activity consisting of terminal ligation accompanied by cleavage of an internal phosphate site of the donor oligonucleotide stem upon attack of the acceptor 3′ terminal OH. This reaction is dubbed Ligation following Intermolecular Cleavage (LIC. In a prebiotic perspective, the ability of oligo G polynucleotides to react with other sequences outlines a simple and possible evolutionary scenario based on the autocatalytic properties of RNA.

  6. Effect of Sodium-Potassium Pump Inhibitors and Membrane-Depolarizing Agents on Sodium Nitroprusside-Induced Relaxation and Cyclic Guanosine Monophosphate Accumulation in Rat Aorta

    National Research Council Canada - National Science Library

    Rapoport, Robert M; Schwartz, Karen; Murad, Ferid

    1985-01-01

    ... or tetraethylammonium, membrane-depolarizing agents, inhibited relaxation to nitroprusside. These conditions had little or no effect on the elevated cyclic guanosine monophosphate levels at a concentration of nitroprusside (0.1 μM...

  7. Adenosine 3':5'-cyclic monophosphate in higher plants: Isolation and characterization of adenosine 3':5'-cyclic monophosphate from Kalanchoe and Agave.

    Science.gov (United States)

    Ashton, A R; Polya, G M

    1977-07-01

    1.3':5'-Cyclic AMP was extensively purified from Kalanchoe daigremontiana and Agave americana by neutral alumina and anion- and cation-exchange column chromatography. Inclusion of 3':5'-cyclic [8-3H]AMP from the point of tissue extraction permitted calculation of yields. The purification procedure removed contaminating material that was shown to interfere with the 3':5'-cyclic AMP estimation and characterization procedures. 2. The partially purified 3':5'-cyclic AMP was quantified by means of a radiochemical saturation assay using an ox heart 3':5'-cyclic AMP-binding protein and by an assay involving activation of a mammalian protein kinase. 3. The plant 3':5'-cyclic AMP co-migrated with 3':5'-cyclic [8-3H]AMP on cellulose chromatography, poly(ethyleneimine)-cellulose chromatography and silica-gel t.l.c. developed with several solvent systems. 4. The plant 3':5'-cyclic AMP was degraded by ox heart 3':5'-cyclic nucleotide phosphodiesterase at the same rates as authentic 3':5'-cyclic AMP. 1-Methyl-3-isobutylxanthine (1 mM), a specific inhibitor of the 3':5'-cyclic nucleotide phosphodieterase, completely inhibited such degradation. 5. The concentrations of 3':5'-cyclic AMP satisfying the above criteria in Kalanchoe and Agave were 2-6 and 1 pmol/g fresh wt. respectively. Possible bacterial contribution to these analyses was estimated to be less than 0.002pmol/g fresh wt. Evidence for the occurrence of 3':5'-cyclic AMP in plants is discussed.

  8. Cyclic GMP-AMP Containing Mixed Phosphodiester Linkages Is An Endogenous High Affinity Ligand for STING

    Science.gov (United States)

    Zhang, Xu; Shi, Heping; Wu, Jiaxi; Zhang, Xuewu; Sun, Lijun; Chen, Chuo; Chen, Zhijian J.

    2013-01-01

    The presence of microbial or self DNA in the cytoplasm of mammalian cells is a danger signal detected by the DNA sensor cyclic-GMP-AMP (cGAMP) synthase (cGAS), which catalyzes the production of cGAMP that in turn serves as a second messenger to activate innate immune responses. Here we show that endogenous cGAMP in mammalian cells contains two distinct phosphodiester linkages, one between 2′-OH of GMP and 5′-phosphate of AMP, and the other between 3′-OH of AMP and 5′-phosphate of GMP. This molecule, termed 2′3′-cGAMP, is unique in that it binds to the adaptor protein STING with a much greater affinity than cGAMP molecules containing other combinations of phosphodiester linkages. The crystal structure of STING bound to 2′3′-cGAMP revealed the structural basis of this high-affinity binding and a ligand-induced conformational change in STING that may underlie its activation. PMID:23747010

  9. Cyclic-di-GMP signalling meets extracellular polysaccharide synthesis in Bacillus subtilis.

    Science.gov (United States)

    Kampf, Jan; Stülke, Jörg

    2017-06-01

    In order to resist harmful environmental conditions, many bacteria form multicellular aggregates called biofilms. In these biofilms, they protect themselves in a self-produced matrix consisting of extracellular polysaccharides, proteins and DNA. In many bacteria, biofilm formation is stimulated in the presence of the second messenger cyclic di-GMP. In this issue of Environmental Microbiology Reports, Bedrunka and Graumann have studied matrix production by the proteins encoded in the Bacillus subtilis ydaJKLMN operon. For the first time, they were able to provide a link between c-di-GMP signalling and matrix production in this bacterium. The work demonstrates that the c-di-GMP receptor protein YdaK forms a membrane-bound complex with the YdaM and YdaN proteins, and that this interaction with YdaK is required for polysaccharide production by YdaL, YdaM and YdaN. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. The nitric oxide-cyclic GMP pathway regulates FoxO and alters dopaminergic neuron survival in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tomoko Kanao

    Full Text Available Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA neurodegeneration in a Drosophila model of Parkinson's disease (PD, in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP-dependent kinase II (cGKII also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS and soluble guanylyl cyclase (sGC also increased FoxO's activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD.

  11. Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems.

    Science.gov (United States)

    Roelofs, Kevin G; Jones, Christopher J; Helman, Sarah R; Shang, Xiaoran; Orr, Mona W; Goodson, Jonathan R; Galperin, Michael Y; Yildiz, Fitnat H; Lee, Vincent T

    2015-10-01

    Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule that regulates a variety of complex processes through a diverse set of c-di-GMP receptor proteins. We have utilized a systematic approach to identify c-di-GMP receptors from the pathogen Vibrio cholerae using the Differential Radial Capillary Action of Ligand Assay (DRaCALA). The DRaCALA screen identified a majority of known c-di-GMP binding proteins in V. cholerae and revealed a novel c-di-GMP binding protein, MshE (VC0405), an ATPase associated with the mannose sensitive hemagglutinin (MSHA) type IV pilus. The known c-di-GMP binding proteins identified by DRaCALA include diguanylate cyclases, phosphodiesterases, PilZ domain proteins and transcription factors VpsT and VpsR, indicating that the DRaCALA-based screen of open reading frame libraries is a feasible approach to uncover novel receptors of small molecule ligands. Since MshE lacks the canonical c-di-GMP-binding motifs, a truncation analysis was utilized to locate the c-di-GMP binding activity to the N-terminal T2SSE_N domain. Alignment of MshE homologs revealed candidate conserved residues responsible for c-di-GMP binding. Site-directed mutagenesis of these candidate residues revealed that the Arg9 residue is required for c-di-GMP binding. The ability of c-di-GMP binding to MshE to regulate MSHA dependent processes was evaluated. The R9A allele, in contrast to the wild type MshE, was unable to complement the ΔmshE mutant for the production of extracellular MshA to the cell surface, reduction in flagella swimming motility, attachment to surfaces and formation of biofilms. Testing homologs of MshE for binding to c-di-GMP identified the type II secretion ATPase of Pseudomonas aeruginosa (PA14_29490) as a c-di-GMP receptor, indicating that type II secretion and type IV pili are both regulated by c-di-GMP.

  12. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours.

    Science.gov (United States)

    Yuan, Xiaochen; Khokhani, Devanshi; Wu, Xiaogang; Yang, Fenghuan; Biener, Gabriel; Koestler, Benjamin J; Raicu, Valerica; He, Chenyang; Waters, Christopher M; Sundin, George W; Tian, Fang; Yang, Ching-Hong

    2015-11-01

    Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.

  13. Hindbrain raphe stimulation boosts cyclic adenosine monophosphate and signaling proteins in the injured spinal cord.

    Science.gov (United States)

    Carballosa-Gonzalez, Melissa M; Vitores, Alberto; Hentall, Ian D

    2014-01-16

    Early recovery from incomplete spinal cord contusion is improved by prolonged stimulation of the hindbrain's serotonergic nucleus raphe magnus (NRM). Here we examine whether increases in cyclic adenosine monophosphate (cAMP), an intracellular signaling molecule with several known restorative actions on damaged neural tissue, could play a role. Subsequent changes in cAMP-dependent phosphorylation of protein kinase A (PKA) and PKA-dependent phosphorylation of the transcription factor "cAMP response element-binding protein" (CREB) are also analyzed. Rats with moderate weight-drop injury at segment T8 received 2h of NRM stimulation beginning three days after injury, followed immediately by separate extraction of cervical, thoracic and lumbar spinal cord for immunochemical assay. Controls lacked injury, stimulation or both. Injury reduced cAMP levels to under half of normal in all three spinal regions. NRM stimulation completely restored these levels, while producing no significant change in non-injured rats. Pretreatment with the 5-HT7 receptor antagonist pimozide (1 mg/kg, intraperitoneal) lowered cAMP in non-injured rats to injury amounts, which were unchanged by NRM stimulation. The phosphorylated fraction of PKA (pPKA) and CREB (pCREB) was reduced significantly in all three regions after SCI and restored by NRM stimulation, except for pCREB in lumbar segments. In conclusion, SCI produces spreading deficits in cAMP, pPKA and pCREB that are reversible by Gs protein-coupled 5-HT receptors responding to raphe-spinal activity, although these signaling molecules are not reactive to NRM stimulation in normal tissue. These findings can partly explain the benefits of NRM stimulation after SCI. © 2013 Published by Elsevier B.V.

  14. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    Science.gov (United States)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  15. Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway.

    Science.gov (United States)

    Wang, Chang; Ruan, Ting; Liu, Jiyan; He, Bin; Zhou, Qunfang; Jiang, Guibin

    2015-05-18

    Perfluorinated iodine alkanes (PFIs) are used widely in the organic fluorine industry. Increased production of PFIs has caused environmental health concerns. To evaluate the potential endocrine-disrupting effect of PFIs, we investigated the effects of perfluorooctyl iodide (PFOI) on steroidogenesis in human adrenocortical carcinoma cells (H295R). Levels of aldosterone, cortisol, 17β-estradiol, and testosterone were measured in H295R culture medium upon treatment with perfluorooctanoic acid (PFOA) and PFIs. Expression of 10 steroidogenic genes (StAR, HMGR, CYP11A1, 3βHSD2, 17βHSD, CYP17, CYP21, CYP11B1, CYP11B2, and CYP19) was measured by real-time polymerase chain reaction. Levels of cyclic adenosine monophosphate (cAMP) and adenylate cyclase (AC) activity were measured to understand the underlying mechanism of steroidogenic perturbations. Levels of production of aldosterone, cortisol, and 17β-estradiol were elevated significantly, and the level of testosterone generation decreased upon treatment with 100 μM PFOI. Similar to the effect induced by forskolin (AC activator), expression of all 10 genes involved in the synthesis of steroid hormones was upregulated significantly upon exposure to 100 μM PFOI. PFOA had no effect on steroid hormone production or steroidogenic gene expression even though it is highly structurally similar with PFOI. Therefore, the terminal -CF2I group in PFOI could be a critical factor for mediation of steroidogenesis. PFOI increased AC activity and cAMP levels in H295R cells, which implied an underlying mechanism for the disturbance of steroidogenesis. These data suggest that PFOI may act as an AC activator, thereby stimulating steroidogenesis by activating a cAMP signaling pathway.

  16. Cyclic-di-GMP and cyclic-di-AMP activate the NLRP3 inflammasome

    OpenAIRE

    Abdul-Sater, Ali A.; Tattoli, Ivan; Jin, Lei; Grajkowski, Andrzej; Levi, Assaf; Koller, Beverly H.; Irving C Allen; Beaucage, Serge L.; Fitzgerald, Katherine A.; Ting, Jenny P.-Y.; Cambier, John C.; Stephen E Girardin; Schindler, Christian

    2013-01-01

    Cyclic dinucleotides have been recently shown to induce type I interferon secretion. This study shows they also activate the NLRP3 inflammasome to stimulate robust IL-1b secretion through a novel pathway that does not generate mitochondrial ROS.

  17. Three cdg Operons Control Cellular Turnover of Cyclic Di-GMP in Acetobacter xylinum: Genetic Organization and Occurrence of Conserved Domains in Isoenzymes

    OpenAIRE

    Tal, Rony; Wong, Hing C; Calhoon, Roger; Gelfand, David; Fear, Anna Lisa; Volman, Gail; Mayer, Raphael; Ross, Peter; Amikam, Dorit; Weinhouse, Haim; Cohen, Avital; Sapir, Shai; Ohana, Patricia; Benziman, Moshe

    1998-01-01

    Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of β-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguany...

  18. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine.

    Science.gov (United States)

    Koestler, Benjamin J; Waters, Christopher M

    2014-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase of intracellular c-di-GMP is negated by bicarbonate, and that this interaction is dependent on pH, suggesting that V. cholerae uses these 2 environmental cues to sense and adapt to its relative location in the small intestine. Increased intracellular c-di-GMP by bile is attributed to increased c-di-GMP synthesis by 3 diguanylate cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) in the presence of bile. The molecular mechanisms by which bile controls the activity of the 3 DGCs and the regulators of bile-mediated transcriptional repression of the PDE are not yet known. Moreover, the impact of varying concentrations of bile and bicarbonate at different locations within the small intestine and the response of V. cholerae to these cues remains unclear. The native microbiome and pharmaceuticals, such as omeprazole, can impact bile and pH within the small intestine, suggesting these are potential unappreciated factors that may alter V. cholerae pathogenesis.

  19. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes.

    Science.gov (United States)

    Webster, C R; Anwer, M S

    1998-05-01

    Cyclic adenosine monophosphate (cAMP) has been shown to modulate apoptosis. To evaluate the role of cAMP in bile acid-induced hepatocyte apoptosis, we studied the effect of agents that increase cAMP on the induction of apoptosis by glycochenodeoxycholate (GCDC) in cultured rat hepatocytes. GCDC induced apoptosis in 26.5%+/-1.1% of hepatocytes within 2 hours. Twenty-minute pretreatment of hepatocytes with 100 micromol/L 8-(4-chlorothiophenyl) cAMP (CP-cAMP) resulted in a reduction in the amount of apoptosis to 35.2%+/-3.8% of that seen in hepatocytes treated with GCDC alone. Other agents that increase intracellular cAMP, including dibutyryl cAMP (100 micromol/L), glucagon (200 nmol/L), and a combination of forskolin (20 micromol/L) and 3-isobutyl-1-methylxanthine (20 micromol/L), also inhibited GCDC-induced apoptosis to a similar extent. Pretreatment with the protein kinase A (PKA) inhibitor, KT5720, prevented the protective effect of CP-cAMP and inhibited CP-cAMP-induced activation of PKA activity. Inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin (50 nmol/L), or Ly 294002 (20 micromol/L) also prevented the cytoprotective effect of cAMP. PI3K assays confirmed that wortmannin (50 nmol/L) inhibited PI3K activity, while CP-cAMP had no effect on the activity of this lipid kinase. GCDC increased mitogen-activated protein kinase (MAPK) activity, but had no effect on stress-activated protein kinase (SAPK) activity in hepatocytes. cAMP decreased basal and GCDC-induced MAPK activity and increased SAPK activity. The MAPK kinase inhibitor, PD 98059, inhibited both GCDC-mediated MAPK activation and GCDC-induced apoptosis. 1) agents that increase intracellular cAMP protect against hepatocyte apoptosis induced by hydrophobic bile acids; 2) activation of MAPK by GCDC may be involved in bile acid-induced apoptosis; and 3) cAMP-mediated cytoprotection against bile acid-induced apoptosis appears to involve PKA, MAPK, and PI3K.

  20. Co-crystal structures of PKG Iβ (92-227 with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding.

    Directory of Open Access Journals (Sweden)

    Jeong Joo Kim

    Full Text Available Cyclic GMP-dependent protein kinases (PKGs are central mediators of the NO-cGMP signaling pathway and phosphorylate downstream substrates that are crucial for regulating smooth muscle tone, platelet activation, nociception and memory formation. As one of the main receptors for cGMP, PKGs mediate most of the effects of cGMP elevating drugs, such as nitric oxide-releasing agents and phosphodiesterase inhibitors which are used for the treatment of angina pectoris and erectile dysfunction, respectively.We have investigated the mechanism of cyclic nucleotide binding to PKG by determining crystal structures of the amino-terminal cyclic nucleotide-binding domain (CNBD-A of human PKG I bound to either cGMP or cAMP. We also determined the structure of CNBD-A in the absence of bound nucleotide. The crystal structures of CNBD-A with bound cAMP or cGMP reveal that cAMP binds in either syn or anti configurations whereas cGMP binds only in a syn configuration, with a conserved threonine residue anchoring both cyclic phosphate and guanine moieties. The structure of CNBD-A in the absence of bound cyclic nucleotide was similar to that of the cyclic nucleotide bound structures. Surprisingly, isothermal titration calorimetry experiments demonstrated that CNBD-A binds both cGMP and cAMP with a relatively high affinity, showing an approximately two-fold preference for cGMP.Our findings suggest that CNBD-A binds cGMP in the syn conformation through its interaction with Thr193 and an unusual cis-peptide forming residues Leu172 and Cys173. Although these studies provide the first structural insights into cyclic nucleotide binding to PKG, our ITC results show only a two-fold preference for cGMP, indicating that other domains are required for the previously reported cyclic nucleotide selectivity.

  1. Functional roles of a tetraloop/receptor interacting module in a cyclic di-GMP riboswitch.

    Science.gov (United States)

    Fujita, Yuki; Tanaka, Takahiro; Furuta, Hiroyuki; Ikawa, Yoshiya

    2012-02-01

    Riboswitches are a class of structural RNAs that regulate transcription and translation through specific recognition of small molecules. Riboswitches are attractive not only as drug targets for novel antibiotics but also as modular tools for controlling gene expression. Sequence comparison of a class of riboswitches that sense cyclic di-GMP (type-I c-di-GMP riboswitches) revealed that this type of riboswitch frequently shows a GAAA loop/receptor interaction between P1 and P3 elements. In the crystal structures of a type-I c-di-GMP riboswitch from Vibrio cholerae (the Vc2 riboswitch), the GNRA loop/receptor interaction assembled P2 and P3 stems to organize a ligand-binding pocket. In this study, the functional importance of the GAAA loop-receptor interaction in the Vc2 riboswitch was examined. A series of variant Vc2 riboswitches with mutations in the GAAA loop/receptor interaction were assayed for their switching abilities. In mutants with mutations in the P2 GAAA loop, expression of the reporter gene was reduced to approximately 40% - 60% of that in the wild-type. However, mutants in which the P3 receptor motif was substituted with base pairs were as active as the wild-type. These results suggested that the GAAA loop/receptor interaction does not simply establish the RNA 3D structure but docking of P2 GAAA loop reduces the flexibility of the GAAA receptor motif in the P3 element. This mechanism was supported by a variant riboswitch bearing a theophylline aptamer module in P3 the structural rigidity of which could be modulated by the small molecule theophylline.

  2. Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP.

    Science.gov (United States)

    Chatterjee, Debashree; Cooley, Richard B; Boyd, Chelsea D; Mehl, Ryan A; O'Toole, George A; Sondermann, Holger

    2014-01-01

    Stable surface adhesion of cells is one of the early pivotal steps in bacterial biofilm formation, a prevalent adaptation strategy in response to changing environments. In Pseudomonas fluorescens, this process is regulated by the Lap system and the second messenger cyclic-di-GMP. High cytoplasmic levels of cyclic-di-GMP activate the transmembrane receptor LapD that in turn recruits the periplasmic protease LapG, preventing it from cleaving a cell surface-bound adhesin, thereby promoting cell adhesion. In this study, we elucidate the molecular basis of LapG regulation by LapD and reveal a remarkably sensitive switching mechanism that is controlled by LapD's HAMP domain. LapD appears to act as a coincidence detector, whereby a weak interaction of LapG with LapD transmits a transient outside-in signal that is reinforced only when cyclic-di-GMP levels increase. Given the conservation of key elements of this receptor system in many bacterial species, the results are broadly relevant for cyclic-di-GMP- and HAMP domain-regulated transmembrane signaling.

  3. Cyclic GMP-AMP Synthase is an Innate Immune Sensor of HIV and Other Retroviruses

    Science.gov (United States)

    Gao, Daxing; Wu, Jiaxi; Wu, You-Tong; Du, Fenghe; Aroh, Chukwuemika; Yan, Nan; Sun, Lijun; Chen, Zhijian J.

    2013-01-01

    Retroviruses, including HIV, can activate innate immune responses, but the host sensors for retroviruses are largely unknown. Here we show that HIV infection activates cyclic-GMP-AMP (cGAMP) synthase (cGAS) to produce cGAMP, which binds to and activates the adaptor protein STING to induce type-I interferons and other cytokines. Inhibitors of HIV reverse transcriptase, but not integrase, abrogated interferon-β induction by the virus, suggesting that the reverse transcribed HIV DNA triggers the innate immune response. Knockout or knockdown of cGAS in mouse or human cell lines blocked cytokine induction by HIV, murine leukemia virus (MLV) and Simian immunodeficiency virus (SIV). These results indicate that cGAS is an innate immune sensor of HIV and other retroviruses. PMID:23929945

  4. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein.

  5. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP.

    Science.gov (United States)

    Kellenberger, Colleen A; Wilson, Stephen C; Hickey, Scott F; Gonzalez, Tania L; Su, Yichi; Hallberg, Zachary F; Brewer, Thomas F; Iavarone, Anthony T; Carlson, Hans K; Hsieh, Yu-Fang; Hammond, Ming C

    2015-04-28

    Cyclic dinucleotides are an expanding class of signaling molecules that control many aspects of bacterial physiology. A synthase for cyclic AMP-GMP (cAG, also referenced as 3'-5', 3'-5' cGAMP) called DncV is associated with hyperinfectivity of Vibrio cholerae but has not been found in many bacteria, raising questions about the prevalence and function of cAG signaling. We have discovered that the environmental bacterium Geobacter sulfurreducens produces cAG and uses a subset of GEMM-I class riboswitches (GEMM-Ib, Genes for the Environment, Membranes, and Motility) as specific receptors for cAG. GEMM-Ib riboswitches regulate genes associated with extracellular electron transfer; thus cAG signaling may control aspects of bacterial electrophysiology. These findings expand the role of cAG beyond organisms that harbor DncV and beyond pathogenesis to microbial geochemistry, which is important to environmental remediation and microbial fuel cell development. Finally, we have developed an RNA-based fluorescent biosensor for live-cell imaging of cAG. This selective, genetically encodable biosensor will be useful to probe the biochemistry and cell biology of cAG signaling in diverse bacteria.

  6. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.

    Science.gov (United States)

    Lorenz, Robin; Moon, Eui-Whan; Kim, Jeong Joo; Schmidt, Sven H; Sankaran, Banumathi; Pavlidis, Ioannis V; Kim, Choel; Herberg, Friedrich W

    2017-07-06

    Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator.

    Science.gov (United States)

    Kuchma, S L; Delalez, N J; Filkins, L M; Snavely, E A; Armitage, J P; O'Toole, G A

    2015-02-01

    The second messenger cyclic diguanylate (c-di-GMP) plays a critical role in the regulation of motility. In Pseudomonas aeruginosa PA14, c-di-GMP inversely controls biofilm formation and surface swarming motility, with high levels of this dinucleotide signal stimulating biofilm formation and repressing swarming. P. aeruginosa encodes two stator complexes, MotAB and MotCD, that participate in the function of its single polar flagellum. Here we show that the repression of swarming motility requires a functional MotAB stator complex. Mutating the motAB genes restores swarming motility to a strain with artificially elevated levels of c-di-GMP as well as stimulates swarming in the wild-type strain, while overexpression of MotA from a plasmid represses swarming motility. Using point mutations in MotA and the FliG rotor protein of the motor supports the conclusion that MotA-FliG interactions are critical for c-di-GMP-mediated swarming inhibition. Finally, we show that high c-di-GMP levels affect the localization of a green fluorescent protein (GFP)-MotD fusion, indicating a mechanism whereby this second messenger has an impact on MotCD function. We propose that when c-di-GMP level is high, the MotAB stator can displace MotCD from the motor, thereby affecting motor function. Our data suggest a newly identified means of c-di-GMP-mediated control of surface motility, perhaps conserved among Pseudomonas, Xanthomonas, and other organisms that encode two stator systems.

  8. Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network.

    Science.gov (United States)

    Ferreira, Rosana B R; Chodur, Daniel M; Antunes, Luis Caetano M; Trimble, Michael J; McCarter, Linda L

    2012-03-01

    The Vibrio parahaemolyticus Scr system modulates decisions pertinent to surface colonization by affecting the cellular level of cyclic dimeric GMP (c-di-GMP). In this work, we explore the scope and mechanism of this regulation. Transcriptome comparison of ΔscrABC and wild-type strains revealed expression differences with respect to ∼100 genes. Elevated c-di-GMP repressed genes in the surface-sensing regulon, including those encoding the lateral flagellar and type III secretion systems and N-acetylglucosamine-binding protein GpbA while inducing genes encoding other cell surface molecules and capsular polysaccharide. The transcription of a few regulatory genes was also affected, and the role of one was characterized. Mutations in cpsQ suppressed the sticky phenotype of scr mutants. cpsQ encodes one of four V. parahaemolyticus homologs in the CsgD/VpsT family, members of which have been implicated in c-di-GMP signaling. Here, we demonstrate that CpsQ is a c-di-GMP-binding protein. By using a combination of mutant and reporter analyses, CpsQ was found to be the direct, positive regulator of cpsA transcription. This c-di-GMP-responsive regulatory circuit could be reconstituted in Escherichia coli, where a low level of this nucleotide diminished the stability of CpsQ. The molecular interplay of additional known cps regulators was defined by establishing that CpsS, another CsgD family member, repressed cpsR, and the transcription factor CpsR activated cpsQ. Thus, we are developing a connectivity map of the Scr decision-making network with respect to its wiring and output strategies for colonizing surfaces and interaction with hosts; in doing so, we have isolated and reproduced a c-di-GMP-sensitive regulatory module in the circuit.

  9. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding.

    Science.gov (United States)

    Ouyang, Songying; Song, Xianqiang; Wang, Yaya; Ru, Heng; Shaw, Neil; Jiang, Yan; Niu, Fengfeng; Zhu, Yanping; Qiu, Weicheng; Parvatiyar, Kislay; Li, Yang; Zhang, Rongguang; Cheng, Genhong; Liu, Zhi-Jie

    2012-06-29

    STING is an essential signaling molecule for DNA and cyclic di-GMP (c-di-GMP)-mediated type I interferon (IFN) production via TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) pathway. It contains an N-terminal transmembrane region and a cytosolic C-terminal domain (CTD). Here, we describe crystal structures of STING CTD alone and complexed with c-di-GMP in a unique binding mode. The strictly conserved aa 153-173 region was shown to be cytosolic and participated in dimerization via hydrophobic interactions. The STING CTD functions as a dimer and the dimerization was independent of posttranslational modifications. Binding of c-di-GMP enhanced interaction of a shorter construct of STING CTD (residues 139-344) with TBK1. This suggests an extra TBK1 binding site, other than serine 358. This study provides a glimpse into the unique architecture of STING and sheds light on the mechanism of c-di-GMP-mediated TBK1 signaling.

  10. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kong, Weina; Zhao, Jingru; Kang, Huaping; Zhu, Miao; Zhou, Tianhong; Deng, Xin; Liang, Haihua

    2015-09-30

    AlgR is a key transcriptional regulator required for the expression of multiple virulence factors, including type IV pili and alginate in Pseudomonas aeruginosa. However, the regulon and molecular regulatory mechanism of AlgR have yet to be fully elucidated. Here, among 157 loci that were identified by a ChIP-seq assay, we characterized a gene, mucR, which encodes an enzyme that synthesizes the intracellular second messenger cyclic diguanylate (c-di-GMP). A ΔalgR strain produced lesser biofilm than did the wild-type strain, which is consistent with a phenotype controlled by c-di-GMP. AlgR positively regulates mucR via direct binding to its promoter. A ΔalgRΔmucR double mutant produced lesser biofilm than did the single ΔalgR mutant, demonstrating that c-di-GMP is a positive regulator of biofilm formation. AlgR controls the levels of c-di-GMP synthesis via direct regulation of mucR. In addition, the cognate sensor of AlgR, FimS/AlgZ, also plays an important role in P. aeruginosa virulence. Taken together, this study provides new insights into the AlgR regulon and reveals the involvement of c-di-GMP in the mechanism underlying AlgR regulation.

  11. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation

    DEFF Research Database (Denmark)

    Chua, Song Lin; Hultqvist, Louise D; Yuan, Mingjun;

    2015-01-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global secondary bacterial messenger that controls the formation of drug-resistant multicellular biofilms. Lowering the intracellular c-di-GMP content can disperse biofilms, and it is proposed as a biofilm eradication strategy...

  12. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.

    Science.gov (United States)

    Trampari, Eleftheria; Stevenson, Clare E M; Little, Richard H; Wilhelm, Thomas; Lawson, David M; Malone, Jacob G

    2015-10-01

    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins.

  13. Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP.

    Science.gov (United States)

    Sundriyal, Amit; Massa, Claudia; Samoray, Dietrich; Zehender, Fabian; Sharpe, Timothy; Jenal, Urs; Schirmer, Tilman

    2014-03-01

    The universal second messenger cyclic di-GMP (cdG) is involved in the regulation of a diverse range of cellular processes in bacteria. The intracellular concentration of the dinucleotide is determined by the opposing actions of diguanylate cyclases and cdG-specific phosphodiesterases (PDEs). Whereas most PDEs have accessory domains that are involved in the regulation of their activity, the regulatory mechanism of this class of enzymes has remained unclear. Here, we use biophysical and functional analyses to show that the isolated EAL domain of a PDE from Escherichia coli (YahA) is in a fast thermodynamic monomer-dimer equilibrium, and that the domain is active only in its dimeric state. Furthermore, our data indicate thermodynamic coupling between substrate binding and EAL dimerization with the dimerization affinity being increased about 100-fold upon substrate binding. Crystal structures of the YahA-EAL domain determined under various conditions (apo, Mg(2+), cdG·Ca(2+) complex) confirm structural coupling between the dimer interface and the catalytic center. The built-in regulatory properties of the EAL domain probably facilitate its modular, functional combination with the diverse repertoire of accessory domains.

  14. Soluble guanylyl cyclase-activated cyclic GMP-dependent protein kinase inhibits arterial smooth muscle cell migration independent of VASP-serine 239 phosphorylation.

    Science.gov (United States)

    Holt, Andrew W; Martin, Danielle N; Shaver, Patti R; Adderley, Shaquria P; Stone, Joshua D; Joshi, Chintamani N; Francisco, Jake T; Lust, Robert M; Weidner, Douglas A; Shewchuk, Brian M; Tulis, David A

    2016-09-01

    Coronary artery disease (CAD) accounts for over half of all cardiovascular disease-related deaths. Uncontrolled arterial smooth muscle (ASM) cell migration is a major component of CAD pathogenesis and efforts aimed at attenuating its progression are clinically essential. Cyclic nucleotide signaling has long been studied for its growth-mitigating properties in the setting of CAD and other vascular disorders. Heme-containing soluble guanylyl cyclase (sGC) synthesizes cyclic guanosine monophosphate (cGMP) and maintains vascular homeostasis predominantly through cGMP-dependent protein kinase (PKG) signaling. Considering that reactive oxygen species (ROS) can interfere with appropriate sGC signaling by oxidizing the cyclase heme moiety and so are associated with several CVD pathologies, the current study was designed to test the hypothesis that heme-independent sGC activation by BAY 60-2770 (BAY60) maintains cGMP levels despite heme oxidation and inhibits ASM cell migration through phosphorylation of the PKG target and actin-binding vasodilator-stimulated phosphoprotein (VASP). First, using the heme oxidant ODQ, cGMP content was potentiated in the presence of BAY60. Using a rat model of arterial growth, BAY60 significantly reduced neointima formation and luminal narrowing compared to vehicle (VEH)-treated controls. In rat ASM cells BAY60 significantly attenuated cell migration, reduced G:F actin, and increased PKG activity and VASP Ser239 phosphorylation (pVASP·S239) compared to VEH controls. Site-directed mutagenesis was then used to generate overexpressing full-length wild type VASP (FL-VASP/WT), VASP Ser239 phosphorylation-mimetic (FL-VASP/239D) and VASP Ser239 phosphorylation-resistant (FL-VASP/239A) ASM cell mutants. Surprisingly, FL-VASP/239D negated the inhibitory effects of FL-VASP/WT and FL-VASP/239A cells on migration. Furthermore, when FL-VASP mutants were treated with BAY60, only the FL-VASP/239D group showed reduced migration compared to its VEH controls

  15. Magnesium sulphate increases lymphocyte adenosine 3':5'-cyclic monophosphate in humans.

    Science.gov (United States)

    Von Mandach, U; Bürgi, M; Huch, R; Huch, A

    1993-01-01

    We determined the effect of i.v. magnesium sulphate, which is often combined with beta 2-adrenoceptor agonists for tocolytic therapy, on lymphocyte cyclic AMP production, extracellular magnesium and blood calcium concentrations. Sixteen healthy volunteers received i.v. magnesium sulphate 1 g h-1 over 8 h; seven volunteers also had infusion of NaCl 18 mg h-1 as control. Venous blood was taken pre- and post-infusion to determine basal lymphocyte cyclic AMP and the increase evoked by 0.1 mM isoprenaline, as well as serum and plasma concentrations of total and non-protein-bound magnesium and calcium. Following magnesium sulphate there was a significant rise in the isoprenaline-evoked increase in cyclic AMP (P < 0.05) and in the magnesium concentrations (P < 0.01) and a decrease in the free calcium concentration (P < 0.01). PMID:8385975

  16. Magnesium sulphate increases lymphocyte adenosine 3':5'-cyclic monophosphate in humans.

    Science.gov (United States)

    Von Mandach, U; Bürgi, M; Huch, R; Huch, A

    1993-03-01

    We determined the effect of i.v. magnesium sulphate, which is often combined with beta 2-adrenoceptor agonists for tocolytic therapy, on lymphocyte cyclic AMP production, extracellular magnesium and blood calcium concentrations. Sixteen healthy volunteers received i.v. magnesium sulphate 1 g h-1 over 8 h; seven volunteers also had infusion of NaCl 18 mg h-1 as control. Venous blood was taken pre- and post-infusion to determine basal lymphocyte cyclic AMP and the increase evoked by 0.1 mM isoprenaline, as well as serum and plasma concentrations of total and non-protein-bound magnesium and calcium. Following magnesium sulphate there was a significant rise in the isoprenaline-evoked increase in cyclic AMP (P < 0.05) and in the magnesium concentrations (P < 0.01) and a decrease in the free calcium concentration (P < 0.01).

  17. Cyclic nucleotide specificity of the activator and catalytic sites of a cGMP-stimulated cGMP phosphodiesterase from Dictyostelium discoideum

    NARCIS (Netherlands)

    Kesbeke, Fanja; Baraniak, Janina; Bulgakov, Roman; Jastorff, Bernd; Morr, Michael; Petridis, Georg; Stec, Wojciech J.; Seela, Frank; Haastert, Peter J.M. van

    1985-01-01

    The cellular slime mold Dictyostelium discoideum has an intracellular phosphodiesterase which specifically hydrolyzes cGMP. The enzyme is activated by low cGMP concentrations, and is involved in the reduction of chemoattractant-mediated elevations of cGMP levels. The interaction of 20 cGMP derivativ

  18. [Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism].

    Science.gov (United States)

    Makuch, Edyta; Matuszyk, Janusz

    2012-07-20

    PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regions: NHR1 and NHR2. Their presence defines the enzyme's intracellular localization, thus determining its participation in particular signaling cascades. Due to the properties of PDE3 this enzyme has exceptional importance for the cross-talk between cAMP-dependent signaling and other cascades. There are two different mechanisms of action of PDE3 enzymes in cell signaling pathways. In many signaling cascades assembly of a signalosome is necessary for phosphorylation and activation of the PDE3 proteins. In response to certain hormones and growth factors, PDE3 merges the metabolism of cAMP with protein kinase-dependent signaling pathways. PDE3 also controls the level of cAMP with regard to the alternating concentration of cGMP. This effect occurs in signaling cascades activated by natriuretic peptide.

  19. Systematic Nomenclature for GGDEF and EAL Domain-Containing Cyclic Di-GMP Turnover Proteins of Escherichia coli.

    Science.gov (United States)

    Hengge, Regine; Galperin, Michael Y; Ghigo, Jean-Marc; Gomelsky, Mark; Green, Jeffrey; Hughes, Kelly T; Jenal, Urs; Landini, Paolo

    2016-01-01

    In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 "degenerate" enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies.

  20. The cyclic GMP/protein kinase G pathway as a therapeutic target in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Tuttle, Traci R; Mierzwa, Michelle L; Wells, Susanne I; Fox, Sejal R; Ben-Jonathan, Nira

    2016-01-28

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease with high mortality. Treatments, which can result in significant morbidity, have not substantially changed in three decades. The second messenger cyclic GMP (cGMP), which targets protein kinase G (PKG), is generated by guanylate cyclases (GCs), and is rapidly hydrolyzed by phosphodiesterases (PDEs). Activation of the cGMP/PKG pathway is antineoplastic in several cancer types, but its impact on HNSCC has not been fully exploited. We found differential expression of critical components of this pathway in four HNSCC cell lines. Several activators of soluble GC (sGC), as well as inhibitors of PDE5, increased intracellular cGMP, reduced cell viability, and induced apoptosis in HNSCC cells. The apoptotic effects of the sGC activator BAY 41-2272 and the PDE5 inhibitor Tadalafil (Cialis) were mediated by PKG. Furthermore, Tadalafil substantially reduced the growth of CAL27-derived tumors in athymic mice. Several drugs which either activate sGC or inhibit PDE5 are approved for treatment of nonmalignant conditions. These drugs could be repurposed as novel and effective therapeutics in patients with head and neck cancer.

  1. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein.

    Science.gov (United States)

    Tang, Qing; Yin, Kang; Qian, Hongliang; Zhao, Youwen; Wang, Wen; Chou, Shan-Ho; Fu, Yang; He, Jin

    2016-07-06

    Cyclic di-GMP is a ubiquitous second messenger that regulates diverse cellular processes in bacteria by binding to various protein or riboswitch effectors. In Bacillus thuringiensis BMB171, a c-di-GMP riboswitch termed Bc2 RNA resides in the 5'-untranslated region (5'-UTR) of an mRNA that encodes a collagen adhesion protein (Cap). The expression of cap was strongly repressed in parent strain BMB171 because of the presence of Bc2 RNA but was significantly promoted in the Bc2 RNA markerless deletion mutant. Bc2 RNA acts as a genetic "on" switch, which forms an anti-terminator structure to promote cap read-through transcription upon c-di-GMP binding. As a result, cap transcription was de-repressed under high c-di-GMP levels. Therefore, Bc2 RNA regulates cap expression using a repression/de-repression model. Bc2 RNA-regulated Cap was also found to be tightly associated with motility, aggregation, exopolysaccharide secretion, biofilm formation, and virulence of B. thuringiensis BMB171 against its host insect Helicoverpa armigera.

  2. Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Li-Hong Chen

    2014-08-01

    Full Text Available We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911, DgcB (Lmo1912 and DgcC (Lmo2174, that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131, PdeC (Lmo1914 and PdeD (Lmo0111, that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531 gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.

  3. Cyclic di-GMP-dependent signaling pathways in the pathogenic Firmicute Listeria monocytogenes.

    Science.gov (United States)

    Chen, Li-Hong; Köseoğlu, Volkan K; Güvener, Zehra T; Myers-Morales, Tanya; Reed, Joseph M; D'Orazio, Sarah E F; Miller, Kurt W; Gomelsky, Mark

    2014-08-01

    We characterized key components and major targets of the c-di-GMP signaling pathways in the foodborne pathogen Listeria monocytogenes, identified a new c-di-GMP-inducible exopolysaccharide responsible for motility inhibition, cell aggregation, and enhanced tolerance to disinfectants and desiccation, and provided first insights into the role of c-di-GMP signaling in listerial virulence. Genome-wide genetic and biochemical analyses of c-di-GMP signaling pathways revealed that L. monocytogenes has three GGDEF domain proteins, DgcA (Lmo1911), DgcB (Lmo1912) and DgcC (Lmo2174), that possess diguanylate cyclase activity, and three EAL domain proteins, PdeB (Lmo0131), PdeC (Lmo1914) and PdeD (Lmo0111), that possess c-di-GMP phosphodiesterase activity. Deletion of all phosphodiesterase genes (ΔpdeB/C/D) or expression of a heterologous diguanylate cyclase stimulated production of a previously unknown exopolysaccharide. The synthesis of this exopolysaccharide was attributed to the pssA-E (lmo0527-0531) gene cluster. The last gene of the cluster encodes the fourth listerial GGDEF domain protein, PssE, that functions as an I-site c-di-GMP receptor essential for exopolysaccharide synthesis. The c-di-GMP-inducible exopolysaccharide causes cell aggregation in minimal medium and impairs bacterial migration in semi-solid agar, however, it does not promote biofilm formation on abiotic surfaces. The exopolysaccharide also greatly enhances bacterial tolerance to commonly used disinfectants as well as desiccation, which may contribute to survival of L. monocytogenes on contaminated food products and in food-processing facilities. The exopolysaccharide and another, as yet unknown c-di-GMP-dependent target, drastically decrease listerial invasiveness in enterocytes in vitro, and lower pathogen load in the liver and gallbladder of mice infected via an oral route, which suggests that elevated c-di-GMP levels play an overall negative role in listerial virulence.

  4. Host Immune Response to Bacterial Cyclic Diguanylic Acid (c-di-GMP)

    Science.gov (United States)

    2009-07-01

    Materials and Methods c-di-GMP and chemicals used The c-di-GMP (Fig. 1) used in these studies was synthesized and prepared as previously described (19–24...godeoxynucleotide (ODN) 2216 (25). LPS endotoxin (Limulus amebocyte lysate assay) test A dose of 500 M c-di-GMP was tested for the presence of LPS endotoxin using...inoculation, 100 CFU of S. aureus New- bould 305 (ATCC 29740) were injected into each gland and the coloniza- tion was allowed for 10 h. Raw bacterial CFU

  5. "cAMP sponge": a buffer for cyclic adenosine 3', 5'-monophosphate.

    Directory of Open Access Journals (Sweden)

    Konstantinos Lefkimmiatis

    Full Text Available BACKGROUND: While intracellular buffers are widely used to study calcium signaling, no such tool exists for the other major second messenger, cyclic AMP (cAMP. METHODS/PRINCIPAL FINDINGS: Here we describe a genetically encoded buffer for cAMP based on the high-affinity cAMP-binding carboxy-terminus of the regulatory subunit RIbeta of protein kinase A (PKA. Addition of targeting sequences permitted localization of this fragment to the extra-nuclear compartment, while tagging with mCherry allowed quantification of its expression at the single cell level. This construct (named "cAMP sponge" was shown to selectively bind cAMP in vitro. Its expression significantly suppressed agonist-induced cAMP signals and the downstream activation of PKA within the cytosol as measured by FRET-based sensors in single living cells. Point mutations in the cAMP-binding domains of the construct rendered the chimera unable to bind cAMP in vitro or in situ. Cyclic AMP sponge was fruitfully applied to examine feedback regulation of gap junction-mediated transfer of cAMP in epithelial cell couplets. CONCLUSIONS: This newest member of the cAMP toolbox has the potential to reveal unique biological functions of cAMP, including insight into the functional significance of compartmentalized signaling events.

  6. Dissimilarities between methylene blue and cyanide on relaxation and cyclic GMP formation in endothelium-intact intrapulmonary artery caused by nitrogen oxide-containing vasodilators and acetylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Kadowitz, P.J.

    1986-01-01

    The objective of the present study was to ascertain whether cyanide shares the properties of methylene blue as a selective inhibitor of vascular smooth muscle relaxation elicited by agents that stimulate the formation of cyclic GMP. Experiments were performed with endothelium-intact rings prepared from bovine intrapulmonary artery. Methylene blue, a good inhibitor of soluble guanylate cyclase, antagonized both arterial relaxation and cyclic GMP accumulation in response to sodium nitroprusside, glyceryl trinitrate, S-nitroso-N-acetylpenicillamine and acetylcholine. In contrast, cyanide inhibited only the responses to sodium nitroprusside. Increasing concentrations of methylene blue depressed resting arterial levels of cyclic GMP and caused slowly developing but marked contractions whereas cyanide was without effect. Contractile responses to phenylephrine, potassium and U46619 were potentiated by methylene blue but not by cyanide. Preincubation of dilute solutions of cyanide containing sodium nitroprusside in oxygenated Krebs' buffer at 37 degrees C for 15 min before addition to bath chambers depressed relaxation and cyclic GMP accumulation caused by sodium nitroprusside markedly. Similar treatment of glyceryl trinitrate, however, failed to alter its effects in arterial rings. A chemical inactivation of sodium nitroprusside by cyanide appears to account for the specific inhibitory action of cyanide on arterial responses to sodium nitroprusside. This study indicates clearly that cyanide does not share the properties of methylene blue as an inhibitor of arterial relaxation elicited by vasodilators that stimulate cyclic GMP formation.

  7. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  8. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3',5'-monophosphate receptor protein (Crp) mutants in catfish host.

    Science.gov (United States)

    Santander, Javier; Mitra, Arindam; Curtiss, Roy

    2011-12-01

    Edwardsiella ictaluri is an Enterobacteriaceae that causes lethal enteric septicemia in catfish. Being a mucosal facultative intracellular pathogen, this bacterium is an excellent candidate to develop immersion-oral live attenuated vaccines for the catfish aquaculture industry. Deletion of the cyclic 3',5'-adenosine monophosphate (cAMP) receptor protein (crp) gene in several Enterobacteriaceae has been utilized in live attenuated vaccines for mammals and birds. Here we characterize the crp gene and report the effect of a crp deletion in E. ictaluri. The E. ictaluri crp gene and encoded protein are similar to other Enterobacteriaceae family members, complementing Salmonella enterica Δcrp mutants in a cAMP-dependent fashion. The E. ictaluri Δcrp-10 in-frame deletion mutant demonstrated growth defects, loss of maltose utilization, and lack of flagella synthesis. We found that the E. ictaluri Δcrp-10 mutant was attenuated, colonized lymphoid tissues, and conferred immune protection against E. ictaluri infection to zebrafish (Danio rerio) and catfish (Ictalurus punctatus). Evaluation of the IgM titers indicated that bath immunization with the E. ictaluri Δcrp-10 mutant triggered systemic and skin immune responses in catfish. We propose that deletion of the crp gene in E. ictaluri is an effective strategy to develop immersion live attenuated antibiotic-sensitive vaccines for the catfish aquaculture industry.

  9. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Directory of Open Access Journals (Sweden)

    Muslim Akmal

    2016-09-01

    Full Text Available Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A; KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells.

  10. The expression of cyclic adenosine monophosphate responsive element modulator in rat sertoli cells following seminal extract administration

    Science.gov (United States)

    Akmal, Muslim; Siregar, Tongku Nizwan; Wahyuni, Sri; Hamny; Nasution, Mustafa Kamal; Indriati, Wiwik; Panjaitan, Budianto; Aliza, Dwinna

    2016-01-01

    Aim: This study aims to determine the effect of seminal vesicle extract on cyclic adenosine monophosphate responsive element modulator (CREM) expression in rat Sertoli cells. Materials and Methods: This study examined the expression of CREM on 20 male rats (Rattus norvegicus) at 4 months of age, weighing 250-300 g. The rats were divided into four groups: K0, KP1, KP2, and KP3. K0 group was injected with 0.2 ml normal saline; KP1 was injected with 25 mg cloprostenol (Prostavet C, Virbac S. A); KP2 and KP3 were injected with 0.2 and 0.4 ml seminal vesicle extract, respectively. The treatments were conducted 5 times within 12-day interval. At the end of the study, the rats were euthanized by cervical dislocation; then, the testicles were necropsied and processed for histology observation using immunohistochemistry staining. Results: CREM expression in rat Sertoli cells was not altered by the administration of either 0.2 or 0.4 ml seminal vesicle extract. Conclusion: The administration of seminal vesicle extract is unable to increase CREM expression in rat Sertoli cells. PMID:27733803

  11. Low-power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate

    Institute of Scientific and Technical Information of China (English)

    Jyun-Yi Wu; Chia-Hsin Chen; Li-Yin Yeh; Ming-Long Yeh; Chun-Chan Ting; Yan-Hsiung Wang

    2013-01-01

    Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cells were irradiated (660 nm) daily with doses of 0, 1, 2 or 4 J?cm22. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J?cm22 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J?cm22 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.

  12. Evidence against mediation of adenosine-3',5'-cyclic monophosphate in the bud-inducing effect of cytokinins in moss protonemata

    Directory of Open Access Journals (Sweden)

    J. Scheneider

    2015-05-01

    Full Text Available Effects Oif adenosdne-3',5'-cyclic monophosphate (cAMP, N6,O2-dibuityryl adenosine-3',5'-cyclic monophosphate (DBcAMP, caffeine and theophylline on the bud-inducing activity of cytokinin in the protonema of two moss species, Ceratodon purpureus and Funaria hygrometrica were examined. The sub-stances have been found ineffective as gametophore bud inducers. Some synergism between cytokinin and cAMP or DBcAMP was observed with relation to the buds' growth, but this effect is nonspecific since it can be obtained with 5'-AMP or 5'-GMiP as well, The results seem to exclude the possibility of an involvement of cAMP as a second messenger in the mechanism of cytokinin action on morphogenetic processes in moss protonemata.

  13.  Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism

    OpenAIRE

    Edyta Makuch; Janusz Matuszyk

    2012-01-01

     PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regio...

  14. Correlative intravital imaging of cGMP signals and vasodilation in mice

    Directory of Open Access Journals (Sweden)

    Martin eThunemann

    2014-10-01

    Full Text Available Cyclic guanosine monophosphate (cGMP is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1 epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2 ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to ‘watch’ biochemistry, (patho physiology, and pharmacotherapy in the context of a living mammalian organism.

  15. Correlative intravital imaging of cGMP signals and vasodilation in mice

    Science.gov (United States)

    Thunemann, Martin; Schmidt, Kjestine; de Wit, Cor; Han, Xiaoxing; Jain, Rakesh K.; Fukumura, Dai; Feil, Robert

    2014-01-01

    Cyclic guanosine monophosphate (cGMP) is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO)-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET)-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1) epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2) ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to “watch” biochemistry, (patho-)physiology, and pharmacotherapy in the context of a living mammalian organism. PMID:25352809

  16. Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate pathway.

    Science.gov (United States)

    Higashi, Yukihito

    2017-06-01

    It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the

  17. Differential Contribution of the Guanylyl Cyclase-Cyclic GMP-Protein Kinase G Pathway to the Proliferation of Neural Stem Cells Stimulated by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Bruno P. Carreira

    2012-02-01

    Full Text Available Nitric oxide (NO is an important inflammatory mediator involved in the initial boost in the proliferation of neural stem cells following brain injury. However, the mechanisms underlying the proliferative effect of NO are still unclear. The aim of this work was to investigate whether cyclic GMP (cGMP and the cGMP-dependent kinase (PKG are involved in the proliferative effect triggered by NO in neural stem cells. For this purpose, cultures of neural stem cells isolated from the mouse subventricular zone (SVZ were used. We observed that long-term exposure to the NO donor (24 h, NOC-18, increased the proliferation of SVZ cells in a cGMP-dependent manner, since the guanylate cyclase inhibitor, ODQ, prevented cell proliferation. Similarly to NOC-18, the cGMP analogue, 8-Br-cGMP, also increased cell proliferation. Interestingly, shorter exposures to NO (6 h increased cell proliferation in a cGMP-independent manner via the ERK/MAP kinase pathway. The selective inhibitor of PKG, KT5823, prevented the proliferative effect induced by NO at 24 h but not at 6 h. In conclusion, the proliferative effect of NO is initially mediated by the ERK/MAPK pathway, and at later stages by the GC/cGMP/PKG pathway. Thus, our work shows that NO induces neural stem cell proliferation by targeting these two pathways in a biphasic manner.

  18. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and the related nitric oxide/cyclic GMP signaling pathway in the ovaries of neonatal and immature rats

    Institute of Scientific and Technical Information of China (English)

    Wei ZHANG; Quan-wei WEI; Zheng-chao WANG; Wei DING; Wei WANG; Fang-xiong SHI

    2011-01-01

    Objective: The present study is designed to investigate the cellular expressions and immunolocalizations of three different nitric oxide synthase(NOS)isoforms and the related nitric oxide(NO)/cyclic guanosine monophosphate(cGMP)signaling pathway in the ovaries of neonatal and immature rats.Methods: The ovaries were obtained from ICR(Institute for Cancer Research)female Sprague-Dawley rats at postnatal days 1,5,7,10,and 19.Then we carried out the histologic examination,immunohistochemistry,measurement of NOS activity,and modifications within the NO/cGMP pathway.Results: During postnatal days 1,5,7,10,and 19,all three isoforms of NOS were mainly localized to the oocytes and expressed as a gradual increase in granulosa cells and theca cells within the growing follicle.The ovarian total NOS activities and NO levels were increased at postnatal days 7 and 10 compared with other days.Conclusions: Our findings suggest that the locally produced NO and the NO/NOS signaling systems are involved in the follicular development to puberty.

  19. Cyclic Nucleotide Signalling in Kidney Fibrosis

    Directory of Open Access Journals (Sweden)

    Elisabeth Schinner

    2015-01-01

    Full Text Available Kidney fibrosis is an important factor for the progression of kidney diseases, e.g., diabetes mellitus induced kidney failure, glomerulosclerosis and nephritis resulting in chronic kidney disease or end-stage renal disease. Cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP were implicated to suppress several of the above mentioned renal diseases. In this review article, identified effects and mechanisms of cGMP and cAMP regarding renal fibrosis are summarized. These mechanisms include several signalling pathways of nitric oxide/ANP/guanylyl cyclases/cGMP-dependent protein kinase and cAMP/Epac/adenylyl cyclases/cAMP-dependent protein kinase. Furthermore, diverse possible drugs activating these pathways are discussed. From these diverse mechanisms it is expected that new pharmacological treatments will evolve for the therapy or even prevention of kidney failure.

  20. DNA-Mediated Cyclic GMP-AMP Synthase-Dependent and -Independent Regulation of Innate Immune Responses.

    Science.gov (United States)

    Motani, Kou; Ito, Shinji; Nagata, Shigekazu

    2015-05-15

    Cytoplasmic DNA activates cyclic GMP-AMP synthase (cGAS) to produce cyclic 2'-5'3'-5'GMP-AMP dinucleotide (2'5 'cGAMP). The binding of 2'5'cGAMP to an adaptor protein, stimulator of IFN genes (STING), activates a transcription factor, IFN regulatory factor 3, leading to the induction of IFN and chemokine gene expression. In this study, we found that the 2'5'cGAMP-dependent STING activation induced highly upregulated CXCL10 gene expression. Formation of a distinct STING dimer, which was detected by native PAGE, was induced by 2'5'cGAMP, but not 3'-5'3'-5'cGAMP. Analysis of DNase II(-/-) mice, which constitutively produce IFN-β and CXCL10, showed the accumulation of 2'5'cGAMP in their fetal livers and spleens, suggesting that the undigested DNA accumulating in DNase II(-/-) cells may have leaked from the lysosomes into the cytoplasm. The DNase II(-/-) mouse embryonic fibroblasts produced 2'5'cGAMP in a cGAS-dependent manner during apoptotic cell engulfment. However, cGAS deficiency did not impair the STING-dependent upregulation of CXCL10 in DNase II(-/-) mouse embryonic fibroblasts that was induced by apoptotic cell engulfment or DNA lipofection. These results suggest the involvement of a cGAS-independent additional DNA sensor(s) that induces the STING-dependent activation of innate immunity.

  1. cGMP-Dependent Protein Kinase Type I Is Implicated in the Regulation of the Timing and Quality of Sleep and Wakefulness

    OpenAIRE

    Sonja Langmesser; Paul Franken; Susanne Feil; Yann Emmenegger; Urs Albrecht; Robert Feil

    2009-01-01

    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) ...

  2. Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover.

    Science.gov (United States)

    Orr, Mona W; Donaldson, Gregory P; Severin, Geoffrey B; Wang, Jingxin; Sintim, Herman O; Waters, Christopher M; Lee, Vincent T

    2015-09-01

    The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.

  3. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation

    Science.gov (United States)

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the im...

  4. Effect of electromagnetic field on cyclic adenosine monophosphate (cAMP) in a human mu-opioid receptor cell model.

    Science.gov (United States)

    Ross, Christina L; Teli, Thaleia; Harrison, Benjamin S

    2016-01-01

    During the cell communication process, endogenous and exogenous signaling affect normal as well as pathological developmental conditions. Exogenous influences such as extra-low-frequency electromagnetic field (EMF) have been shown to effect pain and inflammation by modulating G-protein receptors, down-regulating cyclooxygenase-2 activity, and affecting the calcium/calmodulin/nitric oxide pathway. Investigators have reported changes in opioid receptors and second messengers, such as cyclic adenosine monophosphate (cAMP), in opiate tolerance and dependence by showing how repeated exposure to morphine decreases adenylate cyclase activity causing cAMP to return to control levels in the tolerant state, and increase above control levels during withdrawal. Resonance responses to biological systems using exogenous EMF signals suggest that frequency response characteristics of the target can determine the EMF biological response. In our past research we found significant down regulation of inflammatory markers tumor necrosis factor alpha (TNF-α) and nuclear factor kappa B (NFκB) using 5 Hz EMF frequency. In this study cAMP was stimulated in Chinese Hamster Ovary (CHO) cells transfected with human mu-opioid receptors, then exposed to 5 Hz EMF, and outcomes were compared with morphine treatment. Results showed a 23% greater inhibition of cAMP-treating cells with EMF than with morphine. In order to test our results for frequency specific effects, we ran identical experiments using 13 Hz EMF, which produced results similar to controls. This study suggests the use of EMF as a complementary or alternative treatment to morphine that could both reduce pain and enhance patient quality of life without the side-effects of opiates.

  5. Sequential alterations in the hepatic content and metabolism of cyclic AMP and cyclic GMP induced by DL-ethionine: evidence for malignant transformation of liver with a sustained increase in cyclic AMP.

    Science.gov (United States)

    DeRubertis, F R; Craven, P A

    1976-12-01

    There is evidence than adenosine 3',5'-monophosphate (cAMP) and guanosine 3',5'-monophosphate (cGMP) may have antagonistic actions on cell growth, with cAMP inhibiting and cGMP stimulating this process. However, reductions in cAMP and increases in cGMP are not charactersitic of all neoplastic tissues. Thus, benign and malignant tissues from hepatoma-bearing rats exposed to the hepatic carcinogen DL-ethionine have elevated rather than depressed cAMP, compared to control liver, and parenteral administration of this drug increases hepatic cAMP within hours. In the present study, the effects of ethionine ingestion on the hepatic content and metabolism of both cAMP and cGMP were examined sequentially in rats at 2 and then 6 wk intervals, from the initiation of drug administration until the development of hepatomas. After 2 wk, cAMP content of quick-frozen liver from rats receiving ethionine (E) was significantly increased (826 +/- 91 pmole/g wet weight) above that of liver from pair-fed controls (C, 415 +/- 44), whether calculated by tissue wet weight, protein, or DNA content. In benign tissue from E, higher cAMP was still evident after in vitro incubations of slices with 2 mM 1-methyl-3-iso-butylxanthine (MIX) and was associated with enhanced adenylate cyclase and unchanged high or low Km cAMP-phosphodiesterase activities. These findings are compatible with accelerated cAMP generation in liver from E. Protein kinase activity ratios were significantly increased in frozen liver from E (0.52 +/- 0.04 versus 0.36 +/- 0.03 in C), and the percent glycogen synthetase in the I form was clearly reduced (19% +/- 2% in E versus 47% +/- 5% in c). incubation of hepatic slices from E or C with MIX and/or 10 muM glucagon further increased cAMP and protein kinase activity ratios, data which imply higher effective, as well as total, cellular cAMP in E. Changes in cAMP metabolism and action observed at 2 wk persisted throughout the 38-wk period of drug ingestion. Adenylate cyclase

  6. Sevoflurane effects on cyclic adenosine monophosphate response element binding protein, phosphorylated cyclic adenosine monophosphate response element binding protein, and Livin expression in the cortex and hippocampus of a vascular cognitive impairment rat model

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Ling Dan; Xianlin Zhu

    2009-01-01

    BACKGROUND: Neuronal necrosis and apoptosis play important roles in the pathophysiology of cerebral ischemia and resulting cognitive impairment. However, inhibition of neuronal necrosis and apoptosis has been shown to attenuate cognitive impairment following cerebral ischemia.OBJECTIVE: To investigate the effects of sevoflurane on cyclic adenosine monophosphate response element binding protein (CREB), phosphorylated CREB (pCREB), and Livin expression in the cortex and hippocampus of a rat model of vascular cognitive impairment.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed in the Chongqing Key Laboratory of Neurology between June 2007 and July 2008.MATERIALS: Sevoflurane was provided by Abbott Laboratory, UK; Morris water maze was provided by Chinese Academy of Medical Sciences, China; goat anti-rat CREB, goat anti-rat pCREB and goat anti-rat Livin antibodies were provided by Biosource International, USA.METHODS: A total of 42 female, Wistar rats were randomly assigned to the following groups: sham operation, vascular cognitive impairment, and sevoflurane treatment. The vascular cognitive impairment rat model was established by permanent bilateral occlusion of both common carotid arteries, and 1.0 MAC sevoflurane was immediately administered by inhalation for 2 hours.MAIN OUTCOME MEASURES: CREB, pCREB, and Livin expression was measured in the cortex and hippocampus by Western blot and reverse transcription-polymerase chain reaction. Behavior was evaluated with Morris water maze.RESULTS: CREB, pCREB, and Livin expression in the sevoflurane treatment group was significantly greater than the vascular cognitive impairment group (P<0.01). However, expression of CREB and pCREB was significantly less in the sevoflurane treatment and vascular cognitive impairment groups, compared with the sham operation group (P<0.01). Livin expression in the sevoflurane treatment and vascular cognitive impairment groups was significantly greater than the sham

  7. Low-power laser irradiation of blood inhibits platelet function: role of cyclic GMP

    Science.gov (United States)

    Brill, Alexander G.; Brill, Gregory E.; Shenkman, Boris; Tamarin, Ilya; Dardik, Rima; Varon, David; Savion, Naphtali

    1998-12-01

    The aim of the present work was to investigate effect of low power laser irradiation (LPLI) on platelet function in vitro. He-Ne laser (Optronix, USA; (lambda) - 632.8 nm, output power - 7 mW) was employed. Platelet adhesion and aggregation in whole blood (WB) under defined shear conditions were assayed by a Cone and Plate(let) Analyzer. Platelet activation was evaluated by flow cytometry. Level of platelet cGMP was estimated by immunoenzyme assay. Experiments performed showed that LPLI of WB resulted in decrease of platelet deposition on extracellular matrix at high shear rate (1300 s-1). Similar results were obtained using surfaces precoated with either collagen type I or von Willebrand factor. LPLI inhibited fibrinogen binding as well as P-selectin expression on the platelet membrane, induced by thrombin analogue. It was found out that primary acceptor of laser energy responsible for the effect on platelets was located in platelets themselves and not in blood plasma or in other blood cells. LPLI of gel- filtered platelets resulted in increase of intracellular level of cGMP both in the absence and in presence of izobutylmethylxantine (phosphodiesterase inhibitor) suggesting stimulation of synthesis rather than destruction of cGMP under the influence of LPLI. It is suggested that guanylate cyclase and/or NO-synthase might serve as primary acceptors of He-Ne laser light in platelets.

  8. The Xanthomonas oryzae pv. oryzae PilZ Domain Proteins Function Differentially in Cyclic di-GMP Binding and Regulation of Virulence and Motility.

    Science.gov (United States)

    Yang, Fenghuan; Tian, Fang; Chen, Huamin; Hutchins, William; Yang, Ching-Hong; He, Chenyang

    2015-07-01

    The PilZ domain proteins have been demonstrated to be one of the major types of receptors mediating cyclic di-GMP (c-di-GMP) signaling pathways in several pathogenic bacteria. However, little is known about the function of PilZ domain proteins in c-di-GMP regulation of virulence in the bacterial blight pathogen of rice Xanthomonas oryzae pv. oryzae. Here, the roles of PilZ domain proteins PXO_00049 and PXO_02374 in c-di-GMP binding, regulation of virulence and motility, and subcellular localization were characterized in comparison with PXO_02715, identified previously as an interactor with the c-di-GMP receptor Filp to regulate virulence. The c-di-GMP binding motifs in the PilZ domains were conserved in PXO_00049 and PXO_02374 but were less well conserved in PXO_02715. PXO_00049 and PXO_02374 but not PXO_02715 proteins bound to c-di-GMP with high affinity in vitro, and the R(141) and R(10) residues in the PilZ domains of PXO_00049 and PXO_02374, respectively, were crucial for c-di-GMP binding. Gene deletion of PXO_00049 and PXO_02374 resulted in significant increases in virulence and hrp gene transcription, indicating their negative regulation of virulence via type III secretion system expression. All mutants showed significant changes in sliding motility but not exopolysaccharide production and biofilm formation. In trans expression of the full-length open reading frame (ORF) of each gene in the relevant mutants led to restoration of the phenotype to wild-type levels. Moreover, PXO_00049 and PXO_02374 displayed mainly multisite subcellular localizations, whereas PXO_02715 showed nonpolar distributions in the X. oryzae pv. oryzae cells. Therefore, this study demonstrated the different functions of the PilZ domain proteins in mediation of c-di-GMP regulation of virulence and motility in X. oryzae pv. oryzae.

  9. Cyclic GMP-AMP Synthase is a Cytosolic DNA Sensor that Activates the Type-I Interferon Pathway

    Science.gov (United States)

    Sun, Lijun; Wu, Jiaxi; Du, Fenghe; Chen, Xiang; Chen, Zhijian J.

    2013-01-01

    The presence of DNA in the cytoplasm of mammalian cells is a danger signal that triggers the host immune responses such as the production of type-I interferons (IFN). Cytosolic DNA induces IFN through the production of cyclic-GMP-AMP (cGAMP), which binds to and activates the adaptor protein STING. Through biochemical fractionation and quantitative mass spectrometry, we identified a cGAMP synthase (cGAS), which belongs to the nucleotidyltransferase family. Overexpression of cGAS activated the transcription factor IRF3 and induced IFNβ in a STING-dependent manner. Knockdown of cGAS inhibited IRF3 activation and IFNβ induction by DNA transfection or DNA virus infection. cGAS bound to DNA in the cytoplasm and catalyzed cGAMP synthesis. These results indicate that cGAS is a cytosolic DNA sensor that induces interferons by producing the second messenger cGAMP. PMID:23258413

  10. Molecular basis for the specific recognition of the metazoan cyclic GMP-AMP by the innate immune adaptor protein STING.

    Science.gov (United States)

    Shi, Heping; Wu, Jiaxi; Chen, Zhijian J; Chen, Chuo

    2015-07-21

    Cyclic GMP-AMP containing a unique combination of mixed phosphodiester linkages (2'3'-cGAMP) is an endogenous second messenger molecule that activates the type-I IFN pathway upon binding to the homodimer of the adaptor protein STING on the surface of endoplasmic reticulum membrane. However, the preferential binding of the asymmetric ligand 2'3'-cGAMP to the symmetric dimer of STING represents a physicochemical enigma. Here we show that 2'3'-cGAMP, but not its linkage isomers, adopts an organized free-ligand conformation that resembles the STING-bound conformation and pays low entropy and enthalpy costs in converting into the active conformation. Our results demonstrate that analyses of free-ligand conformations can be as important as analyses of protein conformations in understanding protein-ligand interactions.

  11. Plasma levels of cAMP, cGMP and CGRP in sildenafil-induced headache

    DEFF Research Database (Denmark)

    Kruuse, Christina Rostrup; Frandsen, E; Schifter, S;

    2004-01-01

    Sildenafil, a selective inhibitor of the cyclic guanosine monophosphate (cGMP) degrading phosphodiestrase 5 (PDE5), induced migraine without aura in 10 of 12 migraine patients and in healthy subjects it induced significantly more headache than placebo. The aim of the present study was to determin...... an important role of these signalling molecules, the present study questions whether cAMP and cGMP in peripheral blood can be used for monitoring pathophysiological events in headache and migraine mechanisms.......Sildenafil, a selective inhibitor of the cyclic guanosine monophosphate (cGMP) degrading phosphodiestrase 5 (PDE5), induced migraine without aura in 10 of 12 migraine patients and in healthy subjects it induced significantly more headache than placebo. The aim of the present study was to determine...... whether the pain-inducing effects of sildenafil would be reflected in plasma levels of important signalling molecules in migraine: cGMP, cyclic adenosine monophosphate (cAMP) and calcitonin gene-related peptide (CGRP). Ten healthy subjects (four women, six men) and 12 patients (12 women) suffering from...

  12. Identification of a negative feedback loop between cyclic di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and STING.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Xin, Duan; Choubey, Divaker

    2014-10-01

    A host type I IFN response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP (c-di-GMP) by STING (stimulator of IFN genes). Because the STING, an adaptor protein, links the cytosolic detection of DNA by the cytosolic DNA sensors such as the IFN-inducible human IFI16 and murine p202 proteins to the TBK1/IRF3 axis, we investigated whether c-di-GMP-induced signaling could regulate expression of IFI16 and p202 proteins. Here, we report that activation of c-di-GMP-induced signaling in human and murine cells increased steady-state levels of IFI16 and p202 proteins. The increase was c-di-GMP concentration- and time-dependent. Unexpectedly, treatment of cells with type I IFN decreased levels of the adaptor protein STING. Therefore, we investigated whether the IFI16 or p202 protein could regulate the expression of STING and activation of the TBK1/IRF3 axis. We found that constitutive knockdown of IFI16 or p202 expression in cells increased steady-state levels of STING. Additionally, the knockdown of IFI16 resulted in activation of the TBK1/IRF3 axis. Accordingly, increased levels of the IFI16 or p202 protein in cells decreased STING levels. Together, our observations identify a novel negative feedback loop between c-di-GMP-induced levels of IFI16 and p202 cytosolic DNA sensors and the adaptor protein STING.

  13. Ammonia inhibits the C-type natriuretic peptide-dependent cyclic GMP synthesis and calcium accumulation in a rat brain endothelial cell line.

    Science.gov (United States)

    Konopacka, Agnieszka; Zielińska, Magdalena; Albrecht, Jan

    2008-05-01

    Recently we reported a decrease of C-type natriuretic peptide (CNP)-dependent, natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP (cGMP) synthesis in a non-neuronal compartment of cerebral cortical slices of hyperammonemic rats [Zielińska, M., Fresko, I., Konopacka, A., Felipo, V., Albrecht, J., 2007. Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28, 1260-1263]. Here we accounted for the possible involvement of cerebral capillary endothelial cells in this response by measuring the effect of ammonia on the CNP-mediated cGMP formation and intracellular calcium ([Ca2+]i) accumulation in a rat cerebral endothelial cell line (RBE-4). We first established that stimulation of cGMP synthesis in RBE-4 cells was coupled to protein kinase G (PKG)-mediated Ca2+ influx from the medium which was inhibited by an L-type channel blocker nimodipine. Ammonia treatment (1h, 5mM NH4Cl) evoked a substantial decrease of CNP-stimulated cGMP synthesis which was related to a decreased binding of CNP to NPR2 receptors, and depressed the CNP-dependent [Ca2+]i accumulation in these cells. Ammonia also abolished the CNP-dependent Ca2+ accumulation in the absence of Na+. In cells incubated with ammonia in the absence of Ca2+ a slight CNP-dependent increase of [Ca2+]i was observed, most likely representing Ca2+ release from intracellular stores. Depression of CNP-dependent cGMP-mediated [Ca2+]i accumulation may contribute to cerebral vascular endothelial dysfunction associated with hyperammonemia or hepatic encephalopathy.

  14. Cyclic GMP signaling in cardiomyocytes modulates fatty acid trafficking and prevents triglyceride accumulation.

    Science.gov (United States)

    Khairallah, Ramzi J; Khairallah, Maya; Gélinas, Roselle; Bouchard, Bertrand; Young, Martin E; Allen, Bruce G; Lopaschuk, Gary D; Deschepper, Christian F; Des Rosiers, Christine

    2008-08-01

    While the balance between carbohydrates and fatty acids for energy production appears to be crucial for cardiac homeostasis, much remains to be learned about the molecular mechanisms underlying this relationship. Given the reported benefits of cGMP signaling on the myocardium, we investigated the impact of its chronic activation on cardiac energy metabolism using mice overexpressing a constitutively active cytoplasmic guanylate cyclase (GC(+/0)) in cardiomyocytes. Ex vivo working GC(+/0) heart perfusions with (13)C-labeled substrates revealed an altered pattern of exogenous substrate fuel selection compared to controls, namely a 38+/-9% lower contribution of exogenous fatty acids to acetyl-CoA formation, while that of carbohydrates remains unchanged despite a two-fold increase in glycolysis. The lower contribution of exogenous fatty acids to energy production is not associated with changes in energy demand or supply (contractile function, oxygen consumption, tissue acetyl-CoA or CoA levels, citric acid cycle flux rate) or in the regulation of beta-oxidation (acetyl-CoA carboxylase activity, tissue malonyl-CoA levels). However, GC(+/0) hearts show a two-fold increase in the incorporation of exogenous oleate into triglycerides. Furthermore, the following molecular data are consistent with a concomitant increase in triglyceride hydrolysis: (i) increased abundance of hormone sensitive lipase (HSL) protein (24+/-11%) and mRNA (22+/-4%) as well as (ii) several phosphorylation events related to HSL inhibitory (AMPK) and activation (ERK 1/2) sites, which should contribute to enhance its activity. These changes in exogenous fatty acid trafficking in GC(+/0) hearts appear to be functionally relevant, as demonstrated by their resistance to fasting-induced triglyceride accumulation. While the documented metabolic profile of GC(+/0) mouse hearts is partly reminiscent of hypertrophied hearts, the observed changes in lipid trafficking have not been previously documented, and may

  15. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jacob G Malone

    2010-03-01

    Full Text Available During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs, auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes Yfi

  16. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Jacob G Malone

    2010-03-01

    Full Text Available During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs, auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes Yfi

  17. The Receptor-Bound Guanylyl Cyclase DAF-11 Is the Mediator of Hydrogen Peroxide-Induced cGMP Increase in Caenorhabditis elegans [corrected]..

    Directory of Open Access Journals (Sweden)

    Ulrike Beckert

    Full Text Available Adenosine 3', 5'-cyclic monophosphate (cAMP and guanosine 3', 5'-cyclic monophosphate (cGMP are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans. cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example, mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS on cyclic nucleotide metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays. Here, we show that the relation between cGMP and survival is more complex than previously appreciated.

  18. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation

    KAUST Repository

    Kim, Jeong Joo

    2016-04-09

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG. Kim et al. obtain the first crystal structure of the PKG I R domain bound with cGMP representing its activated state. It reveals a symmetric R dimer where cGMP molecules provide dimeric contacts. This R-R interaction prevents the high-affinity inhibitory interaction between R-C domain and sustains activation. © 2016 Elsevier Ltd.

  19. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Lo, Yi-Ling; Shen, Lunda; Chang, Chih-Hsuan; Bhuwan, Manish; Chiu, Cheng-Hsun; Chang, Hwan-You

    2016-01-01

    The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c)-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA), a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa.

  20. Regulation of Motility and Phenazine Pigment Production by FliA Is Cyclic-di-GMP Dependent in Pseudomonas aeruginosa PAO1.

    Directory of Open Access Journals (Sweden)

    Yi-Ling Lo

    Full Text Available The transcription factor FliA, also called sigma 28, is a major regulator of bacterial flagellar biosynthesis genes. Growing evidence suggest that in addition to motility, FliA is involved in controlling numerous bacterial behaviors, even though the underlying regulatory mechanism remains unclear. By using a transcriptional fusion to gfp that responds to cyclic (c-di-GMP, this study revealed a higher c-di-GMP concentration in the fliA deletion mutant of Pseudomonas aeruginosa than in its wild-type strain PAO1. A comparative analysis of transcriptome profiles of P. aeruginosa PAO1 and its fliA deletion mutant revealed an altered expression of several c-di-GMP-modulating enzyme-encoding genes in the fliA deletion mutant. Moreover, the downregulation of PA4367 (bifA, a Glu-Ala-Leu motif-containing phosphodiesterase, in the fliA deletion mutant was confirmed using the β-glucuronidase reporter gene assay. FliA also altered pyocyanin and pyorubin production by modulating the c-di-GMP concentration. Complementing the fliA mutant strain with bifA restored the motility defect and pigment overproduction of the fliA mutant. Our results indicate that in addition to regulating flagellar gene transcription, FliA can modulate the c-di-GMP concentration to regulate the swarming motility and phenazine pigment production in P. aeruginosa.

  1. Reciprocal control of retinal rod cyclic GMP phosphodiesterase by its gamma subunit and transducin.

    Science.gov (United States)

    Wensel, T G; Stryer, L

    1986-09-01

    The switching on of the cGMP phosphodiesterase (PDE) in retinal rod outer segments by activated transducin (T alpha-GTP) is a key step in visual excitation. The finding that trypsin activates PDE (alpha beta gamma) by degrading its gamma subunit and the reversal of this activation by gamma led to the proposal that T alpha-GTP activates PDE by relieving an inhibitory constraint imposed by gamma (Hurley and Stryer: J. Biol. Chem. 257:11094-11099, 1982). We report here studies showing that the addition of gamma subunit also reverses the activation of PDE by T alpha-GTP-gamma S. A procedure for preparing gamma in high yield (50-80%) is presented. Analyses of SDS polyacrylamide gel slices confirmed that inhibitory activity resides in the gamma subunit. Nanomolar gamma blocks the activation of PDE by micromolar T alpha-GTP gamma S. The degree of activation of PDE depends reciprocally on the concentrations of gamma and T alpha-GTP gamma S. gamma remains bound to the disk membrane during the activation of PDE by transducin. The binding of gamma to the alpha beta subunits of native PDE is very tight; the dissociation constant is less than 10 pM, indicating that fewer than 1 in 1,700 PDE molecules in rod outer segments are activated in the absence of T alpha-GTP.

  2. Selective inhibitory effect of (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and 2'-nor-cyclic GMP on adenovirus replication in vitro.

    Science.gov (United States)

    Baba, M; Mori, S; Shigeta, S; De Clercq, E

    1987-02-01

    The inhibitory effects of 20 selected antiviral compounds on the replication of adenoviruses (types 1 to 8) in vitro were investigated. While 18 compounds were ineffective, 2 compounds, namely (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [(S)-HPMPA] and 9-[(2-hydroxy-1,3,2-dioxaphosphorinan-5-yl)oxymethyl]guanine P-oxide (2'-nor-cyclic GMP), were highly effective against all adenovirus types assayed in human embryonic fibroblast cultures. Their 50% inhibitory doses were 1.1 microgram/ml for (S)-HPMPA and 4.1 micrograms/ml for 2'-nor-cyclic GMP. They were nontoxic for the host cells at the effective antiviral doses.

  3. Nitration of Tyrosine 247 Inhibits Protein Kinase G-1α Activity by Attenuating Cyclic Guanosine Monophosphate Binding*

    Science.gov (United States)

    Aggarwal, Saurabh; Gross, Christine M.; Rafikov, Ruslan; Kumar, Sanjiv; Fineman, Jeffrey R.; Ludewig, Britta; Jonigk, Danny; Black, Stephen M.

    2014-01-01

    The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr247 is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr247 would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [3H]cGMP binding assay. Our study shows that the nitration of Tyr247 and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation. PMID:24469460

  4. Nitration of tyrosine 247 inhibits protein kinase G-1α activity by attenuating cyclic guanosine monophosphate binding.

    Science.gov (United States)

    Aggarwal, Saurabh; Gross, Christine M; Rafikov, Ruslan; Kumar, Sanjiv; Fineman, Jeffrey R; Ludewig, Britta; Jonigk, Danny; Black, Stephen M

    2014-03-14

    The cGMP-dependent protein kinase G-1α (PKG-1α) is a downstream mediator of nitric oxide and natriuretic peptide signaling. Alterations in this pathway play a key role in the pathogenesis and progression of vascular diseases associated with increased vascular tone and thickness, such as pulmonary hypertension. Previous studies have shown that tyrosine nitration attenuates PKG-1α activity. However, little is known about the mechanisms involved in this event. Utilizing mass spectrometry, we found that PKG-1α is susceptible to nitration at tyrosine 247 and 425. Tyrosine to phenylalanine mutants, Y247F- and Y425F-PKG-1α, were both less susceptible to nitration than WT PKG-1α, but only Y247F-PKG-1α exhibited preserved activity, suggesting that the nitration of Tyr(247) is critical in attenuating PKG-1α activity. The overexpression of WT- or Y247F-PKG-1α decreased the proliferation of pulmonary artery smooth muscle cells (SMC), increased the expression of SMC contractile markers, and decreased the expression of proliferative markers. Nitrosative stress induced a switch from a contractile to a synthetic phenotype in cells expressing WT- but not Y247F-PKG-1α. An antibody generated against 3-NT-Y247 identified increased levels of nitrated PKG-1α in humans with pulmonary hypertension. Finally, to gain a more mechanistic understanding of how nitration attenuates PKG activity, we developed a homology model of PKG-1α. This model predicted that the nitration of Tyr(247) would decrease the affinity of PKG-1α for cGMP, which we confirmed using a [(3)H]cGMP binding assay. Our study shows that the nitration of Tyr(247) and the attenuation of cGMP binding is an important mechanism regulating in PKG-1α activity and SMC proliferation/differentiation.

  5. Dissociation of beta-adrenoceptor-induced effects on amylase secretion and cyclic adenosine 3', 5' monophosphate accumulation.

    OpenAIRE

    Carlsöö, B.; Danielsson, A.; Henriksson, R; Idahl, L. A.

    1982-01-01

    By using a multi-channel microperifusion system the effects of noradrenaline, the beta1-adrenoceptor agonist prenalterol, and the beta2-selective agonist terbutaline were studied on amylase pig submandibular glands. 2 Noradrenaline caused significant amylase discharge and cyclic AMP accumulation. 3 Prenalterol was as effective as noradrenaline in causing amylase release but did not significantly affect the cyclic AMP content. 4 Terbutaline stimulated cyclic AMP accumulation, but had little ef...

  6. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels

    Science.gov (United States)

    Ding, Yichen; Liu, Yang; Cai, Zhao; Zhou, Jianuan; Swarup, Sanjay; Drautz-Moses, Daniela I.; Schuster, Stephan Christoph; Kjelleberg, Staffan; Givskov, Michael; Yang, Liang

    2016-01-01

    The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H2O2) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa. Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections. PMID:27881736

  7. Hydrogen peroxide induced relaxation in porcine pulmonary arteries in vitro is mediated by EDRF and cyclic GMP

    Energy Technology Data Exchange (ETDEWEB)

    Zellers, T.; McCormick, J. (Univ. of Texas, Dallas (United States))

    1991-03-15

    Xanthine and xanthine oxidase induced relaxations in porcine pulmonary arteries in vitro are augmented in the presence of the endothelium and abolished by catalase, implicating hydrogen peroxide as an endothelium-dependent effector. To determine the mechanism whereby H{sub 2}O{sub 2} causes relaxations, isolated rings of fifth order porcine pulmonary artery, with (E{sup +}) and without (E{sup {minus}}) endothelium, were suspended in organ baths filled with buffer, and isometric tension was recorded. Hydrogen peroxide caused concentration-dependent, endothelium-augmented relaxations which were abolished by catalase and hydroquinone and reversed by L-nitroarginine and methylene blue. Prostacyclin (PGI{sub 2}) levels, measured after a two minute exposure to H{sub 2}O{sub 2} in rings with endothelium were comparable to controls. This concentration of PGI{sub 2} does not cause relaxations in these rings. These data suggest that H{sub 2}O{sub 2} stimulates the release of an EDRF, causing relaxations mediated by cyclic GMP, which is independent of prostacyclin.

  8. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.

    OpenAIRE

    Morita, T.; Perrella, M A; Lee, M E; Kourembanas, S

    1995-01-01

    Carbon monoxide (CO) is a product of the enzyme heme oxygenase (HO; EC 1.14.99.3). In vascular smooth muscle cells, exogenously administered CO increases cyclic guanosine 3',5'-monophosphate (cGMP), which is an important regulator of vessel tone. We report here that smooth muscle cells produce CO via HO and that it regulates cGMP levels in these cells. Hypoxia, which has profound effects on vessel tone, significantly increased the transcriptional rate of the HO-1 gene resulting in correspondi...

  9. Cows are not mice: the role of cyclic AMP, phosphodiesterases, and adenosine monophosphate-activated protein kinase in the maintenance of meiotic arrest in bovine oocytes.

    Science.gov (United States)

    Bilodeau-Goeseels, Sylvie

    2011-01-01

    Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures.

  10. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain.

    Science.gov (United States)

    Wang, Yu-Chuan; Chin, Ko-Hsin; Tu, Zhi-Le; He, Jin; Jones, Christopher J; Sanchez, David Zamorano; Yildiz, Fitnat H; Galperin, Michael Y; Chou, Shan-Ho

    2016-01-01

    C-di-GMP is a bacterial second messenger regulating various cellular functions. Many bacteria contain c-di-GMP-metabolizing enzymes but lack known c-di-GMP receptors. Recently, two MshE-type ATPases associated with bacterial type II secretion system and type IV pilus formation were shown to specifically bind c-di-GMP. Here we report crystal structure of the MshE N-terminal domain (MshEN1-145) from Vibrio cholerae in complex with c-di-GMP at a 1.37 Å resolution. This structure reveals a unique c-di-GMP-binding mode, featuring a tandem array of two highly conserved binding motifs, each comprising a 24-residue sequence RLGxx(L/V/I)(L/V/I)xxG(L/V/I)(L/V/I)xxxxLxxxLxxQ that binds half of the c-di-GMP molecule, primarily through hydrophobic interactions. Mutating these highly conserved residues markedly reduces c-di-GMP binding and biofilm formation by V. cholerae. This c-di-GMP-binding motif is present in diverse bacterial proteins exhibiting binding affinities ranging from 0.5 μM to as low as 14 nM. The MshEN domain contains the longest nucleotide-binding motif reported to date.

  11. Muscle A-Kinase Anchoring Protein-α is an Injury-Specific Signaling Scaffold Required for Neurotrophic- and Cyclic Adenosine Monophosphate-Mediated Survival

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-12-01

    Full Text Available Neurotrophic factor and cAMP-dependent signaling promote the survival and neurite outgrowth of retinal ganglion cells (RGCs after injury. However, the mechanisms conferring neuroprotection and neuroregeneration downstream to these signals are unclear. We now reveal that the scaffold protein muscle A-kinase anchoring protein-α (mAKAPα is required for the survival and axon growth of cultured primary RGCs. Although genetic deletion of mAKAPα early in prenatal RGC development did not affect RGC survival into adulthood, nor promoted the death of RGCs in the uninjured adult retina, loss of mAKAPα in the adult increased RGC death after optic nerve crush. Importantly, mAKAPα was required for the neuroprotective effects of brain-derived neurotrophic factor and cyclic adenosine-monophosphate (cAMP after injury. These results identify mAKAPα as a scaffold for signaling in the stressed neuron that is required for RGC neuroprotection after optic nerve injury.

  12. Effect of dietary fluorine from Araxá rock phosphate on the hepatic production of cyclic-adenosine monophosphate in broilers

    Directory of Open Access Journals (Sweden)

    Rezende M.J.M.

    1999-01-01

    Full Text Available The cyclic adenosine 3?, 5?-monophosphate (cAMP production was evaluated in liver thin sections of broiler chicks fed on a experimental diet containing bicalcium phosphate or Araxá rock phosphate (ARP as source of P, with a high content of fluorine, at different ages: from the first to the 42nd and from the 21st to the 42nd day of age. The intake of the ARP formulated diet starting from birth elicited an increase of cAMP production in broiler liver. However, when this diet was offered after the 21st day of age, the hepatic cAMP production in broilers was not significantly (P>0.05 affected, suggesting that the effect of high fluorine present in Araxá rock phosphate, on hepatic cAMP of broiler chicks depends on the age in which the experimental diet is started.

  13. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    Energy Technology Data Exchange (ETDEWEB)

    Francko, D.A.

    1980-01-01

    This study demonstrates, on the basis of several analyanalytical criteria, that the production and extracellular release of cyclic adenosine 3':5'-monophosphate (cAMP) is widespread among phytoplankton species. The production and release of CAMP varied markedly among different species grown under similar environmental conditions, and intraspecifically during the life cycle of a given algal species. This investigation marks the first time cAMP has been investigated in natural aquatic systems. An examination of epilimnetic lakewater samples from Lawrence Lake, a hardwater oligotrophic lake, and Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan, demonstrated that cAMP existed in both particulate-associated and dissolved forms in these systems.

  14. Analysis of substrate specificity and kinetics of cyclic nucleotide phosphodiesterases with N'-methylanthraniloyl-substituted purine and pyrimidine 3',5'-cyclic nucleotides by fluorescence spectrometry.

    Directory of Open Access Journals (Sweden)

    Daniel Reinecke

    Full Text Available As second messengers, the cyclic purine nucleotides adenosine 3',5'-cyclic monophosphate (cAMP and guanosine 3',5'-cyclic monophosphate (cGMP play an essential role in intracellular signaling. Recent data suggest that the cyclic pyrimidine nucleotides cytidine 3',5'-cyclic monophosphate (cCMP and uridine 3',5'-cyclic monophosphate (cUMP also act as second messengers. Hydrolysis by phosphodiesterases (PDEs is the most important degradation mechanism for cAMP and cGMP. Elimination of cUMP and cCMP is not completely understood, though. We have shown that human PDEs hydrolyze not only cAMP and cGMP but also cyclic pyrimidine nucleotides, indicating that these enzymes may be important for termination of cCMP- and cUMP effects as well. However, these findings were acquired using a rather expensive HPLC/mass spectrometry assay, the technical requirements of which are available only to few laboratories. N'-Methylanthraniloyl-(MANT-labeled nucleotides are endogenously fluorescent and suitable tools to study diverse protein/nucleotide interactions. In the present study, we report the synthesis of new MANT-substituted cyclic purine- and pyrimidine nucleotides that are appropriate to analyze substrate specificity and kinetics of PDEs with more moderate technical requirements. MANT-labeled nucleoside 3',5'-cyclic monophosphates (MANT-cNMPs are shown to be substrates of various human PDEs and to undergo a significant change in fluorescence upon cleavage, thus allowing direct, quantitative and continuous determination of hydrolysis via fluorescence detection. As substrates of several PDEs, MANT-cNMPs show similar kinetics to native nucleotides, with some exceptions. Finally, they are shown to be also appropriate tools for PDE inhibitor studies.

  15.  Phosphodiesterase 3 mediates cross-talk between the protein kinase- and cGMP- dependent pathways and cyclic AMP metabolism

    Directory of Open Access Journals (Sweden)

    Edyta Makuch

    2012-07-01

    Full Text Available  PDE3 is a dual-substrate phosphodiesterase responsible for hydrolyzing both cAMP and cGMP whilst being simultaneously inhibited by cGMP. This feature is related to presence of the 44 amino acid insert in the catalytic domain, which determines the mechanism of introduction of the cyclic nucleotide into the catalytic pocket of the enzyme. Once bound in the catalytic site cGMP results in steric hindrance for cAMP to enter the site. The regulatory domain of PDE3 consists of two hydrophobic regions: NHR1 and NHR2. Their presence defines the enzyme’s intracellular localization, thus determining its participation in particular signaling cascades. Due to the properties of PDE3 this enzyme has exceptional importance for the cross-talk between cAMP-dependent signaling and other cascades. There are two different mechanisms of action of PDE3 enzymes in cell signaling pathways. In many signaling cascades assembly of a signalosome is necessary for phosphorylation and activation of the PDE3 proteins. In response to certain hormones and growth factors, PDE3 merges the metabolism of cAMP with protein kinase-dependent signaling pathways. PDE3 also controls the level of cAMP with regard to the alternating concentration of cGMP. This effect occurs in signaling cascades activated by natriuretic peptide.

  16. Regulation of cGMP synthesis in cultured podocytes by vasoactive hormones.

    Science.gov (United States)

    Lewko, B; Gołos, M; Latawiec, E; Angielski, S; Stepinski, J

    2006-12-01

    The podocytes are highly differentiated cells playing a key role in glomerular filtration. Vasoactive factors including angiotensin II (Ang II) and cyclic guanosine 5' monophosphate (cGMP) are synthesized by these cells upon stimulation as well as in the basal state. In this study we have tested whether angiotensin II affects the total synthesis of cGMP in primary culture of rat podocytes. The cells were stimulated with atrial natriuretic peptide (ANP) and/or a nitric oxide (NO) donor, S-nitroso-N-acetyl penicillamine (SNAP), in the absence or presence of Ang II. The cGMP synthesis was determined by radioimmunoassay (RIA). ANP or SNAP alone increased the cGMP synthesis in podocytes although the effects were not additive unless Ang II was present in the medium. Ang II suppressed the ANP-dependent cGMP synthesis whereas SNAP-dependent cGMP production remained unaffected. These effects were prevented by a non-specific antagonist of Ang II receptors (AT), saralasin. Adversely, PD123319, a specific inhibitor of AT2 receptors, augmented inhibition of ANP-dependent and enhanced the NO-dependent cGMP production. Probenecid, an inhibitor of cGMP extrusion from the cells, suppressed the cGMP generation by both ANP and SNAP. We conclude that cGMP synthesis in cultured podocytes is modulated by angiotensin II and that two adversely acting receptors, AT1 and AT2 are involved in this effect. Additionally, production of cGMP might be intrinsically inhibited by cGMP accumulating inside the cells.

  17. Structural Basis of Ligand Binding by a C-di-GMP Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.; Lipchock, S; Ames, T; Wang, J; Breaker, R; Strobel, S

    2009-01-01

    The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structural data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.

  18. Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals.

    Science.gov (United States)

    Hussain, Jamshaid; Chen, Jian; Locato, Vittoria; Sabetta, Wilma; Behera, Smrutisanjita; Cimini, Sara; Griggio, Francesca; Martínez-Jaime, Silvia; Graf, Alexander; Bouneb, Mabrouk; Pachaiappan, Raman; Fincato, Paola; Blanco, Emanuela; Costa, Alex; De Gara, Laura; Bellin, Diana; de Pinto, Maria Concetta; Vandelle, Elodie

    2016-11-04

    The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.

  19. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes.

    Science.gov (United States)

    Tal, R; Wong, H C; Calhoon, R; Gelfand, D; Fear, A L; Volman, G; Mayer, R; Ross, P; Amikam, D; Weinhouse, H; Cohen, A; Sapir, S; Ohana, P; Benziman, M

    1998-09-01

    Cyclic di-GMP (c-di-GMP) is the specific nucleotide regulator of beta-1,4-glucan (cellulose) synthase in Acetobacter xylinum. The enzymes controlling turnover of c-di-GMP are diguanylate cyclase (DGC), which catalyzes its formation, and phosphodiesterase A (PDEA), which catalyzes its degradation. Following biochemical purification of DGC and PDEA, genes encoding isoforms of these enzymes have been isolated and found to be located on three distinct yet highly homologous operons for cyclic diguanylate, cdg1, cdg2, and cdg3. Within each cdg operon, a pdeA gene lies upstream of a dgc gene. cdg1 contains two additional flanking genes, cdg1a and cdg1d. cdg1a encodes a putative transcriptional activator, similar to AadR of Rhodopseudomonas palustris and FixK proteins of rhizobia. The deduced DGC and PDEA proteins have an identical motif structure of two lengthy domains in their C-terminal regions. These domains are also present in numerous bacterial proteins of undefined function. The N termini of the DGC and PDEA deduced proteins contain putative oxygen-sensing domains, based on similarity to domains on bacterial NifL and FixL proteins, respectively. Genetic disruption analyses demonstrated a physiological hierarchy among the cdg operons, such that cdg1 contributes 80% of cellular DGC and PDEA activities and cdg2 and cdg3 contribute 15 and 5%, respectively. Disruption of dgc genes markedly reduced in vivo cellulose production, demonstrating that c-di-GMP controls this process.

  20. Effect of Icariin on Cyclic GMP Levels and on the mRNA Expression of cGMP-binding cGMP-specific Phosphodiesterase (PDE5) in Penile Cavernosum

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaojian; HU Benrong; WANG Jialing; TANG Qiang; TAN Yan; XIANG Jizhou; LIU Juyan

    2006-01-01

    To further investigate the mechanisms of action of icariin (ICA), we assessed the effects of ICA on the in vitro formation of cGMP and cAMP in isolated rabbit corpus cavernosum. Isolated segments of rabbit corpus cavernosum were exposed to increasing concentrations of ICA and the dose-dependent accumulation of cGMP and cAMP was determined in the tissues samples by means of 125I radioimmunoassay. Responses of the isolated tissues preparations to ICA were compared with those obtained with the reference compounds sildenafil (Sild). Furthermore, the effects of ICA on the mRNA expression of specific cGMP-binding phosphodiesterase type V (PDE5) in rat penis were also observed. After incubation with ICA for 6 h or 14 h respectively, the levels of PDE5 mRNA were examined by reverse transcriptase polymerase chain reaction (RT-PCR). The results showed that ICA increased cGMP concentrations directly (P<0.05), but there was no significant effect on cAMP concentrations (P>0.05). In the presence of sodium nitroprusside (SNP), a stimulatory agent of cGMP,both ICA and Sild increased cGMP concentrations with increasing dose (P<0.01). Their EC50 was 4.62 (ICA) and 0.42 (Sild) μmol/L respectively. Under the same condition, ICA and Sild unaltered cAMP level significantly (P>0.05). There were PDE5A1 and PDE5A2 mRNA expressions in rat corpus cavernosum with PDE5A2 being the dominant isoform. ICA could obviously inhibit these two isoforms mRNA expression in rat penis, and decrease PDE5A1 more pronouncedly (P< 0.01). The present study indicated that the aphrodisiac mechanisms of icariin involved the NO-cGMP signal transduction pathway, with increasing cGMP levels in the corpus cavernosum smooth muscle. The inhibitory effect of icariin on PDE5 mRNA expression, especially on PDE5A1, might account for its molecular mechanisms for its long-term activity.

  1. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline.

    Science.gov (United States)

    Wu, Yichao; Ding, Yuanzhao; Cohen, Yehuda; Cao, Bin

    2015-02-01

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger that determines bacterial lifestyle between the planktonic and biofilm modes of life. Although the role of c-di-GMP signaling in biofilm development and dispersal has been extensively studied, how c-di-GMP signaling influences environmental bioprocess activities such as biodegradation remains unexplored. To elucidate the impacts of elevating c-di-GMP level on environmental bioprocesses, we constructed a Comamonas testosteroni strain constitutively expressing a c-di-GMP synthase YedQ from Escherichia coli and examined its capability in biofilm formation and biodegradation of 3-chloroaniline (3-CA). The high c-di-GMP strain exhibited an increased binding to Congo red dye, a decreased motility, and an enhanced biofilm formation capability. In planktonic cultures, the strain with an elevated c-di-GMP concentration and the wild type could degrade 3-CA comparably well. However, under batch growth conditions with a high surface to volume ratio, an elevated c-di-GMP concentration in C. testosteroni significantly increased the contribution of biofilms in 3-CA biodegradation. In continuous submerged biofilm reactors, C. testosteroni with an elevated c-di-GMP level exhibited an enhanced 3-CA biodegradation and a decreased cell detachment rate. Taken together, this study provides a novel strategy to enhance biofilm-based biodegradation of toxic xenobiotic compounds through manipulating bacterial c-di-GMP signaling.

  2. Control of the light-regulated current in rod photoreceptors by cyclic GMP, calcium, and l-cis-diltiazem.

    Science.gov (United States)

    Stern, J H; Kaupp, U B; MacLeish, P R

    1986-02-01

    The effect of calcium ions on the cGMP-activated current of outer segment membrane was examined by the excised-patch technique. Changes in the extracellular calcium concentration had marked effects on the cGMP-activated current, while changes in intracellular calcium concentration were ineffective. Changes in calcium concentration in the absence of cGMP had little, if any, effect on membrane conductance. These results suggest that both intracellular cGMP and extracellular calcium can directly affect the conductance underlying the light response in rod cells. The pharmacological agent l-cis-diltiazem reversibly inhibited the cGMP-activated current when applied to the intracellular side of an excised patch. When superfused over intact rod cells, l-cis-diltiazem reversibly blocked much of the normal light response. The isomer, d-cis-diltiazem, did not significantly affect either patches or intact rod cells. Thus, the light-regulated conductance has binding sites for both calcium and cGMP that may interact during the normal light response in rod cells and a site specific for l-cis-diltiazem that can be used to identify and further study the conductance mechanism.

  3. The role of cGMP hydrolysing phosphodiesterases 1 and 5 in cerebral artery dilatation

    DEFF Research Database (Denmark)

    Kruuse, C; Rybalkin, S D; Khurana, T S;

    2001-01-01

    The aim was to investigate the presence and activity of cGMP hydrolysing phosphodiesterases in guinea pig basilar arteries and the effect of selective and non-selective phosphodiesterase inhibitors on cerebral artery dilatation involving the nitric oxide (NO)-guanosine cyclic 3'5-monophosphate (c...... by cGMP-independent mechanisms. Targeting the phosphodiesterases present in cerebral arteries, with selective inhibitors or activators of phosphodiesterase, may be a possible new way of treating cerebrovascular disease.......The aim was to investigate the presence and activity of cGMP hydrolysing phosphodiesterases in guinea pig basilar arteries and the effect of selective and non-selective phosphodiesterase inhibitors on cerebral artery dilatation involving the nitric oxide (NO)-guanosine cyclic 3'5-monophosphate (c......GMP) pathway. Immunoreactivity to phosphodiesterases 1A, 1B and 5, but not phosphodiesterase 1C was found in fractions of homogenised cerebral arteries eluted by high-pressure liquid chromatography (HPLC). Both the phosphodiesterase 1 inhibitor 8-methoxymethyl-1-methyl-3-(2methylpropyl)-xanthine (8-MM...

  4. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation.

    Science.gov (United States)

    Campbell, James C; VanSchouwen, Bryan; Lorenz, Robin; Sankaran, Banumathi; Herberg, Friedrich W; Melacini, Giuseppe; Kim, Choel

    2017-01-01

    The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. Here, we determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a 'gatekeeper' for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalytic subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. These results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B. © 2016 Federation of European Biochemical Societies.

  5. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense.

    Science.gov (United States)

    Ramírez-Mata, Alberto; López-Lara, Lilia I; Xiqui-Vázquez, Ma Luisa; Jijón-Moreno, Saúl; Romero-Osorio, Angelica; Baca, Beatriz E

    2016-04-01

    In bacteria, proteins containing GGDEF domains are involved in production of the second messenger c-di-GMP. Here we report that the cdgA gene encoding diguanylate cyclase A (CdgA) is involved in biofilm formation and exopolysaccharide (EPS) production in Azospirillum brasilense Sp7. Biofilm quantification using crystal violet staining revealed that inactivation of cdgA decreased biofilm formation. In addition, confocal laser scanning microscopy analysis of green-fluorescent protein-labeled bacteria showed that, during static growth, the biofilms had differential levels of development: bacteria harboring a cdgA mutation exhibited biofilms with considerably reduced thickness compared with those of the wild-type Sp7 strain. Moreover, DNA-specific staining and treatment with DNase I, and epifluorescence studies demonstrated that extracellular DNA and EPS are components of the biofilm matrix in Azospirillum. After expression and purification of the CdgA protein, diguanylate cyclase activity was detected. The enzymatic activity of CdgA-producing cyclic c-di-GMP was determined using GTP as a substrate and flavin adenine dinucleotide (FAD(+)) and Mg(2)(+) as cofactors. Together, our results revealed that A. brasilense possesses a functional c-di-GMP biosynthesis pathway.

  6. Host cell contact induces expression of virulence factors and VieA, a cyclic di-GMP phosphodiesterase, in Vibrio cholerae.

    Science.gov (United States)

    Dey, Amit K; Bhagat, Abha; Chowdhury, Rukhsana

    2013-05-01

    Vibrio cholerae, a noninvasive bacterium, colonizes the intestinal epithelium and secretes cholera toxin (CT), a potent enterotoxin that causes the severe fluid loss characteristic of the disease cholera. In this study, we demonstrate that adherence of V. cholerae to the intestinal epithelial cell line INT 407 strongly induces the expression of the major virulence genes ctxAB and tcpA and the virulence regulatory gene toxT. No induction of toxR and tcpP, which encode transcriptional activators of toxT, was observed in adhered bacteria, and the adherence-dependent upregulation of toxT expression was independent of ToxR and TcpP. A sharp increase in the expression of the vieA gene, which encodes a cyclic di-GMP (c-di-GMP) phosphodiesterase, was observed in INT 407-adhered V. cholerae immediately after infection. Induction of toxT, ctxAB, and tcpA in INT 407-adhered vieA mutant strain O395 ΔvieA was consistently lower than in the parent strain, although no effect was observed in unadhered bacteria, suggesting that VieA has a role in the upregulation of toxT expression specifically in host cell-adhered V. cholerae. Furthermore, though VieA has both a DNA binding helix-turn-helix domain and an EAL domain conferring c-di-GMP phosphodiesterase activity, the c-di-GMP phosphodiesterase activity of VieA is necessary and sufficient for the upregulation of toxT expression.

  7. Mutational analysis of structural elements in a class-I cyclic di-GMP riboswitch to elucidate its regulatory mechanism.

    Science.gov (United States)

    Inuzuka, Saki; Nishimura, Kei-Ichiro; Kakizawa, Hitoshi; Fujita, Yuki; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-09-01

    The Vc2 riboswitch possesses an aptamer domain belonging to the class-I c-di-GMP riboswitch family. This domain has been analysed and the molecular mechanism by which it recognizes the c-di-GMP ligand has been elucidated. On the other hand, the regulatory mechanism of the full-length Vc2 riboswitch to control its downstream open reading frame (ORF) remains largely unknown. In this study, we performed in vivo reporter assays and in vitro biochemical analyses of the full-length riboswitch and its aptamer domain. We evaluated the results of in vivo and in vitro analyses to elucidate the regulatory mechanism of the Vc2 riboswitch. The present results suggest that recognition of c-di-GMP ligand by the Vc2 riboswitch aptamer domain downregulates expression of its downstream ORF primarily at the translational level.

  8. Measuring the dynamics of cyclic adenosine monophosphate level in living cells induced by low-level laser irradiation using bioluminescence resonance energy transfer

    Science.gov (United States)

    Huang, Yimei; Zheng, Liqin; Yang, Hongqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen; Zeng, Haishan

    2015-05-01

    Several studies demonstrated that the cyclic adenosine monophosphate (cAMP), an important second messenger, is involved in the mechanism of low-level laser irradiation (LLLI) treatment. However, most of these studies obtained the cAMP level in cell culture extracts or supernatant. In this study, the cAMP level in living cells was measured with bioluminescence resonance energy transfer (BRET). The effect of LLLI on cAMP level in living cells with adenosine receptors blocked was explored to identify the role of adenosine receptors in LLLI. The results showed that LLLI increased the cAMP level. Moreover, the rise of cAMP level was light dose dependent but wavelength independent for 658-, 785-, and 830-nm laser light. The results also exhibited that the adenosine receptors, a class of G protein-coupled receptor (GPCR), modulated the increase of cAMP level induced by LLLI. The cAMP level increased more significantly when the A3 adenosine receptors (A3R) were blocked by A3R antagonist compared with A1 adenosine receptor or A2a adenosine receptor blocked in HEK293T cells after LLLI, which was in good agreement with the adenosine receptors' expressions. All these results suggested that measuring the cAMP level with BRET could be a useful technique to study the role of GPCRs in living cells under LLLI.

  9. Association study of three single-nucleotide polymorphisms in the cyclic adenosine monophosphate response element binding 1 gene and major depressive disorder.

    Science.gov (United States)

    Wei, Yange; Bu, Shufang; Liu, Xican; Li, Hengfen

    2015-06-01

    Major depressive disorder is a common chronic emotional disorder, and cyclic adenosine monophosphate response element binding protein 1 (CREB1) is hypothesized to play a role in its pathogenesis. The aim of the present study was to investigate the associations between major depressive disorder and relevant single nucleotide polymorphisms (SNPs) in the CREB1 gene. A total of 1,038 subjects of Han Chinese descent were recruited, including 456 patients with major depressive disorder (case group) and 582 healthy volunteers (control group). The frequency distributions of the genotypes and alleles were estimated in the case and control groups, and analyzed for any correlation with major depressive disorder. Three relevant SNP sites in CREB1 were analyzed using quantitative polymerase chain reaction, and statistical analyses were performed to estimate their use as risk factors for major depressive disorder. The analyses revealed that rs2254137 and rs16839883 in CREB1 showed polymorphisms in the sample population, and the genotype and allele frequencies of rs16839883 differed significantly when comparing the patients and healthy controls (P0.05). Furthermore, no statistically significant differences were detected in rs2254137 genotype and allele distribution when comparing the male and female patients with their corresponding control groups (P>0.05). However, statistically significant differences were observed in the genotype and allele frequencies of rs16839883 when the male and female patients were compared with their respective controls (Pmajor depressive disorder, which suggests that this SNP site should be further studied as a potential biomarker for major depressive disorder.

  10. Cyclic 3',5'-adenosine monophosphate (cAMP) signaling in the anterior pituitary gland in health and disease.

    Science.gov (United States)

    Hernández-Ramírez, Laura C; Trivellin, Giampaolo; Stratakis, Constantine A

    2017-08-16

    The cyclic 3',5'-adenosine monophosphate (cAMP) was the first among the so-called "second messengers" to be described. It is conserved in most organisms and functions as a signal transducer by mediating the intracellular effects of multiple hormones and neurotransmitters. In this review, we first delineate how different members of the cAMP pathway ensure its correct compartmentalization and activity, mediate the terminal intracellular effects, and allow the crosstalk with other signaling pathways. We then focus on the pituitary gland, where cAMP exerts a crucial function by controlling the responsiveness of the cells to hypothalamic hormones, neurotransmitters and peripheral factors. We discuss the most relevant physiological functions mediated by cAMP in the different pituitary cell types, and summarize the defects affecting this pathway that have been reported in the literature. We finally discuss how a deregulated cAMP pathway is involved in the pathogenesis of pituitary disorders and how it affects the response to therapy. Copyright © 2017. Published by Elsevier B.V.

  11. Investigation on the occurrence and significance of cyclic adenosine 3':5'-monophosphate in phytoplankton and natural aquatic communities

    Energy Technology Data Exchange (ETDEWEB)

    Francko, D.A.

    1980-01-01

    This study is an investigation into the occurrence and potential functions of cyclic adenosine 3':5'-monophosphate (cAMP), a potent and ubiquitous metabolic regulatory molecule in heterotrophic organisms, in phytoplankton and in natural aquatic communities. Laboratory-cultured phytoplankton were grown under both optimal and suboptimal nutrient regimes under constant temperature and illumination regimes. Cellular and extracellular cAMP production, characterized by a number of biochemical techniques, was correlated with growth rate dynamics, chlorophyll a synthesis, /sup 14/C-bicarbonate uptake, alkaline phosphatase activity, and heterocyst formation. The blue-green alga Anabaena flos-aquae was used as a model system in the examination of these metabolic variables. Additionally, this alga was used to test the effects of perturbation of cAMP levels on the aforementioned metabolic variables. Investigations on the occurrence and seasonal dynamics of cAMP in aquatic systems were conducted on Lawrence Lake, a hardwater oligotrophic lake, and on Wintergreen Lake, a hardwater hypereutrophic lake, both in southwestern Michigan. Putative cAMP from both systems was characterized by several biochemical techniques. Weekly sampling of particulate and dissolved cAMP in the epilimnia of both lakes was correlated with data on the rates of primary productivity, alkaline phosphatase activity, chlorophyll a synthesis and changes in phytoplankton community structure.

  12. The antilipolytic agent 3,5-dimethylpyrazole inhibits insulin release in response to both nutrient secretagogues and cyclic adenosine monophosphate agonists in isolated rat islets.

    Science.gov (United States)

    Masiello, P; Novelli, M; Bombara, M; Fierabracci, V; Vittorini, S; Prentki, M; Bergamini, E

    2002-01-01

    This study intended to test the hypothesis that intracellular lipolysis in the pancreatic beta cells is implicated in the regulation of insulin secretion stimulated by nutrient secretagogues or cyclic adenosine monophosphate (cAMP) agonists. Indeed, although lipid signaling molecules were repeatedly reported to influence beta-cell function, the contribution of intracellular triglycerides to the generation of these molecules has remained elusive. Thus, we have studied insulin secretion of isolated rat pancreatic islets in response to various secretagogues in the presence or absence of 3,5-dimethylpyrazole (DMP), a water-soluble and highly effective antilipolytic agent, as previously shown in vivo. In vitro exposure of islets to DMP resulted in an inhibition (by approximately 50%) of the insulin release stimulated not only by high glucose, but also by another nutrient secretagogue, 2-ketoisocaproate, as well as the cAMP agonists 3-isobutyl-1-methylxanthine and glucagon. The inhibitory effect of DMP, which was not due to alteration of islet glucose oxidation, could be reversed upon addition of sn-1,2-dioctanoylglycerol, a synthetic diglyceride, which activates protein kinase C. The results provide direct pharmacologic evidence supporting the concept that endogenous beta-cell lipolysis plays an important role in the generation of lipid signaling molecules involved in the control of insulin secretion in response to both fuel stimuli and cAMP agonists.

  13. Developmental Competence of Vitrified-Warmed Bovine Oocytes at the Germinal-Vesicle Stage is Improved by Cyclic Adenosine Monophosphate Modulators during In Vitro Maturation.

    Directory of Open Access Journals (Sweden)

    Kenji Ezoe

    Full Text Available Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK or 3-isobutyl-1-methylxanthine (IBMX to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.

  14. Modulation of cGMP by human HO-1 retrovirus gene transfer in pulmonary microvessel endothelial cells.

    Science.gov (United States)

    Abraham, Nader G; Quan, Shuo; Mieyal, Paul A; Yang, Liming; Burke-Wolin, Theresa; Mingone, Christopher J; Goodman, Alvin I; Nasjletti, Alberto; Wolin, Michael S

    2002-11-01

    Carbon monoxide (CO) stimulates guanylate cyclase (GC) and increases guanosine 3',5'-cyclic monophosphate (cGMP) levels. We transfected rat-lung pulmonary endothelial cells with a retrovirus-mediated human heme oxygenase (hHO)-1 gene. Pulmonary cells that expressed hHO-1 exhibited a fourfold increase in HO activity associated with decreases in the steady-state levels of heme and cGMP without changes in soluble GC (sGC) and endothelial nitric oxide synthase (NOS) proteins or basal nitrite production. Heme elicited significant increases in CO production and intracellular cGMP levels in both pulmonary endothelial and pulmonary hHO-1-expressing cells. N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NOS, significantly decreased cGMP levels in heme-treated pulmonary endothelial cells but not heme-treated hHO-1-expressing cells. In the presence of exogenous heme, CO and cGMP levels in hHO-1-expressing cells exceeded the corresponding levels in pulmonary endothelial cells. Acute exposure of endothelial cells to SnCl2, which is an inducer of HO-1, increased cGMP levels, whereas chronic exposure decreased heme and cGMP levels. These results indicate that prolonged overexpression of HO-1 ultimately decreases sGC activity by limiting the availability of cellular heme. Heme activates sGC and enhances cGMP levels via a mechanism that is largely insensitive to NOS inhibition.

  15. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Aalkjær, Christian; Nilsson, Holger

    2004-01-01

    -PET-cGMP or with a peptide inhibitor of PKG, or with the nonhydrolysable ATP analogue AMP-PNP. Under biionic conditions, the anion permeability sequence of the channel was SCN- > Br- > I- > Cl- > acetate > F- >> aspartate, but the conductance sequence was I- > Br- > Cl- > acetate > F- > aspartate = SCN-. The current had...... conditions of high calcium in the patch-pipette solution, a current similar to the latter could be identified also in the mesenteric artery smooth-muscle cells. We conclude that smooth-muscle cells from rat mesenteric resistance arteries have a novel cGMP-dependent calcium-activated chloride current, which...

  16. CSF concentrations of cAMP and cGMP are lower in patients with Creutzfeldt-Jakob disease but not Parkinson's disease and amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Patrick Oeckl

    Full Text Available BACKGROUND: The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP and cyclic guanosine-3',5'-monophosphate (cGMP are important second messengers and are potential biomarkers for Parkinson's disease (PD, amyotrophic lateral sclerosis (ALS and Creutzfeldt-Jakob disease (CJD. METHODOLOGY/PRINCIPAL FINDINGS: Here, we investigated by liquid chromatography/tandem mass spectrometry (LC-MS/MS the cerebrospinal fluid (CSF concentrations of cAMP and cGMP of 82 patients and evaluated their diagnostic potency as biomarkers. For comparison with a well-accepted biomarker, we measured tau concentrations in CSF of CJD and control patients. CJD patients (n = 15 had lower cAMP (-70% and cGMP (-55% concentrations in CSF compared with controls (n = 11. There was no difference in PD, PD dementia (PDD and ALS cases. Receiver operating characteristic (ROC curve analyses confirmed cAMP and cGMP as valuable diagnostic markers for CJD indicated by the area under the curve (AUC of 0.86 (cAMP and 0.85 (cGMP. We calculated a sensitivity of 100% and specificity of 64% for cAMP and a sensitivity of 67% and specificity of 100% for cGMP. The combination of both nucleotides increased the sensitivity to 80% and specificity to 91% for the term cAMPxcGMP (AUC 0.92 and to 93% and 100% for the ratio tau/cAMP (AUC 0.99. CONCLUSIONS/SIGNIFICANCE: We conclude that the CSF determination of cAMP and cGMP may easily be included in the diagnosis of CJD and could be helpful in monitoring disease progression as well as in therapy control.

  17. Regulation of cyclic GMP metabolism in toad photoreceptors. Definition of the metabolic events subserving photoexcited and attenuated states.

    Science.gov (United States)

    Dawis, S M; Graeff, R M; Heyman, R A; Walseth, T F; Goldberg, N D

    1988-06-25

    Photoreceptor metabolism of cGMP and its regulation were characterized in isolated toad retinas by determining the intensity and time dependence of light-induced changes in the following metabolic parameters: cGMP hydrolytic flux determined by the rate of 18O incorporation from 18O-water into retinal guanine nucleotide alpha-phosphoryls; changes in the total (protein-bound and unbound) concentrations of the guanine nucleotide metabolic intermediates; and changes in the concentration of metabolic (unbound) GDP calculated from the fraction of the alpha-GDP that undergoes labeling with 18O. The latter is interpreted to reflect the state of the equilibrium between GDP- and GTP-complexed forms of G-protein. With narrow band 500 nm light that preferentially stimulates red rod photoreceptors, a range of intensities covering approximately 5 log units produced increases of over 10-fold in cGMP metabolic flux. However, the characteristics of the cGMP metabolic response over the first 2.5 log units of intensity are readily distinguishable from those at higher intensities which exhibit progressive attenuation by an intensity- and time-dependent process. Over the range of low intensities (0.6-3 log photons.micron-2.s-1) the metabolic response is characterized by 1) increases in cGMP hydrolytic flux of up to 8-fold as a logarithmic function of intensity of photic stimulation that are sustained for at least 200 s; 2) small increases or no change in the concentration of total cGMP; 3) large increases of up to 10-fold in the concentration of metabolically active GDP as a linear function of intensity with no significant change in the tissue concentrations of total GDP or GTP; and 4) amplification of the photosignal by the metabolism of approximately 10,000 molecules of cGMP per photoisomerization with the major site of amplification at the level of the interaction of bleached rhodopsin with G-protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins.

    Directory of Open Access Journals (Sweden)

    Ori J Lieberman

    Full Text Available Bacterial signaling networks control a wide variety of cellular processes including growth, metabolism, and pathogenesis. Bis-(3'-5'-cyclic dimeric guanosine monophosphate (cdiGMP is a secondary signaling nucleotide that controls cellulose synthesis, biofilm formation, motility and virulence in a wide range of gram-negative bacterial species. CdiGMP is a dynamic molecule that forms different tertiary structures in vitro, including a trans-monomer, cis-monomer, cis-dimer and G-octaplex (G8. Although the monomer and dimer have been shown to be physiologically relevant in modulating protein activity and transcription, the biological effects of the cdiGMP G8 has not yet been described. Here, we have developed a TLC-based assay to detect radiolabeled cdiGMP G8 formation. Utilizing the radiolabeled cdiGMP G8, we have also shown a novel inhibitory interaction between the cdiGMP G8 and HIV-1 reverse transcriptase and that the cdiGMP G8 does not interact with proteins from Pseudomonas aeruginosa known to bind monomeric and dimeric cdiGMP. These results suggest that the radiolabeled cdiGMP G8 can be used to measure interactions between the cdiGMP G8 and cellular proteins, providing an avenue through which the biological significance of this molecule could be investigated.

  19. Detection of cyclic diguanylate G-octaplex assembly and interaction with proteins.

    Science.gov (United States)

    Lieberman, Ori J; DeStefano, Jeffrey J; Lee, Vincent T

    2013-01-01

    Bacterial signaling networks control a wide variety of cellular processes including growth, metabolism, and pathogenesis. Bis-(3'-5')-cyclic dimeric guanosine monophosphate (cdiGMP) is a secondary signaling nucleotide that controls cellulose synthesis, biofilm formation, motility and virulence in a wide range of gram-negative bacterial species. CdiGMP is a dynamic molecule that forms different tertiary structures in vitro, including a trans-monomer, cis-monomer, cis-dimer and G-octaplex (G8). Although the monomer and dimer have been shown to be physiologically relevant in modulating protein activity and transcription, the biological effects of the cdiGMP G8 has not yet been described. Here, we have developed a TLC-based assay to detect radiolabeled cdiGMP G8 formation. Utilizing the radiolabeled cdiGMP G8, we have also shown a novel inhibitory interaction between the cdiGMP G8 and HIV-1 reverse transcriptase and that the cdiGMP G8 does not interact with proteins from Pseudomonas aeruginosa known to bind monomeric and dimeric cdiGMP. These results suggest that the radiolabeled cdiGMP G8 can be used to measure interactions between the cdiGMP G8 and cellular proteins, providing an avenue through which the biological significance of this molecule could be investigated.

  20. A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide

    Science.gov (United States)

    Klaiber, Michael; Dankworth, Beatrice; Kruse, Martin; Hartmann, Michael; Nikolaev, Viacheslav O.; Yang, Ruey-Bing; Völker, Katharina; Gaßner, Birgit; Oberwinkler, Heike; Feil, Robert; Freichel, Marc; Groschner, Klaus; Skryabin, Boris V.; Frantz, Stefan; Birnbaumer, Lutz; Pongs, Olaf; Kuhn, Michaela

    2011-01-01

    Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca2+]i increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca2+ levels. This pathway involves the activation of Ca2+‐permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca2+ channels and ultimately increases myocyte Ca2+i levels. These observations reveal a dual role of the ANP/GC-A–signaling pathway in the regulation of cardiac myocyte Ca2+i homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca2+i-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca2+]i might increase the propensity to cardiac hypertrophy and arrhythmias. PMID:22027011

  1. Crystal Structure of PKG I:cGMP Complex Reveals a cGMP-Mediated Dimeric Interface that Facilitates cGMP-Induced Activation.

    Science.gov (United States)

    Kim, Jeong Joo; Lorenz, Robin; Arold, Stefan T; Reger, Albert S; Sankaran, Banumathi; Casteel, Darren E; Herberg, Friedrich W; Kim, Choel

    2016-05-03

    Cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is a key regulator of smooth muscle and vascular tone and represents an important drug target for treating hypertensive diseases and erectile dysfunction. Despite its importance, its activation mechanism is not fully understood. To understand the activation mechanism, we determined a 2.5 Å crystal structure of the PKG I regulatory (R) domain bound with cGMP, which represents the activated state. Although we used a monomeric domain for crystallization, the structure reveals that two R domains form a symmetric dimer where the cGMP bound at high-affinity pockets provide critical dimeric contacts. Small-angle X-ray scattering and mutagenesis support this dimer model, suggesting that the dimer interface modulates kinase activation. Finally, structural comparison with the homologous cyclic AMP-dependent protein kinase reveals that PKG is drastically different from protein kinase A in its active conformation, suggesting a novel activation mechanism for PKG.

  2. Growth hormone release from chicken anterior pituitary cells in primary culture: TRH and hpGRF synergy, protein synthesis, and cyclic adenosine 3'5'-monophosphate.

    Science.gov (United States)

    Perez, F M; Malamed, S; Scanes, C G

    1989-01-01

    Our earlier work showed that the effects of thyrotropin-releasing hormone (TRH) and human pancreatic growth hormone-releasing factor (hpGRF) on growth hormone (GH) release are synergistic (greater than additive) in a primary culture of chicken adenohypophyseal cells. The purpose of the present studies was to investigate the possible participation of protein synthesis and cyclic adenosine 3'5'-monophosphate (cAMP) in GH release. Following culture (48 hr), cells were incubated for 2 hr with test agents. Cycloheximide (an inhibitor of protein synthesis) had no effect on basal (absence of test agent) GH release or hpGRF-induced GH release. However, cycloheximide abolished the synergy between TRH and hpGRF. Although neither TRH nor hpGRF alone stimulated GH production (intracellular GH plus GH release) during a 2-hr incubation period, in combination these secretagogues increased total GH. These findings suggest that GH release from the chicken somatotroph under conditions of TRH and hpGRF synergy requires protein synthesis. In other studies, cells were exposed to agents inducing the formation of cAMP and either TRH or hpGRF. 8 Br-cAMP (10(-3) M), forskolin (10(-6) M), or isobutylmethylxanthine (IBMX; 10(-3) M) alone stimulated GH release to values between 30 and 50% over the basal value. The combined effects of each of these agents and TRH on GH release were synergistic. Similarly, IBMX and hpGRF exerted synergistic effects on GH release. In contrast, no synergy was shown between hpGRF and either 8 Br-cAMP or forskolin; their combined actions were less than additive.

  3. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum.

    Science.gov (United States)

    Hou, Rui; Jiang, Cong; Zheng, Qian; Wang, Chenfang; Xu, Jin-Rong

    2015-12-01

    Deoxynivalenol (DON), a trichothecene mycotoxin produced by Fusarium graminearum, is harmful to humans and animals. Because different nitrogen sources are known to have opposite effects on DON production, in this study, we characterized the regulatory mechanisms of the AREA transcription factor in trichothecene biosynthesis. The ΔareA mutant showed significantly reduced vegetative growth and DON production in cultures inoculated with hyphae. Suppression of TRI gene expression and DON production by ammonium were diminished in the ΔareA mutant. The deletion of AREA also affected the stimulatory effects of arginine on DON biosynthesis. The AreA-green fluorescent protein (GFP) fusion complemented the ΔareA mutant, and its localization to the nucleus was enhanced under nitrogen starvation conditions. Site-directed mutagenesis showed that the conserved predicted protein kinase A (PKA) phosphorylation site S874 was important for AreA function, indicating that AreA may be a downstream target of the cyclic adenosine monophosphate (cAMP)-PKA pathway, which is known to regulate DON production. We also showed that AreA interacted with Tri10 in co-immunoprecipitation assays. The interaction of AreA with Tri10 is probably related to its role in the regulation of TRI gene expression. Interestingly, the ΔareA mutant showed significantly reduced PKA activity and expression of all three predicted ammonium permease (MEP) genes, in particular MEP1, under low ammonium conditions. Taken together, our results show that AREA is involved in the regulation of DON production by ammonium suppression and the cAMP-PKA pathway. The AreA transcription factor may interact with Tri10 and control the expression and up-regulation of MEP genes.

  4. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.

    Science.gov (United States)

    Ueda, Atsushi; Wu, Chun-Fang

    2012-03-01

    Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss

  5. Sodium depletion enhances renal expression of (pro)renin receptor via cyclic GMP-protein kinase G signaling pathway.

    Science.gov (United States)

    Huang, Jiqian; Siragy, Helmy M

    2012-02-01

    (Pro)renin receptor (PRR) is expressed in renal vasculature, glomeruli, and tubules. The physiological regulation of this receptor is not well established. We hypothesized that sodium depletion increases PRR expression through cGMP- protein kinase G (PKG) signaling pathway. Renal PRR expressions were evaluated in Sprague-Dawley rats on normal sodium or low-sodium diet (LS) and in cultured rat proximal tubular cells and mouse renal inner medullary collecting duct cells exposed to LS concentration. LS augmented PRR expression in renal glomeruli, proximal tubules, distal tubules, and collecting ducts. LS also increased cGMP production and PKG activity. In cells exposed to normal sodium, cGMP analog increased PKG activity and upregulated PRR expression. In cells exposed to LS, blockade of guanylyl cyclase with 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one decreased PKG activity and downregulated PRR expression. PKG inhibition decreased phosphatase protein phosphatase 2A activity; suppressed LS-mediated phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, c-Jun, and nuclear factor-κB p65; and attenuated LS-mediated PRR upregulation. LS also enhanced DNA binding of cAMP response element binding protein 1 to cAMP response elements, nuclear factor-κB p65 to nuclear factor-κB elements, and c-Jun to activator protein 1 elements in PRR promoter in proximal tubular cells. We conclude that sodium depletion upregulates renal PRR expression via the cGMP-PKG signaling pathway by enhancing binding of cAMP response element binding protein 1, nuclear factor-κB p65, and c-Jun to PRR promotor.

  6. Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis.

    Directory of Open Access Journals (Sweden)

    Marcos V A S Navarro

    Full Text Available The bacterial second messenger bis-(3'-5' cyclic dimeric guanosine monophosphate (c-di-GMP has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure-function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species.

  7. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon;

    2015-01-01

    regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed...... to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal...... in the older subjects correlated with the increase in leg O2 uptake (r (2) = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age....

  8. Dimeric c-di-GMP is required for post-translational regulation of alginate production in Pseudomonas aeruginosa.

    Science.gov (United States)

    Whitney, John C; Whitfield, Gregory B; Marmont, Lindsey S; Yip, Patrick; Neculai, A Mirela; Lobsanov, Yuri D; Robinson, Howard; Ohman, Dennis E; Howell, P Lynne

    2015-05-15

    Pseudomonas aeruginosa is an opportunistic human pathogen that secretes the exopolysaccharide alginate during infection of the respiratory tract of individuals afflicted with cystic fibrosis and chronic obstructive pulmonary disease. Among the proteins required for alginate production, Alg44 has been identified as an inner membrane protein whose bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding activity post-translationally regulates alginate secretion. In this study, we report the 1.8 Å crystal structure of the cytoplasmic region of Alg44 in complex with dimeric self-intercalated c-di-GMP and characterize its dinucleotide-binding site using mutational analysis. The structure shows that the c-di-GMP binding region of Alg44 adopts a PilZ domain fold with a dimerization mode not previously observed for this family of proteins. Calorimetric binding analysis of residues in the c-di-GMP binding site demonstrate that mutation of Arg-17 and Arg-95 alters the binding stoichiometry between c-di-GMP and Alg44 from 2:1 to 1:1. Introduction of these mutant alleles on the P. aeruginosa chromosome show that the residues required for binding of dimeric c-di-GMP in vitro are also required for efficient alginate production in vivo. These results suggest that the dimeric form of c-di-GMP represents the biologically active signaling molecule needed for the secretion of an important virulence factor produced by P. aeruginosa.

  9. The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants

    KAUST Repository

    Kwezi, Lusisizwe

    2011-04-19

    Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate Km of 7.5 μM and Vmax of 1800 nmol min-1 mg-1 of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg2+ or Mn2+. Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. A cyclic dinucleotide containing 2-aminopurine is a general fluorescent sensor for c-di-GMP and 3',3'-cGAMP.

    Science.gov (United States)

    Roembke, Benjamin T; Zhou, Jie; Zheng, Yue; Sayre, David; Lizardo, Allan; Bernard, Laurentee; Sintim, Herman O

    2014-06-01

    Cyclic dinucleotides have emerged as second messengers that regulate diverse processes in bacteria, as well as regulating the production of type I interferons in metazoans. Fluorescent sensors for these important second messengers are highly sought-after for high-throughput inhibitor discovery, yet most sensors reported to date are not amenable for high-throughput screening purposes. Herein, we demonstrate that a new analog, 3',3'-cG(d2AP)MP, which is a 2-aminopurine (2AP)-containing cyclic dinucleotide, self-associates in the presence of Mn(2+) with an association constant of 120,000 M(-1). 3'3'-cG(d2AP)MP can also form a heterodimer with cGAMP, activator of immune regulator, STING, or the bacterial biofilm regulator, c-di-GMP in the presence of Mn(II). Upon dimer formation, the fluorescence of 3',3'-cG(d2AP)MP is quenched and this provides a convenient method to monitor the enzymatic processing of both DGC and PDE enzymes, opening up several opportunities for the discovery of inhibitors of nucleotide signaling.

  11. Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity.

    Directory of Open Access Journals (Sweden)

    Ceng Luo

    Full Text Available Synaptic long-term potentiation (LTP at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I(-/- mice. Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG was completely abolished in SNS-PKG-I(-/- mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I(-/- mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are

  12. A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP

    OpenAIRE

    Xin Jia; Fontaine, Benjamin M.; Fred Strobel; Weinert, Emily E.

    2014-01-01

    A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs) using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of ...

  13. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho-Costa, P.G. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Branco, L.G.S. [Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Leite-Panissi, C.R.A. [Programa de Graduação em Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2014-09-19

    Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

  14. Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING.

    Science.gov (United States)

    Kobayashi, Hiroshi; Kobayashi, Chiharu I; Nakamura-Ishizu, Ayako; Karigane, Daiki; Haeno, Hiroshi; Yamamoto, Kimiyo N; Sato, Taku; Ohteki, Toshiaki; Hayakawa, Yoshihiro; Barber, Glen N; Kurokawa, Mineo; Suda, Toshio; Takubo, Keiyo

    2015-04-01

    Upon systemic bacterial infection, hematopoietic stem and progenitor cells (HSPCs) migrate to the periphery in order to supply a sufficient number of immune cells. Although pathogen-associated molecular patterns reportedly mediate HSPC activation, how HSPCs detect pathogen invasion in vivo remains elusive. Bacteria use the second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) for a variety of activities. Here, we report that c-di-GMP comprehensively regulated both HSPCs and their niche cells through an innate immune sensor, STING, thereby inducing entry into the cell cycle and mobilization of HSPCs while decreasing the number and repopulation capacity of long-term hematopoietic stem cells. Furthermore, we show that type I interferon acted as a downstream target of c-di-GMP to inhibit HSPC expansion in the spleen, while transforming growth factor-β was required for c-di-GMP-dependent splenic HSPC expansion. Our results define machinery underlying the dynamic regulation of HSPCs and their niches during bacterial infection through c-di-GMP/STING signaling.

  15. Acute stress-induced antinociception is cGMP-dependent but heme oxygenase-independent

    Directory of Open Access Journals (Sweden)

    P.G. Carvalho-Costa

    2014-12-01

    Full Text Available Endogenous carbon monoxide (CO, which is produced by the enzyme heme oxygenase (HO, participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP. In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group using the analgesia index (AI in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ blocked the increase in the AI induced by acute stress.

  16. Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling.

    Science.gov (United States)

    Li, Nan; Xi, Yaguang; Tinsley, Heather N; Gurpinar, Evrim; Gary, Bernard D; Zhu, Bing; Li, Yonghe; Chen, Xi; Keeton, Adam B; Abadi, Ashraf H; Moyer, Mary P; Grizzle, William E; Chang, Wen-Chi; Clapper, Margie L; Piazza, Gary A

    2013-09-01

    Nonsteroidal anti-inflammatory drugs (NSAID) display promising antineoplastic activity for colorectal and other cancers, but toxicity from COX inhibition limits their long-term use for chemoprevention. Previous studies have concluded that the basis for their tumor cell growth inhibitory activity does not require COX inhibition, although the underlying mechanism is poorly understood. Here, we report that the NSAID sulindac sulfide inhibits cyclic guanosine 3',5'-monophosphate phosphodiesterase (cGMP PDE) activity to increase intracellular cGMP levels and activate cGMP-dependent protein kinase (PKG) at concentrations that inhibit proliferation and induce apoptosis of colon tumor cells. Sulindac sulfide did not activate the cGMP/PKG pathway, nor affect proliferation or apoptosis in normal colonocytes. Knockdown of the cGMP-specific PDE5 isozyme by siRNA and PDE5-specific inhibitors tadalafil and sildenafil also selectively inhibited the growth of colon tumor cells that expressed high levels of PDE5 compared with colonocytes. The mechanism by which sulindac sulfide and the cGMP/PKG pathway inhibits colon tumor cell growth involves the transcriptional suppression of β-catenin to inhibit Wnt/β-catenin T-cell factor transcriptional activity, leading to downregulation of cyclin D1 and survivin. These observations suggest that safer and more efficacious sulindac derivatives can be developed for colorectal cancer chemoprevention by targeting PDE5 and possibly other cGMP-degrading isozymes.

  17. Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB.

    Science.gov (United States)

    Fazli, Mustafa; Rybtke, Morten; Steiner, Elisabeth; Weidel, Elisabeth; Berthelsen, Jens; Groizeleau, Julie; Bin, Wu; Zhi, Boo Zhao; Yaming, Zhang; Kaever, Volkhard; Givskov, Michael; Hartmann, Rolf W; Eberl, Leo; Tolker-Nielsen, Tim

    2017-08-01

    Knowledge about the molecular mechanisms that are involved in the regulation of biofilm formation is essential for the development of biofilm-control measures. It is well established that the nucleotide second messenger cyclic diguanosine monophosphate (c-di-GMP) is a positive regulator of biofilm formation in many bacteria, but more knowledge about c-di-GMP effectors is needed. We provide evidence that c-di-GMP, the alternative sigma factor RpoN (σ54), and the enhancer-binding protein BerB play a role in biofilm formation of Burkholderia cenocepacia by regulating the production of a biofilm-stabilizing exopolysaccharide. Our findings suggest that BerB binds c-di-GMP, and activates RpoN-dependent transcription of the berA gene coding for a c-di-GMP-responsive transcriptional regulator. An increased level of the BerA protein in turn induces the production of biofilm-stabilizing exopolysaccharide in response to high c-di-GMP levels. Our findings imply that the production of biofilm exopolysaccharide in B. cenocepacia is regulated through a cascade involving two consecutive transcription events that are both activated by c-di-GMP. This type of regulation may allow tight control of the expenditure of cellular resources. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  18. 环二鸟苷酸(c-di-GMP)在微生物体内的作用及其类似物的研究%Activity of cyclic diguanylate (c-di-GMP) in bacteria and the study of its derivatives

    Institute of Scientific and Technical Information of China (English)

    那路新; 杨振军

    2012-01-01

    环二鸟苷酸(cyclic diguanylate,c-di-GMP)是在细菌中普遍存在的第二信使分子,参与调节多种生理功能,包括细胞分化、生物被膜形成、致病因子产生等.细菌细胞内c-di-GMP合成与降解代谢分别受二鸟苷酸环化酶(diguanylate cyclase,DGC)和磷酸二酯酶(phosphodiesterase,PDE)调控,DGC和PDE共处于同一个蛋白中,是一个双功能蛋白酶的两个区域,分别负责菌体内c-di-GMP的合成和降解.c-di-GMP作用菌体内下游靶点包括PilZ结构域和GEMM核开关两种类型.目前发现c-di-GMP核开关是唯一不参与代谢活动而参与信号传导的一类核开关.本文综述了c-di-GMP的代谢途径、调控机制、生物学功能,以及c-di-GMP结构类似物合成及生物学评价等方面的最新研究进展.%Cyclic diguanylate (c-di-GMP) is a ubiquitous second messenger present in a wide variety of bacteria, which is responsible for cell differentiation, biofilm formation, pathogenic factor generation, and so on. The level of c-di-GMP in bacteria is regulated by two opposing active domains, diguanylate cyclase (DGC) and phosphodiesterase (PDE), which are present in the same bifunctional protein, and in charge of the synthesis and the degradation of c-di-GMP, respectively. The target of c-di-GMP in the bacterial cell consists of PilZ domain and GEMM riboswitch, the only riboswitch that involved in signal transduction. This article gives an overview of c-di-GMP, focusing on its metabolic pathway, regulatory mechanism, biological function of c-di-GMP, and the synthesis of c-di-GMP analogues and their biological activity.

  19. [Progress in c-di-GMP inhibitors].

    Science.gov (United States)

    Xiang, Xuwen; Liu, Xingyu; Tao, Hui; Cui, Zining; Zhang, Lianhui

    2017-09-25

    The cyclic dinucleotide c-di-GMP is known as an important second messenger in bacteria, which controls various important cellular processes, such as cell differentiation, biofilm formation and virulence factors production. It is extremely vital for the development of new antibacterial agents by virtue of blocking c-di-GMP signal conduction. Current research indicates that there are three potential targets for discovering new antibacterial agents based on c-di-GMP regulated signal pathway, which are c-di-GMP synthases, c-di-GMP degrading enzymes and c-di-GMP receptors. Herein, we review small molecules that have been developed to inhibit c-di-GMP related enzymes and indicate perspectives of c-di-GMP inhibitors.

  20. New Insights into the Cyclic Di-adenosine Monophosphate (c-di-AMP) Degradation Pathway and the Requirement of the Cyclic Dinucleotide for Acid Stress Resistance in Staphylococcus aureus.

    Science.gov (United States)

    Bowman, Lisa; Zeden, Merve S; Schuster, Christopher F; Kaever, Volkhard; Gründling, Angelika

    2016-12-30

    Nucleotide signaling networks are key to facilitate alterations in gene expression, protein function, and enzyme activity in response to diverse stimuli. Cyclic di-adenosine monophosphate (c-di-AMP) is an important secondary messenger molecule produced by the human pathogen Staphylococcus aureus and is involved in regulating a number of physiological processes including potassium transport. S. aureus must ensure tight control over its cellular levels as both high levels of the dinucleotide and its absence result in a number of detrimental phenotypes. Here we show that in addition to the membrane-bound Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterase (PDE) GdpP, S. aureus produces a second cytoplasmic DHH/DHHA1 PDE Pde2. Although capable of hydrolyzing c-di-AMP, Pde2 preferentially converts linear 5'-phosphadenylyl-adenosine (pApA) to AMP. Using a pde2 mutant strain, pApA was detected for the first time in S. aureus, leading us to speculate that this dinucleotide may have a regulatory role under certain conditions. Moreover, pApA is involved in a feedback inhibition loop that limits GdpP-dependent c-di-AMP hydrolysis. Another protein linked to the regulation of c-di-AMP levels in bacteria is the predicted regulator protein YbbR. Here, it is shown that a ybbR mutant S. aureus strain has increased acid sensitivity that can be bypassed by the acquisition of mutations in a number of genes, including the gene coding for the diadenylate cyclase DacA. We further show that c-di-AMP levels are slightly elevated in the ybbR suppressor strains tested as compared with the wild-type strain. With this, we not only identified a new role for YbbR in acid stress resistance in S. aureus but also provide further insight into how c-di-AMP levels impact acid tolerance in this organism.

  1. Cyclic diguanylate signaling in Gram-positive bacteria.

    Science.gov (United States)

    Purcell, Erin B; Tamayo, Rita

    2016-09-01

    The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.

  2. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission.

    Science.gov (United States)

    Caimano, Melissa J; Dunham-Ems, Star; Allard, Anna M; Cassera, Maria B; Kenedy, Melisha; Radolf, Justin D

    2015-08-01

    Borrelia burgdorferi, the Lyme disease spirochete, couples environmental sensing and gene regulation primarily via the Hk1/Rrp1 two-component system (TCS) and Rrp2/RpoN/RpoS pathways. Beginning with acquisition, we reevaluated the contribution of these pathways to spirochete survival and gene regulation throughout the enzootic cycle. Live imaging of B. burgdorferi caught in the act of being acquired revealed that the absence of RpoS and the consequent derepression of tick-phase genes impart a Stay signal required for midgut colonization. In addition to the behavioral changes brought on by the RpoS-off state, acquisition requires activation of cyclic di-GMP (c-di-GMP) synthesis by the Hk1/Rrp1 TCS; B. burgdorferi lacking either component is destroyed during the blood meal. Prior studies attributed this dramatic phenotype to a metabolic lesion stemming from reduced glycerol uptake and utilization. In a head-to-head comparison, however, the B. burgdorferi Δglp mutant had a markedly greater capacity to survive tick feeding than B. burgdorferi Δhk1 or Δrrp1 mutants, establishing unequivocally that glycerol metabolism is only one component of the protection afforded by c-di-GMP. Data presented herein suggest that the protective response mediated by c-di-GMP is multifactorial, involving chemotactic responses, utilization of alternate substrates for energy generation and intermediary metabolism, and remodeling of the cell envelope as a means of defending spirochetes against threats engendered during the blood meal. Expression profiling of c-di-GMP-regulated genes through the enzootic cycle supports our contention that the Hk1/Rrp1 TCS functions primarily, if not exclusively, in ticks. These data also raise the possibility that c-di-GMP enhances the expression of a subset of RpoS-dependent genes during nymphal transmission.

  3. Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012

    Directory of Open Access Journals (Sweden)

    Susann Schröder

    2016-05-01

    Full Text Available Cyclic nucleotide phosphodiesterases (PDEs are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP and cyclic guanosine monophosphate (cGMP. Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.

  4. Activation of a cGMP-sensitive calcium-dependent chloride channel may cause transition from calcium waves to whole-cell oscillations in smooth muscle cells

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger;

    2007-01-01

    waves sweeping through the cytoplasm when the SR is stimulated to release calcium. A rise in cyclic guanosine monophosphate (cGMP) leads to the experimentally observed transition from waves to whole-cell calcium oscillations. At the same time membrane potential starts to oscillate and the frequency...... approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes uniform opening of L-type calcium...... onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion. Key words: Vasomotion, Chloride channel, cGMP, Mathematical model, Calcium waves....

  5. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation.

    Science.gov (United States)

    Chua, Song Lin; Hultqvist, Louise D; Yuan, Mingjun; Rybtke, Morten; Nielsen, Thomas E; Givskov, Michael; Tolker-Nielsen, Tim; Yang, Liang

    2015-08-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global secondary bacterial messenger that controls the formation of drug-resistant multicellular biofilms. Lowering the intracellular c-di-GMP content can disperse biofilms, and it is proposed as a biofilm eradication strategy. However, freshly dispersed biofilm cells exhibit a physiology distinct from biofilm and planktonic cells, and they might have a clinically relevant role in infections. Here we present in vitro and in vivo protocols for the generation and characterization of dispersed cells from Pseudomonas aeruginosa biofilms by reducing the intracellular c-di-GMP content through modulation of phosphodiesterases (PDEs). Unlike conventional protocols that demonstrate biofilm dispersal by biomass quantification, our protocols enable physiological characterization of the dispersed cells. Biomarkers of dispersed cells are identified and quantified, serving as potential targets for treating the dispersed cells. The in vitro protocol can be completed within 4 d, whereas the in vivo protocol requires 7 d.

  6. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon

    2015-01-01

    to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal......Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow...... regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed...

  7. The exopolysaccharide gene cluster Bcam1330-Bcam1341 is involved in Burkholderia cenocepacia biofilm formation, and its expression is regulated by c-di-GMP and Bcam1349

    DEFF Research Database (Denmark)

    Fazli, Mustafa; McCarthy, Yvonne; Givskov, Michael

    2013-01-01

    In Burkholderia cenocepacia, the second messenger cyclic diguanosine monophosphate (c-di-GMP) has previously been shown to positively regulate biofilm formation and the expression of cellulose and type-I fimbriae genes through binding to the transcriptional regulator Bcam1349. Here, we provide...... evidence that cellulose and type-I fimbriae are not involved in B. cenocepacia biofilm formation in flow chambers, and we identify a novel Bcam1349/c-di-GMP-regulated exopolysaccharide gene cluster which is essential for B. cenocepacia biofilm formation. Overproduction of Bcam1349 in trans promotes wrinkly...... matrix exopolysaccharide and to be essential for flow-chamber biofilm formation. We demonstrate that Bcam1349 binds to the promoter region of genes in the Bcam1330-Bcam1341 cluster and that this binding is enhanced by the presence of c-di-GMP. Furthermore, we demonstrate that overproduction of both c...

  8. Cellulose production, activated by cyclic di-GMP through BcsA and BcsZ, is a virulence factor and an essential determinant of the three-dimensional architectures of biofilms formed by Erwinia amylovora Ea1189.

    Science.gov (United States)

    Castiblanco, Luisa F; Sundin, George W

    2016-10-18

    Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c-di-GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three-dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c-di-GMP-dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c-di-GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.

  9. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.

    Science.gov (United States)

    Luo, Yiling; Chen, Bin; Zhou, Jie; Sintim, Herman O; Dayie, T Kwaku

    2014-03-04

    C-di-GMP has emerged as a ubiquitous second messenger, which regulates the transition between sessile and motile lifestyles and virulence factor expression in many pathogenic bacteria using both RNA riboswitches and protein effectors. We recently showed that two additional class I c-di-GMP riboswitch aptamers (Ct-E88 and Cb-17B) bind c-di-GMP with nanomolar affinity, and that Ct-E88 RNA binds 2'-F-c-di-GMP 422 times less tightly than class I Vc2 RNA. Based on sequence comparison, it was concluded that the global folds of Ct-E88 and Vc2 RNAs were similar and that differences in ligand binding were probably due to differences in binding site architectures. Herein, we utilized EMSA, aptamer sensing spinach modules, SAXS and 1D NMR titration to study the conformational transitions of Ct-E88. We conclude that whereas the global folds of the bound states of Vc2 and Ct-E88 RNAs are similar, the unbound states are different and this could explain differences in ligand affinities between these class I c-di-GMP riboswitches.

  10. A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: basal levels of eight cNMPs and identification of 2',3'-cIMP.

    Science.gov (United States)

    Jia, Xin; Fontaine, Benjamin M; Strobel, Fred; Weinert, Emily E

    2014-12-12

    A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs) using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of rat organs. In addition, the study reports the first identification and quantification of 2',3'-cIMP. The developed method will allow for quantification of cNMPs levels in cells and tissues with varying disease states, which will provide insight into the role(s) and interplay of cNMP signalling pathways.

  11. A Facile and Sensitive Method for Quantification of Cyclic Nucleotide Monophosphates in Mammalian Organs: Basal Levels of Eight cNMPs and Identification of 2',3'-cIMP

    Directory of Open Access Journals (Sweden)

    Xin Jia

    2014-12-01

    Full Text Available A sensitive, versatile and economical method to extract and quantify cyclic nucleotide monophosphates (cNMPs using LC-MS/MS, including both 3',5'-cNMPs and 2',3'-cNMPs, in mammalian tissues and cellular systems has been developed. Problems, such as matrix effects from complex biological samples, are addressed and have been optimized. This protocol allows for comparison of multiple cNMPs in the same system and was used to examine the relationship between tissue levels of cNMPs in a panel of rat organs. In addition, the study reports the first identification and quantification of 2',3'-cIMP. The developed method will allow for quantification of cNMPs levels in cells and tissues with varying disease states, which will provide insight into the role(s and interplay of cNMP signalling pathways.

  12. Selective modulation of protein kinase isozymes by the site-selective analog 8-chloroadenosine 3',5'-cyclic monophosphate provides a biological means for control of human colon cancer cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ally, S.; Tortora, G.; Clair, T.; Grieco, D.; Merlo, G.; Katsaros, D.; Ogreid, D.; Doeskeland, S.O.; Jahnsen, T.; Cho-Chung, Yoonsang

    1988-09-01

    Differential expression of type I and type II cAMP-dependent protein kinase isozymes has been linked to growth regulation and differentiation. The authors examined the expression of protein kinase isozymes in the LS 174T human colon cancer cell line during 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cAMP)-induced growth inhibition. Two species of R/sup II/ (the regulatory subunit of protein kinase type II) with apparent M/sub r/ 52,000 (R/sup II//sub 52/) and M/sub r/ 56,000 (R/sup II//sub 56/) and a single species of R/sup I/ (the regulatory subunit of protein kinase type I) with M/sub r/ 48,000 were identified in the cancer cells. R/sup I/ and both forms of R/sup II/ were covalently labeled with 8-azidoadenosine 3',5'-cyclic (/sup 32/P)monophosphate, and two anti-R/sup II/ antibodies that exclusively recognize either R/sup II//sub 52/ or R/sup II//sub 56/ resolved two forms of the R/sup II/ receptors. 8-Cl-cAMP caused transcriptional activation of the R/sup II//sub 52/ receptor gene and inactivation of the R/sup I/ receptor gene. Thus, differential regulation of various forms of cAMP receptor proteins is involved in 8-Cl-cAMP-induced regulation of cancer cell growth, and nuclear translocation of R/sup II//sub 52/ receptor protein appears to be an early event in such differential regulation.

  13. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants

    Science.gov (United States)

    Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Marín, María Pilar; Lahoz, Agustin; Millán, José María

    2016-01-01

    Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions. PMID:27861632

  14. Cyclic 3',5'-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli.

    Science.gov (United States)

    Goldenbaum, P E; Broman, R L; Dobrogosz, W J

    1970-09-01

    When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per mug of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of beta-galactosidase synthesis. This repression does not occur if adenosine 3',5'-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli.

  15. Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Khan, Muhammad Imran; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Jazaeri, Farahnaz; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2016-04-01

    Topiramate (TPM) is an agent primarily used in the treatment of epilepsy. Using mice model of forced swimming test (FST) the current study was basically aimed to investigate the influence of TPM on depression by inhibiting NMDA receptor and nitric oxide-cGMP production. When TPM was administered in a dose of 20 and 30 mg/kg by i.p. route it reduced the immobility time during FST. However this effect of TPM (30 mg/kg, i.p.) in the FST was abolished when the mice were pretreated either with NMDA (75 mg/kg, i.p.), or l-arginine (750 mg/kg, i.p. NO precursor), or sildenafil (5mg/kg, i.p. Phosphodiesterase 5 inhibitor). The immobility time in the FST was reduced after administration of L-NAME (10mg/kg, i.p, a non-specific NOS inhibitor), 7-nitoinidazol (30 mg/kg, i.p. a nNOS inhibitor) or MK-801 (0.05 mg/kg, i.p, a NMDA receptor antagonist) in combination with a subeffective dose of TPM (10mg/kg, i.p.) as compared with single use of either drug. Co-administrated of lower doses of MK-801 (0.01 mg/kg) or L-NAME (1mg/kg) failed to effect immobility time. However, simultaneous administration of these two agents in the same doses with subeffective dose of TPM (10mg/kg, i.p.), reduced the immobility time during FST. None of these drugs were found to have a profound effect on the locomotor activity per se during the open field test. Taken together, our data demonstrates that TPM exhibit antidepressant-like effect which is accomplished either due to inhibition of NMDA receptors or NO-cGMP production.

  16. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP.

    Science.gov (United States)

    Morita, T; Perrella, M A; Lee, M E; Kourembanas, S

    1995-02-28

    Carbon monoxide (CO) is a product of the enzyme heme oxygenase (HO; EC 1.14.99.3). In vascular smooth muscle cells, exogenously administered CO increases cyclic guanosine 3',5'-monophosphate (cGMP), which is an important regulator of vessel tone. We report here that smooth muscle cells produce CO via HO and that it regulates cGMP levels in these cells. Hypoxia, which has profound effects on vessel tone, significantly increased the transcriptional rate of the HO-1 gene resulting in corresponding increases of its mRNA and HO enzymatic activity. In addition, under the same conditions, rat aortic and pulmonary artery smooth muscle cells accumulated high levels of cGMP following a similar time course to that of HO-1 production. The increased accumulation of cGMP in smooth muscle cells required the enzymatic activity of HO, since it was abolished by a specific HO inhibitor, tin protoporphyrin. In contrast, N omega-nitro-L-arginine, a potent inhibitor of nitric oxide (NO) synthesis, had no effect on cGMP produced by smooth muscle cells, indicating that NO is not responsible for the activation of guanylyl cyclase in this setting. Furthermore, conditioned medium from hypoxic smooth muscle cells stimulated cGMP production in recipient cells and this stimulation was completely inhibited by tin protoporphyrin or hemoglobin, an inhibitor of CO production and a scavenger of CO, respectively. This report shows that HO-1 is expressed by vascular smooth muscle cells and that its product, CO, may regulate vascular tone under physiologic and pathophysiologic (such as hypoxic) conditions.

  17. Receptors and cGMP signalling mechanism for E. coli enterotoxin in opossum kidney

    Energy Technology Data Exchange (ETDEWEB)

    Forte, L.R.; Krause, W.J.; Freeman, R.H. (Univ. of Missouri, Columbia (USA) Harry S. Truman Memorial Veterans Medical Center, Columbia, MO (USA))

    1988-11-01

    Receptors for the heat-stable enterotoxin produced by Escherichia coli were found in the kidney and intestine of the North American opossum and in cultured renal cell lines. The enterotoxin markedly increased guanosine 3{prime},5{prime}-cyclic monophosphate (cGMP) production in slices of kidney cortex and medulla, in suspensions of intestinal mucosa, and in the opossum kidney (OK) and rat kangaroo kidney (PtK-2) cell lines. In contrast, atrial natriuretic factor elicited much smaller increases in cGMP levels of kidney, intestine, or cultured kidney cell lines. The enterotoxin receptors in OK cells had a molecular mass of approximately 120 kDa when measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptors crosslinked with {sup 125}I-enterotoxin. The occurrence of receptors for the E. coli peptide in OK implies that these receptors may be involved in the regulation of renal tubular function in the opossum. E. coli enterotoxin caused a much larger increase in urine cGMP excretion than did atrial natriuretic factor when these peptides were injected intravenously into opossums. However, atrial natriuretic factor elicited a marked diuresis, natriuresis, and increased urinary excretion of calcium, phosphate, potassium, and magnesium. In contrast, the enterotoxin did not acutely influence OK fluid and electrolyte excretion. Thus the substantial increase in cGMP synthesis produced by the bacterial peptide in OK cortex and medulla in vitro and the increased renal excretion of cGMP in vivo were not associated with changes in electrolyte or water excretion. Whether cGMP represents a second messenger molecule in the kidney is an interesting question that was raised but not answered in this series of experiments.

  18. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family.

    Science.gov (United States)

    Campeotto, Ivan; Zhang, Yong; Mladenov, Miroslav G; Freemont, Paul S; Gründling, Angelika

    2015-01-30

    Signaling nucleotides are integral parts of signal transduction systems allowing bacteria to cope with and rapidly respond to changes in the environment. The Staphylococcus aureus PII-like signal transduction protein PstA was recently identified as a cyclic diadenylate monophosphate (c-di-AMP)-binding protein. Here, we present the crystal structures of the apo- and c-di-AMP-bound PstA protein, which is trimeric in solution as well as in the crystals. The structures combined with detailed bioinformatics analysis revealed that the protein belongs to a new family of proteins with a similar core fold but with distinct features to classical PII proteins, which usually function in nitrogen metabolism pathways in bacteria. The complex structure revealed three identical c-di-AMP-binding sites per trimer with each binding site at a monomer-monomer interface. Although distinctly different from other cyclic-di-nucleotide-binding sites, as the half-binding sites are not symmetrical, the complex structure also highlighted common features for c-di-AMP-binding sites. A comparison between the apo and complex structures revealed a series of conformational changes that result in the ordering of two anti-parallel β-strands that protrude from each monomer and allowed us to propose a mechanism on how the PstA protein functions as a signaling transduction protein.

  19. Conservation and divergence of the cyclic adenosine monophosphate-protein kinase A (cAMP–PKA) pathway in two plant-pathogenic fungi: Fusarium graminearum and F. verticillioides

    Science.gov (United States)

    The cyclic AMP (cAMP)-PKA pathway is a central signaling cascade that transmits extracellular stimuli and governs cell responses through the second messenger cAMP. The importance of cAMP signaling in fungal biology has been well documented. Two key conserved components, adenylate cyclase (AC) and ca...

  20. Anti-allodynic effect of mangiferin in neuropathic rats: Involvement of nitric oxide-cyclic GMP-ATP sensitive K(+) channels pathway and serotoninergic system.

    Science.gov (United States)

    de Los Monteros-Zuñiga, Antonio Espinosa; Izquierdo, Teresa; Quiñonez-Bastidas, Geovanna Nallely; Rocha-González, Héctor Isaac; Godínez-Chaparro, Beatriz

    The neurobiology of neuropathic pain is caused by injury in the central or peripheral nervous system. Recent evidence points out that mangiferin shows anti-nociceptive effect in inflammatory pain. However, its role in inflammatory and neuropathic pain and the possible mechanisms of action are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of mangiferin in rats with spinal nerve ligation (SNL). Furthermore, we sought to investigate the possible mechanisms of action that contribute to these effects. Mechanical allodynia to stimulation with the von Frey filaments was measured by the up and down method. Intrathecal administration of mangiferin prevented, in a dose-dependent fashion, SNL-induced mechanical allodynia. Mangiferin-induced anti-allodynia was prevented by the intrathecal administration of L-NAME (100μg/rat, non-selective nitric oxide synthase inhibitor), ODQ (10μg/rat, inhibitor of guanylate-cyclase) and glibenclamide (50μg/rat, channel blocker of ATP-sensitive K(+) channels). Moreover, methiothepin (30μg/rat, non-selective 5-HT receptor antagonist), WAY-100635 (6μg/rat, selective 5-HT1A receptor antagonist), SB-224289 (5μg/rat, selective 5-HT1B receptor antagonist), BRL-15572 (4μg/rat, selective 5-HT1D receptor antagonist) and SB-659551 (6μg/rat, selective 5-HT5A receptor antagonist), but not naloxone (50μg/rat, non-selective opioid receptor antagonist), were able to prevent mangiferin-induced anti-allodynic effect. These data suggest that the anti-allodynic effect induced by mangiferin is mediated at least in part by the serotoninergic system, involving the activation of 5-HT1A/1B/1D/5A receptors, as well as the nitric oxide-cyclic GMP-ATP-sensitive K(+) channels pathway, but not by the opioidergic system, in the SNL model of neuropathic pain in rats.

  1. Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP).

    Science.gov (United States)

    Kim, Henna; Youn, Suk-Jun; Kim, Seong Ok; Ko, Junsang; Lee, Jie-Oh; Choi, Byong-Seok

    2015-06-26

    Although it was only recently identified as a second messenger, c-di-AMP was found to have fundamental importance in numerous bacterial functions such as ion transport. The potassium transporter protein, KtrA, was identified as a c-di-AMP receptor. However, the co-crystallization of c-di-AMP with the protein has not been studied. Here, we determined the crystal structure of the KtrA RCK_C domain in complex with c-di-AMP. The c-di-AMP nucleotide, which adopts a U-shaped conformation, is bound at the dimer interface of RCK_C close to helices α3 and α4. c-di-AMP interacts with KtrA RCK_C mainly by forming hydrogen bonds and hydrophobic interactions. c-di-AMP binding induces the contraction of the dimer, bringing the two monomers of KtrA RCK_C into close proximity. The KtrA RCK_C was able to interact with only c-di-AMP, but not with c-di-GMP, 3',3-cGAMP, ATP, and ADP. The structure of the KtrA RCK_C domain and c-di-AMP complex would expand our understanding about the mechanism of inactivation in Ktr transporters governed by c-di-AMP.

  2. Nitric oxide-soluble guanylyl cyclase-cyclic GMP signaling in the striatum: New targets for the treatment of Parkinson's disease?

    Directory of Open Access Journals (Sweden)

    Anthony R West

    2011-06-01

    Full Text Available Striatal nitric oxide (NO-producing interneurons play an important role in the regulation of corticostriatal synaptic transmission and motor behavior. Striatal NO synthesis is driven by concurrent activation of NMDA and dopamine (DA D1 receptors. NO diffuses into the dendrites of medium-sized spiny neurons (MSNs which contain high levels of NO receptors called soluble guanylyl cyclases (sGC. NO-mediated activation of sGC leads to the synthesis of the second messenger cGMP. In the intact striatum, transient elevations in intracellular cGMP primarily act to increase neuronal excitability and to facilitate glutamatergic corticostriatal transmission. NO-cGMP signaling also functionally opposes the inhibitory effects of DA D2 receptor activation on corticostriatal transmission. Not surprisingly, abnormal striatal NO-sGC-cGMP signaling becomes apparent following striatal DA depletion, an alteration thought to contribute to pathophysiological changes observed in basal ganglia circuits in Parkinson’s disease (PD. Here, we discuss recent developments in the field which have shed light on the role of NO-sGC-cGMP signaling pathways in basal ganglia dysfunction and motor symptoms associated with PD and L-DOPA-induced dyskinesias.

  3. Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis.

    Science.gov (United States)

    Gupta, Kuldeepkumar Ramnaresh; Kasetty, Sanjay; Chatterji, Dipankar

    2015-04-01

    The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p)ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (ΔrelMsm) or c-di-GMP synthesis (ΔdcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the ΔrelMsm and ΔdcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.

  4. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Kulshina, Nadia; Baird, Nathan J.; Ferré-D' Amaré, Adrian R.; (UWASH); (FHCRC)

    2009-12-03

    The cyclic diguanylate (bis-(3'-5')-cyclic dimeric guanosine monophosphate, c-di-GMP) riboswitch is the first known example of a gene-regulatory RNA that binds a second messenger. c-di-GMP is widely used by bacteria to regulate processes ranging from biofilm formation to the expression of virulence genes. The cocrystal structure of the c-di-GMP responsive GEMM riboswitch upstream of the tfoX gene of Vibrio cholerae reveals the second messenger binding the RNA at a three-helix junction. The two-fold symmetric second messenger is recognized asymmetrically by the monomeric riboswitch using canonical and noncanonical base-pairing as well as intercalation. These interactions explain how the RNA discriminates against cyclic diadenylate (c-di-AMP), a putative bacterial second messenger. Small-angle X-ray scattering and biochemical analyses indicate that the RNA undergoes compaction and large-scale structural rearrangement in response to ligand binding, consistent with organization of the core three-helix junction of the riboswitch concomitant with binding of c-di-GMP.

  5. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter.

    Science.gov (United States)

    Soty, Maud; Chilloux, Julien; Delalande, François; Zitoun, Carine; Bertile, Fabrice; Mithieux, Gilles; Gautier-Stein, Amandine

    2016-04-01

    The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.

  6. Levels of cyclic-AMP and cyclic-GMP in porcine oocyte-cumulus complexes and cumulus-free oocytes derived from small and middle follicles during the first 24-hour period of in vitro maturation.

    Science.gov (United States)

    Okudaira, Yuichi; Wakai, Takuya; Funahashi, Hiroaki

    2017-02-23

    The objective of this study was to compare the cAMP and cGMP levels in cumulus-oocyte complexes (COCs) derived from the middle follicles (MFs, 3-6 mm in diameter) and small follicles (SFs, 1-3 mm in diameter) of pre-pubertal gilts during the first 24-h period of maturation in vitro (IVM). Both cAMP and cGMP levels in MF- and SF-derived oocytes did not change during this period. Although the cAMP levels increased in the COCs at 10 and 20 h after the start of IVM, the levels of cAMP were significantly higher in MF-derived COCs than in SF-derived COCs at 20 h after the start of IVM. On the other hand, the cGMP levels in COCs decreased to basal levels between 10 and 20 h after the start of the IVM, whereas cGMP levels were lower in SF-derived COCs than in MF-derived COCs during the first 10 h. The number of cumulus cells was larger in the MF-derived COCs than in the SF-derived COCs during the first 20-h period of IVM. The estimated cAMP level per cumulus cell at 10 h after the start of the IVM was higher in SF-derived COCs than in MF-derived COCs, whereas the estimated cGMP level per cumulus cell was no different between MF- and SF-derived COCs. From these results, we conclude that cAMP and cGMP levels in COCs, but not in oocytes, drastically change during the first 20-h period of IVM, and that both cAMP and cGMP levels significantly differ between MF- and SF-derived COCs.

  7. Complex regulatory network encompassing the Csr, c-di-GMP and motility systems of Salmonella Typhimurium.

    Science.gov (United States)

    Jonas, Kristina; Edwards, Adrianne N; Ahmad, Irfan; Romeo, Tony; Römling, Ute; Melefors, Ojar

    2010-02-01

    Bacterial survival depends on the ability to switch between sessile and motile lifestyles in response to changing environmental conditions. In many species, this switch is governed by (3'-5')-cyclic-diguanosine monophosphate (c-di-GMP), a signalling molecule, which is metabolized by proteins containing GGDEF and/or EAL domains. Salmonella Typhimurium contains 20 such proteins. Here, we show that the RNA-binding protein CsrA regulates the expression of eight genes encoding GGDEF, GGDEF-EAL and EAL domain proteins. CsrA bound directly to the mRNA leaders of five of these genes, suggesting that it may regulate these genes post-transcriptionally. The c-di-GMP-specific phosphodiesterase STM3611, which reciprocally controls flagella function and production of biofilm matrix components, was regulated by CsrA binding to the mRNA, but was also indirectly regulated by CsrA through the FlhDC/FliA flagella cascade and STM1344. STM1344 is an unconventional (c-di-GMP-inactive) EAL domain protein, recently identified as a negative regulator of flagella gene expression. Here, we demonstrate that CsrA directly downregulates expression of STM1344, which in turn regulates STM3611 through fliA and thus reciprocally controls motility and biofilm factors. Altogether, our data reveal that the concerted and complex regulation of several genes encoding GGDEF/EAL domain proteins allows CsrA to control the motility-sessility switch in S. Typhimurium at multiple levels.

  8. Gibberellic acid and cGMP-dependent transcriptional regulation in arabidopsis thaliana

    KAUST Repository

    Bastian, René

    2010-03-01

    An ever increasing amount of transcriptomic data and analysis tools provide novel insight into complex responses of biological systems. Given these resources we have undertaken to review aspects of transcriptional regulation in response to the plant hormone gibberellic acid (GA) and its second messenger guanosine 3\\',5\\'-cyclic monophosphate (cGMP) in Arabidopsis thaliana, both wild type and selected mutants. Evidence suggests enrichment of GA-responsive (GARE) elements in promoters of genes that are transcriptionally upregulated in response to cGMP but downregulated in a GA insensitive mutant (ga1-3). In contrast, in the genes upregulated in the mutant, no enrichment in the GARE is observed suggesting that GARE motifs are diagnostic for GA-induced and cGMP-dependent transcriptional upregulation. Further, we review how expression studies of GA-dependent transcription factors and transcriptional networks based on common promoter signatures derived from ab initio analyses can contribute to our understanding of plant responses at the systems level. © 2010 Landes Bioscience.

  9. Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity.

    Science.gov (United States)

    Cohen, B E; Lee, G; Arispe, N; Pollard, H B

    1995-12-27

    The annexin (Anx) gene family comprises a set of calcium-dependent membrane binding proteins, which have been implicated in a wide variety of cellular processes including membrane fusion and calcium channel activity. We report here that cAMP activates Ca(2+)-dependent aggregation of both phosphatidylserine (PS) liposomes and bovine chromaffin granules driven by [des 1-12]annexin I (lipocortin I, Anx1). The mechanism of cAMP action involves an increase in AnxI-dependent cooperativity on the rate of such a reaction without affecting the corresponding k1/2 values. Cyclic AMP causes the values of the Hill coefficient (nH) for AnxI to change from 3 to 6 in both PS liposomes and chromaffin granules. By contrast, ATP inhibits the rate of aggregation activity without affecting the cooperativity or the extent of aggregation process. We were also able to photolabel Anx1 specifically with an 8-azido analogue of cAMP by a calcium-independent process. Such a process is saturable, yielding a Kd = 0.8 microM by Scatchard analysis. Specific displacement occurs in the presence of cAMP and ATP. Finally, we found that cAMP alters the conductance of calcium channels formed by AnxI in planar lipid bilayers. We interpret these data to indicate that AnxI binds both calcium and cAMP independently, and that both actions have functional consequences. This is the first report of a nucleotide binding function for a member of the annexin gene family.

  10. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae.

    Science.gov (United States)

    Jones, Christopher J; Utada, Andrew; Davis, Kimberly R; Thongsomboon, Wiriya; Zamorano Sanchez, David; Banakar, Vinita; Cegelski, Lynette; Wong, Gerard C L; Yildiz, Fitnat H

    2015-10-01

    In many bacteria, including Vibrio cholerae, cyclic dimeric guanosine monophosphate (c-di-GMP) controls the motile to biofilm life style switch. Yet, little is known about how this occurs. In this study, we report that changes in c-di-GMP concentration impact the biosynthesis of the MshA pili, resulting in altered motility and biofilm phenotypes in V. cholerae. Previously, we reported that cdgJ encodes a c-di-GMP phosphodiesterase and a ΔcdgJ mutant has reduced motility and enhanced biofilm formation. Here we show that loss of the genes required for the mannose-sensitive hemagglutinin (MshA) pilus biogenesis restores motility in the ΔcdgJ mutant. Mutations of the predicted ATPase proteins mshE or pilT, responsible for polymerizing and depolymerizing MshA pili, impair near surface motility behavior and initial surface attachment dynamics. A ΔcdgJ mutant has enhanced surface attachment, while the ΔcdgJmshA mutant phenocopies the high motility and low attachment phenotypes observed in a ΔmshA strain. Elevated concentrations of c-di-GMP enhance surface MshA pilus production. MshE, but not PilT binds c-di-GMP directly, establishing a mechanism for c-di-GMP signaling input in MshA pilus production. Collectively, our results suggest that the dynamic nature of the MshA pilus established by the assembly and disassembly of pilin subunits is essential for transition from the motile to sessile lifestyle and that c-di-GMP affects MshA pilus assembly and function through direct interactions with the MshE ATPase.

  11. Transgenic Mice for cGMP Imaging

    Science.gov (United States)

    Thunemann, Martin; Wen, Lai; Hillenbrand, Matthias; Vachaviolos, Angelos; Feil, Susanne; Ott, Thomas; Han, Xiaoxing; Fukumura, Dai; Jain, Rakesh K.; Russwurm, Michael; de Wit, Cor; Feil, Robert

    2014-01-01

    Rationale Cyclic GMP (cGMP) is an important intracellular signaling molecule in the cardiovascular system, but its spatiotemporal dynamics in vivo is largely unknown. Objective To generate and characterize transgenic mice expressing the fluorescence resonance energy transfer–based ratiometric cGMP sensor, cGMP indicator with an EC50 of 500 nmol/L (cGi500), in cardiovascular tissues. Methods and Results Mouse lines with smooth muscle–specific or ubiquitous expression of cGi500 were generated by random transgenesis using an SM22α promoter fragment or by targeted integration of a Cre recombinase–activatable expression cassette driven by the cytomegalovirus early enhancer/chicken β-actin/β-globin promoter into the Rosa26 locus, respectively. Primary smooth muscle cells isolated from aorta, bladder, and colon of cGi500 mice showed strong sensor fluorescence. Basal cGMP concentrations were 3 µmol/L could also be monitored in blood vessels of the isolated retina and in the cremaster microcirculation of anesthetized mice. Moreover, with the use of a dorsal skinfold chamber model and multiphoton fluorescence resonance energy transfer microscopy, nitric oxide–stimulated vascular cGMP signals associated with vasodilation were detected in vivo in an acutely untouched preparation. Conclusions These cGi500 transgenic mice permit the visualization of cardiovascular cGMP signals in live cells, tissues, and mice under normal and pathological conditions or during pharmacotherapy with cGMP-elevating drugs. PMID:23801067

  12. Cyclic Nucleotide-Dependent Protein Kinases, IV. Widespread Occurrence of Adenosine 3′,5′-monophosphate-dependent Protein Kinase in Various Tissues and Phyla of the Animal Kingdom

    National Research Council Canada - National Science Library

    J. F. Kuo; Paul Greengard

    1969-01-01

    Adenosine 3 ,5 -monophosphate-dependent protein kinase activity was found in about thirty sources including many mammalian tissues as well as species representative of eight different invertebrate phyla...

  13. Activation of haem-oxidized soluble guanylyl cyclase with BAY 60-2770 in human platelets lead to overstimulation of the cyclic GMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Camila B Mendes-Silverio

    Full Text Available BACKGROUND AND AIMS: Nitric oxide-independent soluble guanylyl cyclase (sGC activators reactivate the haem-oxidized enzyme in vascular diseases. This study was undertaken to investigate the anti-platelet mechanisms of the haem-independent sGC activator BAY 60-2770 in human washed platelets. The hypothesis that sGC oxidation potentiates the anti-platelet activities of BAY 60-2770 has been tested. METHODS: Human washed platelet aggregation and adhesion assays, as well as flow cytometry for α(IIbβ(3 integrin activation and Western blot for α1 and β1 sGC subunits were performed. Intracellular calcium levels were monitored in platelets loaded with a fluorogenic calcium-binding dye (FluoForte. RESULTS: BAY 60-2770 (0.001-10 µM produced significant inhibition of collagen (2 µg/ml- and thrombin (0.1 U/ml-induced platelet aggregation that was markedly potentiated by the sGC inhibitor ODQ (10 µM. In fibrinogen-coated plates, BAY 60-2770 significantly inhibited platelet adhesion, an effect potentiated by ODQ. BAY 60-2770 increased the cGMP levels and reduced the intracellular Ca(2+ levels, both of which were potentiated by ODQ. The cell-permeable cGMP analogue 8-Br-cGMP (100 µM inhibited platelet aggregation and Ca(2+ levels in an ODQ-insensitive manner. The cAMP levels remained unchanged by BAY 60-2770. Collagen- and thrombin-induced α(IIbβ(3 activation was markedly inhibited by BAY 60-2770 that was further inhibited by ODQ. The effects of sodium nitroprusside (3 µM were all prevented by ODQ. Incubation with ODQ (10 µM significantly reduced the protein levels of α1 and β1 sGC subunits, which were prevented by BAY 60-2770. CONCLUSION: The inhibitory effects of BAY 60-2770 on aggregation, adhesion, intracellular Ca(2+ levels and α(IIbβ(3 activation are all potentiated in haem-oxidizing conditions. BAY 60-2770 prevents ODQ-induced decrease in sGC protein levels. BAY 60-2770 could be of therapeutic interest in cardiovascular diseases

  14. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

    KAUST Repository

    Turek, Ilona

    2016-03-05

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. © 2016 Springer Science+Business Media Dordrecht

  15. Cumene hydroperoxide, an agent inducing lipid peroxidation, and 4-hydroxy-2,3-nonenal, a peroxidation product, cause coronary vasodilatation in perfused rat hearts by a cyclic nucleotide independent mechanism.

    Science.gov (United States)

    van der Kraaij, A M; de Jonge, H R; Esterbauer, H; de Vente, J; Steinbusch, H W; Koster, J F

    1990-02-01

    STUDY OBJECTIVE - The aim of the study was to determine whether cumene hydroperoxide, a substance known to induce lipid peroxidation through free radical action, and 4-hydroxy-2,3-nonenal (4-hydroxynonenal), a major aldehyde formed during lipid peroxidation, induce coronary vasodilatation by changing cyclic nucleotide levels. DESIGN - The study involved Langendorff perfused rat hearts, using different concentrations of cumene hydroperoxide and 4-hydroxynonenal, with sodium nitroprusside for comparison. Coronary flow was measured indirectly as retrograde aortic flow, with constant perfusion pressure. Information about the precise localisation of cyclic guanosine monophosphate (cGMP) in the heart was obtained by immunocytochemistry, using a new cGMP antiserum. EXPERIMENTAL MATERIAL - Hearts were from male Wistar rats, body weight 200-250 g. MEASUREMENTS and RESULTS - Both cumene hydroperoxide and 4-hydroxynonenal caused a dose dependent and reversible increase in coronary flow comparable with sodium nitroprusside. With sodium nitroprusside there was a good correlation between extent of vasodilatation and total heart cGMP concentration. Vasodilatation induced by cumene hydroperoxide or 4-hydroxynonenal was not accompanied by increase in total heart cGMP or cAMP (cyclic adenosine monophosphate) concentration. Isoprenaline was used as a positive control for cAMP. cGMP immunostaining was found in coronary vascular smooth muscle after vasodilatation with sodium nitroprusside, but no immunostaining was found in vascular smooth muscle after vasodilatation with cumene hydroperoxide or 4-hydroxynonenal. CONCLUSIONS - Cumene hydroperoxide and 4-hydroxynonenal can provoke reversible coronary vasodilatation in isolated perfused rat hearts by a cyclic nucleotide independent mechanism.

  16. The Cyclic Di-GMP Phosphodiesterase Gene Rv1357c/BCG1419c Affects BCG Pellicle Production and In Vivo Maintenance.

    Science.gov (United States)

    Flores-Valdez, Mario Alberto; Aceves-Sánchez, Michel de Jesús; Pedroza-Roldán, César; Vega-Domínguez, Perla Jazmín; Prado-Montes de Oca, Ernesto; Bravo-Madrigal, Jorge; Laval, Françoise; Daffé, Mamadou; Koestler, Ben; Waters, Christopher M

    2015-02-01

    Bacteria living in a surface-attached community that contains a heterogeneous population, coated with an extracellular matrix, and showing drug tolerance (biofilms) are often linked to chronic infections. In mycobacteria, the pellicle mode of growth has been equated to an in vitro biofilm and meets several of the criteria mentioned above, while tuberculosis infection presents a chronic (latent) phase of infection. As mycobacteria lack most genes required to control biofilm production by other microorganisms, we deleted or expressed from the hsp60 strong promoter the only known c-di-GMP phosphodiesterase (PDE) gene in Mycobacterium bovis BCG. We found changes in pellicle production, cellular protein profiles, lipid production, resistance to nitrosative stress and maintenance in lungs and spleens of immunocompetent BALB/mice. Our results show that pellicle production and capacity to remain within the host are linked in BCG. © 2015 International Union of Biochemistry and Molecular Biology.

  17. Beneficial effects of combined benazepril-amlodipine on cardiac nitric oxide, cGMP, and TNF-alpha production after cardiac ischemia.

    Science.gov (United States)

    Siragy, Helmy M; Xue, Chun; Webb, Randy L

    2006-05-01

    The aim of this study was to determine if myocardial inflammation is increased after myocardial ischemia and whether angiotensin-converting enzyme inhibitors, calcium channel blockers, or diuretics decrease mediators of inflammation in rats with induced myocardial ischemia. Changes in cardiac interstitial fluid (CIF) levels of nitric oxide metabolites (NOX), cyclic guanosine 3',5'-monophosphate (cGMP), angiotensin II (Ang II), and tumor necrosis factor-alpha (TNF-alpha) were monitored with/without oral administration of benazepril, amlodipine, combined benazepril-amlodipine, or hydrochlorothiazide. Using a microdialysis technique, levels of several mediators of inflammation were measured after sham operation or 30-minute occlusion of the left anterior descending coronary artery. Compared with sham animals, levels of CIF NOX and cGMP were decreased in animals with ischemia (P Benazepril or amlodipine significantly increased NOX levels (P benazepril significantly increased cGMP (P benazepril-amlodipine further increased CIF NOX and cGMP (P Amlodipine alone, benazepril alone, or combined benazepril-amlodipine significantly reduced TNF-alpha (P benazepril-amlodipine may be beneficial for managing cardiac ischemia.

  18. Effects of Kaempferia parviflora Wall. Ex. Baker and sildenafil citrate on cGMP level, cardiac function, and intracellular Ca2+ regulation in rat hearts.

    Science.gov (United States)

    Weerateerangkul, Punate; Palee, Siripong; Chinda, Kroekkiat; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2012-09-01

    Although Kaempferia parviflora extract (KPE) and its flavonoids have positive effects on the nitric oxide (NO) signaling pathway, its mechanisms on the heart are still unclear. Because our previous studies demonstrated that KPE decreased defibrillation efficacy in swine similar to that of sildenafil citrate, the phosphodiesterase-5 inhibitor, it is possible that KPE may affect the cardiac NO signaling pathway. In the present study, the effects of KPE and sildenafil citrate on cyclic guanosine monophosphate (cGMP) level, modulation of cardiac function, and Ca transients in ventricular myocytes were investigated. In a rat model, cardiac cGMP level, cardiac function, and Ca transients were measured before and after treatment with KPE and sildenafil citrate. KPE significantly increased the cGMP level and decreased cardiac function and Ca transient. These effects were similar to those found in the sildenafil citrate-treated group. Furthermore, the nonspecific NOS inhibitor could abolish the effects of KPE and sildenafil citrate on Ca transient. KPE has positive effect on NO signaling in the heart, resulting in an increased cGMP level, similar to that of sildenafil citrate. This effect was found to influence the physiology of normal heart via the attenuation of cardiac function and the reduction of Ca transient in ventricular myocytes.

  19. Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440.

    Science.gov (United States)

    Ramos-González, María Isabel; Travieso, María L; Soriano, María I; Matilla, Miguel A; Huertas-Rosales, Óscar; Barrientos-Moreno, Laura; Tagua, Víctor G; Espinosa-Urgel, Manuel

    2016-01-01

    Most bacteria grow in nature forming multicellular structures named biofilms. The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) is a key player in the regulation of the transition from planktonic to sessile lifestyles and this regulation is crucial in the development of biofilms. In Pseudomonas putida KT2440, Rup4959, a multidomain response regulator with diguanylate cyclase activity, when overexpressed causes an increment in the intracellular levels of c-di-GMP that gives rise to a pleiotropic phenotype consisting of increased biofilm formation and crinkly colony morphology. In a broad genomic screen we have isolated mutant derivatives that lose the crinkly morphology, designed as cfc (crinkle free colony). A total of 19 different genes have been identified as being related with the emergence of the cfc phenotype either because the expression or functionality of Rup4959 is compromised, or due to a lack of transduction of the c-di-GMP signal to downstream elements involved in the acquisition of the phenotype. Discernment between these possibilities was investigated by using a c-di-GMP biosensor and by HPLC-MS quantification of the second messenger. Interestingly five of the identified genes encode proteins with AAA+ ATPase domain. Among the bacterial determinants found in this screen are the global transcriptional regulators GacA, AlgU and FleQ and two enzymes involved in the arginine biosynthesis pathway. We present evidences that this pathway seems to be an important element to both the availability of the free pool of the second messenger c-di-GMP and to its further transduction as a signal for biosynthesis of biopolimers. In addition we have identified an uncharacterized hybrid sensor histidine kinase whose phosphoaceptor conserved histidine residue has been shown in this work to be required for in vivo activation of the orphan response regulator Rup4959, which suggests these two elements constitute a two-component phosphorelay system.

  20. Genetic Dissection of the Regulatory Network Associated with High C-di-GMP Levels in Pseudomonas putida KT2440

    Directory of Open Access Journals (Sweden)

    María Isabel Ramos-González

    2016-07-01

    Full Text Available Most bacteria grow in nature forming multicellular structures named biofilms. The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP is a key player in the regulation of the transition from planktonic to sessile lifestyles and this regulation is crucial in the development of biofilms. In Pseudomonas putida KT2440, Rup4959, a multidomain response regulator with diguanylate cyclase activity, when overexpressed causes an increment in the intracellular levels of c-di-GMP that gives rise to a pleiotropic phenotype consisting of increased biofilm formation and crinkly colony morphology. In a broad genomic screen we have isolated mutant derivatives that lose the crinkly morphology, designed as cfc (crinkle free colony. A total of nineteen different genes have been identified as being related with the emergence of the cfc phenotype either because the expression or functionality of Rup4959 is compromised, or due to a lack of transduction of the c-di-GMP signal to downstream elements involved in the acquisition of the phenotype. Discernment between these possibilities was investigated by using a c-di-GMP biosensor and by HPLC-MS quantification of the second messenger. Interestingly five of the identified genes encode proteins with AAA+ ATPase domain. Among the bacterial determinants found in this screen are the global transcriptional regulators GacA, AlgU and FleQ and two enzymes involved in the arginine biosynthesis pathway. We present evidences that this pathway seems to be an important element to both the availability of the free pool of the second messenger c-di-GMP and to its further transduction as a signal for biosynthesis of biopolimers. In addition we have identified an uncharacterized hybrid sensor histidine kinase whose phosphoaceptor conserved histidine residue has been shown in this work to be required for in vivo activation of the orphan response regulator Rup4959, which suggests these two elements constitute a two

  1. Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440

    Science.gov (United States)

    Ramos-González, María Isabel; Travieso, María L.; Soriano, María I.; Matilla, Miguel A.; Huertas-Rosales, Óscar; Barrientos-Moreno, Laura; Tagua, Víctor G.; Espinosa-Urgel, Manuel

    2016-01-01

    Most bacteria grow in nature forming multicellular structures named biofilms. The bacterial second messenger cyclic diguanosine monophosphate (c-di-GMP) is a key player in the regulation of the transition from planktonic to sessile lifestyles and this regulation is crucial in the development of biofilms. In Pseudomonas putida KT2440, Rup4959, a multidomain response regulator with diguanylate cyclase activity, when overexpressed causes an increment in the intracellular levels of c-di-GMP that gives rise to a pleiotropic phenotype consisting of increased biofilm formation and crinkly colony morphology. In a broad genomic screen we have isolated mutant derivatives that lose the crinkly morphology, designed as cfc (crinkle free colony). A total of 19 different genes have been identified as being related with the emergence of the cfc phenotype either because the expression or functionality of Rup4959 is compromised, or due to a lack of transduction of the c-di-GMP signal to downstream elements involved in the acquisition of the phenotype. Discernment between these possibilities was investigated by using a c-di-GMP biosensor and by HPLC-MS quantification of the second messenger. Interestingly five of the identified genes encode proteins with AAA+ ATPase domain. Among the bacterial determinants found in this screen are the global transcriptional regulators GacA, AlgU and FleQ and two enzymes involved in the arginine biosynthesis pathway. We present evidences that this pathway seems to be an important element to both the availability of the free pool of the second messenger c-di-GMP and to its further transduction as a signal for biosynthesis of biopolimers. In addition we have identified an uncharacterized hybrid sensor histidine kinase whose phosphoaceptor conserved histidine residue has been shown in this work to be required for in vivo activation of the orphan response regulator Rup4959, which suggests these two elements constitute a two-component phosphorelay system

  2. Angiotensin-(1-7) Downregulates Diabetes-Induced cGMP Phosphodiesterase Activation in Rat Corpus Cavernosum

    Science.gov (United States)

    Benter, Ibrahim F.

    2017-01-01

    Molecular mechanisms of the beneficial effects of angiotensin-(1-7), Ang-(1-7), in diabetes-related complications, including erectile dysfunction, remain unclear. We examined the effect of diabetes and/or Ang-(1-7) treatment on vascular reactivity and cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE) in corpus cavernosum. Male Wistar rats were grouped as (1) control, (2) diabetic (streptozotocin, STZ, treated), (3) control + Ang-(1-7), and (4) diabetic + Ang-(1-7). Following 3 weeks of Ang-(1-7) treatment subsequent to induction of diabetes, rats were sacrificed. Penile cavernosal tissue was isolated to measure vascular reactivity, PDE gene expression and activity, and levels of p38MAP kinase, nitrites, and cGMP. Carbachol-induced vasorelaxant response after preincubation of corpus cavernosum with PE was significantly attenuated in diabetic rats, and Ang-(1-7) markedly corrected the diabetes-induced impairment. Gene expression and activity of PDE and p38MAP kinase were significantly increased in cavernosal tissue of diabetic rats, and Ang-(1-7) markedly attenuated STZ-induced effects. Ang-(1-7) significantly increased the levels of nitrite and cGMP in cavernosal tissue of control and diabetic rats. Cavernosal tissue of diabetic rats had significantly reduced cGMP levels and Ang-(1-7) markedly prevented the STZ-induced cGMP depletion. This study demonstrates that attenuation of diabetes-induced PDE activity might be one of the key mechanisms in the beneficial effects of Ang-(1-7).

  3. InsP3R-associated cGMP kinase substrate determines inositol 1,4,5-trisphosphate receptor susceptibility to phosphoregulation by cyclic nucleotide-dependent kinases.

    Science.gov (United States)

    Masuda, Wataru; Betzenhauser, Matthew J; Yule, David I

    2010-11-26

    Ca(2+) release through inositol 1,4,5-trisphosphate receptors (InsP(3)R) can be modulated by numerous factors, including input from other signal transduction cascades. These events shape the spatio-temporal characteristics of the Ca(2+) signal and provide fidelity essential for the appropriate activation of effectors. In this study, we investigate the regulation of Ca(2+) release via InsP(3)R following activation of cyclic nucleotide-dependent kinases in the presence and absence of expression of a binding partner InsP(3)R-associated cGMP kinase substrate (IRAG). cGMP-dependent kinase (PKG) phosphorylation of only the S2+ InsP(3)R-1 subtype resulted in enhanced Ca(2+) release in the absence of IRAG expression. In contrast, IRAG bound to each InsP(3)R subtype, and phosphorylation of IRAG by PKG attenuated Ca(2+) release through all InsP(3)R subtypes. Surprisingly, simply the expression of IRAG attenuated phosphorylation and inhibited the enhanced Ca(2+) release through InsP(3)R-1 following cAMP-dependent protein kinase (PKA) activation. In contrast, IRAG expression did not influence the PKA-enhanced activity of the InsP(3)R-2. Phosphorylation of IRAG resulted in reduced Ca(2+) release through all InsP(3)R subtypes during concurrent activation of PKA and PKG, indicating that IRAG modulation is dominant under these conditions. These studies yield mechanistic insight into how cells with various complements of proteins integrate and prioritize signals from ubiquitous signaling pathways.

  4. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway.

    Science.gov (United States)

    Mehta, Suresh L; Mendelev, Natalia; Kumari, Santosh; Andy Li, P

    2013-03-01

    Mitochondrial biogenesis is activated by nuclear encoded transcription co-activator peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which is regulated by several upstream factors including protein kinase A and Akt/protein kinase B. We have previously shown that selenoprotein H enhances the levels of nuclear regulators for mitochondrial biogenesis, increases mitochondrial mass and improves mitochondrial respiratory rate, under physiological condition. Furthermore, overexpression of selenoprotein H protects neuronal HT22 cells from ultraviolet B irradiation-induced cell damage by lowering reactive oxygen species production, and inhibiting activation of caspase-3 and -9, as well as p53. The objective of this study is to identify the cell signaling pathways by which selenoprotein H initiates mitochondrial biogenesis. We first confirmed our previous observation that selenoprotein H transfected HT22 cells increased the protein levels of nuclear-encoded mitochondrial biogenesis factors, peroxisome proliferator-activated receptor γ coactivator-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. We then observed that total and phosphorylation of protein kinase A, Akt/protein kinase B and cyclic adenosine monophosphate response element-binding protein (CREB) were significantly increased in selenoprotein H transfected cells compared to vector transfected HT22 cells. To verify whether the observed stimulating effects on mitochondrial biogenesis pathways are caused by selenoprotein H and mediated through CREB, we knocked down selenoprotein H mRNA level using siRNA and inhibited CREB with napthol AS-E phosphate in selenoprotein H transfected cells and repeated the measurements of the aforementioned biomarkers. Our results revealed that silencing of selenoprotein H not only decreased the protein levels of PGC-1α, nuclear respiratory factor 1 and mitochondrial transcription factor A, but also decreased the total and

  5. Induction of haem oxygenase contributes to the synthesis of pro-inflammatory cytokines in re-oxygenated rat macrophages: role of cGMP.

    Science.gov (United States)

    Tamion, F; Richard, V; Lyoumi, S; Hiron, M; Bonmarchand, G; Leroy, J; Daveau, M; Thuillez, C; Lebreton, J P

    1999-05-01

    Macrophage activation and the resulting inflammatory response may be a major component of tissue injury upon hypoxia and re-oxygenation. Activation of the haem oxygenase (HO)/carbon monoxide (CO) pathway may be an important regulator of the inflammatory response, through production of cyclic 3', 5'-monophosphate (cGMP). We have assessed whether HO contributes to the increased production of the pro-inflammatory cytokines TNF-alpha and IL-6 in re-oxygenated rat peritoneal macrophages.Hypoxia/re-oxygenation markedly increased levels of HO-1 mRNA and cGMP. The increase in cGMP was reduced by the HO-1 inhibitor tin-protoporphyrin (SnPP-9) given during re-oxygenation. Hypoxia and re-oxygenation also increased IL-6 and TNF-alpha mRNA expression, as well as IL-6 and TNF-alpha concentrations in the cell supernatant. These increases were nullified by SnPP-9 and by Methylene Blue, an inhibitor of guanylate cyclase, but were not affected by L-NNA, an inhibitor of NO synthesis. The inhibitory effect of SnPP on the synthesis of cytokines was reversed by co-administration of the stable analogue of cGMP, 8-Br-cGMP. Our results indicate that activation of haem oxygenase and of the CO/cGMP pathway is a major stimulus for the synthesis and release of pro-inflammatory cytokines in re-oxygenated macrophages. This pathway may play a central role in pathological situations in which local tissue hypoxia/re-oxygenation triggers a systemic inflammatory response, for example in patients with shock.

  6. LTQ-XL mass spectrometry proteome analysis expands the Pseudomonas aeruginosa AmpR regulon to include cyclic di-GMP phosphodiesterases and phosphoproteins, and identifies novel open reading frames.

    Science.gov (United States)

    Kumari, Hansi; Murugapiran, Senthil K; Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Sarracino, David; Lory, Stephen; Mathee, Kalai

    2014-01-16

    Pseudomonas aeruginosa is well known for its antibiotic resistance and intricate regulatory network, contributing to its success as an opportunistic pathogen. This study is an extension of our transcriptomic analyses (microarray and RNA-Seq) to understand the global changes in PAO1 upon deleting a gene encoding a transcriptional regulator AmpR, in the presence and absence of β-lactam antibiotic. This study was performed under identical conditions to explore the proteome profile of the ampR deletion mutant (PAOΔampR) using LTQ-XL mass spectrometry. The proteomic data identified ~53% of total PAO1 proteins and expanded the master regulatory role of AmpR in determining antibiotic resistance and multiple virulence phenotypes in P. aeruginosa. AmpR proteome analysis identified 853 AmpR-dependent proteins, which include 102 transcriptional regulators and 21 two-component system proteins. AmpR also regulates cyclic di-GMP phosphodiesterases (PA4367, PA4969, PA4781) possibly affecting major virulence systems. Phosphoproteome analysis also suggests a significant role for AmpR in Ser, Thr and Tyr phosphorylation. These novel mechanisms of gene regulation were previously not associated with AmpR. The proteome analysis also identified many unannotated and misannotated ORFs in the P. aeruginosa genome. Thus, our data sheds light on important virulence regulatory pathways that can potentially be exploited to deal with P. aeruginosa infections. The AmpR proteome data not only confirmed the role of AmpR in virulence and resistance to multiple antibiotics, but also expanded the perimeter of AmpR regulon. The data presented here points to the role of AmpR in regulating cyclic di-GMP levels and phosphorylation of Ser, Thr and Tyr, adding another dimension to the regulatory functions of AmpR. We also identify some previously unannotated/misannotated ORFs in the P. aeruginosa genome, indicating the limitations of existing ORF analyses software. This study will contribute towards

  7. Heme oxygenase-1 is involved in nitric oxide- and cGMP-induced α-Amy2/54 gene expression in GA-treated wheat aleurone layers.

    Science.gov (United States)

    Wu, Mingzhu; Wang, Fangquan; Zhang, Chen; Xie, Yanjie; Han, Bin; Huang, Jingjing; Shen, Wenbiao

    2013-01-01

    Here, α-Amy2/54 gene expression was used as a molecular probe to investigate the interrelationship among nitric oxide (NO), cyclic GMP (cGMP), and heme oxygenase-1 (HO-1) in GA-treated wheat aleurone layers. The inducible expressions of α-Amy2/54 and α-amylase activity were respectively amplified by two NO-releasing compounds, sodium nitroprusside (SNP) and spermine NONOate, in a GA-dependent fashion. Similar responses were observed when an inducer of HO-1, hemin-or one of its catalytic products, carbon monoxide (CO) in aqueous solution-was respectively added. The SNP-induced responses, mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP), a cGMP derivative, were NO-dependent. This conclusion was supported by the fact that endogenous NO overproduction was rapidly induced by SNP, and thereafter induction of α-Amy2/54 gene expression and increased α-amylase activity were sensitive to the NO scavenger. We further observed that the above induction triggered by SNP and 8-Br-cGMP was partially prevented by zinc protoporphyrin IX (ZnPPIX), an inhibitor of HO-1. These blocking effects were clearly reversed by CO, confirming that the above response was HO-1-specific. Further analyses showed that both SNP and 8-Br-cGMP rapidly up-regulated HO-1 gene expression and increased HO activity, and SNP responses were sensitive to cPTIO and the guanylate cyclase inhibitor 6-anilino-5,8-quinolinedione (LY83583). Molecular evidence confirmed that GA-induced GAMYB and ABA-triggered PKABA1 transcripts were up-regulated or down-regulated by SNP, 8-Br-cGMP or CO cotreated with GA. Contrasting changes were observed when cPTIO, LY83583, or ZnPPIX was added. Together, our results suggested that HO-1 is involved in NO- and cGMP-induced α-Amy2/54 gene expression in GA-treated aleurone layers.

  8. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Ameli, Sanaz; Akhlaghipour, Golnoosh; Dehpour, AhmadReza

    2016-04-01

    Based on clinical studies regarding the beneficial effect of gabapentin in depression, we aimed to evaluate the antidepressant-like properties of gabapentin in mice and also the participation of nitric oxide (NO)/cyclic guanosine monophosphate pathway in this effect. The following drugs were used in this study: gabapentin; N(G)-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor; 7-nitroindazole, a specific neuronal NOS inhibitor; aminoguanidine, a specific inducible NOS inhibitor; L-arginine, a NO precursor; and sildenafil, a phosphodiestrase inhibitor. Finally, we studied the behavioral effects through the forced swimming test (FST) and the changes of the hippocampus NO level through nitrite assay. The immobility time was significantly reduced after gabapentin administration. Co-administration of non-effective doses of gabapentin and L-NAME or 7-nitroindazole (7-NI) resulted in antidepressant-like effect in FST, while aminoguanidine did not affect the immobility time of gabapentin-treated mice. Furthermore, the antidepressant-like property of gabapentin was prevented by L-arginine or sildenafil. Also, the hippocampal nitrite level was significantly lower in gabapentin-treated mice relative to saline-injected mice, and co-administration of 7-NI with sub-effective gabapentin caused a significant decrease in hippocampal nitrite levels. Our results indicate that the antidepressant-like effect of gabapentin in the mice FST model is mediated at least in part through nitric oxide/cyclic guanosine monophosphate (cGMP) pathway.

  9. Spatiotemporal and functional characterisation of the Plasmodium falciparum cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Christine S Hopp

    Full Text Available Signalling by 3'-5'-cyclic guanosine monophosphate (cGMP exists in virtually all eukaryotes. In the apicomplexan parasite Plasmodium, the cGMP-dependent protein kinase (PKG has previously been reported to play a critical role in four key stages of the life cycle. The Plasmodium falciparum isoform (PfPKG is essential for the initiation of gametogenesis and for blood stage schizont rupture and work on the orthologue from the rodent malaria parasite P. berghei (PbPKG has shown additional roles in ookinete differentiation and motility as well as liver stage schizont development. In the present study, PfPKG expression and subcellular location in asexual blood stages was investigated using transgenic epitope-tagged PfPKG-expressing P. falciparum parasites. In Western blotting experiments and immunofluorescence analysis (IFA, maximal PfPKG expression was detected at the late schizont stage. While IFA suggested a cytosolic location, a degree of overlap with markers of the endoplasmic reticulum (ER was found and subcellular fractionation showed some association with the peripheral membrane fraction. This broad localisation is consistent with the notion that PfPKG, as with the mammalian orthologue, has numerous cellular substrates. This idea is further supported by the global protein phosphorylation pattern of schizonts which was substantially changed following PfPKG inhibition, suggesting a complex role for PfPKG during schizogony.

  10. Optimization of RNA-based c-di-GMP fluorescent sensors through tuning their structural modules.

    Science.gov (United States)

    Inuzuka, Saki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-08-01

    Cyclic diguanylate (c-di-GMP) is a second messenger of bacteria and its detection is an important issue in basic and applied microbiology. As c-di-GMP riboswitch ligand-binding domains (aptamer domains) capture c-di-GMP with high affinity and selectivity, they are promising platforms for the development of RNA-based c-di-GMP sensors. We analyzed two previously reported c-di-GMP sensor RNAs derived from the Vc2 riboswitch. We also designed and tested their variants, some of which showed improved properties as RNA-based c-di-GMP sensors.

  11. Changes in cyclic nucleotides, locomotory behavior, and body length produced by novel endogenous neuropeptides in the parasitic nematode Ascaris suum.

    Science.gov (United States)

    Reinitz, Catharine A; Pleva, Anthony E; Stretton, Antony O W

    2011-11-01

    Recent technical advances have rapidly advanced the discovery of novel peptides, as well as the transcripts that encode them, in the parasitic nematode Ascaris suum. Here we report that many of these novel peptides produce profound and varied effects on locomotory behavior and levels of cyclic nucleotides in A. suum. We investigated the effects of 31 endogenous neuropeptides encoded by transcripts afp-1, afp-2, afp-4, afp-6, afp-7, and afp-9-14 (afp: Ascaris FMRFamide-like Precursor protein) on cyclic nucleotide levels, body length and locomotory behavior. Worms were induced to generate anteriorly propagating waveforms, peptides were injected into the pseudocoelomic cavity, and changes in the specific activity (nmol/mg protein) of second messengers cAMP (3'5' cyclic adenosine monophosphate) and cGMP (3'5' cyclic guanosine monophosphate) were determined. Many of these neuropeptides changed the levels of cAMP (both increases and decreases were found), whereas few neuropeptides changed the level of cGMP. A subset of the peptides that lowered cAMP was investigated for effects on the locomotory waveform and on body length. Injection of AF19, or AF34 (afp-13), AF9 (afp-14), AF26 or AF41 (afp-11) caused immediate paralysis and cessation of propagating body waveforms. These neuropeptides also significantly increased body length. In contrast, injection of AF15 (afp-9) reduced the body length, and decreased the amplitude of waves in the body waveform. AF30 (afp-10) produced worms with tight ventral coils. Although injection of neuropeptides encoded by afp-1 (AF3, AF4, AF10 or AF13) produced an increased number of exaggerated body waves, there were no effects on either cAMP or cGMP. By injecting peptides into behaving A. suum, we have provided an initial screen of the effects of novel peptides on several behavioral and biochemical parameters.

  12. Effects of 3 weeks GMP oral administration on glutamatergic parameters in mice neocortex.

    Science.gov (United States)

    Ganzella, Marcelo; Moreira, Julia Dubois; Almeida, Roberto Farina; Böhmer, Ana Elisa; Saute, Jonas Alex Morales; Holmseth, Silvia; Souza, Diogo Onofre

    2012-03-01

    Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.

  13. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.

    Science.gov (United States)

    Clauss, François; Charloux, Anne; Piquard, François; Doutreleau, Stéphane; Talha, Samy; Zoll, Joffrey; Lugnier, Claire; Geny, Bernard

    2015-08-01

    We investigated whether myocardial infarction (MI) enhances renal phosphodiesterases (PDE) activities, investigating particularly the relative contribution of PDE1-5 isozymes in total PDE activity involved in both cGMP and cAMP pathways, and whether angiotensin-converting enzyme inhibition (ACEi) decreases such renal PDE hyperactivities. We also investigated whether ACEi might thereby improve atrial natriuretic peptide (ANP) efficiency. We studied renal cortical PDE1-5 isozyme activities in sham (SH)-operated, MI rats and in MI rats treated with perindopril (ACEi) 1 month after coronary artery ligation. Circulating atrial natriuretic peptide (ANP), its second intracellular messenger cyclic guanosine monophosphate (cGMP) and cGMP/ANP ratio were also determined. Cortical cGMP-PDE2 (80.3 vs. 65.1 pmol/min/mg) and cGMP-PDE1 (50.7 vs. 30.1 pmol/min/mg), and cAMP-PDE2 (161 vs. 104.1 pmol/min/mg) and cAMP-PDE4 (307.5 vs. 197.2 pmol/min/mg) activities were higher in MI than in SH rats. Despite increased ANP plasma level, ANP efficiency tended to be decreased in MI compared to SH rats. Perindopril restored PDE activities and tended to improve ANP efficiency in MI rats. One month after coronary ligation, perindopril treatment of MI rats prevents the increase in renal cortical PDE activities. This may contribute to increase renal ANP efficiency in MI rats.

  14. Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-12-01

    Full Text Available Guanosine monophosphates (GMPs were intercalated into the interlayer space of layered double hydroxides (LDHs and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C, a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C, GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.

  15. C-di-GMP regulates antimicrobial peptide resistance in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chua, Song Lin; Tan, Sean Yang-Yi; Rybtke, Morten Theil

    2013-01-01

    Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is an intracellular second messenger which controls the life styles of many bacteria. A high intracellular level of c-di-GMP induces a biofilm lifestyle, whereas a low intracellular level of c-di-GMP stimulates dispersal of biofilms and promotes a plankto......Bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) is an intracellular second messenger which controls the life styles of many bacteria. A high intracellular level of c-di-GMP induces a biofilm lifestyle, whereas a low intracellular level of c-di-GMP stimulates dispersal of biofilms and promotes...... a planktonic lifestyle. Here, we used expression of different reporters to show that planktonic cells (PCells), biofilm cells (BCells) and cells dispersed from biofilms (DCells) had distinct intracellular c-di-GMP levels. Proteomics analysis showed that the low intracellular c-di-GMP level of DCells induced...... the expression of proteins required for the virulence and development of antimicrobial peptide resistance in P. aeruginosa. In accordance, P. aeruginosa cells with low c-di-GMP levels were found to be more resistant to colistin than P. aeruginosa cells with high c-di-GMP levels. This contradicts the current...

  16. Control of bacterial exoelectrogenesis by c-AMP-GMP.

    Science.gov (United States)

    Nelson, James W; Sudarsan, Narasimhan; Phillips, Grace E; Stav, Shira; Lünse, Christina E; McCown, Phillip J; Breaker, Ronald R

    2015-04-28

    Major changes in bacterial physiology including biofilm and spore formation involve signaling by the cyclic dinucleotides c-di-GMP and c-di-AMP. Recently, another second messenger dinucleotide, c-AMP-GMP, was found to control chemotaxis and colonization by Vibrio cholerae. We have identified a superregulon of genes controlled by c-AMP-GMP in numerous Deltaproteobacteria, including Geobacter species that use extracellular insoluble metal oxides as terminal electron acceptors. This exoelectrogenic process has been studied for its possible utility in energy production and bioremediation. Many genes involved in adhesion, pilin formation, and others that are important for exoelectrogenesis are controlled by members of a variant riboswitch class that selectively bind c-AMP-GMP. These RNAs constitute, to our knowledge, the first known specific receptors for c-AMP-GMP and reveal that this molecule is used by many bacteria to control specialized physiological processes.

  17. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice.

    Science.gov (United States)

    Wang, Zili; Celis, Esteban

    2015-08-01

    Therapeutic vaccines to induce anti-tumor CD8 T cells have been used in clinical trials for advanced melanoma patients, but the clinical response rate and overall survival time have not improved much. We believe that these dismal outcomes are caused by inadequate number of antigen-specific CD8 T cells generated by most vaccines. In contrast, huge CD8 T cell responses readily occur during acute viral infections. High levels of type-I interferon (IFN-I) are produced during these infections, and this cytokine not only exhibits anti-viral activity but also promotes CD8 T cell responses. The studies described here were performed to determine whether promoting the production of IFN-I could enhance the potency of a peptide vaccine. We report that cyclic diguanylate monophosphate (c-di-GMP), which activates the stimulator of interferon genes, potentiated the immunogenicity and anti-tumor effects of a peptide vaccine against mouse B16 melanoma. The synergistic effects of c-di-GMP required co-administration of costimulatory anti-CD40 antibody, the adjuvant poly-IC, and were mediated in part by IFN-I. These findings demonstrate that peptides representing CD8 T cell epitopes can be effective inducers of large CD8 T cell responses in vaccination strategies that mimic acute viral infections.

  18. Cyclic 3′,5′-Adenosine Monophosphate and N-Acetyl-glucosamine-6-Phosphate as Regulatory Signals in Catabolite Repression of the lac Operon in Escherichia coli1

    Science.gov (United States)

    Goldenbaum, Paul E.; Broman, Rodney L.; Dobrogosz, Walter J.

    1970-01-01

    When an Escherichia coli mutant lacking the enzyme N-acetyl-glucosamine-6-phosphate (AcGN6P) deacetylase is grown in a succinate-mineral salts medium and exposed to an exogenous source of N-acetylglucosamine, approximately 20 to 30 pmoles of AcGN6P per μg of cell dry weight will accumulate in these cells. This accumulation occurs within 2 to 4 min after the addition of N-acetylglucosamine and is coincident with the production of a severe permanent catabolite repression of β-galactosidase synthesis. This repression does not occur if adenosine 3′,5′-cyclic phosphate (cyclic AMP) is added to the cells before AcGN6P accumulates. An immediate derepression occurs when cyclic AMP is added to cells that have already accumulated a large AcGN6P pool. These findings are consistent with the view that low-molecular-weight carbohydrate metabolites and cyclic AMP play key roles in the catabolite repression phenomenon, and that metabolites such as AcGN6P may participate in the represion mechanism by influencing either the formation or degradation of cyclic AMP in E. coli. PMID:4319836

  19. cGMP and NHR signaling co-regulate expression of insulin-like peptides and developmental activation of infective larvae in Strongyloides stercoralis.

    Science.gov (United States)

    Stoltzfus, Jonathan D; Bart, Stephen M; Lok, James B

    2014-07-01

    The infectious form of the parasitic nematode Strongyloides stercoralis is a developmentally arrested third-stage larva (L3i), which is morphologically similar to the developmentally arrested dauer larva in the free-living nematode Caenorhabditis elegans. We hypothesize that the molecular pathways regulating C. elegans dauer development also control L3i arrest and activation in S. stercoralis. This study aimed to determine the factors that regulate L3i activation, with a focus on G protein-coupled receptor-mediated regulation of cyclic guanosine monophosphate (cGMP) pathway signaling, including its modulation of the insulin/IGF-1-like signaling (IIS) pathway. We found that application of the membrane-permeable cGMP analog 8-bromo-cGMP potently activated development of S. stercoralis L3i, as measured by resumption of feeding, with 85.1 ± 2.2% of L3i feeding in 200 µM 8-bromo-cGMP in comparison to 0.6 ± 0.3% in the buffer diluent. Utilizing RNAseq, we examined L3i stimulated with DMEM, 8-bromo-cGMP, or the DAF-12 nuclear hormone receptor (NHR) ligand Δ7-dafachronic acid (DA)--a signaling pathway downstream of IIS in C. elegans. L3i stimulated with 8-bromo-cGMP up-regulated transcripts of the putative agonistic insulin-like peptide (ILP) -encoding genes Ss-ilp-1 (20-fold) and Ss-ilp-6 (11-fold) in comparison to controls without stimulation. Surprisingly, we found that Δ7-DA similarly modulated transcript levels of ILP-encoding genes. Using the phosphatidylinositol-4,5-bisphosphate 3-kinase inhibitor LY294002, we demonstrated that 400 nM Δ7-DA-mediated activation (93.3 ± 1.1% L3i feeding) can be blocked using this IIS inhibitor at 100 µM (7.6 ± 1.6% L3i feeding). To determine the tissues where promoters of ILP-encoding genes are active, we expressed promoter::egfp reporter constructs in transgenic S. stercoralis post-free-living larvae. Ss-ilp-1 and Ss-ilp-6 promoters are active in the hypodermis and neurons and the Ss-ilp-7 promoter is active in the intestine

  20. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Directory of Open Access Journals (Sweden)

    Sonja Langmesser

    Full Text Available Many effects of nitric oxide (NO are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP. cGMP activates cGMP-dependent protein kinases (PRKGs, which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1 in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS duration and in non-REM sleep (NREMS consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG power in the delta frequency range (1-4 Hz under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  1. cGMP-dependent protein kinase type I is implicated in the regulation of the timing and quality of sleep and wakefulness.

    Science.gov (United States)

    Langmesser, Sonja; Franken, Paul; Feil, Susanne; Emmenegger, Yann; Albrecht, Urs; Feil, Robert

    2009-01-01

    Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

  2. Nitric oxide synthetic pathway and cGMP levels are altered in red blood cells from end-stage renal disease patients.

    Science.gov (United States)

    Di Pietro, Natalia; Giardinelli, Annalisa; Sirolli, Vittorio; Riganti, Chiara; Di Tomo, Pamela; Gazzano, Elena; Di Silvestre, Sara; Panknin, Christina; Cortese-Krott, Miriam M; Csonka, Csaba; Kelm, Malte; Ferdinandy, Péter; Bonomini, Mario; Pandolfi, Assunta

    2016-06-01

    Red blood cells (RBCs) enzymatically produce nitric oxide (NO) by a functional RBC-nitric oxide synthase (RBC-NOS). NO is a vascular key regulatory molecule. In RBCs its generation is complex and influenced by several factors, including insulin, acetylcholine, and calcium. NO availability is reduced in end-stage renal disease (ESRD) and associated with endothelial dysfunction. We previously demonstrated that, through increased phosphatidylserine membrane exposure, ESRD-RBCs augmented their adhesion to human cultured endothelium, in which NO bioavailability decreased. Since RBC-NOS-dependent NO production in ESRD is unknown, this study aimed to investigate RBC-NOS levels/activation, NO production/bioavailability in RBCs from healthy control subjects (C, N = 18) and ESRD patients (N = 27). Although RBC-NOS expression was lower in ESRD-RBCs, NO, cyclic guanosine monophosphate (cGMP), RBC-NOS Serine1177 phosphorylation level and eNOS/Calmodulin (CaM)/Heat Shock Protein-90 (HSP90) interaction levels were higher in ESRD-RBCs, indicating increased enzyme activation. Conversely, following RBCs stimulation with insulin or ionomycin, NO and cGMP levels were significantly lower in ESRD- than in C-RBCs, suggesting that uremia might reduce the RBC-NOS response to further stimuli. Additionally, the activity of multidrug-resistance-associated protein-4 (MRP4; cGMP-membrane transporter) was significantly lower in ESRD-RBCs, suggesting a possible compromised efflux of cGMP across the ESRD-RBCs membrane. This study for the first time showed highest basal RBC-NOS activation in ESRD-RBCs, possibly to reduce the negative impact of decreased NOS expression. It is further conceivable that high NO production only partially affects cell function of ESRD-RBCs maybe because in vivo they are unable to respond to physiologic stimuli, such as calcium and/or insulin.

  3. Crystal structures of Apo and GMP bound hypoxanthine-guanine phosphoribosyltransferase from Legionella pneumophila and the implications in gouty arthritis.

    Science.gov (United States)

    Zhang, Nannan; Gong, Xiaojian; Lu, Min; Chen, Xiaofang; Qin, Ximing; Ge, Honghua

    2016-06-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) (EC 2.4.2.8) reversibly catalyzes the transfer of the 5-phophoribosyl group from 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP) to hypoxanthine or guanine to form inosine monophosphate (IMP) or guanosine monophosphate (GMP) in the purine salvage pathway. To investigate the catalytic mechanism of this enzyme in the intracellular pathogen Legionella pneumophila, we determined the crystal structures of the L. pneumophila HGPRT (LpHGPRT) both in its apo-form and in complex with GMP. The structures reveal that LpHGPRT comprises a core domain and a hood domain which are packed together to create a cavity for GMP-binding and the enzymatic catalysis. The binding of GMP induces conformational changes of the stable loop II. This new binding site is closely related to the Gout arthritis-linked human HGPRT mutation site (Ser103Arg). Finally, these structures of LpHGPRT provide insights into the catalytic mechanism of HGPRT.

  4. Structural and functional characteristics of cGMP-dependent methionine oxidation in Arabidopsis thaliana proteins

    KAUST Repository

    Marondedze, Claudius

    2013-01-05

    Background: Increasing structural and biochemical evidence suggests that post-translational methionine oxidation of proteins is not just a result of cellular damage but may provide the cell with information on the cellular oxidative status. In addition, oxidation of methionine residues in key regulatory proteins, such as calmodulin, does influence cellular homeostasis. Previous findings also indicate that oxidation of methionine residues in signaling molecules may have a role in stress responses since these specific structural modifications can in turn change biological activities of proteins. Findings. Here we use tandem mass spectrometry-based proteomics to show that treatment of Arabidopsis thaliana cells with a non-oxidative signaling molecule, the cell-permeant second messenger analogue, 8-bromo-3,5-cyclic guanosine monophosphate (8-Br-cGMP), results in a time-dependent increase in the content of oxidised methionine residues. Interestingly, the group of proteins affected by cGMP-dependent methionine oxidation is functionally enriched for stress response proteins. Furthermore, we also noted distinct signatures in the frequency of amino acids flanking oxidised and un-oxidised methionine residues on both the C- and N-terminus. Conclusions: Given both a structural and functional bias in methionine oxidation events in response to a signaling molecule, we propose that these are indicative of a specific role of such post-translational modifications in the direct or indirect regulation of cellular responses. The mechanisms that determine the specificity of the modifications remain to be elucidated. 2013 Marondedze et al.; licensee BioMed Central Ltd.

  5. Measurement of 2',3'-cyclic nucleotides by liquid chromatography-tandem mass spectrometry in cells.

    Science.gov (United States)

    Bähre, Heike; Kaever, Volkhard

    2014-08-01

    Recently, the occurrence of 2',3'-cyclic nucleoside monophosphates (2',3'-cNMPs) in addition to 3',5'-cNMPs in mammalian tissues was reported. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the measurement of four 2',3'-cyclic nucleotides, i.e., 2',3'-cAMP, 2',3'-cCMP, 2',3'-cGMP, 2',3'-cUMP, in cell samples. Chromatographic separation was achieved using a Zorbax eclipse XCB-C18 (50 mm×4.6 mm; 1.8 μm column; Agilent) connected to a QTRAP5500 system (AB Sciex) operating in positive ionization mode. Calibration curves were constructed in the range 0.41 fmol/μL to 1666.6 fmol/μL for 2',3'-cAMP, 2',3'-cCMP, and 2',3'-cGMP, and 3.3-1666.6 fmol/μL for 2',3'-cUMP, respectively, showing squared correlation coefficients >0.9992. Accuracy and inter- and intra-day precision lay within the required ranges of <20% for LLOQ and <15% for higher concentration levels. The method was applied to the analysis of nucleotides in two different cell lines (Hek293T and HuT-78). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 电针对吗啡戒断大鼠cAMP、cGMP水平的影响%Effect of Electroacupunture on cAMP and cGMP Level of Morphine Withdrawal Rats

    Institute of Scientific and Technical Information of China (English)

    侯晓蓉; 张荣军; 宋小鸽; 唐照亮; 许冠荪

    2005-01-01

    目的研究电针吗啡戒断大鼠足三里穴对大鼠环磷鸟苷酸(cyclic guanosine 3′,5′-monophosphate,cGMP)及环磷腺苷酸(cyclic adenosine 3′,5′-monophosphate,cAMP)含量的影响,探讨电针改善戒断症状作用的可能机制.方法建立吗啡依赖大鼠自然戒断模型,采用放射免疫分析法测定血液、脑组织中cGMP、cAMP含量.结果戒断Ⅰ组大鼠血液cAMP含量增高(P<0.01),cGMP含量明显降低(P<0.01),cAMP/cGMP比值显著增高(P<0.01);戒断Ⅱ组大鼠脑中cGMP、cAMP含量均明显减少(P<0.01);电针组cGMP、cAMP含量接近正常水平.结论电针足三里穴改善大鼠吗啡戒断症状可能与调节cGMP、cAMP系统的相互作用有关.

  7. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC18bpy)]2+ hybrid film

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4′-dioctadecyl-2,2′ bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+ (denoted as Clay-Ru) was closely packed at a surface pressure of 25 mN-m-1 and had a thickness of 3.4±0.5 nm. Cyclic voltammograms showed that the redox current of Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5′-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. Ag|AgCl|KCl ) and, more significantly, this response was further enhanced by light irradiation (λ>360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.

  8. Methanolic Extract of Clinacanthus nutans Exerts Antinociceptive Activity via the Opioid/Nitric Oxide-Mediated, but cGMP-Independent, Pathways

    Directory of Open Access Journals (Sweden)

    Mohammad Hafiz Abdul Rahim

    2016-01-01

    Full Text Available The objectives of the present study were to determine the mechanisms of antinociceptive effect of methanol extract of Clinacanthus nutans (Acanthaceae leaves (MECN using various animal nociceptive models. The antinociceptive activity of orally administered 10% DMSO, 100 mg/kg acetylsalicylic acid (ASA, 5 mg/kg morphine, or MECN (100, 250, and 500 mg/kg was determined using the acetic acid-induced abdominal constriction (ACT, formalin-induced paw licking (FT, and hot plate tests (HPT. The role of opioid and nitric oxide/cyclic guanosine monophosphate (NO/cGMP systems was also investigated. The results showed that MECN produced a significant (p500 mg/kg or 227.7 mg/kg, respectively. This antinociceptive activity was fully antagonized by naloxone (a nonselective opioid antagonist but was partially reversed by L-arginine (L-arg; a nitric oxide [NO] precursor, Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; an NO synthase inhibitor, or their combinations thereof. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ; a soluble guanylyl cyclase inhibitor enhanced the extract’s antinociception. UHPLC analysis revealed the presence of several flavonoid-based compounds with antinociceptive action. In conclusion, MECN exerted the peripherally and centrally mediated antinociceptive activity via the modulation of the opioid/NO-mediated, but cGMP-independent, systems.

  9. Methanolic Extract of Clinacanthus nutans Exerts Antinociceptive Activity via the Opioid/Nitric Oxide-Mediated, but cGMP-Independent, Pathways.

    Science.gov (United States)

    Abdul Rahim, Mohammad Hafiz; Zakaria, Zainul Amiruddin; Mohd Sani, Mohd Hijaz; Omar, Maizatul Hasyima; Yakob, Yusnita; Cheema, Manraj Singh; Ching, Siew Mooi; Ahmad, Zuraini; Abdul Kadir, Arifah

    2016-01-01

    The objectives of the present study were to determine the mechanisms of antinociceptive effect of methanol extract of Clinacanthus nutans (Acanthaceae) leaves (MECN) using various animal nociceptive models. The antinociceptive activity of orally administered 10% DMSO, 100 mg/kg acetylsalicylic acid (ASA), 5 mg/kg morphine, or MECN (100, 250, and 500 mg/kg) was determined using the acetic acid-induced abdominal constriction (ACT), formalin-induced paw licking (FT), and hot plate tests (HPT). The role of opioid and nitric oxide/cyclic guanosine monophosphate (NO/cGMP) systems was also investigated. The results showed that MECN produced a significant (p 500 mg/kg or 227.7 mg/kg, respectively. This antinociceptive activity was fully antagonized by naloxone (a nonselective opioid antagonist) but was partially reversed by l-arginine (l-arg; a nitric oxide [NO] precursor), Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME; an NO synthase inhibitor), or their combinations thereof. In contrast, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ; a soluble guanylyl cyclase inhibitor) enhanced the extract's antinociception. UHPLC analysis revealed the presence of several flavonoid-based compounds with antinociceptive action. In conclusion, MECN exerted the peripherally and centrally mediated antinociceptive activity via the modulation of the opioid/NO-mediated, but cGMP-independent, systems.

  10. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response.

  11. Cyclic adenosine 3'-5'-monophosphate (cAMP) exerts proliferative and anti-proliferative effects in pituitary cells of different types by activating both cAMP-dependent protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac).

    Science.gov (United States)

    Vitali, E; Peverelli, E; Giardino, E; Locatelli, M; Lasio, G B; Beck-Peccoz, P; Spada, A; Lania, A G; Mantovani, G

    2014-03-05

    In the pituitary the activation of cyclic adenosine 3'-5'-monophosphate (cAMP) dependent pathways generates proliferative signals in somatotrophs, whereas in pituitary cells of other lineages its effect remains uncertain. Moreover, the specific role of the two main cAMP effectors, protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac), has not been defined. Aim of this study was to investigate the effect of cAMP on pituitary adenomatous cells proliferation and to identify PKA and Epac differential involvement. We found that cAMP increased DNA synthesis and cyclin D1 expression in somatotropinomas, whereas it reduced both parameters in prolactinomas and nonfunctioning adenomas, these effects being replicated in corresponding cell lines. Moreover, the divergent cAMP effects were mimicked by Epac and PKA analogs, which activated Rap1 and CREB, respectively. In conclusion, we demonstrated that cAMP exerted opposite effects on different pituitary cell types proliferation, these effects being mediated by both Epac and PKA.

  12. Melanocyte response to gravitational stress: an overview with a focus on the role of cyclic nucleotides

    Science.gov (United States)

    Ivanova, Krassimira; Tsiockas, Wasiliki; Eiermann, Peter; Hauslage, Jens; Hemmersbach, Ruth; Block, Ingrid; Gerzer, Rupert

    Human melanocytes are responsible for skin pigmentation by synthesizing the pigment melanin. A well known modulator of melanogenesis is the second messenger adenosine 3',5'-cyclic monophos-phate (cAMP). It has also been reported that the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/guanosine 3',5'-cyclic monophosphate (cGMP) pathway is involved in UVB-induced melanogenesis. Melanin acts as a scavenger for free radicals during oxidative stress, but it may additionally act as a photosensitizer that generates active oxygen species upon UV radiation, which may initiate hypopigmentary disorders (e.g., vitiligo) as well as UV-induced oncogene cell transformation. Melanoma, a deadly skin cancer which arises from transformed melanocytes, is characterized by a resistance to chemotherapy. In our studies we were able to show that hu-man melanocytic cells differentially respond to gravitational stress. Hypergravity (up to 5 g for 24 h) stimulated cGMP efflux in cultured human melanocytes and non-metastatic melanoma cells, but not in metastatic phenotypes under the conditions of limited degradation [e.g., in the presence of phosphodiesterase (PDE) inhibitors] or stimulated synthesis of cGMP [e.g., by NO donors, but not natriuretic peptides], whereas cellular proliferation and morphology were not altered. Interestingly, long-term exposure to hypergravity stimulated an increase in both intra-cellular as well as extracellular cAMP levels as well as melanogenesis in pigmented melanocytes and non-metastatic melanoma cells. As some cAMP-PDEs are regulated by cGMP, it seems that the hypergravity-induced alteration of melanocyte pigmentation could be a result of a cross-talk between these two cyclic nucleotides. Hypergravity induced further an increase in the mRNA and protein levels of the selective cGMP and cAMP exporters, the multidrug resistance proteins (MRP) 4 and 5 -but not 8 -, whereas simulated microgravity (up to 1.21x10-2 g for 24 h) -provided by a fast-rotating clinostat

  13. Methods and materials relating to IMPDH and GMP production

    Science.gov (United States)

    Collart, Frank R.; Huberman, Eliezer

    1997-01-01

    Disclosed are purified and isolated DNA sequences encoding eukaryotic proteins possessing biological properties of inosine 5'-monophosphate dehydrogenase ("IMPDH"). Illustratively, mammalian (e.g., human) IMPDH-encoding DNA sequences are useful in transformation or transfection of host cells for the large scale recombinant production of the enzymatically active expression products and/or products (e.g., GMP) resulting from IMPDH catalyzed synthesis in cells. Vectors including IMPDH-encoding DNA sequences are useful in gene amplification procedures. Recombinant proteins and synthetic peptides provided by the invention are useful as immunological reagents and in the preparation of antibodies (including polyclonal and monoclonal antibodies) for quantitative detection of IMPDH.

  14. Endo-S-c-di-GMP Analogues-Polymorphism and Binding Studies with Class I Riboswitch

    Directory of Open Access Journals (Sweden)

    Herman O. Sintim

    2012-11-01

    Full Text Available C-di-GMP, a cyclic guanine dinucleotide, has been shown to regulate biofilm formation as well as virulence gene expression in a variety of bacteria. Analogues of c-di-GMP have the potential to be used as chemical probes to study c-di-GMP signaling and could even become drug leads for the development of anti-biofilm compounds. Herein we report the synthesis and biophysical studies of a series of c-di-GMP analogues, which have both phosphate and sugar moieties simultaneously modified (called endo-S-c-di-GMP analogues. We used computational methods to predict the relative orientation of the guanine nucleobases in c-di-GMP and analogues. DOSY NMR of the endo-S-c-di-GMP series showed that the polymorphism of c-di-GMP can be tuned with conservative modifications to the phosphate and sugar moieties (conformational steering. Binding studies with Vc2 RNA (a class I c-di-GMP riboswitch revealed that conservative modifications to the phosphate and 2'-positions of c-di-GMP dramatically affected binding to class I riboswitch.

  15. Effects of pyridoxine on a high-fat diet-induced reduction of cell proliferation and neuroblast differentiation depend on cyclic adenosine monophosphate response element binding protein in the mouse dentate gyrus.

    Science.gov (United States)

    Yoo, Dae Young; Kim, Woosuk; Yoo, Ki-Yeon; Nam, Sung Min; Chung, Jin Young; Yoon, Yeo Sung; Won, Moo-Ho; Hwang, In Koo

    2012-08-01

    In this study, we challenged pyridoxine to mice fed a high-fat diet (HFD) and investigated the effects of pyridoxine on HFD-induced phenotypes such as blood glucose, reduction of cell proliferation and neuroblast differentiation in the dentate gyrus using Ki67 and doublecortin (DCX), respectively. Mice were fed a commercially available low-fat diet (LFD) as control diet or HFD (60% fat) for 8 weeks. After 5 weeks of LFD or HFD treatment, 350 mg/kg pyridoxine was administered for 3 weeks. The administration of pyridoxine significantly decreased body weight in the HFD-treated group. In addition, there were no significant differences in hepatic histology and pancreatic insulin-immunoreactive (-ir) and glucagon-ir cells of the HFD-treated group after pyridoxine treatment. In the HFD-fed group, Ki67-positive nuclei and DCX-ir neuroblasts were significantly decreased in the dentate gyrus compared with those in the LFD-fed mice. However, the administration of pyridoxine significantly increased Ki67-positive nuclei and DCX-ir neuroblasts in the dentate gyrus in both LFD- and HFD-fed mice. In addition, the administration of pyridoxine significantly increased the protein levels of glutamic acid decarboxylase 67 (GAD67) and brain-derived neurotrophic factor (BDNF) and the immunoreactivity of phosphorylated cyclic AMP response element binding protein (pCREB) compared with the vehicle-treated LFD- and HFD-fed mice. In contrast, the administration of pyridoxine significantly decreased HFD-induced malondialdehyde (MDA) levels in the hippocampus. These results showed that pyridoxine supplement reduced the HFD-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus via controlling the levels of GAD67, pCREB, BDNF, and MDA.

  16. Assessment of the Role of NO-cGMP Pathway in Orthodontic Tooth Movement Using PDE5 Inhibitors: An Animal Study

    Science.gov (United States)

    Mirhashemi, Amir Hossein; Akhoundi, Mohammad Sadegh Ahmad; Ghazanfari, Rezvaneh; Etemad-Moghadam, Shahroo; Alaeddini, Mojgan; Khorshidian, Azam; Dehpour, Ahmad Reza

    2016-01-01

    Objectives: Nitric oxide (NO) is a signaling molecule that mediates mechanical bone loading. Cyclic guanosine 3′, 5′ monophosphate (cGMP) is a NO-induced effector molecule. The aim of this study was to assess the effect of NO-cGMP pathway on orthodontic tooth movement (OTM) in rats by use of two phosphodiesterase 5 (PDE5) inhibitors namely sildenafil and tadalafil as chemical tools. Materials and Methods: Forty-five male Wistar rats were divided into three equal groups (n=15) based on the substance they received. The first group received daily injections of tadalafil; the second group received daily injections of sildenafil and the third group received daily injections of normal saline. The orthodontic appliances consisted of nickel-titanium closed-coil spring ligated between the maxillary right incisor and the first molar of the animals for 21 days. The amount of tooth movement was measured in all three groups at the end of this period. Histological analysis was performed to assess root resorption lacunae, osteoclast number and periodontal ligament (PDL) thickness. Results: All appliance-treated molars in the experimental and control groups showed evidence of tooth movement. The mean OTM was calculated to be 0.39±0.16, 0.32±0.16 and 0.26±0.16mm in tadalafil, sildenafil and control groups, respectively and there were no significant differences in OTM among the study groups (P>0.05). In the tadalafil group, significantly greater root resorption on the tension side was seen when compared with controls (P≤0.05). Conclusions: Tadalafil and sildenafil PDE-5 inhibitors affecting the NO-cGMP pathway did not affect OTM in rats.

  17. Effects of hydrazine derivatives on vascular smooth muscle contractility, blood pressure and cGMP production in rats: comparison with hydralazine.

    Science.gov (United States)

    Vidrio, Horacio; Fernández, Gabriela; Medina, Martha; Alvarez, Ezequiel; Orallo, Francisco

    2003-01-01

    Hydralazine is a hydrazine derivative used clinically as a vasodilator and antihypertensive agent. Despite numerous studies with the drug, its mechanism of action has remained unknown; guanylate cyclase activation and release of endothelial relaxing factors are thought to be involved in its vasodilator effect. Other hydrazine derivatives are known to stimulate guanylate cyclase and could therefore share the vasodilator activity of hydralazine, although such possibility has not been assessed systematically. In the present study, hydralazine, hydrazine, phenylhydrazine, and isoniazid were evaluated for vascular smooth muscle relaxation in rat aortic rings with and without endothelium, as well as after incubation with the guanylate cyclase inhibitor methylene blue. They were also tested for enhancement of cyclic guanosine monophosphate (cGMP) production by cultured rat aortic smooth muscle cells and for hypotension in the anesthetized rat. All hydrazines relaxed aortic rings, an action unaffected by endothelium removal and, in all cases except hydralazine, antagonized by methylene blue. Only phenylhydrazine increased cGMP production and only hydralazine markedly lowered blood pressure. It was concluded that hydralazine vascular relaxation is independent of endothelium and is not related to guanylate cyclase activation. The other hydrazines studied also elicit endothelium-independent relaxation, but the effect is related to guanylate cyclase. The marked hypotensive effect of hydralazine contrasts with its modest relaxant activity and is not shared by the other hydrazines. The fact that hydrazine and isoniazid produce methylene blue-sensitive relaxation, yet do not enhance cGMP production suggests the need for activating factors present in aortic rings but not in isolated cells.

  18. Identification of cholinergic and non-cholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep.

    Science.gov (United States)

    Datta, S; Siwek, D F; Stack, E C

    2009-09-29

    Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. The results demonstrated that during high rapid eye movement sleep (HR, approximately 27%), significantly higher numbers of cells expressed pCREB and c-Fos in the PPT, of which 95% of pCREB-expressing cells were ChAT-positive. With HR, the numbers of pCREB-positive cells were also significantly higher in the medial pontine reticular formation (mPRF), pontine reticular nucleus oral (PnO), and dorsal subcoeruleus nucleus (SubCD) but very few in the locus coeruleus (LC) and dorsal raphe nucleus (DRN). Conversely, with low rapid eye movement sleep (LR, approximately 2%), the numbers of pCREB expressing cells were very few in the PPT, mPRF, PnO, and SubCD but significantly higher in the LC and DRN. The results of regression analyses revealed significant positive relationships between the total percentages of REM sleep and numbers of ChAT+/pCREB+ (Rsqr=0.98) cells in the PPT and pCREB+ cells in the mPRF (Rsqr=0.88), PnO (Rsqr=0.87), and SubCD (Rsqr=0.84); whereas significantly negative relationships were associated with the pCREB+ cells in the LC (Rsqr=0.70) and DRN (Rsqr=0.60). These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are

  19. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.

    Science.gov (United States)

    Martinelli, Leonardo Krás Borges; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Breda, Ardala; Selbach, Bruna Pelegrim; Santos, Diógenes Santiago; Basso, Luiz Augusto

    2011-04-01

    Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.

  20. Cyclic nucleotide responses and radiation-induced mitotic delay in Physarum polycephalum

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, J.W.; Oleinick, N.L.

    1984-02-01

    The response of the plasmodial levels of cyclic AMP and cyclic GMP in Physarum polycephalum to several putative phosphodiesterase inhibitors and to ionizing radiation has been measured. Isobutylmethylxanthine (2 mM) induces a rapid transient threefold elevation of cyclic AMP alone, with maximum response in about 10 min and return to the base line in about 30 min. Theophylline (2 mM) induces a rapid, sustained twofold elevation of cyclic GMP only. Caffeine (2mM) and Ro-20-1724 (18 ..mu..M) both elicit a rapid transient rise in cyclic AMP, resembling the isobutylmethylxanthine response, and a slow transient elevation of the cyclic GMP level. Of particular interest is the rapid threefold transient elevation of the cyclic AMP, but not of the cyclic GMP, level by ..gamma.. radiation.

  1. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications.

    Science.gov (United States)

    Ryu, Min-Hyung; Gomelsky, Mark

    2014-11-21

    Enormous potential of cell-based therapeutics is hindered by the lack of effective means to control genetically engineered cells in mammalian tissues. Here, we describe a synthetic module for remote photocontrol of engineered cells that can be adapted for such applications. The module involves photoactivated synthesis of cyclic dimeric GMP (c-di-GMP), a stable small molecule that is not produced by higher eukaryotes and therefore is suitable for orthogonal regulation. The key component of the photocontrol module is an engineered bacteriophytochrome diguanylate cyclase, which synthesizes c-di-GMP from GTP in a light-dependent manner. Bacteriophytochromes are particularly attractive photoreceptors because they respond to light in the near-infrared window of the spectrum, where absorption by mammalian tissues is minimal, and also because their chromophore, biliverdin IXα, is naturally available in mammalian cells. The second component of the photocontrol module, a c-di-GMP phosphodiesterase, maintains near-zero background levels of c-di-GMP in the absence of light, which enhances the photodynamic range of c-di-GMP concentrations. In the E. coli model used in this study, the intracellular c-di-GMP levels could be upregulated by light by >50-fold. Various c-di-GMP-responsive proteins and riboswitches identified in bacteria can be linked downstream of the c-di-GMP-mediated photocontrol module for orthogonal regulation of biological activities in mammals as well as in other organisms lacking c-di-GMP signaling. Here, we linked the photocontrol module to a gene expression output via a c-di-GMP-responsive transcription factor and achieved a 40-fold photoactivation of gene expression.

  2. 外源性单磷酸鸟苷环二聚体抑制变形链球菌生物膜的形成能力%Inhibitory effect of exogenous bis-(3'-5')-cyclic dimeric guanosine monophosphate on the biofilm formation of Streptococcus mutans

    Institute of Scientific and Technical Information of China (English)

    闫文娟

    2012-01-01

    背景:有研究发现外源性的单磷酸鸟苷环二聚体(bis-(3'-5')-cyclic dimeric guanosinemonophosphate,c-di-GMP)能够抑制金黄色葡萄球菌生物膜的形成,且作用呈剂量依赖性.目的:观察外源性c-di-GMP对变形链球菌生物膜形成能力的影响.方法:将不同浓度(0,2,20,200,400 μmol/L)外源性c-di-GMP作用于变形链球菌生物膜48 h,使用酶标仪测定吸光度值,观测生物膜形成量的改变,以生理盐水作为阴性对照.同时在离体牙的新鲜釉质片上形成变形链球菌生物膜,以 200 μmol/L的c-di-GMP与生理盐水分别作用于生物膜48 h,扫描电镜观察结构的改变.结果与结论:与阴性对照组比较,c-di-GMP明显抑制了变形链球菌生物膜的形成,而且这种抑制成剂量依赖关系,当c-di-GMP浓度为200 μmol/L时,变形链球菌生物膜的形成能力下降了65%左右,达到400 μmol/L时,生物膜的形成能力几乎被完全抑制(P < 0.05).扫描电镜结果显示,c-di-GMP处理组细菌排列无明显规律,细胞外基质减少.表明c-di-GMP可以抑制变形链球菌的生物膜形成能力.

  3. c-di-GMP induction of Dictyostelium cell death requires the polyketide DIF-1.

    Science.gov (United States)

    Song, Yu; Luciani, Marie-Françoise; Giusti, Corinne; Golstein, Pierre

    2015-02-15

    Cell death in the model organism Dictyostelium, as studied in monolayers in vitro, can be induced by the polyketide DIF-1 or by the cyclical dinucleotide c-di-GMP. c-di-GMP, a universal bacterial second messenger, can trigger innate immunity in bacterially infected animal cells and is involved in developmental cell death in Dictyostelium. We show here that c-di-GMP was not sufficient to induce cell death in Dictyostelium cell monolayers. Unexpectedly, it also required the DIF-1 polyketide. The latter could be exogenous, as revealed by a telling synergy between c-di-GMP and DIF-1. The required DIF-1 polyketide could also be endogenous, as shown by the inability of c-di-GMP to induce cell death in Dictyostelium HMX44A cells and DH1 cells upon pharmacological or genetic inhibition of DIF-1 biosynthesis. In these cases, c-di-GMP-induced cell death was rescued by complementation with exogenous DIF-1. Taken together, these results demonstrated that c-di-GMP could trigger cell death in Dictyostelium only in the presence of the DIF-1 polyketide or its metabolites. This identified another element of control to this cell death and perhaps also to c-di-GMP effects in other situations and organisms.

  4. Ratiometric fluorescence detection of superoxide anion based on AuNPs-BSA@Tb/GMP nanoscale coordination polymers.

    Science.gov (United States)

    Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai

    2017-08-03

    A novel ratiometric fluorescence nanosensor for superoxide anion (O2(•-) ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb(3+) and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O2(•-) . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O2(•-) demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.

  5. REM sleep deprivation induces endothelial dysfunction and hypertension in middle-aged rats: Roles of the eNOS/NO/cGMP pathway and supplementation with L-arginine.

    Science.gov (United States)

    Jiang, Jiaye; Gan, Zhongyuan; Li, Yuan; Zhao, Wenqi; Li, Hanqing; Zheng, Jian-Pu; Ke, Yan

    2017-01-01

    Sleep loss can induce or aggravate the development of cardiovascular and cerebrovascular diseases. However, the molecular mechanism underlying this phenomenon is poorly understood. The present study was designed to investigate the effects of REM sleep deprivation on blood pressure in rats and the underlying mechanisms of these effects. After Sprague-Dawley rats were subjected to REM sleep deprivation for 5 days, their blood pressures and endothelial function were measured. In addition, one group of rats was given continuous access to L-arginine supplementation (2% in distilled water) for the 5 days before and the 5 days of REM sleep deprivation to reverse sleep deprivation-induced pathological changes. The results showed that REM sleep deprivation decreased body weight, increased blood pressure, and impaired endothelial function of the aortas in middle-aged rats but not young rats. Moreover, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) concentrations as well as endothelial NO synthase (eNOS) phosphorylation in the aorta were decreased by REM sleep deprivation. Supplementation with L-arginine could protect against REM sleep deprivation-induced hypertension, endothelial dysfunction, and damage to the eNOS/NO/cGMP signaling pathway. The results of the present study suggested that REM sleep deprivation caused endothelial dysfunction and hypertension in middle-aged rats via the eNOS/NO/cGMP pathway and that these pathological changes could be inhibited via L-arginine supplementation. The present study provides a new strategy to inhibit the signaling pathways involved in insomnia-induced or insomnia-enhanced cardiovascular diseases.

  6. The involvement of NMDA receptor/NO/cGMP pathway in the antidepressant like effects of baclofen in mouse force swimming test.

    Science.gov (United States)

    Khan, Muhammad Imran; Ostadhadi, Sattar; Zolfaghari, Samira; Ejtemaei Mehr, Shahram; Hassanzadeh, Gholamreza; Dehpour, Ahmad-Reza

    2016-01-26

    In the current study, the involvement of N-methyl-d-aspartate receptor (NMDAR) and nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) system in the antidepressant-like effects of baclofen was evaluated by using animal model in forced swimming test. Followed by an open field test for the evaluation of locomotor activity, the immobility time for mice in force swimming test was recorded. Only the last four min was analyzed. Administration of Baclofen (0.5 and 1mg/kg, i.p.) reduced the immobility interval in the FST. Prior administration of l-arginine (750mg/kg, i.p.,) a nitric oxide synthase substrate or sildenafil (5mg/kg, i.p.) a phosphodiesterase 5 into mice suppressed the antidepressant-like activity of baclofen (1mg/kg, i.p.).Co-treatment of 7-nitroindazole (50mg/kg, i.p.,) an inhibitor of neuronal nitric oxide synthase, L-NAME (10mg/kg, i.p.,) a non-specific inhibitor of nitric oxide synthase or MK-801 (0.05mg/kg, i.p.) an NMDA receptor antagonist with subeffective dose of baclofen (0.1mg/kg, i.p.), reduced the immobility time in the FST as compared to the drugs when used alone. Co-administrated of lower doses of MK-801 (0.01mg/kg) or l-NAME (1mg/kg) failed to effect immobility time however, simultaneous administration of these two agents in same dose with subeffective dose of baclofen (0.1mg/kg, i.p.), minimized the immobility time in the FST. Thus, our results support the role of NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant-like action of baclofen.

  7. 牙龈卟啉单胞菌合成环二腺苷酸的高效液相色谱-串联质谱法定性分析%Qualitative analysis of bis-(3’-5’)-cyclic dimeric adenosine monophosphate ofPorphyromonas gingivalis by high per-formance liquid chromatography coupled with mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    谭咏梅; 杨小军; 杜娟; 赵望泓; 陈晓丹; 侯晋

    2016-01-01

    目的:定性检测牙龈卟啉单胞菌(P. gingivalis)是否能产生细菌信号分子环二腺苷酸(c-di-AMP),为探索其在P. gingivalis生命代谢以及牙周炎免疫中的作用奠定基础。方法以P. gingivalis标准菌株ATCC33277为实验菌株,抽提细菌内核酸物质作为样品,配置c-di-AMP标准品,通过高效液相色谱-串联质谱法(HPLC-MS/MS)和高效液相色谱法(HPLC)对样品进行验证。结果 HPLC-MS/MS检出限按照信噪比(S/N)3∶1计算,c-di-AMP标准品出峰的保留时间为7.49 min,P. gingivalis提取物样品在保留时间为8.82 min时有目标峰出现(大于3 S/N)。HPLC检测结果表明,P. gingivalis核酸提取物样品及c-di-AMP标准品均在15.7 min处出现目标峰,且二者的紫外吸收光谱相同。结论牙龈卟啉单胞菌核酸提取物中含有c-di-AMP,牙龈卟啉单胞菌可以合成产生c-di-AMP。%Objective To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3’-5’)-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. Methods P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Results Based on the signal/noise (S/N) for 3∶1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N>3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances presented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. Conclusion The nucleic

  8. Intimal Hyperplasia in Balloon Dilated Coronary Arteries is Reduced by Local Delivery of the NO Donor, SIN-1 Via a cGMP-Dependent Pathway

    Directory of Open Access Journals (Sweden)

    Arner Anders

    2011-06-01

    Full Text Available Abstract Background To elucidate the mechanism by which local delivery of 3-morpholino-sydnonimine (SIN-1 affects intimal hyperplasia after percutaneous transluminal coronary angioplasty (PTCA. Methods Porcine coronary arteries were treated with PTCA and immediately afterwards locally treated for 5 minutes, with a selective cytosolic guanylate cyclase inhibitor, 1 H-(1,2,4oxadiazole(4,3-alphaquinoxaline-1-one (ODQ + SIN-1 or only SIN-1 using a drug delivery-balloon. Arteries were angiographically depicted, morphologically evaluated and analyzed after one and eight weeks for actin, myosin and intermediate filaments (IF and nitric oxide synthase (NOS contents. Results Luminal diameter after PCI in arteries treated with SIN-1 alone and corrected for age-growth was significantly larger as compared to ODQ + SIN-1 or to controls (p Conclusions After PTCA local delivery of high concentrations of the NO donor SIN-1 for 5 minutes inhibited injury induced neointimal hyperplasia. This favorable effect was abolished by inhibition of guanylyl cyclase indicating mediation of a cyclic guanosine 3',5'-monophosphate (cGMP-dependent pathway. The momentary events at the time of injury play crucial role in the ensuring development of intimal hyperplasia.

  9. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling.

    Science.gov (United States)

    Pécastaings, Sophie; Allombert, Julie; Lajoie, Barbora; Doublet, Patricia; Roques, Christine; Vianney, Anne

    2016-09-01

    The waterborne pathogen Legionella pneumophila grows as a biofilm, freely or inside amoebae. Cyclic-di-GMP (c-di-GMP), a bacterial second messenger frequently implicated in biofilm formation, is synthesized and degraded by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs), respectively. To characterize the c-di-GMP-metabolizing enzymes involved in L. pneumophila biofilm regulation, the consequences on biofilm formation and the c-di-GMP concentration of each corresponding gene inactivation were assessed in the Lens strain. The results showed that one DGC and two PDEs enhance different aspects of biofilm formation, while two proteins with dual activity (DGC/PDE) inhibit biofilm growth. Surprisingly, only two mutants exhibited a change in global c-di-GMP concentration. This study highlights that specific c-di-GMP pathways control L. pneumophila biofilm formation, most likely via temporary and/or local modulation of c-di-GMP concentration. Furthermore, Lpl1054 DGC is required to enable the formation a dense biofilm in response to nitric oxide, a signal for biofilm dispersion in many other species.

  10. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites.

    Science.gov (United States)

    Liang, Zhao-Xun

    2015-05-01

    The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.

  11. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels.

    Science.gov (United States)

    Boone-Villa, Daniel; Aguilera-Méndez, Asdrubal; Miranda-Cervantes, Adriana; Fernandez-Mejia, Cristina

    2015-10-01

    Several studies have shown that pharmacological concentrations of biotin decrease hyperlipidemia. The molecular mechanisms by which pharmacological concentrations of biotin modify lipid metabolism are largely unknown. Adipose tissue plays a central role in lipid homeostasis. In the present study, we analyzed the effects of biotin supplementation in adipose tissue on signaling pathways and critical proteins that regulate lipid metabolism, as well as on lipolysis. In addition, we assessed serum fatty acid concentrations. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (control: 1.76 mg biotin/kg; supplemented: 97.7 mg biotin/kg diet) over 8 weeks postweaning. Compared with the control group, biotin-supplemented mice showed an increase in the levels of adipose guanosine 3',5'-cyclic monophosphate (cGMP) (control: 30.3±3.27 pmol/g wet tissue; supplemented: 49.5±3.44 pmol/g wet tissue) and of phosphorylated forms of adenosine 5'-monophosphate-activated protein kinase (AMPK; 65.2%±1.06%), acetyl-coenzyme A (CoA), carboxylase-1 (196%±68%), and acetyl-CoA carboxylase-2 (78.1%±18%). Serum fatty acid concentrations were decreased (control: 1.12±0.04 mM; supplemented: 0.91±0.03 mM), and no change in lipolysis was found (control: 0.29±0.05 μmol/mL; supplemented: 0.33±0.08 μmol/mL). In conclusion, 8 weeks of dietary biotin supplementation increased adipose tissue cGMP content and protein expression of the active form of AMPK and of the inactive forms of acetyl-CoA carboxylase-1 and acetyl-CoA carboxylase-2. Serum fatty acid levels fell, and no change in lipolysis was observed. These findings provide insight into the effects of biotin supplementation on adipose tissue and support its use in the treatment of dyslipidemia.

  12. Human taste and umami receptor responses to chemosensorica generated by Maillard-type N²-alkyl- and N²-arylthiomethylation of guanosine 5'-monophosphates.

    Science.gov (United States)

    Suess, Barbara; Brockhoff, Anne; Degenhardt, Andreas; Billmayer, Sylvia; Meyerhof, Wolfgang; Hofmann, Thomas

    2014-11-26

    Structural modification of the exocyclic amino function of guanosine 5'-monophosphate (5'-GMP) by Maillard-type reactions with reducing carbohydrates was recently found to increase the umami-enhancing activity of the nucleotide upon S-N(2)-1-carboxyalkylation and S-N(2)-(1-alkylamino)carbonylalkylation, respectively. Since the presence of sulfur atoms in synthetic N(2)-alkylated nucleotides was reported to be beneficial for sensory activity, a versatile Maillard-type modification of 5'-GMP upon reaction with glycine's Strecker aldehyde formaldehyde and organic thiols was performed in the present study. A series of N(2)-(alkylthiomethyl)guanosine and N(2)-(arylthiomethyl)guanosine 5'-monophosphates was generated and the compounds were evaluated to what extent they enhance the umami response to monosodium L-glutamate in vivo by a paired-choice comparison test using trained human volunteers and in vitro by means of cell-based umami taste receptor assay. Associated with a high umami-enhancing activity (β-value 5.1), N(2)-(propylthiomethyl)guanosine 5'-monophosphate could be generated when 5'-GMP reacted with glucose, glycine, and the onion-derived odorant 1-propanethiol, thus opening a valuable avenue to produce high-potency umami-enhancing chemosensorica from food-derived natural products by kitchen-type chemistry.

  13. Optogenetic Module for Dichromatic Control of c-di-GMP Signaling.

    Science.gov (United States)

    Ryu, Min-Hyung; Fomicheva, Anastasia; Moskvin, Oleg V; Gomelsky, Mark

    2017-09-15

    Many aspects of bacterial physiology and behavior, including motility, surface attachment, and the cell cycle, are controlled by cyclic di-GMP (c-di-GMP)-dependent signaling pathways on the scale of seconds to minutes. Interrogation of such processes in real time requires tools for introducing rapid and reversible changes in intracellular c-di-GMP levels. Inducing the expression of genes encoding c-di-GMP-synthetic (diguanylate cyclases) and -degrading (c-di-GMP phosphodiesterase) enzymes by chemicals may not provide adequate temporal control. In contrast, light-controlled diguanylate cyclases and phosphodiesterases can be quickly activated and inactivated. A red/near-infrared-light-regulated diguanylate cyclase, BphS, was engineered previously, yet a complementary light-activated c-di-GMP phosphodiesterase has been lacking. In search of such a phosphodiesterase, we investigated two homologous proteins from Allochromatium vinosum and Magnetococcus marinus, designated BldP, which contain C-terminal EAL-BLUF modules, where EAL is a c-di-GMP phosphodiesterase domain and BLUF is a blue light sensory domain. Characterization of the BldP proteins in Escherichia coli and in vitro showed that they possess light-activated c-di-GMP phosphodiesterase activities. Interestingly, light activation in both enzymes was dependent on oxygen levels. The truncated EAL-BLUF fragment from A. vinosum BldP lacked phosphodiesterase activity, whereas a similar fragment from M. marinus BldP, designated EB1, possessed such activity that was highly (>30-fold) upregulated by light. Following light withdrawal, EB1 reverted to the inactive ground state with a half-life of ∼6 min. Therefore, the blue-light-activated phosphodiesterase EB1 can be used in combination with the red/near-infrared-light-regulated diguanylate cyclase BphS for the bidirectional regulation of c-di-GMP-dependent processes in E. coli as well as other bacterial and nonbacterial cells.IMPORTANCE Regulation of motility

  14. Identification and characterization of DdPDE3, a cGMP-selective phosphodiesterase from Dictyostelium

    NARCIS (Netherlands)

    Kuwayama, H; Snippe, H; Derks, M; Roelofs, J; van Haastert, PJM

    2001-01-01

    In Dictyostelium cAMP and cGMP have important functions as first and second messengers in chemotaxis and development. Two cyclic-nucleotide phosphodiesterases (DdPDE 1 and 2) have been identified previously, an extracellular dual-specificity enzyme and an intracellular cAMP-specific enzyme (encoded

  15. Cyclic nucleotides of canine antral smooth muscle. Effects of acetylcholine, catecholamines and gastrin.

    Science.gov (United States)

    Baur, S; Grant, B; Wooton, J

    1981-01-01

    1. The effects of acetylcholine, catecholamines and gastrin on the intracellular content of cyclic AMP and cyclic GMP in antral circular muscle have been determined. 2. Acetylcholine results in a significant but transient increase in intracellular cyclic GMP. 3. Isoproterenol and norepinephrine increase intracellular cyclic AMP. Based on half-maximal effective doses, isoproterenol is 2.7-times more effective than norepinephrine. The increase in intracellular cyclic AMP by both agents is inhibited by propranolol but not phentolamine, indicating that both agents act on the muscle cell by a beta-receptor-coupled mechanism. 4. Gastrin has no demonstrable effect on either cyclic AMP or cyclic GMP. This suggests that while gastrin and acetylcholine can produce a like myoelectric response in the muscle cell, the action of gastrin is mediated by a separate receptor, presumably on the muscle cell, and not by a release of acetylcholine.

  16. Identification and Localization of the Cyclic Nucleotide Phosphodiesterase 10A in Bovine Testis and Mature Spermatozoa

    Science.gov (United States)

    Goupil, Serge; Maréchal, Loïze; El Hajj, Hassan; Tremblay, Marie-Ève; Richard, François J.

    2016-01-01

    In mammals, adenosine 3’, 5’-cyclic monophosphate (cAMP) is known to play highly important roles in sperm motility and acrosomal exocytosis. It is known to act through protein phosphorylation via PRKA and through the activation of guanine nucleotide exchange factors like EPAC. Sperm intracellular cAMP levels depend on the activity of adenylyl cyclases, mostly SACY, though transmembrane-containing adenylyl cyclases are also present, and on the activity of cyclic nucleotide phosphodiesterases (PDE) whose role is to degrade cAMP into 5’-AMP. The PDE superfamily is subdivided into 11 families (PDE1 to 11), which act on either cAMP or cGMP, or on both cAMP and cGMP although with different enzymatic properties. PDE10, which is more effective on cAMP than cGMP, has been known for almost 15 years and is mostly studied in the brain where it is associated with neurological disorders. Although a high level of PDE10A gene expression is observed in the testis, information on the identity of the isoforms or on the cell type that express the PDE10 protein is lacking. The objective of this study was to identify the PDE10A isoforms expressed in the testis and germ cells, and to determine the presence and localization of PDE10A in mature spermatozoa. As a sub-objective, since PDE10A transcript variants were reported strictly through analyses of bovine genomic sequence, we also wanted to determine the nucleotide and amino acid sequences by experimental evidence. Using RT-PCR, 5’- and 3’-RACE approaches we clearly show that PDE10A transcript variants X3 and X5 are expressed in bovine testis as well as in primary spermatocytes and spermatids. We also reveal using a combination of immunological techniques and proteomics analytical tools that the PDE10A isoform X4 is present in the area of the developing acrosome of spermatids and of the acrosome of mature spermatozoa. PMID:27548062

  17. Systemic induction of NO-, redox- and cGMP signalling in the pumpkin extrafascicular phloem upon local leaf wounding

    Directory of Open Access Journals (Sweden)

    Frank eGaupels

    2016-02-01

    Full Text Available Cucurbits developed the unique extrafascicular phloem (EFP as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima. Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint towards a wound-induced shift in the redox status of the EFP. Nitric oxide (NO is another important player in stress-induced redox signalling in plants. Therefore, we analysed NO-dependent protein modifications in the EFP. Six to 48 h after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1 and Cyclophilin 18 (CYP18 as well as the 26.5 kD isoform of Phloem Protein 2 (PP2 were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP in the EFP and discuss the possible function of this second messenger in systemic NO and redox signalling within the EFP.

  18. SiaA/D Interconnects c-di-GMP and RsmA Signaling to Coordinate Cellular Aggregation of Pseudomonas aeruginosa in Response to Environmental Conditions.

    Science.gov (United States)

    Colley, Brendan; Dederer, Verena; Carnell, Michael; Kjelleberg, Staffan; Rice, Scott A; Klebensberger, Janosch

    2016-01-01

    Pseudomonas aeruginosa has emerged as an important opportunistic human pathogen that is often highly resistant to eradication strategies, mediated in part by the formation of multicellular aggregates. Cellular aggregates may occur attached to a surface (biofilm), at the air-liquid interface (pellicle), or as suspended aggregates. Compared to surface attached communities, knowledge about the regulatory processes involved in the formation of suspended cell aggregates is still limited. We have recently described the SiaA/D signal transduction module that regulates macroscopic cell aggregation during growth with, or in the presence of the surfactant SDS. Targets for SiaA/D mediated regulation include the Psl polysaccharide, the CdrAB two-partner secretion system and the CupA fimbriae. While the global regulators c-di-GMP and RsmA are known to inversely coordinate cell aggregation and regulate the expression of several adhesins, their potential impact on the expression of the cupA operon remains unknown. Here, we investigated the function of SiaA (a putative ser/thr phosphatase) and SiaD (a di-guanylate cyclase) in cupA1 expression using transcriptional reporter fusions and qRT-PCR. These studies revealed a novel interaction between the RsmA posttranscriptional regulatory system and SiaA/D mediated macroscopic aggregation. The RsmA/rsmY/Z system was found to affect macroscopic aggregate formation in the presence of surfactant by impacting the stability of the cupA1 mRNA transcript and we reveal that RsmA directly binds to the cupA1 leader sequence in vitro. We further identified that transcription of the RsmA antagonist rsmZ is controlled in a SiaA/D dependent manner during growth with SDS. Finally, we found that the siaD transcript is also under regulatory control of RsmA and that overproduction of RsmA or the deletion of siaD results in decreased cellular cyclic di-guanosine monophosphate (c-di-GMP) levels quantified by a transcriptional reporter, demonstrating that

  19. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway.

    Science.gov (United States)

    Ostadhadi, Sattar; Imran Khan, Muhammad; Norouzi-Javidan, Abbas; Dehpour, Ahmad-Reza

    2016-07-01

    Pramipexole is a dopamine D2 receptor agonist indicated for treating Parkinson disorder. This study was aimed to investigate the effect of pramipexole in forced swimming test (FST) in mice and the possible involvement of activation of D2 receptors and inhibition of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) on this effect. Intraperitoneal administration of pramipexole (1-3mg/kg) reduced the immobility time in the FST similar to fluoxetine (20mg/kg, i.p.). This effect of pramipexole (1mg/kg, i.p.) was ceased when mice were pretreated with haloperidol (0.15mg/kg, i.p,) and sulpiride (5mg/kg, i.p) as D2 receptor antagonists, NMDA (75mg/kg,i.p.), l-arginine (750mg/kg, i.p., a substrate for nitric oxide synthase) or sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor). The administration of MK-801 (0.05mg/kg, i.p., a NMDA receptor antagonist) l-NG-Nitro arginine methyl ester (l-NAME, 10mg/kg, i.p., a non-specific nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (30mg/kg, i.p., a neuronal NOS inhibitor) and methylene blue (10mg/kg, i.p.), an inhibitor of both NOS and soluble guanylyl cyclase (sGC) in combination with the sub-effective dose of pramipexole (0.3mg/kg, i.p.) reduced the immobility. Altogether, our data suggest that the antidepressant-like effect of pramipexole is dependent on the activation of D2 receptor and inhibition of either NMDA receptors and/or NO-cGMP synthesis. These results contribute to the understanding of the mechanisms underlying the antidepressant-like effect of pramipexole and reinforce the role of D2 receptors, NMDA receptors and l-arginine-NO-GMP pathway in the antidepressant mechanism of this agent.

  20. Effect of swimming training on spatial learning-memory function of rats and its relationship with cAMP and cGMP in hippocampus and prefrontal cortex%游泳训练对大鼠空间学习记忆能力与海马、前额叶皮质环磷酸腺苷、环磷酸鸟苷水平的影响

    Institute of Scientific and Technical Information of China (English)

    谢敏; 徐波; 王泽军

    2009-01-01

    目的:探讨8周游泳训练对大鼠空间学习记忆能力的影响与环磷酸腺苷(cAMP)、环磷酸鸟苷(cGMP)信号传导途径的关系.方法:以大鼠为实验对象,采用Morris水迷官法,研究8周游泳训练对大鼠空间学习记忆能力的作用;采用放射免疫法测定研究8周游泳训练对大鼠海马、前额叶皮质中cGMP、cAMP含量的影响.结果:①Morris水迷宫的测试表明,8周游泳训练后,大鼠的空间记忆能力有一定提高.②与安静组相比,8周游泳训练使大鼠海马cAMP水平非常显著性增加(P<0.01),cAMP/cGMP比值显著性增高(P<0.05),同时,前额叶皮质cAMP与cAMP/cGMP比值显著性增高(P<0.05).结论:8周的游泳训练在提高大鼠空间学习记忆能力的同时伴有海马、前额叶皮质cAMP含量与cAMP/cGMP比值的变化,从而部分揭示了运动促进学习记忆能力提高的可能机制.%Objective: To analyze the influence of long-term swimming training on spatial learning-memory in rats and its relationship with cyclic adenosine monophosphate(cAMP) and cyclic guanosine monophosphate(cGMP) signal transduction pathway. Method: After 3 times adaptable swimming exercises (30min each time), 40 male SD rats were divided into 2 groups: control group (CR, n=20) and exercises, group (TR, n=20). CR group didn't swim, and TR group swam without burden (6 times/week, 60 min each time). After 8 weeks training, 10 rats were selected from both groups respectively for examing of Morris water maze test. Radioimmunoassay was used to measure the levels of cAMP and cGMP in hippocampus and prefrontal cortex of rats. Result: ①Compared with CR group, in TR group learning-memory improved in a certain extent: ②Compared with CR group, in TR group, the level of cAMP in hippocampus enhanced very obviously (P<0.01), the cAMP/cGMP ratio enhanced obviously (P<0.05); in prefrontal cortex the levels of cAMP and cAMP/cGMP ratio enhanced obviously (P<0.05). Conclusion: Swimming

  1. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Alexandra M.; Piazza, Gary A. [Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Ave, Suite 3029, Mobile, AL 36604 (United States); Tinsley, Heather N., E-mail: htinsley@montevallo.edu [Department of Biology, Chemistry, and Mathematics, University of Montevallo, Station 6480, Montevallo, AL 35115 (United States)

    2014-02-26

    For more than four decades, the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) have been recognized as important signaling molecules within cells. Under normal physiological conditions, cyclic nucleotides regulate a myriad of biological processes such as cell growth and adhesion, energy homeostasis, neuronal signaling, and muscle relaxation. In addition, altered cyclic nucleotide signaling has been observed in a number of pathophysiological conditions, including cancer. While the distinct molecular alterations responsible for these effects vary depending on the specific cancer type, several studies have demonstrated that activation of cyclic nucleotide signaling through one of three mechanisms—induction of cyclic nucleotide synthesis, inhibition of cyclic nucleotide degradation, or activation of cyclic nucleotide receptors—is sufficient to inhibit proliferation and activate apoptosis in many types of cancer cells. These findings suggest that targeting cyclic nucleotide signaling can provide a strategy for the discovery of novel agents for the prevention and/or treatment of selected cancers.

  2. Role of dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein in neuronal signal transmission and integration%多巴胺和环磷酸腺苷调节的磷酸蛋白在神经元信号传递及整合中的地位

    Institute of Scientific and Technical Information of China (English)

    刘凤莲

    2005-01-01

    目的:阐明多巴胺和环磷酸腺苷调节的磷酸蛋白在神经元信号传递及整合中的中心作用,为神经系统疾病的治疗和功能恢复提供基础研究的假说理论.资料来源:应用计算机检索Medline数据库1980-01/2004-12的相关文献,检索词为"DARPP-32"和"role',限定文章语言种类为英文.同时计算机检索中国期刊全文数据库和万方数据库1980-01/2004-12的相关文献,检索词为"磷酸蛋白,作用",限定文章种类为中文.资料选择:对所选择的98篇资料进行初审,选取与目的有直接关系的文章,纳入标准:①随机对照试验.②专著中的章节.排除重复性研究和Meta分析.资料提炼:共收集到29篇关于多巴胺和环磷酸腺苷调节的磷酸蛋白的研究原著、综述和书籍文献.根据其相应的结果和讨论进行资料概括、综合和提炼.资料综合:①ARPP-32蛋白是脑内新纹状体等重要核团的神经元内存在的一种具有多方面信息调节与整合作用的蛋白质.②多巴胺、谷氨酸等神经递质与相应受体结合后,使多巴胺和环磷酸腺苷调节的磷酸蛋白的34-苏氨酸等磷酸化状态发生改变,继之影响磷酸酯酶Ⅰ、磷酸酯酶2B等重要磷酸酯酶的活性,从而使神经元内从各种途径获取的信息得以整合,神经元的生理功能及其控制的行为发生改变.③多巴胺和环磷酸腺苷调节的磷酸蛋白的功能与多种神经递质及其受体密切相关.④多巴胺和环磷酸腺苷调节的磷酸蛋白的功能可用基因敲除技术进行探究.结论:多巴胺和环磷酸腺苷调节的磷酸蛋白在复杂的神经元信号传递和整合过程中居于中心位置.对多巴胺和环磷酸腺苷调节的磷酸蛋白的研究也将为神经系统疾病如帕金森症、亨廷顿症、精神分裂症及吸毒成瘾等治疗和康复提供有效的依据和手段.%OBJECTIVE: To elucidate the central role of dopamine-and cyclic adenosine 3 ',5

  3. The role of renal adenosine 3',5'-monophosphate in the control of erythropoietin production.

    Science.gov (United States)

    Rodgers, G M; Fisher, J W; George, W J

    1975-01-01

    A regulatory role for adenosine 3',5'-monophosphate (cyclic AMP) in the production of the renal hormone rythropoietin following erythropoietic stimulation with cobaltous chloride hexahydrate is proposed. Studies in rates reveal a temporal relationship between renal cyclic AMP levels and plasma titers of erythropoietin. In addition, cobalt increases the activity of an erythropoietin-generating enzyme (renal erythropoietic factor) with maximal enzyme activity occurring after the rise in cyclic AMP levels but before the increase in erythropoietin titers. This increase in renal cyclic AMP is localized to the renal cortex. Cobalt stimulates renal cortical adenylate cyclase but has no effect on renal cyclic nucleotide phosphodiesterase. The addition of cyclic AMP (3 time 10-6 M) and a partially purified cyclic AMP-dependent protein kinase from rat kidney to an inactive preparation of renal erythropoietic factor increases the ability of renal erythropoietic factor to generate erythropoietin. Data from the polycythemic mouse assay, a bioassay used to quantitate erythropoietic activity of test substances, indicate that dibutyryl cyclic AMP is erythropoietically active with respect to its ability to increase radioactive-labelled iron (59Fe) incorporation into heme of newly formed red blood cells. Theophylline, which by itself is erythropoietically inactive, potentiated the erythropoietic effect of cobalt in polycythemic mice. These results suggest that cyclic AMP plays a significant role in the renal production of erythropoietin following cobalt administration. It is postulated that cobalt stimulates renal cortical adenyoate cyclase, thus increasing renal cyclic AMP levels. Cyclic AMP then activates a protein kinase which subsequently stimulates renal erythropoietic factor to generate erythropoietin. A similar cyclic AMP mechanism may be operative after erythropoietic stimulation by exposure to hypoxia or prostaglandin treatment.

  4. The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-05-11

    Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  5. Chemotaxis to cyclic AMP and folic acid is mediated by different G proteins in Dictyostelium discoideum

    NARCIS (Netherlands)

    Kesbeke, Fanja; Haastert, Peter J.M. van; Wit, René J.W. de; Snaar-Jagalska, B. Ewa

    1990-01-01

    Mutant Frigid A (fgdA) of Dictyostelium discoideum is defective in a functional Gα2 subunit of a G protein and is characterized by a complete blockade of the cyclic AMP-mediated sensory transduction steps, including cyclic AMP relay, chemotaxis and the cyclic GMP response. Folic acid-mediated transm

  6. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    Science.gov (United States)

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory.SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  7. Biophysical Techniques for Detection of cAMP and cGMP in Living Cells

    Directory of Open Access Journals (Sweden)

    Viacheslav O. Nikolaev

    2013-04-01

    Full Text Available Cyclic nucleotides cAMP and cGMP are ubiquitous second messengers which regulate myriads of functions in virtually all eukaryotic cells. Their intracellular effects are often mediated via discrete subcellular signaling microdomains. In this review, we will discuss state-of-the-art techniques to measure cAMP and cGMP in biological samples with a particular focus on live cell imaging approaches, which allow their detection with high temporal and spatial resolution in living cells and tissues. Finally, we will describe how these techniques can be applied to the analysis of second messenger dynamics in subcellular signaling microdomains.

  8. cAMP and cGMP signaling: sensory systems with prokaryotic roots adopted by eukaryotic cilia.

    Science.gov (United States)

    Johnson, Jacque-Lynne F; Leroux, Michel R

    2010-08-01

    An exciting discovery of the new millennium is that primary cilia, organelles found on most eukaryotic cells, play crucial roles in vertebrate development by modulating Hedgehog, Wnt and PDGF signaling. Analysis of the literature and sequence databases reveals that the ancient signal transduction pathway, which uses cGMP in eukaryotes or related cyclic di-GMP in bacteria, exists in virtually all eukaryotes. However, many eukaryotes that secondarily lost cilia during evolution, including flowering plants, slime molds and most fungi, lack otherwise evolutionarily conserved cGMP signaling components. Based on this intriguing phylogenetic distribution, the presence of cGMP signaling proteins within cilia, and the indispensable roles that cGMP plays in transducing environmental signals in divergent ciliated cells (e.g. vertebrate photoreceptors and Caenorhabditis elegans sensory neurons), we propose that cGMP signaling has a strong ciliary basis. cAMP signaling, also inherent to bacteria and crucial for cilium-dependent olfaction, similarly appears to have widespread usage in diverse cilia. Thus, we argue here that both cyclic nucleotides play essential and potentially ubiquitous roles in modulating ciliary functions.

  9. Equol reverses the inhibition of cyclosporin A on the proliferation and osteoblastic differentiation of bone marrow mesenchymal stem cells through estrogen receptor/nitric oxide/cyclic guanosine monophosphate signal pathway%雌激素受体/一氧化氮/环磷酸鸟苷通路介导雌马酚逆转环孢素抑制骨髓间充质干细胞增殖及向成骨细胞的分化

    Institute of Scientific and Technical Information of China (English)

    宋丽华; 黄燕; 武翠玲; 石变华

    2010-01-01

    BACKGROUND: Long term taking cyclosporin A(CsA)can inhibit osteoblastic differentiation and induce osteoporosis.Equol,which has greater binding affinity to estrogen receptors,can stimulate the proliferation and osteoblastic differentiation.OBJECTIVE: To investigate whether equol may protect against the proliferation and osteoblastic differentiation inhibited by CsA in mouse bone marrow mesenchymal stem cells(BMSCs)cultures and analyze signal pathway of protection.METHODS: Primary mouse BMSCs were cultured by using attachment method and assigned to five groups,which respectively treated with equol or/and CsA in the presence or absence of ICI182780,an estrogen receptor antagonist,and Nω-nitro-L-arginine methyl ester.Under an inverted microscope,morphological changes and mineralization ability of BMSCs were observed.The cell proliferation was measured by[3H]-thymidine incorporation.The osteoblastic differentiation and mineralization of extracellular matrix in BMSCs was assessed by measuring alkaline phosphatase activity and calcium deposition,respectively.Nitric oxide production in the conditioned media and cyclic guanosine monophosphata(cGMP)content in BMSCs were determined by using commercial nitric oxide and cGMP kit,respectively.RESULTS AND CONCLUSION: Equol reversed the decreased[3H]thymidine incorporation(P < 0.05),alkaline phosphatase activity(P < 0.05)and calcium deposition(P < 0.01)of CsA,which was accompanied with the changes of nitric oxide production(P < 0.01)and cGMP content(P < 0.01).The group by co-treatment with equol and CsA possessed higher cells growth density and small mineralized nodes than CsA group on day 12 under an inverted microscope.Moreover,the equol-reversed effect was abolished by ICI182780 and Nω-nitro-L-arginine methyl ester.These indicated that equol can reverse the inhibition of CsA on the proliferation and osteoblastic differentiation of mouse BMSCs through estrogen receptor/nitric oxide/cGMP signal pathway.%背景:长期服用环

  10. Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen factor 420.

    Science.gov (United States)

    Hausinger, R P; Orme-Johnson, W H; Walsh, C

    1985-03-26

    Two chromophores with absorbance maxima at 390 nm (factors 390) have been isolated from oxidized cells of Methanobacterium thermoautotrophicum delta H. The isolation procedure included anion-exchange chromatography of the soluble cofactor pool followed by reverse-phase chromatography. The factor 390 species are novel derivatives of methanogen coenzyme factor 420 in which the 5-deazaflavin 8-hydroxy group is in a phosphodiester linkage to adenosine 5'-phosphate or guanosine 5'-phosphate. The structural assignments were based, in part, on the UV-visible and 1H NMR spectra. In addition, the results from amino acid analysis, phosphate determination, 31P NMR spectroscopy, and fast atom bombardment mass spectrometry were consistent with the proposed structures. Confirmation of the factor 390 structures was made following phosphodiesterase release of the nucleotide monophosphates from factor 420. The nucleotide monophosphates were identified as AMP and GMP by UV-visible spectra and based on elution position by using reverse-phase and anion-exchange high-performance liquid chromatography. The presence of AMP was further demonstrated by using adenylate-5'-phosphate kinase which induced a spectral shift during conversion of the sample to IMP. In addition, the presence of GMP was established by a specific enzymatic assay.

  11. c-di-GMP signalling and the regulation of developmental transitions in streptomycetes.

    Science.gov (United States)

    Bush, Matthew J; Tschowri, Natalia; Schlimpert, Susan; Flärdh, Klas; Buttner, Mark J

    2015-12-01

    The complex life cycle of streptomycetes involves two distinct filamentous cell forms: the growing (or vegetative) hyphae and the reproductive (or aerial) hyphae, which differentiate into long chains of spores. Until recently, little was known about the signalling pathways that regulate the developmental transitions leading to sporulation. In this Review, we discuss important new insights into these pathways that have led to the emergence of a coherent regulatory network, focusing on the erection of aerial hyphae and the synchronous cell division event that produces dozens of unigenomic spores. In particular, we highlight the role of cyclic di-GMP (c-di-GMP) in controlling the initiation of development, and the role of the master regulator BldD in mediating c-di-GMP signalling.

  12. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca²⁺ signals at key decision points in the life cycle of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Mathieu Brochet

    2014-03-01

    Full Text Available Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²⁺ from intracellular stores to activate stage-specific Ca²⁺-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²⁺ required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²⁺ signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²⁺ effectors, PKG emerges as a unifying factor to control multiple cellular Ca²⁺ signals essential for malaria parasite development and transmission.

  13. Genetic Modulation of c-di-GMP Turnover Affects Multiple Virulence Traits and Bacterial Virulence in Rice Pathogen Dickeya zeae

    Science.gov (United States)

    Chen, Yufan; Lv, Mingfa; Liao, Lisheng; Gu, Yanfang; Liang, Zhibin; Shi, Zurong; Liu, Shiyin; Zhou, Jianuan; Zhang, Lianhui

    2016-01-01

    The frequent outbreaks of rice foot rot disease caused by Dickeya zeae have become a significant concern in rice planting regions and countries, but the regulatory mechanisms that govern the virulence of this important pathogen remain vague. Given that the second messenger cyclic di-GMP (c-di-GMP) is associated with modulation of various virulence-related traits in various microorganisms, here we set to investigate the role of the genes encoding c-di-GMP metabolism in the regulation of the bacterial physiology and virulence by construction all in-frame deletion mutants targeting the annotated c-di-GMP turnover genes in D. zeae strain EC1. Phenotype analyses identified individual mutants showing altered production of exoenzymes and phytotoxins, biofilm formation and bacterial motilities. The results provide useful clues and a valuable toolkit for further characterization and dissection of the regulatory complex that modulates the pathogenesis and persistence of this important bacterial pathogen. PMID:27855163

  14. Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator.

    Science.gov (United States)

    Phippen, Curtis William; Mikolajek, Halina; Schlaefli, Henry George; Keevil, Charles William; Webb, Jeremy Stephen; Tews, Ivo

    2014-12-20

    Diguanylate cyclases (DGC) and phosphodiesterases (PDE), respectively synthesise and hydrolyse the secondary messenger cyclic dimeric GMP (c-di-GMP), and both activities are often found in a single protein. Intracellular c-di-GMP levels in turn regulate bacterial motility, virulence and biofilm formation. We report the first structure of a tandem DGC-PDE fragment, in which the catalytic domains are shown to be active. Two phosphodiesterase states are distinguished by active site formation. The structures, in the presence or absence of c-di-GMP, suggest that dimerisation and binding pocket formation are linked, with dimerisation being required for catalytic activity. An understanding of PDE activation is important, as biofilm dispersal via c-di-GMP hydrolysis has therapeutic effects on chronic infections.

  15. The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida.

    Science.gov (United States)

    Jiménez-Fernández, Alicia; López-Sánchez, Aroa; Calero, Patricia; Govantes, Fernando

    2015-02-01

    We previously showed the isolation of biofilmpersistent Pseudomonas putida mutants that fail to undergo biofilm dispersal upon entry in stationary phase. Two such mutants were found to bear insertions in PP0914, encoding a GGDEF/EAL domain protein with high similarity to Pseudomon asaeruginosa BifA. Here we show the phenotypic characterization of a ΔbifA mutant in P. putida KT2442.This mutant displayed increased biofilm and pellicle formation, cell aggregation in liquid medium and decreased starvation-induced biofilm dispersal relative to the wild type. Unlike its P. aeruginosa counterpart, P. putida BifA did not affect swarming motility. The hyperadherent phenotype of the ΔbifA mutant correlates with a general increase in cyclic diguanylate (c-di-GMP) levels, Congo Red-binding exopolyaccharide production and transcription of the adhesin-encoding lapA gene. Integrity of the EAL motif and a modified GGDEF motif (altered to GGDQF)were crucial for BifA activity, and c-di-GMP depletion by overexpression of a heterologous c-di-GMP phosphodiesterase in the ΔbifA mutant restored wild-type biofilm dispersal and lapA expression.Our results indicate that BifA is a phosphodiesterase involved in the regulation of the c-di-GMP pool and required for the generation of the low c-di-GMP signal that triggers starvation-induced biofilm dispersal.

  16. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae.

    Science.gov (United States)

    Townsley, Loni; Yildiz, Fitnat H

    2015-11-01

    Biofilm formation is crucial to the environmental survival and transmission of Vibrio cholerae, the facultative human pathogen responsible for the disease cholera. During its infectious cycle, V. cholerae experiences fluctuations in temperature within the aquatic environment and during the transition between human host and aquatic reservoirs. In this study, we report that biofilm formation is induced at low temperatures through increased levels of the signalling molecule, cyclic diguanylate (c-di-GMP). Strains harbouring in frame deletions of all V. cholerae genes that are predicted to encode diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) were screened for their involvement in low-temperature-induced biofilm formation and Vibrio polysaccharide gene expression. Of the 52 mutants tested, deletions of six DGCs and three PDEs were found to affect these phenotypes at low temperatures. Unlike wild type, a strain lacking all six DGCs did not exhibit a low-temperature-dependent increase in c-di-GMP, indicating that these DGCs are required for temperature modulation of c-di-GMP levels. We also show that temperature modulates c-di-GMP levels in a similar fashion in the Gram-negative pathogen Pseudomonas aeruginosa but not in the Gram-positive pathogen Listeria monocytogenes. This study uncovers the role of temperature in environmental regulation of biofilm formation and c-di-GMP signalling.

  17. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    Science.gov (United States)

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior.

  18. A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus.

    Science.gov (United States)

    Skotnicka, Dorota; Smaldone, Gregory T; Petters, Tobias; Trampari, Eleftheria; Liang, Jennifer; Kaever, Volkhard; Malone, Jacob G; Singer, Mitchell; Søgaard-Andersen, Lotte

    2016-05-01

    Generally, the second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-di-GMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be-at least partially-functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus.

  19. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  20. Electrocatalytic activity of oxidation products of guanine and 5'-GMP towards the oxidation of NADH

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Alvarez, Noemi de los; Lobo-Castanon, Maria Jesus; Miranda-Ordieres, Arturo J. [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Tunon-Blanco, Paulino [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)], E-mail: ptb@uniovi.es

    2007-12-01

    We have studied the potential electrocatalytic activity towards the oxidation of NADH of several oxidation products of guanine and its derivative guanosine-5'-monophosphate (5'-GMP) on pyrolytic graphite electrodes (PGE). The distribution of products generated strongly depends on the experimental conditions. Our investigations focused on the oxidation products that are adsorbed on the electrode surface, are redox active and, exhibited electrocatalytic activity toward the oxidation of NADH. These compounds were electrochemically and kinetically characterized in terms of dependence of the formal potential on pH and electron transfer rate constant (k{sub s}). The voltammetric and catalytic behavior of both guanine and 5'-GMP oxidation products was compared with that of other guanine derivatives we have previously studied. Some mechanistic aspects concerning the generation of the catalysts are also discussed.

  1. ASEAN GMP and pharmaceutical industries in Indonesia.

    Science.gov (United States)

    Soesilo, S; Sitorus, U

    1995-01-01

    Indonesia was appointed by the ASEAN Technical Cooperation in Pharmaceutical as a focal point and to coordinate the development of practical guidelines for the implementation of GMP. The ASEAN GMP Guidelines were endorsed by the ASEAN Technical Cooperation in Pharmaceutical in 1988, which among others required separation of Beta-Lactam dedicated facilities and three degrees of cleanliness for production areas. As it was realised that drug manufacturers in developing countries need more detailed guidelines to be able to implement the GMP, an Operational Manual for GMP was also prepared for providing examples of SOPs lay-outs, documentation etc. It was agreed by the technical cooperation group to leave the implementation of GMP to each member country. However, the ASEAN Manual for Inspection of GMP was drafted and endorsed by the group and training of ASEAN Drug Inspectors was organized to support the implementation. The ASEAN GMP is being implemented in Indonesia through a five-year, stepwise implementation plan, starting in 1989.

  2. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth

    DEFF Research Database (Denmark)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten Levin;

    2015-01-01

    tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further...... increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed...... to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth....

  3. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth.

    Science.gov (United States)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten; Yuan, Mingjun; Andersen, Jens Bo; Nielsen, Thomas E; Givskov, Michael; Tolker-Nielsen, Tim; Cao, Bin; Kjelleberg, Staffan; Yang, Liang

    2015-01-01

    Stress response plays an important role on microbial adaptation under hostile environmental conditions. It is generally unclear how the signaling transduction pathway mediates a stress response in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that metalloid tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth.

  4. Expression of cAMP and cGMP-phosphodiesterase isoenzymes 3, 4, and 5 in the human clitoris: immunohistochemical and molecular biology study.

    Science.gov (United States)

    Oelke, Matthias; Hedlund, Petter; Albrecht, Knut; Ellinghaus, Peter; Stief, Christian G; Jonas, Udo; Andersson, Karl-Erik; Uckert, Stefan

    2006-05-01

    Only a little research has focused on the evaluation of female sexual function. With sexual stimulation, the clitoris becomes engorged with blood and tumescent. Nevertheless, only little is known about the significance of the cyclic nucleotide-mediated signal transduction in the control of this process. We sought to elucidate the presence of the phosphodiesterase (PDE) isoenzymes 3, 4, and 5 in the human clitoris using immunohistochemical and molecular biology methods. Thin sections of clitoral specimens were incubated with primary antibodies directed against PDE isoenzymes 3, 4, and 5. Next, the sections were incubated with either Texas red or fluorescein isothiocyanate-labeled secondary antibodies, and visualization was done using laser microscopy. The expression of mRNA encoding for various PDE isoenzymes was evaluated using reverse transcriptase polymerase chain reaction. Immunofluorescence indicating the presence of PDE4 (cyclic adenosine monophosphate-PDE) was observed in the nonvascular smooth musculature of the corpus cavernosum clitoris, sinusoidal endothelial and subendothelial layers, and nerve fibers innervating the tissue. Immunoreactivity specific for PDE5 (cyclic guanosine monophosphate-PDE) was limited to the smooth muscle of the clitoral erectile tissue. The fluorescein isothiocyanate reaction indicating the expression of PDE3 (cyclic adenosine monophosphate-PDE) was registered to a certain degree only in the clitoral epidermis. In the reverse transcriptase polymerase chain reaction studies, a predominant expression of mRNA encoding for PDE1A was registered, but only small amounts of mRNA encoding for PDE4 and PDE5 were detected. Our results have demonstrated the presence of cyclic adenosine monophosphate-PDE and cyclic guanosine monophosphate-PDE in the human clitoris and may indicate a regulatory function of these enzymes in the cyclic nucleotide-mediated control of smooth muscle tone.

  5. ARC Code TI: Geometry Manipulation Protocol (GMP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Geometry Manipulation Protocol (GMP) is a library which serializes datatypes between XML and ANSI C data structures to support CFD applications. This library...

  6. THE ANTI-FIBROTIC ACTIONS OF RELAXIN ARE MEDIATED THROUGH A NO-sGC-cGMP-DEPENDENT PATHWAY IN RENAL MYOFIBROBLASTS IN VITRO AND ENHANCED BY THE NO DONOR, DIETHYLAMINE NONOATE

    Directory of Open Access Journals (Sweden)

    Chao eWang

    2016-03-01

    Full Text Available INTRODUCTION: The anti-fibrotic hormone, relaxin, has been inferred to disrupt TGF-beta1/Smad2 phosphorylation (pSmad2 signal transduction and promote collagen-degrading gelatinase activity via a nitric oxide (NO-dependent pathway. Here, we determined the extent to which NO, soluble guanylate cyclase (sGC and cyclic guanosine monophosphate (cGMP were directly involved in the anti-fibrotic actions of relaxin using a selective NO scavenger and sGC inhibitor, and comparing and combining relaxin’s effects with that of an NO donor. METHODS AND RESULTS: Primary renal cortical myofibroblasts isolated from injured rat kidneys were treated with human recombinant relaxin (RLX; 16.8nM, the NO donor, diethylamine NONOate (DEA/NO; 0.5-5uM or the combined effects of RLX (16.8nM and DEA/NO (5uM over 72 hours. The effects of RLX (16.8nM and DEA/NO (5uM were also evaluated in the presence of the NO scavenger, hydroxocobalamin (HXC; 100uM or sGC inhibitor, ODQ (5uM over 72 hours. Furthermore, the effects of RLX (30nM, DEA/NO (5uM and RLX (30nM+DEA/NO (5uM on cGMP levels were directly measured, in the presence or absence of ODQ (5uM. Changes in matrix metalloproteinase (MMP-2, MMP-9 (cell media, pSmad2 and α-smooth muscle actin (α-SMA; a measure myofibroblast differentiation (cell layer were assessed by gelatin zymography and Western blotting, respectively. At the highest concentration tested, both RLX and DEA/NO promoted MMP-2 and MMP-9 levels by 25-33%, while inhibiting pSmad2 and α-SMA expression by up to 50% (all p<0.05 vs untreated and vehicle-treated cells. However, 5uM of DEA/NO was required to produce the effects seen with 16.8nM of RLX over 72 hours. The anti-fibrotic effects of RLX or DEA/NO alone were completely abrogated by HXC and ODQ (both p<0.01 vs RLX alone or DEA/NO alone, but were significantly enhanced when added in combination (all p<0.05 vs RLX alone. Additionally, the direct cGMP-promoting effects of RLX, DEA/NO and RLX+DEA/NO (which all

  7. 牙龈卟啉单胞菌对人脐静脉血管内皮细胞cGMP生成的影响%Effect of Porphyromonas gingivalis on cGMP production in cultured human umbilical vein endothelial cells

    Institute of Scientific and Technical Information of China (English)

    吴娟; 林良缘; 孙卫斌

    2012-01-01

    目的:体外研究牙龈卟啉单胞菌(Porphyromonas gingivalis,Pg)对人脐静脉血管内皮细胞(human umbilical vein endothelial cell,HUVEC)cGMP水平的影响.方法:用Pg ATCC 33277分别以感染复数(multiplicity of infection,MOI)1∶10、1∶50、1∶250干预HUVEC,并以未受Pg ATCC 33277干预的HUVEC作为阴性对照,分别培养4、12、36 h,在倒置显微镜下观察各组细胞形态;125I cGMP放射免疫试剂盒检测各组HUVECcGMP的水平.结果:与对照组相比,Pg ATCC 33277分别以MOI 1∶10、1∶50、1∶250干预HUVEC 4、12、36 h后,实验各组HUVEC的细胞形态未见明显改变,仍呈典型的“铺路石”状单层贴壁生长;Pg ATCC 33277 MOI1∶250时可呈时间依赖性地降低HUVEC cGMP水平,而同一时间点内,各浓度组的cGMP水平并无明显差异.结论:短时间内,Pg ATCC 33277对HUVEC的细胞形态无明显影响,但可降低HUVEC cGMP的生成,HUVECNO生物利用度下降.%AIM: To observe the effect of Porphyromonas gingivalis ATCC 33277 ( Pg ATCC 33277 ) on the production of cyclic guanosine monophosphate (cGMP) in cultured human umbilical vein endothelial cells (HUVEC). METHODS: Pg ATCC 33277 was cultured anaerobically, and HUVEC were treated with Pg ATCC 33277 at multiplicities of infection (MOI) of 1 : 10, 1 : 50 and 1 : 250 for 4,12 and 36 h. HUVEC were observed using an inverted microscope and the intracellular cGMP levels in the cultured HUVEC were determined using radioimmunoassay. Detection of cGMP was used as a reporter assay for the biuavailability of NO. RESULTS: Compared with uninfected control group, HUVEC co-incubated with Pg ATCC 33277 for 4, 12 and 36 h at MOI of 1 : 10, 1 :50 and 1 : 250 respectively presented as an intact monolayer. Pg ATCC 33277 infection time-dependency reduced cGMP-production in HUVEC (P<0.05). Dose-dependence was not observed at all time points. CONCLUSION: Our results showed that within certain time period, the morphology of HUVEC is not affected with Pg

  8. A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases.

    Science.gov (United States)

    Kots, Alexander Y; Martin, Emil; Sharina, Iraida G; Murad, Ferid

    2009-01-01

    Here, we review the early studies on cGMP, guanylyl cyclases, and cGMP-dependent protein kinases to facilitate understanding of development of this exciting but complex field of research encompassing pharmacology, biochemistry, physiology, and molecular biology of these important regulatory molecules.

  9. The overlapping host responses to bacterial cyclic dinucleotides.

    Science.gov (United States)

    Abdul-Sater, Ali A; Grajkowski, Andrzej; Erdjument-Bromage, Hediye; Plumlee, Courtney; Levi, Assaf; Schreiber, Michael T; Lee, Carolyn; Shuman, Howard; Beaucage, Serge L; Schindler, Christian

    2012-02-01

    Macrophages respond to infection with Legionella pneumophila by the induction of inflammatory mediators, including type I Interferons (IFN-Is). To explore whether the bacterial second messenger cyclic 3'-5' diguanylate (c-diGMP) activates some of these mediators, macrophages were infected with L. pneumophila strains in which the levels of bacterial c-diGMP had been altered. Intriguingly, there was a positive correlation between c-diGMP levels and IFN-I expression. Subsequent studies with synthetic derivatives of c-diGMP, and newly described cyclic 3'-5' diadenylate (c-diAMP), determined that these molecules activate overlapping inflammatory responses in human and murine macrophages. Moreover, UV crosslinking studies determined that both dinucleotides physically associate with a shared set of host proteins. Fractionation of macrophage extracts on a biotin-c-diGMP affinity matrix led to the identification of a set of candidate host binding proteins. These studies suggest that mammalian macrophages can sense and mount a specific inflammatory response to bacterial dinucleotides.

  10. Crystallization and preliminary X-ray analysis of human MTH1 complexed with two oxidized nucleotides, 8-oxo-dGMP and 2-oxo-dATP

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Teruya; Kitaguchi, Yuki; Miyazawa, Masayuki [Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973 (Japan); Kamiya, Hiroyuki [Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812 (Japan); Toma, Sachiko; Ikemizu, Shinji [Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973 (Japan); Shirakawa, Masahiro [Graduate School of Engineering, Kyoto University, Kyoto 615-8510 (Japan); Nakabeppu, Yusaku [Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582 (Japan); Yamagata, Yuriko, E-mail: yamagata@gpo.kumamoto-u.ac.jp [Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973 (Japan)

    2006-12-01

    The complexes of human MTH1 with two oxidized nucleotides, 8-oxo-dGMP and 2-oxo-dATP, were crystallized. The crystals diffracted to 1.95 and 2.22 Å resolution, respectively. Human MutT homologue 1 (hMTH1) hydrolyzes a variety of oxidized purine nucleoside triphosphates, including 8-oxo-dGTP, 2-oxo-dATP, 2-oxo-ATP and 8-oxo-dATP, to their corresponding nucleoside monophosphates, while Esherichia coli MutT possesses prominent substrate specificity for 8-oxoguanine nucleotides. Three types of crystals were obtained corresponding to the following complexes: selenomethionine-labelled hMTH1 with 8-oxo-dGMP (SeMet hMTH1–8-oxo-dGMP), hMTH1 with 8-oxo-dGMP (hMTH1–8-oxo-dGMP) and hMTH1 with 2-oxo-dATP (hMTH1–2-oxo-dATP). Crystals of the SeMet hMTH1–8-oxo-dGMP complex belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 45.8, c = 153.6 Å, and diffracted to 2.90 Å. Crystals of hMTH1–8-oxo-dGMP and hMTH1–2-oxo-dATP belong to space groups P2{sub 1} and P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 34.0, b = 59.0, c = 65.9 Å, β = 90.7° and a = 59.2, b = 67.3, c = 80.0 Å, respectively. Their diffraction data were collected at resolutions of 1.95 and 2.22 Å, respectively.

  11. Cyclic derangements

    CERN Document Server

    Assaf, Sami H

    2010-01-01

    A classic problem in enumerative combinatorics is to count the number of derangements, that is, permutations with no fixed point. Inspired by a recent generalization to facet derangements of the hypercube by Gordon and McMahon, we generalize this problem to enumerating derangements in the wreath product of any finite cyclic group with the symmetric group. We also give q- and (q, t)-analogs for cyclic derangements, generalizing results of Brenti and Gessel.

  12. Determination of the electron-detachment energies of 2'-deoxyguanosine 5'-monophosphate anion: influence of the conformation.

    Science.gov (United States)

    Rubio, Mercedes; Roca-Sanjuán, Daniel; Serrano-Andrés, Luis; Merchán, Manuela

    2009-02-26

    The vertical electron-detachment energies (VDEs) of the singly charged 2'-deoxyguanosine 5'-monophosphate anion (dGMP-) are determined by using the multiconfigurational second-order perturbation CASPT2 method at the MP2 ground-state equilibrium geometry of relevant conformers. The origin of the unique low-energy band in the gas phase photoelectron spectrum of dGMP-, with maximum at around 5.05 eV, is unambiguously assigned to electron detachment from the highest occupied molecular orbital of pi-character belonging to guanine fragment of a syn conformation. The presence of a short H-bond linking the 2-amino and phosphate groups, the guanine moiety acting as proton donor, is precisely responsible for the pronounced decrease of the computed VDE with respect to that obtained in other conformations. As a whole, the present research supports the nucleobase as the site with the lowest ionization potential in negatively charged (deprotonated) nucleotides at the most stable conformations as well as for B-DNA-like type arrangements, in agreement with experimental evidence.

  13. Stimulus Response of Au-NPs@GMP-Tb Core-Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake.

    Science.gov (United States)

    Zhang, Xiaolei; Deng, Jingjing; Xue, Yumeng; Shi, Guoyue; Zhou, Tianshu

    2016-01-19

    In this study, we demonstrate a colorimetric and fluorescent dual-mode method for alkaline phosphatase activity (APA) sensing in freshwater lake with stimuli-responsive gold nanoparticles@terbium-guanosine monophosphate (Au-NPs@GMP-Tb) core-shell nanoparticles. Initially, the core-shell nanoparticles were fabricated based on Au-NPs decorated with a fluorescent GMP-Tb shell. Upon being excited at 290 nm, the as-formed Au-NPs@GMP-Tb core-shell nanoparticles emit green fluorescence, and the decorated GMP-Tb shell causes the aggregation of Au-NPs. However, the addition of ALP destroys GMP-Tb shell, resulting in the release of Au-NPs from the shell into the solvent. As a consequence, the aggregated Au-NPs solubilizes with the changes in the UV-vis spectrum of the dispersion, and in the meantime, the fluorescence of GMP-Tb shell turns off, which constitutes a new mechanism for colorimetric and fluorescent dual-mode sensing of APA. With the method developed here, we could monitor the dynamic change of APA during an algal bloom of a freshwater lake, both by the naked eye and further confirmed by fluorometric determination. This study not only offers a new method for on-site visible detection of APA but also provides a strategy for dual-mode sensing mechanisms by the rational design of the excellent optical properties of Au-NPs and the adaptive inclusion properties of the luminescent infinite coordination polymers.

  14. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis.

    Science.gov (United States)

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  15. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis

    Science.gov (United States)

    Ren, Gai-Xian; Fan, Sai; Guo, Xiao-Peng; Chen, Shiyun; Sun, Yi-Cheng

    2016-01-01

    Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments. PMID:27375563

  16. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  17. Structure of Staphylococcus aureus cytidine monophosphate kinase in complex with cytidine 5'-monophosphate.

    Science.gov (United States)

    Dhaliwal, Balvinder; Ren, Jingshan; Lockyer, Michael; Charles, Ian; Hawkins, Alastair R; Stammers, David K

    2006-08-01

    The crystal structure of Staphylococcus aureus cytidine monophosphate kinase (CMK) in complex with cytidine 5'-monophosphate (CMP) has been determined at 2.3 angstroms resolution. The active site reveals novel features when compared with two orthologues of known structure. Compared with the Streptococcus pneumoniae CMK solution structure of the enzyme alone, S. aureus CMK adopts a more closed conformation, with the NMP-binding domain rotating by approximately 16 degrees towards the central pocket of the molecule, thereby assembling the active site. Comparing Escherichia coli and S. aureus CMK-CMP complex structures reveals differences within the active site, including a previously unreported indirect interaction of CMP with Asp33, the replacement of a serine residue involved in the binding of CDP by Ala12 in S. aureus CMK and an additional sulfate ion in the E. coli CMK active site. The detailed understanding of the stereochemistry of CMP binding to CMK will assist in the design of novel inhibitors of the enzyme. Inhibitors are required to treat the widespread hospital infection methicillin-resistant S. aureus (MRSA), currently a major public health concern.

  18. Inositol monophosphate phosphatase genes of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Parish Tanya

    2010-02-01

    Full Text Available Abstract Background Mycobacteria use inositol in phosphatidylinositol, for anchoring lipoarabinomannan (LAM, lipomannan (LM and phosphatidylinosotol mannosides (PIMs in the cell envelope, and for the production of mycothiol, which maintains the redox balance of the cell. Inositol is synthesized by conversion of glucose-6-phosphate to inositol-1-phosphate, followed by dephosphorylation by inositol monophosphate phosphatases (IMPases to form myo-inositol. To gain insight into how Mycobacterium tuberculosis synthesises inositol we carried out genetic analysis of the four IMPase homologues that are present in the Mycobacterium tuberculosis genome. Results Mutants lacking either impA (Rv1604 or suhB (Rv2701c were isolated in the absence of exogenous inositol, and no differences in levels of PIMs, LM, LAM or mycothiol were observed. Mutagenesis of cysQ (Rv2131c was initially unsuccessful, but was possible when a porin-like gene of Mycobacterium smegmatis was expressed, and also by gene switching in the merodiploid strain. In contrast, we could only obtain mutations in impC (Rv3137 when a second functional copy was provided in trans, even when exogenous inositol was provided. Experiments to obtain a mutant in the presence of a second copy of impC containing an active-site mutation, in the presence of porin-like gene of M. smegmatis, or in the absence of inositol 1-phosphate synthase activity, were also unsuccessful. We showed that all four genes are expressed, although at different levels, and levels of inositol phosphatase activity did not fall significantly in any of the mutants obtained. Conclusions We have shown that neither impA, suhB nor cysQ is solely responsible for inositol synthesis. In contrast, we show that impC is essential for mycobacterial growth under the conditions we used, and suggest it may be required in the early stages of mycothiol synthesis.

  19. Crystal packing and hydrogen bonding in platinum(II) nucleotide complexes: X-ray crystal structure of [Pt(MeSCH(2)CH(2)SMe)(5'-GMP-N7)(2)].6H(2)O.

    Science.gov (United States)

    Djuran, Milos I; Milinkovic, Snezana U; Habtemariam, Abraha; Parsons, Simon; Sadler, Peter J

    2002-02-01

    We have synthesised the complex [Pt(CH(3)SCH(2)CH(2)SCH(3))(5'-GMP-N7)(2)].6H(2)O (1), where 5'-GMP is 5'-guanosine monophosphate, and determined its X-ray crystal structure. Pt(II) adopts a square-planar geometry in which the bases are coordinated head-to-tail (HT) in the Delta configuration. The nucleotide conformation in this complex is almost identical to that in the previously reported complex [Pt(en)(5'-GMP-N7)(2)].9H(2)O (2), in which there is outer sphere macrochelation via intramolecular H-bonding between the monoanionic phosphate groups and the coordinated ethylenediamine (en) NH. It is therefore apparent that intermolecular interactions rather than intramolecular H-bonding determines the orientation of the sugar-phosphate side-chain in these Pt(II) bisnucleotide complexes in the solid state.

  20. Structures of the activator of K. pneumonia biofilm formation, MrkH, indicates PilZ domains involved in c-di-GMP and DNA binding.

    Science.gov (United States)

    Schumacher, Maria A; Zeng, Wenjie

    2016-09-01

    The pathogenesis of Klebsiella pneumonia is linked to the bacteria's ability to form biofilms. Mannose-resistant Klebsiella-like (Mrk) hemagglutinins are critical for K pneumonia biofilm development, and the expression of the genes encoding these proteins is activated by a 3',5'-cyclic diguanylic acid (c-di-GMP)-regulated transcription factor, MrkH. To gain insight into MrkH function, we performed structural and biochemical analyses. Data revealed MrkH to be a monomer with a two-domain architecture consisting of a PilZ C-domain connected to an N domain that unexpectedly also harbors a PilZ-like fold. Comparison of apo- and c-di-GMP-bound MrkH structures reveals a large 138° interdomain rotation that is induced by binding an intercalated c-di-GMP dimer. c-di-GMP interacts with PilZ C-domain motifs 1 and 2 (RxxxR and D/NxSxxG) and a newly described c-di-GMP-binding motif in the MrkH N domain. Strikingly, these c-di-GMP-binding motifs also stabilize an open state conformation in apo MrkH via contacts from the PilZ motif 1 to residues in the C-domain motif 2 and the c-di-GMP-binding N-domain motif. Use of the same regions in apo structure stabilization and c-di-GMP interaction allows distinction between the states. Indeed, domain reorientation by c-di-GMP complexation with MrkH, which leads to a highly compacted structure, suggests a mechanism by which the protein is activated to bind DNA. To our knowledge, MrkH represents the first instance of specific DNA binding mediated by PilZ domains. The MrkH structures also pave the way for the rational design of inhibitors that target K pneumonia biofilm formation.

  1. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression.

    Science.gov (United States)

    Nygaard, Gyrid; Herfindal, Lars; Kopperud, Reidun; Aragay, Anna M; Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune; Selheim, Frode

    2014-07-01

    In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  2. Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines.

    Science.gov (United States)

    Miyamoto, K; Kurita, M; Sakai, R; Sanae, F; Wakusawa, S; Takagi, K

    1994-09-15

    In this study the phosphodiesterase (PDE) isoenzymes in guinea-pig trachealis smooth muscle were separated by DEAE-Sepharose anion exchange chromatography, identified, and characterized. Furthermore the effect of theophylline and 1-n-butyl-3-n-propylxanthine (BPX) on the isolated PDE isoenzymes and on their tracheal relaxant effect were investigated and compared with the nonxanthine PDE inhibitors amrinone and Ro 20-1724. We identified five distinct isoenzymes in guinea-pig tracheal muscle; calcium/calmodulin-stimulated cyclic AMP PDE (PDE I), cyclic GMP-stimulated cyclic AMP PDE (PDE II), cyclic GMP-inhibited and amrinone-sensitive cyclic AMP PDE (PDE III), cyclic AMP-specific and Ro 20-1724-sensitive PDE (PDE IV), and cyclic GMP-specific PDE (PDE V). BPX strongly inhibited the PDE IV isoenzyme with high selectivity, while the inhibitory effect of theophylline was weak. The PDE IV inhibitors BPX and Ro 20-1724 synergistically increased the relaxant effect of the beta 2-adrenoceptor agonist salbutamol in carbachol-contracted trachea much more strongly than theophylline. In contrast, amrinone, a PDE III inhibitor, hardly influenced the relaxant effect of salbutamol, suggesting that the PDE IV isoenzyme is functionally associated with beta 2-adrenoceptors in guinea-pig trachea and that inhibition of this enzyme potentiates the ability of salbutamol to increase the intracellular cyclic AMP content. These results indicate that the PDE IV isoenzyme plays a significant role in alkylxanthine-mediated relaxation of guinea-pig trachea.

  3. Cyclic Voltammetry.

    Science.gov (United States)

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  4. Cyclic Voltammetry.

    Science.gov (United States)

    Evans, Dennis H.; And Others

    1983-01-01

    Cyclic voltammetry is a simple experiment that has become popular in chemical research because it can provide useful information about redox reactions in a form which is easily obtained and interpreted. Discusses principles of the method and illustrates its use in the study of four electrode reactions. (Author/JN)

  5. Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine.

    Science.gov (United States)

    Lam, Angela M; Espiritu, Christine; Murakami, Eisuke; Zennou, Veronique; Bansal, Shalini; Micolochick Steuer, Holly M; Niu, Congrong; Keilman, Meg; Bao, Haiying; Bourne, Nigel; Veselenak, Ronald L; Reddy, P Ganapati; Chang, Wonsuk; Du, Jinfa; Nagarathnam, Dhanapalan; Sofia, Michael J; Otto, Michael J; Furman, Phillip A

    2011-06-01

    PSI-352938 is a novel cyclic phosphate prodrug of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine 5'-monophosphate that has potent activity against hepatitis C virus (HCV) in vitro. The studies described here characterize the in vitro anti-HCV activity of PSI-352938, alone and in combination with other inhibitors of HCV, and the cross-resistance profile of PSI-352938. The effective concentration required to achieve 50% inhibition for PSI-352938, determined using genotype 1a-, 1b-, and 2a-derived replicons stably expressed in the Lunet cell line, were 0.20, 0.13, and 0.14 μM, respectively. The active 5'-triphosphate metabolite, PSI-352666, inhibited recombinant NS5B polymerase from genotypes 1 to 4 with comparable 50% inhibitory concentrations. In contrast, PSI-352938 did not inhibit the replication of hepatitis B virus or human immunodeficiency virus in vitro. PSI-352666 did not significantly affect the activity of human DNA and RNA polymerases. PSI-352938 and its cyclic phosphate metabolites did not affect the cyclic GMP-mediated activation of protein kinase G. Clearance studies using replicon cells demonstrated that PSI-352938 cleared cells of HCV replicon RNA and prevented replicon rebound. An additive to synergistic effect was observed when PSI-352938 was combined with other classes of HCV inhibitors, including alpha interferon, ribavirin, NS3/4A inhibitors, an NS5A inhibitor, and nucleoside/nucleotide and nonnucleoside inhibitors. Cross-resistance studies showed that PSI-352938 remained fully active against replicons containing the S282T or the S96T/N142T amino acid alteration. Replicons that contain mutations conferring resistance to various classes of nonnucleoside inhibitors also remained sensitive to inhibition by PSI-352938. PSI-352938 is currently being evaluated in a phase I clinical study in genotype 1-infected individuals.

  6. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage.

    Directory of Open Access Journals (Sweden)

    Peter D Newell

    Full Text Available In Pseudomonas fluorescens Pf0-1 the availability of inorganic phosphate (Pi is an environmental signal that controls biofilm formation through a cyclic dimeric GMP (c-di-GMP signaling pathway. In low Pi conditions, a c-di-GMP phosphodiesterase (PDE RapA is expressed, depleting cellular c-di-GMP and causing the loss of a critical outer-membrane adhesin LapA from the cell surface. This response involves an inner membrane protein LapD, which binds c-di-GMP in the cytoplasm and exerts a periplasmic output promoting LapA maintenance on the cell surface. Here we report how LapD differentially controls maintenance and release of LapA: c-di-GMP binding to LapD promotes interaction with and inhibition of the periplasmic protease LapG, which targets the N-terminus of LapA. We identify conserved amino acids in LapA required for cleavage by LapG. Mutating these residues in chromosomal lapA inhibits LapG activity in vivo, leading to retention of the adhesin on the cell surface. Mutations with defined effects on LapD's ability to control LapA localization in vivo show concomitant effects on c-di-GMP-dependent LapG inhibition in vitro. To establish the physiological importance of the LapD-LapG effector system, we track cell attachment and LapA protein localization during Pi starvation. Under this condition, the LapA adhesin is released from the surface of cells and biofilms detach from the substratum. This response requires c-di-GMP depletion by RapA, signaling through LapD, and proteolytic cleavage of LapA by LapG. These data, in combination with the companion study by Navarro et al. presenting a structural analysis of LapD's signaling mechanism, give a detailed description of a complete c-di-GMP control circuit--from environmental signal to molecular output. They describe a novel paradigm in bacterial signal transduction: regulation of a periplasmic enzyme by an inner membrane signaling protein that binds a cytoplasmic second messenger.

  7. Establishment of a High-throughput Setup for Screening Small Molecules That Modulate c-di-GMP Signaling in Pseudomonas aeruginosa.

    Science.gov (United States)

    Rugjee, Kushal N; An, Shi-Qi; Ryan, Robert P

    2016-06-30

    Bacterial resistance to traditional antibiotics has driven research attempts to identify new drug targets in recently discovered regulatory pathways. Regulatory systems that utilize intracellular cyclic di-GMP (c-di-GMP) as a second messenger are one such class of target. c-di-GMP is a signaling molecule found in almost all bacteria that acts to regulate an extensive range of processes including antibiotic resistance, biofilm formation and virulence. The understanding of how c-di-GMP signaling controls aspects of antibiotic resistant biofilm development has suggested approaches whereby alteration of the cellular concentrations of the nucleotide or disruption of these signaling pathways may lead to reduced biofilm formation or increased susceptibility of the biofilms to antibiotics. We describe a simple high-throughput bioreporter protocol, based on green fluorescent protein (GFP), whose expression is under the control of the c-di-GMP responsive promoter cdrA, to rapidly screen for small molecules with the potential to modulate c-di-GMP cellular levels in Pseudomonas aeruginosa (P. aeruginosa). This simple protocol can screen upwards of 3,500 compounds within 48 hours and has the ability to be adapted to multiple microorganisms.

  8. Activation of cGMP-dependent protein kinase by protein kinase C.

    Science.gov (United States)

    Hou, Yali; Lascola, Judith; Dulin, Nickolai O; Ye, Richard D; Browning, Darren D

    2003-05-09

    The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.

  9. Mode-specific vibrational relaxation of photoexcited guanosine 5'-monophosphate and its acid form: a femtosecond broadband mid-IR transient absorption and theoretical study.

    Science.gov (United States)

    Zhang, Yuyuan; Improta, Roberto; Kohler, Bern

    2014-01-28

    UV-pump/broadband-mid-IR-probe transient absorption (TA) experiments and ab initio quantum mechanical (QM) calculations were used to investigate the photophysics in heavy water of the neutral and acid forms of guanosine 5'-monophosphate (GMP and GMPD(+), respectively). Excited GMP undergoes ultrafast internal conversion (IC) and returns to the electronic ground state in less than one picosecond with a large amount of excess vibrational energy. The spectroscopic signals are dominated by vibrational cooling - a process in which the solute dissipates vibrational energy to the solvent. For neutral GMP, cooling proceeds with a time constant of 3 ps. Following IC, at least some medium-frequency modes such as the carbonyl stretch and an in-plane ring vibration are excited, suggesting that the vibrational energy distribution is non-statistical. This is consistent with predicted structural changes upon passage through the S1/S0 conical intersection. GMPD(+) differs from GMP by a single deuteron at the N7 position, but has a dramatically longer lifetime of 200 ps. Vibrational cooling of the S1 state of GMPD(+) was monitored via several medium-frequency modes that were assigned using QM calculations. These medium-frequency modes are also vibrationally excited in a non-statistical fashion. Excitation of these modes is in line with the change in geometry at the S1 minimum of GMPD(+) predicted by QM calculations. Furthermore, these modes relax at different rates, fully consistent with QM calculations, which predict that excited vibrational states of the carbonyl stretch couple strongly to the D2O solvent and thus deactivate via intermolecular energy transfer (IET). In contrast, the ring stretch couples strongly to other ring modes of the guanine chromophore and appears to decay via intramolecular vibrational energy redistribution (IVR).

  10. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    Science.gov (United States)

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  11. Cyclic multiverses

    CERN Document Server

    Marosek, Konrad; Balcerzak, Adam

    2015-01-01

    Starting with the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we first study the cyclic universe models. We find two models of oscillating mass density and pressure regularized by varying gravitational constant $G$. Then, we extend this idea onto the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get the key idea, we consider the doubleverse with the same geometrical evolution of the two "parallel" universes with their physical evolution (physical coupling constants $c(t)$ and $G(t)$) being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion -- the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory.

  12. Cyclic dinucleotide detection with riboswitch-G-quadruplex hybrid.

    Science.gov (United States)

    Tsuji, Genichiro; Sintim, Herman O

    2016-03-01

    A cyclic dinucleotide riboswitch has been fused with a G-quadruplex motif to produce a conditional riboswitch-peroxidase-mimicking sensor that oxidizes both colorimetric and fluorogenic substrates in the presence of c-di-GMP. We find that signal-to-noise ratio could be improved by using a two-, not three-, floor split G-quadruplex for this conditional peroxidase-mimicking riboswitch.

  13. Microbiological criteria for good manufacturing practice (GMP)

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J. (Inst. of Preservation and Livestock Products Technology, Univ. of Horticulture and Food Industry, Budapest (Hungary)); Zukal, E. (Inst. of Preservation and Livestock Products Technology, Univ. of Horticulture and Food Industry, Budapest (Hungary))

    1992-01-01

    Good manufacturing practice (GMP) consist of an effective manufacturing operation and an effective application of food control. GMP is best supported by the Hazard Analysis Critical Control Point system (HACCP) of the preventive quality assurance, which requires that food irradiation as any food processing technology should be used only with foods of an acceptable quality and adequate handling and storage procedures should precede and follow the processing. The paper concentrates on the first element of the HACCP system for an irradiation plant: the incoming product control, i.e. whether GMP of foods to be irradiated can be assessed by establishing microbiological criteria for their previous good manufacturing practice. In this regard, it summarizes considerations and findings of a ''Consultation on Microbiological Criteria for Foods to be Further Processed Including by Irradiation'' held in 1989 by the International Consultative Group on Food irradiation at the Headquarters of the World Health Organization, Geneva. Difficulties in establishing reference values and defining good manufacturing practices will be pointed out. (orig.)

  14. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling

    NARCIS (Netherlands)

    Sato, Masayuki J.; Kuwayama, Hidekazu; van Egmond, Wouter N.; Takayama, Airi L. K.; Takagi, Hiroaki; van Haastert, Peter J. M.; Yanagida, Toshio; Ueda, Masahiro

    2009-01-01

    Switching between attractive and repulsive migration in cell movement in response to extracellular guidance cues has been found in various cell types and is an important cellular function for translocation during cellular and developmental processes. Here we show that the preferential direction of m

  15. Cyclic mononucleotides modulate potassium and calcium flux responses to H2O2 in Arabidopsis roots

    KAUST Repository

    Ordoñez, Natalia Maria

    2014-02-13

    Cyclic mononucleotides are messengers in plant stress responses. Here we show that hydrogen peroxide (H2O2) induces rapid net K+-efflux and Ca2+-influx in Arabidopsis roots. Pre-treatment with either 10 μM cAMP or cGMP for 1 or 24 h does significantly reduce net K+-leakage and Ca2+-influx, and in the case of the K+-fluxes, the cell permeant cyclic mononucleotides are more effective. We also examined the effect of 10 μM of the cell permeant 8-Br-cGMP on the Arabidopsis microsomal proteome and noted a specific increase in proteins with a role in stress responses and ion transport, suggesting that cGMP is sufficient to directly and/or indirectly induce complex adaptive changes to cellular stresses induced by H2O2. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase.

    Science.gov (United States)

    Fernicola, Silvia; Torquati, Ilaria; Paiardini, Alessandro; Giardina, Giorgio; Rampioni, Giordano; Messina, Marco; Leoni, Livia; Del Bello, Fabio; Petrelli, Riccardo; Rinaldo, Serena; Cappellacci, Loredana; Cutruzzolà, Francesca

    2015-10-22

    Cyclic di-GMP (c-di-GMP) is a widespread second messenger that plays a key role in bacterial biofilm formation. The compound's ability to assume multiple conformations allows it to interact with a diverse set of target macromolecules. Here, we analyzed the binding mode of c-di-GMP to the allosteric inhibitory site (I-site) of diguanylate cyclases (DGCs) and compared it to the conformation adopted in the catalytic site of the EAL phosphodiesterases (PDEs). An array of novel molecules has been designed and synthesized by simplifying the native c-di-GMP structure and replacing the charged phosphodiester backbone with an isosteric nonhydrolyzable 1,2,3-triazole moiety. We developed the first neutral small molecule able to selectively target DGCs discriminating between the I-site of DGCs and the active site of PDEs; this molecule represents a novel tool for mechanistic studies, particularly on those proteins bearing both DGC and PDE modules, and for future optimization studies to target DGCs in vivo.

  17. Effects of Na/sup +/ on ultraviolet light-induced photorelaxation and c-GMP levels in rabbit aorta

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, J.F.; Raffa, R.B.; Tallarida, R.J.

    1986-03-05

    Isolated strips of rabbit aorta in a state of drug-induced contraction relax reversibly when irradiated with ultraviolet light. The authors previously found that the magnitude of the photorelaxation progressively diminished as the extracellular Na/sup +/ ion concentration was reduced from 145 mM to 85 mM. At 85 mM Na/sup +/, there was minimal photorelaxation, even though the preparation continued to respond to vasoconstricting agents. The reduction in photosensitivity is not an osmotic effect because restoration of osmolarity did not restore photosensitivity. Neither the mechanism underlaying photorelaxation nor its modification by Na/sup +/ is precisely known. In order to examine these further the authors measured cyclic GMP levels in the absence and presence of UV light at both normal and reduced Na/sup +/ levels. At 145 mM Na/sup +/, irradiation resulted in an increase of cGMP from 0.299 to 0.717 fmole/..mu..g protein. At 85 mM Na/sup +/, the corresponding levels were 0.541 and 1.24 fmole/..mu..g protein. Thus, cGMP levels increase (approximately double) with UV irradiation at both reduced and normal Na/sup +/ concentrations even though there is little or no photorelaxation in the reduced Na/sup +/ environment. The reduction in Na/sup +/ may uncouple a link between cGMP elevation and cytoplasmic calcium in the aortic cell.

  18. Oxidation of 5'-dGMP, 5'-dGDP, and 5'-dGTP by a platinum(IV) complex.

    Science.gov (United States)

    Kipouros, Ioannis; Fica-Contreras, Sebastian Matias; Bowe, Gregory Joon Kee; Choi, Sunhee

    2015-12-01

    We previously reported that a Pt(IV) complex, [Pt(IV)(dach)Cl4] [trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum(IV)] binds to the N7 of 5'-dGMP (deoxyguanosine-5'-monophosphate) at a relatively fast rate and oxidizes it to 8-oxo-5'-dGMP. Here, we further studied the kinetics of the oxidation of 5'-dGMP by the Pt(IV) complex. The electron transfer rate constants between 5'-dGMP and Pt(IV) in [H8-5'-dGMP-Pt(IV)] and [D8-5'-dGMP-Pt(IV)] were similar, giving a small value of the kinetic isotope effect (KIE: 1.2 ± 0.2). This small KIE indicates that the deprotonation of H8 in [H8-5'-dGMP-Pt(IV)] is not involved in the rate-determining step in the electron transfer between guanine (G) and Pt(IV). We also studied the reaction of 5'-dGDP (deoxyguanosine-5'-diphosphate) and 5'-dGTP (deoxyguanosine-5'-triphosphate) with the Pt(IV) complex. Our results showed that [Pt(IV)(dach)Cl4] oxidized 5'-dGDP and 5'-dGTP to 8-oxo-5'-dGDP and 8-oxo-5'-dGTP, respectively, by the same mechanism and kinetics as for 5'-dGMP. The Pt(IV) complex binds to N7 followed by a two-electron inner sphere electron transfer from G to Pt(IV). The reaction was catalyzed by Pt(II) and occurred faster at higher pH. The electron transfer was initiated by either an intramolecular nucleophilic attack by any of the phosphate groups or an intermolecular nucleophilic attack by free OH(-) in the solution. The rates of reactions for the three nucleotides followed the order: 5'-dGMP > 5'-dGDP > 5'-dGTP, indicating that the bulkier the phosphate groups are, the slower the reaction is, due to the larger steric hindrance and rotational barrier of the phosphate groups.

  19. Cyclic Vitalism

    DEFF Research Database (Denmark)

    Halse, Sven

    2014-01-01

    an enthusiastic worshipping of life, one that holds youth, health, strength and beauty as its primary attributes, and which was prevalent in all aspects of cultural life around 1900. But even the post war founders of the Vitalist re-conceptualisation of this era, Wolfdietrich Rasch and Gunter Martens, warned...... that also encompasses notions of destruction, decay and death. “All life symbols in literature around 1900 are at the same time symbols of death”. (Rasch, W. 1967:24) Through the analyses of three poems, this article aims to show concrete examples of how cyclic Vitalist thinking is embedded in poetry...

  20. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium.

    Science.gov (United States)

    Altenhofen, W; Ludwig, J; Eismann, E; Kraus, W; Bönigk, W; Kaupp, U B

    1991-11-01

    Cyclic nucleotide-gated ionic channels in photoreceptors and olfactory sensory neurons are activated by binding of cGMP or cAMP to a receptor site on the channel polypeptide. By site-directed mutagenesis and functional expression of bovine wild-type and mutant channels in Xenopus oocytes, we have tested the hypothesis that an alanine/threonine difference in the cyclic nucleotide-binding site determines the specificity of ligand binding, as has been proposed for cyclic nucleotide-dependent protein kinases [Weber, I.T., Shabb, J.B. & Corbin, J.D. (1989) Biochemistry 28, 6122-6127]. The wild-type olfactory channel is approximately 25-fold more sensitive to both cAMP and cGMP than the wild-type rod photoreceptor channel, and both channels are 30- to 40-fold more sensitive to cGMP than to cAMP. Substitution of the respective threonine by alanine in the rod photoreceptor and olfactory channels decreases the cGMP sensitivity of channel activation 30-fold but little affects activation by cAMP. Substitution of threonine by serine, an amino acid that also carries a hydroxyl group, even improves cGMP sensitivity of the wild-type channels 2- to 5-fold. We conclude that the hydroxyl group of Thr-560 (rod) and Thr-537 (olfactory) forms an additional hydrogen bond with cGMP, but not cAMP, and thereby provides the structural basis for ligand discrimination in cyclic nucleotide-gated channels.

  1. Amnesic effect of GMP depends on its conversion to guanosine.

    Science.gov (United States)

    Saute, Jonas Alex Morales; da Silveira, Leonardo Evangelista; Soares, Félix Antunes; Martini, Lúcia Helena; Souza, Diogo Onofre; Ganzella, Marcelo

    2006-05-01

    Extracellular guanine-based purines, namely the nucleotides GTP, GDP, GMP and the nucleoside guanosine, exert important neuroprotective and neuromodulator roles in the central nervous system, which may be related to inhibition of the glutamatergic neurotransmission activity. In this study, we investigated GMP effects on mice inhibitory avoidance performance and the dependence on its conversion to guanosine for such effect, by using the ecto-5'-nucleotidase specific inhibitor AOPCP. We also investigated if this conversion occurs in the central nervous system or peripherally, and if guanosine and GMP affect nociception by the tail-flick test. I.p. GMP or guanosine (7.5 mg/kg) or i.c.v. GMP (480 nmol) pretraining administration was amnesic for the inhibitory avoidance task. I.c.v. AOPCP (1 nmol) administration completely reversed the amnesic effect of i.c.v. GMP, but not of i.p. GMP, indicating that peripheral conversion of GMP to guanosine is probably relevant to this effect. AOPCP alone did not interfere with the performance. Furthermore, tail-flick measurement was unaffected by i.p. GMP and guanosine, suggesting that the amnesic effect of both purines was not due to some antinociceptive effect against the footshock used in the task. All these data together, in accordance to those previously observed in studies involving glutamate uptake and seizures reinforce the idea that guanosine is the specific extracellular guanine-based purines effector and indicate that its conversion occurs not only in the central nervous system but also peripherally.

  2. Cyclic multiverses

    Science.gov (United States)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  3. BolA Is Required for the Accurate Regulation of c-di-GMP, a Central Player in Biofilm Formation.

    Science.gov (United States)

    Moreira, Ricardo N; Dressaire, Clémentine; Barahona, Susana; Galego, Lisete; Kaever, Volkhard; Jenal, Urs; Arraiano, Cecília M

    2017-09-19

    The bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a nearly ubiquitous intracellular signaling molecule involved in the transition from the motile to the sessile/biofilm state in bacteria. C-di-GMP regulates various cellular processes, including biofilm formation, motility, and virulence. BolA is a transcription factor that promotes survival in different stresses and is also involved in biofilm formation. Both BolA and c-di-GMP participate in the regulation of motility mechanisms leading to similar phenotypes. Here, we establish the importance of the balance between these two factors for accurate regulation of the transition between the planktonic and sessile lifestyles. This balance is achieved by negative-feedback regulation of BolA and c-di-GMP. BolA not only contributes directly to the motility of bacteria but also regulates the expression of diguanylate cyclases and phosphodiesterases. This expression modulation influences the synthesis and degradation of c-di-GMP, while this signaling metabolite has a negative influence in bolA mRNA transcription. Finally, we present evidence of the dominant role of BolA in biofilm, showing that, even in the presence of elevated c-di-GMP levels, biofilm formation is reduced in the absence of BolA. C-di-GMP is one of the most important bacterial second messengers involved in several cellular processes, including virulence, cell cycle regulation, biofilm formation, and flagellar synthesis. In this study, we unravelled a direct connection between the bolA morphogene and the c-di-GMP signaling molecule. We show the important cross-talk that occurs between these two molecular regulators during the transition between the motile/planktonic and adhesive/sessile lifestyles in Escherichia coli This work provides important clues that can be helpful in the development of new strategies, and the results can be applied to other organisms with relevance for human health.IMPORTANCE Bacterial cells have evolved several mechanisms

  4. Time-dependent inhibitory effects of cGMP-analogues on thrombin-induced platelet-derived microparticles formation, platelet aggregation, and P-selectin expression

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, Gyrid [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway); Herfindal, Lars; Kopperud, Reidun [Department of Biomedicine, University of Bergen, Bergen (Norway); Aragay, Anna M. [Department of Biomedicine, University of Bergen, Bergen (Norway); Molecular Biology Institute of Barcelona (IBMB, CSIC), Barcelona (Spain); Holmsen, Holm; Døskeland, Stein Ove; Kleppe, Rune [Department of Biomedicine, University of Bergen, Bergen (Norway); Selheim, Frode, E-mail: Frode.Selheim@biomed.uib.no [Proteomic Unit at University of Bergen (PROBE), University of Bergen, Bergen (Norway); Department of Biomedicine, University of Bergen, Bergen (Norway)

    2014-07-04

    Highlights: • We investigated the impact of cyclic nucleotide analogues on platelet activation. • Different time dependence were found for inhibition of platelet activation. • Additive effect was found using PKA- and PKG-activating analogues. • Our results may explain some of the discrepancies reported for cNMP signalling. - Abstract: In platelets, nitric oxide (NO) activates cGMP/PKG signalling, whereas prostaglandins and adenosine signal through cAMP/PKA. Cyclic nucleotide signalling has been considered to play an inhibitory role in platelets. However, an early stimulatory effect of NO and cGMP-PKG signalling in low dose agonist-induced platelet activation have recently been suggested. Here, we investigated whether different experimental conditions could explain some of the discrepancy reported for platelet cGMP-PKG-signalling. We treated gel-filtered human platelets with cGMP and cAMP analogues, and used flow cytometric assays to detect low dose thrombin-induced formation of small platelet aggregates, single platelet disappearance (SPD), platelet-derived microparticles (PMP) and thrombin receptor agonist peptide (TRAP)-induced P-selectin expression. All four agonist-induced platelet activation phases were blocked when platelets were costimulated with the PKG activators 8-Br-PET-cGMP or 8-pCPT-cGMP and low-doses of thrombin or TRAP. However, extended incubation with 8-Br-PET-cGMP decreased its inhibition of TRAP-induced P-selectin expression in a time-dependent manner. This effect did not involve desensitisation of PKG or PKA activity, measured as site-specific VASP phosphorylation. Moreover, PKG activators in combination with the PKA activator Sp-5,6-DCL-cBIMPS revealed additive inhibitory effect on TRAP-induced P-selectin expression. Taken together, we found no evidence for a stimulatory role of cGMP/PKG in platelets activation and conclude rather that cGMP/PKG signalling has an important inhibitory function in human platelet activation.

  5. Neuronal nitric oxide synthase supports Renin release during sodium restriction through inhibition of phosphodiesterase 3

    DEFF Research Database (Denmark)

    Sällström, Johan; Jensen, Boye L; Skøtt, Ole

    2010-01-01

    NOS supports renin release by cyclic guanosine monophosphate (cGMP)-mediated inhibition of cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase 3 (PDE3) in juxtaglomerular (JG) cells. METHODS: The experiments were performed in conscious nNOS⁻(/)⁻ and wild types after 10 days on a low-sodium diet...

  6. Cyclic Vitalism

    DEFF Research Database (Denmark)

    Halse, Sven

    2014-01-01

    of taking such a unilateral view of what constituted a Vitalist concept of life. It could lead to a misunderstanding of Vitalist way of thinking, Rasch said, if the focus were only set upon the enthusiastic surplus, the worshipping of youth and health. To Vitalists, life is more than that. It is a totality...... that also encompasses notions of destruction, decay and death. “All life symbols in literature around 1900 are at the same time symbols of death”. (Rasch, W. 1967:24) Through the analyses of three poems, this article aims to show concrete examples of how cyclic Vitalist thinking is embedded in poetry...... of the era. The analyses include a further sub-categorisation to capture the different types of Life Force dealt with in the texts. By way of an introduction, Vitalism is discussed within the context of the scientific and social developments of the 19th Century....

  7. Documentation and Records: Harmonized GMP Requirements

    OpenAIRE

    Patel, KT; Chotai, NP

    2011-01-01

    ‘If it’s not written down, then it didn’t happen!’ The basic rules in any good manufacturing practice (GMP) regulations specify that the pharmaceutical manufacturer must maintain proper documentation and records. Documentation helps to build up a detailed picture of what a manufacturing function has done in the past and what it is doing now and, thus, it provides a basis for planning what it is going to do in the future. Regulatory inspectors, during their inspections of manufacturing sites, ...

  8. 芎芷地龙汤对偏头痛风热证模型NO、NOS、cGMP的影响%Effect of Xiongzhi Dilong Decoction on NO,NOS and cGMP in Migraine Model with Wind heat Syndrome

    Institute of Scientific and Technical Information of China (English)

    赵永烈; 王玉来; 姚卓亭; 岳广欣

    2015-01-01

    Objective To study the effects of Xiongzhi Dilong decoction(XDD)on nitric oxide (NO)/NO synthase (NOS)/cyclic guanosine monophosphate (cGMP)in migraine with wind heat syndrome.Methods The migraine model with wind heat syndrome was established by combining exterior pathogen(hot wind)and GTN administration.The frequency of scratching head within 2 h was examined.The contents of plasma cyclic cGMP,NO and NOS were assayed by radioimmunoassay(RIA),nitrate reductase method and colorimetric method.Results The contents of plasma NOS,NO,and cGMP in migraine model were significantly higher than that in normal group and wind heat group(P<0.01),and the contents of plasma NOS,NO and cGMP in migraine with wind heat syn-drome model persistently increased,which was significant difference compared to normal group(P<0.01),and was significant differ-ence compared to migraine model group(P<0.05).The contents of plasma NOS,NO and cGMP in Chinese medicine treatment group were recovered,which was significant difference compared to migraine with wind heat syndrome model and migraine model group(P<0.05).Conclusion There is no significant effect on normal organism which sufferd from wind heat,but there is significant effect on migraine model induced by nitroglycerin.The content of plasma NOS,NO and cGMP in migraine model which is invaded by wind and heat persistently increased.XDD can attenuate remarkably the contents of plasma NOS,NO and cGMP in migraine model with wind heat syndrome.%目的:探讨芎芷地龙汤对偏头痛风热证一氧化氮(NO)、一氧化氮合酶(NOS)、环鸟苷酸(cGMP)的影响。方法使用热风及硝酸甘油协同诱导建立大鼠偏头痛风热证模型,观察2h内搔头次数,用放免法测定血浆中环鸟苷酸的含量,用硝酸还原酶法测定血浆中一氧化氮的含量,用比色法测定血浆中一氧化氮合酶的含量。结果偏头痛模型组血浆 NOS、NO、cGMP含量升高,与正常组、风热组相

  9. Nitric oxide augments single Ca(2+) channel currents via cGMP-dependent protein kinase in Kenyon cells isolated from the mushroom body of the cricket brain.

    Science.gov (United States)

    Kosakai, Kumiko; Tsujiuchi, Yuuki; Yoshino, Masami

    2015-07-01

    Behavioral and pharmacological studies in insects have suggested that the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway is involved in the formation of long-term memory (LTM) associated with olfactory learning. However, the target molecules of NO and the downstream signaling pathway are still not known. In this study, we investigated the action of NO on single voltage-dependent Ca(2+) channels in the intrinsic neurons known as Kenyon cells within the mushroom body of the cricket brain, using the cell-attached configuration of the patch-clamp technique. Application of the NO donor S-nitrosoglutathione (GSNO) increased the open probability (NPO) of single Ca(2+) channel currents. This GSNO-induced increase was blocked by ODQ, a soluble guanylate cyclase (sGC) inhibitor, suggesting that the NO generated by GSNO acts via sGC to raise cGMP levels. The membrane-permeable cGMP analog 8-Bro-cGMP also increased the NPO of single Ca(2+) channel currents. Pretreatment of cells with KT5823, a protein kinase G blocker, abolished the excitatory effect of GSNO. These results suggest that NO augments the activity of single Ca(2+) channels via the cGMP/PKG signaling pathway. To gain insight into the physiological role of NO, we examined the effect of GSNO on action potentials of Kenyon cells under current-clamp conditions. Application of GSNO increased the frequency of action potentials elicited by depolarizing current injections, indicating that NO acts as a modulator resulting in a stimulatory signal in Kenyon cells. We discuss the increased Ca(2+) influx through these Ca(2+) channels via the NO/cGMP signaling cascade in relation to the formation of olfactory LTM.

  10. [Isolation of inosine-5'-monophosphate from fish muscles].

    Science.gov (United States)

    Tugaĭ, V A; Akulin, V N; Epshteĭn, L M

    1987-01-01

    Conditions for transformation of tissue adenosine-5'-monophosphate (AMP) into inosine-5'-monophosphate (IMP) with the aid of endogenic AMP-aminohydrolase are developed resting on the studied properties of AMP-aminohydrolase (EC 3.5.4.6) from saltwater fish muscles (one of the enzymes participating in the nucleotide metabolism). Sorption of the nucleotide is performed on the activated charcoals A gamma-3 A gamma-5 which eluate IMP from acid solutions. It reduces the process of isolation, permits application of the acid wash solutions to remove salts; the alkaline ethyl alcohol-aid elution at the subsequent stages accelerates the process of nucleotide concentration by means of vacuum evaporation. The suggested approaches allow developing a simple method of IMP production from fish tissues which diminishes the cost of preparation.

  11. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

    Science.gov (United States)

    Miannay, Francois-Alexandre; Gustavsson, Thomas; Banyasz, Akos; Markovitsi, Dimitra

    2010-03-11

    The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.

  12. cAMP and cGMP in nasal mucus related to severity of smell loss in patients with smell dysfunction.

    Science.gov (United States)

    Henkin, R I; Velicu, I

    2008-01-01

    To evaluate nasal mucus levels of cAMP and cGMP in patients with taste and smell dysfunction with respect to severity of their smell loss. cAMP and cGMP were measured in nasal mucus using a sensitive spectrophotometric 96 plate ELISA technique. Smell loss was measured in patients with taste and smell dysfunction by standardized psychophysical measurements of olfactory function and classified by severity of loss into four types from most severe to least severe such that anosmia > Type I hyposmia > Type II hyposmia > Type III hyposmia. Measurements of nasal mucus cyclic nucleotides and smell loss were made independently. As smell loss severity increased stepwise cAMP and cGMP levels decreased stepwise [cAMP, cGMP (in pmol/ml); anosmia - 0.004, 0.008: Type I hyposmia - 0.12+/-0.03, 0.10+/-0.03: Type II hyposmia - 0.15+/-0.02, 0.16+/-0.01: Type III hyposmia - 0.23+/-0.05, 0.20+/-0.15]. These results confirm the association of biochemical changes in cyclic nucleotides with systematic losses of smell acuity. These results confirm the usefulness of the psychophysical methods we defined to determine the systematic classification of smell loss severity. These changes can form the basis for the biochemical definition of smell loss among some patients with smell loss as well as for their therapy.

  13. The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in Caenorhabditis elegans.

    Science.gov (United States)

    Fujiwara, Manabi; Hino, Takahiro; Miyamoto, Ryuta; Inada, Hitoshi; Mori, Ikue; Koga, Makoto; Miyahara, Koji; Ohshima, Yasumi; Ishihara, Takeshi

    2015-12-01

    The body size of Caenorhabditis elegans is thought to be controlled by sensory inputs because many mutants with sensory cilium structure defects exhibit small body size. The EGL-4 cGMP-dependent protein kinase acts in sensory neurons to reduce body size when animals fail to perceive sensory signals. In addition to body size control, EGL-4 regulates various other behavioral and developmental pathways, including those involved in the regulation of egg laying and chemotaxis behavior. Here we have identified gcy-12, which encodes a receptor-type guanylyl cyclase, as a gene involved in the sensory regulation of body size. Analyses with GFP fusion constructs showed that gcy-12 is expressed in several sensory neurons and localizes to sensory cilia. Genetic analyses indicated that GCY-12 acts upstream of EGL-4 in body size control but does not affect other EGL-4 functions. Our studies indicate that the function of the GCY-12 guanylyl cyclase is to provide cGMP to the EGL-4 cGMP-dependent kinase only for limited tasks including body size regulation. We also found that the PDE-2 cyclic nucleotide phosphodiesterase negatively regulates EGL-4 in controlling body size. Thus, the cGMP level is precisely controlled by GCY-12 and PDE-2 to determine body size through EGL-4, and the defects in the sensory cilium structure may disturb the balanced control of the cGMP level. The large number of guanylyl cyclases encoded in the C. elegans genome suggests that EGL-4 exerts pleiotropic effects by partnering with different guanylyl cyclases for different downstream functions.

  14. Supplementary Material for: The arabidopsis cyclic nucleotide interactome

    KAUST Repository

    Donaldson, Lara

    2016-01-01

    Abstract Background Cyclic nucleotides have been shown to play important signaling roles in many physiological processes in plants including photosynthesis and defence. Despite this, little is known about cyclic nucleotide-dependent signaling mechanisms in plants since the downstream target proteins remain unknown. This is largely due to the fact that bioinformatics searches fail to identify plant homologs of protein kinases and phosphodiesterases that are the main targets of cyclic nucleotides in animals. Methods An affinity purification technique was used to identify cyclic nucleotide binding proteins in Arabidopsis thaliana. The identified proteins were subjected to a computational analysis that included a sequence, transcriptional co-expression and functional annotation analysis in order to assess their potential role in plant cyclic nucleotide signaling. Results A total of twelve cyclic nucleotide binding proteins were identified experimentally including key enzymes in the Calvin cycle and photorespiration pathway. Importantly, eight of the twelve proteins were shown to contain putative cyclic nucleotide binding domains. Moreover, the identified proteins are post-translationally modified by nitric oxide, transcriptionally co-expressed and annotated to function in hydrogen peroxide signaling and the defence response. The activity of one of these proteins, GLYGOLATE OXIDASE 1, a photorespiratory enzyme that produces hydrogen peroxide in response to Pseudomonas, was shown to be repressed by a combination of cGMP and nitric oxide treatment. Conclusions We propose that the identified proteins function together as points of cross-talk between cyclic nucleotide, nitric oxide and reactive oxygen species signaling during the defence response.

  15. RECIPIENT PRETRANSPLANT INOSINE MONOPHOSPHATE DEHYDROGENASE ACTIVITY IN NONMYELOABLATIVE HCT

    Science.gov (United States)

    Bemer, Meagan J.; Risler, Linda J.; Phillips, Brian R.; Wang, Joanne; Storer, Barry E.; Sandmaier, Brenda M.; Duan, Haichuan; Raccor, Brianne S.; Boeckh, Michael J.; McCune, Jeannine S.

    2014-01-01

    Mycophenolic acid, the active metabolite of mycophenolate mofetil (MMF), inhibits inosine monophosphate dehydrogenase (IMPDH) activity. IMPDH is the rate-limiting enzyme involved in de novo synthesis of guanosine nucleotides and catalyzes the oxidation of inosine 5’- monophosphate (IMP) to xanthosine 5’-monophosphate (XMP). We developed a highly sensitive liquid chromatography–mass spectrometry method to quantitate XMP concentrations in peripheral blood mononuclear cells (PMNC) isolated from the recipient pretransplant and used this method to determine IMPDH activity in 86 nonmyeloablative allogeneic hematopoietic cell transplantation (HCT) patients. The incubation procedure and analytical method yielded acceptable within-sample and within-individual variability. Considerable between-individual variability was observed (12.2-fold). Low recipient pretransplant IMPDH activity was associated with increased day +28 donor T-cell chimerism, more acute graft-versus-host disease (GVHD), lower neutrophil nadirs, and more cytomegalovirus reactivation, but not with chronic GVHD, relapse, non-relapse mortality, or overall mortality. We conclude that quantitation of the recipient’s pretransplant IMPDH activity in PMNC lysate could provide a useful biomarker to evaluate a recipient’s sensitivity to MMF, but confirmatory studies are needed. Further trials should be conducted to confirm our findings and to optimize postgrafting immunosuppression in nonmyeloablative HCT recipients. PMID:24923537

  16. The Structural Basis of Cyclic Diguanylate Signal Transduction by PilZ Domains

    Energy Technology Data Exchange (ETDEWEB)

    Benach,J.; Swaminathan, S.; Tamayo, R.; Handelman, S.; Folta-Stogniew, E.; Ramos, J.; Forouhar, F.; Neely, H.; Seetharaman, J.; et al

    2007-01-01

    The second messenger cyclic diguanylate (c-di-GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c-di-GMP and allosterically modulate effector pathways. We have determined a 1.9 Angstroms crystal structure of c-di-GMP bound to VCA0042/PlzD, a PilZ domain-containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain-containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C-terminal PilZ domain plus an N-terminal domain with a similar beta-barrel fold. C-di-GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven-residue long N-terminal loop that undergoes a conformational switch as it wraps around c-di-GMP. This switch brings the PilZ domain into close apposition with the N-terminal domain, forming a new allosteric interaction surface that spans these domains and the c-di-GMP at their interface. The very small size of the N-terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.

  17. Properties of a cyclic 3'5'-nucleotide phosphodiesterase from Vigna mungo.

    Science.gov (United States)

    Lee, C H; Abidin, U Z

    1989-10-01

    Cyclic AMP phosphodiesterase (PDE) partially purified from roots of Vigna mungo exhibited optimum activity at pH 5.5 to 6.0 and maximum enzyme activity at 50 degrees C. Levels of PDE activity in roots remained relatively constant from the first to the eleventh day after germination; on the twelfth day there was a 400% increase in PDE activity. The enzyme was stable for at least 48 hours at 28 degrees C, retaining 92% of its original activity. Plant growth hormones including gibberellic acid, indoleacetic acid and kinetin at 1.0 and 10.0 microM concentrations did not have any significant effect on enzyme activity. Nucleotides tested including cyclic 2'3' AMP, cyclic 2'3' GMP completely abolished enzyme activity at 1.0mM while cyclic 3'5' GMP, cyclic 3'5' GMP, 2'deoxy 5' ATP, 2'deoxy 5'GTP and 5'ADP were also inhibitory to the enzyme. The enzyme was stimulated by Mg2+, Fe2+ and NH4+ while Cu2+ and Fe3+ were inhibitory. Theophylline, caffeine, phosphate, pyrophosphate and EDTA were inhibitory to the enzyme.

  18. Nucleic acid molecules encoding isopentenyl monophosphate kinase, and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, Rodney B. (Pullman, WA); Lange, Bernd M. (Pullman, WA)

    2001-01-01

    A cDNA encoding isopentenyl monophosphate kinase (IPK) from peppermint (Mentha x piperita) has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID NO:1) is provided which codes for the expression of isopentenyl monophosphate kinase (SEQ ID NO:2), from peppermint (Mentha x piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for isopentenyl monophosphate kinase, or for a base sequence sufficiently complementary to at least a portion of isopentenyl monophosphate kinase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding isopentenyl monophosphate kinase. Thus, systems and methods are provided for the recombinant expression of the aforementioned recombinant isopentenyl monophosphate kinase that may be used to facilitate its production, isolation and purification in significant amounts. Recombinant isopentenyl monophosphate kinase may be used to obtain expression or enhanced expression of isopentenyl monophosphate kinase in plants in order to enhance the production of isopentenyl monophosphate kinase, or isoprenoids derived therefrom, or may be otherwise employed for the regulation or expression of isopentenyl monophosphate kinase, or the production of its products.

  19. Development of a transgenic Plasmodium berghei line (Pb pfpkg expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    Directory of Open Access Journals (Sweden)

    Rita Tewari

    Full Text Available With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  20. Development of a transgenic Plasmodium berghei line (Pb pfpkg) expressing the P. falciparum cGMP-dependent protein kinase, a novel antimalarial drug target.

    Science.gov (United States)

    Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A

    2014-01-01

    With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.

  1. Cyclic AMP system in muscle tissue during prolonged hypokinesia

    Science.gov (United States)

    Antipenko, Y. A.; Bubeyev, Y. A.; Korovkin, B. F.; Mikhaleva, N. P.

    1980-01-01

    Components of the cyclic Adenosine-cyclic-35-monophosphate (AMP) system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment cAMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

  2. Precision Optics Optimization for GMp Experiment

    Science.gov (United States)

    Wang, Yang; Allada, Kalyan; Averett, Todd; Christy, Eric; Gu, Chao; Huang, Min; Wojtsekhowski, Bogdan; GMp Collaboration

    2015-04-01

    The GMp experiment aims to improve the precision on the elastic e-p cross section measurement to 2%; up to a factor of 5 better than previous measurements, with four-momentum transfer up to 14 GeV2 using the High Resolution Spectrometers (HRS) of Hall A at Jefferson Lab. These measurements will be an important benchmark for many other cross section measurements in hadron physics. To reach this goal, it is necessary to improve the precision of many instrument systems. Knowledge of the magnetic optics of HRS is critically important for precision reconstruction of the momentum and coordinates of the scattered particles at the interaction vertex. In this talk, an improved optimization method for optics will be presented in detail and the results of a study based on recent commissioning data in 2014 will be discussed.

  3. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica

    Science.gov (United States)

    Ambrosis, Nicolás; Boyd, Chelsea D.; O´Toole, George A.; Fernández, Julieta; Sisti, Federico

    2016-01-01

    Biofilm formation is important for infection by many pathogens. Bordetella bronchiseptica causes respiratory tract infections in mammals and forms biofilm structures in nasal epithelium of infected mice. We previously demonstrated that cyclic di-GMP is involved in biofilm formation in B. bronchiseptica. In the present work, based on their previously reported function in Pseudomonas fluorescens, we identified three genes in the B. bronchiseptica genome likely involved in c-di-GMP-dependent biofilm formation: brtA, lapD and lapG. Genetic analysis confirmed a role for BrtA, LapD and LapG in biofilm formation using microtiter plate assays, as well as scanning electron and fluorescent microscopy to analyze the phenotypes of mutants lacking these proteins. In vitro and in vivo studies showed that the protease LapG of B. bronchiseptica cleaves the N-terminal domain of BrtA, as well as the LapA protein of P. fluorescens, indicating functional conservation between these species. Furthermore, while BrtA and LapG appear to have little or no impact on colonization in a mouse model of infection, a B. bronchiseptica strain lacking the LapG protease has a significantly higher rate of inducing a severe disease outcome compared to the wild type. These findings support a role for c-di-GMP acting through BrtA/LapD/LapG to modulate biofilm formation, as well as impact pathogenesis, by B. bronchiseptica PMID:27380521

  4. A flavin cofactor-binding PAS domain regulates c-di-GMP synthesis in AxDGC2 from Acetobacter xylinum.

    Science.gov (United States)

    Qi, Yaning; Rao, Feng; Luo, Zhen; Liang, Zhao-Xun

    2009-11-03

    The cytoplasmic protein AxDGC2 regulates cellulose synthesis in the obligate aerobe Acetobacter xylinum by controlling the cellular concentration of the cyclic dinucleotide messenger c-di-GMP. AxDGC2 contains a Per-Arnt-Sim (PAS) domain and two putative catalytic domains (GGDEF and EAL) for c-di-GMP metabolism. We found that the PAS domain of AxDGC2 binds a flavin adenine dinucleotide (FAD) cofactor noncovalently. The redox status of the FAD cofactor modulates the catalytic activity of the GGDEF domain for c-di-GMP synthesis, with the oxidized form exhibiting higher catalytic activity and stronger substrate inhibition. The results suggest that AxDGC2 is a signaling protein that regulates the cellular c-di-GMP level in response to the change in cellular redox status or oxygen concentration. Moreover, several residues predicated to be involved in FAD binding and signal transduction were mutated to examine the impact on redox potential and catalytic activity. Despite the minor perturbation of redox potential and unexpected modification of FAD in one of the mutants, none of the single mutations was able to completely disrupt the transmission of the signal to the GGDEF domain, indicating that the change in the FAD redox state can still trigger structural changes in the PAS domain probably by using substituted hydrogen-bonded water networks. Meanwhile, although the EAL domain of AxDGC2 was found to be catalytically inactive toward c-di-GMP, it was capable of hydrolyzing some phosphodiester bond-containing nonphysiological substrates. Together with the previously reported oxygen-dependent activity of the homologous AxPDEA1, the results provided new insight into relationships among oxygen level, c-di-GMP concentration, and cellulose synthesis in A. xylinum.

  5. Visualization of cyclic nucleotide dynamics in neurons

    Directory of Open Access Journals (Sweden)

    Kirill eGorshkov

    2014-12-01

    Full Text Available The second messengers cAMP and cGMP transduce many neuromodulatory signals from hormones and neurotransmitters into specific functional outputs. Their production, degradation and signaling are spatiotemporally regulated to achieve high specificity in signal transduction. The development of genetically encodable fluorescent biosensors has provided researchers with useful tools to study these versatile second messengers and their downstream effectors with unparalleled spatial and temporal resolution in cultured cells and living animals. In this review, we introduce the general design of these fluorescent biosensors and describe several of them in more detail. Then we discuss a few examples of using cyclic nucleotide fluorescent biosensors to study regulation of neuronal function and finish with a discussion of advances in the field. Although there has been significant progress made in understanding how the specific signaling of cyclic nucleotide second messengers is achieved, the mechanistic details in complex cell types like neurons are only just beginning to surface. Current and future fluorescent protein reporters will be essential to elucidate the role of cyclic nucleotide signaling dynamics in the functions of individual neurons and their networks.

  6. Specific Interactions of Antitumor Metallocenes with Deoxydinucleoside Monophosphates

    Science.gov (United States)

    Eberle, Rahel P.; Hari, Yvonne; Schürch, Stefan

    2017-09-01

    Bent metallocenes Cp2MCl2 (M = Ti, V, Nb, Mo) are known to exhibit cytotoxic activity against a variety of cancer types. Though the mechanism of action is not fully understood yet, the accumulation of the metal ions in the nucleus points towards DNA as one of the primary targets. A set of eight deoxydinucleoside monophosphates was used to study the adduct yields with metallocenes and cisplatin. The binding affinities are reflected by the relative intensities of the adducts and were found to follow the order of Pt > V > Ti > Mo (no adducts were detected with Nb). High-resolution tandem mass spectrometry was applied to locate the binding patterns in the deoxydinucleoside monophosphates. Whereas cisplatin binds to the soft nitrogen atoms in the purine nucleobases, the metallocenes additionally interact with the hard phosphate oxygen, which is in good agreement with the hard and soft (Lewis) acids and bases (HSAB) concept. However, the binding specificities were found to be unique for each metallocene. The hard Lewis acids titanium and vanadium predominantly bind to the deprotonated phosphate oxygen, whereas molybdenum, an intermediate Lewis acid, preferentially interacts with the nucleobases. Nucleobases comprise alternative binding sites for titanium and vanadium, presumably oxygen atoms for the first and nitrogen atoms for the latter. In summary, the intrinsic binding behavior of the different metallodrugs is reflected by the gas-phase dissociation of the adducts. Consequently, MS/MS can provide insights into therapeutically relevant interactions between metallodrugs and their cellular targets. [Figure not available: see fulltext.

  7. cGMP stimulation of cystic fibrosis transmembrane conductance regulator Cl- channels co-expressed with cGMP-dependent protein kinase type II but not type Ibeta

    NARCIS (Netherlands)

    A.B. Vaandrager (Arie); S.M. Lohmann (Suzanne); H.R. de Jonge (Hugo); W.C. Poller; B.C. Tilly (Bernard); A. Smolenski; S. Schneider-Rasp; A.G. Bot (Alice); M.J. Edixhoven (Marcel); B.J. Scholte (Bob); T. Jarchau; U. Walter

    1997-01-01

    textabstractIn order to investigate the involvement of cGMP-dependent protein kinase (cGK) type II in cGMP-provoked intestinal Cl- secretion, cGMP-dependent activation and phosphorylation of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels was ana

  8. New GMP Models for Caucasus Region

    Science.gov (United States)

    Jorjiashvili, N.; Godoladze, T.; Tvaradze, N.; Tumanova, N.

    2014-12-01

    The Caucasus is a region of numerous natural hazards and ensuing disasters. Analysis of the losses due to past disasters indicates those most catastrophic in the region have historically been due to strong earthquakes. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration because this parameter gives useful information for Seismic Hazard Assessment. Thus, many peak ground acceleration attenuation relations have been developed by different authors. However, a few attenuation relations were developed for Caucasus region: Ambraseys et al. (1996,2005) which were based on entire European region and they were not focused locally on Caucasus Region, Smit et.al.(2000) that was based on a small amount of acceleration data that really is not enough. Since 2003 construction of Georgian Digital Seismic Network has started with the help of number of International organizations, Projects and Private companies. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. Also site ground conditions are considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Thus, this parameter is emphasized in the present study. Here it must be mentioned that in previous model which only one was done for Caucasus Region (Smit et. al., 2000) local conditions were not considered. Thus, it is an advantage of models from this study.

  9. Cyclic Vomiting Syndrome

    Science.gov (United States)

    ... or the flu eating certain foods, such as chocolate or cheese, or additives such as caffeine, nitrites— ... people with cyclic vomiting syndrome. Eating, Diet, and Nutrition During the prodrome and vomiting phases of cyclic ...

  10. Superextensions of cyclic semigroups

    Directory of Open Access Journals (Sweden)

    V. M. Gavrylkiv

    2013-06-01

    Full Text Available Given a cyclic semigroup $S$ we study right and left zeros,singleton left ideals, the minimal ideal, left cancelable andright cancelable elements of superextensions $lambda(S$ andcharacterize cyclic semigroups whose superextensions arecommutative.

  11. Alteration of cyclic nucleotides levels and oxidative stress in saliva of human subjects with periodontitis.

    Science.gov (United States)

    Mashayekhi, Fereshteh; Aghahoseini, Farzaneh; Rezaie, Ali; Zamani, Mohammad J; Khorasani, Reza; Abdollahi, Mohammad

    2005-11-15

    Experimental findings suggest a protective role for cyclic nucleotides against induction of oxidative stress in saliva. Oxidative stress is a major contributor to the pathogenesis of inflammatory diseases. This study was conducted to evaluate salivary oxidative stress along with cGMP and cAMP levels in periodontitis subjects. cAMP and cGMP are second messengers that have important roles in salivary gland functions. Unstimulated whole saliva samples were obtained from periodontitis patients and age- and sex-matched healthy individuals. Saliva samples were analyzed for thiobarbituric reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (total antioxidant power, TAP), and levels of cAMP and cGMP. Concentrations of cAMP and cGMP were reduced in the saliva of patients with moderate and severe periodontitis. Saliva of patients with severe periodontitis had higher TBARS and lower TAP than control subjects. The presence of oxidative stress and lower levels of salivary cGMP and cAMP in periodontitis are in association with disease severity.

  12. Biofilm formation and antibiotic production in Ruegeria mobilis are influenced by intracellular concentrations of cyclic dimeric guanosinmonophosphate.

    Science.gov (United States)

    D'Alvise, Paul W; Magdenoska, Olivera; Melchiorsen, Jette; Nielsen, Kristian F; Gram, Lone

    2014-05-01

    In many species of the marine Roseobacter clade, periods of attached life, in association with phytoplankton or particles, are interspersed with planktonic phases. The purpose of this study was to determine whether shifts between motile and sessile life in the globally abundant Roseobacter clade species Ruegeria mobilis are associated with intracellular concentrations of the signal compound cyclic dimeric guanosinmonophosphate (c-di-GMP), which in bacteria regulates transitions between motile and sessile life stages. Genes for diguanylate cyclases and phosphodiesterases, which are involved in c-di-GMP signalling, were found in the genome of R. mobilis strain F1926. Ion pair chromatography-tandem mass spectrometry revealed 20-fold higher c-di-GMP concentrations per cell in biofilm-containing cultures than in planktonic cells. An introduced diguanylate cyclase gene increased c-di-GMP and enhanced biofilm formation and production of the potent antibiotic tropodithietic acid (TDA). An introduced phosphodiesterase gene decreased c-di-GMP and reduced biofilm formation and TDA production. tdaC, a key gene for TDA biosynthesis, was expressed only in attached or biofilm-forming cells, and expression was induced immediately after initial attachment. In conclusion, c-di-GMP signalling controls biofilm formation and biofilm-associated traits in R. mobilis and, as suggested by presence of GGDEF and EAL domain protein genes, also in other Roseobacter clade species. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Adenosine Monophosphate-Based Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Chen, Fei; Venkateswaran, Kasthuri; Hattori, Nori; Suzuki, Shigeya

    2009-01-01

    A method of rapid detection of bacterial spores is based on the discovery that a heat shock consisting of exposure to a temperature of 100 C for 10 minutes causes the complete release of adenosine monophosphate (AMP) from the spores. This method could be an alternative to the method described in the immediately preceding article. Unlike that method and related prior methods, the present method does not involve germination and cultivation; this feature is an important advantage because in cases in which the spores are those of pathogens, delays involved in germination and cultivation could increase risks of infection. Also, in comparison with other prior methods that do not involve germination, the present method affords greater sensitivity. At present, the method is embodied in a laboratory procedure, though it would be desirable to implement the method by means of a miniaturized apparatus in order to make it convenient and economical enough to encourage widespread use.

  14. Cyclic Railway Timetable Optimization

    NARCIS (Netherlands)

    L.W.P. Peeters (Leon)

    2003-01-01

    textabstractCyclic Railway Timetable Optimization describes mathematical models and solution methods for constructing high quality cyclic railway timetables. In a cyclic timetable, a train for a certain destination leaves a certain station at the same time every cycle time, say every half an hour,

  15. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae.

    Science.gov (United States)

    Kariisa, Ankunda T; Weeks, Kevin; Tamayo, Rita

    2016-01-01

    In many bacterial species, including the aquatic bacterium and human pathogen Vibrio cholerae, the second messenger cyclic diguanylate (c-di-GMP) modulates processes such as biofilm formation, motility, and virulence factor production. By interacting with various effectors, c-di-GMP regulates gene expression or protein function. One type of c-di-GMP receptor is the class I riboswitch, representatives of which have been shown to bind c-di-GMP in vitro. Herein, we examined the in vitro and in vivo function of the putative class I riboswitch in Vibrio cholerae, Vc1, which lies upstream of the gene encoding GbpA, a colonization factor that contributes to attachment of V. cholerae to environmental and host surfaces containing N-acetylglucosamine moieties. We provide evidence that Vc1 RNA interacts directly with c-di-GMP in vitro, and that nucleotides conserved among this class of riboswitch are important for binding. Yet the mutation of these conserved residues individually in the V. cholerae chromosome inconsistently affects the expression of gbpA and production of the GbpA protein. By isolating the regulatory function of Vc1, we show that the Vc1 element positively regulates downstream gene expression in response to c-di-GMP. Together these data suggest that the Vc1 element responds to c-di-GMP in vivo. Positive regulation of gbpA expression by c-di-GMP via Vc1 may influence the ability of V. cholerae to associate with chitin in the aquatic environment and the host intestinal environment.

  16. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Ankunda T Kariisa

    Full Text Available In many bacterial species, including the aquatic bacterium and human pathogen Vibrio cholerae, the second messenger cyclic diguanylate (c-di-GMP modulates processes such as biofilm formation, motility, and virulence factor production. By interacting with various effectors, c-di-GMP regulates gene expression or protein function. One type of c-di-GMP receptor is the class I riboswitch, representatives of which have been shown to bind c-di-GMP in vitro. Herein, we examined the in vitro and in vivo function of the putative class I riboswitch in Vibrio cholerae, Vc1, which lies upstream of the gene encoding GbpA, a colonization factor that contributes to attachment of V. cholerae to environmental and host surfaces containing N-acetylglucosamine moieties. We provide evidence that Vc1 RNA interacts directly with c-di-GMP in vitro, and that nucleotides conserved among this class of riboswitch are important for binding. Yet the mutation of these conserved residues individually in the V. cholerae chromosome inconsistently affects the expression of gbpA and production of the GbpA protein. By isolating the regulatory function of Vc1, we show that the Vc1 element positively regulates downstream gene expression in response to c-di-GMP. Together these data suggest that the Vc1 element responds to c-di-GMP in vivo. Positive regulation of gbpA expression by c-di-GMP via Vc1 may influence the ability of V. cholerae to associate with chitin in the aquatic environment and the host intestinal environment.

  17. Crystallographic study of Glu58Ala RNase T1 x 2'-guanosine monophosphate at 1.9-A resolution.

    Science.gov (United States)

    Pletinckx, J; Steyaert, J; Zegers, I; Choe, H W; Heinemann, U; Wyns, L

    1994-02-22

    Glu58 is known to participate in phosphodiester transesterification catalyzed by the enzyme RNase T1. For Glu58 RNase T1, an altered mechanism has been proposed in which His40 replaces Glu58 as the base catalyst [Steyaert, J., Hallenga, K., Wyns, L., & Stanssens, P. (1990) Biochemistry 29, 9064-9072]. Glu58Ala Rnase T1 has been cocrystallized with guanosine 2'-monophosphate (2'-GMP). The crystals are of space group P2(1), with one molecule per asymmetric unit (a = 32.44 A, b = 49.64 A, c = 26.09 A, beta = 99.17 degrees). The three-dimensional structure of the enzyme was determined to a nominal resolution of 1.9 A, yielding a crystallographic R factor of 0.178 for all X-ray data. Comparison of this structure with wild-type structures leads to the following conclusions. The minor changes apparent in the tertiary structure can be explained by either the mutation of Glu58 or by the change in the space group. In the active site, the extra space available through the mutation of Glu58 is occupied by the phosphate group (after a reorientation) and by a solvent molecule replacing a carboxylate oxygen of Glu58. This solvent molecule is a candidate for participation in the altered mechanism of this mutant enzyme. Following up on a study of conserved water sites in RNase T1 crystallized in space group P2(1)2(1)2(1) [Malin, R., Zielenkiewicz, P., & Saenger, W. (1991) J. Mol. Biol. 266, 4848-4852], we investigated the hydration structure for four different packing modes of RNase T1.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Chen, Yicai; Yuan, Mingjun; Mohanty, Anee

    2015-01-01

    The nucleotide signalling molecule bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays an essential role in regulating microbial virulence and biofilm formation. C-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and degraded by phosphodiesterase (PDE) enzymes. One intri...

  19. Phosphodiesterase-5 activity exerts a coronary vasoconstrictor influence in awake swine that is mediated in part via an increase in endothelin production

    NARCIS (Netherlands)

    Z. Zhou (Zhichao); V.J. de Beer (Vincent Jacob); S.B. Bender (Shawn ); A.H.J. Danser (Jan); D. Merkus (Daphne); H. Laughlin (Harold); D.J.G.M. Duncker (Dirk)

    2014-01-01

    textabstractNitric oxide (NO)-induced coronary vasodilation is mediated through production of cyclic guanosine monophosphate (cGMP) and through inhibition of the endothelin-1 (ET) system. We previously demonstrated that phosphodiesterase-5 (PDE5)-mediated cGMP breakdown and ET each exert a vasoconst

  20. The brassinosteroid receptor BRI1 can generate cGMP enabling cGMP-dependent downstream signaling

    KAUST Repository

    Wheeler, Janet I.

    2017-05-08

    The brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) is a member of the leucine rich repeat receptor like kinase family. The intracellular kinase domain of BRI1 is an active kinase and also encapsulates a guanylate cyclase catalytic centre. Using liquid chromatography tandem mass spectrometry, we confirmed that the recombinant cytoplasmic domain of BRI1 generates pmol amounts of cGMP per μg protein with a preference for magnesium over manganese as a co-factor. Importantly, a functional BRI1 kinase is essential for optimal cGMP generation. Therefore, the guanylate cyclase activity of BRI1 is modulated by the kinase while cGMP, the product of the guanylate cyclase, in turn inhibits BRI1 kinase activity. Furthermore, we show using Arabidopsis root cell cultures that cGMP rapidly potentiates phosphorylation of the downstream substrate BRASSINOSTEROID SIGNALING KINASE 1 (BSK1). Taken together, our results suggest that cGMP acts as a modulator that enhances downstream signaling while dampening signal generation from the receptor. This article is protected by copyright. All rights reserved.

  1. 浅谈我国2010版 GMP 认证认识

    Institute of Scientific and Technical Information of China (English)

    张月秋

    2013-01-01

      毒胶囊事件引发人们深思,社会公众对制药企业的要求也日趋提高,GMP 认证势在必行,制药企业自身也加快了GMP 认证的步伐。本文回顾了我国实施 GMP 以来的发展历程。将我国新版 GMP 与美国 GMP 及欧盟 GMP 进行对比,说明我国GMP 步入世界轨道已进入重要阶段。因此,就目前我国制药企业进行 GMP 认证提出一些建议。

  2. Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy

    NARCIS (Netherlands)

    Lobatto, Mark E.; Calcagno, Claudia; Otten, Maarten J.; Millon, Antoine; Ramachandran, Sarayu; Paridaans, Maarten P M; van der Valk, Fleur M.; Storm, G; Stroes, Erik S G; Fayad, Zahi A.; Mulder, Willem J M; Metselaar, Josbert M.

    2015-01-01

    The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100. nm

  3. Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy

    NARCIS (Netherlands)

    Lobatto, Mark E.; Calcagno, Claudia; Otten, Maarten J.; Millon, Antoine; Ramachandran, Sarayu; Paridaans, Maarten P.M.; Valk, van der Fleur M.; Storm, Gert; Stroes, Erik S.G.; Fayad, Zahi A.; Mulder, Willem J.M.; Metselaar, Josbert M.

    2015-01-01

    The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100 nm

  4. Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy

    NARCIS (Netherlands)

    Lobatto, Mark E.; Calcagno, Claudia; Otten, Maarten J.; Millon, Antoine; Ramachandran, Sarayu; Paridaans, Maarten P M; van der Valk, Fleur M.; Storm, G|info:eu-repo/dai/nl/073356328; Stroes, Erik S G; Fayad, Zahi A.; Mulder, Willem J M; Metselaar, Josbert M.

    2015-01-01

    The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100. nm

  5. Pharmaceutical development and preclinical evaluation of a GMP-grade anti-inflammatory nanotherapy

    NARCIS (Netherlands)

    Lobatto, Mark E.; Calcagno, Claudia; Otten, Maarten J.; Millon, Antoine; Ramachandran, Sarayu; Paridaans, Maarten P.M.; van der Valk, Fleur M.; Storm, Gerrit; Stroes, Erik S.G.; Fayad, Zahi A.; Mulder, Willem J.M.; Metselaar, Josbert Maarten

    2015-01-01

    The present study describes the development of a good manufacturing practice (GMP)-grade liposomal nanotherapy containing prednisolone phosphate for the treatment of inflammatory diseases. After formulation design, GMP production was commenced which yielded consistent, stable liposomes sized 100 nm

  6. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC 18bpy)]2+hybrid film

    Institute of Scientific and Technical Information of China (English)

    CHANG Xue-Qin; WANG Shun; LIN Da-Jie; GUAN Wei-Peng; ZHOU Huan; HUANG Shao-Ming

    2009-01-01

    An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4'-dioctsdecyl-2,2' bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+. (denoted as Clay-Ru) was closely packed at a surface pressure of 25 Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5'-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. AglAgCIlKCI) and, more significantly, this response was further enhanced by light irradiation (λ360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.

  7. Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation.

    Science.gov (United States)

    Enomoto, Gen; Ni-Ni-Win; Narikawa, Rei; Ikeuchi, Masahiko

    2015-06-30

    Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A ΔsesB mutant cannot suppress cell aggregation under teal-green light. A ΔsesC mutant shows a less sensitive cell-aggregation response to ambient light. ΔsesA/ΔsesB/ΔsesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.

  8. Structural basis for the catalytic mechanism of a proficient enzyme: Orotidine 5'-Monophosphate Decarboxylase

    DEFF Research Database (Denmark)

    Harris, Pernille Hanne; Poulsen, Jens-Christian Navarro; Jensen, Kaj Frank

    2000-01-01

    Orotidine 5‘-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine 5‘-monophosphate, the last step in the de novo synthesis of uridine 5‘-monophosphate. ODCase is a very proficient enzyme [Radzicka, A., and Wolfenden, R. (1995) Science 267, 90-93], enhancing the reaction...... rate by a factor of 1017. This proficiency has been enigmatic, since it is achieved without metal ions or cofactors. Here we present a 2.5 Å resolution structure of ODCase complexed with the inhibitor 1-(5‘-phospho-ß-d-ribofuranosyl)barbituric acid. It shows a closely packed dimer composed of two a...

  9. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti.

    Science.gov (United States)

    Pérez-Mendoza, Daniel; Rodríguez-Carvajal, Miguel Ángel; Romero-Jiménez, Lorena; Farias, Gabriela de Araujo; Lloret, Javier; Gallegos, María Trinidad; Sanjuán, Juan

    2015-02-17

    An artificial increase of cyclic diguanylate (c-di-GMP) levels in Sinorhizobium meliloti 8530, a bacterium that does not carry known cellulose synthesis genes, leads to overproduction of a substance that binds the dyes Congo red and calcofluor. Sugar composition and methylation analyses and NMR studies identified this compound as a linear mixed-linkage (1 → 3)(1 → 4)-β-D-glucan (ML β-glucan), not previously described in bacteria but resembling ML β-glucans found in plants and lichens. This unique polymer is hydrolyzed by the specific endoglucanase lichenase, but, unlike lichenan and barley glucan, it generates a disaccharidic → 4)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → repeating unit. A two-gene operon bgsBA required for production of this ML β-glucan is conserved among several genera within the order Rhizobiales, where bgsA encodes a glycosyl transferase with domain resemblance and phylogenetic relationship to curdlan synthases and to bacterial cellulose synthases. ML β-glucan synthesis is subjected to both transcriptional and posttranslational regulation. bgsBA transcription is dependent on the exopolysaccharide/quorum sensing ExpR/SinI regulatory system, and posttranslational regulation seems to involve allosteric activation of the ML β-glucan synthase BgsA by c-di-GMP binding to its C-terminal domain. To our knowledge, this is the first report on a linear mixed-linkage (1 → 3)(1 → 4)-β-glucan produced by a bacterium. The S. meliloti ML β-glucan participates in bacterial aggregation and biofilm formation and is required for efficient attachment to the roots of a host plant, resembling the biological role of cellulose in other bacteria.

  10. Cyclic phosphonium ionic liquids

    Directory of Open Access Journals (Sweden)

    Sharon I. Lall-Ramnarine

    2014-01-01

    Full Text Available Ionic liquids (ILs incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonylamide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners.

  11. [Identification of thiamine monophosphate hydrolyzing enzymes in chicken liver].

    Science.gov (United States)

    Kolos, I K; Makarchikov, A F

    2014-01-01

    In animals, thiamine monophosphate (TMP) is an intermediate on the path of thiamine diphosphate, the coenzyme form of vitamin B1, degradation. The enzymes involved in TMP metabolism in animal tissues are not identified hitherto. The aim of this work was to study TMP hydrolysis in chicken liver. Two phosphatases have been found to contribute to TMP hydrolysis in liver homogenate. The first one, possessing a maximal activity at pH 6.0, is soluble, whereas the second one represents a membrane-bound enzyme with a pH optimum of 9.0. Membrane-bound TMPase activity was enhanced 1.7-fold by 5 mM Mg2+ ions and strongly inhibited by levamisole in uncompetitive manner with K1 of 53 μM, indicating the involvement of alkaline phosphatase. An apparent Km of alkaline phosphatase for TMP was calculated from the Hanes plot to be 0.6 mM. The soluble TMPase has an apparent Km of 0.7 mM; this enzyme is Mg2+ independent and insensitive to levamisole. As estimated by gel filtration on a Toyopearl HW-55 column, the soluble enzyme has a molecular mass of 17.8 kDa, TMPase activity being eluted simultaneously with peaks of flavinmononucleotide and p-nitrophenyl phosphatase activity. Thus, TMP appears to be a physiological substrate for a low-molecular weight acid phosphatase, also known as low-molecular-weight protein phosphotyrosine phosphatase.

  12. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions.

    Science.gov (United States)

    Tetsi, Liliane; Charles, Anne-Laure; Paradis, Stéphanie; Lejay, Anne; Talha, Samy; Geny, Bernard; Lugnier, Claire

    2017-05-01

    Mitochondria play a critical role in skeletal muscle metabolism and function, notably at the level of tissue respiration, which conduct muscle strength as well as muscle survival. Pathological conditions induce mitochondria dysfunctions notably characterized by free oxygen radical production disturbing intracellular signaling. In that way, the second messengers, cyclic AMP and cyclic GMP, control intracellular signaling at the physiological and transcription levels by governing phosphorylation cascades. Both nucleotides are specifically and selectively hydrolyzed in their respective 5'-nucleotide by cyclic nucleotide phosphodiesterases (PDEs), which constitute a multi-genic family differently tissue distributed and subcellularly compartmentalized. These PDEs are presently recognized as therapeutic targets for cardiovascular, pulmonary, and neurologic diseases. However, very few data concerning cyclic nucleotides and PDEs in skeletal muscle, specifically in mitochondria, are reported in the literature. The knowledge of PDE implication in mitochondrial signaling would be helpful for resolving critical mitochondrial dysfunctions in skeletal muscle.

  13. Effect of psychological stress on the content of plasma cyclic nucleotide in individuals of different behavior types%心理应激对不同行为类型者血浆环核苷酸含量的影响

    Institute of Scientific and Technical Information of China (English)

    张爱华; 周力; 李佩贤; 徐丽华; 王力

    2004-01-01

    BACKGROUND: Research on coronary heart disease(CHD) mediator based on molecular biology is scarce, however, it is very helpful for the prevention and control of CHD on that level.OBJECTIVE: To find out the changes of plasma cyclic nucleotide in individuals of different behavior types so as to provide prospective data for the research of mediator of psychological factors inducing CHD.DESIGN: A prospective study.SETTING, PARTICIPANTS and INTERVENTION: Type A and Bbehaviour examinees, 19 respectively, were selected at random from 300 volunteers by questionnaire. Their venous bloods were collected at 16:30 to 17:00 80 days and 1 hour before examination respectively in Weifang First Middle School. Content of plasma cyclic nucleotide were assayed to observe the effect of psychological stress (university entrance examination is the stress origin) on individuals in different behavior types.MAIN OUTCOME MEASURES: Content of plasma cyclic nucleotide before and after stress respectively.RESULTS: Beforo the stress, content of plasma cyclic adenosine monophosphate(cAMP) [ (15.46 ± 3.56) nmol/L] of type A was significantly higher than type B[ (12.09 + 2.78) nmol/L], and this distinction had quite remarkable meanings( t = 3.25, P < 0. 01 ). After the stress, the plasma cAMP and cAMP/cGMP content in type A decreased compared with that before strcss[ (10.911 +3.950), (5.526 + 1.488) nmol/L respectively], and the differeces were significant( t = 12. 25, 8. 14, P < 0. 001), meanwhile, cGMP increased[ (2. 962 + 0. 764)nmol/L] ( t = - 9.06, P < 0. 001 ); the plasma cAMP and cAMP/cGMP in type B decreased[ (7.379 ± 1.762), (3.677 ±1.488) mmol/L] (t =7.42, 7.56, P < 0.001), while cGMP increased [ (2.280 ± 0.685 ) nmol / L ] ( t = - 7.52, P < 0.001 ). The decrease range of cAMP and Camp/cGMP in type A were significantly higher than that in type B(t =3.56,3.83, P <0.001).CONCLUSION: Effect of stress caused by college entrance examination on the content of plasma cyclic

  14. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After aller

  15. ALLERGEN-INDUCED CHANGES IN ADENOSINE 5'-MONOPHOSPHATE BRONCHIAL RESPONSIVENESS - EFFECT OF NEDOCROMIL SODIUM

    NARCIS (Netherlands)

    AALBERS, R; KAUFMAN, HF; GROEN, H; KOETER, GH; DEMONCHY, JGR

    1992-01-01

    Bronchial hyperresponsiveness to adenosine 5'-monophosphate (AMP) was studied after allergen challenge in allergic asthmatic patients. Measurements were made with and without nedocromil sodium pretreatment. Nedocromil sodium inhibited both the early and late asthmatic reactions (P <.01). After

  16. Compare Research of PIC/S, PIC/S GMP and Chinese GMP%PIC/S、PIC/S GMP与中国GMP的比较研究

    Institute of Scientific and Technical Information of China (English)

    张卓光

    2010-01-01

    目的 介绍药品监管公约/药品监管合作计划(PIC/S)和PIC/S GMP,比较PIC/S GMP 和中国GMP(98修订)的差异. 方法 从历史变革、机构与运行机制、宗旨以及PIC/S GMP的影响来阐述PIC/S;从人员、硬件、软件等方面来比较PIC/S GMP 与中国GMP.结果 PIC/S在药品领域倡导GMP标准、检查一致以及互认,促进了GMP发展.结论 PIC/S GMP是国际上高水平的GMP.

  17. Good Manufacturing Practice (GMP guidelines for virgin olive oil production

    Directory of Open Access Journals (Sweden)

    Petrakis, Christos

    1994-04-01

    Full Text Available This paper presents GMP guidelines for the production of virgin olive oil. Standard procedures and conditions are indicated for olive production, harvesting, transportation and storage, for oil manufacture, storage and packaging, for buildings, process logistics and the materials used throughout the production chain.

  18. cGMP signalling : different ways to create a pathway

    NARCIS (Netherlands)

    Roelofs, Jeroen; Smith, Janet L.; Haastert, Peter J.M. van

    2003-01-01

    Recently, a novel cGMP signalling cascade was uncovered in Dictyostelium, a eukaryote that diverged from the lineage leading to metazoa after plants and before yeast. In both Dictyostelium and metazoa, the ancient cAMP-binding (cNB) motif of bacterial CAP has been modified and assembled with other d

  19. Implementation of good manufacturing practices (GMP) on human blood irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boghi, Claudio; Napolitano, Celia M.; Ferreira, Danilo C.; Rela, Paulo Roberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: cboghi@uol.com.br; cmnapoli@ipen.br; dancarde@ig.com.br; prela@ipen.br; Zarate, Herman S. [Comission Chilena de Energia Nuclear, Santiago (Chile)]. E-mail: hzarate@cchen.cl

    2007-07-01

    The irradiation of human blood is used to avoid the TA-GVHD (transfusion-associated graft-versus-host-disease), a rare but devastating adverse effect of leukocytes present in blood components for a immuno-competent transfusion recipients. Usually this irradiation practice is performed to a physical elimination of lymphocytes. The implementation of the GMP will assure that the properly dose in a range of 25 Gy to 50 Gy will be delivered to the blood in the bag collected in a blood tissue bank. The studies to establish the GMP were developed under the guidelines of the standard ISO 11137 - Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. In this work, two dosimetric systems were used for dose mapping during the studies of irradiator qualification, loading pattern, irradiation process validation and auditing. The CaSO{sub 4}: Dy dosimeter presented difficulties concerning to uncertainty on dose measurement, stability, trace ability and calibration system. The PMMA and gafchromic dosimetric systems have shown a better performance and were adopted on establishment of GMP procedures. The irradiation tests have been done using a Gammacell 220 Irradiator. The developed GMP can be adapted for different types of gamma irradiators, allowing to set up a quality assurance program for blood irradiation. (author)

  20. Good manufacturing practices (GMP utilized on human blood irradiation process

    Directory of Open Access Journals (Sweden)

    Cláudio Boghi

    2008-01-01

    Full Text Available Irradiation of human blood is used to avoid the TA-GVHD (transfusion-associated graft-versus-host-disease, a rare but devastating adverse effect of leukocytes present in blood components for immunocompetent transfusion recipients. Usually this irradiation practice is performed to a physical elimination of lymphocytes. The implementation of the GMP will assure that the properly dose in a range of 25Gy to 50Gy will be delivered to the blood in the bag collected in a blood tissue bank. The studies to establish the GMP were developed under the guidelines of the standard ISO 11137 - Sterilization of health care products - Requirements for validation and routine control - Radiation sterilization. In this work, two dosimetric systems were used for dose mapping during the studies of irradiator qualification, loading pattern, irradiation process validation and auditing. The CaSO4: Dy dosimeter presented difficulties concerning to uncertainty on dose measurement, stability, trace ability and calibration system. The PMMA and gafchromic dosimetric systems have shown a better performance and were adopted on establishment of GMP procedures. The irradiation tests have been done using a Gammacell 220 Irradiator. The developed GMP can be adapted for different types of gamma irradiators, allowing to set up a quality assurance program for blood irradiation.

  1. Affordable Cyclic Voltammetry

    Science.gov (United States)

    Stewart, Greg; Kuntzleman, Thomas S.; Amend, John R.; Collins, Michael J.

    2009-01-01

    Cyclic voltammetry is an important component of the undergraduate chemical curriculum. Unfortunately, undergraduate students rarely have the opportunity to conduct experiments in cyclic voltammetry owing to the high cost of potentiostats, which are required to control these experiments. By using MicroLab data acquisition interfaces in conjunction…